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Abstract

Properness for supervised losses stipulates that
the loss function shapes the learning algorithm
towards the true posterior of the data generating
distribution. Unfortunately, data in modern ma-
chine learning can be corrupted or twisted in many
ways. Hence, optimizing a proper loss function on
twisted data could perilously lead the learning al-
gorithm towards the twisted posterior, rather than
to the desired clean posterior. Many papers cope
with specific twists (e.g., label/feature/adversarial
noise), but there is a growing need for a uni-
fied and actionable understanding atop proper-
ness. Our chief theoretical contribution is a gen-
eralization of the properness framework with a
notion called twist-properness, which delineates
loss functions with the ability to “untwist” the
twisted posterior into the clean posterior. No-
tably, we show that a nontrivial extension of a loss
function called α-loss, which was first introduced
in information theory, is twist-proper. We study
the twist-proper α-loss under a novel boosting
algorithm, called PILBOOST, and provide formal
and experimental results for this algorithm. Our
overarching practical conclusion is that the twist-
proper α-loss outperforms the proper log-loss on
several variants of twisted data.

1. Introduction
The loss function is a cornerstone of machine learning (ML).
The founding theory of properness for supervised losses stip-
ulates that the loss function shapes the learning algorithm
towards the true posterior (Reid & Williamson, 2011). Con-
sequently, a model trained with a proper loss function will
try to closely approximate the Bayes rule of the data gener-
ating distribution. Historically, properness draws its roots
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from classical work in normative economics for class prob-
ability estimation (CPE) (Reid & Williamson, 2011; Savage,
1971; Shuford et al., 1966) and Fisher consistency (Fisher,
1922); some of the most famous losses in supervised learn-
ing are proper, e.g., log, square, Matusita (Matusita, 1956),
to name a few. Unfortunately, in many modern applications
data can be corrupted or twisted in various ways (see Sec-
tion 2); examples of twists include label noise, adversarial
noise, and feature noise. Thus, optimizing a proper loss
function on twisted data could perilously lead the learning
algorithm towards the Bayes rule of the twisted posterior,
rather than to the desired clean posterior. To ensure that a
model trained with a proper loss function on twisted data
properly generalizes to the clean distribution, a generaliza-
tion of properness is clearly required.

To this end, we propose the notion of twist-properness. In
words, a loss function is twist-proper if and only if (iff), for
any twist, there exist hyperparameter(s) of the loss which al-
low its minimizer to “untwist” the twisted posterior into the
clean posterior. Thus, twist-properness certifies loss func-
tions that allow general posterior corrections, which is anal-
ogous to how PAC learning certifies computationally effi-
cient and accurate learning algorithms (Valiant, 1984). This
generalization of properness with twist-properness would
be less impactful without a solid contender loss, and we
show that a nontrivial extension of α-loss, which itself is
an information-theoretic hyperparameterization of the log-
loss (Arimoto, 1971; Liao et al., 2018; Sypherd et al., 2019),
is twist-proper and exhibits desirable properties for local
and global (namely, fixed hyperparameter) twist corrections.
Furthermore, twist-properness is not vacuous as we provide
a counterexample that another (popular) generalization of
the log-loss, the focal loss (Lin et al., 2017), which was orig-
inally designed to solve specific twists, i.e., class imbalance,
is not twist-proper. In addition, we provide a proof that a
loss which acts as a general “wrapper” of a loss, the Super
Loss (Castells et al., 2020), is also not twist-proper. One
of our key takeaways is that twist-properness necessitates a
certain nontrivial symmetry of the loss, rather than merely a
trivial extension of the hyperparameter(s).

Recently, α-loss was practically implemented in logistic
regression and in deep neural networks (Sypherd et al.,
2022). In both settings, it was shown to be more robust
to symmetric label noise for fixed α > 1 than the proper
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log-loss (α = 1), thereby providing a hint at the twist-
properness of α-loss. In order to complement our theory
of twist-properness and these recent results regarding the
robustness of α-loss, we also practically implement α-loss
in boosting. Boosting is imbued with the computational
constraint that strong learning happens from “weak updates”
in polynomial time, thus inducing substantial convergence
rates (Kearns & Vazirani, 1994). Furthermore, boosting al-
gorithms are known to suffer under label noise, particularly
for convex losses in low capacity models (Long & Servedio,
2010; Mansour et al., 2022). Thus, boosting presents as
an ideal choice to further practically investigate the twist-
properness of α-loss.

In order to implement α-loss in boosting, a popular route
is to invert the canonical link of the loss which computes
the weighting of the examples (Friedman, 2001; Nock &
Nielsen, 2008; Nock & Williamson, 2019). While this is
feasible for the log-loss (one gets the popular sigmoid func-
tion), it turns out to be nontrivial for α-loss. We address this
issue by providing the first (to the best of our knowledge)
general boosting scheme (called PILBOOST) for any loss
which requires only an approximation of the inverse canoni-
cal link, depending on a parameter ζ ∈ [0, 1] (the closer to 0,
the better the approximation), and gives boosting-compliant
convergence, further meeting the general optimum number
of calls to the weak learner. The cost of this approximation
is only a factor O(1/(1− ζ)2) in number of iterations.

In Section 6, we implement PILBOOST with the approx-
imate inverse canonical link of α-loss on several tabular
datasets, each suffering from various twists (label, feature,
and adversarial noise), and compare against AdaBoost (Fre-
und & Schapire, 1997) and XGBoost (Chen & Guestrin,
2016). In general, we find improved algorithmic robustness
to all twists through using simple (fixed) hyperparameter
corrections via the α-loss, which aligns with our theoretical
contributions (see Section 4).

2. Related Work
Studying data corruption in ML dates back to the 80s
(Valiant, 1985). Remarkably, the first twist models assumed
very strong corruption, possibly coming from an adversary
with unbounded computational resources, but the data at
hand was binary. Thus, because the feature space was as
“complex” as the class space, the twist models lacked the
unparalelled data complexity that we now face. Obtaining
such twist models at scale with real world data has been a
major problem in ML over the past decade for a number of
reasons. Nevertheless, there have been several streams of
recent research aimed at addressing specific twists.

Label noise is a twist which has recently drawn much
attention and garnered many corrective attempts (Patrini
et al., 2017; Zhang & Sabuncu, 2018; Zhang et al., 2021;

Natarajan et al., 2013; Long & Servedio, 2010; Sypherd
et al., 2022; Liu & Guo, 2020; Ghosh et al., 2017). No-
tably, Natarajan et al. (2013) theoretically study the pres-
ence of class conditional noise in binary classification. Their
approach consists of augmenting proper loss functions with
re-weighting coefficients, which is strictly dependent on
the class conditional noise percentages, and hence requires
knowledge of the noise proportions. As a byproduct of their
analysis, they show that biased SVM and weighted logistic
regression are provably noise-tolerant.

Setting label noise aside, there exists a zoo of other twists
and corrective attempts. For instance, data augmentation
techniques, with vicinal risk minimization standing as a
pioneer (Chapelle et al., 2000), seek to induce general ro-
bustness (Zhang et al., 2018). In deep learning, adversarial
robustness attempts to address the brittleness of neural net-
works to targeted adversarial noise (Szegedy et al., 2013;
Madry et al., 2018; Andriushchenko & Hein, 2019). Data
poisoning twists in computer vision can be very sophisti-
cated and require further investigation (Truong et al., 2020).
Invariant risk minimization aims at finding data representa-
tions yielding good classifiers but also invariant to “environ-
ment changes” (Arjovsky et al., 2019); relatedly, covariate
shift seeks to address changes between train and test, stem-
ming from non-stationarity or bias in the data (Zhang et al.,
2020). A recent trend has also emerged with correcting
losses due to model confidence issues (Guo et al., 2017;
Mukhoti et al., 2020; Castells et al., 2020).

Viewed more broadly, the abovementioned papers arguably
study much different problems, but they tend to have a
theme that goes substantially deeper than the superficial
observation that they assume twisted data in some way: the
core loss function is usually a proper loss. Therefore, they
tend to start from the premise of a loss that inevitably fits the
(unwanted) twist, and correct it mostly with a regularizer
informed with some prior knowledge of the twist, on a
“twist-by-twist” basis. There has been some positive work
in this “loss + regularizer” direction (Amid et al., 2019; Ma
et al., 2020; Zhang et al., 2021), but we note that this does
not fully address the underlying issue of properness shaping
the learning algorithm towards the twisted posterior.

Lastly, our generalization of properness with twist-
properness is partly inspired by recent work by Charoen-
phakdee et al. (2021), where they theoretically investigate
the focal loss. Notably, they show that the focal loss is
classification-calibrated, but not strictly proper. From their
work, we also gather the implicit notion that hyperparame-
terized losses that generalize proper losses (e.g., focal loss
or α-loss generalizing log-loss), which may represent a
next step for loss functions in ML, need to be carefully
understood from the standpoint of what their hyperparame-
terization trades-off from properness.
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3. Losses for Class-Probability Estimation
Our setting is that of losses for class probability estimation
(CPE) and our notations follow (Reid & Williamson, 2010;
2011). Given a domain of observations X, we wish to learn
a classifier h : dom(h) = X that predicts the label Y ∈ Y

.
=

{−1, 1} (we assume two classes or labels) associated with
every instance of data drawn from X. Traditionally, there are
two kinds of outputs sought: one requires Im(h) = [0, 1],
in which case h provides an estimate of P[Y = 1|X], which
is often called the Bayes posterior. This is the framework
of class probability estimation. The other kind of output
requires Im(h) = R, but is usually completed by a mapping
to [0, 1], e.g., via the softmax in deep learning. A loss for
class probability estimation, ℓ : Y × [0, 1] → R, has the
general definition

ℓ(y, u)
.
= Jy = 1K · ℓ1(u) + Jy = −1K · ℓ−1(u), (1)

where J·K is Iverson’s bracket (Knuth, 1992). Functions
ℓ1, ℓ−1 are called partial losses, minimally assumed to
satisfy dom(ℓ1) = dom(ℓ−1) = [0, 1] and |ℓ1(u)| ≪
∞, |ℓ−1(u)| ≪ ∞, ∀u ∈ (0, 1) to be useful for ML. Key
additional properties of partial losses are:
(M) Monotonicity: ℓ1, ℓ−1 are non-increasing and non-
decreasing, respectively;
(D) Differentiability: ℓ1 and ℓ−1 are differentiable;
(S) Symmetry: ℓ1(u) = ℓ−1(1− u), ∀u ∈ [0, 1].
Commonly used proper losses such as log, square and Ma-
tusita all satisfy the above three assumptions. The pointwise
conditional risk of the local guess u ∈ [0, 1] with respect to
a ground truth v ∈ [0, 1] is

L(u, v)
.
= EY∼B(v) [ℓ(Y, u)]

= v · ℓ1(u) + (1− v) · ℓ−1(u), (2)

where B(v) defines a Bernoulli distribution with v.

Properness L(u, v) is the fundamental quantity that allows
to distinguish proper losses: a loss is proper iff for any
ground truth v ∈ [0, 1], L(v, v) = infu L(u, v), and strictly
proper iff u = v is the sole minimiser (Reid & Williamson,
2011). The (pointwise) Bayes risk is L(v) .

= infu L(u, v).

Surrogate loss Oftentimes, minimization occurs over the
reals (e.g., boosting), hence it is useful to employ a surrogate
to the 0-1 loss (Bartlett et al., 2006). Nock & Nielsen (2008)
showed that the outputs in [0, 1] and R can be related via
convex duality of the losses. Let g⋆(z) .

= supt{zt− g(t)}
denote the convex conjugate of g (Boyd & Vandenberghe,
2004). The surrogate F of L is thus given by

F (z)
.
= (−L)⋆(−z), ∀z ∈ R. (3)

For example, picking the log-loss as ℓ gives the binary en-
tropy for L and the logistic loss for F (see Appendix A.1
for a derivation). Convex duality implies that predictions

in [0, 1] and R are related via the (canonical) link of the
loss, (−L)′ (Nock & Williamson, 2019) where we use the
notation f ′ to denote the derivative of a function f with
respect to its argument. In the sequel, we will see that boost-
ing requires inverting the link of the loss, which we show
is nontrivial for hyperparameterized losses, such as α-loss.
Lastly, we provide summary properties of a CPE loss (not
necessarily proper) and its surrogate, monotonicity being of
primary importance. Some parts of the following Lemma
are known in the literature (e.g., concavity in Agarwal (2014,
Lemma 1)), or are folklore.

Lemma 1 ∀ℓ CPE loss, L is concave and continuous; F is
convex, continuous and non-increasing.

A proof is provided for completeness in Appendix A.2.

4. Twist-Proper Losses
With the classical setting of properness in hand, we now pro-
vide fundamental definitions of twists and twist-properness,
and study the twist-properness of several hyperparameter-
ized loss functions. When it comes to correcting (or un-
twisting) twists, one needs a loss with the property that its
minimizer in (2) is different from the now twisted value ṽ
and recovers the “hidden” ground truth v.

Bayes tilted estimates We first characterize the minimizers
of (2) when the CPE loss is not necessarily proper. We define
the set-valued (pointwise) Bayes tilted estimate tℓ as

tℓ(ṽ)
.
= arg inf

u∈[0,1]
L(u, ṽ). (4)

Ideally, we would like for v ∈ tℓ(ṽ), i.e., the Bayes tilted
estimate tℓ(ṽ) untwists (with hyperparameter(s)) the twisted
value ṽ and recovers the ground truth v. However, it follows
that if the loss is proper, ṽ ∈ tℓ(ṽ) and, if strictly proper,
tℓ(ṽ) = {ṽ}. This formally highlights the limitation of
proper loss functions in twisted settings, namely, the inabil-
ity of a proper loss to untwist the twisted value because the
minimization of the loss is centered on what it “perceives”
to be the ground truth. The following result stipulates the
cardinality of the Bayes tilted estimates.

Lemma 2 If the partial losses ℓ1 and ℓ−1 of a given
CPE loss ℓ : Y× [0, 1]→ R satisfy (M), (D), and (S) and are
also strictly convex, then |tℓ(ṽ)| = 1 for every ṽ ∈ [0, 1].

In Appendix A.3, we provide an extended version of
Lemma 2, denoted Lemma 12, where we prove properties
of Bayes tilted estimates for when tℓ is set-valued (e.g., set-
valued monotonicity and symmetry, and analysis of extreme
values). As a consequence, we show that strict monotonicity
of the partial losses is not sufficient to guarantee that tℓ is a
singleton; in fact, strict convexity is required as in Lemma 2.

An important class of twists We now adopt more conven-
tional ML notations and instead of a hidden ground truth
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v and twisted ground truth ṽ, we use ηc and ηt to denote
the “clean” and “twisted” posterior probabilities that Y = 1
given X = x, respectively. Further, a “twist” refers to a
general mapping ηc 7→ ηt, which could be a consequence of
label/feature/adversarial noise. The following delineates a
fundamental class of twists, important in the sequel.

Definition 3 A twist ηc 7→ ηt is said to be Bayes blunting
iff (ηc ≤ ηt ≤ 1/2) ∨ (ηc ≥ ηt ≥ 1/2).

The term “blunting” is inspired by adversarial training
(Cranko et al., 2019). Intuitively, a Bayes blunting twist
does not change the maximum a posteriori guess for the
label given the observation, but it does reduce algorithmic
confidence in learned posterior estimates, which is particu-
larly damaging in practice where the learning algorithm only
has a finite number of (twisted) training examples. Further-
more, Bayes blunting twists capture a very important twist
(see Section 2): symmetric label noise (SLN). Under sym-
metric label noise with flip probability p ∈ [0, 1], the twisted
posterior ηt is given by ηt = ηc(1− p) + (1− ηc)p (Reid &
Williamson, 2010). The following result readily follows via
Definition 3 from consideration of p for fixed ηc.

