
Multi-Goal Multi-Agent Pickup and Delivery*

Qinghong Xu,1 Jiaoyang Li,2 Sven Koenig2 and Hang Ma1

Abstract— In this work, we consider the Multi-Agent Pickup-
and-Delivery (MAPD) problem, where agents constantly engage
with new tasks and need to plan collision-free paths to execute
them. To execute a task, an agent needs to visit a pair of
goal locations, consisting of a pickup location and a delivery
location. We propose two variants of an algorithm that assigns
a sequence of tasks to each agent using the anytime algorithm
Large Neighborhood Search (LNS) and plans paths using
the Multi-Agent Path Finding (MAPF) algorithm Priority-
Based Search (PBS). LNS-PBS is complete for well-formed
MAPD instances, a realistic subclass of MAPD instances, and
empirically more effective than the existing complete MAPD
algorithm CENTRAL. LNS-wPBS provides no completeness
guarantee but is empirically more efficient and stable than LNS-
PBS. It scales to thousands of agents and thousands of tasks
in a large warehouse and is empirically more effective than the
existing scalable MAPD algorithm HBH+MLA*. LNS-PBS and
LNS-wPBS also apply to a more general variant of MAPD,
namely the Multi-Goal MAPD (MG-MAPD) problem, where
tasks can have different numbers of goal locations.

I. INTRODUCTION

In many real-world multi-robot systems, robots have to

constantly attend to new tasks and plan collision-free paths to

execute them. For example, warehouse robots need to move

inventory shelves to workstations, where human workers pick

products from the shelves to fulfill the orders of customers.

This problem has been studied as Multi-Agent Pickup-and-

Delivery (MAPD) [1]. In MAPD, each task has a release

time and a sequence of two goal locations, namely a pickup

location and a delivery location. For a warehouse robot, the

pickup location is the storage location of an inventory shelf

in the warehouse, and the delivery location is the location of

the workstation that needs a product stored on the inventory

shelf. To execute a task, an agent (i.e., robot) needs to first

visit its pickup location at or after its release time and then

visit its delivery location.

To solve a MAPD instance, the agents need to decide

which tasks they are going to execute and plan collision-

free paths to execute them effectively. Most existing MAPD

algorithms separate the task-assignment and path-finding

*The research at Simon Fraser University was supported by the Natural
Sciences and Engineering Research Council of Canada under grant number
RGPIN2020-06540 as well as a Canada Foundation for Innovation John
R. Evans Leaders Fund award. The research at the University of Southern
California was supported by the National Science Foundation under grant
numbers 1409987, 1724392, 1817189, 1837779, 1935712, 2121028, and
2112533 as well as a gift from Amazon Robotics.

1Qinghong Xu and Hang Ma are with the School of Computing Sci-
ence, Simon Fraser University, Burnaby, BC V5A1S6, Canada {qxa8,
hangma}@sfu.ca

2Jiaoyang Li and Sven Koenig are with the Department of Computer
Science, University of Southern California, Los Angeles, CA 90007, USA
{jiaoyanl, skoenig}@usc.edu

parts, i.e., they first assign tasks to the agents based on an

estimation of the actual path costs and then use a Multi-

Agent Path Finding (MAPF) [2] algorithm for planning actual

collision-free paths for the agents. Such decoupled MAPD

algorithms can be categorized into (1) those that assign only

one task to each agent at a time and plan paths for the agents

segment by segment [1], i.e., each call to the path planner

computes a plan that moves the agents only from their current

locations to their next goal locations; (2) assign only one task

to each agent but plan paths that move the agents from their

current locations through a sequence of goal locations [3];

and (3) assign a sequence of tasks to each agent and plan

paths for the agents segment by segment [4], [5]. Assigning

only one task to each agent can lead to bad task assignments

since it does not take the subsequent tasks into account, and

planning paths segment by segment can lead to long paths.

In addition, there is some work that focuses only on

the path-finding part of the MAPD problem. For instance,

Surynek [6] proposes the optimal Multi-Goal MAPF algo-

rithms HCBS and SMT-HCBS for planning collision-free

paths for a set of goal locations (where the ordering of the

goal locations is not specified). However, these algorithms

solve only one-shot problems where each agent has only one

task, and their scalability is limited. Li et al. [7] propose the

efficient lifelong MAPF algorithm Rolling-Horizon Collision

Resolution (RHCR) for planning collision-free paths for a

sequence of goal locations. It uses a rolling-horizon frame-

work that repeatedly calls a windowed MAPF algorithm

to resolve collisions for only a few timesteps ahead. Such

windowed MAPF algorithms run significantly faster than

regular MAPF algorithms but typically do not provide a

completeness guarantee since they can lead to deadlocks due

to their shortsightedness.

