
Shard Systems: Scalable, Robust and Persistent Multi-Agent Path Finding
with Performance Guarantees

Christopher Leet1, Jiaoyang Li1, Sven Koenig1

1 USC Department of Computer Science
cjleet@usc.edu, jiaoyanl@usc.edu, skoenig@usc.edu

Abstract

Modern multi-agent robotic systems increasingly require
scalable, robust and persistent Multi-Agent Path Finding
(MAPF) with performance guarantees. While many MAPF
solvers that provide some of these properties exist, none pro-
vides them all. To fill this need, we propose a new MAPF
framework, the shard system. A shard system partitions the
workspace into geographic regions, called shards, linked by
a novel system of buffers. Agents are routed optimally within
a shard by a local controller to local goals set by a global
controller. The buffer system novelly allows shards to plan
with perfect parallelism, providing scalability. A novel global
controller algorithm can rapidly generate an inter-shard rout-
ing plan for thousands of agents while minimizing the traf-
fic routed through any shard. A novel workspace partition-
ing algorithm produces shards small enough to replan rapidly.
These innovations allow a shard system to adjust its routing
plan in real time if an agent is delayed or assigned a new goal,
enabling robust, persistent MAPF. A shard system’s local op-
timality and optimized inter-shard routing bring the sum-of-
costs of its solutions to single-shot MAPF problems to be-
tween 25% and 70% of optimal on a diversity of workspaces.
Its scalability allows it to plan paths for thousands of agents
in seconds. If any of their goals change or move actions fails,
a shard system can replan in under a second.

1 Introduction

In the robust, persistent Multi-Agent Path Finding problem,
we are given a set of k agentsA := {a1, . . . , ak} positioned
at k unique vertices in a workspace G := (V,E). At any
time, a user may issue at task (ai, vj) ∈ A× V directing an
agent ai ∈ A to visit a goal vj ∈ V . Agents service tasks
first-come-first-served. An agent with no outstanding tasks
is said to be idle. Idle agents can be moved freely.

Time is discretized into timesteps. At each timestep, an
agent ai must either move to an adjacent vertex vj using a
move action ai.move(vj) or wait at its current vertex ai.v
using a wait action. Two agents conflict if they either oc-
cupy the same vertex or traverse the same edge on the same
timestep. A move action may randomly fail. If an agent
ai’s movement fails, any move action which would move
an agent aj onto the vertex ai occupies ai.v also fails. This

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

simulates agents being able to avoid collisions with station-
ary objects using simple proximity sensors. Let an agent ai’s
path pi be the sequence of move and wait agents the agent
takes to visit each of its goals in turn. Let the cost of pi be
the number of actions |pi| it contains. The goal is to gener-
ate a conflict-free path for each agent such that these paths’
sum-of-costs

∑

i |pi| is minimized. If an agent is assigned a
new goal or experiences movement failure, its path must be
updated in real-time (i.e., a small fraction of a second).

One important special case of the robust, persistent MAPF
problem is the one-shot MAPF problem, where each agent is
initialized with a single goal, no further goals are assigned,
and movement never fails.

An increasing number of real world autonomous sys-
tems need to solve instances of the robust, persistent MAPF
problem with thousands of agents to operate. Ideally, more-
over, these solutions should have close-to-optimal sum-of-
costs. Warehouse operators, such as Amazon, use thou-
sands of agents grouped into 800+ agent teams to re-
trieve items stored in large warehouse complexes (Simon
2019). Entertainment companies, such as Spaxels, produce
aerial spectaculars featuring thousands of UAVs flying in
concert (Schranz et al. 2020). Airport scheduling requires
coordinating the movement of thousands of planes (Yu
and LaValle 2016a). Unfortunately, while robust, persistent
MAPF solvers exist, none can simultaneously scale to thou-
sands of agents while producing solutions with close-to-
optimal sum-of-costs. As such, the question:

Is it possible to build a robust, persistent MAPF solver
which can produce solutions with close-to-optimal

sum-of-costs for teams of thousands of agents?

is both open and of great practical relevance.