Lemma 4 SLN is Bayes blunting for p < 1/2.

Historically, Reid & Williamson (2010) showed that proper
loss functions are not robust to this twist which further
motivates our consideration of twist-proper losses.

Twist-proper losses To overcome these limitations of
properness, we propose a generalized notion, called twist-
properness, which utilizes hyperparameterization of the loss
to untwist twisted posteriors into clean posteriors.

Definition 5 A loss ℓ is twist-proper (respectively, strictly
twist-proper) iff for any twist, there exists hyperparameter(s)
such that ηc ∈ tℓ(ηt) (respectively, {ηc} = tℓ(ηt)).

Where a proper loss could perilously lead the learning algo-
rithm to estimate ηt, a twist-proper loss employs hyperpa-
rameters so that its Bayes tilted estimate recovers ηc, hence
guiding the algorithm to untwist the twisted posterior. We
emphasize the need for hyperparameters as otherwise, twist-
properness would trivially enforce tℓ(·) = [0, 1]. Recently,
hyperparameterized loss functions have garnered much in-
terest in ML, to name a few (Barron, 2019; Lin et al., 2017;
Amid et al., 2019; Li et al., 2021; Sypherd et al., 2022),
possibly because such losses allow practitioners to induce
variegated models. Indeed, hyperparameterized loss func-
tions could be efficiently implemented via meta-algorithms,
such as AutoML (He et al., 2021), or practically utilized in
the burgeoning field of federated learning (Kairouz et al.,
2019), where the hyperparameter(s) might yield more fine-
grained ML model customization for edge devices.

Ostensibly, “optimal” hyperparameters requires explicit
knowledge of the distribution and twist, and each exam-
ple in the training set requires a different hyperparameter

to untwist its twisted posterior. However, in the sequel, we
show that a twist-proper loss, namely α-loss, with a fixed
hyperparameter (α) can untwist a large class of twists, i.e.
Bayes blunting twists (such as SLN), better than log-loss.
Thus, we posit through our experimental results in Section 6
that the practitioner only needs peripheral, rather than ex-
plicit, knowledge of a Bayes blunting twist in the data.

Twist-(im)proper losses Lin et al. (2017) introduced the
focal loss to improve class imbalance issues associated
with dense object detection. It generalizes the log-loss
and has become popular due to its success in such do-
mains. Recently, the focal loss has received increased
scrutiny (Charoenphakdee et al., 2021), where it was shown
to be classification-calibrated but not strictly proper. Here,
we determine the twist-properness of the focal loss.

Lemma 6 Define the focal loss via the following partial
losses: ℓFL

1 (u)
.
= −(1−u)γ log u and ℓFL

−1(u)
.
= ℓFL

1 (1−u),
with γ ≥ 0. Then the focal loss is not twist proper.

In the proof (see Appendix A.4), we also provide a proof
that a loss which acts as a general “wrapper” of a loss,
the Super Loss (Castells et al., 2020), is not twist proper.
Concerning the focal loss, Lemma 6 is not necessarily an
impediment for this loss function, which was designed to
deal with a specific twist, class imbalance, and it does not
prevent generalizations of the focal loss that would be twist
proper. However, our proof suggests that the Bayes tilted
estimate (4) of such generalizations risks not being in a sim-
ple analytical form. Intuitively, twist-properness requires
more than a trivial extension of the hyperparameter of the
loss; it also seems to require a certain symmetry, which we
observe with the following twist-proper loss, α-loss.

A twist-proper loss The α-loss was first introduced in
information theory in the early 70s (Arimoto, 1971) for
α ∈ R+ and recently received increased scrutiny in privacy
and ML (Liao et al., 2018; Sypherd et al., 2019) for α ≥ 1.
Most recently, Sypherd et al. (2022) studied the calibration,
optimization, and generalization characteristics of α-loss in
ML for α ∈ R+. In particular, they experimentally found
that α-loss is robust to noisy labels under logistic regres-
sion and convolutional neural-networks for α > 1. We now
provide our (extended) definition of the α-loss in CPE.

Definition 7 For α ≥ 0, the α-loss has the following par-
tial losses: ∀u ∈ [0, 1], ℓα1 (u)

.
= ℓα−1(1− u) where

ℓα1 (u)
.
=

α

α− 1
·
(
1− u

α−1
α

)
, (5)

and by continuity we have ℓ01(u)
.
= ∞, ℓ11(u)

.
= − log u,

and ℓ∞1 (u)
.
= 1− u. For α < 0, we let ∀u ∈ [0, 1],

ℓα1 (u)
.
= ℓ−α

−1 (u) = ℓ−α
1 (1− u). (6)

For a plot of (5), see Figure 4 in the appendix. Note
that the α-loss is (S)ymmetric by construction, and that
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it continuously interpolates the log-loss (α = 1) which is
proper (Reid & Williamson, 2010). Our definition extends
the previous definitions with (6), which induces a funda-
mental symmetry that is required for twist-properness and
is utilized in the following result. For any u ∈ [0, 1], we let
ι(u)

.
= log(u/(1− u)) denote the logit of u.

Lemma 8 The following four properties, labeled (a)-(d),
all hold for α-loss: (a) (M), (D), (S) all hold, ∀α ∈ R \ {0};
(b) if (α = 0)∨(α = ±∞∧ηt = 1/2), then tℓα(ηt) = [0, 1],

if α ∈ R \ {0,±∞}, then tℓα(ηt) =
{

ηα
t

ηα
t +(1−ηt)α

}
, and

if α → ±∞, then tℓ±∞(ηt) = ±1 or ∓1, depending on
the sign of ηt − 1/2; (c) hence, α-loss is twist-proper with
α∗ = ι(ηc)/ι(ηt); (d) for any Bayes blunting twist, α∗ ≥ 1.

The proof of Lemma 8 can be found in Appendix A.5. Note
that (a) readily follows from Definition 7. The Bayes tilted
estimate in (b), i.e. tℓα for α ∈ R \ {0,±∞}, is known
in the literature as the α-tilted distribution (Arimoto, 1971;
Liao et al., 2018; Sypherd et al., 2022). We observe that the
α-tilted distribution is symmetric upon permuting (ηt, α)
and (1− ηt,−α). Hence, our nontrivial extension of the α-
loss induces a symmetry, particularly useful for untwisting
malevolent twists, which thereby yields twist-properness,
(c). Lastly, (d) indicates that α∗ ≥ 1 for any Bayes blunting
twist (e.g., SLN with p < 1/2); however, note that this
holds merely for a given x, not over the whole domain X.

Untwisting over the whole domain X Just as classification-
calibration is a pointwise form of consistency (Bartlett et al.,
2006), twist-properness is a pointwise form of correction.
Extending twist-properness to the entire domain X seems
to require learning a mapping α : X → [−∞,∞], which
is infeasible under standard ML assumptions, since one
would need explicit knowledge of the distribution and twist.
Nevertheless, we show here that for a large class of twists,
namely Bayes blunting twists, a fixed α0 > 1 obtained non-
constructively, is strictly “better” than the proper choice,
log-loss (α = 1). We also provide a general constructive
formula for a fixed α∗∗ ∈ R, calculated from distributional
and twist information.

In order to represent population quantities, we assume a
marginal distribution M over X (following notation by Reid
& Williamson (2011)), from which the expected value of
a loss ℓ quantifies its true risk of a given classifier h. With
a slight abuse of notation, we also let ηc,ηt : X → [0, 1]
denote the clean and twisted posterior mappings, respec-
tively. To evaluate the efficacy of the Bayes tilted estimate
of α-loss at untwisting the twisted posterior mapping and
recovering the clean posterior mapping, we define the fol-
lowing averaged cross-entropy, given by

CE(ηc,ηt;α)
.
= EX∼M[ηc(X) · − log tℓα(ηt(X))

+ (1− ηc(X)) · − log tℓα(1− ηt(X))], (7)

where for convenience we used the symmetry property of tℓ

from Appendix A.3, i.e., tℓα(1− ηt(X)) = 1− tℓα(ηt(X)).
Following (Schapire & Freund, 2012), we denote the binary
entropy as Hb(u)

.
= −u · log(u) − (1 − u) · log(1 − u),

for u ∈ [0, 1]. We let H(ηc) represent an averaged binary
entropy of the ηc-mapping, given by

H(ηc)
.
= EX∼M[Hb(ηc(X))]. (8)

With (7) and (8), we obtain (cf. Thomas & Joy (2006)),

DKL(ηc,ηt;α)
.
= CE(ηc,ηt;α)−H(ηc), (9)

that is, a KL-divergence between the α-Bayes tilted esti-
mate of the twisted posterior and the clean posterior map-
pings. Intuitively, DKL(ηc,ηt;α) aggregates a series of
information-trajectories, strictly dependent on α (either
fixed or a mapping), each tracing a path on the probabil-
ity simplex between the two posterior mappings for every
x ∈ X. Slightly more restrictive than Definition 3, we de-
fine a strictly Bayes blunting twist as a Bayes blunting twist
where (ηc < ηt ≤ 1/2) ∨ (ηc > ηt ≥ 1/2); we state one of
our main results whose proof is in Appendix A.6.
Theorem 9 For any strictly Bayes blunting twist ηc 7→ ηt,
there exists a fixed α0 > 1 and an optimal α⋆-mapping,
α⋆ : X→ R>1, which induces the following ordering

DKL(ηc,ηt; 1) > DKL(ηc,ηt;α0) ≥ DKL(ηc,ηt;α
⋆). (10)

This result answers in the affirmative that untwisting X for
a large class of twists with a fixed hyperparameter α0 > 1
is strictly better than simply using the proper choice, i.e.,
α = 1 (log-loss). Specifically, Theorem 9 holds for SLN,
which is a strictly Bayes blunting twist for flip probability
0 < p < 1/2 (Lemma 4). The result also states that there
exists a mapping α⋆ : X→ R>1 which optimally untwists
the strictly Bayes blunting twist; indeed, α⋆ can be recov-
ered from Lemma 8(c), i.e., α⋆(x) := ι(ηc(x))/ι(ηt(x)),
for every x ∈ X. Thus, by the twist-properness of α-loss,
DKL(ηc,ηt;α

⋆) = 0 (more details in Appendix A.6). Re-
garding the search for a fixed α0 > 1 in practice, Sypherd
et al. (2022) showed via optimization landscape analysis
and experiments on SLN for logistic regression and neural-
networks that the search space for α0 is bounded (due to
saturation), typically α0 ∈ [1.1, 8]. In Section 6, we report
experimental results for several α; we also incorporate a
method inspired by (Menon et al., 2015) to estimate the
amount of SLN in training data and thus estimate α0 using
Lemma 8(c) as motivated by Theorem 9.

Theorem 9 gave a nonconstructive indication for the optimal
regime of α for strictly Bayes blunting twists. Our next
result gives a constructive formula for a fixed α for any twist.
Given B > 0, let M(B) denote the distribution restricted to
the support over X for which we have almost surely

(1 + exp(B))−1 ≤ ηt(x) ≤ (1 + exp(−B))−1, (11)

and let p(B) ∈ [0, 1] be the weight of this support in M. We
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let D(B) denote the product distribution on examples (X×
Y) induced by marginal M(B) and posterior ηc (see Reid &
Williamson (2011, Section 4)). We define the logit-edge as

e
.
= (1/B) · E(X,Y)∼D(B) [Y · ι(ηt(X))] , (12)

where we note that e ∈ [−1, 1] due to the assumption
in (11). Finally, we let q .

= (1 + e)/2 ∈ [0, 1].
Theorem 10 Let B > 0. If p(B) = 1 and we fix α = α∗∗

with α∗∗ .
= ι(q)/B, then the following bound holds

DKL(ηc,ηt;α
∗∗) ≤ Hb(q)−H(ηc). (13)

The proof of Theorem 10 is in Appendix A.7, where
we also prove an extended version of the result when
p(B) < 1. In addition, we provide a simple example where
DKL(ηc,ηt;α

∗∗) can vanish with respect to DKL(ηc,ηt; 1)
(the “proper” choice). Intuitively, the difference on the right-
hand-size of (13) in Theorem 10 is reminiscent of a Jensen’s
gap. Also in the proof of Theorem 10, we find that if |α∗∗|
is large, there is more “flatness” in the bounded terms near
α∗∗. Hence, this suggests that a choice of α0 “close-enough”
to α∗∗ could yield similar performance.

5. Sideways Boosting a Surrogate Loss
With the theory of twist-properness and the twist-proper
α-loss in hand, we now turn towards the algorithmic con-
tribution of this work. As stated in the introduction, α-loss
was recently implemented in logistic regression and in deep
neural networks (Sypherd et al., 2022), and was found to be
more robust to symmetric label noise for fixed α > 1 than
the proper log-loss (α = 1). Thus, in order to complement
our theory of twist-properness and these recent results of
α-loss, we also practically implement α-loss in boosting.
Formally, we have a training sample S

.
= {(xi, yi), i ∈

[m]} ⊂ X × Y of m examples, where [m]
.
= {1, 2, ...,m}

and note that Y = {−1,+1}. We write i ∼ S to indi-
cate sampling example (xi, yi) according to S. Follow-
ing (Schapire & Singer, 1999; Collins et al., 2000; Nock
& Nielsen, 2008), the boosting algorithm minimizes an ex-
pected surrogate loss with respect to S in order to learn a
real-valued classifier H : X→ R given by

Hβ
.
=
∑

j βjhj , (14)

where {h· : X → R} are WL (weak learning) classifiers
with slightly better than random classification accuracy. The
oracle WL returns an index j ∈ N, and the task for the boost-
ing algorithm is to learn the coordinates of β, initialized
to the null vector. In our general framework, the losses we
consider are the surrogates F in Lemma 1, essentially con-
vex and non-increasing functions, adding the condition that
they are twice differentiable. We compute weights using the
blueprint of (Friedman, 2001), which uses the full Hβ,

wi
.
= −F ′(yiHβ(xi)), ∀i ∈ [m]. (15)

Algorithm 1 PILBOOST

Input sample S, number of iterations T , af > 0, PIL f̃ ;
Step 1 : let β ← 0; // first classifier, H0 = 0
Step 2 : for t = 1, 2, ..., T

Step 2.1 : let wi ← f̃(−yiHβ(xi)), ∀i ∈ [m]
Step 2.2 : let j ← WL(S,w)
Step 2.3 : let ej ← (1/m) ·

∑
i wiyihj(xi)

Step 2.4 : let βj ← βj + afej

Output Hβ.

Via Lemma 1, weights wi are non-negative and tend to
increase for an example given the wrong class by the current
weak classifier hj , thus, weighting puts emphasis on “hard”
examples. For an underlying CPE loss ℓ, we have that (see
Appendix A.8 for a derivation)

−F ′(z) = (ℓ−1 ◦ tℓ − ℓ1 ◦ tℓ)−1(−z). (16)

We thus need to invert the difference of the partial losses to
recover −F ′. The inversion is easy for the log-loss because
of properties of the log function and for the square loss
because its partial losses are quadratic functions. However,
for hyperparameterized losses, such as the α-loss, the in-
version in (16) is nontrivial. We circumvent this difficulty
by proposing a novel boosting algorithm, PILBOOST, given
in Algorithm 1. Rather than using −F ′ as in (15) for the
weight update in Step 2.1, PILBOOST uses an approximation
function f̃ , which is non-negative and increasing, that we
dub pseudo-inverse link (PIL), which is studied in general
in Appendix A.8. Specifically, in Lemma 18, we provide f̃ℓ
for α-loss, given in (160). Furthermore in Lemma 19, we
show that there exists K > 0 such that, for almost all z ∈ R,
|(f̃ℓ − (−L′)−1)(z)| ≲ K/α. We now theoretically ana-
lyze PILBOOST, and we make two classical assumptions on
WL (Schapire & Singer, 1999; Nock & Williamson, 2019).
Assumption 1 (R) The weak classifiers have bounded
range: ∃M > 0 such that |hj(xi)| ≤M, ∀j.

