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Abstract—Most differential privacy mechanisms are applied
(i.e., composed) numerous times on sensitive data. We study the
design of optimal differential privacy mechanisms in the limit of
a large number of compositions. As a consequence of the law
of large numbers, in this regime the best privacy mechanism is
the one that minimizes the Kullback-Leibler divergence between
the conditional output distributions of the mechanism given
two different inputs. We formulate an optimization problem to
minimize this divergence subject to a cost constraint on the noise.
We first prove that additive mechanisms are optimal. Since the
optimization problem is infinite dimensional, it cannot be solved
directly; nevertheless, we quantize the problem to derive near-
optimal additive mechanisms that we call “cactus mechanisms”
due to their shape. We show that our quantization approach
can be arbitrarily close to an optimal mechanism. Surprisingly,
for quadratic cost, the Gaussian mechanism is strictly sub-
optimal compared to this cactus mechanism. Finally, we provide
numerical results which indicate that cactus mechanisms outper-
form Gaussian and Laplace mechanisms for a finite number of
compositions.

The full proofs can be found in the extended version at [1].
This paper is Part I in a pair of papers, where Part II is [2].

I. INTRODUCTION

Likelihood ratios are at the heart of most privacy metrics.
Consider the problem of quantifying the privacy loss suffered
by a sensitive variable X given an observation of a disclosed
variable Y . For example, X may represent a dataset and
Y a randomized function computed over X . Privacy can be
measured in terms of properties of the privacy loss random
variable, defined as

Lx,x′ := log
dPY |X=x

dPY |X=x′
(Y ), (1)

where Y ∼ PY |X=x and x, x′ ∈ X := supp(X). The channel
PY |X is often referred to as a privacy mechanism.

Today, the most popular privacy definition (including, in
practice [3]–[5]) is differential privacy (DP), which quantifies
privacy in terms of Lx,x′ when x, x′ are close or “neighboring.”
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Thus, given a metric d : X × X → R, PY |X is said to be
(ε, δ)-differentially private ((ε, δ)-DP) [6] if

sup
d(x,x′)≤s

sup
A⊂Y

[
PY |X=x(A)− eεPY |X=x′(A)

]
≤ δ, (2)

where s determines when inputs x and x′ are neighboring,
and Y := supp(Y ). Intuitively, if a mechanism is (ε, δ)-
differentially private for sufficiently small ε and δ, then an
adversary observing Y cannot accurately distinguish between
small changes in X .

Most privacy mechanisms are applied several times on
sensitive data. Quantifying privacy guarantees under multiple
compositions of a mechanism is a challenging problem. In
the simple case where the same mechanism PY |X is indepen-
dently applied n times on data X generating output Y n, i.e.,
PY n|X =

∏n
i=1 PYi|X , the privacy loss random variable is

given by

Lnx,x′ :=
n∑
i=1

log
dPYi|X=x

dPYi|X=x′
(Yi), (3)

where Yi ∼ PYi|X=x. Differential privacy can be cast in terms
of the privacy loss random variable. The reader can directly
verify that n independent applications of a mechanism PY |X
is (ε, δ)-DP if

sup
d(x,x′)≤s

E
[(

1− e−(L
n
x,x′−ε)

)+]
≤ δ. (4)

From the law of large numbers, the distribution of Lnx,x′/n
will concentrate around its mean, the KL-divergence, as

1

n
E
[
Lnx,x′

]
= D

(
PY |X=x‖PY |X=x′

)
. (5)

Since the function f(u) := (1−e−nu+ε)+ is non-decreasing, in
the limit of large compositions, privacy mechanisms with lower
values of D(PY |X=x‖PY |X=x′) will enjoy stronger (ε, δ)-DP
guarantees. Thus, regardless of the exact distribution of the
privacy loss random variable, its mean (5) plays a central role
in the privacy guarantees offered after many compositions. In
applications such as privacy-ensuring machine learning, the
number of compositions frequently exceeds n = 103.

