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Abstract— We formalize and study the multi-goal task assign-
ment and path finding (MG-TAPF) problem from theoretical
and algorithmic perspectives. The MG-TAPF problem is to
compute an assignment of tasks to agents, where each task
consists of a sequence of goal locations, and collision-free paths
for the agents that visit all goal locations of their assigned
tasks in sequence. Theoretically, we prove that the MG-TAPF
problem is NP-hard to solve optimally. We present algorithms
that build upon algorithmic techniques for the multi-agent path
finding problem and solve the MG-TAPF problem optimally
and bounded-suboptimally. We experimentally compare these
algorithms on a variety of different benchmark domains.

I. INTRODUCTION

In recent years, the multi-agent path finding (MAPF)

problem [1] has been well-studied in artificial intelligence

and robotics due to its many applications, such as ware-

house automation [2], autonomous traffic management [3],

autonomous aircraft towing [4], and video games [5]. In

the MAPF problem, each agent must move from its current

location to its pre-assigned goal location while avoiding

collisions with other agents in a known environment.

The MAPF problem has recently been extended to many

real-world settings [6], [7] where goal locations are not pre-

assigned to agents. For example, in a modern automated

warehouse, each warehouse robot needs to pick up an

inventory pod from its storage location, deliver it to the

inventory stations that request one or more products stored

in it, and take it back to its storage location. Such automated

warehouse systems often employ a task planner to determine

a set of tasks consisting of a sequence of goal locations. The

problem is then to assign these tasks to the warehouse robots

and plan paths for them.

We thus formalize and study the multi-goal task assign-

ment and path finding (MG-TAPF) problem, where as many

tasks as agents are given and each task consists of a sequence

of goal locations. The MG-TAPF problem is to compute a

one-to-one assignment of tasks to agents and plan collision-

free paths for the agents from their current locations to the

goal locations of their assigned tasks such that each agent

visits the goal locations in the order specified by its assigned

task and the flowtime (the sum of the finish times of all

agents in the last goal locations of their assigned tasks) is

minimized.
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A. Background and Related Work

Many problems that are related to our problem have been

proposed and studied in recent years.

MAPF: The MAPF problem is NP-hard to solve optimally

for flowtime (the sum of the finish times of all agents in

the last goal locations of their assigned tasks) minimization

[8] and even NP-hard to approximate within any constant

factor less than 4/3 for makespan (the maximum of the

finish times of all agents in their pre-assigned goal locations)

minimization [9], [10]. MAPF algorithms include reductions

to other well-studied optimization problems [11]–[13] and

specialized rule-based, search-based and hybrid algorithms

[14]–[20]. In particular, Conflict-Based Search (CBS) [19] is

a popular two-level optimal MAPF algorithm that computes

time-optimal paths for individual agents on the low level and

performs a best-first tree search to resolve collisions among

the paths on the high level. Recent research has developed

several improved versions of CBS [21]–[24]. An extended

version of CBS has been developed for the case where each

agent has multiple pre-assigned goal locations [25]. However,

the MAPF problem is insufficient for modelling real-world

settings where goal locations are not pre-assigned to agents.

TAPF: In the TAPF problem [26], agents are partitioned

into teams and each team is given the same number of

single-goal tasks as the number of agents. The objective is

to assign each agent of a team exactly one task of the team

and plan collision-free paths for the agents. A special case

of the TAPF problem occurs when only one team exists,

known as the anonymous MAPF problem. We use TAPF

to denote this special case. TAPF can be solved optimally

in polynomial time for makespan minimization [27]. For

flowtime minimization, its complexity remains unclear, but

it can be solved with an extension of CBS, called CBS

with Task Assignment (CBS-TA) [28]. CBS-TA searches

in the space of all possible assignments of tasks to agents

using a best-first search in a forest that consists of regular

CBS search trees where each tree corresponds to a different

assignment. A similar version of CBS has been developed

for the case where each agent can execute more than one

task, but it scales to only four agents and four tasks [29].

Lifelong TAPF: Recent research has considered the online

multi-agent pickup and delivery (MAPD) problem, where

tasks appear at unknown times and each task consists of

a sequence of two goal locations [30]. The offline MAPD

problem has also been studied for the case where all tasks

are known in advance [7]. The multi-goal TAPF (MG-TAPF)

problem is at the crux of two lifelong problems since state-



of-the-art MAPD algorithms [7], [31] essentially decompose

a lifelong instance into a sequence of MG-TAPF instances.