Let ẽj
.
= m · ej/(1

⊤wj) ∈ [−M,M ] be the normalized
edge of the j-th weak classifier, where with a slight abuse of
notation of (12), ej is the (unnormalized) edge (Step 2.3).
Assumption 2 (WLA) The weak classifiers are not random:
∃γ > 0 such that |ẽj | ≥ γ ·M, ∀j.

Note that “WLA” denotes the Weak Learning Assumption,
which is a pillar of boosting theory (cf. (Freund et al., 1999)).
Since we employ f̃ instead of F ′ in PILBOOST, we need
two more functional assumptions on the first- and second-
order derivatives of F . The edge discrepancy of a function
F on weak classifier hj at iteration t is given by

∆j(F )
.
= |Ei∼S [yihj(xi)F

′(yiHβ(xi))]− ej | , (17)

which is the absolute difference of the edge using (the deriva-
tive of) F vs. using PILBOOST’s f̃ (implicit in ej).
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Figure 1: Box and whisker plots reporting the classification accuracy of AdaBoost, PILBOOST (for α ∈ {1.1, 2, 4}), and
XGBoost on the cancer dataset affected by the class noise twister with 0%, 15%, and 30% twist. Note that the orange line
is the median, the green triangle is the mean, the box is the interquartile range, and the circles outside of the whiskers
are outliers. All three algorithms were trained with decision stumps (depth 1 regression trees). For α = 1.1, 2, and 4, we
set af = 7, 2, and 4, respectively. Numeric values corresponding to the box and whisker plots are provided in Table 2 in
Section B.3. We find that PILBOOST has gains over AdaBoost and XGBoost when there is twist present, and α∗ (of our set)
increases as the amount of twist increases, which follows theoretical intuition (Lemma 8).

Assumption 3 (E, C) ∃ζ, π ∈ [0, 1) such that:

(E) the edge discrepancy is bounded ∀t: ∆j(F ) ≤ ζ · ej ,
where j is returned by WL at iteration t;
(C) the curvature of F is bounded: F ∗ .

= supz F
′′(z) ≤

(1− ζ)(1 + π)/(afM
2).

Note that (C) is quite mild for specific sets of functions, e.g.,
proper canonical losses are Lipschitz (Reid & Williamson,
2010), so (C) can in general be ensured by a simple renor-
malization of the loss. On the other hand, (E) can become
progressively harder to ensure as the number of iterations
increases because the choices of the WL will become re-
stricted; nevertheless, it is not prohibitory in practice as our
experiments in Section 6 suggest (also see the remark in
Appendix A.10 for further commentary on this assumption).
Let w̃t

.
= 1⊤wt, the total weight at iteration t in PILBOOST.

Theorem 11 Suppose (R, WLA) hold on WL and (E, C)
hold on F , for each iteration of PILBOOST. Denote
Q(F )

.
= 2F ∗/(γ2(1− ζ)2(1−π2)). The following holds:

• on the risk defined by F : ∀z∗ ∈ R, ∀T > 0, if we observe∑T
t=0 w̃

2
t ≥ Q(F ) · (F (0)− F (z∗)), then

Ei∼S [F (yiHβ(xi))] ≤ F (z∗). (18)

• on edge distribution: ∀θ ≥ 0, ∀ε ∈ [0, 1], ∀T > 0, letting
Fε,θ

.
= (1− ε) inf F + εF (θ), if the number of iterations

satisfiees T ≥ 1
ε2 ·

Q(F )·(F (0)−Fε,θ)

f̃2(−θ)
, then

Pi∼S [yiHβ(xi) ≤ θ] ≤ ε. (19)

Thus, Theorem 11 gives boosting compliant convergence
on training, and the synthesis of (18) and (19) provides
a very strong convergence guarantee. When classical as-
sumptions about the loss of interest are satisfied, such as it
being Lipschitz (ensured for proper canonical losses (Reid

& Williamson, 2010)), there is a natural extension to gener-
alization following standard approaches (Bartlett & Mendel-
son, 2002; Schapire et al., 1998). See Appendix A.10 for
the proof of Theorem 11, and for additional remarks re-
garding its optimality and further application to addressing
discrepancies due to machine type approximations.

6. Experiments
We provide experimental results on PILBOOST (for
α ∈ {1.1, 2, 4}) and compare with AdaBoost (Freund &
Schapire, 1997) and XGBoost (Chen & Guestrin, 2016) on
four binary classification datasets, namely, cancer (Wolberg
et al., 1995), xd6 (Buntine & Niblett, 1992), diabetes (Smith
et al., 1988), and online shoppers intention (Sakar et al.,
2019). We performed 10 runs per algorithm with randomiza-
tion over the train/test split and the twisters. All experiments
use regression decision trees (of varying depths 1-3) in order
to align with XGBoost. Hyperparameters of XGBoost were
kept to default to maintain the fairest comparison between
the three algorithms; for more of these experimental details,
please refer to Appendix B.5. In order to demonstrate the
twist-properness of α-loss as implemented in PILBOOST,
we corrupt the training examples of these datasets according
to three different (malicious) twisters.

Class Noise Twister (all datasets): This twister is equiva-
lent to SLN in the training sample. Results on this twister
for the cancer dataset are presented in Figure 1 and see
Appendix B.3 for further results. In general, we find that
PILBOOST is more robust to the Class Noise Twister than
AdaBoost and XGBoost, and we find that α∗ increases as
the amount of twist increases, which complies with our the-
ory (Lemma 8 and Theorem 9). We also present an adaptive
α experiment in Figure 2. We denote the adaptive method
Menon PILBOOST, since we take inspiration from (Menon
et al., 2015), where they show that one can estimate the level
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Dataset Algorithm Feature Noise Twister
p = 0 0.15 0.25 0.5

AdaBoost 1.000± 0.000 0.988± 0.013 0.966± 0.013 0.884± 0.019
us (α = 1.1) 1.000± 0.000 0.998± 0.004 0.994± 0.006 0.905± 0.020
us (α = 2.0) 1.000± 0.000 1.000± 0.000 1.000± 0.000 0.910± 0.026xd6
us (α = 4.0) 1.000± 0.000 0.997± 0.006 0.999± 0.002 0.958± 0.017

XGBoost 1.000± 0.000 0.970± 0.016 0.962± 0.009 0.833± 0.027

Table 1: Accuracies of AdaBoost, PILBOOST (for α ∈ {1.1, 2, 4}), and XGBoost on the xd6 dataset affected by the feature
noise twister with the flipping probability p = {0, 0.15, 0.25, 0.5}. All three algorithms were trained with depth 3 regression
trees. For each value of α, we set af = 8. Note that the xd6 dataset is perfectly classified (when there is no twist) by a
Boolean formula on the features, given in (Buntine & Niblett, 1992), which explains the performance when p = 0.

Figure 2: Adaptive α experiment on the xd6 dataset with
depth 3 regression trees. Solid curves correspond to mean
classification accuracy and shaded areas are the associated
95% confidence intervals obtained from a t-test. For each
label noise value, we train three algorithms: 1) vanilla XG-
Boost; 2) PILBOOST with fixed α = 1.1; 3) and, an adaptive
α PILBOOST (we refer to as Menon PILBOOST). For details
regarding Menon PILBOOST, refer to Class Noise Twister
in the main body. The result suggests that a fixed value
of α = 1.1 in PILBOOST is good, but approximating α0

does induce slightly better model performance. For general
twists, we suggest this heuristic (or some variant) as inspired
by (Menon et al., 2015) could be used to learn α0. Further
experimental consideration is given in Appendix B.6.

of label noise (see their Appendix D.1) from the minimum
and maximum posterior values. Using a single decision
tree classifier with O(log(m)) leaves and O(

√
m) samples

per leaf (m ≈ 681 examples for xd6 dataset with 70/30
train/test-split), and information gain as the splitting cri-
terion, we estimate the minimum and maximum posterior
values directly from the training data with local counts of
number of samples classified such that Y = 1 at each leaf.
Once we obtain ηmin and ηmax in this way, we estimate the
symmetric noise value p ∈ [0, 1] with the geometric mean
p =

√
ηmin(1− ηmax). Finally, to estimate α0 for each noise

level, we apply the formula in Lemma 8(c) and the SLN for-
mula given just before Lemma 4 where we estimate ηc with
the average posterior from the decision tree classifier. Fur-
ther experimental consideration is given in Appendix B.6.

Feature Noise Twister (xd6 dataset): This twister perturbs
the training sample by randomly flipping features. More
precisely, for each training example, the example is selected
if Ber(p1) returns 1. Then, for each selected training exam-
ple, and for each feature independently, the feature is flipped
(the features of xd6 are Booleans) to the other symbol if
Ber(p2) also returns 1. Results on this twister are presented
in Table 1 where p1 = p2 = p. In general, we find that
PILBOOST is more robust to the Feature Noise Twister than
AdaBoost and XGBoost, and we find that α∗ increases as
the amount of twist increases.

Insider Twister (online shoppers intention dataset): This
twister assumes more knowledge about the model than the
previous two twisters. In essence, the insider twister adds
noise to a few of the most informative features for predict-
ing the class. Specifically for the online shoppers intention
dataset, the insider twister adds noise to feature 8 (page
values - numeric type with range in [−250, 435]), feature 10
(month), and feature 15 (visitor type - ternary alphabet). For
page values, the insider twister adds i.i.d. N(0, 60) to the
entries; for both month and visitor type, the insider twister
independently increments (with probability 1/2) the sym-
bol according to their respective alphabets such that about
50% of each of these features are perturbed. Results on
this twister are presented in Figure 3 and further discussion
in Appendix B.4 (Figure 13); post-twister, the feature im-
portance profile of XGBoost is almost uniform, displaying
damages to the algorithm’s discriminative abilities (Figure 3,
right), while the feature importance profile of PILBOOST is
much less perturbed overall.

7. Conclusion
In this work, we have introduced a generalization of the
properness framework via the notion of twist-properness,
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Figure 3: Normalized feature importance profiles for PILBOOST with α = 1.1 and af = 7 (left) and for XGBoost (right)
on the online shoppers intention dataset (both for depth 3 trees) with and without the insider twister. We find that the
insider twister significantly perturbs the feature importance of XGBoost as evidenced in the plot (far right), and hence
significantly reduces the inferential capacity of the learned model. More details can be found in Insider Twister (main body)
and Appendix B.4.

which allows delineating loss functions with the ability to
“untwist” the twisted posterior into the clean posterior. No-
tably, we have shown in Lemma 8 that a nontrivial extension
of a loss function called α-loss, first introduced in informa-
tion theory, is twist-proper. For a large class of twists (Defi-
nition 3), we have shown in Theorem 9 that while a point-
wise estimation of α is optimal, a fixed choice of α0 > 1
readily outperforms the proper choice (log-loss). We then
studied the twist-proper α-loss under a novel boosting al-
gorithm, called PILBOOST, which uses the pseudo-inverse
link for weight updates, for which we proved convergence
guarantees in Theorem 11. Lastly, we have presented exper-
imental results for PILBOOST optimizing α-loss on several
twists, and also a method inspired by Menon et al. (2015) to
estimate α0 using only training data in Figure 2. A possible
next step for this line of work would be to design losses that
are both twist-proper and algorithmically convenient.
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Appendices for “Being Properly Improper”

A. Proofs, Further Theoretical Results, and Additional Commentary
A.1. Illustration of Proper Loss to Surrogate through the Convex Conjugate

In this subsection, we provide a worked-out example for how picking the log-loss as ℓ gives the binary entropy for L and the
logistic loss for F .

From (Reid & Williamson, 2010), we have that the log-loss has partial losses ℓ1(u) = − log u, ℓ−1(u) = − log (1− u) and
is a proper loss. In order to compute the (pointwise) Bayes risk L for the log-loss, we first obtain from (2),

L(u, v) = v · ℓ1(u) + (1− v) · ℓ−1(u) = v · − log u+ (1− v) · − log (1− u). (20)

Recall that L(v) .
= infu L(u, v). In (20), taking the derivative with respect to u and setting the expression equal to zero, i.e.,

d

du
L(u, v) = 0, and solving for u, obtains that u = v, in other words, the log-loss is indeed proper. Plugging u = v back

into (20), we find that the pointwise Bayes risk of the log-loss is

L(v) = −v log v − (1− v) · log (1− v), (21)

which is indeed the binary (Shannon) entropy (Thomas & Joy, 2006). Finally, to obtain the logistic loss as the surrogate, we
compute the convex conjugate of (21). Formally, we have from (3) that ∀z ∈ R,

F (z) = (−L)⋆(−z) = (v log v + (1− v) · log (1− v))⋆(−z). (22)

Indeed, we have that ∀z ∈ R,

(v log v + (1− v) · log (1− v))⋆ = sup
v
{z · v − v log v − (1− v) · log (1− v)}, (23)

which is similarly obtained by setting the derivative equal to zero and solving, i.e.,

d

dv
[z · v − v log v − (1− v) · log (1− v)] = 0 (24)

z + log (1− v)− log v = 0 (25)

z = log

(
v

1− v

)
(26)

v =
1

1 + e−z
, (27)

which is obtained after a few steps of algebra. Plugging (27) back into (23), we obtain that

sup
v
{z · v − v log v − (1− v) · log (1− v)} = z

1 + e−z
+

log (1 + e−z)

1 + e−z
+

log (1 + ez)

1 + ez
. (28)

Noticing that log (1 + e−z) = log ((e−z) · (1 + ez)), we have from (28) that

sup
v
{z · v − v log v − (1− v) · log (1− v)} = log (1 + ez). (29)

Plugging this back into (22), we have that for the log-loss, the surrogate is given by ∀z ∈ R,

F (z) = (−L)⋆(−z) = log (1 + e−z), (30)

which is indeed the logistic loss (cf. (Bartlett et al., 2006)), useful in the margin setting.
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A.2. Proof of Lemma 1

We study U
.
= (−L)⋆, which is convex by definition, and show that it is non-decreasing. Monotonicity follows from the

non-negativity of the argument of the partial losses and the definition of the convex conjugate: suppose z′ ≥ z and let
u∗ ∈ arg supu zu+ L(u). We have

U(z′)
.
= sup

u∈[0,1]

z′u+ L(u) (31)

= sup
u∈[0,1]

(z′ − z)u+ zu+ L(u) (32)

≥ (z′ − z)u∗ + zu∗ + L(u∗) (33)
= (z′ − z)u∗ + U(z) (34)
≥ U(z), (35)

which completes the proof that U is non-decreasing and therefore F (z)
.
= U(−z) non-increasing.