We study the design of privacy mechanisms with favorable
(ε, δ)-DP guarantees under a large number of compositions.
Our approach departs from previous work in that we focus on
the large-composition regime instead of optimizing (2). Since
after many compositions, privacy will be mostly determined
by the mean of the privacy loss random variable (5), we solve
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the optimization problem given in

inf
PY |X∈R

sup
|x−x′|≤s

D(PY |X=x‖PY |X=x′)

subject to sup
x∈R

E[c(Y − x) | X = x] ≤ C,
(6)

where c : R→ [0,∞) is a pre-specified cost function, s, C > 0
are constants, and R is the set of all Markov kernels on R.
Note that the cost function is critical: without the constraint, (6)
can be trivially solved by any mechanism that is independent
of X .

Our main contributions are as follows:
1) We show (Thm. 1) that additive mechanisms—i.e., where

Y = X + Z for a noise variable Z independent of X—
suffice to minimize (6).

2) Even restricting to additive mechanisms, (6) is an infinite-
dimensional optimization problem, so it cannot be solved
directly. Instead, we formulate an approximate problem that
is finite dimensional and can be solved efficiently. We prove
(Thm. 3) that this approximate problem can get arbitrary
close to optimal.

3) We solve the approximate problem to derive (near) optimal
mechanisms for the quadratic cost function, i.e., c(x) = x2.
We dub the resulting mechanism the “cactus mechanism”
due to the shape of the distribution (see Fig. 1). Surprisingly,
the Gaussian distribution is strictly sub-optimal for (6), as
the cactus mechanism achieves a smaller KL divergence for
the same variance.

4) We bound the (ε, δ)-DP for the cactus mechanism in the
context of sub-sampled stochastic gradient descent using
the moments accountant method. Compared to the same
analysis applied to a Gaussian mechanism, our approach
does better for a reasonable number of compositions.

A. Related Work

Identifying optimal mechanisms is a fundamental and
challenging problem in the domain of differential privacy.
There have been several works in the literature that have
attempted to address this problem. For instance, within the
class of additive noise mechanisms and under the single shot
setting (i.e., no composition), Ghosh et al. [7] showed that the
geometric mechanism is universally optimal for (ε, 0)-DP in a
Bayesian framework, and Gupte and Sundararajan [8] derived
the optimal noise distribution in a minimax cost framework.
For a rather general cost function, the optimal noise distribution
was shown to have a staircase-shaped density function [9]–[11]

Geng and Viswanath [12] showed that for (ε, δ)-DP and
integer-valued query functions, in the single-shot setting, the
discrete uniform noise distribution and the discrete Laplacian
noise distribution are asymptotically optimal (for L1 and L2

costs) within a constant multiplicative gap in the high privacy
regime (i.e., both ε and δ approach zero). Geng et al. [13]
studied the same setting except for real-valued query functions
and identified truncated Laplace distribution is asymptotically
optimal in various high privacy regimes. Finally, Geng et
al. [14] showed that the optimal noise distribution for real-
valued query and (0, δ)-DP is uniform with probability mass
at the origin. Our work differs from these works in that we

focus on the optimal mechanisms under a large number of
compositions, rather than the single shot setting.

When considering a composition of n mechanisms, an
important line of research has been to derive tighter com-
position results: relationships between the DP parameters
of the composed mechanism and the parameters of each
constituent mechanism. There are several composition results
in the literature, such as [15]–[20]. More recently, Dong et
al. [21] have proposed a composition result for large n and
for a new variant of DP, called Gaussian-DP, that leverages
the central limit theorem. These results can be sub-optimal
(see, for example, [22, Fig. 1]). Consequently, numerical
composition results have gained increasing traction as they lead
to easier, yet powerful, methods for accounting the privacy
loss in composition [22]–[25]. In particular, Koskela et al. [23]
obtained a numerical composition result based on a numerical
approximation of an integral that gives the DP parameters
of the composed mechanism. The approximation is carried
out by discretizing the integral and by evaluating discrete
convolutions via the fast Fourier transform algorithm. The
running time and memory needed for this approximation were
subsequently improved [22]. While our work shares the focus
on the large composition regime, we are primarily interested in
synthesizing optimal mechanisms rather than analyzing existing
mechanisms.