However, the MG-TAPF instances are not solved optimally in

either case. Grenouilleau et al. [31] have proposed the Multi-

Label Space-Time A* algorithm (MLA*), that computes a

time-optimal path for an agent that visits two goal locations

and solves task assignment and path finding independently.

A similar lifelong problem has also been considered where

each task has a temporal constraint [6].

PC-TAPF: The precedence-constraint TAPF (PC-TAPF)

problem generalizes the anonymous MAPF problem [32]. It

involves sequential task assignment and incorporates tempo-

ral precedence constraints between tasks, where for example,

tasks A and B must be completed before task C begins.

The PC-TAPF problem is NP-hard to solve for makespan

minimization. A four-level hierarchical algorithm is proposed

to solve it optimally. However, the lower level path planner

(third and fourth level) is incomplete. So, there is no com-

pleteness guarantee for the whole algorithm.

B. Contributions

In this paper, we study the general version of the TAPF

problem, where each task consists of a sequence of multiple

ordered goal locations, called MG-TAPF problem.

We formalize the MG-TAPF problem as an extension of

the TAPF problem that aims to minimize the flowtime. We

prove that it is NP-hard to solve optimally. The proof is based

on a reduction [10] from a specialized version of the Boolean

satisfiability problem [33] to the MG-TAPF problem.

We present an Conflict-Based Search with Task Assign-

ment with Multi-Label A* algorithm (CBS-TA-MLA) that

solves the MG-TAPF problem optimally for flowtime mini-

mization. CBS-TA-MLA is a hierarchical algorithm. It uses

a best-first search algorithm CBS-TA [28] on the high level

to search over all possible assignments of tasks to agents

and resolve collisions among paths and MLA* [31] on the

low level to compute a time-optimal path for each agent that

visits the goal locations of its assigned task in sequence. We

prove that CBS-TA-MLA is correct, complete and optimal.

We develop three admissible heuristics for the high-level

search of CBS-TA-MLA based on the existing admissible

heuristics [22] for CBS for the MAPF problem and general-

ize Multi-Valued Decision Diagrams (MDDs) from the case

of one goal location to the case of multiple goal locations.

We also extend CBS-TA-MLA to a bounded-suboptimal ver-

sion, called ECBS-TA-MLA, using ideas from the bounded-

suboptimal version of CBS [34]. We experimentally compare

the proposed algorithms for a variety of benchmark domains.

II. PROBLEM DEFINITION

The MG-TAPF problem instance consists of (1) an undi-

rected graph G = (V,E), where V is the set of locations

and E is the set of unit-weight edges connecting locations,

(2) m agents {a1, a2, . . . , am}, and for each agent ai, there

is a start location si ∈ V , and (3) m tasks {g1, g2, . . . , gm},

where each task gj is characterized by a sequence of Kj

goal locations gj = 〈gj [1], . . . , gj [Kj ]〉. Each agent ai can

be assigned any task gj .

Let πi(t) denote the location of agent ai at time t. A path

πi = 〈πi(0), . . . , πi(Ti), πi(Ti + 1), . . .〉 for agent ai is a

sequence of locations that satisfies the following conditions:

(1) The agent starts at its start location, that is πi(0) = si; (2)

At each timestep t, the agent either moves to a neighboring

location πi(t + 1) ∈ V where (πi(t), πi(t + 1)) ∈ E, or

stays in its current locations, that is πi(t) = πi(t + 1); and

(3) The agent visits all goal locations of its assigned task gj

in sequence and remains in the final goal location at the finish

time Ti, which is the minimum time Ti such that πi(t) =
gj [Kj ] for all times t = Ti, . . . ,∞.

