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A B S T R A C T 

Astronomers have typically set out to solve supervised machine learning problems by creating their own representations 
from scratch. We show that deep learning models trained to answer every Galaxy Zoo DECaLS question learn meaningful 
semantic representations of galaxies that are useful for new tasks on which the models were never trained. We exploit these 
representations to outperform several recent approaches at practical tasks crucial for investigating large galaxy samples. The 
first task is identifying galaxies of similar morphology to a query galaxy. Given a single galaxy assigned a free text tag by 

humans (e.g. ‘#diffuse’), we can find galaxies matching that tag for most tags. The second task is identifying the most interesting 

anomalies to a particular researcher. Our approach is 100 per cent accurate at identifying the most interesting 100 anomalies (as 
judged by Galaxy Zoo 2 volunteers). The third task is adapting a model to solve a new task using only a small number of newly 

labelled galaxies. Models fine-tuned from our representation are better able to identify ring galaxies than models fine-tuned from 

terrestrial images (ImageNet) or trained from scratch. We solve each task with very few new labels; either one (for the similarity 

search) or several hundred (for anomaly detection or fine-tuning). This challenges the longstanding view that deep supervised 

methods require new large labelled data sets for practical use in astronomy. To help the community benefit from our pretrained 

models, we release our fine-tuning code zoobot. Zoobot is accessible to researchers with no prior experience in deep learning. 

Key words: methods: data analysis – software: data analysis – software: public release – galaxies: evolution – galaxies: general. 
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 I N T RO D U C T I O N  

he core of many machine learning approaches is learning 
o calculate useful representations, i.e. lower dimensional sum- 
aries of images or other data with which a prediction can 

e made. Learning hierarchical representations, where the repre- 
entation learned by one layer becomes the input to the next, 
s the cornerstone of deep learning. Representations are partic- 
larly important for words and images, where the input feature 
pace is high dimensional and thus more difficult to make di-
ect predictions with than, for example, typical tabular data (Le- 
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un, Bengio & Hinton 2015 ; Goodfellow, Bengio & Courville 
016 ). 
To date, astronomers have typically set out to solve supervised 
achine learning problems by creating their own representations 

rom scratch. They often train a randomly initialized model only 
n the labelled data they are directly interested in. This is often
rue even for researchers solving similar tasks with similar methods 
n similar data sets. For example, distinguishing between early- 
nd late-type galaxies in SDSS imaging (Dom ́ınguez S ́anchez et al.
018 ; Khalifa et al. 2018 ; Fischer, Dom ́ınguez S ́anchez & Bernardi
019 ; Khramtsov et al. 2019 ; Barchi et al. 2020 ; Variawa, van Zyl
 Wool w ay 2020 ; Walmsley et al. 2020 ). The expressivity of each
odel is limited by the size of the training data (to prevent overfitting)
hich in turn limits performance on complex tasks requiring such 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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1 As compared to other benchmark data sets e.g. MNIST, CIFAR10. Diversity 
in ImageNet is the subject of significant attention (e.g. Recht et al. 2019 ; 
Yang et al. 2020a ), in part because of its widespread use. 
2 This does not necessarily imply impro v ed performance at convergence, 
ho we ver, as pretrained models may converge faster (He, Girshick & Doll ́ar 
2019 ). 
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xpressivity. We aim to demonstrate in this paper that, under certain
onditions, starting from a representation learned elsewhere is more
f fecti v e; specifically, that e xploiting representations learned while
olving a broad set of galaxy morphology tasks can dramatically
mpro v e performance on new morphology tasks. 

