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ABSTRACT
The MAPE-K feedback loop has been established as the primary
reference model for self-adaptive and autonomous systems in do-
mains such as autonomous driving, robotics, and Cyber-Physical
Systems. At the same time, the Human Machine Teaming (HMT)
paradigm is designed to promote partnerships between humans
and autonomous machines. It goes far beyond the degree of col-
laboration expected in human-on-the-loop and human-in-the-loop
systems and emphasizes interactions, partnership, and teamwork
between humans and machines. However, while MAPE-K enables
fully autonomous behavior, it does not explicitly address the inter-
actions between humans and machines as intended by HMT. In this
paper, we present theMAPE-K𝐻𝑀𝑇 framework which augments the
traditional MAPE-K loop with support for HMT.We identify critical
human-machine teaming factors and describe the infrastructure
needed across the various phases of the MAPE-K loop in order to
effectively support HMT. This includes runtime models that are
constructed and populated dynamically across monitoring, anal-
ysis, planning, and execution phases to support human-machine
partnerships. We illustrate MAPE-K𝐻𝑀𝑇 using examples from an
autonomous multi-UAV emergency response system, and present
guidelines for integrating HMT into MAPE-K.

CCS CONCEPTS
• Human-centered computing → Collaborative interaction;
HCI theory, concepts and models.

KEYWORDS
Self-Adaptive Systems, Human-Machine Teaming, Autonomous
Systems, MAPE-K
ACM Reference Format:
Jane Cleland-Huang, Ankit Agrawal, Michael Vierhauser, Michael Murphy,
and Mike Prieto. 2022. Extending MAPE-K to support Human-Machine
Teaming. In 17th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS ’22), May 18–23, 2022, PITTSBURGH,
PA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3524844.3528054

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9305-8/22/05. . . $15.00
https://doi.org/10.1145/3524844.3528054

1 INTRODUCTION
The MAPE-K feedback loop [7, 43], is a well-adopted reference
model for managing and controlling autonomous and self-adaptive
systems, and its use has enabled significant advances in autono-
mous systems over the past decades, for example, in areas such
as autonomous driving and traffic management [34], Unmanned
Aerial Vehicles [55, 59], Smart Home and IoT applications [6, 36],
and assistive robots [39]. Furthermore, rapid advancements in Arti-
ficial Intelligence (AI), supported by frameworks such as MAPE-K,
have shifted the focus from traditional human-directed robots to
fully autonomous ones that do not require explicit human control.
These systems, which are commonly developed as “Human-on-
the-Loop” (HotL) [30] systems, differ from “Human-in-the-Loop”
(HitL) systems in several important ways. In HitL systems, humans
make decisions at key points of the system’s execution; while HotL
systems take full advantage of machine autonomy to perform tasks
independently, efficiently, and quickly.

However, given technological advances in autonomic comput-
ing, a more advanced form of collaboration, referred to as Human
Machine Teaming (HMT) has emerged [47]. HMT emphasizes inter-
actions, partnership, and teamwork between humans and machines.
It capitalizes upon the respective strengths of both the human and
the machine, whilst compensating for each of their potential lim-
itations [47, 54]. According to McDermott et al., effective HMT
requires transparency of the machine’s progress and plans, as well
as augmented cognition to empower the machine to adapt as needed,
keep the human partner aware of critical problems, and allow both
human and machine to explore the shared solution space. Coordi-
nation between humans and machines establishes shared knowl-
edge and trust between both human and machine partners and
empowers a human partner to direct the machine’s behavior when
desired [56, 57]. Finally, the machine’s self-adaptation capabilities
are extended to allow it to dynamically configure and reconfigure
its interactions with human partners throughout the mission.

HMT systems incorporate aspects of both Cyber-Physical Sys-
tems (CPS) [74], and Socio-Technical Systems (STS) [25, 81]. In
the context of HMT, systems are still expected to operate fully au-
tonomously, with all the capabilities that MAPE-K is designed to
support. In fact, not only are the machines capable of performing
their tasks autonomously, but they are perceived as true partners
and not just “tools” in achieving mission goals. To make this transi-
tion from the HotL paradigm to HMT, humans and machines must
interact more closely – not in a way that reduces or curtails the
autonomous behavior of the machine, but in one that leverages that
behavior to create meaningful partnerships.

https://doi.org/10.1145/3524844.3528054
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Figure 1: An overview of MAPE-K𝐻𝑀𝑇 showing machine activities (outer circle), and human activities (inner circle). Phases are
mapped to Situational Awareness levels (L1-L3). Examples of runtime models are shown for each phase.

The primary goal of any feedback control system is to remove
humans from the loop, and therefore MAPE-K focuses upon autono-
mous decision-making and self-adaptation without emphasizing
the human aspects of a CPS. This was reflected in the results of a
recent systematic literature review [10] which reported that run-
time models associated with self-adaptation primarily target the
architecture, structure of the system, and/or its goals, but hardly
incorporate any human-related factors or activities, such as user in-
teraction or situational awareness [26]. This creates a gap between
the existing MAPE-K framework and the capabilities needed by an
autonomous system to fully interact with human partners in an
HTM environment. Kephart proposed bridging this gap through cre-
ating highly interactive “dialogs” between humans and machines;
however, his examples are all drawn from information systems and
not real-time robotic environments [42].