Agents need to avoid collisions while moving to their goal

locations. A collision between agents ai and aj is either: (1)

a vertex collision 〈ai, aj , u, t〉, where two agents ai and aj
are in the same location u = πi(t) = πj(t) at time t; or

(2) an edge collision 〈ai, aj , u, v, t〉 where two agents ai
and aj traverse the same edge (u, v) in opposite directions

u = πi(t) = πj(t + 1) and v = πi(t + 1) = πj(t + 1)
at timestep t. A plan consists of an assignment of tasks to

agents and a path for each agent. A solution is a plan whose

paths are collision-free. The flowtime
∑m

i=1 Ti of a plan is

the sum of the finish times of all agents. The problem of

MG-TAPF is to find a solution that minimizes the flowtime.

In this paper, we only consider the flowtime objective even

though many of our results could be easily generalized to

other objectives, such as makespan (the maximum of the

finish times max1≤i≤m Ti of all agents) minimization.

III. COMPLEXITY

We show that the MG-TAPF problem is NP-hard to solve

optimally for flowtime minimization, even when each task

has only two goal locations. Similar to [10] and [35], we use

a reduction from ≤3,=3-SAT [33], an NP-complete version

of the Boolean satisfiability problem. A ≤3,=3-SAT instance

consists of N Boolean variables {X1, . . . , XN} and M dis-

junctive clauses {C1, . . . , CM}, where each variable appears

in exactly three clauses, uncomplemented at least once, and

complemented at least once, and each clause contains at

most three literals. Its decision question asks whether there

exists a satisfying assignment. We first show a constant-factor

inapproximability result for makespan minimization.

Theorem 1: For any ε > 0, it is NP-hard to find a

(4/3 − ε)-approximate solution to the MG-TAPF problem

for makespan minimization, even if each task has exactly

two goal locations.

Proof: We use a reduction similar to that used in

the proof of Theorem 3 in [10] to construct an MG-TAPF

instance with m = M +2N agents and the same number of

tasks that has a solution with makespan three if and only if a

given ≤3,=3-SAT instance with N variables and M clauses

is satisfiable.

We follow the notations used in the proof of Theorem 3

in [10] and point out the differences here: For each variable

Xi in the ≤3,=3-SAT instance, we construct two “literal”

agents aiT and aiF with start locations siT and siF , and



two tasks giT and giF , each with two goal locations. We set

giT [1] = siT , giT [2] = tiT , giF [1] = siF , and giF [2] = tiF .

For each clause Cj in the ≤3,=3-SAT instance, we construct

a “clause” agent aj with start location cj and a task gj with

two goal locations gj [1] = cj and gj [2] = dj . Therefore, any

optimal solution must assign every task to the agent whose

start location is the first goal location of the task and let the

agent execute the task.

Using the same arguments as in the proof of Theorem

3 in [10], we can show that the constructed MG-TAPF

instance has a solution with makespan three if and only if the

≤3,=3-SAT instance is satisfiable, and always has a solution

with makespan four, even if the ≤3,=3-SAT instance is

unsatisfiable. For any ε > 0, any MG-TAPF algorithm with

approximation ratio 4/3 − ε thus computes a solution with

makespan three the ≤3,=3-SAT instance is satisfiable and

thus solves ≤3,=3-SAT problem.

In the proof of Theorem 1, the MG-TAPF instance reduced

from the given ≤3,=3-SAT instance has the property that the

length of every path from the start location of every agent

to the final goal location of the task assigned to the agent

is at least three. Therefore, if the makespan is three, every

agent arrives at the final goal location of its assigned task in

exactly three timesteps, and the flowtime is 3m. Moreover,

if the makespan exceeds three, the flowtime exceeds 3m,

yielding the following theorem.

Theorem 2: It is NP-hard to find the optimal solution to

the MG-TAPF problem for flowtime minimization, even if

each task has exactly two goal locations.

IV. CBS-TA-MLA

The CBS-TA-MLA algorithm is a two-level search algo-

rithm, where the low-level MLA* algorithm plans an optimal

path for each agent based on the task assignment and the

constraints provided by the high-level CBS-TA algorithm.

