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Abstract—In this paper, we identify that memory performance plays a
crucial role in the feasibility and effectiveness for performing denial-of-
service attacks on shared cache. Based on this insight, we introduce
new cache DoS attacks, which can be mounted from the user-space
and can cause extreme worst-case execution time (WCET) impacts to
cross-core victims—even if the shared cache is partitioned—by taking
advantage of the platform’s memory address mapping information and
HugePage support. We deploy these enhanced attacks on two popular
embedded out-of-order multicore platforms using both synthetic and
real-world benchmarks. The proposed DoS attacks achieve up to 111X
WCET increases on the tested platforms.

Index Terms—Denial-of-Service Attack, Shared Cache, Multicore,
Hugepage, Memory Address Mapping

1 INTRODUCTION

Multicore computing platforms are increasingly used in
safety-critical cyber-physical systems such as self-driving
cars and drones. However, in a multicore platform, a task’s
execution time can vary significantly due to contention in
shared micro-architectural resources when other tasks run
concurrently on the platform [11]. Such timing variation in
multicore can be exploited by attackers. Consider, for exam-
ple, a scenario where some cores of a multicore platform are
reserved for critical real-time tasks while some other cores
are reserved for user downloaded third party programs.
Even if the platform’s runtime (OS or hypervisor) partitions
cores and memory to isolate the potentially dangerous pro-
grams from the critical tasks, as long as they share the same
multicore computing platform, a malicious program may
still delay the critical tasks by executing code that effectively
mounts denial-of-service (DoS) attacks.

Modern multicore processors provide a high-degree of
parallelism in accessing memory throughout the memory
hierarchy. At the cache-level, non-blocking caches [20] are
used, and can be accessed even when there are multiple
outstanding cache misses. However, a non-blocking cache
can become inaccessible whenever its internal hardware
buffers are exhausted, at which point the cache is blocked
and cannot accept any further requests. The cache then
remains blocked until the internal buffers become available
again [2], [29]. For a shared last level cache (LLC), cache
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blocking is especially problematic because it affects all cores
that share the cache, as all requests to the cache would be
blocked. As a result, the cores need to wait for the cache to
unblock, which can take a long time as the cache may need
to access slower main memory, which can take hundreds
of CPU cycles. Therefore, if an attacker can intentionally
induce cache blocking on the shared LLC, they can cause
massive timing impacts to the rest of the cores even if they
cannot directly access them.

Prior work demonstrated the feasibility and severity of
micro-architectural DoS attacks [7], [8], [31] on shared non-
blocking caches, which identified two internal cache hard-
ware structures: (1) miss-status-holding-registers (MSHRs),
which track individual requests generated from cache
misses, and (2) write-back buffers, which temporarily hold
and delay cache write-backs, as potential DoS attack vectors.
In these works, an attacker simply accesses a large array
and quickly generates a large number of concurrent cache-
misses. This then exhausts the cache internal structures and
effectively induces cache blocking. They also showed that
conventional cache partitioning techniques are ineffective to
defend against such DoS attacks that target internal cache
hardware structures because they can still be shared even if
the cache space is partitioned.

In this paper, we propose memory-aware cache DoS attacks,
which can induce more effective cache blocking by taking
advantage of the memory address mapping information of
the underlying memory hardware. Like prior cache DoS
attacks, our new attacks also generate continuous cache
misses to exhaust shared cache internal hardware resources.
The difference is that we carefully control those cache misses
to target the same DRAM bank. Because concurrent accesses
to the same DRAM bank cannot take advantage of bank-
level parallelism and incur lots of DRAM bank conflicts,
they will be slower to process [37], which in turn will
lengthen the duration of cache blocking, helping to improve
our attack. To realize this, we leverage Linux’s HugePage
support to directly control part of a physical address so as
to control its DRAM bank location in allocating memory.

We implement and validate the proposed memory-
aware DoS attacks on two contemporary embedded mul-
ticore platforms—Raspberry Pi 4 and Odroid XU4—using
both synthetic and representative real-world benchmarks.
We find that the proposed memory-aware cache DoS attacks



are significantly and consistently more effective at impact-
ing a victim task’s execution time (observed up to 111X
slowdown), compared to state-of-the-art cache DoS attacks.