We are primarily moti v ated by results from the natural language
ommunity. Recent empirical research suggests that the performance
f deep natural language models with Transformer architectures
ollows fundamental scaling relations (Vaswani et al. 2017 ). Broadly
peaking, performance increases approximately as a power law
ith respect to the number of model parameters, the size of the

raining data set, and the computational budget (Kaplan et al.
020 ). F or e xample, increasing the number of model parameters will
ikely increase performance provided one has access to ef fecti vely
nlimited data and compute. Most researchers have neither, and
o the best-performing models are increasingly created by a few
ell-resourced groups such as OpenAI (Brown et al. 2020 ) and
oogle Brain (Fedus, Zoph & Shazeer 2021 ). These natural language
odels are trained to predict masked words in sentences (along
ith related tasks) and so ef fecti vely all digitized writing is useful

raining data. This style of training is known as ‘self-supervised’
s the model is trained in a supervised manner on labels (masked
ords) already present in the data itself. Having learned an ef fecti ve

epresentation of language, the models can then be fine-tuned, i.e.
radually adapted with additional data, on so-called domain tasks:
asks of practical interest such as summarizing news articles, coding
ebsites, or understanding emotion (Kant et al. 2018 ; Yang et al.
020b ; Austin et al. 2021 ). Crucially, because the fundamental
anguage representation is already learned, fine-tuning achieves state-
f-the-art performance using far more modest data and compute than
raining from scratch. 

Could such an approach work for galaxy morphology? Can we
rain models on large data sets of galaxy images and then use the
earned representations as a starting point to solve new practical

orphology tasks? Convolutional neural networks (CNNs), the
ow-standard approach for classifying galaxy images, likely follow
imilar scaling laws (Sharma & Kaplan 2020 ). It is possible to
rain a CNN on images in an analogous self-supervised manner
y predicting pixel values (generative learning, e.g. Van Den Oord
t al. 2016 ) or by enforcing that randomly transformed images retain
imilar representations (contrastive learning, e.g. Chen et al. 2020 ). In
stronomy, this is typically done in the context of solving a particular
ask (Sarmiento et al. 2021 ; Zanisi et al. 2021 ), though recent work
y Hayat et al. ( 2021 ) uses self-supervised learning to learn galaxy
epresentations explicitly for generic downstream tasks. 

One important drawback to self-supervised methods, and unsu-
ervised methods more broadly, is that the representations must
e learned directly from image pixel values and so it is difficult
o create representations informed by our physical understanding
f the world. We believe this may lead to predictions that do not
ake physical sense. For example, Buncher, Sharma & Carrasco
ind ( 2021 ), aiming to predict how a shallow galaxy image would

ppear in a deeper surv e y, found their unsupervised generative
odel would fill in large artefacts in the original images with a

lausible sky background. Spindler, Geach & Smith ( 2020 ) found
heir unsupervised generative model clustred galaxies according to
hether they have a background partner galaxy in the top or bottom

orner of the image. Contrastive learning allows a degree of physics
nput through the choice of augmentations, but these are typically
imited to basic invariances (e.g. flips, rotations, added noise, etc). We
ould prefer a representation informed by our human understanding
f an image, beyond the raw pixels themselves: a representation that
NRAS 513, 1581–1599 (2022) 
understands’ that a background partner galaxy is not scientifically
ele v ant. 

Supervised methods present an alternative way to learn representa-
ions. Their representations are optimized for the supervised task and
o are more strongly influenced by human labels, which are designed
o focus learning on the most scientifically rele v ant aspects (e.g. bars,
rms, etc.). One is then faced with the apparent dilemma of learning
 representation using either self-supervised approaches with near-
imitless data but limited physical understanding, or supervised
pproaches with less data but scientifically rele v ant labels. 

To minimize the number of labels required to learn meaningful
epresentations from supervised approaches, one can exploit existing
abelled data sets. Pretraining on ImageNet (Russako vsk y et al.
015 ), a relatively 1 diverse benchmark data set containing images
f 1000 terrestrial classes, is particularly common in the computer
cience literature (Marmanis et al. 2016 ; Tschandl, Sinz & Kittler
019 ; Mathis et al. 2020 ; Ridnik et al. 2021 ). Astronomers have
ecently experimented with pretraining on ImageNet to better solve
stronomical tasks. Ackermann et al. ( 2018 ) and Martinazzo, Es-
adoto & Hirata ( 2020 ) each measured the performance on galaxy-
orphology-related tasks of CNNs either initialized randomly or

retrained on ImageNet. In both cases, the ImageNet-pretrained
NN performed significantly better. Additionally, Wu et al. ( 2018 )
oted that using frozen ImageNet weights for the first four layers
f their CNN impro v ed performance for cross-matching sources
iven a fixed amount of training time. 2 Astronomers have also
ound success with pretraining CNNs on a previously labelled
urv e y and used them to solve the same task for a new surv e y:
ominguez Sanchez et al. ( 2019 ) pretrained on SDSS and fine-

uned to DES, P ́erez-Carrasco et al. ( 2019 ) pretrained on CAN-
ELS and fine-tuned to CLASH, and Tang, Scaife & Leahy

 2019 ) pretrained on NVSS and fine-tuned to FIRST (and vice
ersa). 

