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A Variational Formula for Infinity-Rény1 Divergence
with Applications to Information Leakage

Gowtham R. Kurri, Oliver Kosut, Lalitha Sankar

Abstract—We present a variational characterization for the
Rényi divergence of order infinity. Our characterization is related
to guessing: the objective functional is a ratio of maximal
expected values of a gain function applied to the probability of
correctly guessing an unknown random variable. An important
aspect of our variational characterization is that it remains
agnostic to the particular gain function considered, as long as it
satisfies some regularity conditions. Also, we define two variants
of a tunable measure of information leakage, the maximal -
leakage, and obtain closed-form expressions for these information
measures by leveraging our variational characterization.

I. INTRODUCTION

Rényi divergence was introduced by Rényi [1] to quantify
a measure of distance between two probability distributions.
It is parameterized by «, called its order. It is closely tied to
Rényi entropy [1] in the same way as the Kullback-Leibler
divergence (which is the Rényi divergence of order 1) is tied
to the Shannon entropy. The Rényi divergence has numerous
applications in information theory and related fields; this
includes hypothesis testing [2], the multiple source adaptation
problem [3], cryptography [4], uncertainty analysis of rare
events [5] (see [6] for more applications).

A variational characterization for a divergence transforms
its definition into an optimization problem. Variational char-
acterizations for Rényi divergences of order @ € R\ {0}
are studied in the literature [6]-[11]. In addition to being
compelling mathematical tools to analyze probabilistic models,
these characterizations have applications in hypothesis testing,
divergence estimation from the data, generative adversarial
networks (GANSs), etc. In particular, Shayevitz [7], van Erven
and Harremoé&s [6], and Anantharam [9] study a variational
characterization where the objective functional is a linear
combination of relative entropies, thereby offering a new
operational interpretation for Rényi divergence in a two-sensor
composite hypothesis testing framework [7]. Birrell et al. [10]
study a variational characterization where the objective func-
tional involves exponential integrals of bounded measurable
functions and efficiently estimate the Rényi divergence from
the data. This characterization was later used to formulate the
two-player min-max game in Cumulant GAN [11].

The focus of this paper is on variational characteriza-
tion for Rényi divergence of order oo, Do (Px|Qx) =

log max,cx Sf( ((f;)) This divergence naturally shows up in the
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literature on minimum description length principle in statistics
as the worst-case regret of mismatched coding [12] and is also
related to the separation distance used to bound the rate of
convergence to the stationary distribution for certain Markov
chains [13]. More recently, Rényi quantities of order oo are
also explored in the context of the entropy-power inequality
(EPI) [14] and common information [15]. Even though the
variational characterizations for Rényi divergence mentioned
earlier are presented for any finite order «, one can obtain
such characterizations for co-Rényi divergence by applying a
limiting argument (see the discussion above Proposition 1).
We develop a new variational characterization for co-Rényi
divergence, specifically, we prove

su 7 E ~ru PA U
Do (Px||@x) = sup log Ppy BU~P [9(P5(U))] 7
Poix SuPp, Bungu [9(Py(U))

where Py(u) = > Px(v)Pyix(ulr), Qu(u) =
> . Qx(x)Pyx(ulz), and g : [0,1] — R, is an arbitrary
gain function satisfying some mild assumptions; see
Theorem 1. The expressions in the ratio in (1) capture the
maximal expected gains in guessing an unknown random
variable (RV) U distributed according to Py or Qyu,
respectively. In a way, this ratio compares the distributions
Px and Qx and is certainly dependent on the gain function
g. However, our variational characterization in (1) shows
that this ratio when optimized over all the channels Py x
remains constant irrespective of the gain function used. Our
characterization differs from earlier characterizations in view
of its connection to guessing and, more importantly, because
of its robustness to the gain function.

We also explore the connection and application of our
variational characterization to information leakage measures.
Recently, Issa et al. [16] introduced the measures, maximal
leakage (MaxL) and maximal realizable leakage (MaxRL). For
a given distribution Pxy, noting that D (Pxy||Px X Py)
equals the MaxRL [16, Theorem 13], our variational charac-
terization for this divergence complements that of the MaxL
in terms of gain functions [16, Theorem 5], [17, Theorem 10].
MaxL was later generalized in [18] to a family of leakages,
maximal a-leakage (Max-aL), that allows tuning the measure
to specific applications. We now define two variants of Max-
al, namely opportunistic maximal- and maximal realizable-«
leakage, and obtain closed-form expressions for them (Theo-
rems 2 and 3) using our variational characterization.
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II. A VARIATIONAL CHARACTERIZATION OF RENYI
DIVERGENCE OF ORDER INFINITY

We begin by reviewing the definition of Rényi divergence.