Concavity of L follows from definition. We show continuity of L, the continuity of F then following from the definition of
the convex conjugate F (Boyd & Vandenberghe, 2004). Let a, u ∈ (0, 1), let u∗ ∈ tℓ(u), a

∗ ∈ tℓ(a). We get:

L(u)
.
= uℓ1(u

∗) + (1− u)ℓ−1(u
∗) (36)

≤ uℓ1(a
∗) + (1− u)ℓ−1(a

∗) (37)
= L(a) + (u− a)(ℓ1(a

∗)− ℓ−1(a
∗)), (38)

(the inequality holds since otherwise u∗ ̸∈ tℓ(u)) Permuting the roles of u and a, we also get

L(a) ≤ L(u) + (a− u)(ℓ1(u
∗)− ℓ−1(u

∗)), (39)

from which we get

|L(a)− L(u)| ≤ Z · |a− u|, (40)

with Z
.
= maxv∈{a,u} sup |ℓ1(tℓ(v))− ℓ−1(tℓ(v))| (where we use set differences if tℓs are not singletons). Since Z ≪∞,

(40) is enough to show the continuity of L (we have by assumption dom(L) = [0, 1]).

A.3. Bayes Tilted Estimates

The proof of Lemma 2 readily follows from Definition 4 and standard properties of convex functions, see e.g., (Boyd &
Vandenberghe, 2004).

Below, we also provide analysis of the properties of Bayes tilted estimates for more general losses which induce set-valued
functions. Following convention, we denote the set valued inequality A ≤ B, such that, ∀a ∈ A, ∃b ∈ B, a ≤ b and the
set-valued (Minkowski) difference A−B

.
= {a− b : a ∈ A, b ∈ B}.

Lemma 12 The following properties of tℓ follow from assumptions M, D or S on partial losses:
(M) implies set-valued monotonicity: ∀u1 < u3 ∈ [0, 1], we have tℓ(u1) ≤ tℓ(u3) and tℓ(u1) ∩ tℓ(u3) ⊆ tℓ(u2), ∀u2 ∈
(u1, u3);
(D) and tℓ differentiable imply monotonicity: ∀u ∈ [0, 1], ℓ′1(tℓ(u)) ≤ ℓ′−1(tℓ(u))⇔ t′ℓ(u) ≥ 0;
(S) implies set-valued symmetry: tℓ(1− u) = {1} − tℓ(u), ∀u ∈ [0, 1];
(E) Extreme values: ℓ1(1) = ℓ−1(0) = 0, ℓ1([0, 1]) ⊆ R+, ℓ−1([0, 1]) ⊆ R+. Further, this implies properness on extreme
values, as 0 ∈ tℓ(0), 1 ∈ tℓ(1).

Case (M) – Suppose tℓ(a) ∩ tℓ(a
′) ̸= ∅ for some a ̸= a′ and let v∗ ∈ tℓ(a) ∩ tℓ(a

′). It means ∀v ∈ [0, 1],

aℓ1(v
∗) + (1− a)ℓ−1(v

∗) ≤ aℓ1(v) + (1− a)ℓ−1(v), (41)
a′ℓ1(v

∗) + (1− a′)ℓ−1(v
∗) ≤ a′ℓ1(v) + (1− a′)ℓ−1(v), (42)

and so ∀δ ∈ [0, 1], if we let aδ
.
= a+ δ(a′ − a), a 1− δ, δ convex combination of both inequalities yields ∀v ∈ [0, 1],

aδℓ1(v
∗) + (1− aδ)ℓ−1(v

∗) ≤ aδℓ1(v) + (1− aδ)ℓ−1(v), ∀v ∈ [0, 1], (43)
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which implies v∗ ∈ tℓ(aδ) and shows the right part of Case (M).
To show show the left part of Case (M); we add to (41) and (42) we now add the inequality:

aℓ1(v
◦) + (1− a)ℓ−1(v

◦) ≤ aℓ1(v) + (1− a)ℓ−1(v), (44)

with therefore v◦ ∈ tℓ(a), implying aℓ1(v
◦) + (1 − a)ℓ−1(v

◦) = aℓ1(v
∗) + (1 − a)ℓ−1(v

∗) as otherwise one of v◦, v∗

would not be in tℓ(a). We then get

a′ℓ1(v
◦) + (1− a′)ℓ−1(v

◦) = aℓ1(v
◦) + (1− a)ℓ−1(v

◦) + (a′ − a) · (ℓ1(v◦)− ℓ−1(v
◦))

= aℓ1(v
∗) + (1− a)ℓ−1(v

∗) + (a′ − a) · (ℓ1(v◦)− ℓ−1(v
◦))

= a′ℓ1(v
∗) + (1− a′)ℓ−1(v

∗) + (a′ − a) ·∆, (45)

with ∆
.
= ℓ1(v

◦) − ℓ−1(v
◦) − (ℓ1(v

∗) − ℓ−1(v
∗)). Considering (45), we deduce from (42) that to have v◦ ∈ tℓ(a

′), we
equivalently need (a′ − a) ·∆ ≤ 0. We also know by assumption that ℓ1 is non-increasing and ℓ−1 is non-decreasing, so
g(u)

.
= ℓ1(u)− ℓ−1(u) is non-increasing. We thus have (a′ − a) ·∆ ≤ 0 iff one of the two possibilities hold:

• a′ ≥ a and v◦ ≥ v∗, or

• a′ ≤ a and v◦ ≤ v∗,

which shows the right part of Case (M).

Case (E) – we have L(0) = infv∈[0,1] ℓ−1(v) = 0 for v = 0, hence 0 ∈ tℓ(0). Similarly, L(1) = infv∈[0,1] ℓ1(v) = 0 for
v = 1, hence 1 ∈ tℓ(1).

Case (D) – we have

d

du
L(u) = ℓ1(tℓ(u)) + uℓ′1(tℓ(u))t

′
ℓ(u)− ℓ−1(tℓ(u)) + (1− u)ℓ′−1(tℓ(u))t

′
ℓ(u)

= ℓ1(tℓ(u))− ℓ−1(tℓ(u)) + t′ℓ(u) · (uℓ′1(tℓ(u)) + (1− u)ℓ′−1(tℓ(u))), (46)

but since v = tℓ(u) is the solution to (41) it satisfies uℓ′1(tℓ(u)) + (1− u)ℓ′−1(tℓ(u)) = 0 , so that (46) simplifies to

d

du
L(u) = ℓ1(tℓ(u))− ℓ−1(tℓ(u)), (47)

and since L is concave and the partial losses are differentiable,

d2

du2
L(u) = t′ℓ(u) · (ℓ′1(tℓ(u))− ℓ′−1(tℓ(u))) ≤ 0, ∀u, (48)

which proves the statement of the Lemma.

Case (S) – Suppose v∗ ∈ tℓ(a), which implies

aℓ1(v
∗) + (1− a)ℓ−1(v

∗) ≤ aℓ1(v) + (1− a)ℓ−1(v), ∀v ∈ [0, 1]. (49)

We also note that since symmetry holds, aℓ1(v∗) + (1− a)ℓ−1(v
∗) = (1− a)ℓ1(1− v∗) + aℓ−1(1− v∗), which implies

because of (49) 1− v∗ ∈ tℓ(1− a).

Remark: even if we assume the partial losses to be strictly monotonic, the tilted estimate can still be set valued. To see this,
craft the partial losses such that v ∈ tℓ(u) and then for some w > v, replace the partial losses in the interval [v, w] by affine
parts w/ slope −a < 0 for ℓ1, b > 0 for ℓ−1 and such that b/a = u/(1− u) which guarantees L(u, v) = L(u,w) and thus
w ∈ tℓ(u);
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A.4. Proof of Lemma 6

We recall the focal loss’ corresponding pointwise conditional risk in lieu of (2):

Lγ(u, v)
.
= −v · (1− u)γ log u− (1− v) · uγ log(1− u), (50)

and if it is twist proper, then for any ηt,ηc ∈ [0, 1], there exists γ ≥ 0 such that

∂

∂u
Lγ(u, ηt)

∣∣∣∣
u=ηc

= 0. (51)

Equivalently, we must find γ ≥ 0 such that (keeping notations u .
= ηc, v

.
= ηt for clarity):

(1− v)uγ · (γ(1− u) log(1− u)− u) = v(1− u)γ · (γu log u+ u− 1) , (52)

and we see that twist properness implies the statement that for any K ≥ 0 (note that K = v
1−v ) and any u ∈ [0, 1), there

exists γ ≥ 0 such that

f(u, γ)

f(1− u, γ)
= K, (53)

f(u, γ)
.
= uγ · (γ(1− u) log(1− u)− u) . (54)

We study the ratio for u ∈ [0, 1/2]. We have f(u, γ) ≤ 0, ∀u ∈ [0, 1], ∀γ ≥ 0 and

∂

∂γ
f(u, γ) = uγ(γ · a(u)− b(u)), (55)

with a(u)
.
= (1 − u) log(1 − u) log(u) ≥ 0 and b(u)

.
= u log u − (1 − u) log(1 − u), satisfying b(1 − u) = −b(u) and

ua(1− u) = (1− u)a(u). Hence, we arrive after some derivations to

∂

∂γ

f(u, γ)

f(1− u, γ)
=

(u(1− u))γ

f2(1− u, γ)
·
(
A(u)γ2 +B(u)γ + C(u)

)
, (56)

A(u)
.
= u(1− u) log(u) log(1− u) log(u(1− u)), (57)

B(u)
.
= −(u2 log2 u+ (1− u)2 log2(1− u) + (1− 2u)2 log u log(1− u)), (58)

C(u)
.
= (1− 2u)b(u). (59)

All functions A,B,C are non positive for any fixed u ∈ [0, 1/2], so the ratio in (53) is non-increasing over γ ≥ 0 and as a
consequence, for any fixed u ∈ [0, 1/2],

f(u, γ)

f(1− u, γ)
≤ f(u, 0)

f(1− u, 0)
(60)

=
u

1− u
, ∀γ ≥ 0, (61)

so we see that (53) cannot be satisfied when K > u/(1− u) and as a consequence, the focal loss is not twist-proper.

Twist-improperness of the Super Loss The Super Loss (Castells et al., 2020) works as a “wrapper” of a loss, its partial
losses being defined as

Lb,λ(ℓ, σi) = (ℓb − τ)σi + λ(log σi)
2, (62)

where b ∈ {−1, 1} indicates the partial loss of a loss of interest, τ ∈ Imℓb, λ > 0 are user-defined parameters. σi is a
functional computed to minimize the partial losses, and we get the optimal expression:

σ∗(ℓb) = exp (−W (1/2max (−2/e, β))) , (63)

with β = ℓb−τ
λ (notice this is also a function via the partial loss). W is called Lambert’s function. It does not have an

analytical form.
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Lemma 13 Suppose loss ℓ in the Super Loss is such that its partial loss ℓ1 is strictly decreasing and ℓ−1 is strictly increasing.
Then the corresponding Super Loss with partial losses Lb,λ(ℓ, σ

∗(ℓb)) (b ∈ {−1, 1}) is not twist proper.

Remark: the assumptions about the partial losses are very weak and would be satisfied by all popular losses (e.g. log,
square, Matusita, etc.).

Proof The notable facts about W , useful for our proof are:

eW (z) =
z

W (z)
and

d

dz
W (z) =

1

z + eW (z)
and sup exp(−W (z)) = e. (64)

Simplifying notations above, we end up studing a loss with partial losses defined as

L∗
λ(ℓb) = (ℓb − τ)σi + λ(log σ∗(ℓb))

2. (65)

Recall that a loss ℓ is twist-proper iff for any twist, there exists hyperparameters such that ηc ∈ tℓ(ηt). Examining this for
the Super Loss, we obtain

tL(v) = arginfu∈[0,1]L(u, v) (66)

= arginfu∈[0,1]v · L∗
λ(ℓ1(u)) + (1− v) · L∗

λ(ℓ−1(u)) (67)

= arginfu∈[0,1]

{
v ·
[
(ℓ1(u)− τ)σ∗(ℓ1) + λ(log σ∗(ℓ1))

2
]

+(1− v) ·
[
(ℓ−1(u)− τ)σ∗(ℓ−1) + λ(log σ∗(ℓ−1))

2
] (68)

We note that if ℓ is proper, then v ∈ tℓ(v). Computing the minimum in (68), we obtain

0 =
d

du
v ·
[
(ℓ1(u)− τ)σ∗(ℓ1) + λ(log σ∗(ℓ1))

2
]
+ (1− v) ·

[
(ℓ−1(u)− τ)σ∗(ℓ−1) + λ(log σ∗(ℓ−1))

2
]
. (69)

Similar to the computation of the focal loss, we need

d

du
(ℓ1(u)− τ)σ∗(ℓ1) + λ(log σ∗(ℓ1))

2

d

du
(ℓ−1(u)− τ)σ∗(ℓ−1) + λ(log σ∗(ℓ−1))2

= − (1− v)

v
= −K, (70)

and this needs to hold (via the choice of parameters τ, λ) for any u ∈ [0, 1) and K > 0. To save notations, define

βb(u) =
ℓb(u)− τ

2λ
.

Remark that if ℓb(u) > τ − (2λ)/e, we have σ∗(ℓb(u)) = exp(−W (βb(u))) and so

d

du
(ℓb(u)− τ)σ∗(ℓb(u)) + λ(log σ∗(ℓb(u)))

2

= 2λ · d

du

[
βb(u) exp(−W (βb(u))) +

W 2(βb(u))

2

]
= 2λ ·

[
β′
b(u) exp(−W (βb(u)))− βb(u)β

′
b(u) ·

exp(−W (βb(u)))

βb(u) + exp(W (βb(u)))
+

β′
b(u)W (βb(u))

βb(u) + exp(W (βb(u)))

]
= 2λβ′

b(u) ·
1 + βb(u) exp(−W (βb(u)))− βb(u) exp(−W (βb(u))) +W (βb(u))

βb(u) + exp(W (βb(u)))

= ℓ′b(u) ·
1 +W (βb(u))

βb(u) + exp(W (βb(u)))
(71)

= ℓ′b(u) · exp(−W (βb(u))), (72)

since indeed it comes from (64),

1 +W (z))

z + exp(W (z))
= exp(−W (z)); (73)
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also, if ℓb(u) ≤ τ − (2λ)/e, we have σ∗(ℓb(u)) = exp(−W (−1/e)) = e and so

d

du
(ℓb(u)− τ)σ∗(ℓb(u)) + λ(log σ∗(ℓb(u)))

2 = ℓ′b(u) · e. (74)

Since limz→−1/e+ exp(−W (z)) = e, we can summarize both (72) and (74) as

d

du
(ℓb(u)− τ)σ∗(ℓb(u)) + λ(log σ∗(ℓb(u)))

2 = ℓ′b(u) · exp(−W (max{−1/e, βb(u)})). (75)

Now consider a loss ℓ satisfying ℓ−1 strictly increasing and ℓ1 strictly decreasing. Pick u so that we have simultaneously

ℓ1(u) > τ − 2λ

e
, (76)

ℓ−1(u) ≤ τ − 2λ

e
, (77)

which, assuming both inequalities fit in the range of the respective partial loss, that u ∈ [0, γ] for some γ > 0. Rewriting
(70), we need to show that for any such γ > 0 and u ∈ [0, γ] and K > 0, there exists a choice of τ, λ such that

ℓ′1(u) · exp(−W (β1(u)))

ℓ′−1(u) · e
= −K, (78)

which rewrites conveniently as

exp(−W (β1(u))) = −Ke ·
ℓ′−1(u)

ℓ′1(u)
, (79)

or,

exp(−W (β1(u))) = K ′, (80)

for any K ′ > 0 (the RHS of (79) is indeed always strictly positive). But sup exp(−W (z)) = e (64), so (80) cannot hold
and the Super Loss is not twist proper.