B. Notation
The Lebesgue measure on R is denoted by λ. We denote

by R the set of all Markov kernels1 on R, i.e., conditional
distributions PY |X for R-valued X and Y such that x 7→
PY |X=x(B) is a Borel function for all Borel sets B ⊂ R. The
set B denotes all Borel probability measures on R. We fix a
real-valued random variable X throughout, and let PX ∈ B
be its induced Borel probability measure. The KL-divergence
is denoted by D(P‖Q), and also by D(p‖q) if P,Q� λ with
densities p and q. The expectation is denoted by EP [f ] :=∫
R f dP , and also by Ep[f ] if P � λ has probability density

function (PDF) p. We let Ta denote the shift operator, i.e., for
a function f of a real variable the function Taf is defined as
(Taf)(x) := f(x− a), and for a measure P the measure TaP
is defined by (TaP )(B) := P (B − a).

II. OPTIMALITY OF ADDITIVE CONTINUOUS CHANNELS

We start by deriving characterizations of solutions to the
optimization problem (6). The difficulty of this problem lies in
the fact that we are optimizing over all conditional distributions.
This not only makes the problem infinite-dimensional, but it
also renders direct approaches ineffective. The main result of
this section, shown in Theorem 1, is that it suffices to consider
continuous additive channels. In other words, the optimization
in (6) may be restricted to conditional distributions of the form
PY |X=x = TxP for some Borel probability measure P on
R that is absolutely continuous with respect to the Lebesgue
measure. Equipped with this reduction, we build in the next
section an explicit family of finitely-parametrized distributions
that are also optimal in (6).

1It is true that any conditional distribution from R into R has a version that
is a Markov kernel [26, Chapter 4, Theorem 2.10].
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A. Assumptions and Definitions

Throughout the paper, we require the cost function to satisfy
the following properties.

Assumption 1. The cost function c : R→ R satisfies:
• Positivity: c(x) ≥ 0 for all x ∈ R, and c(0) = 0.
• Symmetry: c(x) = c(−x) for all x ∈ R.
• Monotonicity: c(x) ≤ c(x′) if |x| ≤ |x′|.
• Continuity: c is continuous over R.
• Tail regularity: There exist α, β > 0 such that c(x) ∼ βxα

as x→∞.

A natural choice of cost function is the quadratic cost c(x) =
x2, but we allow c(x) to be any function that satisfies the above
assumptions. For example, c(x) = |x|α for any positive α is a
natural family of cost functions.

Let P ⊂ R be the set of conditional distributions PY |X
satisfying the cost constraint in (6), i.e., set

P :=

{
PY |X ∈ R ; sup

x∈R
E[c(Y − x) | X = x] ≤ C

}
.

(7)
The infimal value in (6) is then

KL? := inf
PY |X∈P

sup
x,x′∈R:|x−x′|≤s

D(PY |X=x‖PY |X=x′). (8)

We are interested in computing KL?, as well as mechanisms
PY |X that approach this optimal value. Note that, for clarity
of presentation, we suppress the dependence on (s, c, C) in
the notations P and KL?.

In the main problem (6), we allow PY |X to be any
mechanism that produces Y given X . A more restrictive but
natural and easy-to-implement class of mechanisms is the
additive mechanism class. An additive mechanism is given
by PY |X=x(B) = TxP (B) where P is a Borel probability
measure on R. In other words, an additive mechanism PY |X
has Y of the form Y = X+Z for some noise random variable
Z ∼ P ∈ B that is independent of the input X. Let Padd ⊂ B
be the set of additive mechanisms satisfying the cost constraint
in (6),

Padd := {P ∈ B ; EP [c] ≤ C} . (9)

Since the KL-divergence is shift-invariant, restricting the
optimization (6) to additive mechanisms amounts to considering
the simplified optimization problem

KL?add := inf
P∈Padd

sup
a∈R:|a|≤s

D(P‖TaP ). (10)

Of course, it is immediate that KL? ≤ KL?add. In fact, we will
show below that these quantities are the same, meaning that
there is no loss in restricting to additive mechanisms.