We hypothesize that ImageNet pretraining works well for new
errestrial tasks because the classification task is broad (i.e. distin-
uish 1000 classes including ‘toilet paper’ and ‘triceratops’) and
o the representation is likely to be appropriate for new terrestrial
lasses, but will work less well for galaxy morphology tasks because
he terrestrial-trained representation is less appropriate. ImageNet
lasses have dramatically different shapes, textures and signal-to-
oise levels than galaxies, and so only the most basic representations
edges, curves, etc., detected by the first convolutional layers, He
t al. 2019 ) are likely to be useful. On the other hand, we believe
hat while pretraining on other galaxy surv e ys is helpful because
he representations learned will be appropriate for galaxy images,
he classification task is narrow (e.g. distinguish mergers from non-

ergers) and so the representations are likely to be specific to that
ask. 

The core argument of this paper is that general purpose
uper vised galaxy mor phology r epr esentations would be better
earned from solving a broad galaxy morphology task . These
epresentations would be both more rele v ant to galaxy images
han are learned from ImageNet (which is comprised of terrestrial
mages) and more widely applicable to new morphology tasks than
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epresentations learned from a single narrow morphology task (as in 
revious work). 
We argue that the models trained by Walmsley et al. ( 2022 ) on

alaxy Zoo DECaLS have learned to answer just such a broad task
nd thus provide ideal cross-task representations. The Galaxy Zoo 
ECaLS project asked volunteers on www.galaxyzoo.org a diverse 

et of questions designed to capture the essential phenomenological 
eatures of galaxy morphology such as bars (strong and weak), 
piral arms (counts, winding), bulge size, inclination, and so forth. 

odels were then trained to answer these diverse questions. To do 
o, the models learned to create general representations suitable for 
orphology tasks beyond the questions themselves, just as ImageNet 

lassifiers learn general representations for terrestrial tasks beyond 
dentifying the ImageNet classes. 

We first investigate the DECaLS models’ representations and 
how that visually similar galaxies are mapped to similar parts of
eature space, even for morphology aspects not explicitly measured 
y the Galaxy Zoo questions (Section 2 ). We then go on to use that
epresentation to develop and demonstrate practical scientific tools 
or similarity searches (Section 2.4 ), anomaly detection (Section 3 ),
nd transfer learning (Section 4 ). We share our code and data in Data
vailability Statement Section. 

 REP R ESENTATIONS  A N D  VISUAL  

IMILARITY  

mage representations are crucial for many practical tasks of interest 
o astronomers. An image representation function maps the infor- 
ation content of a high-dimensional image to a lower dimensional 

ector. A useful representation should allow for the definition of a 
eaningful distance metric, i.e. similar images should be closer in 

epresentation space than dissimilar images, and small changes to an 
mage should lead to small changes in the representation and vice 
ersa. 

In this section, we present evidence that the GZ DECaLS models 
rained in Walmsley et al. ( 2022 ) (hereafter W + 22 ) learn such
 representation for galaxies. We then use that representation to 
ntroduce a method for identifying objects that are similar to a user-
elected query galaxy, and demonstrate the method’s ef fecti veness 
n a diverse and independently selected set of galaxies. 

.1 Data 

hroughout this paper, we experiment with galaxies sourced from 

he Dark Energy Camera Le gac y Surv e y (DECaLS) DR5 (De y et al.
019 ). The selection and image acquisition process is described in 
etail in W + 22 . Briefly, galaxies are selected from the NASA-Sloan
tlas v1.0.1 (Albareti et al. 2017 ) if the y hav e an angular radius
f petrotheta > 3 arcsec and have been observed by DECaLS
n the grz bands as of DR5. FITS images are downloaded from
he DECaLS cutout service at native telescope resolution with the 
isible sky area set according to galaxy angular radius, 3 interpolated 
o 424 × 424 pixel thumbnails, and finally rescaled and colourized 
or human viewing on Galaxy Zoo. 