The main contributions of our work are as follows: We

propose a decoupled algorithm that assigns a sequence of

tasks to each agent using the anytime algorithm Large Neigh-

borhood Search (LNS) and plans paths through a sequence

of goal locations using the MAPF algorithm Priority-Based

Search (PBS). More specifically, we propose two variants

of this algorithm: LNS-PBS and LNS-wPBS. The first vari-

ant focuses on completeness and effectiveness. PBS is, in

general, incomplete. Combined with the idea of “reserving

dummy paths" from [4], LNS-PBS is complete on well-

formed MAPD instances, a realistic subclass of MAPD

instances. The second variant focuses on efficiency and

stability. LNS-wPBS uses the windowed MAPF algorithm of

RHCR. Therefore, the runtime of LNS-wPBS is controlled

by the user-specified runtime limit for the anytime task-

assignment algorithm and the user-specified size of the time



TABLE I: Research related to MAPD. “Lifelong” means

that agents can constantly engage with new tasks. “Online”

means that the entire task set is unknown in the beginning,

and new tasks can enter the system at any time. “Assign

tasks (seq. task)” means that an algorithm can assign a task

sequence (rather than a single task) to each agent. “Find paths

(seq. goals)” means that an algorithm can plan a path for a

sequence of goal locations (rather than segment by segment)

for each agent. “Complete (well-formed)” means that an

algorithm is complete for well-formed MAPD instances.

lifelong online
assign tasks find paths complete

(seq. tasks) (seq. goals) (well-formed)

CENTRAL [1] 3 3 7 7 3

TA-Hybrid [4] 3 7 3 7 3

HBH+MLA* [3] 3 3 7 3 3

RMCA [5] 3 3 3 7 7

(SMT-)HCBS [6] 7 N/A 7 3 3

RHCR [7] 3 3 7 3 7

LNS-PBS 3 3 3 3 3

LNS-wPBS 3 3 3 3 7

window for the windowed MAPF algorithm. Empirically,

LNS-PBS and LNS-wPBS often yield smaller service times

than state-of-the-art MAPD algorithms, and LNS-wPBS

scales to thousands of agents and thousands of tasks in a

large warehouse.

As a further contribution, we study two extensions of the

MAPD problem. First, LNS-PBS and LNS-wPBS can extend

to a more general variant of the MAPD problem, namely the

Multi-Goal MAPD (MG-MAPD) problem, where tasks have

different numbers of goal locations. This problem models

the scenario where a warehouse robot may need to deliver an

inventory shelf to multiple workstations because they all have

requested products stored on the same inventory shelf. We

prove that LNS-PBS is complete for well-formed MG-MAPD

instances. Second, LNS-PBS and LNS-wPBS can handle

different MAPD settings. This includes the online setting [1],

where the entire task set is unknown in the beginning and

new tasks can enter the system at any time, the offline setting

[4], where the entire task set is known in the beginning, and

the semi-online setting (which has not been studied before),

where the entire task set is (only) partially known in the

beginning. We compare existing MAPD-related algorithms

against our algorithms LNS-PBS and LNS-wPBS in Table I.

II. RELATED WORK

A MAPD algorithm consists of two components: task

assignment and path finding. In this section, we discuss

existing research that relates to them.

A. Task Assignment

The task-assignment problem is related to the multi-robot

task allocation literature. Gerkey et al. [8] and Korsah et

al. [9] provide taxonomies for this topic. The Hungarian

algorithm [10] is a combinatorial optimization algorithm that

finds the maximum-weight matching in a bipartite graph in

polynomial time. Other related problems include the Trav-

eling Salesman Problem (TSP), Vehicle Routing Problem

(VRP), and Dial-a-Ride Problem. Shaw [11] introduces the

local search algorithm Large Neighborhood Search (LNS)

to construct a customer schedule for the VRP. The idea is

to start with an initial schedule and iteratively improve it.

In every iteration, some customers are removed from the

schedule based on a removal heuristic. These customers are

then inserted back into the schedule (at potentially different

positions) by a greedy heuristic.