2 BACKGROUND

In this section, we provide necessary background on non-
blocking caches, main memory, and HugePage.

2.1 Non-Blocking Cache

Modern processors employ non-blocking caches, which em-
ploy multiple internal hardware structures, such as Miss-
Status-Holding-Registers (MSHRs) and the WriteBack (WB)
buffer, to support parallelism in accessing memory [29].

On a non-blocking cache, when a cache-miss occurs, an
MSHR entry is allocated to record the miss related informa-
tion. The MSHR entry is then cleared only when the desired
cache-line is returned from the lower levels of the memory
hierarchy (e.g., LLC, DRAM). Multiple outstanding cache-
misses can be supported by a non-blocking cache, although
the degree to which it can happen depends on the size of
the cache MSHR, which determines the cache’s memory-
level parallelism (MLP). For the remainder of this paper, we
use the terms local MLP and global MLP as the number of
MSHRSs in a private cache and a shared LLC, respectively.

On the other hand, the WriteBack buffer holds dirty
cache-lines that are evicted from the cache and need to be
written back to the next level in memory. Because reads
from memory, such as the cache refills generated from cache-
line evictions, are generally more important for application
performance, delaying writebacks to memory while reads
are being processed can improve system performance by
reducing bus contention. The writebacks are then sent to
memory when there are no reads being serviced or when the
buffer is full. In this way, a non-blocking cache can support
concurrent access to the cache efficiently most of the time.

Note, however, that when either the MSHRs or Write-
Back buffer become full, the entire cache is blocked and
rejects all subsequent requests until the cache is unblocked
when both structures have free entries available. Unfor-
tunately, unblocking can take a relatively long time as it
depends on response times from the lower memory levels.
In the worst case, it can take upwards of hundreds of
CPU cycles when accesses to the slower main memory are
required. Cache blocking is especially problematic in a shared
cache as it affects all cores that share that cache. Even if
a task’s memory accesses are all cache hits, the task can
still suffer massive slowdowns if the cache is blocked for a
significant portion of the time.

2.2 Main Memory (DRAM)

A DRAM chip is organized to have one or more ranks, each
consists of multiple banks [15]. A bank contains storage
cells, which are organized in rows and columns in a 2D
array-like structure. To access data in the storage cells,
the corresponding row must be opened (activated), which
copies the data of the row into an intermediary buffer,
called a row buffer, which acts as a cache. While in the row
buffer, the data can be read from/written to efficiently. To
access a different row, however, the current row needs to

be closed (precharged). Since both activation and precharge
take considerable time, accesses to different rows in the
same bank can decrease memory performance.

To access specific locations in the memory, the system’s
DRAM controller employs a memory address mapping
scheme that translates a given physical address to the
DRAM specific addresses (rank, bank, row, and column).
Because DRAM banks can be accessed in parallel, the ad-
dress mapping of DRAM banks is particularly important
for memory performance. If concurrent memory requests
are mapped over different banks, they can be processed
efficiently in parallel and thus faster; if, however, they
are mapped to the same bank, resulting bank conflicts will
slowdown the memory performance [36]. Therefore, if an
attacker can control the physical addresses in allocating
memory, they can also control which DRAM banks the allo-
cated memory blocks will be located on. This, in turn, will
cause a slowdown in memory performance by intentionally
generating lots of bank conflicts.

2.3 HugePage

In a virtual memory-based system, memory is typically
allocated in a 4KB page granularity. However, most modern
architectures, including ARM, support bigger page sizes
(e.g., 2MB pages) and Linux’s HugePage [1] infrastructure
gives applications an option to use them when allocating
memory. This can reduce the number of pages used by
applications and the CPU’s translation look-aside buffer
(TLB) pressure [25], as each TLB entry can cover a larger
address range (2MB vs. 4KB). This can improve performance
and predictability, which are needed for many modern real-
time systems. As such, many recent embedded platforms
and their Linux kernels support HugePages.

31 12 0
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31 21 0
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Fig. 1: Virtual address mappings in 4KB and 2MB pages.