Unlike GZ DECaLS, we apply an r -band magnitude cut of 14.0 <
 < 17.77. The fainter limit ensures galaxies are within the bulk of
he population with SDSS spectroscopy (Albareti et al. 2017 ) and the
righter limit excludes galaxies with unreliable radii measurements 
 s = max (min ( p 50 ∗0.04, p 90 ∗0.02), 0.1), where petro50 and petro90 
re the NSA columns measuring 50 and 90 per cent Petrosian radii. 

e  

4

nd fields saturated by nearby stars. We also exclude galaxies flagged
s likely to be incorrectly sized due to photometric errors in the
ASA-Sloan Atlas (see W + 22 ). The resulting catalogue includes
05 657 galaxy images. 
For our anomaly detection algorithm (Section 3 ), to directly 

ompare our performance with that of Astronomaly (Lochner 
 Bassett 2021 ), we also experiment with the 60 000 Galaxy Zoo
 images shared as a public training set for the Kaggle ‘Galaxy
hallenge’ competition. 4 The construction and selection of these 

mages is described in Willett et al. ( 2013 ) and Dieleman, Willett &
ambre ( 2015 ), respectively. 

.2 Calculating r epr esentations 

he trained GZ DECaLS models must internally represent galaxies 
n a way that is appropriate for predicting the answers to GZ DECaLS
uestions. Here, we describe how we extract those representations. 
he procedure is essentially identical to making predictions, except 

hat we save the acti v ation v alues before the final layer rather than
he predictions themselves. 

Galaxy images are passed to the model following the same 
rocedure with which the model was trained, described in detail 
n W + 22 . Briefly, images are converted to grey-scale, resampled
rom 424 to 300 pixels on a side, and then cropped about a random
entroid to 224 pixels across (ef fecti vely zooming the image by
5 per cent). This provides an image with an appropriate field of
iew and with input dimensions matching those for which our chosen
odel architecture was designed. Each time an image is loaded into
emory, it is uniquely augmented with an aliased rotation through a

andom angle and randomly selected horizontal and vertical flips. 
W + 22 ’s models use the EfficientNetB0 architecture (Tan & Le

019 ). EfficientNet is composed of a series of mobile inverted
ottleneck blocks (Sandler et al. 2018 ), comparable to standard 
onvolution and pooling blocks. These stacked blocks are followed 
y a 1 × 1 convolutional layer (Szegedy et al. 2015 ) with 1280
lters, the output of which is global average-pooled (i.e. each filter

s replaced with the mean of that filter’s acti v ations) for a 1280-
imensional vector. This vector is what we refer to throughout as
he learned r epr esentation . In normal use, this vector would form
he input for the final dense layer, and the outputs of that dense layer
ould be interpreted as the model predictions. Here, ho we ver, we

emo v e the final dense layer and directly record the 1280-dimensional
nternal representation. 

Unlik e W + 22 , which w as concerned with predicting well-
alibrated posteriors for galaxy morphologies, we do not use dropout 
r model ensembling to marginalize o v er the network weights.
nstead, we use a single forward pass from a single model. Marginal-
zing might in principle impro v e performance by removing feature-
pace noise from the specific weights and augmentations used, but 
he effect of averaging representations is unclear and so we defer this
o future work. We use the weights of a GZ DECaLS model trained
n all labelled galaxies (i.e. both training and validation sets) and
sed by W + 22 as part of the ensemble for creating the GZ DECaLS
utomated catalogue. We refer to this model as ‘the DECaLS model’
n this work. 