B. Path Finding

The path-finding problem is related to the Multi-Agent

Path Finding (MAPF) literature. Many MAPF algorithms

exist, such as the complete and optimal MAPF algorithm

Conflict-Based Search (CBS) [12], its improved variant Im-

proved CBS (ICBS) [13], and the incomplete and suboptimal

MAPF algorithm prioritized planning [14]. Given a total

priority ordering of the agents, prioritized planning computes

the time-minimal paths of the agents in order of their

priorities such that the path of an agent does not collide with

the paths of all higher-priority agents. Prioritized planning

is very efficient, but a pre-defined total priority ordering can

make prioritized planning ineffective and even incomplete

for hard MAPF instances. Priority-Based Search (PBS) [15]

attempts to address this issue by using depth-first search to

find a good total priority ordering. Nevertheless, prioritized

planning is faster than PBS for easy MAPF instances in

general.

Multi-Label A* (MLA*) [3] was invented for planning

paths for pairs of goal locations, namely the pickup location

and the delivery location of a task. Li et al. [7] generalize

MLA* for planning paths for longer sequences of goal

locations.

C. Combined Task Assignment and Path Finding

Ma et al. [1] present the complete MAPD algorithm

CENTRAL for well-formed MAPD instances, a realistic

subclass of MAPD instances. CENTRAL uses the Hungarian

algorithm [10] to assign each agent one task and then uses

CBS for planning collision-free paths for the agents segment

by segment that visit the goal locations of their assigned

tasks. CENTRAL is designed for online MAPD, where

tasks can enter the system at any time. TA-Hybrid [4] is

designed for the offline setting, where all tasks are known

in the beginning. TA-Hybrid formulates the task-assignment

problem as a TSP and uses the anytime TSP algorithm LKH3

[16] to find a task sequence for each agent. It then uses ICBS

for planning collision-free paths for the agents segment by

segment that visit the goal locations of their assigned tasks.

Grenouilleau et al. [3] propose an H-value-Based Heuristic

(HBH) to assign an agent its next task greedily and then

prioritized planning and MLA* for planning collision-free

paths for the agents that visit the pairs of goal locations of

their assigned tasks.

The MAPD algorithms above are decoupled, i.e., they

first assign tasks to the agents based on an estimation of

the actual path costs and then use a MAPF algorithm for

planning actual collision-free paths for the agents. Chen et

al. [5] propose the coupled MAPD algorithm RMCA, that



assigns tasks and plans paths simultaneously. Therefore, its

task assignment is informed by the actual path costs. For the

task-assignment part, RMCA uses LNS to compute a task

sequence for each agent. It first uses a standard regret-based

marginal-cost heuristic to construct an initial solution. It then

iteratively removes and reassigns a subset of tasks based on a

greedy heuristic. For the path-finding part, it uses prioritized

planning with sequential A* calls for planning collision-free

paths for the agents.

III. PROBLEM DEFINITION

In this section, we formalize a generalization of the MAPD

problem, namely the Multi-Goal MAPD (MG-MAPD) prob-

lem. MAPD is a special case of MG-MAPD with only two

goal locations for each task. A MG-MAPD instance consists

of a set of " agents {01, 02, ..., 0" } and an undirected

graph � = (+,�), whose vertices + represent the set of

locations and whose edges � represent the connections

between locations that the agents can move along. Let ?8 (C)

denote the location of agent 08 at timestep C. Agent 08 starts

at its start location ?8 (0); at each timestep, it either moves to

an adjacent location or waits at its current location. A vertex

collision occurs between agents 08 and 0 9 at timestep C iff

?8 (C) = ? 9 (C); an edge collision occurs iff ?8 (C) = ? 9 (C + 1)

and ?8 (C +1) = ? 9 (C).

At each timestep, the system can release new tasks. Each

task g8 is characterized by a sequence of goal locations and

a finite release time A8 ∈ N; we let B8 denote its first goal

location and 68 denote its last goal location. To execute g8 ,

an agent needs to visit all goal locations of g8 in sequence.

When an agent arrives at B8 , it starts to execute g8 at or after

timestep A8 and cannot execute other tasks; the completion

time of g8 is the time when the agent arrives at 68 . Agents

that are assigned tasks are called task agents; otherwise, they

are called free agents.

Not all MG-MAPD instances are solvable; in this work,

we consider well-formed MG-MAPD instances, a realistic

subclass of MG-MAPD instances [1], [4]. We define two

types of endpoints: (1) all goal locations of tasks are called

task endpoints, and (2) all start locations of agents are called

non-task endpoints. A MG-MAPD instance is well-formed

iff the start location of each agent is different from all task

endpoints and, for any two endpoints, there exists a path

between them that traverses no other endpoints.