A. High Level: CBS-TA

Conflict-Based Search with Task Assignment (CBS-TA) is

a best-first search algorithm, which was initially designed to

solve the TAPF problems [28]. We extend it to solving MG-

TAPF problem by replacing the low-level search algorithm

with MLA*. Algorithm 1 shows the pseudo-code. CBS

searches a binary tree, called constraint tree (CT), while

CBS-TA searches a forest that contains multiple CTs. Each

tree corresponds to a different task assignment. Each node,

called CT node, in the CT contains (1) a Boolean value

root, indicating whether the node is a root node of a CT; (2)

an assignment, which is the task assignment of the node;

(3) a set of constraints, where a vertex constraint 〈ai, u, t〉
prohibits agent ai from being at location u at time t and an

edge constraint 〈ai, u, v, t〉 prohibits agent ai from moving

along from u to v at timestep t; (4) a set of paths with

respect to the task assignment and the constraints; and (5) a

cost, which is the flowtime of the paths [Lines 2-7].

An m × m cost matrix C stores the distances from the

start locations of all agents to the final goal locations of

all tasks where all intermediate goal locations of the task

Algorithm 1: High Level of CBS-TA-MLA

1 OPEN ← ∅
// initialize first root node R

2 R.root ← True
3 R.assignment ← firstAssignment()
4 R.constraints ← ∅
5 for each agent ai do
6 R.paths[ai] ← MLA*(ai, R.assignment[ai], R.constraints)

7 R.cost ← flowtime(R.paths)
8 R.collisions ← findCollisions(R)
9 OPEN ← OPEN ∪ {R}

10 while OPEN 6= ∅ do
11 N ← lowest cost node from OPEN
12 OPEN ← OPEN \ {N}
13 if N.paths do not have collisions then
14 Return N.assignment, N.paths

15 if N.root is True then
// initialize new root node R with next-best task assignment

16 R.root ← True
17 R.assignment ← nextAssignment()
18 R.constraints ← ∅
19 for each agent ai do
20 R.paths[ai] ← MLA*(ai, R.assignment[ai], R.constraints)

21 R.cost ← flowtime(R.paths)
22 R.collisions ← findCollisions(R)
23 OPEN ← OPEN ∪ {R}

24 〈ai, aj , u, t〉/〈ai, aj , u, v, t〉 ← chooseCollision(N)
// generate child nodes

25 for agent ak in {ai, aj} do
26 Q.root ← False
27 Q.assignment ← N.assignment
28 Q.constraints ← N.constraints ∪ {〈ak, u, t〉/〈ak, u, v, t〉}
29 Q.paths[ak] ← MLA*(ak , Q.assignment[ak], Q.constraints)
30 if Q.paths[ak] is None then
31 continue to the next iteration

32 Q.cost ← flowtime(Q.paths)
33 Q.collisions ← findCollisions(Q)
34 OPEN ← OPEN ∪ {Q}

35 Return No Solution

are visited in sequence while ignoring collisions with the

other agents. CBS-TA starts with a single root node with the

best task assignment (the task assignment with the lowest

flowtime which ignoring collisions among agents). The best

task assignment is calculated by applying the Hungarian

method [36] to the cost matrix C. Once the task assignment is

calculated, the corresponding paths of the agents are planned

by the low-level MLA* search algorithm . CBS-TA then

finds collisions among the planned paths, stores the number

of collisions in the node and adds the node to the OPEN

list [Lines 8-9]. A new root node with the next-best task

assignment is created if the currently expanded node is a root

node [Lines 15-23]. We use the next-best task assignment

algorithm in [28]. See [28] for details.

CBS-TA removes a node N with the lowest cost N.cost
from the OPEN list to expand (breaking ties in favor of the

paths in node with the smallest number of collisions) [Lines

11-12]. First, it checks whether the number of collisions is

0. If so, N is declared a goal node, and N.assignment
and N.paths are returned [Lines 13-14]. Otherwise, CBS-

TA resolves an earliest vertex collision 〈ai, aj , u, t〉 (or

edge collision 〈ai, aj , u, v, t〉) [Line 24] by generating two

child nodes. Child nodes inherit the constraint set and paths

from N [Lines 25-29]. CBS-TA adds constraint 〈ai, u, t〉 (or

〈ai, u, v, t〉) to the constraint set of one child node, and adds

constraint 〈aj , u, t〉 (or 〈aj , v, u, t〉) to that of the other child

node. It then calls the low-level MLA* search algorithm to

replan the path of ai (or aj) to satisfy the new constraint set.