In this section (for similarity searches) and the following sec- 
ion (Section 3 , for anomaly detection), we treat the representation
s fixed and therefore precalculate and store the representation for 
ach galaxy. We do not need to make any further CNN predictions
MNRAS 513, 1581–1599 (2022) 
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Figure 1. Visualization of the representation learned by our CNN, showing similar galaxies occupying similar regions of feature space. Created using Incremental 
PCA and umap to compress the representation to 2D, and then placing galaxy thumbnails at the 2D location of the corresponding galaxy. 
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hen our methods are applied, removing the significant time and
ardware requirements typically associated with applying CNN. In
ection 4 , we investigate fine-tuning the representation for improved
erformance. 

.3 Visualizing 

e use the dimensionality reduction algorithm umap (McInnes et al.
018 ) to visualize the representations learned by the DECaLS model.
map attempts to balance local and global structure (i.e. distances to
lose neighbours versus far neighbours) when compressing a higher
imensional space. umap is commonly used for visualising high-
imensional spaces in both computer science and astronomy (e.g.
larke et al. 2020 ; Reis et al. 2021 ). 
NRAS 513, 1581–1599 (2022) 
We assume that the 1280-dimensional ( D = 1280) representation
ncludes some redundant information because we imposed no inde-
endence requirements or weight decay during network training. We
herefore first compress the representation space with incremental
rincipal component analysis (Ross et al. 2008 ) to D = 15 while
reserving 98 per cent of the initial variation. We find this gives
ore compelling visualizations than using umap directly. 
Having compressed the representation from D = 1280 to D = 15

ith incremental PCA and then to D = 2 with umap , we can
nspect how the representation corresponds to visual appearance by
howing galaxy thumbnails located according to their position in the
ompressed representation. Fig. 1 shows the result for all galaxies.
he effect of visual appearance is clear: smooth ellipticals occupy

he upper corner, flocculent spirals occupy the lower left, rings and

art/stac525_f1.eps
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iffuse discs occupy the lower centre, and edge-on-discs occupy 
he right corner. Online Figs A1 and A2 show equivalent plots for
alaxies filtered (using the GZ DECaLS automated vote fractions 
rom W + 22 ) to include only featured or spiral galaxies, respec-
i vely, and sho w similarly striking visual arrangements within each 
lass. 

We conclude that even after compression from D = 1280 to D =
, visual similarity strongly affects location in representation space. 
n the following section, we exploit this representation to identify 
isually similar galaxies. 

.4 Similarity searches 

utomatically quantifying the similarity of two galaxies is a long- 
tanding but elusive goal. The most obvious use for quantified 
imilarity is searching for counterparts to known rare objects. The 
erendipitous disco v ery of qualitativ ely new sources such as Hanny’s
oorwerp (Lintott et al. 2009 ) raises the inevitable question ‘are there
ore?’ Ef fecti ve searches for the most similar galaxies (Ardizzone, 
i Ges ̀u & Maccarone 1996 ; Csillaghy, Hinterberger & Benz 2000 ;
bd El Aziz, Selim & Xiong 2017 ) allow us to make the leap from
 one-off curiosity to a new class of objects. Quantifying similarity
s also foundational to any effort at creating automated clusters or
axonomies of galaxies, a topic of much recent interest (Schutter 
 Shamir 2015 ; Hocking et al. 2018 ; Ralph et al. 2019 ; Spindler

t al. 2020 ; Cheng et al. 2021 ). The hope is that automated analysis
f large-scale modern surv e ys will rev eal galaxy populations that
re more objective, and perhaps better connected to the underlying 
hysics of galaxy formation, than the Hubble sequence and its 
xtensions. 

What mak es tw o g alaxies similar? Ph ysically meaningful simi-
arity implies not just similar pixels but similar morphology. Our 
epresentations provide a new opportunity for measuring morpho- 
ogical similarity. Since galaxies of similar morphology have similar 
epresentations, we can use the distance in representation space as 
n estimate of similarity. We can therefore retrieve the most similar
alaxies to a given galaxy simply by listing its nearest neighbours in
epresentation space. 