A.5. Proof of Lemma 8

For part (a): we cite (Sypherd et al., 2022) which demonstrates (M), (D), (S) for α > 0. With our extension of α-loss, these
can also be readily shown for α < 0, since they are mapped back to the α > 0 losses.

For part (b): we know from Lemma 2 that α-loss, for α ∈ R \ {0,±∞}, due to strict convexity, returns a singleton,
i.e., |tℓα(ηt)| = 1. With regards to that singleton, we know from (Sypherd et al., 2022; Liao et al., 2018) for α > 0 that

tℓα(ηt) =
ηα

t
ηα

t +(1−ηt)α
. A very similar calculation recovers tℓα(ηt) =

η−α
t

η−α
t +(1−ηt)−α

for α < 0. Multiplying the numerator

and denominator of this expression by (1− ηt)
α, we can simply write both expressions using ηα

t
ηα

t +(1−ηt)α
. Regarding the

limit as α → ±∞ yielding tℓ±∞(ηt) = ±1 or ∓1, this was also already shown by (Sypherd et al., 2022) for +∞ and is
similarly (readily) extended for the α→ −∞ case.

For part (c): here, we break entirely new ground. Let α > 0. To obtain twist-properness as stipulated in Definition 5, we
seek to know for what α the following holds

ηc =
ηαt

ηαt + (1− ηt)α
. (81)
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Figure 4: A plot of ℓα1 (u) for α > 0 as given in Definition 7.

Solving for α, we obtain

ηc =
ηαt

ηαt + (1− ηt)α
(82)

1

ηc
= 1 +

(
1

ηt
− 1

)α

(83)

1

ηc
− 1 =

(
1

ηt
− 1

)α

(84)

log

(
1

ηc
− 1

)
= α log

(
1

ηt
− 1

)
(85)

α∗ =
log
(

1−ηc
ηc

)
log
(

1−ηt
ηt

) . (86)

After multiplying the numerator and denominator by −1, we obtain the desired result. Namely, α-loss is twist-proper for

α∗ =
ι(ηc)

ι(ηt)
. (87)

Interestingly, (87) is the ratio of the logits (which is the link function −L′ of the log-loss, α = 1) evaluated at the clean
posterior and twisted posterior, in essence, a kind of ratio test.

For part (d): we recall the definition of Bayes blunting twist from Definition 3: a twist ηc 7→ ηt is Bayes blunting iff
(ηc ≤ ηt ≤ 1/2) ∨ (ηc ≥ ηt ≥ 1/2). Also, recall that α∗ is given in (87), and see Figure 5 for a plot of the logit function.
Let ηc ≥ 1/2. The Bayes blunting twist can take ηt from ηc ≥ ηt ≥ 1/2. If ηt = ηc, then α∗ = 1. If ηt → 1/2, as can be
seen in the figure, the sign crossover point is 1/2, so α∗ →∞. Thus, by continuity, we have that α∗ ≥ 1. Finally, the case
where ηc < 1/2 follows, mutatis mutandis.

A.6. Proof of Theorem 9

We want to show that for any strictly Bayes blunting twist ηc 7→ ηt, there exists a fixed α0 > 1 and an optimal α⋆-mapping,
α⋆ : X→ R>1, which induces the following ordering

DKL(ηc,ηt; 1) > DKL(ηc,ηt;α0) ≥ DKL(ηc,ηt;α
⋆). (88)
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Figure 5: A plot of the logit ι(u) .
= log(u/(1− u)).

Recalling (9), which is the identity

DKL(ηc,ηt;α) = CE(ηc,ηt;α)−H(ηc) (89)

= EX∼M

[
ηc(X) log

(
ηc(X)

tℓα(ηt(X))

)
+ (1− ηc(X)) log

(
1− ηc(X)

1− tℓα(ηt(X))

)]
, (90)

by subtracting H(ηc) from both sides, we rewrite the desired statement (10) (also given here in (88)) as

CE(ηc,ηt; 1) > CE(ηc,ηt;α0) ≥ CE(ηc,ηt;α
⋆). (91)

In essence, we want to show that

CE(ηc,ηt;α) < CE(ηc,ηt; 1) OR 0 < CE(ηc,ηt; 1)− CE(ηc,ηt;α), (92)

for some α0 > 1. Continuing with the right-hand-side of (92), we have

CE(ηc,ηt; 1)− CE(ηc,ηt;α) (93)
= EX∼M[ηc(X) · − log ηt(X) + (1− ηc(X)) · − log (1− ηt(X))]

− EX∼M[ηc(X) · − log tℓα(ηt(X)) + (1− ηc(X)) · − log (1− tℓα(ηt(X))] (94)

= EX∼M

[
ηc(X) log

(
tℓα(ηt(X))

ηt(X)

)
+ (1− ηc(X)) log

(
1− tℓα(ηt(X))

1− ηt(X)

)]
(95)

= EX∼M

[
ηc(X) log

(
ηt(X)α−1

ηt(X)α + (1− ηt(X))α

)
+ (1− ηc(X)) log

(
(1− ηt(X))α−1

(1− ηt(X))α + ηt(X)α

)]
, (96)

where we used the linearity of the expectation and some algebra to combine the expressions. We want to show that the
expression in brackets in (96) is strictly positive as this implies that 0 < CE(ηc,ηt; 1) − CE(ηc,ηt;α), in words, that the
α-Bayes tilted estimate untwists the Bayes blunting twist. Continuing, we examine the expression in brackets in (96)

fα,ηc(ηt) = ηc log
ηα−1

t

ηαt + (1− ηt)α
+ (1− ηc) log

(1− ηt)
α−1

ηαt + (1− ηt)α
(97)

= (α− 1)ηc log ηt + (α− 1)(1− ηc) log (1− ηt)− log (ηαt + (1− ηt)
α), (98)

where we implicitly fix X = x and consider scalar-valued ηc,ηt ∈ [0, 1] and α ∈ R+/{1}. We note that α < 0 does not
need to be considered in this analysis since that regime of α is primarily useful for very strong twists due to its symmetry
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Figure 6: Characteristic plot of the non-negative part of fα,ηc(ηt), where ηc = 0.9, as a function of ηt for several values of α.
Recall that the non-negative region of f indicates where using Bayes tilted α-estimate, as measured with the cross entropy
for α given in (7), is strictly less than the α = 1 cross entropy. Also recall that a Bayes blunting twist has the capability to
shift ηt anywhere in [.5, ηc = 0.9]. We see that for small α, more twisted probabilities are “covered”, whereas for large α,
less twisted probabilities are “covered”, however, the large α’s induce a large positive magnitude (ultimately measured by
the KL-divergence) increase over the proper α = 1. A key takeaway is that a fixed α (small enough) can correct a Bayes
blunting twist for almost all x ∈ X. However, it is not necessarily optimal as a perfectly tuned α-mapping will use larger α’s
to optimally correct strongly twisted posteriors, inducing more gains over the α = 1 cross entropy.

property (recall in Lemma 8 that tℓα is symmetric upon permuting (ηt, α) and (1 − ηt,−α)), i.e., not useful for Bayes
blunting twists which reduce confidence in the posterior but do not flip its sign across ηt − 1/2. To build intuition of f , see
Figure 6 for a plot of this function. Formally, we take note of the following observations/properties of f :

1. CONTINUITY. From (98), it can be readily shown that for any fixed ηc,ηt ∈ [0, 1], fα,ηc(ηt) is continuous in α ≥ 1.

2. CONCAVITY. For arbitrarily fixed ηc and for any α > 1, fα,ηc(·) is concave in ηt, since (from (97)) the composition
of a concave function with a non-decreasing concave function yields a concave function. As a side note, observe
that fα,ηc(·) is convex for 0 < α < 1, thus this regime of α does not untwist Bayes blunting twists. Regarding
(increa/decrea)sing concavity of fα,ηc(·) for any fixed ηc ∈ [0, 1] as a function of α, traditionally a second derivative
argument could indicate whether concavity is increasing or decreasing as a function of α. Unfortunately, d2

dη2
t
fα,ηc(ηt)

is an unwieldy analytical expression. However, using a Taylor series approximation of d2

dη2
t
fα,ηc(ηt) near ηt = 1/2, we

find that the dominating term is ≈ −α2. Thus, while not a proof, this indicates that concavity of fα,ηc(·) increases as
α increases greater than 1, which is sufficient for our purposes in the sequel.

3. ZEROES. It can be readily shown that for every ηc ∈ [0, 1], fα,ηc(1/2) = 0 for any α > 1. Further, it can be shown
that for any ηc ∈ [0, 1], lim

α→1+
fα,ηc(ηc)→ 0−. Thus, the exact values of ηt for the other zero of fα,ηc(·) (not ηt = 1/2),

for each α > 1, are given by the solution to the following transcendental equation:

ηt =
((

(1− ηt)
α−1

)1− 1
ηc (ηαt + (1− ηt)

α)
1
ηc

) 1
α−1

, (99)
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Figure 7: Symmetric image of Figure 6 for ηc = 0.1.

which can be rewritten as

log

(
ηt

(1− ηt)
1− 1

ηc

)
=

α

α− 1
log

(
η

1
ηc
t

)
+

1

ηc(α− 1)
log

(
1 +

(
1

ηt
− 1

)α)
, (100)

and can also be rewritten as (
ηt

1− ηt

)ηc(α−1)

= ηt

(
ηt

1− ηt

)α−1

+ (1− ηt). (101)

Suppose ηc > 1/2, then since we have a Bayes blunting twist, ηc ≥ ηt ≥ 1/2. Letting α→∞, note that the second
term on the right-hand-side is 0. Thus, we can solve for the zeroes from (100) when α =∞ by examining

log

(
ηt

(1− ηt)1−1/ηc

)
= log

(
η

1
ηc
t

)
. (102)

After some manipulations, we obtain log
(

1
ηt
− 1
)
= 0, which is only satisfied when ηt = 1/2. Thus, for ηc > 1/2

and α → ∞, both zeroes of (97) converge at ηt = 1/2. For ηc < 1/2, the same argument holds, mutatis mutandis.
Lastly, from (101), it can be shown that given fixed ηc and ηt under a Bayes blunting twist, a solution α > 1 must exist,

through reasoning about the rate of increase of
(

ηt
1−ηt

)α−1

as a function of α, which is common to both sides.

4. MAXIMUM. It can also be shown that the maximum of fα,ηc(·) for each α > 1 as a function of ηt is given by the
following transcendental equation

α(1− ηc) + ηc − ηt

αηc − ηc + ηt
=

(
1

ηt
− 1

)α

. (103)

One key observation we can make from (103) is that as α increases, the term on the right-hand-side grows (or decays)
exponentially with α, whereas the term on the left-hand-side is linear in α. With case-by-case analysis, i.e., for
ηc > 1/2 or ηc < 1/2, it can be reasoned that as α increases, the solution to (103), ηt, approaches 1/2. A second
key observation we can make from (103) is that as α→ 1+, the solution to (103), ηt, approaches ηc/2 + 1/4. This is
readily observed by setting α = 1 + ϵ, for some ϵ > 0, and ηt =

ηc−1/2
2 + 1/2 = ηc/2 + 1/4, along with a Taylor

series approximation of (1/ηt − 1)
1+ϵ for ϵ near 0.
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Intuitively, the remainder of the proof consists of a “covering” argument. In words, we choose the least twisted ηc, i.e.
η∗c , under ηc → ηt, via its associated α0 > 1 (as given in Lemma 8(d)), then we notice that this induces non-negativity
of fα0,η∗

c (ηt) given in (97). Next, we argue that this choice of α0 > 1 implies that all ηc are “covered” - in the sense of
inducing non-negativity of (97), i.e., fα0,ηc(ηt) > 0 for all ηc under ηc → ηt. Finally, we use the non-negativity of the
expectation to achieve the desired result, i.e., the left-hand-side of (88).

Continuing, let ηc → ηt be a strictly Bayes blunting twist. Thus, we have that either (ηc < ηt ≤ 1/2) or (ηc > ηt ≥ 1/2) for
all ηc. By ZEROES of f , we have that for every ηc ∈ [0, 1], fα,ηc(1/2) = 0 for any α > 1 and limα→1+ fα,ηc(ηc)→ 0−.
We also have that as α→∞, both zeroes of (97) converge at ηt = 1/2. Thus, for every ηc, the second zero (the first one is
at ηt = 1/2) continuously shifts (CONTINUITY) from being located at ηt = ηc (as α→ 1) to being located at ηt = 1/2 (as
α→∞). In order to identify the least twisted ηc under ηc → ηt, let

α∗(ηc,ηt) :=
ι(ηc)

ι(ηt)
, (104)

as stated in Lemma 8(c). By Lemma 8(d), we know that α∗(ηc,ηt) ≥ 1; furthermore, due to strictness of the Bayes
blunting twist ηc → ηt, we indeed have a strict inequality, i.e., α∗(ηc,ηt) > 1 for all ηc under ηc → ηt. Choose
α0 := inf{α∗(ηc,ηt) : ∀ηc under ηc → ηt}, where we break ties arbitrarily, and note that α0 > 1, again by strictness. Also
note that there exists η∗c associated with α0 such that α0 = ι(η∗c )/ι(ηt) under ηc → ηt, in other words, fα0,η∗

c (ηt) > 0 (due
to tℓα(ηt) reversing the effects of the Bayes blunting twist and tuning back to η∗c ). Thus, by CONTINUITY, CONCAVITY,
and ZEROES of f above and this choice of α0 > 1, we have that for all ηc, fα0,ηc(ηt) > 0 under ηc → ηt, i.e., that
all ηc are “covered”, due to the ordering of the relative zeroes of f induced by identifying η∗c through α0. Therefore,
we obtain from (96) and (97) (i.e., the non-negativity of the expectation) that for the chosen α0 > 1, we have that
0 < CE(ηc,ηt; 1)− CE(ηc,ηt;α0), i.e.,

CE(ηc,ηt; 1) > CE(ηc,ηt;α0), (105)

as desired.

We now show that CE(ηc,ηt;α0) ≥ CE(ηc,ηt;α
⋆), where α⋆ is a mapping such that α⋆ : X→ R>1, i.e., returning an α > 1

for every x ∈ X. By MAXIMUM above, we note that for a given ηc, the maximum of fα,ηc(·) moves from being achieved
at ηt = ηc/2 + 1/4, to being achieved at ηt = 1/2 in the limit as α increases greater than 1. By CONCAVITY above, we
also observe that fα,ηc(·) for a fixed ηc appears (which is sufficient for the inequality) to become more strongly convex in
general as α increases greater than 1. We also note by CONTINUITY of f above that the maximums are continuous in
α > 1. Thus, under the strictly Bayes blunting twist ηc → ηt, for every ηc, there may exist an α > 1 which induces a larger
(positive) magnitude in fα,ηc(ηt) than for the fixed α0 > 1 we found previously (for (105)). Thus, there exists an optimal
mapping α⋆ : X→ R>1, such that

CE(ηc,ηt;α0) ≥ CE(ηc,ηt;α
⋆). (106)

Note that in the degenerate case, α⋆ = α0 for every x ∈ X. Therefore, combining (105) and (106), we obtain

CE(ηc,ηt; 1) > CE(ηc,ηt;α0) ≥ CE(ηc,ηt;α
⋆), (107)

which is the desired result. Lastly, note from Lemma 8(c) and (90) that α⋆ : X → R>1 is indeed given by α⋆(x) :=
ι(ηc(x))/ι(ηt(x)), for every x ∈ X, and hence note that CE(ηc,ηt;α

⋆) = H(ηc), i.e., from (9) that DKL(ηc,ηt;α
⋆) = 0.