Figure 1 shows the virtual address mappings for 4KB
and 2MB page granularity on a 32-bit system. For the 4KB
granularity, 12 bits are used in the offset of a page, while
21 bits are used for the offset of a 2MB page. Note that
this means that allocating a single 2MB page allows us to
control a larger portion of the physical address space (the
lowest 21 bits) without requiring any system privileges. In
the following, we will exploit this ability to control (part of)
physical addresses for creating effective cache DoS attacks.

3 THREAT MODEL

We assume that victim and attacker are co-located on a mul-
ticore processor which features multiple processing cores,



per-core private caches, and a single shared last-level cache
(LLC). We consider a runtime system (OS and hypervisor)
that can partition core, memory, and LLC space to limit
resource sharing between the victim and the attacker. In ad-
dition, the attacker’s capability is limited to executing non-
privileged user-level code. The aforementioned assump-
tions are the same as those used in the prior work [8].

In this work, we make the following two additional
assumptions: First, the runtime supports HugePages and
the attacker can use it to allocate memory in its own private
address space. Second, the attacker knows the system’s
physical address to DRAM bank address mapping informa-
tion and the attacker controllable subset of physical address
bits—the size of a HugePage—is sufficient to control DRAM
bank allocation. Note that major architectures (e.g. x86,
ARM) and OSes (e.g. Linux) support HugePages (2MB or
1GB per page) and prior works showed that it is possible to
reverse engineer the DRAM bank mapping information on a
variety of computing platforms [12], [21], [26]. As such, we
believe these additional assumptions are realistic. We pro-
vide further discussion on the validity of these assumptions
in Section 6.

In this setting, the attacker’s primary goal is to delay
the execution time of the victim task by mounting denial-of-
service attacks on the shared cache.

4 MEMORY-AWARE CACHE DOS ATTACK

In this section, we discuss memory access characteristics
of prior cache Do$S attacks and their limitations (Section 4.1),

to intentionally miss the LLC. Again, multiple write misses
can occur concurrently, which can stress both the MSHRs
and the Writeback Buffer of the cache. This is because each
missed write can generate up to two memory requests: a
read for a cache linefill and a write for a cache writeback [8].

While these attacks are effective at generating a large
number of concurrent cache misses, their sequential mem-
ory access nature means these misses can be processed
efficiently at the memory level. Concretely, successive cache
misses are likely to be allocated on the same DRAM row
(e.g. 2KB in LPDDR4) and thus are processed efficiently at
the DRAM because costly row switching is not needed.

Note that efficient processing at memory is undesirable
from the perspective of a cache DoS attack because its
goal is to induce longer cache blocking and fast memory
performance would instead reduce the duration of cache
blocking.

4.2 Parallel Linked-List Attack

To address the shortcomings of the sequential memory
access-based cache DoS attacks, we first introduce parallel
linked-list attacks, which generate concurrent random mem-
ory accesses.

followed by the proposed memory-aware cache DoS attacks
(Section 4.2 and 4.3).

4.1 Sequential Attack

1 |for (i = 0; i<mem_size; 1 |for (i = 0; i<mem_size;

2 i += LINE_SIZE) 2 i += LINE_SIZE)

3| 3

4 sum += ptr[i]; 4 ptrli] = Oxff;

5 5

(a) BwRead (b) BwWrite

Fig. 2: Sequential memory access attacks.

Figure 2 shows the code snippets of the prior cache
DoS attacks [8], [31], which perform a series of sequential
memory accesses over a large array.

The BwRead attack iteratively reads entries of a large one-
dimensional array at a cache-line granularity (LINE_SIZE,
which is typically 64 bytes). When mem_size is larger than
the size of the LLC, it generates lots of cache-misses
and, in turn, accesses to main memory. On a modern
processor, multiple cache-misses can occur concurrently—
with the help of out-of-order execution and/or hardware
prefetchers—which may stress the LLC’s MSHRs [8], [31].