Shard System. We answer this question in the affirmative
by developing a new MAPF framework, the shard system.
Figure 1(a) shows the architecture of a shard system. A shard
system partitions a workspace into subgraphs called shards
sj ∈ S (green boxes) linked by short, unidirectional paths
called buffers bk ∈ B (brown boxes). An agent in a shard is
routed by the shard’s local controller. An agent in a buffer
is routed along the buffer’s path to the buffer’s head. Buffers
and shards exchange agents using transfer protocols.

A global controller (yellow box) receives each task is-
sued by a user (white box). The global controller executes

in particular, is well optimized; optimizations such as by-
passing conflicts (Boyarski et al. 2015) and symmetry rea-
soning (Li et al. 2020) allow CBS to scale to many tens of
agents. Ultimately, however, these approaches have failed to
scale to hundreds of agents.

The need for scalability prompted the development
of bounded-suboptimal single-shot MAPF solvers, such
as Enhanced CBS (Barer et al. 2014). State-of-the-art
search-based bounded-suboptimal MAPF solvers such as
EECBS (Li, Ruml, and Koenig 2021) scale to a few hundred
agents in dense workspaces (i.e., workspaces with many ob-
stacles and high agent to vertex ratio), and up to a thousand
agents in open workspaces.

The difficulty of scaling even bounded-suboptimal single-
shot MAPF solvers has led to interest in MAPF solvers
which lack optimality guarantees but scale well. Exam-
ples include reactive MAPF solvers such as WHCA∗ (Sil-
ver 2005), rule-based MAPF solvers such as Push and Ro-
tate (De Wilde, Ter Mors, and Witteveen 2014) and Par-
allel Push and Swap (Sajid, Luna, and Bekris 2012), any-
time MAPF solvers such as X∗ (Vedder and Biswas 2019),
and prioritized planning (Lozano-PÂerez and Erdmann 1987).
These MAPF solvers scale to a few thousand agents but tend
to produce low quality solutions in dense workspaces.

Robust One-Shot MAPF Solvers. We term one-shot
MAPF solvers which can handle move action failure robust
one-shot MAPF solvers By prohibiting two agents from oc-
cupying the same vertex in a k timestep period, the k-delays
framework (Atzmon et al. 2018) ensures that conflicts only
arise if more than k of an agent’s move actions fail but often
increases sum-of-costs. A MAPF plan can be executed in
an execution framework which resolves conflicts produced
by delays, such as (Ma et al. 2017). Such frameworks, how-
ever, can produce low quality solutions in dense workspaces
where one delay can cause many.

Robust, Persistent MAPF Solvers. Rule-based solvers,
such as MAPP (Wang and Botea 2011), can provide
robust, persistent MAPF but produce low-quality solu-
tions in crowded environments. Search-based solvers such
as (Švancara et al. 2019) exist which can incrementally up-
date their previous solution. In dense environments, how-
ever, replanning typically affects many other agents, limiting
these solvers’ ability to scale by reusing prior computation.
Execution frameworks, such as Action Dependency Graphs
(HÈonig et al. 2019), allow a MAPF solver to replan while its
current plan is executed but are limited by the scalability of
the underlying MAPF solver.

Partition-Based MAPF Solvers. We term MAPF solvers
which partition the workspace geographically partition-
based MAPF solvers. The ros-mapf framework (Pianpak
et al. 2019) partitions the workspace along grid lines. Each
partition is assigned an answer-set-programming-based con-
troller. HMAPP (Zhang et al. 2021) partitions the workspace
similarly. It uses a high-level MAPF solver for inter-partition
routing. SDP (Wilt and Botea 2014) assigns each two-
vertex-wide corridor in a workspace a specialized con-
troller. Each subgraph connecting these corridors is assigned
a WHCA∗-based controller. The shard system introduces

Algorithm 1: Global Controller Timestep.