The problem of MG-MAPD is to assign tasks to agents

and plan collision-free paths for the agents to execute all

tasks assigned to them. The effectiveness of a MG-MAPD

algorithm is measured by the average service time. The

service time of a task is the difference between its completion

time and its release time, i.e., the time that the task spends

in the system. The efficiency is measured by the average

runtime per timestep. We say that a MG-MAPD algorithm

is stable iff its runtime at different timesteps is controllable

or predictable.

Algorithm 1 LNS-wPBS

1: while true do

2: if there are new or deferred tasks

or any task agent becomes a free agent then

3: (Re)assign tasks in T to agents using LNS;

4: Assign a dummy endpoint to each agent;

5: Plan paths for all agents using wPBS;

6: else if agents have moved F timesteps then

7: Assign a dummy endpoint to each agent;

8: Plan paths for all agents using wPBS;

9: end if

10: Agents follow their paths for one timestep;

11: end while

IV. LNS-PBS AND LNS-wPBS

In LNS-PBS and LNS-wPBS, each agent maintains (1) a

dummy endpoint, i.e., an endpoint that it can move to and

stay indefinitely at without collisions (initially, this dummy

endpoint is its start location), (2) a task sequence, that

consists of the uncompleted tasks that it has to execute,

(3) a corresponding goal sequence, that consists of all goal

locations of the tasks in its task sequence plus its dummy

endpoint at the end, and (4) a path, that moves the agent

from its current location through all locations in its goal

sequence without collisions. Algorithm 1 without the blue

parts (i.e., Lines [6-8]) shows how LNS-PBS works. Many

of its steps (not shown in the pseudo-code but introduced

later), including the use of dummy endpoints, the strategy of

which unexecuted tasks can be assigned to agents, and the

modification of PBS, are designed to ensure its completeness.

When new tasks are released by the system, tasks are deferred

from the previous iteration, or a task agent becomes a free

agent [Line 2], we start a new iteration and update the

four items maintained by the agents: First, we use LNS

to (re)assign agents those unexecuted tasks, denoted by T ,

all of whose goal locations are different from the dummy

endpoints of the agents [Line 3]. (The other unexecuted tasks

are deferred to the next iteration and assigned then.) This

destroys the current task sequences of all agents (except for

the tasks they are currently executing) and replans new task

sequences for them. Then, we assign each agent a (potentially

new) dummy endpoint [Line 4] and use PBS to (re)plan their

paths [Line 5]. We will explain Lines [3], [4], and [5] in

Sections IV-A, IV-B, and IV-C, respectively. We will prove

the completeness of LNS-PBS for well-formed MG-MAPD

instances in Section IV-D and finally introduce LNS-wPBS

(i.e., Lines [6-8]) in Section IV-E.

A. Large Neighborhood Search (LNS)

LNS starts with an initial task assignment generated by

Hungarian-based insertion also (introduced below) and it-

eratively improves it using Shaw removal and regret-based

re-insertion (introduced below) until a user-specified runtime

limit is reached. In each iteration, LNS accepts the new task

assignment if it yields a smaller estimated service time than



the old task assignment. In this section, we use the term

“estimated” time to indicate the time calculated under the

assumption that all agents follow their shortest paths on graph

� that ignore the collisions between each other. To avoid

having to plan a path for a long task sequence on Line 5, we

truncate the task sequence of each agent to a size of at most

the user-specified maximum size �. The remaining tasks are

deleted from the task sequences and will be assigned in

future iterations, for example, when a task agent completes

its current � tasks and becomes a free agent.

Hungarian-Based Insertion. We use the Hungarian al-

gorithm [10] to construct the initial task assignment, i.e.,

the task sequences of all agents. Each call to the Hungarian

algorithm adds one task to the end of the task sequence of

each agent. We repeatedly call it until all tasks in T have

been assigned to agents. In each call, the Hungarian algo-

rithm takes a cost matrix as input (whose rows correspond to

agents and whose columns correspond to tasks) and outputs

an agent-task assignment with the minimum sum of costs.

Previous work [1] defines an element of the cost matrix as the

estimated time for an agent to move from its current location

to the first goal location of a task. This choice prioritizes

those tasks whose first goal locations are near the current

locations of the agents, without considering the release and

completion times of the tasks. Instead, we define an element

of the cost matrix as the estimated completion time of a

task g8 executed by agent 08 under the assumption that g8 is

inserted at the end of the task sequence of 08 .