B. Optimality of Continuous Additive Mechanisms

The optimization problem in (6) is a convex problem, but
the fact that the feasible set P is of infinite dimension
means it cannot be solved directly, nor do the tractable
properties one expects of a convex optimization problem
necessarily follow. For example, in any finite dimensional
convex optimization problem, a symmetry in the problem
leads to the same symmetry in the solution. In this problem,

one can see that shifting the mechanism—i.e., given PY |X ,
construct QY |X=x(B) = PY |X=x+z(B+z) for some z—does
not change the cost constraint nor the objective value in (6).
Thus, one might be inclined to conclude that the optimal
mechanism is invariant to a shift (i.e., is an additive mechanism).
Unfortunately, the infinite-dimensional nature of the problem
means that this conclusion is not immediate. We resolve this
issue in the following theorem which states that additive
mechanisms are in fact optimal in (6).

Theorem 1. We have that

KL? = KL?add, (11)

and there exists a P ? ∈ Padd achieving this value. Further,
any such P ? is necessarily absolutely continuous.

Proof sketch: The proof is given in the extended paper [1,
Appendix A]. We give here only a high level description of
the approach. Let P (k)

Y |X be a sequence achieving KL?. We
make these mechanisms increasingly closer to being additive,
while sacrificing neither feasibility nor utility, by considering
the convex combinations

P
(k)

Y |X=x(B) := E
[
P

(k)
Y |X=x+Zk

(B + Zk)
]

(12)

where Zk ∼ Unif([−k, k]). Specifically, one can invoke
Prokhorov’s theorem on the P

(k)

Y |X , thereby extracting a

probability measure P ? such that P
(k)

Y |X=x → TxP
? weakly

for each fixed x. Finally, we show that the mechanism P ? is
optimal by invoking joint convexity and lower-semicontinuity
of the KL-divergence.

Remark 1. The proof of P ? � λ only relies on the property
that P ? � TaP

? for every |a| ≤ s, which holds in view of
KL? <∞. Therefore, any feasible additive mechanism must
be absolutely continuous with respect to the Lebesgue measure,
i.e., if µ ∈ B satisfies sup|a|≤sD(µ‖Taµ) < ∞ then we
necessarily have µ� λ.

III. NUMERICAL APPROXIMATION: THE CACTUS
DISTRIBUTION

The optimization problem over additive mechanisms in (10)
is infinite-dimensional, so it cannot be solved numerically as-is,
and it appears to have no closed-form solution for non-trivial
cost functions. The lack of closed-form solution is true even
for the simple case of c(x) = x2: to our surprise, as will
be illustrated later, the Gaussian mechanism is not optimal!2

In our companion paper [2], we explore the regime where
s → 0+; in this limit, we show that the optimal distribution
can be determined exactly, and in fact for quadratic cost the
limiting optimal distribution is Gaussian—although for other
costs the optimal distribution is much more surprising.

In the regime of fixed positive s, to find practically achievable
near-optimal mechanisms, we resort to numerical approxi-
mation of (10). In this section, we fix s = 1. We can do

2Of course, simply because Gaussian is not optimal does not imply that
there is no closed-form solution. It is possible to write a set of KKT conditions
for (10), which we have omitted from this paper in the interest of space. This
set of KKT conditions cannot be solved in closed-form.
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this without loss of generality simply by scaling: that is, the
optimization problem in (10) with sensitivity s and cost function
c(x) is equivalent to the same problem with sensitivity 1 and
cost function c(sx).

To approximate (10) by a numerically tractable problem, we
(i) quantize the distribution, and (ii) only explicitly parameterize
the distribution in a certain interval. Specifically, we construct a
mapping from finite-length vectors to continuous distributions
as follows.