Definition 1. (Rényi divergence of order o [1]) The Rényi di-
vergence of order o € (0,1)U (1, 00) between two probability
distributions Px and QQx on a finite alphabet X is defined as

[ log <Z Px(x) Qx(xf‘*) e

reX
It is defined by its continuous extension for o« = 1 and oo = 00,
respectively, and is given by

D.(Px||Qx) =

Px(x)
1(P P 3
(Px[|@Qx) ;ex x ( Ox(@)’ 3)
_ PX (.’17)
Do (Px||Qx) = max log Ox(@) 4)

We present our main result below.

Theorem 1 (A variational characterization for Do (-||-)).
Given two probability distributions Px and Qx on a finite
alphabet X, let g : [0,1] — [0,00) be a function satisfying
the following assumptions:

e g(0) =0 and g is continuous at 0,

o 0 <supyeoq)9(p) < oo
Then, we have

supp. Ev~p, [Q(PU(U))}
DOO P = 1 £ )
el = B o B 0P (0)

where Py(u) = > Px(xz)Pyx(ulz) and Qu(u) =
22 @x (2) Pyx (ulz).

Remark 1. Interestingly, there are non-positive gain functions
too that do not satisfy the conditions in Theorem 1 but (5) still
holds. For example, g(¢f) = logt is one such function (see
Appendix A for details).

The proof of Theorem 1 is in Section IV-A. Some examples
of gain function g that satisfy the conditions in Theorem 1 are

p*, {p=1/2},

We obtain the following corollary from Theorem 1 by substi-
tuting the latter gain function g, (t) = ﬁtafl, where a €
(1, 00) (related to a class of adversarial loss functions, namely,
a-loss [18]) and using [18, Lemma 1] which gives closed-form
expressions for the corresponding optimization problems in the
numerator and the denominator in (5).

9(p) = 1p “a, where a € (1, 00).

Corollary 1. Given two probability distributions Px and Qx
on a finite alphabet X, we have, for o € (1,00),

Deo(Pxl|Qx) = sup log e VWIS )
Popx (32, Qu(u)®) =
where Py(u) = 3 Px(x)Pyx(ulz) and Qu(u) =

> e Qx () Py x (ulz).

As mentioned earlier, we note that the existing variational
characterizations for D, (-||-) (with finite «) also give rise to
variational characterizations for D, (-||-) by taking limit o —
oo. Shayevitz [7] and Birrell et al. [10] proved that

aD(Rx||P
Do(Px||Qx)= sup (D(Rx|Qx)— w)
Rx:Rx < Px o — 1

(7N
and
Do (Px|@x)

logEx (a—1)g(X)
= Ssup <OZ Oglhx~Qx€ lOgEXNPXeag(X)),
g X—=R a—1
3

respectively (more general forms of (7) appear in [6], [8], [9]).
One can obtain the variational characterizations for D (-||-)
by taking the limit o — oo in (7) and assuming interchange-
ability of the limit and the supremum; one can similarly do
so, in (8), using a change of variable f = e*Y and assuming
interchangeability of the limit and the supremum. For the
sake of completeness and rigor, we summarize the resulting
variational forms for D (-||-) in the following proposition and
present a proof in Appendix B.

Proposition 1. Given two probability distributions Px and
Qx on a finite alphabet X, we have

Do (Px||Qx) = sup  (D(Rx|Qx)— D(Rx||Px)),
Rx:Rx<Px

9
Ex~py [f(X)]

Do(Px||Qx)= sup log "= (10)
f:X—[0,00) E’XNQX [f(X)}

III. APPLICATIONS TO INFORMATION LEAKAGE
MEASURES

The leakage measures maximal leakage [16] and maximal
a-leakage [18] (including its variants defined here) can be
expressed in terms of the Sibson mutual information.