The BwWrite attack operates in a similar manner, but
instead writes a value to each array entry. This will then gen-
erate continuous store operations that can also be configured

1 | static int+ listft MAX_MLP];
2 | static int nextftMAX_MLP];
3
1 | static int+ listftMAX_MLP]; 4 |for (intbd_ti=0;i < iter; i
2 | static int next(ftMAX_MLP]; ++) {
3 5 switch (mlp) {
4 |for (int6d_ti=0;i < iter; i 6 case MAX_MLP:
++) { 7 .
5 switch (mlp) { 8 .
6 case MAX_MLP: 9 case 2:
7 . 10 list[1][next[1]+1] =
8 . 11 Oxff;
9 case 2: 12 next[1] =
10 next[1] = 13 list[1][next[1]];
11 list[1][next[1]]; 14 /* fall—through +/
12 /* fall-through */ 15 case 1:
13 case 1: 16 list[0][next[0]+1] =
14 next[0] = 17 Oxff;
15 list[0][next[0]]; 18 next[0] =
16 19 list[0][next[0]];
17 |} 20
21 |}
Z

(a) PLLRead (b) PLLWrite

Fig. 3: Parallel linked-lists attacks. Linked-list entries are
randomly shuffled over a large address space.

Figure 3 shows the code snippets for the parallel linked-
list attacks: PLLRead for read and PLLWrite for write. In
both cases, the attacks traverse a set number of linked lists,
which can be accessed concurrently on a modern out-of-
order core because there is no data dependency between
the entries of different lists. Each linked list is randomly
shuffled over a large memory address space to prevent
prefetching. As such, the number of linked lists determines
the degree of memory-level parallelism (MLP) of the attacks.
Note that the parallel-linked list attacks are based on the
MLP measurement code in [9].

Like the sequential access attacks, the parallel-linked list
attacks are designed to generate concurrent cache-misses,



which would stress cache internal hardware buffers and in-
duce cache blocking. Unlike the sequential attacks, though,
they are potentially less efficient in memory—hence more
effective DoS attacks—because memory requests from a
linked-list are likely mapped on different DRAM rows,
which would require costly row switching [37]. Note, how-
ever, that entries of different linked-lists can still be mapped
to different DRAM banks. This would mean that concurrent
accesses to different lists can be processed in parallel on
different banks, which can hide the increased overhead
of frequent row-switching at each individual bank. This
is undesirable from the perspective of a cache DoS attack
because it needs slower—not faster—memory performance
to be more effective.

4.3 DRAM Bank-Aware Parallel Linked-List Attack

To overcome the limitations of the aforementioned cache
DoS attacks, we propose a DRAM bank-aware cache DoS
attack, which is based on the parallel-linked list attack code
(Section 4.2) but differs in that the entries of the linked-lists
are constructed in such a way that they are all allocated in
the same DRAM bank. The rational is that when multiple
accesses target the same bank, they will take longer to be
serviced at the DRAM because of increased DRAM bank
conflicts and frequent row switching.

1 |int paddr_to_bank(unsigned long mask, unsigned long
addr)
2 |{
3 int bank = 0;
4 int idx = 0;
5 int bit;
6 for_each_set_bit(bit, &mask, BITS_PER_LONG) {
7 if ((addr >> (bit)) & 0x1)
8 bank |= (1<<idx);
9 idx++;
10
11 return bank;
12 |}

Fig. 4: Physical address to DRAM bank mapping function.

Figure 4 shows the physical address to DRAM bank
mapping function we used in this work. It checks the value
of each bit in a given address that corresponds to the set of
bits specified in the mask bitmask, which is the platform’s
physical address bits that are mapped to DRAM banks.
By comparing the set bits in mask with that of the given
address addr, we can determine which DRAM bank the
address belongs to. Note that depending on the hardware
platform, a more complex mapping function may be needed
(e.g. multiple rounds of XOR operations: [12], [26]).

We use the mapping function in allocating memory
blocks for the entries in the linked-lists as follows. First, we
allocate a big chunk of memory using Linux’s HugePage
support (i.e. 2MB pages). Then, when constructing a linked
list, we randomly select an address within the big chunk.
If the candidate address’s bank index (return value of the
paddr_to_bank() function) is zero, we add the address to the
linked list as a new entry, otherwise we discard the address
and continue with a different randomly picked address,
until we construct all entries with the same bank number.