If such a path does not exist, CBS-TA prunes the child node

[Lines 30-31]. Otherwise, CBS-TA updates the cost and the

number of collisions between the newly planned path and the

existing paths of the other agents and adds the child node to

the OPEN list [Lines 32-34]. Once the OPEN list is empty,

CBS-TA terminates the search unsuccessfully [Line 35].

B. Low Level: MLA*

Multi-Label Space-Time A* (MLA*) finds a time-optimal

path for an agent ai (a path with the smallest finish time

Ti) that visits all goal locations of its assigned task gj in

sequence and obeys a set of constraints. MLA* was first

introduced for two goal locations [31] and then extended to

more than two goal locations [37]. MLA* extends Space-

Time A* [38] by adding a label indicating the different

segments between the goal locations, where label k indicates

that the next goal location to visit is gj [k].
We now formally describe MLA*. MLA* is an A* search

whose states are tuples of a location, a time and a label.

It starts with state 〈si, 0, 1〉, indicating agent ai being at

location si at time 0 with label 1. A directed edge exists from

state 〈u, t, k〉 to state 〈v, t + 1, k′〉 if and only if (1) u = v
or (u, v) ∈ E and (2) k′ = k + 1 if v = gj [k] and k′ = k
otherwise. To obey the constraints, the set of states {〈v, t, k〉 |
k = 1, . . . ,Kj+1} is removed from the state space of agent

ai if and only if there is a vertex constraint 〈ai, v, t〉, and

the set of edges {(〈u, t, k〉, 〈v, t+1, k′〉) | k = 1, . . . ,Kj} is

removed if and only if there is an edge constraint 〈ai, u, v, t〉.
If MLA* expands a goal state 〈gj [Kj ], t,Kj + 1〉 and the

agent can stay at the goal location forever (without violating

any vertex constraints), it terminates and returns the path

from the start state to the goal state.

During the search, the h-value of each state 〈v, t, k〉 is set

to dist(v, gj [k]) +
∑Kj−1

k′=k dist(gj [k
′], gj [k

′ +1]), that is, the

shortest distance from location v to visit all unvisited goal

locations in task gj in sequence. The distances dist(v, gj [k])
from each location v ∈ V to all goal locations gj [k] with j =
1, . . . ,m and k = 1, . . . ,Kj are pre-computed by searching

backward once from each goal location gj [k] on graph G.

C. Properties of CBS-TA-MLA

We now show that CBS-TA-MLA is complete and optimal.

Theorem 3: CBS-TA-MLA is guaranteed to find an opti-

mal solution if the given MG-TAPF instance is solvable and

correctly identifies an unsolvable MG-TAPF instance with

an upper bound of O(|V |3 ·
∑m

j=1 Kj) on the finish time Ti

of any agent at the final goal location of its assigned task.

Proof: The proof of the optimality of CBS-TA-MLA is

trivial as CBS-TA and MLA* have been proved to be optimal

in [28] and [31], respectively. As for the completeness,

consider an arbitrary optimal solution to the given MG-

TAPF instance with paths πi. The solution can be divided

chronologically into at most K =
∑m

j=1 Kj segments at

breakpoints t(0) = 0, t(1), . . . , tK = maxi Ti where the label

of at least one agent changes (because it reaches a new

goal location of its assigned task) at each agent t(κ). Since

there exists a solution with at most U = O(|V |3) (U is
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Fig. 1: An example instance with agents and tasks.
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Cost: 8
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Fig. 2: The search forest created by the high-level search of

CBS-TA-MLA for the example from Figure 1.

a constant depending on V only) agent movements (edge

traversals) to any solvable MAPF instance [39], there exist

collision-free paths for all agents with makespan at most U
that move each agent ai from π(t(κ−1)) to π(t(κ)) and thus

t(κ) − t(κ−1) ≤ U, ∀κ ≥ 1. Therefore, t(K) ≤ U ·
∑m

j=1 Kj .

CBS-TA-MLA can thus safely prune any state whose time is

larger than U ·
∑m

j=1 Kj on the low level and terminate on

Line 35 for any given unsolvable MG-TAPF instance when

OPEN eventually becomes empty in finite time.