Shaw Removal. After the construction of the initial task

sequences of all agents, we use a Shaw removal operator

[17] to remove a group of interrelated tasks from the task

sequences. We let 3 (D, E) represent the shortest-path distance

from location D ∈ + to location E ∈ + . We define the

relatedness of two tasks g8 and g9 as

A (g8 , g9 ) = l1 (3 (68 , 6 9 ) + 3 (B8 , B 9 ))

+l2 ( |C (B8) − C (B 9 ) | + |C (68) − C (6 9 ) |),

where C (B8) represents the estimated time when an agent

starts to execute g8 (i.e., when the agent reaches the first

goal location B8 of g8) and C (68) represents the estimated

completion time of g8 . The first term expresses the spatial

relatedness of the tasks, and the second term expresses their

temporal relatedness. The spatial relatedness and temporal

relatedness are weighted by l1 and l2, respectively. The

Shaw removal operator works as follows: We first choose

a task g∗ randomly. We then remove g∗ and a group of

# − 1 tasks in decreasing order of their relatedness to g∗,

where the neighborhood size # is a user-specified parameter.

We also tested other removal operators (e.g., the removal of

random tasks and the removal of “bad” tasks [17]) in our

experiments, but the above removal operator outperformed

the others.

Regret-Based Re-Insertion. We then use a re-insertion

operator to re-insert the removed tasks into the task se-

quences. Specifically, we use the regret-based operator from

[5][17]. Let 58 (:, 9) denote the estimated total service time

of the task sequences obtained when inserting task g8 at the

9 th position of the task sequence of agent 0: (here, the task

sequences do not contain the other removed tasks). Let 5
(1)
8

denote the estimated total service time of the task sequences

obtained when inserting task g8 at its best position, namely

the one with the smallest estimated total service time, i.e.,

5
(1)
8

= min{ 58 (:, 9) | : ∈ {1, ..., "}, 9 ∈ {0, ..., ;: }}, where ;:

is the number of tasks in the task sequence of 0: . Let 5
(2)
8

denote the estimated total service time of the task sequences

obtained when inserting task g8 at its second-best position,

namely the one with the second-smallest estimated total

service time. The regret of a task g8 is defined as 5
(2)
8

− 5
(1)
8

,

i.e., the difference in the estimated total service time of

inserting g8 at its best two positions. The regret-based re-

insertion operator works as follows: We choose the task with

the maximum regret, insert it at its best position, and update

the regret of the remaining tasks based on the resulting task

sequences. We repeat the process until all removed tasks have

been re-inserted into the task sequences.

B. Dummy-Endpoint Assignment

We assign dummy endpoints one by one with task agents

first and free agents afterward. The dummy endpoint of each

agent needs to be different from the already assigned dummy

endpoints, all goal locations of the uncompleted tasks, and

the old dummy endpoints of the other " − 1 agents in the

previous iteration. When choosing a dummy endpoint for an

agent, we consider the task endpoints in increasing order of

their shortest-path distances to the last goal location of the

last task of the agent. If there are no available task endpoints

to assign, we use its start location as its dummy endpoint

instead.

C. Priority-Based Search (PBS)

PBS [15] is an incomplete and suboptimal two-level

MAPF algorithm. On the high level, PBS builds a priority

tree (PT) and performs a depth-first search on it to construct

a priority ordering of the agents. PBS starts with the root

node, that contains an empty priority ordering and a time-

minimal path for each agent that ignores collisions. When

resolving a collision between two agents, PBS generates two

child nodes and adds an additional priority relation to each

of them: It adds to one child node that the first agent involved

in the collision has a higher priority than the second one and

vice versa for the other child node. On the low level, PBS

uses A* for planning time-minimal paths for agents that are

consistent with the priority ordering generated by the high

level (i.e., lower-priority agents are not allowed to collide

with higher-priority agents). PBS prunes the child node iff no

such paths exists. Li et al. [7] generalize the low level of PBS

to planning time-minimal paths for agents with sequences of

goal locations.

We modify the low level of PBS to make PBS complete

for well-formed MG-MAPD instances. Before PBS starts, we

save the (old) paths computed in the previous iteration. In the

first iteration, the old paths are the paths that keep the agents

at their start locations indefinitely. These old paths might



not visit the goal locations in the current goal sequences

but are guaranteed to be collision-free. When PBS generates

the root node of the PT, it plans a time-minimal path for

each agent that avoids the old paths of all other "-1 agents.

When PBS resolves a collision between two agents, for each

agent whose path needs to be re-planned in each child node,

PBS plans a time-minimal path for it that avoids collisions

with the new paths of all higher-priority agents and the old

paths of all other agents (that do not have a higher priority

than it). When a MG-MAPD instance is well-formed, this

modification always finds a path for each agent (which we

prove below), and thus no PT node is pruned. Since PBS

performs depth-first search, the number of expanded PT

nodes is no larger than the maximum depth of the PT, which

is O("2) [15].