We propose a solution for bridging this gap in more diverse
system environments through MAPE-K𝐻𝑀𝑇 , which enhances the
fundamental MAPE-K loop with runtime support for HMT, and
aligns teaming factors, identified from the HMT literature [57] with
the different phases of the MAPE-K loop. We then present a set
of runtime models for use in MAPE-K𝐻𝑀𝑇 and describe how they
enable support for bidirectional human-machine interactivity and
decision-making. Our approach is illustrated using a set of worked
examples taken from a multi-agent system of autonomous Un-
manned Aerial Vehicles (UAV) for supporting emergency response
missions [21, 24]. Based on these examples, we have derived a light-
weight process and recommendations for integrating HMT into
MAPE-K.

The remainder of this paper is structured as follows. Section 2
introduces MAPE-K𝐻𝑀𝑇 and its extensions to the MAPE-K loop.

Section 3 introduces our case study system, while Section 4 presents
six examples of HMT-related runtime models and their integration
into MAPE-K𝐻𝑀𝑇 . Section 5 then describes a process for utilizing
MAPE-K𝐻𝑀𝑇 in a MAPE-K system. Finally, Sections 6 to 8 present
threats to validity, related work, and conclusions.

2 THE MAPE-K𝐻𝑀𝑇 LOOP
WithMAPE-K𝐻𝑀𝑇 we aim to leverage the benefits of active human
engagement while preserving the autonomous behavior of the self-
adaptive system. MAPE-K𝐻𝑀𝑇 follows the same general structure
of MAPE-K, however, as illustrated in Fig. 1, each of the phases is
augmented with additional capabilities targeted to support HMT.
The original MAPE-K loop [43] consists of four pivotal phases:
Monitoring in which information is collected from the environment,
Analysis where data is analyzed to determine if adaptations need
to be performed, Planning where corresponding actions and adap-
tations are planned, and finally Execution in which the proposed
plans are enacted. Additionally, the “K” stands for an underlying
knowledge base, accessible to all other parts of the MAPE loop, and
often supported by runtime models [35].

In the context of human-machine teaming, a number of capa-
bilities are required to ensure both successful human-machine in-
teraction and cooperation [57]. In Table 1, we summarize some
of the primary dependencies. Transparency is supported by “Ob-
servability” (TF1) of the autonomous partner’s task progress and
“Predictability” (TF2) of its future plans. Cognition is augmented
through “Directing Attention” (TF3) to critical problems, for exam-
ple by raising meaningful alerts to increase situational awareness.
“Solution Exploration” (TF4) and “Adaptability” (TF5) imbue both
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Table 1: Key impacts of HMT factors upon phases of the MAPE-K loop. The factors (TF1-TF8) are proposed by McDer-
mott et al. [56] and augmented to reflect the bidirectional partnerships proposed in this paper.

Teaming Factor Definition Key example of HMT realization in MAPE-K𝐻𝑀𝑇

T
ra
ns

pa
re
nc

y TF1 Observability Visibility of the task progress of
the automated partner and human
actions.

[M+] Data related to status & task progress is collected from sensors,
UI inputs, and software probes.
[A+] Progress is dynamically visualize for humans.

TF2 Predictability Transparency of future intentions,
states, and activities.

[A+] Diverse views generated to provide situational awareness of the
machine’s activities & intent. [P+] Analysis & planning results
communicated to the human partner.

A
ug

m
en

te
d
C
og

ni
ti
on

TF3 Directing
Attention

Keeping human partners aware of
critical problems through warnings,
recommendations, and indicators.

[M+] Relevant data is collected & analyzed.
[A+] Based on factors such as state or user role, runtime user-alerts
are raised, prioritized, and displayed.

TF4 Solution
Exploration

Ability for both partners to
leverage multiple views,
knowledge, & candidate solutions.

Human partners leverage diverse interactive views and simulations
to explore the solution space [A+] and to make plans [P+] .

TF5 Adaptability Ability to address potentially
unexpected evolving, dynamic
situations through adaptation.

[P+] Human engages in adaptation planning alongside machine.
[E+]Machine self-adapts its interactions with humans according to
human behavior and context.

C
oo

rd
in
at
io
n

TF6 Directabilty Humans ability to direct/redirect
an automated partner’s resources,
activities, and priorities.

[A+] Humans draw on their observations & analysis to
[P+] intervene in the machine’s plans. [E+] The machine requests
support from the human when its confidence is low.

TF7 Calibrated
Trust

Trustworthiness indicators of
machine’s ability to make correct
decisions in current context.

[M+] Based on collected data [M+] the machine [P+] computes
reliability of its own autonomous decisions and actions, and displays
appropriate trust-related indicators at runtime [E+].

TF8 Common
Ground

Shared beliefs, assumptions, and
intents across human and
automated partners.

[M+] The Human understands data collection,analysis & use, [A+],
& the machine’s capabilities [P+/E+].
[E+] The machine responds to human directions as expected.

the machine and humans with the knowledge and capabilities they
need to make and enact decisions. Finally, Coordination is supported
through “Directability” (TF6), “Calibrated Trust” (TF7), and estab-
lishing “Common Ground” (TF8) to enable informed, trustworthy,
and trusted partnerships. Achieving each of these capabilities re-
quires consideration for how humans and machines can work in
teams to accomplish their goals, then establishing runtime mod-
els to collect, aggregate, and visualize information that supports
HMT. As a result, human and machine collaborators can engage in
meaningful interactions. These eight capabilities represent Team-
ing Factors that are applied across the MAPE-K loop to augment
each phase as M+, A+, P+, E+, and K+ respectively. In the following
sections, we explain how each phase is augmented to support HMT.