Definition 1. Fix two positive integers n and N , and a constant
r ∈ (0, 1). Consider the partition of R by intervals {Jn,i}i∈Z
defined by: Jn,0 := [−1/(2n), 1/(2n)] and

Jn,i :=


(
i−1/2
n , i+1/2

n

]
, if i > 0,[

i−1/2
n , i+1/2

n

)
, if i < 0.

(13)

We associate to each vector p = (p0, p1, . . . , pN ) ∈ [0, 1]N+1

a piecewise constant function that is defined by

fn,r,p(x) =

{
np|i|, if x ∈ Jn,i,with |i| < N,

npNr
|i|−N , if x ∈ Jn,i,with |i| ≥ N.

(14)

We also associate with fn,r,p the Borel measure Pn,r,p, where

Pn,r,p(B) :=

∫
B

fn,r,p(x) dx. (15)

Remark 2. Note that∫
R
fn,r,p(x) dx = p0 +

N−1∑
i=1

2pi +
2pN
1− r

=: Sr,p. (16)

If Sr,p = 1, then Pn,r,p is a probability measure with density
fn,r,p. This distribution is symmetric around the origin, i.e.,
fn,r,p(x) = fn,r,p(−x). Further, its tails decay almost geomet-
rically: for (N+1/2)/n < x1 < x2 one has fn,r,p(x2) = rnk ·
fn,r,p(x1) where k = (dnx2 − 1/2e − dnx1 − 1/2e) /n ≈
x2 − x1.

The main results of this section are: we show that the
distribution family introduced in Definition 1 is optimal for (6),
and we show that the optimal distribution within this family
(which we will call the cactus distribution) is obtainable via a
tractable finite-dimensional convex optimization problem.

We use the following notation. Consider the restriction
of (10) to the mechanisms constructible by Definition 1. For
a fixed triplet (n,N, r) ∈ N2 × (0, 1), denote the set of such
mechanisms by Cn,N,r ⊂ B, i.e.,

Cn,N,r :=
{
Pn,r,p ; p ∈ [0, 1]N+1, Sr,p = 1

}
. (17)

(Recall the definition of Sr,p from (16).) Denote the optimal
value achievable by the class Cn,N,r by

KL?n,N,r(C) := inf
P∈Cn,N,r

EP [c]≤C

sup
|a|≤1

D(P‖TaP ). (18)

We show next that we may restrict the shift a in (18) to
take values over the finite set {1/n, 2/n, · · · , 1} (rather than
varying over the whole interval [−1, 1]), thereby rendering (18)
a finite-dimensional optimization problem amenable to standard

−8 −6 −4 −2 0 2 4 6 8
z

10−15

10−12

10−9

10−6

10−3

100

p(
z)

Fig. 1: The optimal distribution p(z), found by solving (20)
(and dubbed the cactus distribution), plotted on a semi-log
scale. The cost function is c(z) = z2, and the parameters are:
s = 1, C = 0.25, n = 200, N = 1600, and r = 0.9.

numerical convex-programming methods. For each i ∈ Z, we
denote the constants

cn,i :=

∫
Jn,i

nc(x) dx. (19)

Theorem 2. Fix r ∈ (0, 1), and positive integers n < N .
The minimization (18) can be recast as the following convex
program over the variable p = (p0, · · · , pN ) ∈ RN+1

minimize
p

max
k∈{1,...,n}

1

2

N−k−1∑
i=−N+1

(p|i| − p|i+k|) log
p|i|

p|i+k|

+

N−1∑
i=N−k

(pi − pNri+k−N ) log
pi

pNri+k−N

+ pN
1− rk

1− r
k log r−1

subject to p0cn,0 +
N−1∑
i=1

2picn,i + 2pN

∞∑
i=N

cn,ir
i−N ≤ C,

p0 +
N−1∑
i=1

2pi +
2pN
1− r

= 1,

pi ≥ 0 for all i ∈ {0, . . . , N}. (20)

Figure 1 shows an example of the distribution that results
from the finite-dimensional optimization problem in (20) with
a quadratic cost. The shape of this distribution3 has inspired
the name the “cactus distribution.”