Because 2MB pages are used for memory allocation,
up to 21 bits of a virtual address are the same as its
corresponding physical address. This can effectively allow
the attacker control a large number of physical address bits,
including those that determine the DRAM bank allocation.
As a result, when all of the linked lists are generated, all of
their entries will be allocated on the same memory bank.
When these linked lists are accessed concurrently by an
out-of-order core, all the memory requests will then target
the same DRAM bank. Furthermore, they also likely target
different rows of the bank because of random addressing.
As a result, their memory performance will be very slow,
which in turn result in longer cache blocking and, in turn,
more effective cache DoS attacks.

5 EVALUATION

In this section, we evaluate the effectiveness of the pro-
posed memory-aware cache DoS attacks! on two embedded
multicore-based platforms using both synthetic and real-
word applications.

5.1 Embedded Multicore Platforms

Platform Odroid-XU4 Raspberry Pi 4 (B)
SoC Exynos5422 BCM2711
4x Cortex-A15 4x Cortex-A72
CPU out-of-order out-of-order
2.0GHz 1.5GHz
L1 (Private) Cache || 32KB(I)/32KB(D) | 48KB(I)/32KB(D)
L2 (Shared) Cache 2MB (16-way) 1MB (16-way)
Memory 2GB LPDDR3 4GB LPDDR4
(Peak BW) (14.9GB/s) (25.6 GB/s)

DRAM Bank Bits

8,13,14, 15,16

11,12,13, 14

TABLE 1: Compared embedded multicore platforms.

We deploy our DoS attacks on two embedded multicore
platforms: an Odroid-XU4 and a Raspberry Pi 4 Model B.
The Odroid XU4 includes four Cortex-A7 (in-order) cores
and four Cortex-A15 (out-of-order) cores, of which we only
use the latter. The second platform we test, the Raspberry
Pi 4, only equips four Cortex-A72 (out-of-order) cores. We
reverse engineer the DRAM bank mapping information of
the platforms using the methods described in [26], [36].
Table 1 shows the basic characteristics of the tested plat-
forms. Note that the L2 cache is the last-level cache (LLC)
in both platforms. As for the operating system, the Odroid-
XU4 runs Ubuntu 18.04 and Linux kernel 4.14, while the
Raspberry Pi 4 runs Raspbian Buster and Linux kernel 4.19.

5.2 Impact to Synthetic Workloads

In this experiment, we evaluate the effectiveness of our
memory-aware cache DoS attacks using synthetic work-
loads. The experimental setup is as follows: we first run
a (synthetic) victim task alone on a single core, Core 0,
to measure its solo response time. We then run the victim
task alongside up to three instances of an attacker task,
scheduled on Cores 1-3, and measure the response times

1. Available at https:/ /github.com/mbechtel2 /MemoryAwareDOS
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Fig. 5: Effects of cache DoS attacks (X-axis) to a LLC fitting
BwRead(LLC) victim.

of the victim task to determine the slowdown each attack
caused on the victim relative to the solo case.

For the victim tasks, we use BwRead(LLC) and
BwRead(DRAM), both of which are based on the sequential
DoS attack task (Section 4.1) but differ in their working-set
sizes—i.e. (LLC) means that the working-set is smaller than
the platform’s L2 cache size (but bigger than the L1 cache),
whereas (DRAM) means that it is bigger than the L2 size.

For the attackers, we employ all three cache DoS attack
types discussed in Section 4, with each one capable of being
read intensive or write intensive, for a total of six attacking
tasks. BwRead and BwWrite refer to read and write version,
respectively, of the sequential memory attack in Section 4.1;
PLLRead and PLLWrite refer to the parallel linked-list attacks
in Section 4.2; and BkPLLRead and BkPLLWrite refer to the
memory-aware (DRAM bank-aware) parallel linked list at-
tacks in Section 4.3. For all attacking tasks, we configure
their working set sizes to be bigger than the platform’s L2
cache size. In other words, the attackers” working-set sizes
are always (DRAM). As such, we drop the parenthesis when
referring the attackers.