2.1 The Monitoring Phase (M)
In the MAPE-K loop, monitoring is primarily concerned with col-
lecting data from the self-adaptive system and the environment
in which it operates. Hardware sensors provide raw data such as
temperature, distance to potential obstacles, video streams, or GPS
locations, while software probes provide data from the running
system such as its resource usage, response times, and currently
executing tasks [37]. This data is collected, persisted, and used in
runtime models to guide subsequent analysis and self-adaptation
decisions [40, 79].
M+: To forge effective human-machine partnerships, HMT envi-
ronments must provide bidirectional situational awareness; there-
fore, the machine not only collects data about its own state but

also collects human-initiated data reflecting human goals, direc-
tives, workload, and response times [26]. This data is collected via
Graphical UIs (GUIs) and via hardware interfaces such as radio con-
trollers (RC), audio devices, pointing devices, and even eye-trackers
[17, 32, 62, 63] or brain interfaces [33, 61]. Furthermore, given the
dissonance between the way humans and machines perceive the
world [85], supplementary data is needed to support human aware-
ness and interactions and must be collected from all three sources
(i.e., machine, environment, and human inputs). The data collec-
tion process is therefore expanded accordingly and used across
subsequent analysis, planning, and execution phases to support the
HMT goals of transparency, cognition, and coordination, with an
emphasis on the teaming factors of observability, directing attention,
calibrated trust, and common ground.

2.2 The Analysis Phase (A)
TheMAPE-K analysis phase is concernedwith determiningwhether
adaptation actions are required, based on the current and predicted
state of the system, the environment it is operating in, and its de-
fined goals, safety constraints, and quality of service specifications.
Automated analysis enables timely and fast reactions to changes in
the environment and emergent situations.
A+: HMT recognizes the value of augmenting machine analysis ca-
pabilities with human perspectives and inputs [85]. This requires in-
formation to be exchanged between machines and humans through
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human-facing interfaces that provide insights into the autono-
mous machine’s intent, performance, plans, and reasoning pro-
cesses’ [38, 71]. Human analysis often relies upon a combination of
real world observations as well as software supported interactions.
In direct real-world analysis, for example, the human uses their
physical senses to observe and analyze the machine’s behavior,
and to intervene quickly and directly through either a hardware
or software interface, potentially causing a temporary interrupt
to the MAPE-K loop. In contrast, in software-supported analysis,
the human analyzes a representation of the machine’s behavior
and/or state through a GUI. As humans need time to understand
and analyze the information and formulate decisions, static snap-
shots become stale within seconds – even milliseconds. This leads
to the conclusion that GUI support for HMT must include dynamic
runtime views that reflect current system states and historical in-
formation about past actions, rather than just static snapshots of
the system. They are therefore often built on top of existing run-
time models with continually updated views. Historical views that
enable the human to explore why a machine made a past decision
(e.g., [67, 70]), or what it plans to do next, are also needed. The
MAPE-K𝐻𝑀𝑇 analysis has a broad impact across almost all of the
teaming factors as analysis is a precursor to human engagement.

2.3 The Planning Phase (P)
In the planning phase the machine plans self-adaptation actions
such as switching states to perform different tasks, reconfiguring
existing features, activating or deactivating sensors, or modify-
ing polling frequencies to preserve power or to collect additional
information about the system or its environment.
P+: HMT introduces two additional considerations to the planning
phase. First, the human leverages their observations of the machine,
its operating environment, interactions with other team members,
and profound experience as a “human knowledge base” to engage
directly in the planning process. Humans might reconfigure the
mission’s goals or plans, or temporarily intervene in the operation
of the machine, for example by assuming manual control of a task
that the machine is not able to perform autonomously or when the
machine malfunctions. However, this introduces a potential tug-of-
war that can occur when humans and machines create competing
plans [22]. This was catastrophically illustrated in the crash of Lion
Air Flight 610 and Ethiopian Airlines Flight 302 in which the MCAS
(Maneuvering Characteristics Augmentation System) incorrectly
perceived the angle of attack to exceed predefined limits and there-
fore pushed the nose of the plane down, whilst pilots struggled
to push it back up [31]. The system was not designed to detect
and mitigate this type of tug-of-war, and ultimately the machine
“won”, causing the planes to crash. Achieving effective coordination
between humans and machines is a challenging problem which we
discuss further in Section 4.3.

HMT has a second major impact on the planning phase, as the
machine may make additional self-adaptation plans targeted at
enhancing the human’s interactive experience. For example, the
machine might self-adapt its internal alert system to adjust the type
and frequency of human alerts if the system perceives that human
response time is starting to lag [3].

2.4 The Execution Phase (E)
During the execution phase, the previously generated plan or adap-
tation strategy is executed on the physical machine or device.
E+: In an HMT setting, both the machine and the human partners
enact plans – sometimes closely coordinating their work whilst at
other times working more independently on tasks that each partner
is best suited to perform.

2.5 The Knowledge Base (K) + Runtime Models
MAPE-K employs diverse runtime models that represent the struc-
ture, behavior, and/or goals of a system at runtime. These models
are pivotal for guiding autonomous adaptation decisions [8]. In a re-
cent systematic literature review Bencomo et al., [10] reported that
Models@run.time have been used in numerous ways – for example
to depict the current state of the system [28] and its behavioral
dynamics specifying exactly what the system is able to do from its
current state [29], model system goals [18, 69, 77] and functional
and non-functional requirements [20, 41], and to depict product
variability [82]. They provide a bidirectional reflection layer, such
that changes in the runtime model trigger changes in the goals,
structure, and/or behavior of the underlying system, whilst changes
in the system are reflected in the model. As such, runtime models
support system autonomy, imbuing the system with the ability to
sense, analyze, predict, and to make independent decisions.
K+: In MAPE-K𝐻𝑀𝑇 runtime models must also support the HMT
goals of transparency, augmented cognition, and coordination be-
tween human and machine partners. Depending on the type of sys-
tem, application domain, or the type of missions that are executed,
this requires different types of runtime models that are explicitly
designed to provide information to the user or relay critical infor-
mation from the user to the system so that informed adaptation
decisions can be made.