The following result shows that cactus mechanisms derived
from the optimization problem (20) are in fact globally optimal
for the main optimization problem (6).

Theorem 3. Denote the optimal value a cactus distribution
can achieve by

KL?Cactus := lim
ε→0+

inf
(n,N,r)∈N2×(0,1)

KL?n,N,r(C + ε). (21)

We have that KL? = KL?Cactus.

Remark 3. The proof of Theorem 3 gives some guidelines
for choosing the parameters (n,N, r). For example, optimal

3In addition to the state of Arizona being home of several of the authors.
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(a) Achieved maximal KL-divergence sup|a|≤sD(p‖Tap) versus σ,
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(b) Privacy parameter ε versus the number of compositions, computed
via the moments accountant, where δ = 10−3, and quadratic cost
C = 0.1 with fixed sensitivity s = 1.
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(c) Privacy parameter ε versus the number of compositions, computed
via the moments accountant, where δ = 10−5, subsampling rate
q ≈ 0.00417, and quadratic cost C = 0.1 with fixed sensitivity
s = 1.
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(d) Model accuracy versus privacy parameter ε. The settings are the
same as in Figure 2c and experiment details are given in Section IV.

Fig. 2: Comparison between the Gaussian and cactus mechanisms.

cactus distributions can be obtained by restricting the ratio N/n
(chosen sufficiently large), and choosing r = 1−Θα(N−1).

IV. NUMERICAL RESULTS

We solve the optimization problem (20) using an interior-
point method. An example of the cactus distribution for
quadratic cost is shown in Figure 1. Figure 2a compares the
maximal KL-divergence achieved by the cactus to that of
Gaussian distributions for fixed sensitivity s = 1 and various σ.
As noted above, varying σ with fixed s is equivalent to varying
s with fixed σ. The KL-divergence for cactus is computed
numerically, and for Gaussian mechanisms the KL-divergence
is exactly 1

2σ2 . The cactus distribution outperforms the Gaussian
distribution in terms of KL-divergence for all values of σ,
although the difference decreases as σ grows such that for
larger values of σ it is difficult to discern any gap between
the curves in Figure 2a. (Our companion paper [2] gives a
theoretical explanation for why Gaussian is so close to optimal
as s/σ decreases.) To illustrate that this improvement in KL-
divergence leads to an improvement in (ε, δ)-DP, we compute
the achieved privacy via moments accountant [18] for each
mechanism. Figure 2b shows the resulting ε value as a function
of the number of compositions, for fixed δ = 10−3. Indeed,
the cactus mechanism does better than Gaussian.

To give a reasonable comparison in the context of ma-
chine learning, we modified the tutorial code in TensorFlow-
Privacy [27], which implements the DP-stochastic gradient
descent (SGD) algorithm with a Gaussian mechanism on a
convolutional neural network (CNN) model. We use the training
results from the original tutorial as a benchmark, then replace
the Gaussian mechanism with our cactus mechanism, and train
the model using the renewed setting. We select a noise level
σ =

√
0.1. We test the original and modified model on a

popular image dataset, MNIST, which is of size 60000. We
choose a batch-size 250, such that each epoch consists of 240
iterations (i.e., compositions) and the sub-sampling rate4 is
q = 250/60000 ≈ 0.00417. Figure 2c shows the achieved
(ε, δ)-DP as computed by the moments account in this setting.
Fixing δ = 10−5, Figure 2d shows the tradeoff between privacy
ε and accuracy of the resulting CNN as the number of training
iterations increases. One can see that for a fixed privacy budget
(i.e., fixed ε and δ), the cactus mechanism allows more training
iterations and, thus, better accuracy.

4The cactus mechanism is not optimized for subsampling. Nevertheless, we
observe numerical performance of the cactus mechanism in the subsampling
setting outperforming that of the Gaussian mechanism.
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