Figure 5a shows the effects of the cache DoS attacks to
the BwRead(LLC) victim on Odroid-XU4. First, the sequen-
tial memory attackers—BwRead and BwWrite—are already
quite effective on the Odroid-XU4, as they slowdown the
cache fitting victim task more than 10 and 20 times, respec-
tively. The results are consistent with the findings in the
prior works [8], [31], which suggested that the smaller num-
ber of LLC MSHRs in the Odroid-XU4’s Cortex-A15 proces-
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Fig. 6: Effects of cache DoS attacks (X-axis) to a DRAM fitting
BwRead(DRAM) victim.

sor was the main culprit, and led to frequent cache block-
ing. Next, the parallel linked-list attackers—PLLRead and
PLLWrite—show mixed results as PLLRead is slightly more
effective than BwRead while PLLWrite is somewhat worse
than BwWrite. Lastly, our memory-aware parallel linked-list
attackers—BkPLLRead and BkPLLWrite—are shown to be
much more effective than the rest. The worst case slowdown
of the victim was ~46X when paired with three BKPLL-
Read attackers, and ~111X with three BkPLLWrite attackers.
This is because the outstanding cache-misses of the parallel
linked lists cannot be processed efficiently in DRAM as they
cannot leverage DRAM bank-level parallelism (all target a
single bank) and most of them cause costly DRAM row
switching (due to random access patterns). As a result,
the attacks can generate more effective prolonged cache
blocking, which slows down the victim as it frequently
needs to access the blocked cache.

On the other hand, Figure 5b shows the results of the
same experiment on the Raspberry Pi 4. Note that, unlike
the Odroid-XU4, none of the attackers show significant per-
formance impacts on the victim task. This can be explained
by the fact that the Raspberry Pi4’s Cortex-A72 features a
significantly improved L2 cache that can handle many more
outstanding requests than that of Odroid-XU4’s Cortex-A15.
Concretely, the Cortex-A72’s L2 cache can support up to 19
outstanding reads (or more depending on the implementa-
tion) [5], while the Cortex-A15’s L2 can handle only up to
11 outstanding reads [4], [31]. As a result, it appears that
all attackers—on their own—are unable to induce sufficient



cache blocking necessary to delay the BwRead(LLC) victim,
which mainly accesses the L2 cache.

In the next experiment, we instead use BwRead(DRAM)
as the victim task, which itself generates lots of L2 cache-
misses. Figure 6 shows the results. First, note that on both
platforms, our memory-aware attackers (BKPLLRead and
BKkPLLWrite) are significantly more effective than the rest,
causing up to 28X slowdown on Raspberry Pi 4 and up
to 25X on Odroid-XU4. While precise attributions are chal-
lenging due to the presence of various complex and oppor-
tunistic performance enhancing mechanisms (e.g., hardware
prefetchers), the fact that our memory-aware attacks, which
consume much less memory bandwidth by limiting its
memory accesses to a single DRAM bank, caused signifi-
cantly more slowdowns to the victim than other more band-
width intensive attackers (both sequential and memory-
unaware parallel linked-list attacks) suggest that the cause
of the slowdown is due to increased cache blocking rather
than DRAM bandwidth limitation. The results were similar
when we explicitly partitioned DRAM banks between the
victim and the attackers, further indicating that the observed
slowdowns are due to cache blocking rather than DRAM
related issues such as bandwidth or bank conflicts between
the victim and the attackers.

5.3 Impact to Real-World Applications

In this experiment, we evaluate the effectiveness of our
memory-aware cache DoS attacks using 32 real-world
benchmarks from SPEC2017 [3] and SD-VBS [32]. For each
benchmark, we employ the same experimental methodol-
ogy used in Section 5.2. That is, we measure the victim’s
execution time first alone in isolation and then together
with three instances of an attacker task. For the attackers,
we only use the write versions (BwWrite, PLLWrite, and
BkPLLWrite) as they were able to generate more contention
than their respective read versions.