D. Example

Consider the example in Figure 1 with two agents a1 and

a2 located at s1 = B1 and s2 = A2 respectively. Two tasks

ga and gb will be assigned to two agents, where ga[1] = C2,

ga[2] = A2, gb[1] = B3 and gb[2] = B1. The corresponding

high-level forest of CBS-TA-MLA is shown in Figure 2. The

first root CT node N1 assigns gb to a1 and ga to a2. CBS-

TA-MLA chooses to expand the node with the minimum

cost, which is N1. It detects two collisions 〈a1, a2, B2, 1〉
and 〈a1, a2, B2, 3〉. Since N1 is a root CT node, the second

root node N2 with next-best task assignment ga to a1 and gb

to a2 is created and added to the OPEN list. CBS-TA-MLA

resolves the earliest collision 〈a1, a2, B2, 1〉 by creating two

child nodes N3 and N4, where a1 is prohibited from being

in location B2 at time 1 in N3 by adding 〈a1, B2, 1〉 to

N3.constraint and a2 is prohibited from being in location

B2 at time 1 in N4. As the low-level search can find paths

for the replanned agents, both child nodes are added to the

OPEN list. In the next iteration, CBS-TA-MLA picks N2

for expansion, but does not create a root node since there

are only two possible task assignments. The paths in N2

have collisions, and thus CBS-TA-MLA generates two child

nodes and adds them to the OPEN list. Then, it selects N3

which has no collisions. So, it declares N3 the goal node

and returns the task assignment and paths.

V. EXTENSIONS OF CBS-TA-MLA

This section introduces three extensions of CBS-TA-MLA,

namely an improved optimal version (with heuristics), a

bounded-suboptimal version and a greedy version.
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Fig. 3: The MDDs and joint MDD for the example instance

in Figure 1. Levels of MDD nodes are shown on the left.

A. CBS-TA-MLA with Heuristics (CBSH-TA-MLA)

CBS with heuristics [22] introduces three admissible

heuristics (namely CG, DG and WDG) for the high-level

search of CBS, which reduce the number of expanded CT

nodes. The collisions among paths of a CT node are classified

in three types [21]: cardinal collisions if both of the resulting

child nodes have a larger cost than the node itself, semi-

cardinal collisions if only one of its child nodes has a larger

cost than the node itself, and non-cardinal collisions if both

of the child nodes have the same cost as the node itself.

The technique to classify collisions is a Multi-Valued

Decision Diagrams (MDDs) [21]. An MDD for agent ai
at CT node N is a directed acyclic graph consisting of all

possible cost-optimal paths of ai with respect to the task

assignment and constraints of N . Each MDD node consists

of a location v and a level/time t. A collision between agents

ai and aj at time t is cardinal iff the contested vertex/edge is

the only vertex/edge at level t of the MDDs of both agents

(t = 1 in Figure 3). To make the MDDs applicable in

our case in which the cost-minimal paths contain all goal

locations of the assigned task in the correct sequence, we

add a label to each MDD node (see Figure 3).

CG heuristic only considers the cardinal collisions among

paths. DG heuristic considers the dependency among agents

and WDG heuristic considers the extra cost that each pair

of dependent agents contributes to the total cost. WDG

dominates DG, which dominates CG. See [22] for details.

We adopt the techniques of CBS-TA-MLA for the CBS-

TA-MLA with Heuristics algorithm (CBSH-TA-MLA). We

maintain a new variable min f val for the minimum f -

value of all nodes in the OPEN list. Each node N has two

additional fields, namely N.h val to represent the admissible

h-value and N.f val = N.cost + N.h val to represent the

priority in the OPEN list. See [22] for details of N.h val
computation method. The chooseCollision(N) function in

Algorithm 1 chooses cardinal collisions first, semi-cardinal

collisions next and non-cardinal collisions last (breaking ties

in favor of the earliest collision).

B. Enhanced CBS-TA-MLA (ECBS-TA-MLA)

Similar to Enhanced CBS (ECBS) [34], ECBS-TA-MLA

is a bounded-suboptimal algorithm for MG-TAPF. It uses a

focal search on both high and low levels. A focal search

maintains two lists: OPEN and FOCAL. The OPEN list is

sorted in increasing order of the f -values. The best node

Nbest in the OPEN list is the node with the minimum f -

value, which is denoted by fbest. The FOCAL list contains

that subset of the nodes in the OPEN list whose f -values

are at most ω · fbest. The FOCAL list is sorted according to

(a) Dense map (b) Sparse map

Fig. 4: Two maps used for the experiments.

some other heuristic. The FOCAL search guarantees to find

solutions that are a factor of at most ω worse than optimal

by always expanding the best node in the FOCAL list.