3 CASE PROJECT: A MULTI-UAV SYSTEM
Throughout this paper, we illustrate MAPE-K𝐻𝑀𝑇 with examples
drawn from our Drone Response system – a flexible and configurable
framework for multi-UAV missions [21, 24].

3.1 The Drone Response Ecosystem
Drone Response is fully deployable with both physical and simulated
UAVs [46, 65]. The Drone Response architecture includes diverse
user interfaces, a Ground Control Station (GCS), and autonomy
capabilities located onboard each UAV. The MAPE-K infrastructure
is distributed across the Drone Response ecosystem as follows.
• UAV Onboard Pilot: The Onboard Pilot module acts as an appli-
cation layer for the autopilot stack which in turn includes flight
control software and hardware for executing plans. Its internal
State Machine receives mission specifications and instantiates it-
self accordingly. It then uses its onboard state machine to progress
through a series of tasks, with transitions triggered by events it
detects by analyzing its own sensor data and/or messages received
from the GCS or other UAVs. MAPE-K’s monitoring, analysis, plan-
ning, and execution occur onboard each UAV with an emphasis on
managing the tasks and adaptations of each individual UAV.
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Figure 2: Human-Machine Teaming is supported by GUIs,
hardware UIs, and a set of closely integrated runtimemodels.

• Ground Control Station: The Control Station adheres to the mi-
croservices and publish-subscribe architectural style [60], with each
microservice providing a specific capability such as airspace leasing,
multi-UAV coordination, or safety checking mission specifications.
During a mission, microservices receive messages from both the
human operators and UAVs, construct runtime models, and leverage
them for analysis and planning purposes. The knowledge base is
thereby distributed across runtime models managed by various mi-
croservices and supported by a shared in-memory database. Status
data (e.g., GPS location, battery, health) and task progress updates
(e.g., current task, potential adaptations) sent to the GCS by both
humans and UAVs support MAPE-K’s mission-level monitoring,
analysis, and planning.
• Graphical and Hardware Interfaces: Drone Response uses graph-
ical and hardware user interfaces to enable human-machine in-
teractions. Most of the interactions use GUIs; however, in case of
emergency, or to temporarily assume control for tasks that the
machine has not yet been trained to perform, humans can directly
issue commands to UAVs via hand-held radio controllers. The GUI
components are built on a centrally hosted web application and
asynchronously send and receive status data and video streams
over a mesh-radio via GCS’s message broker and the onboard pilot
modules [3]. Many of theMAPE-K𝐻𝑀𝑇 runtime models are coupled
with one or more GUIs that provide situational awareness to the
human for planning and analysis purposes while also potentially
monitoring aspects of human interaction behavior.

Within Drone Response, HMT is supported by diverse runtime
models integrated across the system (cf. Fig. 2). For example, in
order to generate meaningful explanations where multiple UAVs
are involved, information about their current state is collected from
each of the UAVs. Humans interact directly with the UAVs using
physical devices (1) and indirectly via a GUI (2). HMT Interaction
Models (4) that process data and control human-machine interac-
tions in the GUI (3), receive input from underlying runtime-models
(5), as well as from other sources such as UAVs (7) and humans
via the GUIs. Communication between these major components
is achieved using the MQTT message broker with service level
agreements guaranteeing fast response times when needed (6).

3.2 A Motivating Scenario
Drone Response’s UAVs are designed to leverage computer vision
and work alongside humans in emergency response missions such
as search-and-detect, surveillance, and rescue scenarios. As de-
picted in Fig. 3, the UAVs first use their onboard computer vision
to search for, and potentially detect the victim. They then notify
the human responders about the victim’s location. Drone Response
then has the option of delivering a flotation device, as shown in
Fig. 4; however, this requires very close human-machine teaming.
For example, if a physical rescue from a boat is imminent, then
simultaneously dropping a flotation device in the location of the
victim could hinder the rescue operation and introduce a potential
safety concern. This example provides a clear differentiation be-
tween HiTL, HoTL, and HMT paradigms. In a HiTL environment,
the UAV would wait to be dispatched by a human and subsequently
request input regarding specific tasks to be performed. In a HoTL
environment, the UAV might decide to initiate the delivery of the
flotation device independently; however, the human could decide
to intervene and cancel the operation. In contrast, while human
intervention is definitely part of HMT, the HMT scenario calls for
joint decision-making, whereby the human and machine leverage
a shared set of beliefs and understanding of the mission to evaluate
their capabilities and opportunities, weigh the options with respect

40%75%90%

90%

Confirm Reject Get more 
Imagery

75%

Follow Victim

Follow Victim

Figure 3:Drone Response streams video of victims once detected
by the onboard Computer Vision.

Figure 4: Proof-of-concept Drone Response delivery of a defib-
rillator. (See https://youtu.be/AleVXc3QWIk)

https://youtu.be/AleVXc3QWIk
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to global mission goals, and ultimately make a joint decision for
the good of the mission.

All eight HMT teaming factors (cf. Table 1) play a vital role in
fostering collaborations between emergency responders and the
UAVs. Because humans need to develop trust in the autonomy ca-
pabilities of the UAV during the mission, they require observability
of their tasks, and expect predictability of their decisions and ac-
tions. The system must raise appropriate alerts in order to help
humans to maintain situational awareness. In the spirit of the HMT
partnership, the human can directly contribute to the search – for
example, providing information for use by the computer vision
algorithm or hints to the route planner, that the victim is wearing a
red sweater and that sightings have been reported in a certain part
of the search area. To increase the likelihood of a successful search,
the UAVs and humans must establish a shared conceptual model of
the mission and humans must be able to explore the solution space
through user-facing perspectives of the current mission, including
the location, status, and progress of each UAV.