Identifying nearest neighbours in the D = 1280 CNN representa- 
ion is computationally e xpensiv e, ev en with efficient algorithms like
klearn ’s KDTree. For convenience, we reduce the dimensionality 
sing Incremental PCA (as we did prior to applying umap in 
ection 2.3 abo v e). An y choice of PCA dimensionality abo v e D ≥ 10
84 per cent variance preserved) has a minimal effect on the 50
losest neighbours, while reducing the dimensions from D = 1280 
o D = O(10) reduces the time per search from O(h) 5 to O(s). We
se D = 10 here. 
We choose the Manhattan distance 

∑ 

i | p i − q i | as our distance
etric, implying that similarity is linearly proportional to distance. 
he Manhattan distance is theoretically preferable to the Euclidean 
istance for nearest-neighbour searches in high dimensions (Ag- 
arwal, Hinneburg & Keim 2001 ). We also experimented with the 
uclidean distance and could not confidently identify a qualitative 
ifference in the similarity of the galaxies returned using each 
istance metric. 
The Galaxy Zoo Talk forum 

6 provides an independent and diverse 
election of galaxies with which to test our similarity search. When 
 Calculating the 50 closest neighbours takes approximately 1 h on a standard 
aptop: fast enough to be possible, but slow enough to be inconvenient. 
 ht tps://www.zooniverse.org/project s/zookeeper/galaxy-zoo/t alk/

3

W  

w  

a

riting forum posts about galaxies, Galaxy Zoo volunteers can 
hoose to use ‘tag’ phrases prefaced with a hash, e.g. ‘#starforming’,
nalogously to Twitter hashtags. For each of the most commonly 
sed tags (‘#starforming’, ‘#disturbed’, etc.), we use the galaxy most 
ommonly given that tag as our query galaxy and search for similar
alaxies in our compressed D = 10 representation space. 

The results from those similarity searches are shown in Fig. 2 . We
uccessfully find similar galaxies in almost all cases. This includes 
ases like ‘#dustlane’ where the feature in question is highly specific;
ost of the returned galaxies are not just edge-on-spirals but edge-

n-spirals with dust lanes. 
These searches are representative of the typical performance of our 
ethod. We do not ‘cherry-pick’ the searches with the best outcomes.
e only exclude tags for being related to data not in the image

‘#agn’, ‘#decals’, etc.) or being directly equi v alent to a decision tree
uestion (‘#spiral’, ‘#merging’, etc.). Tags have also been grouped 
emantically (e.g. ‘#dust-lane’ to ‘#dustlane’, ‘#ringed’ to ‘#ring’, 
tc.). Fig. 2 otherwise simply shows searches for the most popular
8 tags. 
We emphasize that the DECaLS model was not explicitly trained 

n any of these tags . The model was only trained to predict
 olunteer v otes to the (different) questions in the GZ decision tree
see W + 22 ). In these similarity searches, the model is identifying
imilar objects based on only a single example: the query galaxy
tself. In computer science terminology, the model is performing 
ne-shot learning on a fixed embedding (Fei-Fei, Fergus & Perona 
006 ). 
The occasional failures help us understand what the model can 

nd cannot recognize, which speaks to model interpretability. For 
 xample, with the ‘#o v erlapping’ e xample, the volunteers are likely
eferring to the small companion galaxy (centre left) but the search
eturns additional irregular galaxies rather than additional galaxies 
ith small companions. The similarity search is more successful at 

#diffuse’ where the query image includes a pair of substantively 
ized galaxies and the search returns similar interacting pairs. We 
an infer that the DECaLS model likely focuses on the main
alaxies in the image and has a lower limit for how small (in
ngular size) a background galaxy can be to affect the represen-
ation. 

The ‘#asteroids’ example, where volunteers selected the image due 
o the small colourful speckle, also illustrates this effect. Further, the
odel is only pro vided gre y-scale images, and so could not identify

imilar colourful speckles even without the size issue abo v e. One
ould address the lack of sensitivity to colour by training on colour
mages, at the cost of potential bias for users who prefer a colour-
nsensitive similarity search (e.g. for investigating links between 
orphology and star formation). 
We provide a public interface to our similarity search 

t ht tps://share.st reamlit.io/mwalmsley/decals similarit y/main/simil 
rity.py . Users enter the coordinates of their desired query galaxy
hich are then matched to the closest-on-sky DECaLS galaxy in 
ur sample. Images and a table of the most similar galaxies are then
eturned. Code and instructions for a self-hosted version are available 
t ht tps://github.com/mwalmsley/decals similarit y . 