1: function GLOBALCONTROLLERTIMESTEP

2: for (ai, vk) ∈ RECV(users) do
3: goalQ[ai].enqueue(vk)

4: toRoute← {ai ∈ idle : |goalQ[ai]| > 0}
5: idle← idle− toRoute
6: if |toRoute| > 0 then
7: for ai ∈ toRoute do
8: goalS[ai]← sj s.t. goalQ[ai][0] ∈ Vj

9: sPath← SPPLAN(curS, goalS, GS)
10: for ai 7→ (s1, . . . , sn) ∈ sPath : ai /∈ idle do
11: lGoal[sn][ai]← goalQ[ai][0]
12: for j ∈ [1, . . . n− 1] do
13: lGoal[sj][ai]← rndBuf(sj , sj+1)

14: for sj ∈ Vs : sj /∈ (s1, . . . , sn) do
15: lGoal[sj][ai]← None

16: for obj ∈ S ∪B do
17: SEND(obj, lGoal[obj] if obj ∈ S else None)
18: objActive, objIdle← RECV(obj)
19: for ai ∈ objActive ∪ objIdle do
20: curS[ai]← obj if obj ∈ S else obj.dst

21: for ai ∈ objIdle do
22: idle.add(ai)
23: goalQ[ai].dequeue()

three key novelities which allow it to outscale these MAPF
solvers while providing robust and persistent MAPF:

1. Perfect Parallelism. Prior partition-based MAPF solvers
operate their partitions at least partially in serial. Buffers
allow each a shard system’s shards to operate with perfect
parallelism, greatly improving scalability while limiting
the effects of movement failure to a single shard.

2. Novel Workspace Partitioning. Prior partition-based
MAPF solvers partition the workspace along grid lines or
at bottlenecks. By leveraging the graph-partitioning liter-
ature, the shard system ensures that each shard is small
(to allow for real-time replanning) and compact (to avoid
their perimeters creating bottlenecks and detours).

3. Novel Inter-Shard Routing. The shard system’s inter-
shard routing algorithm can plan paths for thousands
of agents in real time, outscaling prior partition based
solvers’ inter-partition routing algorithms.

3 The Shard System

We now describe in detail how a shard system’s global con-
troller, shards and buffers operate.

Global Controller. The global controller receives tasks
submitted by users and executes these tasks by configuring
each shard’s local goals appropriately. At each timestep, the
global controller (Algorithm 1):

Receives new tasks from its users (Lines 2-5). An agent
ai’s goals are enqueued in its goal queue goalQ[ai]. Let idle
be the set of idle agents. If an idle agent ai is assigned a task,
the global controller moves ai from the set idle to the set

toRoute (Lines 4-5). If toRoute isn’t empty (Line 6), then
the global controller:

Replans each agent’s shard path (Lines 7-9). An agent
ai’s shard path runs from its current shard curS[ai] to its
goal shard goalS[ai], the shard containing the next goal in
ai’s goal queue goalQ[ai]. During replanning, any agent ai
in a buffer bk is treated as if it had already arrived at the
buffer’s destination shard, curS[ai] = bk.dst.

Recomputes each shard’s local goals (Lines 10-15). Shard
sj’s local goal for an agent ai, denoted as lGoal[sj][ai] is:

1. ai’s global goal goalQ[ai][0], if sj is ai’s goal shard, that
is, goalS[ai] = sj (Line 11).

2. an outlet to a random buffer leading to the next shard in
ai’s path sj+1, denoted as rndBuf(sj , sj+1), if sj is any
other shard on ai’s shard path (Lines 12-13).

3. None if sj is not on ai’s shard path (Lines 14-15).

Idle agents’ local goals are left unchanged (keeping the
agent at the last goal it was assigned). A shard sj’s local
goal for agent ai is initialized to None if ai doesn’t start in
sj and ai.v, ai’s current location, if ai does.

Instructs each shard and buffer to execute a timestep
(Lines 16-18). A shard sj’s instruction contains updated lo-
cal goals lGoal[sj] (Line 17). The global controller waits for
each shard and buffer to finish before proceeding (Line 18).

Updates its record of the system’s state (Lines 19-23).
Each shard and buffer sends the global controller its active
and idle agents after finishing a timestep, allowing it to up-
date each agent’s current shard and the list of idle agents as
well as remove completed goals from goal queues.