Definition 2 (Sibson mutual information of order « [19]). For
a given joint distribution Pxy on finite alphabet X x ), the

Sibson mutual information of order o € (0,1) U (1,00) is
I3(8;Y) logz (Z Px () Py x (y|X)~ )
yeY \zek

It is defined by its continuous extension for o« = 1 and o = 00,
respectively, and is given by

I3(X;Y) = I(X;Y) (Shannon mutual information), (11)
I5(X;Y) =1 p : 12
ogzxpm?x vix (y|z) (12)

We now review maximal a-leakage [18], and define some
variants of it.
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Definition 3 (Maximal a-leakage [18]). Given a joint distri-
bution Pxy on finite alphabet X XY, for o € (1, 00), the max-
imal a-leakage from X to'Y is defined as L2(X —Y) =

Q=

sup G, > yespp(vy Py (0) (2, Popy (uly)®)
(2, Po(u)e)=

viu-x-ya—1
(13)

Maximal a-leakage captures the information leaked about
any function of the random variable X to an adversary that
observes a correlated random variable Y. Liao et al. [18]
showed that

LI(X =Y)=sup Ii()Z'; Y),

Pz

(14)

where the supremum is over all the probability distributions
Pg on the support of Px. Maximal o-leakage recovers max-
imal leakage [16], another measure of information leakage,
when a — oo.

Motivated by Issa et al. [16, Definitions 2 and 8], we define
the following variants of maximal a-leakage depending on the
type of the adversary. In particular, the definition of maximal
a-leakage corresponds to an adversary interested in a single
randomized function of X. However, in some scenarios, the
adversary could choose the guessing function depending on
the realization of Y, leading to the following definition.

Definition 4 (Opportunistic maximal a-leakage). Given a joint
distribution Pxy on a finite alphabet X x Y, for a € (1, 00),
the opportunistic maximal a-leakage is L2*(X —Y) =

(S Pory (uly)®)
(2, Pu(u)e)®

Q=

1 log > Py

y€Esupp(Y)

sup

a — U:U-X-Y

15)

Maximal a-leakage captures the average (over ))) guessing
performance of the adversary. In some scenarios, it might be
relevant to consider the maximum instead of the average.

Definition 5 (Maximal realizable «-leakage). Given a joint
distribution Pxy on a finite alphabet X x ), for o € (1, 00),
the maximal realizable a-leakage is L7™(X —Y) =

1
X g DA pEsumn(Y) (2, Pupy (uly)®)

(S, Pu(w)e)®

sup
viu-x-y a—1

(16)

Unlike the expression for maximal a-leakage in (14), inter-
estingly, it turns out that the closed-form expressions for the
opportunistic maximal «-leakage and maximal realizable -
leakage do not explicitly depend on « (except via the scaling
factor —25). This is a consequence of the robustness of our
variational characterization to the gain function (Corollary 1).
We now present the closed-form expressions for these leak-
ages.

Theorem 2 (Opportunistic maximal a-leakage). Given a joint
distribution Pxvy on finite alphabet X X ), the opportunistic
maximal «-leakage, for a € (1,00), is given by
[o(X 5 Y) = %J;(X; Y). (17)
o —
Theorem 3 (Realizable maximal a-leakage). Given a joint
distribution Pxy on finite alphabet X x ), the realizable
maximal «-leakage, for a € (1,00), is given by
Lomn (X S5 Y) = — 2 Doo(Pxy|[Px x Py). (18)
a—

The proofs of Theorems 2 and 3 are given in Sections IV-B
and IV-C, respectively. Theorems 2 and 3 recover the ex-
pressions for opportunistic maximal leakage and maximal
realizable leakage [16, Theorems 2 and 13], respectively, as
a — oo. Finally, it can be inferred from the above expressions
that opportunistic maximal 1-leakage and maximal realizable
1-leakage are both equal to co as o — 1'.

IV. PROOFS
A. Proof of Theorem 1
We first prove the lower bound LHS > RHS. Consider

supp, Eu~p, 9(Pg(U))

A Supp, Bogug(P (U)

~ up log supp, >, Px () Py x (ulz)g( Py (u)) (19)
Poix  SWPp, Doy, @x (@) Puix (ulz)g(Py(u))

- supmflog > e Px (@) Py x (u|2)g( Py (u)) 20)
Pyix Py > @x(2)Pyix (ulz)g(Qp (w))

< sup sup log 2o uPX( My x(ulz)g(Fy (u 21

Pyx P,

Px(x) >, Puix(ulz)g(Py(u))
o (1))

< sup sup max
Pyix Py z:Px (2)>0

(P (w))

> e Qx (@) Pux (ulx)g(Fp (u))
%)

)

x (@) 22, Puix (u

z)g(P,

(22)

_ PX(QT)
o x: Pr)r(laa:)§>0 Qx(I) (23)
Do (Px|Qx). 24

where (22) follows because 20 bl < max; b—l, for b; > 0, Vi.