 FI NDI NG  INTERESTING  A N O M A L I E S  

.1 Context 

e showed in Section 2.4 that if we have a single example galaxy,
e can find similar examples. But what if we don’t know what we

re looking for? 
MNRAS 513, 1581–1599 (2022) 
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Figure 2. Similarity search results for the most common volunteer tags (on which the model was not trained). The query galaxy (left, green border) is the 
galaxy for which the volunteers most used that tag). The other galaxies on each row are those expected by the DECaLS CNN to be most similar i.e. with the 
least separation to the query galaxy in representation space. The repeated ‘o v erlapping’ galaxy is not an error; the background and foreground galaxies are 
both independently listed in the catalogue and identified as similar. Similarity search results for the most common volunteer tags (on which the model was not 
trained). The query galaxy (left, green border) is the galaxy for which the volunteers most used that tag). The other galaxies on each row are those expected by 
the DECaLS CNN to be most similar i.e. with the least separation to the query galaxy in representation space. 
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Figure 2. – continued 
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Many fundamental insights have been driven by rare objects 
ound serendipitously in ‘big data’ catalogues (Cardamone et al. 
009 ; Welsh et al. 2011 ; Boyajian et al. 2016 ). Such searches
ay be assisted by machine learning methods aimed at identifying 
are objects (e.g. Henrion et al. 2013 ; Baron & Poznanski 2017 ;
torey-Fisher et al. 2021 ). Ho we ver, not all rare objects are useful.
nstrumental artefacts, completely smooth ellipticals, and highly 
isturbed post-mergers are all ‘anomalous’ in the technical sense of 
MNRAS 513, 1581–1599 (2022) 
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eviating from the typical distribution of images. 7 Only some of these
ill be valuable to the user. It is therefore crucial that any automated

earch for anomalies takes into account the user’s interests. 
Finding interesting anomalies guided by user feedback is the focus

f the computer science subfield of active anomaly detection (Kong
t al. 2020 ). Pre vious work has considered v arious schemes where
raditional unsupervised anomaly detectors (e.g. Isolation Forests,
iu, Ting & Zhou 2008 ) are coupled to user feedback in an active

earning loop where the algorithm identifies rare data points, those
are data points are rated for interest, and a supervised algorithm
s trained based on those ratings (Pelleg & Moore 2004 ; Das et al.
017 ; Siddiqui et al. 2018 ). The recently introduced software package
stronomaly (Lochner & Bassett 2021 , hereinafter LB21 ) applies

his approach in an astronomical context. 
Astronomaly has two parts: the first is a browser interface

here users can express their interest in images or 1D data; the second
s a set of data processing components which can be configured to
xtract features, identify rare datapoints, and model user interest.
ogether, they can be used to apply the active learning loop described
bo v e to galaxy images, spectra, light curves etc. 
Astronomaly is intended as a general anomaly finding frame-

ork which astronomers can extend to suit their specific science
oals. Here, we show how sev eral e xtensions motivated by our
ew galaxy representations make an Astronomaly style approach
ignificantly better at identifying merging galaxies, as measured on
he benchmark task introduced by LB21 . We then sho w ho w our
mpro v ed approach can also find mergers, rings and irregular galaxies
n the DECaLS surv e y. 

.2 Method 

n this section, we develop a method to search our CNN representa-
ion for anomalies likely to be interesting to a specific user. We build
 model of interest as a function of representation by intelligently
sking that user about their interest in the galaxies which best help
arro w do wn their preferences (active learning). We then predict
heir interest in every galaxy to estimate which galaxies they most
are about. 

We will contrast our method with the specific method used by
B21 to demonstrate the quantitative performance of Astrono-
aly on Galaxy Zoo 2 data, which we will simply call ‘Baseline’.
e describe the task itself and compare results in Section 3.3.1 .
aseline is a particular choice of Astronomaly components
esigned to work well with this galaxy morphology task while being
imple and applicable to other images. 