D. Completeness of LNS-PBS

Theorem 1: Given a well-formed MG-MAPD instance

with a finite number of tasks, LNS-PBS is guaranteed to

find collision-free paths in finite time that allow each agent

to execute all tasks assigned to it.

Proof: We first prove that, given a goal sequence

for each agent, LNS-PBS (or, more specifically, Line 5 of

Algorithm 1) is guaranteed to find collision-free paths in

finite time that allow each agent to visit all goal locations

in its goal sequence: For the root node, this property holds

since such a path exists for each agent. For example, the

agent can first follow its old path and stay at its old dummy

endpoint until all other "−1 agents have completed their old

paths and stay at their old dummy endpoints indefinitely. The

agent can then visit all goal locations in its goal sequence in

order and finally stay at its new dummy endpoint indefinitely

without having to pass through the old dummy endpoints

of all other " − 1 agents. This is so since the MG-MAPD

instance is well-formed and these dummy endpoints are

different from all goal locations in its goal sequence and

its new dummy endpoint. Similarly, for each non-root node,

this property holds since such a path exists for each agent

whose path needs to be replanned. For example, the agent can

first follow its old path and stay at its old dummy endpoint

until (1) all higher-priority agents have completed their new

paths and stay at their new dummy endpoints indefinitely

and (2) all other agents have completed their old paths and

stay at their old dummy endpoints indefinitely. The agent can

then visit all goal locations in its goal sequence in order and

finally stay at its new dummy endpoint indefinitely without

having to pass through the new dummy endpoints of the

higher-priority agents and the old dummy endpoints of all

other agents. This is so since the MG-MAPD instance is

well-formed and these dummy endpoints are different from

all goal locations in its goal sequence and its new dummy

endpoint. Therefore, no PT node is pruned, and LNS-PBS is

guaranteed to find collision-free paths in finite time that allow

each agent to visit all goal locations in its goal sequence.

We then prove that each task is eventually assigned to and

completed by some agent. The last task enters the system at

some (finite) timestep C. We assume for a proof by contra-

diction that, from then on, all still unexecuted tasks remain

unexecuted. Let timestep C ′ ≥ C be the earliest (finite) timestep

when all agents are free. At timestep C ′, no unexecuted task is

in T since, otherwise, at least one task would be assigned to

an agent by LNS-PBS and completed by the agent, as argued

above. Therefore, at timestep C ′ + 1, at least one task was

deferred and is added to T . Then, at least one task is assigned

to an agent by LNS-PBS and completed by the agent, as

argued above, which contradicts the assumption. Therefore,

at least one additional unexecuted task is completed by an

agent. Applying the argument repeatedly shows that each task

is eventually assigned to and completed by some agent.

E. LNS-wPBS

LNS-wPBS is a variant of LNS-PBS that, unlike LNS-

PBS, uses windowed PBS (wPBS) for planning collision-

free paths for only the first F timesteps and then plan

path again once the agents have moved for F timesteps.

This makes LNS-wPBS more efficient than LNS-PBS but

incomplete because there is no guarantee that the agents can

reach their goal locations in a finite number of timesteps.

Nevertheless, LNS-wPBS always successfully finds solutions

in our experiments.

Since LNS-wPBS gives up the completeness guarantee, we

further simplify it in three respects: First, LNS-wPBS does

not defer any tasks, i.e., T consists of all unexecuted tasks.

Second, wPBS uses the original low level of PBS instead

of our modified version, i.e., it does not consider the old

paths of the agents. Third, the assigned dummy endpoints

need only to be pairwise different from each other without

worrying about the goal locations of uncompleted tasks and

the old dummy endpoints.