Figure 7 shows the results. On the Odroid-XU4, our
memory-aware attack, BKPLLWrite, is able to delay the
execution times of the real-world victim tasks far more
effectively than other attackers, achieving a geometric mean
of 11X slowdown (up to 44.2X for cactuBSSN), which is
3.3X and 3.9X better than BwWrite and PLLWrite attacks,
respectively. On the Raspberry Pi 4, on the other hand,
BkPLLWrite achieves a geometric mean of 4.1X slowdown
(up to 22.5X for parest), which is 46% and 52% better than the
BwWrite and PLLWrite attacks, respectively. Interestingly,
the improvements of BkPLLWrite are more pronounced in
some benchmarks (e.g., parest) while not significant on other
benchmarks (e.g., svm) on the Raspberry Pi 4, whereas
the improvements are significant in most of the tested
benchmarks on Odroid-XU4. This is because those that
primarily access the caches but not DRAM—similar to the
BwRead(LLC) victim in Figure 5Sb—would be less impacted
by our attackers on Raspberry Pi 4 due to the reasons
described in 5.2.

In summary, we find that proposed memory-aware cache
DoS attacks are substantially more effective than prior cache
DoS attacks in increasing the execution times of real-world
applications on both of the tested multicore platforms.

6 DiscussIiON

In this section, we discuss limitations and possible future
extensions of our work.

One notable shortcoming of the proposed memory-
aware cache DoS attacks is that they do not work on in-order
pipeline based processors (e.g. Cortex-A53). This is because,
unlike an out-of-order core, an in-order core cannot traverse
multiple linked lists concurrently and is thus unable to
generate concurrent cache-misses and, in turn, induce cache
blocking. Note, however, that this does not mean successful
cache DoS attacks are fundamentally impossible on in-
order processors. In fact, prior work [8] showed that how
hardware prefetchers in in-order cores can be exploited to
mount successful cache DoS attacks. Unfortunately, such
hardware prefetchers cannot follow the multiple linked lists
used in our attacks. Memory-aware cache DoS attacks for
in-order processors are left as future work.

Another limitation of our work is that we assume that
the attacker knows the memory address mapping scheme
of the system. Depending on the hardware platform, this
information can be difficult to obtain. First, most vendors
do not publicly disclose the detailed memory mapping in-
formation. Second, reverse engineering can be complicated
if the memory controller employs a complex addressing
scheme (e.g. [39]), although there are sophisticated reverse
engineering techniques (e.g. [12], [26]) that can recover such
complex mapping information. Lastly, a reverse engineering
technique might require higher system-level privileges and
additional information (e.g. prior knowledge on the number
of DRAM banks) to be effective. Note, however, an attacker
does not need to perform the reverse engineering on the
target platform that they intends to attack. Instead, it can
be performed on any platform as long as it has the same
processor and memory configuration because the mapping
information would be the same. While reliable and accurate
reverse engineering of DRAM mapping information is still
an important challenge, it is orthogonal to our work.

Third, our attacks assume that HugePage support is
enabled and can be used by the attacker in allocating its
memory and that the size of a HugePage is big enough to
control DRAM bank allocation. Without HugePage support,
only a 4KB address space can be controlled by the attacker,
which is insufficient to control DRAM bank allocation on
most platforms. Therefore, disabling HugePages or only
making them accessible to privileged users can also de-
feat our memory-aware DoS attacks. Note, however, that
HugePage support is common in most desktop and server
platforms due to its potential performance benefits for large
applications [25]. We also observe that increasingly many
embedded platforms (e.g. NVIDIA’s Jetson series) include
HugePage support by default to better support increasingly
bigger and complex applications, especially those in intelli-
gent robots.

Lastly, in this work, we mainly target two popular
embedded multicore processors. In the future, we plan to
evaluate the effectiveness of the proposed attack in more
diverse processors and platforms. In particular, we are
interested in bigger server class processors used in cloud,
such as Amazon EC2. In a cloud, multiple users may share



30

BwWrite C—J
32.6 44.2 .
PLLWrite
25 - BKPLLWrite mm—]
20 - -
o
=
=
K=
(9p]
10 — -
5 _
0 - (=) o > > o @ > o E o o w wv wv o
b= 3 o =3 338 = S g3 3249 g g
sSSP aZEREE S S5235555338%83¢g885"555¢8°¢
2 £§8 @ & &g 7= T 2 7 ZE 3 c3E g
= R 2 = g £ 275
S 3
= @
QD
=
(a) Odroid XU4 (Cortex-A15)
30 BwWrite
PLLWrite D=
25 - BKPLLWrite mmmm— ]
20 - -
| o
=
S 15 -
=
K=
w
10 -
5 — —
0 . o = = = S v Vv o o
BRB3SE5K88B8"E88888558832853588FZ2525€E88¢8
g 23*Fg >3 22283 22883822 ="533&2253
3 £§8 © g 838 T & 2 7 Zg 3 32
= R z = g £ 27 &
5 3
= @
E
(b) Raspberry Pi 4 (Cortex-A72)
Fig. 7: Effects of cache DoS attacks on SPEC2017 and SD-VBS benchmarks.