Now we prove the upper bound LHS < RHS. We lower
bound the RHS of (5) by choosing a specific “shattered” Py x.
We pick a letter *, and let & = {2} W4, ,,. Uy, where

|U.| = m for each x # x*. Then define
1 u=x =z
Pyix(ulz) = §1/m w €Uy, x # a*, (25)
0 otherwise.

'Note that maximal 1-leakage is equal to Shannon channel capacity and
Shannon mutual information when we define it using the supremum first and
the limit next, and the limit first and the supremum next, respectively [18,
Theorem 2]. We can show that the latter way of defining the opportunistic
maximal 1-leakage and the maximal realizable 1-leakage also yields oo.
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Note that
) Px(x) u=z"
FPulu) = {PX(JJ)/m, € Uy, # x* (26)
and
_ Qx (z%) u=x*
Qo) = {Qx(x)/m welpata

Consider the numerator of the objective function in the RHS
of (5). We have

sup Eunpy [9(Py (U))] = sup > Py(u)g(Py(u)  (28)
> suP Px (27)g(Pp(z*)) (29)
= Px(2*) sup g(q). (30)

q€0,1]

Note that the expression in (30) is finite because of the
assumption on g that sup,c(o.1) 9(q) < oc.

To bound the denominator of the objective function in the
RHS of (5), we will need the upper concave envelope of g,
denoted ¢g**. Since g is a function of a scalar, its upper concave
envelope can be written as

9" (q) = sup Ag(a) + (1 —A)g(b).
a,b,A€[0,1]:aA+b(1—X)=q

€29

We claim that ¢**(0) = 0 and ¢** is continuous at 0. Fix
some € > 0. It suffices to show that there exists 6 > 0 where
g**(q) < e for all ¢ € [0, ]. By the assumption that g(0) =0
and g is continuous at 0, there exists a  small enough so
that g(q) < ¢/2 for all ¢ € [0,/5]. Now, for any ¢ € [0, d],
consider any a,b, A where aX + b(1 — X) = ¢. We assume
without loss of generality that a < ¢ < b. If b < \/3, then we
have Ag(a) + (1 — A\)g(b) < €/2. If b > /3, then we have

g=ar+b(1—X)>b1-X)>V51-X). (32
Sowegetl—A<%§%§\/S.Thus
Ag(a) + (1= N)g(b) < e/2+ V5 sup g(g) <e, (33)

q€0,1]

where (33) holds for sufficiently small §, and again we have
used the assumption that sup,¢(o,1) 9(¢) < oo. This proves that
9**(q) < e whenever g € [0,4]. In particular, for sufficiently
large m,

sup  ¢"(q) <e. (34)

q€[0,1/m]

Now the denominator in (5) can be upper bounded as

SIEP Ev~qu [Q(PU(U)))]

U

= sup > Quw)g(Py(u) (35)

—sup(@x (a9 (Pp () + Y Qxla) 3 —g(Py ()
U THET* uEU,

(36)

< sup Qx (") (Py () + 3 Qx()g (Y Py (w)

TH#T UEU, (37)

< swp Qx(r)gl@) + Y Qxle) swp g7 Y
4€[0,1] s q€[0,1/m)

< swp Qx(r*)g(a) + (1 - Qx(x))e (39)

q€[0,1]

where (37) follows from the definition of the upper concave
envelope and (39) follows from (34) for sufficiently large m.
Putting together the bounds in (30) and (39), we have

supp, Ev~p, 9(Py(U))
Sr, By 975 (0))
> log max sup Wacto P ()90
2 >0 SUPuep 1) @x (%)g(q) + (1 — Qx(z%))e

sup log

Py x

(40)
sup Px(z%)g(q)
=1 ec[0.1] 41
B I SUpgeqo,1) @x (7*)9(q) @D
N Px(l‘*)
= log max Ox (@) (42)
= Doo (Px||@x), (43)

where (42) uses the assumption that sup,co.1)9(q) < oc.
Finally, we note that the assumption supgcpo,1)9(q) > 0 is
to ensure that the objective function in (5) is well-defined. In
particular, for any Py x, fix a u’ such that Py (u') > 0. Then
we have

supEunpy [9(Py(U))] = supg(Py(u))Pu(u')  (44)
Py Py
= Py(v') sup g(q) >0. (45)
q€[0,1]
Similarly, supp, Ev~q, [9(P;(U))] > 0.
B. Proof of Theorem 2
From the expression in (15), we have
LMY = Y)
1
o 2w Pupy (uly)®) ©
p—] log Z Py(y) sup ( I ;)
yEsupp(Y) UU-X-Y (3, Py(u)*)=
(46)
o Pxy(zly)
= log Z Py (y) max —_
a-1 y:Py (y)>0 w:Pxjy (zly)>0  Px ()
47)
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« P, Yy
= a_llog Z Py (y) p n( )50 ?;XE )| )
Py (3)>0 z:Px |y (z|y Y \Y
(48)
«
- a—1 log Z :E:PI)I:?;:)§>O PY‘X(y|I) (49)
y:Py (y)>0
= 1 (X3 Y), (50)

where (47) follows from Corollary 1 and (48) follows from
the Bayes’ Rule.