V. LOOK-AHEAD HORIZONS

In this section, we study the semi-online setting, where

the system has partial knowledge of future tasks and can

thus plan for them. In this case, we consider all known

tasks when generating task sequences. We divide tasks into

batches, where all tasks in one batch are released at the same

timestep. We define the look-ahead horizon as the number

of batches that we know in advance. For example, if the

system releases one task every five timesteps (= 0.2 tasks per

timestep), a look-ahead horizon of 1 means that, at timestep

0, we know the tasks that will be released at timestep 0 and

5. In the offline setting, the look-ahead horizon is infinite.

If the system knows an incoming task ahead of its release

time, then we can send an agent to its first goal location and

let the agent wait for the task to be released. For example, in

Fig. 1, the system releases task g1 at timestep 0 and task g2 at

timestep 2. If we have no knowledge of g2 at timestep 0, then

we assign the agent g1 at timestep 0 and then g2 at timestep

2. Thus, the completion times of g1 and g2 are timesteps

5 and 11, respectively, resulting in an average service time

of (5− 0 + 11− 2)/2 = 7. However, if we use a look-ahead

horizon of 1, we can let the agent first move to B2, wait for

one timestep, start to execute g2 at timestep 2, and start to

execute g1 at timestep 5. Thus, the completion times of g2





TABLE II: Results on MAPD instances in small. “N/A”

means that the total runtime exceeds 30 minutes. Gap is

the average gap measured between the complete MAPD

algorithms LNS-PBS and CENTRAL and between the in-

complete MAPD algorithms LNS-wPBS and RMCA.

CENTRAL LNS-PBS RMCA LNS-wPBS

5 " st rt st rt st rt st rt

0.2

10 29.77 28.16 27.92 313.45 26.74 200.08 27.87 316.08

20 26.70 136.21 25.33 294.94 24.28 200.74 25.67 316.50

30 25.56 305.78 25.10 292.04 23.27 201.88 24.69 298.29

40 25.46 415.25 24.30 286.58 22.62 202.98 24.58 291.88

50 25.05 757.40 24.09 277.72 22.37 205.00 24.39 292.96

Gap -4.2% +206.2% +6.7% +50.0%

0.5

10 109.71 51.23 116.59 400.44 101.62 438.57 117.44 382.50

20 27.99 172.36 26.91 646.19 25.44 496.28 27.52 617.43

30 26.23 512.04 25.26 667.61 23.66 501.24 25.72 635.44

40 25.39 1,017.49 24.65 667.25 22.73 503.49 24.84 657.18

50 24.94 1,736.70 23.94 666.01 22.44 508.45 24.76 645.86

Gap -1.6% +178.1% +10.4% +19.1%

1

10 285.75 65.70 273.48 448.81 269.76 464.67 266.77 419.59

20 75.13 266.76 67.21 880.60 59.12 851.97 67.20 762.55

30 31.41 492.12 28.82 1,030.93 25.59 974.76 28.05 947.47

40 28.33 1,381.56 25.28 1,042.05 23.67 987.04 25.62 960.76

50 27.38 3,238.17 24.42 1,055.77 23.01 995.00 25.30 958.01

Gap -8.8% +166.1% +8.0% -5.8%

2

10 388.21 81.35 361.59 258.75 371.27 231.32 356.90 229.33

20 162.00 424.18 140.27 477.73 146.81 444.33 140.22 420.59

30 85.89 702.22 75.45 749.36 77.75 635.75 74.30 597.24

40 57.53 1,440.20 44.55 1,307.76 43.49 798.31 41.90 752.98

50 41.43 2,206.70 30.46 1,249.02 28.88 927.25 28.30 893.02

Gap -16.2% +36.9% -3.6% -4.3%

5

10 455.16 85.32 412.75 157.27 435.70 99.57 408.77 109.84

20 229.55 422.41 197.28 244.39 209.55 184.11 197.51 187.50

30 147.76 1,012.82 126.41 373.18 132.06 268.07 123.95 272.18

40 108.28 1,745.05 90.01 627.75 96.81 362.65 91.01 364.22

50 86.90 2,686.08 70.31 914.49 74.32 425.26 72.25 422.82

Gap -14.7% -30.1% -5.3% +2.7%

10

10 478.17 92.96 438.71 117.76 458.23 56.68 431.76 65.62

20 242.18 375.23 217.33 168.63 228.9 101.20 215.74 110.00

30 165.13 869.85 146.56 254.68 154.28 152.34 144.11 163.94

40 128.39 1,723.10 110.41 381.89 115.04 208.32 109.10 203.33

50 106.70 7,442.20 88.75 602.85 94.29 246.96 89.33 243.87

Gap -12.0% -5.7% -5.7% +5.6%

o
ffl

in
e

10 501.11 76.03 432.28 58.83 443.86 102.07 428.39 13.63

20 263.55 374.87 226.26 62.16 230.18 134.69 223.86 25.93

30 187.31 19,471.88 159.89 91.85 161.20 228.56 156.04 35.38

40 N/A N/A 125.67 125.03 126.68 324.39 122.46 60.66

50 N/A N/A 107.58 164.69 104.01 259.34 103.12 62.40

Gap -11.5% -57.9% -2.7% -81.8%

CENTRAL.