Shard. A shard sj routes each agent ai ∈ Aj it con-
trols to the agent’s local goal lGoal[ai], possibly via a way-
point waypt[ai]. Let an agent ai’s local path lPath[ai] in a
shard sj be represented as a list of vertices. A non-idle agent
moves to the first vertex in its local path at each timestep and
then removes this vertex. The first vertex in an agent ai’s lo-
cal path is always adjacent to (indicating a move action) or
identical to (indicating a wait action) the agent’s current ver-
tex ai.v. An idle agent’s path is empty.

Let a shard si’s set of inlet vertices be denoted as V in
i ,

outlet vertices as V out
i , incoming buffers as Bin

i and outgo-
ing buffers as Bout

i . Shard si’s inlet map f in
i : V in

i → Bin
i

and outlet map fout
i : V out

i → Bout
i map each inlet and

outlet vertex respectively to the buffer it services. At each
timestep, a shard (Algorithm 2):

Invalidates the local path of any agent with an updated
local goal (Lines 2-4). If an agent’s local goal has been up-
dated, its local path is no longer valid. An agent’s local path
is flagged as invalid by setting it to None (Line 3). A shard
stores the local goals it was sent in the preceding timestep in
lGoalOld (Line 4). At initialization, lGoalOld[ai] is ai.v if
ai ∈ Aj and None otherwise.

Transfers agents to buffers (Lines 5-18). If an agent ai’s
local goal is an outlet to a buffer bk, shard sj sends bk a
transfer request the timestep after ai arrives (Lines 5-7). If
bk assents, ai is moved to bk’s tail. If the move succeeds, ai

Algorithm 2: Shard Timestep for Shard sj .

1: function SHARDTIMESTEP(lGoal)
2: for ai ∈ Aj : lGoal[ai] ̸= lGoalOld[ai] do
3: lPath[ai]← None

4: lGoalOld← lGoal
5: for ai ∈ Aj : ai.v = lGoal[ai] ∧ ai.v ∈ V out

j do

6: bk ← fout
j (ai.v)

7: SEND(bk, ªreqº)
8: if RECV(bk) = True then
9: if ai.mv(bk.tail) then

10: TRANSFER(ai, Aj , Abk)
11: else
12: lPath[ai]← None

13: else
14: waypt[ai]← uncongested(Vj)
15: lPath[ai]← None

16: for ai ∈ Aj : ai.v = waypt[ai] do
17: waypt[ai]← None
18: lPath[ai]← None

19: if ∃ ai ∈ Aj : lPath[ai] = None then
20: lPath← MAPF(Aj , waypt, lGoal)

21: for ai ∈ Aj : |lPath[ai]| > 0 do
22: if ¬ ai.mv(lPath.dequeue()) then
23: lPath[ai]← None

24: for vin 7→ bk ∈ f in
i do

25: if RECV(bk, ªreqº) then
26: SEND(bk, ¬∃ ai ∈ Aj : ai.v = vin)

is moved from Aj to Abk , the set of agents in bk (Lines 9-
10). If the move fails, ai’s local path is invalidated (Line 12).

If bk rejects ai, bk is full. To avoid congestion while bk
empties, sj picks a vertex which is unlikely to be congested
uncongested(Vj), such as a vertex far away from any buffer,
assigns it to ai as a waypoint and sets lPath[ai] to None.
(Lines 14-15). When ai reaches the waypoint, its waypoint
and local path are set to None (Lines 16-18). If any agent
ai ∈ Aj has an invalid local path, the shard:

Recomputes its local paths (Lines 19-20). An agent is
routed to its waypoint waypt[ai] (if one exists) or its local
goal lGoal[ai](otherwise).

Moves each agent along its local path (Lines 21-23). If an
agent’s movement fails, its local path is invalidated.

Responds to incoming transfer requests (Lines 24-26).
The shard checks whether it has received a transfer request
from any incoming buffer (Lines 24-25). It accepts a buffer’s
request iff its inlet vertex is unoccupied (Line 26).

Buffer. A buffer routes its agents from its tail to its head,
where they wait to be transferred to its destination shard.

Handling Non-Idealized Conditions. Handling lossy,
non-instantaneous communication and slow computation
and movement requires adjustments to these algorithms.
Messages are transmitted repeatedly in case of packet loss
and stamped with the current timestep so that delayed, out-
of-date messages from prior timesteps can be identified and

ignored. The global controller runs each shard and buffer’s
timestep in parallel. Each shard sends and awaits responses
to its transfer requests in parallel. All agents are moved in
parallel at the end of the timestep.