a physical computing platform. Thus, a malicious user’s
cache DoS attack, if successful, can significantly impact the
quality-of-service (QoS) of the other users on the platform.
Given the importance of cloud computing, investigating our
attack’s feasibility and effectiveness is thus interesting and
exciting future work.

7 RELATED WORK

Micro-architectural denial-of-service (DoS) attacks have
been studied for several different types of shared resources
in multicore systems. Moscibroda et al. demonstrated DoS
attacks on memory (DRAM) controllers [23]. In particular,
they found that the widely used FR-FCFES [27] scheduling
algorithm, which prioritizes row hits, is susceptible to DoS
attacks. In response, many “fair” memory scheduling algo-
rithms (e.g. [19], [24]) were proposed to balance perfor-
mance and fairness in scheduling memory. Keramidas et al.
studied DoS attacks on cache space and proposed a cache
replacement policy that allocates less space to such attackers
(or cache “hungry” threads) [16]. Unwanted cache space
evictions is particularly well-known type of interference,

which was well studied by Woo et al. when they investi-
gated DoS attacks on cache bus (between L1 and L2) band-
width, main memory bus (front-side bus) bandwidth, and
shared cache space, on a simulated multicore platform [33].
More recently, our prior works focused on internal hardware
buffers of shared non-blocking caches and demonstrated the
effectiveness and severity of cache DoS attacks [7], [8], [31].
Iorga et al. leveraged the DoS attacks from [8] and presented
a statistical testing method to evaluate shared resource inter-
ference on a number of embedded multicore platforms [14].
The memory-aware cache DoS attacks proposed here are
significantly more effective than prior cache DoS attacks by
taking advantage of memory address mapping information
and HugePage support.

Even in the absence of malicious attackers, normal ap-
plications sharing a multicore can interfere with each other
due to contention on the shared hardware resources, which
is especially problematic for real-time systems as they need
isolation and timing guarantee. Consequently, there is a
large body of work in the real-time systems research com-
munity to provide stronger isolation in multicore, most of
which have been focused on two major shared resources:



shared cache space and main memory bandwidth. Many
researchers proposed various software and hardware mech-
anisms and policies to manage these resources [10], [17],
[18], [22], [28], [30], [34], [35], [38]. The moves for greater
shared resource management has also been seen in industry
as well. In fact, major CPU manufacturers have added
hardware support for shared resource management. For
example, some of recent Intel processors include support
for the Resource Director Technology (RDT) technology [13],
which allows for low overhead management of shared cache
space and memory bandwidth. ARM also introduced a simi-
lar technology called Memory System Resource Partitioning
and Monitoring (MPAM) [6]. Recently, Xu et al., proposed a
joint shared cache space and memory bandwidth partition-
ing technique to provide stronger isolation in multicore [34],
utilizing both Intel’s hardware based cache partitioning and
software based memory bandwidth throttling mechanisms.
As we previously showed, however, cache space partition-
ing techniques do not necessarily protect against cache DoS
attacks as they target cache internal buffers which can still
be shared even when the cache is partitioned [8], [31]. On the
other hand, memory bandwidth management (throttling)
has been shown to be a viable defense against cache DoS
attacks [8]. This is because it limits the rate of memory ac-
cesses, which is key to any successful DoS attack, including
the memory-aware ones we proposed in this work.

8 CONCLUSION

In this paper, we introduced memory-aware cache DoS
attacks that leverage a system’s memory address mapping
information and HugePage support to induce prolonged
cache blocking by intentionally creating DRAM bank con-
gestion. From extensive experiments on two popular em-
bedded multicore platforms, we show that our memory-
aware cache DoS attacks can generate significantly higher
timing impacts to cross-core victim tasks compared to prior
cache DoS attacks.
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