4 APPLYING MAPE-K𝐻𝑀𝑇

In this section, we describe six different runtime models from our
Drone Response project that support HTM within the MAPE-K loop.
Each of the runtime models contributes towards one or more HMT
goals of transparency, augmented cognition, or human-machine
coordination. Furthermore, eachmodel not only reflects the runtime
behavior or structure of the machine, but also provides direct or
indirect support for a human-facing UI component in order to
support human-machine collaboration. In the following sections
we describe models that are particularly pertinent to transparency,
cognition, and coordination respectively.

4.1 Runtime Models for Transparency
HMT’s transparency goal focuses on observability and predictabil-
ity and therefore aligns closely with Endsley’s Situational Aware-
ness goals of observing and understanding [26, 27]. Observability
means that humans are aware of what their autonomous partner is
doing, including its goals, current tasks, future intentions, status,
progress, ability to adapt to changing contexts, rationales for adap-
tations, and challenges or constraints that impact its ability to solve
the current problem. Additionally, predictability helps to remove
potential surprises introduced by the machine’s decisions, provides
insights into uncertainties [9] and ways in which reliability of the
autonomous partner changes over time, under what circumstances
it changes, and how its decisions are made. Given the importance
of the transparency goal, and the many facets of observability and
predictability, systems will likely have several associated runtime
models. These models tend to use runtime data about the machine’s
progress and its environment collected using runtime monitors.
Based on this, visualization and interactivity support is provided
for the analysis phase. Drone Response primarily supports trans-
parency through the use of several map-based views that depict
the current location and status of each UAV, as well as task-based
views such as the one presented in the following example.
- Task-Centric Model: In a multi-agent system, the human needs to
understand exactly what each individual agent is currently doing

G

OR

B

P

Figure 5: This ‘Multi-Agent Tracking’ view displays the task
progress of all active UAVs. It is managed by a dedicated
microservice, which continually aggregates states and transi-
tion paths for all active UAVs and uses each UAV’s uniquely
colored token to mark their current state.

and its progress towards the overall mission plan. The Drone Re-
sponse task-centric view generates a global state transition model
combining the states and transitions from all active UAVs’ onboard
state machines, and then tracks and displays the current task per-
formed by each UAV in the merged state transition model. Progress
is then visualized in a UI showing the current task of each UAV as
a colored token assigned to a specific node. This is illustrated in
Fig. 5, which shows that the Green (G) delivery UAV is on standby,
Red (R) and Orange (O) UAVs are searching, the Purple (P) UAV is
performing surveillance, and the Blue (B) UAV has detected a victim.

4.2 Runtime Models that Augment Cognition
The cognition goal extends far beyond basic transparency and is
intended to help humans understand emergent problems and their
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Figure 6: The ‘Alert Triage’ model stores user-created and/or
machine-learned prioritization rules, and triages the display
of alerts for each view (e.g., Map view on the right).

causes, provide insights into the decisions and actions taken by
the autonomous partner, and allow the user to explore different
perspectives and solutions [50]. MAPE-K𝐻𝑀𝑇 runtime models sup-
port cognition goals through enabling the right information to
be presented or available to the human at the right time, without
overloading their cognitive abilities [3, 45, 83]. The two examples
we present here focus on triaging runtime alerts and explaining
autonomous actions of the machine by generating human-readable
explanations of autonomous behavior; however, our previously pre-
sented task-centric model (cf. Fig. 5) provides an additional example,
as its interactive GUI also provides interactive and more detailed
views of individual UAV’s tasks and progress.
- Alert Prioritization Model: The Drone Response alert prioritization
model is designed to avoid the situational awareness “design demon”
of information overload [26], and is built upon a formal meta-model
for human-UAV collaborations [4]. It focuses particularly on the
HMT goal of augmenting cognition with an emphasis on directing
human attention to important messages. In Fig. 6 alert rules and pri-
orities are shown on the left. They are initially provided as default
values by human stakeholders but can be dynamically adapted at
runtime, by both the human and themachine. They specify essential
alerts which must always be displayed ( ), and prioritized alerts
(1-5) which will only be displayed if they don’t cause the maximum
threshold to be exceeded. The triage part of the model (e.g., Map
View), is dynamically maintained by the system at runtime and
is responsible for managing alerts in each active GUI view. It is
notified whenever an alert is generated by a runtime model hosted
on the UAV or on a GCS microservice. It is also notified by the GUI
server whenever a new GUI is activated or deactivated. The alert
prioritization model thus builds upon services already available in
the basic MAPE-K loop, by collecting, aggregating, and process-
ing the data they produce, in order to support the HMT-focused
capability of triaging alerts.

Type H/M Explanation Template
Ext M UAV-{id/color} identified {Event} in the environment.

Therefore, adapting {Action - internal changes} to
{Rationale}

Ext H UAV-{id/color} identified {Event} in the environment.
Therefore, need {Desired Changes} to {Rationale}

Int M UAV-{id/color} observed {Event}. Therefore, {Action -
internal changes} to {Rationale}

Int H UAV-{id/color} observed {Event} due to {cause}.
Therefore, need {Desired Changes} to {Rationale}

(a) Explanation templates for internally and externally triggered
adaptation events initiated by either the human (H) or machine (M).

(b) An example explanation generated by the runtime model.

Figure 7: The Autonomy Explanation Model generates an
explanation for all major adaptation decisions.