4 Shard Path Generation

The global controller minimizes the maximum utilization of
any shard while minimizing each agent’s shard path length.

Minimizing Maximum Utilization. Finding a routing
plan which minimizes the maximum utilization of any shard
is a variant of the multi-commodity flow problem. The set of
agents Cij in shard si with a global goal in shard sj can be
viewed as a commodity. |Cij | units of this commodity must
be routed through the shard digraph (S,ES) from si to sj .
Since agents are discrete, commodities have integer flows.
We minimize the maximum flow through any shard si ∈ S.
We do not limit the vertex or edge capacities.

This problem can be solved via integer linear program-
ming (ILP). Let C be the set of all commodities Cij , fijkl
be commodity Cij’s flow along the edge (sk, sl) ∈ ES , and
FV be the maximum flow through any vertex. We minimize
FV subject to the following constraints:

(1) Each commodity Cij in C’s flow along each edge
(sk, sl) ∈ ES is an integer between 0 and |Cij | (inclusive).

∀ Cij ∈ C, ∀ (sk, sl) ∈ ES , fijkl ∈ {0, 1, . . . , |Cij |}.

(2) Exactly |Cij | units of each commodity Cij ∈ C are
generated at si and consumed at sj . Commodity Cij is con-
served at all other vertices.

∀ sl ∈ S, ∀ Cij ∈ C,

∑

sk:(sk,sl)∈ES

fijkl −
∑

sk:(sl,sk)∈ES

fijlk =







|Cij | l = j

−|Cij | l = i

0 otherwise

.

(3) FV is greater than or equal to the flow through any
vertex. The flow through a vertex sl is the sum of the flow
entering sl and the flow originating at sl.

∀ sl ∈ S, FV ≥
∑

sk:(sk,sl)∈ES

∑

Cij∈C

fijkl +
∑

i:Cli∈C

|Cli|.

The path that each unit of Cij’s flow takes is assigned to a
unique agent in Cij whose current vertex is in shard si and
whose goal is in shard sj .

Minimizing Shard Path Length. We can minimize the
maximum utilization of any shard when agents are con-
strained to minimum-length shard paths by adding addi-
tional constraints to the above formulation. Let Pij be the
set of all edges in (S,ES) on a shortest path from si to sj .

Theorem 4.1 A shard path p on GS from si to sj is a short-
est path iff each of p’s edges is in Pij .

Theorem 4.1 is proved in (Cormen et al. 2009). By Theo-
rem 4.1, confining commodity Cij to edges in Pij (by setting
Cij’s flow along any edge (sk, sl) /∈ Pij to 0) forces the ILP
solver to route Cij along one or more shortest paths with-
out disqualifying any shortest path from consideration. This
constraint is incorporated into Constraint (1) as follows:

∀ Cij ∈ C, ∀ (sk, sl) ∈ ES ,

fijkl ∈

{

{0, 1, . . . , |Cij |} (sk, sl) ∈ Pij

{0} (sk, sl) /∈ Pij
.

Scaling Inter-Shard Routing. Our ILP formulation con-
tains O(|C|(|ES | + |S|)) constraints. The runtime needed
to solve ILPs scales exponentially in the number of con-
straints and thus runs impractically slowly for more than
a couple hundred agents. We can approximately solve this
multi-commodity flow problem by solving our formulation’s
Linear Programming relaxation and then generating an inte-
ger solution by randomized rounding. For any ϵ such that
0 < ϵ < 1, the maximum utilization of the solution pro-

vided by this procedure is O(log(|ES |/ϵ)
1/2) times the op-

timum (Raghavan and Tompson 1987). Even approxima-
tion takes time for teams of a couple thousand agents. At
larger scales, we generate shard paths sequentially, picking
the minimum-length shard path which increases the maxi-
mum shard utilization the least.

5 Workspace Partitioning

A shard system partitions its workspace into shards and
buffers in three stages. First, we partition the workspace
into shards. Second, we select an appropriate length for the
shard system’s buffers. Third, we generate buffers linking
each shard to its neighbors.