A.7. Proof of Theorem 10

As explained in the main body, we prove a result more general than Theorem 10. However, briefly note that (13), like the
statement provided in Theorem 9 in (10), is proved for CE, but the statement provided in the main body as KL is readily
obtained by subtracting H(ηc) from both sides of the inequality.

First, we need a simple technical Lemma.

Lemma 14 For any B > 0, ∀|z| ≤ B, ∀α ∈ R,

log(1 + exp(αz)) ≤ log(1 + exp(αB))− B − z

2
· α. (108)
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Proof We first note that ∀|z| ≤ 1, ∀α ∈ R,

log(1 + exp(αz)) ≤ 1 + z

2
· log(1 + exp(α)) +

1− z

2
· log(1 + exp(−α)) (109)

= log(1 + exp(α))− 1− z

2
· α, (110)

which indeed holds as the LHS of (109) is convex and the RHS is the equation of a line passing through the points
(−1, log(1 + exp(−α))) and (1, log(1 + exp(α))). In (110), we use log (1 + exp(−α)) = log (exp(−α) · (1 + exp(α)))
on the second term in the RHS. Hence if instead |z| ≤ B, then

log(1 + exp(αz)) = log
(
1 + exp

(
αB · z

B

))
(111)

≤ log(1 + exp(αB))− B − z

2
· α, (112)

as claimed.

We now show another Lemma which bounds the log quantities appearing in the cross-entropy in (7), recalling that
ι(u)

.
= log(u/(1− u)).

Lemma 15 Fix B > 0. For any x ∈ X such that

1

1 + expB
≤ ηt(x) ≤

expB

1 + expB
, (113)

the following properties hold for the Bayes tiltes estimate tℓ of α-loss:

− log tℓα(ηt(x)) ≤ log(1 + exp(αB))− α · B + ι(ηt(x))

2
,

− log(1− tℓα(ηt(x))) ≤ log(1 + exp(αB))− α · B − ι(ηt(x))

2
.

Proof We note, using z
.
= − log

(
1−ηt(x)
ηt(x)

)
, which satisfies |z| ≤ B from (113) and Lemma 14,

− log tℓα(ηt(x)) = − log

(
ηt(x)

α

ηt(x)α + (1− ηt(x))α

)

= − log

 1

1 +
(

1−ηt(x)
ηt(x)

)α


= log

(
1 +

(
1− ηt(x)

ηt(x)

)α)
= log

(
1 + exp

(
α log

(
1− ηt(x)

ηt(x)

)))
(114)

≤ log(1 + exp(αB))− α ·
B − log

(
1−ηt(x)
ηt(x)

)
2

(115)

= log(1 + exp(αB))− α · B + ι(ηt(x))

2
, (116)

and similarly,

− log(1− tℓα(ηt(x))) = log

(
1 + exp

(
−α log

(
1− ηt(x)

ηt(x)

)))
(117)

≤ log(1 + exp(−αB)) + α · B + ι(ηt(x))

2

= log(1 + exp(αB))− αB + α · B + ι(ηt(x))

2

= log(1 + exp(αB))− α · B − ι(ηt(x))

2
, (118)
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as claimed.

Denote M(B) the distribution restricted to the support for which we have a.s. (113) and let p(B) be the weight of this support
in M. Let M(B) denote the restriction of M to the complement of this support. We let D(B) is the product distribution on
examples (X× Y) over the support of M(B) induced by marginal M(B) and posterior ηc (see Reid & Williamson (2011,
Section 4)). We are now in a position to show our generalization to Theorem 10.

Theorem 16 For any fixed B > 0, let

e(B)
.
=

E(X,Y)∼D(B) [Y · ι(ηt(X))]

B
∈ [−1, 1]. (119)

and suppose we fix the scalar α .
= α∗∗ with

α∗∗ .
=

ι
(

1+e(B)
2

)
B

. (120)

then the following bound holds on the cross-entropy of the Bayes tilted estimate of the α-loss:

CE(ηc,ηt;α) ≤ p(B) ·H
(
1 + e(B)

2

)
+(1− p(B)) ·

(
e(B) · log

(
1 + |e(B)|
1− |e(B)|

)
+

1− |e(B)|
1 + |e(B)|

)
,

where e(B)
.
= E(X,Y)∼D(B) [max {0,−sign(α∗∗) · Y · ι(ηt(X))}] /B and D(B) is is defined analogously to D(B) with

respect to M(B).

Remark: we notice this is indeed a generalization of Theorem 10, which corresponds to case p(B) = 1. We also note
|e(B)| ≥ 1.

Proof We remark that the cross-entropy (7) can be split as:

CE(ηc,ηt;α)
.
= EX∼M

[
ηc(X) · − log tℓα(ηt(X))

+(1− ηc(X)) · − log(1− tℓα(ηt(X)))

]
= p(B) ·K(α) + (1− p(B)) · L(B), (121)

with

K(α)
.
= EX∼M(B)

[
ηc(X) · − log tℓα(ηt(X))

+(1− ηc(X)) · − log(1− tℓα(ηt(X)))

]
, (122)

J(B)
.
= EX∼M(B)

[
ηc(X) · − log tℓα(ηt(X))

+(1− ηc(X)) · − log(1− tℓα(ηt(X)))

]
. (123)

We now focus on a bound on K(α), which we achieve via Lemma 15:

K(α) ≤ EX∼M(B)

 ηc(X) ·
(
log(1 + exp(αB))− α · B+ι(ηt(X))

2

)
+(1− ηc(X)) ·

(
log(1 + exp(αB))− α · B−ι(ηt(X))

2

) 
= log(1 + exp(αB))− α ·

B + EX∼M(B) [ηc(X)ι(ηt(X)) + (1− ηc(X)) · −ι(ηt(X))]

2

= log(1 + exp(αB))− α ·
B + E(X,Y)∼D(B) [Y · ι(ηt(X))]

2
(124)

.
= log(1 + exp(αB))− α · B +B · e(B)

2︸ ︷︷ ︸
.
=L(α)

,
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Figure 8: A plot illustrating the closeness of (124) where K(α) is given in blue and L(α) is given in red for a toy distribution:
x ∼ Uniform([−B,B]) (recall B > 0 is the clipping threshold and we set B = 2 here) where ηc(x) = (1+exp (−x/a))−1

and ηt(x) = (1 + exp (−x/b))−1 such that a = 10 and b = 0.6.

where we recall

e(B)
.
=

EX∼D(B) [Y · ι(ηt(X))]

B
∈ [−1, 1]. (125)

Notice the change in distribution in (124), where D(B) is the product distribution on examples (X× Y) over the support of
M(B) induced by marginal M(B) and posterior ηc (see Reid & Williamson (2011, Section 4)). We have

L′(α) = B ·
(

exp(Bα)

1 + exp(Bα)
− 1 + e(B)

2

)
, (126)

which zeroes for

α∗∗ =
1

B
· log

(
1 + e(B)

1− e(B)

)
=

ι(q(B))

B
. (127)

Further, we have that

L′′(α) =
d

dα
L′(α) =

B2 exp (αB)

(exp (αB) + 1)2
, (128)

and plugging in (127) yields

L′′(α∗∗) = B2 1− e2

4
. (129)

Note that for fixed B > 0, as |α| increases in (128), L′′(α) decreases. Thus, when the magnitude of α∗ is large (due to the
distribution and twist), this implies that there is more “flatness” near the choice of α∗. Hence, in these regimes, a choice of
α0 “close-enough” to α∗ should have similar performance in practice. Continuing with the main line, plugging in (127)
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into (124) yields

K(α∗∗) ≤ log(1 + exp(Bα∗∗))−B · 1 + e(B)

2
· α∗∗ (130)

= − log

(
1− e(B)

2

)
− 1 + e(B)

2
· log

(
1 + e(B)

1− e(B)

)
(131)

= −1 + e(B)

2
log

(
1 + e(B)

2

)
− 1− e(B)

2
log

(
1− e(B)

2

)
(132)

= H

(
1 + e(B)

2

)
, (133)

which is the statement of Theorem 10. We now focus on J(B). Since log(1 + exp(−z)) ≤ exp(−z), ∀z via an order-1
Taylor expansion, it follows that if z ≥ C for some C > 0, then log(1 + exp(−z)) ≤ exp(−C). Equivalently, we get

z ≥ C ⇒ log(1 + exp(z)) ≤ z + exp(−C). (134)

By symmetry, we have

z ≤ −C ⇒ log(1 + exp(z)) ≤ exp(−C), (135)

so we get

|z| ≥ C ⇒ log(1 + exp(z)) ≤ max{0, z}+ exp(−C). (136)

By definition, we have for any x in the support of M(B),∣∣∣∣log(1− ηt(x)

ηt(x)

)∣∣∣∣ ≥ B, (137)

so have, considering C
.
= B · |α∗|, from (114) and (117),

J(B)
.
= EX∼M(B)

[
ηc(X) · − log tℓα(ηt(X))

+(1− ηc(X)) · − log(1− tℓα(ηt(X)))

]
(138)

= E(X,Y)∼D(B)

[
log

(
1 + exp

(
Yα∗ log

(
1− ηt(X)

ηt(X)

)))]
≤ E(X,Y)∼D(B)

[
max

{
0,Yα∗∗ log

(
1− ηt(X)

ηt(X)

)}]
+ exp (−B · |α∗∗|)

= |α∗∗| · E(X,Y)∼D(B) [max {0,−sign(α∗∗) · Y · ι(ηt(X))}] +
1− |e(B)|
1 + |e(B)|

= e(B) log

(
1 + |η(B)|
1− |e(B)|

)
+

1− |e(B)|
1 + |e(B)|

, (139)

which completes the proof of Theorem 16 after replacing the expression of α∗.

Remarks: Theorem 16 calls for several remarks:

Gains with respect to the “proper" choice α = 1: the case we develop is simplistic but allows a graphical comparison of
the gains that Theorem allow to get compared to the choice α = 1, which we recall corresponds to the (proper) logistic loss.
Suppose p(B) = 1 so the cross-entropy CE(ηc,ηt;α) in (121) reduces to K(.), B = 1 and all logits take ±1 value a.e.,

z(x)
.
= log

(
ηt(x)

1− ηt(x)

)
= ±1, (140)

which can be achieved by clamping, and p
.
= P(X,Y)∼M(1)[Yz(X) = 1], which gives e(1) = 2p− 1,

α∗∗ = log

(
p

1− p

)
,
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Figure 9: Comparison between the cross-entropy of the logistic loss (α = 1) and that of the α-loss for the scalar correction
in (141) in Theorem 16.

and

CE(ηc,ηt;α
∗∗) ≤ H(p) (141)

from Theorem 16. The properness choice α∗ = 1 however gives

CE(ηc,ηt; 1) = K(1) = E(X,Y)∼M(1) [log (1 + exp (−Yz(X)))] (142)
= p log(1 + exp(−1)) + (1− p) log(1 + exp(1)). (143)
= log(1 + e)− p. (144)

Figure 9 plots CE(ηc,ηt;α
∗∗) (141) vs CE(ηc,ηt; 1) (144). We remark that CE(ηc,ηt;α

∗∗) ≤ CE(ηc,ηt; 1), and the difference
is especially large as p→ {0, 1}, for which CE(ηc,ηt;α

∗∗)→ 0 while we always have CE(ηc,ηt; 1) > 0.3, ∀p.

Incidence of computing α∗ on an estimate of e(B): Theorem 16 can be refined if, instead of the true value e(B) we have
access to an estimate ê(B). In this case, we can refine the proof of the Theorem from the series of eqs in (133). We remark
that

H ′
(
1 + z

2

)
=

1

2
· log

(
1− z

1 + z

)
, (145)

so since H is concave, we have for any e(B), ê(B),

H

(
1 + e(B)

2

)
≤ H

(
1 + ê(B)

2

)
+

(
1 + e(B)

2
− 1 + ê(B)

2

)
· 1
2
· log

(
1− ê(B)

1 + ê(B)

)
= H

(
1 + ê(B)

2

)
+
e(B)− ê(B)

4
· log

(
1− ê(B)

1 + ê(B)

)
≤ H

(
1 + ê(B)

2

)
+
|e(B)− ê(B)|

4
· log

(
1 + |ê(B)|
1− |ê(B)|

)
= H

(
1 + ê(B)

2

)
+
|e(B)− ê(B)|

4
· log

(
1 +

2|ê(B)|
1− |ê(B)|

)
≤ H

(
1 + ê(B)

2

)
+
|e(B)− ê(B)||ê(B)|

2(1− |ê(B)|)
, (146)
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where we have used log(1 + z) ≤ z for the last inequality.

Polarity of α∗∗: as presented in the main body, the state of the art defines the α-loss only for α ≥ 0. The proof of Theorem
16, and more specifically its proof, hints at why alleviating this constraint is important and corresponds to especially difficult
cases. We have the general rule α∗∗ ≤ 0 iff e(B) ≤ 0, which indicates that the twisted posterior tends to be small when the
clean posterior tends to be large. Since the Bayes tilted estimate is symmetric if we switch the couple (α, ηt) for (−α, 1−ηt),
α∗∗ ≤ 0 provokes a change of polarity in the Bayes tilted estimate compared to the twisted posterior. It thus corrects the
twisted posterior. We emphasize that such a situation happens for especially damaging twists (in particular, not Bayes
blunting).

A.8. Pseudo-Inverse Link

Derivation of (16): From the definition of F in (3), we have that

F (z) := (−L)⋆(−z), ∀z ∈ R. (147)

Given L(u) associated with an underlying CPE loss, we have that

(−L)⋆(z) = sup
u∈[0,1]

[zu+ L(u)]. (148)

Taking the derivative of the expression in brackets and solving for u, we obtain (assuming strictly concave L)

z + L′(u) = 0 (149)

u∗ = (L′)−1(−z). (150)

Plugging (150) back into the expression in brackets in (148), we obtain

(−L)⋆(z) = z(L′)−1(−z) + L((L′)−1(−z)), (151)

and

F (z) = (−L)⋆(−z) = −z(L′)−1(z) + L((L′)−1(z)). (152)

Then, we have by the chain rule that

d

dz
F (z) =

d

dz

[
−z(L′)−1(z) + L((L′)−1(z))

]
(153)

= −(L′)−1(z)− z
(
(L′)−1(z)

)′
+ L′((L′)−1(z))

(
(L′)−1(z)

)′
(154)

= −(L′)−1(z), (155)

where the last step is obtained since L′((L′)−1(z))
(
(L′)−1(z)

)′
= z

(
(L′)−1(z)

)′
. Thus, we have that

F ′(z) := −(L′)−1(z) = −(−L′)−1(−z). (156)

From property (D) of Lemma 12 in Appendix A.3 in (47), namely that L′(u) = ℓ1(tℓ(u))− ℓ−1(tℓ(u)), and from (156),
we get that

−F ′(z) = (ℓ−1 ◦ tℓ − ℓ1 ◦ tℓ)−1(−z), (157)

as desired.