Low-level focal search: The low-level focal search priori-

tizes nodes in the OPEN list with f -values and nodes in the

FOCAL list with the number of collisions in paths between

the current agent ai and the other agents in the CT node.

When it finds a solution, it returns the path and the f -value

of the best node n in the OPEN list, which is the lower bound

on the cost of the time-optimal path, denoted by fbest(ai).
High-level focal search: The high-level focal search sorts

CT nodes in the OPEN list in increasing order of the sum

of the lower bounds of all agents LB(N) =
∑m

i=1 fbest(ai).
Let Nbest denote the node N in the OPEN list with the

minimum LB(N). The FOCAL list contains that subset of

CT nodes N with N.cost ≤ ω · LB(Nbest). The nodes in

the FOCAL list are sorted in increasing order of the number

of collisions among N.paths. Since LB(Nbest) is provably

a lower bound on the optimal flowtime C∗, the cost of any

CT node in the FOCAL list is at most ω · C∗. As a result,

once a solution is found, its flowtime is at most ω · C∗, so

it is bounded-suboptimal with suboptimality factor ω.

C. Greedy CBS-TA-MLA (TA+CBS-MLA)

The TA+CBS-MLA performs best task assignment (TA)

followed by the CBS-MLA algorithm. It starts with the root

node with the best task assignment and does not generate

any other root nodes. TA+CBS-MLA provides no optimality

or completeness guarantee.

VI. EXPERIMENTS

This section describes our experimental results on a

2.3GHz Intel Core i5 laptop with 16GB RAM. The algo-

rithms are implemented in Python and tested on three maps,

namely (1) a dense map, which is a 20× 20 warehouse map

with 30% obstacles (Figure 4a), (2) a sparse map, which is a

32×32 random map with 10% obstacles (Figure 4b), and (3)

a 32 × 32 empty map, all with a time limit of 120 seconds

unless otherwise specified.

A. CBSH-TA-MLA

We evaluate CBSH-TA-MLA using two test sets. In the

first set, we use the dense map with 10 agents/tasks with

randomly generated locations and report the success rate,

the average number of expanded CT nodes and the average

runtime over 100 instances. In the second test set, we use

the sparse map and the empty map and report the above

three values over 50 instances with a time limit of 300

seconds. The last two values are averaged over instances

that are successfully solved by CBSH-TA-MLA with all four



TABLE I: Results for CBSH-TA-MLA using different heuris-

tics on different maps with different numbers of agents/tasks,

where each task consists of two goal locations.

Map Agents Heuristics Success
Rate

Nodes
Expanded Runtime (s)

Dense Map 10
No 98/100 34.18 2.54
CG 98/100 28.86 2.23
DG 98/100 25.54 2.09

WDG 97/100 8.98 3.53

Sparse Map 20
No 44/50 42.59 15.68
CG 44/50 34.65 13.21
DG 46/50 30.58 11.8

WDG 46/50 4.63 13.17

Empty Map 20
No 46/50 23.02 6.96
CG 46/50 12.08 4.03
DG 50/50 3.48 1.52

WDG 48/50 2.11 2.82

Empty Map 30
No 40/50 20.225 9.55
CG 40/50 14.75 7.15
DG 46/50 7.375 4.24

WDG 46/50 4.375 4.52

TABLE II: Results for ECBS-TA-MLA with different ω on

different maps with different numbers of agents/tasks and

different numbers of goal locations per task.