Shard Generation. Workspace partitioning generates
shards expected to contain the same, user-specified number
n of agents. Let each vertex vi in workspace G be assigned
a weight w(vi) equal to the fraction of time it is expected to
be occupied. (If the workspace’s traffic cannot be predicted,
each vertex’s weight is set to the workspace’s load factor
α, which is the ratio of agents to vertices). Let a shard’s
weight Gi := (Vi, Ei) be the sum of its vertices’ weights
∑

vi∈Vi
w(vi). We would like to partition the workspace into

⌈
∑

vi∈V w(vi)/n⌉ shards with the smallest range of weights
possible. If there are multiple approximately equally good
partitions, we select the one which cuts the minimum num-
ber of edges to make the shards as compact as possible.

Finding such a partition involves solving the graph parti-
tioning problem, which is NP-hard (A. and R. 2004). Fortu-
nately, this problem is well studied and approximate solvers
exist (e.g., (Karypis et al. 1998)).

Determining Buffer Length. We find the minimum
length a buffer can be, given that its probability of overflow
must be less than a user specified parameter 0 ≤ ϵ ≤ 1.
A buffer’s queue can be characterized by the parameters
(Kendall 1953):

• Inter-Arrival Time Distribution (A). The distribution of
time period between successive arrivals of agents.

• Inter-Release Time Distribution (B). The distribution of
time periods between successive departures of agents.

• Server Count (X). The number of ªserversº (here,
shards) removing agents from a queue.

• Capacity (Y). The largest number of agents it can hold.

• Queue Discipline (Z). The order in which agents in the
queue are removed.

A queue is typically denoted as an ordered list of these pa-
rameters, separated by slashes: A/B/X/Y/Z.

Exactly one shard removes agents from a buffer (X = 1).
Agents are removed from a buffer first-come first-served
(Z=FCFS). If a buffer has length nbuf , it can contain up to
nbuf agents (Y = nbuf). A buffer’s inter-arrival and inter-
release time distributions are complex. To model these distri-
butions, we assume that agents are evenly distributed across
the workspace. If the workspace’s load factor is α, a buffer
has probability α of having an agent at its outlet vertex and
probability 1−α of not having an agent at its inlet vertex at
each timestep. Its inter-arrival and inter-release time period
lengths are thus geometrically distributed with rate parame-
ters α and 1−α. In the limit, where a timestep becomes small
compared to the overall runtime, the geometric distribution
approaches the Poisson distribution. Over a sufficiently long
runtime, a buffer’s queue can thus be modeled as the queue
M(α)/M(1−α)/1/nbuf/FCFS, where M(α) denotes the
Poisson distribution with rate parameter α. The probability
Pr{LQ=i} that this queue has queue length LQ = i at a
given timestep is (Gross et al. 2008):

Pr{LQ = i} = (
α

1−α
)i(1−

α

1−α
)[1− (

α

1−α
)nbuf+1]−1.

This queue’s overflow probability is the probability the
queue contains nbuf agents times the probability that an-
other agent arrives α·Pr{LQ = nbuf}. We pick the smallest
value of nbuf whose overflow probability is less than ϵ.

While this model is crude, we find that it provides a rea-
sonable first approximation. The model can be improved
by recognizing that the space near a buffer’s outlet and in-
let is likely to have a higher effective load factor than the
workspace as a whole and adjusting α accordingly. In our
evaluations, we multiply α with a density factor of ν=1.33.

Buffer Placement. A buffer is generated by removing
vertices from the shards it links. Buffer placement should
leave a shard as compact as possible to avoid unnecessarily
lengthening paths within the shard. We place buffers by gen-
erating a set of buffer templates of the appropriate length and
enumerating the places each template can be placed. This
process halts when a buffer placement is found that increases
each shards’ perimeter, the number of vertices in a shard ad-
jacent to a vertex outside the shard, by less than a user speci-
fied value bufQuality. This approach, unfortunately, means
that shard system generation is incomplete, because none of
our templates may be a subgraph of a perverse workspace.
Nonetheless, this approach was successful on a wide range
of benchmark workspaces. Improving buffer placement is an
important direction for future work.