PIL Approximation: Let α ∈ [−∞,∞], and define the conjugate αc such that 1/αc + 1/α = 1, using by extension
αc(∞) = 1, αc(1) =∞. If we were to exactly implement a boosting algorithm for the α-loss, we would have to find the exact
inverse of (16), which would require inverting −L′(v)

.
= αc · tℓ(v)α

c −αc · tℓ(1− v)α
c
. Owing to the difficulty to carry out

this step, we choose a sidestep that makes inversion straightforward and can fall in the conditions to apply Theorem 11, thus
making PILBOOST a boosting algorithm for the α-loss of interest. The trick does not just hold for the α-loss, so we describe it
for a general loss ℓ assuming for simplicity that ℓ1(1) = ℓ−1(0) = 0 and tℓ, ℓ1, ℓ−1 are invertible with ℓ1, ℓ−1 non-negative,



Being Properly Improper

Figure 10: CIL link f̃ℓ vs inverse link −L′ for (α = 5)-loss. Notice the quality of the approximation.

conditions that would hold for many popular losses (log, square, Matusita, etc.), and the α-loss. We then approximate the
link −L′ by using just one of ℓ−1 or ℓ1 depending on their argument, while ensuring functions match in 0, 1/2, 1. We name
f̃ℓ the clipped inverse link, CIL. Letting a−ℓ

.
= ℓ1(0)/(ℓ1(0)− ℓ1(1/2)) and a+ℓ

.
= ℓ−1(1)/(ℓ−1(1)− ℓ−1(1/2)), our link

approximation makes use of the following function: fℓ(u)
.
= f−

ℓ (u) if u ≤ 1/2 and fℓ(u)
.
= f+

ℓ (u) otherwise, with the
shorthands f−

ℓ (u)
.
= a−ℓ · (ℓ1(1/2)− ℓ1(tℓ(u))), f+

ℓ (u)
.
= a+ℓ · (ℓ−1(tℓ(u))− ℓ−1(1/2)). The following Lemma shows,

in addition to properties of fℓ, the expression obtained for the clipped inverse link for a general CPE loss.

Lemma 17 fℓ(u) = −L′(u), ∀u ∈ {0, 1/2, 1}; furthermore, the clipped inverse link f̃ℓ
.
= f−1

ℓ is: (i) f̃ℓ(z) = 0

if z < −ℓ1(0); (ii) f̃ℓ(z) = t−1
ℓ ◦ ℓ−1

1

(
ℓ1(1/2)−ℓ1(0)

ℓ1(0)
· z + ℓ1(1/2)

)
if −ℓ1(0) ≤ z < 0; (iii) f̃ℓ(z) = t−1

ℓ ◦

ℓ−1
−1

(
ℓ−1(1)−ℓ−1(1/2)

ℓ−1(1)
· z + ℓ−1(1/2)

)
if 0 ≤ z < ℓ−1(1); (iv) f̃ℓ(z) = 1 if z ≥ ℓ−1(1). Furthermore, f̃ℓ is continu-

ous and if (S) and (D) hold, then f̃ℓ is derivable on R (with the only possible exceptions of {−ℓ1(0), ℓ−1(1)}).

The proof is immediate once we remark that ℓ1(1) = ℓ−1(0) = 0 bring "properness for the extremes", i.e. 0 ∈ tℓ(0), 1 ∈
tℓ(1). We now give the expression of the formulas of interest regarding Lemma 17 for the α-loss.

Lemma 18 We have for the α-loss,

fℓ(u) = αc ·


(

2·uα

uα+(1−u)α

) 1
αc
− 1 if u ≤ 1/2,

1−
(

2·(1−u)α

uα+(1−u)α

) 1
αc

if u ≥ 1/2
, (158)

f̃(z) =



0 if z ≤ −αc,

(αc+z)
αc
α

(αc+z)
αc
α +(2αcαc−(αc+z)α

c)
1
α

if −αc ≤ z ≤ 0,

(
2αcαc

−(αc−z)α
c) 1

α

(αc−z)
αc
α +(2αcαc−(αc−z)α

c)
1
α

if 0 ≤ z ≤ αc,

1 if z ≥ αc.

. (159)

Rewritten, we have that

f̃(z) =



0 z ≤ − α
α−1

( α
α−1+z)

1
α−1

( α
α−1+z)

1
α−1 +

(
2( α

α−1 )
α

α−1 −( α
α−1+z)

α
α−1

) 1
α
− α

α−1 ≤ z ≤ 0

(
2( α

α−1 )
α

α−1 −( α
α−1−z)

α
α−1

) 1
α

( α
α−1−z)

1
α−1 +

(
2( α

α−1 )
α

α−1 −( α
α−1−z)

α
α−1

) 1
α

0 ≤ z ≤ α
α−1

1 z ≥ α
α−1

(160)

Figure 11 plots (160) for several values of α.

Remark. It could be tempting to think that the clipped inverse link trivially comes from clipping the partial losses
themselves such as replacing ℓ1(u) by 0 if u ≥ 1/2 and symmetrically for ℓ−1(u). This is not the case as it would lead to L
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Figure 11: A plot of f̃(z) as a function of α as given in (160).

piecewise constant and therefore −L′ = 0 when defined.
We turn to a result that authorizes us to use Thm 11 while virtually not needing (E) and (C) for α-loss. Denote Iα

.
=

±αc · [1− (1/α4), 1] (See Fig. 10).

Lemma 19 Suppose α ≥ 1.2. For f̃ℓ defined as in Lemma 17, ∃K ≥ 0.133 such that α-loss satisfies:

∀z ̸∈ Iα, |(f̃ℓ − (−L′)−1)(z)| ≲ K/α. (161)

Remark the necessity of a trick as we do not compute (−L′)−1 in (161). The proof, in Section A.9, bypasses the difficulty
by bounding the horizontal distance between the inverses. The Lemma can be read as: with the exception of an interval
vanishing rapidly with α, the difference between f̃ℓ (that we can easily compute for the α-loss) and (−L′)−1 (that we do
not compute for the α-loss), in order or just pointwise (typically for α < 10) is at most 0.14/α. We now show how we
can virtually "get rid of" (E) and (C) in such a context to apply Theorem 11. Consider the following assumptions: (i) no
edge falls in Iα, (ii) the weak learner guarantees γ = 0.14, (iii) the average weights, wj

.
= 1⊤wj/m, satisfies wj ≥ 0.4.

Looking at Figure 10, we see that (i) is virtually not limiting at all; (ii) is a reasonable assumption on WL; remembering that
a weight has the form w = f̃ℓ(−yH(x)), we see that (iii) requires H to be not "too good", see for example Figure 10 in
which case w = 0.4 implies an edge yH ≤ 0.8. We now observe that given (i), it is trivial to find af to satisfy (C) since we
focus only on one α-loss. Suppose α ≥ 2.7, which approaches the average value of the αs in our experiments, and finally
let ζ .

= 2.5/2.7 ≈ 0.926. Then we get the chain of inequalities:

∆(F ) ≤
Lem. 19

M · 0.14
α

=
(ii)

γM · 1
α
≤

(WLA)

1

α
· ẽj

.
=

1

αwj
· ej ≤

(iii)

2.5

α
· ej ≤

2.5

2.7
· ej

.
= ζ · ej , (162)

and so (E) is implied by the weak learning assumption. To summarise, PILBOOST boosts the convex surrogate of the
α-loss without either computing it or its derivative, and achieves boosting compliant convergence using only the classical
assumptions of boosting, (R, WLA). The proof of Lemma 19 being very conservative, we can expect that the smallest value
of K of interest is smaller than the one we use, indicating that (162) should hold for substantially smaller limit values in (ii,
iii).
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A.9. Proof of Lemma 19

Define for short

F (u)
.
=

(
uα

uα + (1− u)α

)αc

−
(

(1− u)α

uα + (1− u)α

)αc

(163)

G(u)
.
= 1−

(
2 · (1− u)α

uα + (1− u)α

) 1
αc

, (164)

that we study for u ≥ 1/2 (the bound also holds by construction for u < 1/2). Define the following functions:

g(u)
.
= 1− (2u)

1
αc , (165)

h(z)
.
=

1

1 + z
, (166)

iα(u)
.
= uα, (167)

and uα
.
= h ◦ i−α ◦ h−1(u), f(u) .

= iαc(1− u)− iαc(u). We remark that g is convex if α ≥ 1 while f is concave. Both
derivatives match in 1/2 if

(αc)221−αc
= 1, (168)

whose roots are αc < 6. It means if α ≥ 6/5 = 1.2, then (g − f)′ ≥ 0, and so if we measure

k∗
.
= arg sup

k
sup

x,x′:g(x)=f(x′)=k

|x− x′|,

then k∗ is obtained for x = 1, for which g(x) = 1− 2
1
αc = k∗. We then need to lowerbound x′ such that f(x′) = 1− 2

1
αc ,

which amounts to finding x∗ such that f(x∗) ≥ 1− 2
1
αc , since f is strictly decreasing. Fix

x∗ .
= 1− K

α
, (169)

A series expansion reveals that for x = x∗ and K = log 2,

f(x∗) = g(x∗) +O

(
1

α2

)
, (170)

and we thus get that there exists K ≥ log 2 such that

sup
k

sup
x,x′:g(x)=f(x′)=k

|x− x′| ≤ K

α
, (171)

or similarly for any ordinate value, the difference between the abscissae giving the value for f and g are distant by at most
K/α. The exact value of the constant is not so much important than the dependence in 1/α: we now plug this in the uαs
notation and ask the following question: suppose f(uα) = g(vα) = k. Since |uα − vα| ≤ K/α, what is the maximum
difference |u− v| as a function of α ? We observe

∂

∂u
uα = − α(u(1− u))α−1

(uα + (1− u)α)2
, (172)

∂2

∂u2
uα = α · (u(1− u))α−2((α− 2u+ 1)uα − (α+ 2u− 1)(1− u)α)

(uα + (1− u)α)3
, (173)

which shows the convexity of uα as long as (
u

1− u

)α

≥ α+ 2u− 1

α− 2u+ 1
, (174)
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a sufficient condition for which – given the RHS increases with u – is

u ≥

(
4

α−1

) 1
α

1 +
(

4
α−1

) 1
α

. (175)

Since u ≥ 1/2, we note the constraint quickly vanishes. In particular, if α ≥ 5, the RHS is ≤ 1/2, so uα is strictly convex.
Otherwise, scrutinising the maximal values of the derivative for α ≥ 1 reveals that if we suppose v ≤ δ for some δ, then
|u− v| is maximal for v = δ. So, suppose vα = ϵ and we solve for uα = K/α+ ε, which yields

u =

(
1− K

α − ε
) 1

α(
K
α + ε

) 1
α +

(
1− K

α − ε
) 1

α

(176)

=
((1− ε)α−K)

1
α

(K + εα)
1
α + ((1− ε)α−K)

1
α

, (177)

while the v producing the largest |u− v| is:

v =
(1− ε)

1
α

ε
1
α + (1− ε)

1
α

, (178)

so

|v − u| = (v − u)(ε) =
(1− ε)

1
α

ε
1
α + (1− ε)

1
α

− ((1− ε)α−K)
1
α

(K + εα)
1
α + ((1− ε)α−K)

1
α

. (179)

If we fix

ε =
1

α4
, (180)

then we get after separate series are computed in α→ +∞,

|v − u| = (v − u)(ε) =
log(1 + logK)

4α
+O

(
1

α2

)
(181)

≲
0.133

α
. (182)

The "forbidden interval" for v is then [
(α4 − 1)

1
α

1 + (α4 − 1)
1
α

, 1

]
≈

[
1

2
+

logα

α
, 1

]
; (183)

what is more interesting for us is the corresponding forbidden images for g(vα), which are thus

g ̸∈ αc ·
[
1− 1

α4
, 1

]
.
= Iα, (184)

where we use shorthand z · [a, b] .
= [az, bz]. This, we note, translates directly into observable edges since g is the

function we invert. Summarizing, we have shown that if (i) α ≥ 1.2 then for any u, v such that F (u) = G(v) ̸∈ Iα, then
|u− v| ≲ 0.133/α. It suffices to remark that Iα represents the set of forbidden weights to get the statement of the Lemma.

A.10. Proof of Theorem 11

Remark. Consider the following setup: h. ∈ [−1, 1], use the logistic loss surrogate for F and the derivative of Matusita’s
loss (just for illustration as the pseudo-inverse-link approximation of the logistic loss) for the weights (see e.g., (Nock &
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Nielsen, 2008) Table 1), we get in the worst case that ∆j(F ) ≤ 2 · sup
∣∣∣ 12 − x

2
√
1+x2

− 1
1+exp(x)

∣∣∣ < 0.24707. So, all we
need is |ej | > 0.24707 to get ζ < 1 constant. Since |ej | ∈ [0, 1], this constraint is more than reasonable and turns into a
very reasonable penalty in Q(F ) (Theorem 11).

Remark. PILBOOST and its convergence analysis bring a side contribution of ours: it is impossible to exactly encode in
standard machine types the inverse link of losses like the log loss, so the implementation of classical boosting algorithms
(Friedman, 2001; Friedman et al., 2000) can only rely on approximations of the inverse link function. Our results yield
convergence guarantees for the implementations of such algorithms, and (E) can be interpreted and checked in the context of
machine encoding. Two additional remarks hold regarding convergence rate: first, the 1/γ2 dependence meets the general
optimum for boosting (Alon et al., 2021); second, the 1/ε2 dependence parallels classical training convergence of convex
optimization (Thekumparampil et al., 2020) (and references therein). There is however a major difference with such work:
PILBOOST requires no function oracles for F (function values, (sub)gradients, etc.). This “sideways” fork to minimizing F
pays (only) a 1/(1− ζ)2 factor in convergence.

We proceed in two steps, assuming (WLA) holds for WL and (R) holds for the weak classifiers.

In Step 1, we show that for any loss defined by F twice differentiable, convex and non-increasing, for any z∗ ∈ R, as long
as F satisfies assumptions (E) and (C) for T iterations such that

T∑
t=0

w̃2
t ≥ 2F ∗(F (0)− F (z∗))

γ2(1− ζ)2(1− π2)
, (185)

we have the guarantee on the risk defined by F :

Ei∼S [F (yiHT (xi))] ≤ F (z∗). (186)

Let F be any twice differentiable, convex and non-increasing function. We wish to find a lowerbound△ on the decrease of
the expected loss computed using F :

Ei∼S [F (yiHt(xi))]− Ei∼S [F (yiHt+1(xi))] ≥ △, (187)

where with a slight abuse of notation we let Ht denote the learned real-valued classifier at iteration t. We make use of a
similar proof technique as in Nock & Williamson (2019, Theorem 7). Suppose

Ht+1 = Ht + βj · hj , (188)

index j being returned by WL at iteration t. For any such index j, any g : R→ R+ and any H ∈ RX, let

e(j, g,H)
.
= Ei∼S [yihj(xi) · g(yiH(xi))] , (189)

denote the expected edge of hj on weights defined by the couple (g,H). Furthermore, let

∆(g1, g2)
.
= |e(j, g1, Ht)− e(j, g2, Ht)| , (190)

denote the discrepancy between two expected edges defined by g1, g2, respectively.