- Adaptation Explanation Model: Finally, the explanation model
generates explanations for UAV autonomous decisions so that hu-
mans can gain insights into the machine’s reasoning and assess
the appropriateness of individual adaptations [3, 48]. These in-
sights potentially strengthen the human’s trust and confidence in
its machine partner. The predefined explanation templates shown in
Table 7a are used to dynamically generate human-readable textual
explanations for all adaptations performed by a UAV. Whenever a
UAV self-adapts, it collects three types of information. These are
explanation snippets describing relevant external events (e.g., “misty
weather conditions” or “victim detected”), the UAV’s response to
the events (e.g., “reduced altitude by 8 m” or “switched to tracking
mode”), and finally, the rationale behind those actions (e.g., “limited
visibility”, or “high confidence in victim sighting”). An example of
a weather-related adaptation explanation is shown in Figure 7b.
Upon receipt of the adaptation message, the runtime model selects
the appropriate template and generates the explanation by filling
in the missing parts with the data provided by the UAV [3]. This
model, therefore, utilizes the outputs of existing runtime adaptation
models to provide explanations that are critical for HMT.

4.3 Runtime Models for Coordination
Coordinating the actions of both humans and machines represents
a challenging problem [51] that is exacerbated by the differing
cadences of human and machine response times. Successful coor-
dination depends on many factors, including a shared conceptual
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Figure 8: The UAV’s Computer Vision component considers
confidence, reliability, and calibrated trust levels, to deter-
mine when to request help from the human partner [1].

model of the operating environment, respect for each partner’s
capabilities, and well-calibrated bidirectional trust. Humans trust
the machine to operate autonomously when capable and to request
help when needed. Conversely, machines accept interventions from
humans and expect feedback when requested, if the human is avail-
able. In this context, we present three different runtime models
covering the cases of machine-initiated and human-initiated coor-
dination, as well as the particularly challenging case that occurs
when humans and machines generate conflicting plans of action.
- Machine Initiated Coordination: In Drone Response much of the
autonomous behavior of the UAV is supported by its onboard CV ca-
pabilities (cf. Fig. 8) [1]. For example, when searching for a drowning
victim, the UAV uses CV to continuously analyze the video stream
and detect objects classified as “person”. For each detected object,
the CV module generates two scores. The confidence score repre-
sents the probability that the object is correctly classified, while the
reliability score accounts for any uncertainty arising from image
noise or mismatch between the current context and the training
data [64]. Based on learned threshold values, the UAV uses these
scores to decide whether it can autonomously decide on its ac-
tions (e.g., track the object vs. continue to search) or should request
help from the human. Both the CV model and the related human-
machine coordination mechanism are supported by runtime models
which take a coordination specification as input (cf. Algorithm 1),
instantiate a simple state machine (managed by a microservice on
the GCS), and use the existing messaging system to choreograph
human and machine tasks. In closely related work Li et al., also pro-
posed a form of choreography that provides users with advanced
knowledge of tasks they would be requested to participate in [51].
- Human Initiated Coordination Models: In order for the human to en-
gage in meaningful interactions with the machine, they must have
high degrees of situational awareness and a clear understanding of
what they can and cannot do at any point during a mission. Further-
more, the different cadences of human and machine response times
within MAPE-K𝐻𝑀𝑇 create a significant coordination challenge
resulting in problems such as the human making plans based on
stale data or intervening after the machine has already completed
an action. An example of a relevant runtime model determines cur-
rently available human interaction options and dynamically adapts
each active GUI to activate and deactivate widgets (e.g., icons, but-
tons, menu options) according to the ways that humans can feasibly

Algorithm 1: Human-Machine coordinated decision-
making addressing Computer Vision reliability problems
if Object detected at low reliability then

UAV raises alert and requests help from human;
if Human is available and responsive then

Human evaluates video stream, makes decision, and
selects CONFIRM or REJECT option;

if Human confirms victim sighting then
UI Server sends CONFIRMATION message to UAV;

else
Human refutes sighting;
UI Server sends REFUTATION message to UAV;

end
if no response from human within waiting_period then

NO RESPONSE message sent to UAV;
‘human failure to respond’ event is logged;
Responsibility reverts to UAV;

end
end

interact with the machine given the current state of the mission.
For example, if the UAV is currently in active search mode, it is
reasonable for the human to request a view of the UAV’s annotated
video stream; however, this option should not be available if the
UAV is in RTL mode with cameras turned off to preserve limited
power. A suitable affordance (e.g., a button) should be activated
and deactivated accordingly). Tracking these currently available
human actions is handled by a dedicated runtime model.
- Mitigating Tug-of-War Scenarios: Finally, a significant challenge
in HMT is reconciling potentially conflicting actions taken by the
human and machine, a problem that is again exacerbated by the
different operating speeds of the machine and human. As the ma-
chine has the advantage of faster cadence, it will often win any
disagreements with potentially devastating results, as illustrated
by the case of the Lion Air Crash (cf., Section 2.3). Similar scenarios
play out across other domains. For example, a UAV may place itself
close to the river to collect better imagery of the riverbank. On a
sunny day, reflections from the light on the water could impact the
UAV’s sensors causing sudden altitude fluctuations and triggering
a land-in-place failsafe mechanism to activate. An alerted human
might quickly intervene to prevent the UAV from landing in the
river directing it to ascend to a safe altitude; however, once the
UAV’s autonomy kicks back into gear, the whole cycle could re-
peat itself – causing a tug-of-war with respect to the ideal altitude
placement. HMT systems must allow humans and/or machines to
detect and break interwoven cycles of human and machine actions
that are indicative of a tug-of-war. As a simple solution, detected
cycles could be broken by curtailing the UAV’s autonomy until
reestablished by the human.