6 Evaluation

Our evaluation studies the following questions:

1. Coverage. What is the space of workspaces which a
shard system can solve MAPF instances on?

2. Sum-of-costs. How does the shard system’s sum-of-
costs compare to the state-of-the-art for one-shot MAPF?

Workspace Type Description
City Map 2D city scans
Dragon Age: Origins (DAO) Video game maps
Dragon Age 2 (DA2) Video game maps
Open Empty workspaces
Open + Obstacles Rooms with scattered

1× 1 obstacles
Maze Mazes of corridors
Room Mazes of rooms
Warehouse Regular grids of shelves

Table 1: The workspace types in the MAPF benchmark suite.

Workspace Name Workspace Type Agents
Small Workspaces (100-1,000 Agents)
maze-32-32-2 Maze 99
random-32-32-10 Open + Obstacles 115
empty-32-32 Open 128
room-64-64-16 Room 455
ht chantry DA2 932
Large Workspaces (1,000-12,500 Agents)
warehouse-10-20-10-2-2 Warehouse 1,222
lak303d DAO 1,848
Boston 0 256 City Map 5,971
orz900d DAO 12,075

Table 2: Each benchmark workspace’s name, workspace
type, and number of agents at a load factor of 0.125.

3. Scalability. How does the shard system’s scalability
compare to the state-of-the-art for one-shot MAPF?

4. Robustness. How does the shard system’s sum-of-costs
compare to the state-of-the-art for one-shot MAPF with
probablistic delays?

5. Persistence. How does the shard system’s sum-of-costs
compare to the state-of-the-art for persistent MAPF?

6. Buffer Model. How well do M/M/1/nbuf /FCFS queues
model the shard system’s buffers?

Implementation. The shard system is implemented in
Python 3.9 and evaluated on a custom-built simulator. The
shard system uses the Python multi-processing library for
concurrency and the GLOP (Google 2021) integer linear
programming solver to generate inter-shard routing plans.
Shards route agents using the EECBS MAPF solver (Li,
Ruml, and Koenig 2021). Workspace partitioning uses the
hMETIS (Karypis et al. 1998) graph partitioning tool.

Benchmark Workspaces. Each evaluation (except for cov-
erage) was run on a set of 9 workspaces taken from the
MAPF benchmark suite (Stern et al. 2019). The MAPF
benchmark suite contains 8 types of workspace (Table 1).
Our set of workspaces contains every type of workspace.

The evaluations were run at a load factor of α = 0.125. At
this load factor, the smallest workspace in the MAPF bench-
mark suite contains 8 agents, and the largest 12,075 agents.
The number of agents that our benchmark workspaces con-
tain spans this range.

References

A., K.; and R., H. 2004. Balanced Graph Partitioning. The
Annual ACM Symposium on Parallelism in Algorithms and
Architectures, 120±124.

Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; BartÂak, R.;
and Zhou, N.-F. 2018. Robust Multi-Agent Path Finding.
The Symposium on Combinatorial Search, 2±9.

Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal Variants of the Conflict-Based Search Algorithm for
the Multi-Agent Pathfinding Problem. The Symposium on
Combinatorial Search, 19±27.

Boyarski, E.; Felner, A.; Sharon, G.; and Stern, R. 2015.
Don’t Split, Try To Work It Out: Bypassing Conflicts in
Multi-Agent Pathfinding. The International Conference on
Automated Planning and Scheduling, 47±51.

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein,
C. 2009. Introduction to Algorithms. The MIT Press, 3rd
edition.

De Wilde, B.; Ter Mors, A. W.; and Witteveen, C. 2014.
Push and Rotate: A Complete Multi-Agent Pathfinding Al-
gorithm. Journal of Artificial Intelligence Research, 51(1):
443±492.

Google. 2021. OR-Tools.

Gross, D.; Shortle, J. F.; Thompson, J. M.; and Harris,
C. M. 2008. Fundamentals of Queueing Theory. Wiley-
Interscience, 4th edition.

HÈonig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Finding
with Kinematic Constraints. The International Conference
on Automated Planning and Scheduling, 477±485.