There are two quantities we consider. First, let

X
.
= Ei∼S [(yiHt(xi)− yiHt+1(xi))F

′(yiHt(xi))] (191)
= βj · Ei∼S [yihj(xi) · −F ′(yiHt(xi))] (192)
= βj · e(j,−F ′, Ht) (193)

≥ βj · Ei∼S

[
yihj(xi) · f̃(−yiHt(xi))

]
− βj ·∆(−F ′, f̃s) (194)

= afe
2(j, f̃s, Ht)− afe(j, f̃s, Ht) ·∆(−F ′, f̃s) (195)

≥ af (1− ζ)e2(j, f̃s, Ht), (196)
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where f̃s(z)
.
= f̃s(−z) and finally (196) makes use of assumption (E). The second quantity we define is:

Y (Z)
.
= Ei∼S

[
(yiHt(xi)− yiHt+1(xi))

2F ′′(zi)
]
, (197)

where Z
.
= {z1, z2, ..., zm} ⊂ Rm. Using assumption (R) and letting F ∗ be any real such that F ∗ ≥ supF ′′(z), we obtain:

Y (Z) ≤ F ∗ · Ei∼S

[
(yiHt(xi)− yiHt+1(xi))

2
]

= F ∗ · β2
j · Ei∼S

[
(yihj(xi))

2
]

≤ F ∗ · β2
j ·M2

= F ∗a2M2 · e2(j, f̃s, Ht). (198)

A second order Taylor expansion on F brings that there exists Z .
= {z1, z2, ..., zm} ⊂ Rm such that:

Ei∼S [F (yiHt(xi))] = Ei∼S [F (yiHt+1(xi))] + Ei∼S [(yiHt(xi)− yiHt+1(xi))F
′(yiHt(xi))]

+Ei∼S

[
(yiHt(xi)− yiHt+1(xi))

2 · F
′′(zi)

2

]
, (199)

So,

Ei∼S [F (yiHt(xi))]− Ei∼S [F (yiHt+1(xi))] = X − Y (Z)

2

≥
(
1− ζ − F ∗aM2

2

)
a︸ ︷︷ ︸

.
=Z(a)

·e2(j, f̃s, Ht). (200)

Suppose we fix π ∈ [0, 1] and choose any

a ∈ 1− ζ

F ∗M2
· [1− π, 1 + π] . (201)

We can check that

Z(a) ≥ (1− ζ)2(1− π2)

2F ∗M2
, (202)

and so

Ei∼S [F (yiHt(xi))]− Ei∼S [F (yiHt+1(xi))] ≥
(1− ζ)2(1− π2)

2F ∗M2
· e2(j, f̃s, Ht). (203)

So, taking into account that for the first classifier, we have Ei∼S [F (yiH0(xi))] = F (0), if we take any z∗ ∈ R and we
boost for a number of iterations T satisfying (we use notation et as a summary for e2(j, f̃s, Ht) with respect to PILBOOST):

T∑
t=1

e2
t ≥ 2F ∗M2(F (0)− F (z∗))

(1− ζ)2(1− π2)
, (204)

then Ei∼S [F (yiHT (xi))] ≤ F (z∗). We now assume (WLA) holds, the LHS of (204) is ≥ Tγ2. Given that we choose
a = af in PILBOOST, we need to make sure (201) is satisfied for the loss defined by F , which translates to

F ∗ ∈ 1− ζ

afM2
· [1− π, 1 + π] , (205)

and defines assumption (C). To complete Step 1, we normalize the edge. Letting w̃i
.
= wi/

∑
k wk, w̃t

.
= 1⊤wt/m and

ẽt
.
=

et

w̃t
∈ [−M,M ], (206)
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which is then properly normalized and such that (204) becomes equivalently:

T∑
t=0

w̃2
t ẽ

2
t ≥ 2F ∗M2(F (0)− F (z∗))

(1− ζ)2(1− π2)
, (207)

and so under the (weak learning) assumption on ẽt that |ẽt| ≥ γ ·M , a sufficient condition for (207) is then

T∑
t=0

w̃2
t ≥ 2F ∗(F (0)− F (z∗))

γ2(1− ζ)2(1− π2)
, (208)

completing step 1 of the proof.

In Step 2, we show a result on the distribution of edges, i.e. margins. (208) contains all the intuition about how the rest of
the proof unfolds, as we have two major steps: in step 2.1, we translate the guarantee of (208) on margins, and in step 2.2,
we translate the “margin” based (208) in a readable guarantee in the boosting framework (we somehow “get rid” of the w̃2

t

in the LHS of (208)).

Step 2.1. Let Z .
= {z1, z2, ..., zm} ⊂ R a set of reals. Since F is non-increasing, we have ∀u ∈ [0, 1], ∀θ ≥ 0,

Pi[zi ≤ θ] > u⇒ Ei[F (zi)] > (1− u) inf
z
F (z) + uF (θ)

.
= (1− u)F ◦ + uF (θ), (209)

so if we pick z∗ in (208) such that

F (z∗)
.
= (1− u)F ◦ + uF (θ), (210)

then (208) implies Ei∼S [F (yiHT (xi))] ≤ (1− u)F ◦ + uF (θ) and so by the contraposition of (209) yields:

Pi∼S [yiHT (xi) ≤ θ] ≤ u, (211)

which yields our margin based guarantee.

Step 2.2. At this point, the key (in)equalities are (208) (for boosting) and (211) (for margins). Fix κ > 0. We have two
cases:

• Case 1: w̃t never gets too small, say w̃t ≥ κ, ∀t ≥ 0. In this case, granted the weak learning assumption holds on ẽt,
(208) yields a direct lowerbound on iteration number T to get Pi∼S [yiHT (xi) ≤ θ] ≤ u;

• Case 2: w̃t ≤ κ at some iteration t. Since the smaller it is, the better classified are the examples, if we pick κ small
enough, then we can get Pi∼S [yiHT (xi) ≤ θ] ≤ u “straight”.

This suggests our use of the notion of “denseness” for weights (Bun et al., 2020).

Definition 20 The weights at iteration t is called κ-dense iff w̃t ≥ κ.

We now have the following Lemma.

Lemma 21 For any t ≥ 0, θ ∈ R, κ > 0, if weights produced in Step 2.1 of PILBOOST fail to be κ-dense, then

Pi∼S [yiHT (xi) ≤ θ] ≤ κ

f̃(−θ)
. (212)
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Proof Let Z .
= {z1, z2, ..., zm} ⊂ R a set of reals. Since f̃ is non-decreasing, we have ∀θ ∈ R,

Ei[f̃(zi)] ≥ Pi[zi < −θ] · inf
z
f̃(z) + Pi[zi ≥ −θ] · f̃(−θ)

= Pi[zi ≥ −θ] · f̃(−θ) (213)

since by assumption inf f̃ = 0. Pick zi
.
= −yiHT (xi). We get that if Pi∼S[−yiHT (xi) ≥ −θ] = Pi∼S[yiHT (xi) ≤ θ] ≥

ξ, then w̃t
.
= Ei∼S[f̃(−yiHT (xi))] ≥ ξ · f̃(−θ). If we fix

ξ =
κ

f̃(−θ)
, (214)

then w̃t < κ implies (212), which ends the proof of Lemma 21.

From Lemma 21, we let κ .
= ξ∗ · f̃(−θ) and u

.
= ξ∗ in (211). If at any iteration, HT fails to be κ-dense, then

Pi∼S [yiHβ(xi) ≤ θ] ≤ ξ∗ and classifier Hβ satisfies the conditions of Theorem 11 (this is our Case 2 above).

Otherwise, suppose it is always κ-dense (this is our Case 1 above). We then have at any iteration T
∑

t<T w̃2
t ≥ Tξ2∗ · f̃2(−θ)

and so a sufficient condition to get (208) is then T ≥ 2F∗(F (0)−F (z∗))

ξ2∗f̃
2(−θ)γ2(1−ζ)2(1−π2)

, where we recall z∗ is chosen so that

F (z∗) = (1− ξ∗)F
◦ + ξ∗F (θ). This ends the proof of Theorem 11 (with the change of notation ξ∗ ↔ ε).

B. Additional Experimental Results
In this section, we provide additional experimental results and discussion to accompany Section 6 in the main text. The code
for all of our experiments (including the implementation of PILBOOST) can be found at the following github repository link:

https://github.com/SankarLab/Being-Properly-Improper

B.1. General Details

Most of the experiments were performed over the course of a month on a 2015 MacBook Pro with a 2.2 GHz Quad-Core
Intel Core i7 processor and 16GB of memory. The Adaptive α experiments were performed on a computing cluster and each
required about 30 minutes of compute time. Code can be found in PILBoostExperiments.py, AdaptiveAlphaMenon.py, Adap-
tiveAlphaALL.py. Averaged experiments employed 10-fold cross validation, and when twisters were present, randomization
occurred over the twisted samples as well. All algorithms across all experiments ran for 1000 iterations.

B.2. Discussion of af and α

In general, we found that for most experiments, 0.1 ≤ af ≤ 15. From the theory, we know that if af is too small, boosting
needs to occur for a very long time, and if af is too large, almost no loss fits to (C) (equivalently, (C) fails for us). We also
generally found that PILBOOST was not particularly sensitive to the choice of af as long as it was in the “right ballpark”,
hence our use of integer or rational values of af for all experiments. When there is twist present, we found that α > 1
performed best, where α∗ increased as the amount of twist increased (both observations are conistent with our theory, see
for example Lemma 3.4). Regarding the relationship between af and α, this appeared to depend on the dataset and depth of
the decision trees.
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B.3. Random Class Noise Twister

Dataset Algorithm Random Class Noise Twister
p = 0 0.15 0.3

AdaBoost 0.966± 0.015 0.905± 0.027 0.856± 0.033
us (α = 1.1) 0.944± 0.029 0.912± 0.013 0.861± 0.042
us (α = 2.0) 0.956± 0.018 0.938± 0.017 0.905± 0.039cancer
us (α = 4.0) 0.957± 0.014 0.917± 0.012 0.922± 0.032

XGBoost 0.971± 0.012 0.861± 0.033 0.733± 0.031

Table 2: cancer feature random class noise. Accuracies reported for each algorithm and level of twister. Depth one trees. For
α = 1.1, af = 7, for α = 2, af = 2, and for α = 4, af = 1.

Figure 12: Random class noise twister on the diabetes dataset. Depth 3 trees. af = 0.1 for all α.

Dataset Algorithm Random Class Noise Twister
p = 0 0.15 0.3

AdaBoost 1.000± 0.000 0.949± 0.016 0.830± 0.043
us (α = 1.1) 1.000± 0.000 0.981± 0.013 0.886± 0.033
us (α = 2.0) 1.000± 0.000 0.992± 0.009 0.900± 0.027xd6
us (α = 4.0) 1.000± 0.000 0.999± 0.003 0.927± 0.023

XGBoost 1.000± 0.000 0.912± 0.016 0.776± 0.041

Table 3: xd6 random class noise. Accuracies reported for each algorithm and level of twister. Depth three trees. af = 8 for
all α. Note that for 0% noise α = 4 used af = 0.1.

Dataset Algorithm Random Class Noise Twister
p = 0 0.10 0.20 0.30

AdaBoost 0.902± 0.002 0.900± 0.004 0.898± 0.005 0.894± 0.004
us (α = 1.1) 0.901± 0.005 0.899± 0.003 0.897± 0.004 0.890± 0.004
us (α = 2.0) 0.901± 0.004 0.895± 0.004 0.895± 0.003 0.894± 0.004Online Shopping
us (α = 4.0) 0.898± 0.003 0.873± 0.009 0.892± 0.005 0.889± 0.005

XGBoost 0.893± 0.005 0.874± 0.002 0.842± 0.006 0.782± 0.008

Table 4: Accuracies reported for each algorithm and level of twister. Random training sample selected with probability p.
Then, for selected training sample, boolean feature flipped with probability p for each feature, independently. Depth three
trees. For α = 1.1, af = 7, for α = 2, af = 8, and for α = 4, af = 15.
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B.4. Insider Twister

Figure 13: Box and whisker visualization of scores associated with Figure 3. For all insider twister results, we fixed af = 7.
Under no twister, α = 1.1, has accuracy 0.901±0.003, and XGBoost has accuracy 0.892±0.003. Under the insider twister,
α = 1.1, has accuracy 0.850± 0.002, and XGBoost has accuracy 0.829± 0.016; under the Welch t-test, the results have a
p-value of 0.004.

B.5. Discussion of XGBoost

Algorithm Average Compute Times
cancer xd6 diabetes shoppers

AdaBoost 1.41 0.75 1.11 13.68
us (α = 1.1) 2.19 2.01 2.19 30.88
us (α = 2.0) 1.11 0.79 2.09 21.85
us (α = 4.0) 0.96 1.35 1.82 13.01

XGBoost 0.29 0.28 0.46 3.16

Table 5: Average compute times per run (10 runs) in seconds across the datasets. Note that the values of af are chosen
identically to choices in Section B.3.

XGBoost is a very fast, very well engineered boosting algorithm. It employs many different hyperparameters and customiza-
tions. In order to report the fairest comparison between AdaBoost, PILBOOST , and XGBoost, we opted to keep as many
hyperparameters fixed (and similar, e.g., depth of decision trees) as possible. That being said, it appears that XGBoost
inherently uses pruning, so the algorithm pruned while the other two did not. Further details regarding three other important
points related to XGBoost:

1. Please refer to Table 5 for averaged compute times for the three different algorithms. In general, XGBoost had the far
faster computation time among the three. However, note that PILBOOST was not particularly engineered for speed.
Indeed, we estimate that the computation of f̃ accounts for 40− 50% of the total computation time, which we believe
can be improved. Thus, we leave the further computational optimization of PILBOOST for future work.

2. For details regarding regularization, refer to Figure 14, where we report a comparison of regularized XGBoost and
PILBOOST such that the training data suffers from the insider twister. We find that regularization improves the ability
of XGBoost to combat the twister, but it is not as effective as PILBOOST.

3. For details regarding early stopping, refer to Figure 16, where we report a comparison of early-stopped XGBoost (on
un-twisted validation data, i.e., cheating) and PILBOOST such that the training data suffers from the insider twister.
We find that even early-stopping does not improve XGBoost’s ability to combat the insider twister as effectively as
PILBOOST.
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Early stopping - on an untwisted hold-out set contradicts our experiment. With early stopping enabled on a twisted hold-out
set, XGBoost generally did not early stop.

Figure 14: With regularization (where λ = 20), we still observe that the feature importance of XGBoost is perturbed. Note
that PILBOOST is not regularized.

B.6. Adaptive α Experiment
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Figure 15: Scores associated with Figure 14.

Figure 16: With early stopping (where XGBoost has access to clean validation data - cheating scenario), we still observe
that the feature importance of XGBoost is perturbed. Note that PILBOOST is not early stopped.
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Figure 17: Scores associated with Figure 16.

Figure 18: Extended version of Figure 2 with two additional adaptive α methods. Original Learned PILBOOST estimates
its choice of α by using XGBoost as an oracle. That is, the method trains XGBoost on the noisy data, then computes
its confusion matrix on a clean validation set. From the confusion matrix, the label flip probability p is estimated using
p = avg

(
FP

TP+FP ,
FN

FN+TN

)
. Next, we estimate ηc and ηt with ηc = FN+TP

FP+TP+FN+TN and ηt =
FP+TP

FP+TP+FN+TN , respectively.
Lastly similar to Menon PILBOOST, using the estimates of p, ηc, and ηt, we apply the formula in Lemma 8(c) and the
SLN formula given just before Lemma 4 to obtain an estimate for α∗. Taylor Series PILBOOST is identical to Original
Learned PILBOOST except at the last step, where a Taylor series approximation of the formula in Lemma 8(c) is used
instead. We find that Menon’s Method also outperforms both of these methods on the xd6 dataset, except for when Original
Learned PILBOOST slightly outperforms Menon’s Method in the very high noise regime. Even stronger, note that both
Original Learned PILBOOST and Taylor Series PILBOOST assume more information than “Menon’s Method”, which only
uses the noisy training data, not a clean validation set.
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Figure 19: Companion Figure to Figures 2 and 18 on the diabetes dataset.

Figure 20: Companion Figure to Figures 2 and 18 on the cancer dataset.