4.4 Integrating the RunTime Data Probes
While we have presented these six example models as independent
entities, many of them share common data inputs (e.g., data read
from sensors and software probes), or rely on data/outputs from
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another runtime model. For example, in order to generate mean-
ingful explanations where multiple UAVs are involved, information
is collected from the individual UAV onboard runtime models. The
Autonomy Explanation Model relies upon “adaptation notification
events” provided by each individual UAV, which in turn employs
their own state machine. This information is then aggregated and
post-processed, so that the Alert Prioritization Model (cf. Fig. 6)
can select and display critical alerts from individual UAVs or global
alerts from the system. While both the knowledge base, and (parts)
of the runtime models are distributed across the respective agents
they share data as needed. This means that the UAV retains full
autonomy when a person is detected, and adaptation decisions are
made (onboard), but at the same time raises alert events which sup-
port decision-making of the human partner. This dependence on
accurate and appropriate information between the different models
calls for thorough design and planning to ensure that the right
information is available at the right time in a potentially resource-
constrained operating environment.

5 ANALYSIS AND TAKE-AWAYS
In this paper, we have proposed augmenting the MAPE-K loop
with support for HMT. MAPE-K𝐻𝑀𝑇 assumes that both humans
and machines are capable of autonomous behavior and decision-
making, and that mission goals are achieved jointly through an
interactive partnership. Based on our own experiences in applying
MAPE-K𝐻𝑀𝑇 to the Drone Response system, we lay out an initial
process for designing and deploying MAPE-K𝐻𝑀𝑇 .

(1) Stakeholder Identification: HMT systems inherently involve hu-
mans, and therefore, it is important to identify CRACK (Collabo-
rative, Representative, Authorized, Committed, Knowledgeable)
[12] stakeholders serving as direct users and domain experts.
Engaging with stakeholders, who will become the human part-
ners, helps to uncover interactions and expectations users have
on the system, for example, by carefully exploring the human-
machine interactions related to mission-related scenarios [76].

(2) Elicitation of HMT requirements: Once stakeholders are iden-
tified, requirements must be elicited. As a starting point, Mc-
Dermott et al. [57] has described a detailed elicitation process,
supported by a list of key questions associated with each of the
HMT factors [56]. For example, to understand “predictability”
requirements, analysts must discover (a) automation goals, abil-
ities, and limitations, (b) how the human partner’s goals and
priorities are tracked, (c) reliability of different automated tasks
within different contexts, and (d) the types of changes that are
expected to occur and trigger subsequent adaptations.

(3) Requirements Analysis and Specification: The elicited require-
ments are subsequently analyzed to negotiate and reconcile
trade-offs, and to identify and specify requirements that support
human-machine interactions [68]. While our process is agnostic
to specific techniques, the domains in which MAPE-K operates
generally dictate that the requirements process includes a rig-
orous safety analysis (e.g., [23, 49, 80]), and determines that re-
quirements should be specified sufficiently formally to capture
timing and other performance constraints and/or to establish

formal goal models. In many cases, the requirements specifica-
tion (e.g., Goal Models or state transition diagrams) provides
the foundation for the respective runtime models [5, 10, 15].

(4) Design and Integration of HMT runtime models: MAPE-K𝐻𝑀𝑇

emphasizes the importance of HMT-related runtime models.
We, therefore, start the design process by taking an inventory
of existing runtime models, identifying gaps where HMT re-
quirements are not adequately supported by existing models,
designing new runtime models as needed, and then finally com-
posingmodels intoworkflows to service eachHMT requirement.
This involves assessing who (machine or human-role), when,
and where each model will be used and updated, and what data
sources are required as inputs (e.g., probes, message subscrip-
tions, or human-initiated data and events). Furthermore, as
actions are performed at different speeds, the required refresh
frequencies must be determined for each constituent element
of each runtime model, and a system-wide plan established so
that each collected data attribute satisfies refresh frequencies
of all relevant models.

(5) User Interface Design: User interfaces need to be designed to
provide interactive support for humans. Depending on the data
that is displayed, or the input that is expected from the human,
this may include GUIs, or hardware interfaces such as Joysticks
or radio controllers. Mission- and safety-critical information
needs to be provided to the human in a timely manner without
creating cognitive overload, and must not be “hidden” in sub-
menus or views that require multiple steps to access [26].

(6) Implementation, Testing, and Deployment: The final steps in-
volve implementing the system, verifying that required runtime
models, UIs, and supporting features are implemented as in-
tended, and finally validating that the deployed system satisfies
its stated requirements and supports the desired HMT. Further
discussion of these steps is outside the scope of this paper.

6 THREATS TO VALIDITY
Our work is subject to three primary threats to validity. First, all of
the runtime models described in this paper are designed to support
HMT in our ownDrone Response system, representing a multi-agent,
multi-human system operating in a mid-level safety-critical domain
[53, 78]. As types of interactions are influenced by the operating
domain, the human-machine partnerships in Drone Response may
differ significantly from other application domains – for example,
those with a single operator or a single machine, or operating in a
highly safety-critical domain. On the other hand, instead of propos-
ing a specific set of HMT-related runtime models, MAPE-K𝐻𝑀𝑇

provides a simple process for identifying, developing, and integrat-
ing context-specific models in support of transparency, augmented
cognition, and coordination goals, which are known to be applica-
ble across diverse operating environments [47, 56, 57]. Further, our
process could be easily extended – for example, by integrating a
more formal safety analysis for more critical domains. Our future
work will apply this process to more varied systems.