Map Agents Goal
Locations ω

Success
Rate

Nodes
Expanded Runtime (s) Cost

Dense
Map

2 2
1.00 100/100 22.68 2.20 144.69
1.05 100/100 6.00 0.70 145.57
1.10 100/100 3.27 0.32 146.77
1.30 100/100 0.85 0.08 148.19

20 2
1.00 29/100 247.46 28.47 249.46
1.05 78/100 20.42 2.22 255.75
1.10 97/100 6.68 0.83 260.21
1.30 100/100 3.46 0.58 262.32

30 2
1.00 0/100 / / /
1.05 14/100 / / /
1.10 48/100 / / /
1.30 96/100 / / /

Sparse
Map

10 2
1.00 100/100 3.14 0.58 304.79
1.05 100/100 0.47 0.12 305.64
1.10 100/100 0.36 0.11 306.32
1.30 100/100 0.35 0.10 306.79

20 2
1.0 76/100 28.34 9.22 537.49

1.05 100/100 1.96 0.79 541.38
1.1 100/100 1.48 0.69 543.28
1.3 100/100 1.35 0.73 544.36

10 10
1.00 73/100 9.33 13.35 1846.46
1.05 88/100 0.68 4.52 1856.49
1.10 86/100 0.65 3.56 1858.03
1.30 85/100 0.65 0.75 1858.03

TABLE III: Results for different numbers of goal locations

per task for ECBS-TA-MLA with different ω on the sparse

map. The number of goal locations differs in different tasks.

Goal Locations ω Success Rate Nodes Expanded Runtime (s)

2-5 1.1 95/100 1.26 1.96
1.3 95/100 1.26 2.13

6-10 1.1 72/100 2.04 3.51
1.3 72/100 2.00 3.61

11-15 1.1 80/100 7.03 18.36
1.3 83/100 7.20 19.46

16-20 1.1 78/100 14.61 48.11
1.3 83/100 15.15 51.37

heuristics. Table I shows that WDG always results in the

smallest number of expanded nodes, while DG always results

in the smallest average runtime on all instances. This is so

because WDG needs to compute the weights of the edges

of the pairwise dependency graph, which requires executing

the CBS-TA-MLA algorithm for two agents repeatedly.

B. ECBS-TA-MLA

We evaluate ECBS-TA-MLA with different suboptimality

factors ω on the dense and the sparse maps with different

numbers of agents/tasks (for both maps) and different num-

bers of goal locations in each task (for the sparse map).

We report the success rate, the average number of expanded

CT nodes, the average runtime and the average cost over

100 instances in Table II. The last three values are averaged

TABLE IV: Results for TA+CBS-MLA and CBS-TA-MLA

on the dense map with 10 agents/tasks.

Success Rate Runtime (s) Cost
TA+CBS-MLA 100/100 1.92 148.16
CBS-TA-MLA 99/100 3.04 146.63

over instances that are successfully solved by ECBS-TA-

MLA with all four ω. As expected, ECBS-TA-MLA achieves

high success rates on the instances with small numbers of

agents/tasks. The success rates only drop a bit with ω = 1.3
when the number of agents increases up to 30. In addition,

when we increase ω, the average number of expanded CT

nodes and the average runtime decrease, while the average

cost increases.

We test ECBS-TA-MLA when tasks have different number

of goal locations with 10 agents/tasks and report the same

values as in Table I in Table III. The experiment shows

that, with an appropriate ω, the success rate is still over

70% within two minutes, even with a maximum of 20 goal

locations per task.

C. TA+CBS-MLA

We compare TA+CBS-MLA against CBS-TA-MLA on the

dense map and report the success rate, the average cost,

and the average runtime with 10 agents/tasks, where each

task consists of two goal locations, over 100 instances in

Table IV. CBS-TA-MLA outperforms TA+CBS-MLA in the

average cost, but TA+CBS-MLA outperforms CBS-TA-MLA

in both the success rate and the average runtime. The reason

for this is that the number of possible task assignments is

large, namely 10! ≈ 3 millions, so CBS-TA-MLA spends a

significant amount of time computing task assignments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the CBS-TA-MLA algorithm

to solve the MG-TAPF problem optimally. We presented

three enhanced variants of CBS-TA-MLA, namely (1) op-

timal variant CBSH-TA-MLA, which speeds up CBS-TA-

MLA by adding a heuristic, (2) bounded-suboptimal variant

ECBS-TA-MLA, which speeds up CBS-TA-MLA by using

focal search and (3) greedy variant TA+CBS-MLA, which

commits to the most promising task assignment without

exploring other assignments. We conducted experiments to

evaluate these algorithms in different settings. It is future

research to incorporate additional enhancements (such as

disjoint splitting for the high-level search and incremental

A* for the low-level search) into CBS-TA-MLA to improve

its efficiency.
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