HÈonig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Aya-
nian, N. 2019. Persistent and Robust Execution of MAPF
Schedules in Warehouses. IEEE Robotics and Automation
Letters, 4(2): 1125±1131.

Karypis, G.; Aggarwal, R.; Kumar, V.; and Shekhar, S. 1998.
Multilevel Hypergraph Partitioning: Application in VLSI
Domain. Proceedings of the 34th Annual Design Automa-
tion Conference, 526±529.

Kendall, D. 1953. Stochastic Processes Occurring in the
Theory of Queues and their Analysis by the Method of the
Imbedded Markov Chain. Annals of Mathematical Statis-
tics, 24: 338±354.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020. New Techniques for Pairwise Symme-
try Breaking in Multi-Agent Path Finding. The Interna-
tional Conference on Automated Planning and Scheduling,
193±201.

Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: A Bounded-
Suboptimal Search for Multi-Agent Path Finding. The AAAI
Conference on Artificial Intelligence, 35: 12353±12362.

Lozano-PÂerez, P.; and Erdmann, M. 1987. A novel approach
to path planning for multiple robots in bi-connected graphs.
Algorithmica, 2: 477±521.

Ma, H.; Li, J.; Kumar, T. K. S.; and Koenig, S. 2017. Life-
long Multi-Agent Path Finding for Online Pickup and De-
livery Tasks. The International Conference on Autonomous
Agents and Multiagent Systems, 837±845.

Pianpak, P.; Son, T. C.; Toups, Z. O.; and Yeoh, W. 2019. A
Distributed Solver for Multi-Agent Path Finding Problems.
The International Conference on Distributed Artificial In-
tellgence, 1±7.

Raghavan, P.; and Tompson, C. D. 1987. Randomized
rounding: A technique for provably good algorithms and al-
gorithmic proofs. Combinatorica, 7(4): 365±374.

Sajid, Q.; Luna, R.; and Bekris, K. E. 2012. Multi-Agent
Pathfinding with Simultaneous Execution of Single-Agent
Primitives. The Symposium on Combinatorial Search, 88±
96.

Schranz, M.; Umlauft, M.; Sende, M.; and Elmenreich, W.
2020. Swarm Robotic Behaviors and Current Applications.
Frontiers in Robotics and AI, 7(36): 1±12.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2012.
Conflict-Based Search for Optimal Multi-Agent Path Find-
ing. Artificial Intelligence, 219: 40±66.

Silver, D. 2005. Cooperative Pathfinding. The AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, 117±122.

Simon, M. 2019. Inside the Amazon Warehouse Where Hu-
mans and Machines Become One.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
BartÂak, R.; and Boyarski, E. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. The International
Symposium on Combinatorial Search, 151±159.

Vedder, K.; and Biswas, J. 2019. X*: Anytime Multiagent
Path Planning With Bounded Search. The Conference on
Autonomous Agents and Multi-Agent Systems, 2247±2249.

Švancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and BartÂak, R.
2019. Online Multi-Agent Pathfinding. The AAAI Confer-
ence on Artificial Intelligence, 33(1): 7732±7739.

Wang, C. K.; and Botea, A. 2011. MAPP : a Scalable Multi-
Agent Path Planning Algorithm with Tractability and Com-
pleteness Guarantees. Journal of Artificial Intelligence Re-
search, 42: 55±90.

Wilt, C. M.; and Botea, A. 2014. Spatially Distributed Mul-
tiagent Path Planning. The International Conference on Au-
tomated Planning and Scheduling, 332±340.

Yu, J.; and LaValle, S. M. 2016a. Optimal multirobot
path planning on graphs: Complete algorithms and effective
heuristics. IEEE Transactions on Robotics, 32(5): 1163±
1177.

Yu, J.; and LaValle, S. M. 2016b. Optimal multirobot
path planning on graphs: Complete algorithms and effective
heuristics. IEEE Transactions on Robotics, 32: 1163±1177.

Zhang, H.; Yao, M.; Liu, Z.; Li, J.; Terr, L.; Chan, S.-H.;
Kumar, S.; and Koenig, S. 2021. A Hierarchical Approach
to Multi-Agent Path Finding. The ICAPS-21 Workshop on
Hierarchical Planning.