Task-Assignment Algorithms on MG-MAPD Instances.

TABLE V compares LNS-wPBS using different task-

assignment algorithms, namely LNS, that is our original task-

assignment algorithm, greedy-LNS, that modifies our LNS

by using the greedy heuristic from [17], [5] to construct

the initial task assignment, and Hungarian, that uses our

Hungarian-based insertion to find a task assignment (but

does not improve it via LNS). In most cases, LNS yields the

smallest service time, which indicates that our Hungarian-

based insertion is more effective than the greedy heuristic

from [17], [5] for constructing the initial task assignment, and

our LNS improves the initial task assignment, even though

the runtime limit of LNS is only 1s.

Look-Ahead Horizons on MG-MAPD Instances. TA-

BLE VI shows that knowing future tasks helps planning to

obtain smaller service times, but the benefit diminishes for

longer look-ahead horizons. For the MG-MAPD instances

TABLE III: Results on MAPD instances in medium with

5 = 50. “N/A” means that the total runtime exceeds 1.5h.

HBH+MLA* RMCA LNS-wPBS LNS-PBS

" st rt st rt st rt st rt

100 362.70 1.99 329.58 565.76 300.90 87.35 301.78 345.36

200 207.76 6.75 192.67 2,072.98 176.81 220.28 176.13 3,065.95

300 157.11 14.89 147.42 4,734.94 139.33 465.78 137.97 8,844.98

400 136.40 32.59 126.44 9,906.40 123.32 806.54 N/A N/A

500 125.42 65.79 N/A N/A 113.78 1,385.90 N/A N/A

TABLE IV: Results on MAPD instances in large with " =

1,000 and 5 = 100.

HBH+MLA* LNS-wPBS

tasks st rt st rt st gap

1,000 162.98 373.10 155.00 9,288.45 -4.8%

2,000 209.89 468.74 193.22 7,792.24 -7.9%

3,000 258.74 346.44 233.99 8,173.96 -10.5%

4,000 307.59 400.26 274.54 7,730.04 -10.7%

5,000 356.60 487.90 314.42 5,038.37 -11.8%

TABLE V: Service time on MG-MAPD instances in small.

The gap is measured between Hungarian and LNS.

5 " Hungarian Greedy-LNS LNS Gap

2

10 623.87 590.54 597.05 -4.2%

20 283.83 277.65 269.87 -4.9%

30 173.15 177.21 170.07 -1.7%

40 122.21 129.57 122.24 +0.0%

50 98.10 99.58 95.94 -2.6%

5

10 683.50 637.66 645.21 -5.6%

20 332.23 327.57 318.55 -4.1%

30 224.21 221.70 218.27 -2.6%

40 168.11 173.47 164.80 -1.9%

50 141.61 141.95 139.86 -1.2%

10

10 683.60 654.26 650.63 -4.8%

20 343.88 341.56 336.97 -2.0%

30 239.39 239.20 229.76 -4.0%

40 184.94 187.55 178.19 -3.6%

50 157.01 156.07 149.91 -4.5%

TABLE VI: Service time on MG-MAPD instances in small

with 5 = 2. “LAG” means that LNS-wPBS looks G batches

of tasks ahead. The numbers in parentheses are the gaps

measured with respect to LA0.

" LA0 LA1 LA5 LA10

10 58.93 54.07 (-8.2%) 48.89 (-17.0%) 65.25 (+10.6%)

20 46.52 41.85 (-10.0%) 37.94 (-18.4%) 38.12 (-18.0%)

30 45.36 41.59 (-8.3%) 38.30 (-15.5%) 38.41 (-15.3%)

40 45.17 41.99 (-7.0%) 38.80 (-14.1%) 38.84 (-14.0%)

50 45.00 41.57 (-7.6%) 39.11 (-13.0%) 39.31 (-12.6%)

that we test, extending the look-ahead horizon from 0 to

5 always reduces the service times, but extending it from

5 to 10 increases the service times for small numbers of

agents. We suspect that this is so because we sometimes

need to sacrifice the service times of the first few tasks in

order to optimize entire task sequences. Furthermore, the

task sequences for MG-MAPD instances with large look-

ahead horizons and small numbers of agents can be very

long and change frequently, meaning that the agents never

execute them completely as planned.

VII. CONCLUSIONS

In this work, we proposed two variants of a decoupled

MAPD algorithm that assigns task sequences to agents and

plans collision-free paths for them through the corresponding