C. Proof of Theorem 3

From the expression in (16), we have

LMX =Y)

Q=

Y oe X yEsupp(Y) (Xu Pupy (uly)®)

sup 1
viv-x-y «—1 (X, Pu(u)e)=
1
P le%
=2 Jog max sup (L Py (uly) 1) (51)
a—1 “yesupp(Y)v.u-Xx-Y (3, Pu(u)®)=
P
- log max max L() (52)
a—1 y: Py (y)>0 z: Px |y (z|y)>0 Px($>
(6% PXY(-T, y)
= lo max —_— (53)
a—1 8 (ay):Prr(ey)>0 Px(z) Py (y)
a
= Do (Pxyl|[Px x Py), (54)

-1
where (52) follows from Corollary 1.

APPENDIX A
VARIATIONAL CHARACTERIZATION FOR D (Px||@Qx)
WITH GAIN FUNCTION g(t) = logt

Here we show that (5) holds for the non-positive gain
function g(t) = logt that does not satisfy the conditions in
Theorem 1. The proof of the lower bound follows exactly
along the same lines as that of Theorem 1 with the only
difference that (22) holds for negative gain functions too
noticing that %l - < max; g, for b; <0, Vi.

For the upper bound we ﬁrst note that

SI‘;IPEUNPU [log Py (U)] = —inf (Hp(U) + D(Pyl|Py))

— —Hp(U). (55)

We lower bound the RHS in (5) with gain function g(t) =
log? by choosing a specific “shattered” Py x. Let U =
Weexle, [Uz| = my. Define Pyx(ulz) = n% u € Uy
So, we have

Supp, Eu~py, [logP U } _HP(U

sup (56)
Pyix SUPp, Ev~qu DOg QU U ] _HQ(U

_ 2w (X Px(@)Pyx (ulz)) log (3, Px (x) Pyjx (ulx))
> (2, Qx (2) Pyx (ulx)) log (Y-, Qx SE)PU|X(U|~T))
(57)

z) 1o L‘@

Zz Qx(z)log QX(I)

—Hp(X)/logm,- — Px (")

- (59)
—Hg(X)/logmy — Qx (z*)
Px(x*)
(60)
 Qx(z7)
:2Doo(PXHQX)’ 61)
where (59) follows by fixing an x* € argmax, PX(w) and

choosing m, = 1, for z # z*
taking limit m,~ — oco.

, and (60) then follows by

APPENDIX B
PROOF OF PROPOSITION 1

For any Rx < Px, consider
D(Rx||@Qx) — (RX“PX)

- . Rx(z)
= ;Rx( )log Z Rex(w)log 5 05 (62)
= 3" Ry(2)log S))‘( (?) (63)
< Z Rx(x) (mﬁx log gf(((i,))) (64)
= rnax O, PX(IJ)

8 G ) ©)
= Doo(Px[|@x)- (66)

Moreover, for Rx such that Rx(z*) = 1 for a fixed z* €
arg max X(“”) (64) is tight. This proves (9).

To prove (10), for the upper bound, we give a choice of
the function f for which the objective function in the RHS
of (10) is equal to Doo(Px||Qx). In particular, fix an z* €
arg max g’;{ ((i)) and consider a function f defined by

~ 1, ifx=xa",
@) = {O, otherwise (©67)
Clearly, we have
Exory[f(X)] _\ Px(@) _ o 68
BrgnIX)]  E Q) D lI@x) (69
For the lower bound, consider
Ex~py [f(X)] > Px(x)f(2)
1 = log
% B ] X, Ox@)/ (@) ©
Px(2)f(x)
< O ) () 7
Px(l‘)
= max log Ox(@) DOO(PX||QX()71)

where (70) follows from the fact that Z" a1 < max; b , for
b; > 0, Vi. Taking supremum over all f, we get

Ex~py [f(X)] Px ()
log —/——2 2= ]
o ) B By FO)] = BN Oy P
Do (Px||Qx)- (73)

This proves (10).
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