Second, while our runtime models have been prototyped in var-
ious forms, only some have been integrated into the full version
of Drone Response. As such, this paper represents a vision, sup-
ported by concrete examples. Future work will focus on concrete
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implementation details. For example, while we have discussed the
creation of shared data probes that service the refresh frequencies
of all runtime models, and have developed monitoring capabilities
to achieve this, this aspect of the work needs further investigation.

Finally, while Drone Response has been deployed in the physical
world, formal evaluations of HMT user interfaces have relied upon
user studies conducted inDrone Response’s simulator (e.g., [2, 3, 79]).
However, the Drone Response GUI is identical for both physical
and simulated UAVs, and our past experiences have shown that
findings from these user studies have been effective when deployed
in physical field tests. Nevertheless, further experiments targeted
specifically at HMT need to be conducted in real-world settings
where humans collaborate with UAVs under far more noisy, volatile,
and potentially stressful conditions.

7 RELATED WORK
A significant body of work, primarily in the HCI community has
focused on designing UIs to support situational awareness of Cyber-
Physical Systems (e.g., [2, 4, 11, 66, 72, 75]). The focus has primarily
been on enabling users to perceive, understand, and make effective
decisions [26, 27]. While this related work supports HMT goals, it
puts little emphasis on integration with underlying runtime models
which are needed in order to deliver accurate, timely, and often ag-
gregated data for use in the UIs. Kephart advocated for increased in-
teractivity between humans and users in adaptive decision-making
[42]; however, their examples were all taken from domains in which
humans had plenty of time to consider their decisions. Integrat-
ing HMT into the MAPE-K loop for real-time robotics systems
introduces additional, and very challenging, timing constraints.

In the HMT domain, researchers have explored many facets
of human-machine teaming. For example, Klein et al. [44] identi-
fied challenges associated with achieving shared goals, preventing
breakdowns in team coordination, and fostering communication
and collaboration. Furthermore, Schmid et al. [73] studied ways
to adjust system automation in complex, safety-critical environ-
ments in order to better support human operators. While their work
has significant relevance to MAPE-K𝐻𝑀𝑇 , it perceives humans as
“operators” rather than true partners.

Calhoun et al. [16] proposed a flexible architecture that allows
the degree of automation to vary according to the human’s current
engagement and workload. These goals are reflected in our discus-
sion on adaptation in MAPE-K𝐻𝑀𝑇 , which embraces the notion
of adapting for improved human collaboration and performance.
To increase context awareness in order to better engage humans
in the decision-making process, Li et al. [51] proposed a formal
framework based on probabilistic reasoning to determine when
advanced notifications are useful for humans interacting with self-
adaptive systems. Their work specifically addresses the cadence
problem in which humans may be required to respond quickly but
require “thinking time”. However, their evaluation was conducted
in a robotics goods delivery domain, which has a lower decision
cadence than a multi-UAV system.

Finally, several papers have explored self-adaptation and/or hu-
man interactions in the UAV domain. Vierhauser et al. [80] iden-
tified human-UAV interaction hazards and potential mitigations,
whilst Miller et al. [58] explored different techniques by which

users could interact with multiple UAVs. However, these papers
focus on Human-on-the-loop rather than HMT. Other researchers
have proposed UAV-related self-adaptation frameworks. For ex-
ample, Braberman et al. [13, 14] presented a MAPE-K reference
architecture for unmanned aerial vehicles, while Yu et al. [84] pro-
posed a self-adaptive framework for UAV forensics. Neither of these
explored the HMT aspects of adaptation. Finally, in more closely
related work Lim et al. [52] explored ways to adapt human-robot
interactions in a multi-UAV system, with a focus on modulating
automation support according to the cognitive states of the human
operator. This creates a subtle, but important difference from our
MAPE-K𝐻𝑀𝑇 goal, as it centers primarily around the needs of the
operator rather than optimizing teamwork goals.

8 CONCLUSION
This paper has described the techniques and process we have used
to augment MAPE-K in order to address the three HMT goals of
transparency, augmented cognition, and coordination. We have de-
scribed how MAPE-K provides a meaningful self-adaptation frame-
work in which humans and machines collaborate together, and
have mapped HMT factors to the MAPE-K phases and then used
a series of examples to illustrate how carefully designed runtime
models enable meaningful support for human-machine partner-
ships. Rather than diminishing the autonomy of machines, HMT
draws upon the autonomous abilities of both humans and machines
to deliver an even stronger solution realized through developing
meaningful teamwork.

In conducting this work we have identified two key challenges.
The first stems from the very different cadences at which humans
and machines operate. This creates the potential for humans to
make decisions based upon stale data, and for directives interjected
into the machine’s plans to inadequately reflect the current state
of the system. Existing HMT solutions, such as turn-taking [19],
are only effective in scenarios which can tolerate slower response
times. In Drone Response we partially address this challenge by
dynamically adapting the UIs to only reflect currently available
human interaction options, and by implementing a reliable messag-
ing system which ensures that messages are only sent to the UAV
when it is in a state to handle them; however, the problem is a com-
plex one which warrants further exploration. The second challenge
relates to designing and supporting the integrated MAPE-K𝐻𝑀𝑇

environment. As different runtime models are required for effective
human-machine teaming, and these need to be identified, designed,
integrated, deployed, and effectively maintained at runtime.

Even beyond these challenges, much additional work is needed in
order to realize the vision of trusted, coordinated, and accountable
teams of humans and machines. Our ongoing work will therefore
investigate solutions for addressing these challenges, create a fully
integratedMAPE-K𝐻𝑀𝑇 environment for evaluation purposes, con-
duct field-tests with physical UAVs, and explore the deployment of
MAPE-K𝐻𝑀𝑇 across a much broader set of different domains.
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