The general approach of Astronomaly (as in LB21 ) is as
ollows. Galaxy images are converted to features and ranked by
arity. The rarest galaxies are rated by the user according to personal
nterest. A regression model is fit to these rare galaxies of known
nterest to predict interest for all other galaxies. Finally, the predicted
ser interest is combined with the machine learning rarity scores to
nd galaxies with both high expected interest and high rarity i.e.

nteresting anomalies. Those top galaxies themselves can then be
ated to continue the active learning cycle of labelling, estimating
nterest, and choosing new galaxies to label. 

LB21 ’s specific Baseline approach chose ellipse fitting as a feature
 xtractor, an Isolation F orest to rank by rarity, and a Random Forest
Breiman 2001 ) to model user interest. We replace each of these
NRAS 513, 1581–1599 (2022) 

 Each of these classes were routinely identified as anomalies by common 
nomaly finding approaches during the development of this section. 

e  

8

teps. We also qualitatively change Astronomaly ’s no v el activ e
earning approach from labelling the galaxies thought to be most
nteresting to labelling the galaxies which, if labelled, would best
elp to find those interesting galaxies . 
Astronomaly ’s ellipse-fitting feature extractor works, in short,

y placing a series of ellipses enclosing increasing proportions
f flux, and recording the properties of those ellipses (e.g. axial
atio) as tabular features. This was chosen to create features which
ere sensitive to the shape of galaxies ( LB21 ). In this work, we

nstead use the DECaLS model as a feature extractor, with the
earned representation forming the features for each galaxy. We
elieve our learned representation is particularly vital for tasks
here the interesting morphology (e.g. irregular shapes, rings) cannot
e well-described as a series of ellipses of increasing flux. More
roadly, because the galaxies are arranged in representation space by
isual similarity (Section 2 ), interesting galaxies are likely to have
imilar representations and so representations are a useful feature for
redicting user interest. 
Next, we change the regressor modelling user interest. We replace

aseline’s Random Forest with a Gaussian Process (GP; Rasmussen
 Williams 2006 ). Gaussian Processes define a probability distribu-

ion o v er possible functions. The space of possible functions is set by
he choice of kernel, κ( x , x 

′ 
). The kernel defines an ef fecti ve distance

etween points, with the range of probable values for each point
eing constrained by the values of known nearby points. The kernel
yperparameters (e.g. the typical distance o v er which known points
ave a strong constraining effect) are fit to maximize the likelihood of
he observed (training) data. See Murphy ( 2012 ) for a concise re vie w
nd Rasmussen & Williams ( 2006 ) for a comprehensive treatment. 

GPs are particularly appropriate here for two reasons. First, they
an flexibly model smooth distributions; they make no parametric
ssumptions about the shape of the user interest distribution other
han through the kernel itself. We use a rational quadratic kernel 8 

ssuming user interest is similar for similar galaxies and varies
 v er some typical scale, and add a white component to model
ntrinsic label uncertainty on user interest and to model noise in
he underlying representation. Secondly, through marginalizing o v er
he many possible functions allowed by the kernel, GPs provide rela-
ively reliable uncertainties. Indeed, GP uncertainties are sometimes
onsidered the ‘gold standard’ against which more scalable methods
re measured (Houlsby 2014 ). Knowing the uncertainty of our user
nterest predictions for each galaxy is critical for applying active
earning. 

A key part of active learning is the acquisition function i.e. which
alaxies to label. Astronomaly selects galaxies to label with a
joint’ score based on both expected interest and rarity. For each
 alaxy, if g alaxies with similar features have already been labelled,
he regressor is considered more reliable and the joint score is
eighted towards the regressor’s predicted interest. If not, the joint

core is instead weighted towards the galaxy’s rarity. Users are then
sked to label the galaxies with the highest joint score i.e. the galaxies
hought most likely to be interesting anomalies. Whilst ef fecti ve, this
lgorithmically greedy approach may be inefficient in some cases.
e may not yet know which galaxies are likely candidates, and

hould therefore devote at least some labelling effort to explicitly
elping the regressor model user preferences. 
Which galaxies would best help model user preferences? Active

earning acquisition functions are generally concerned with mod-
lling a function globally: in our case, modelling the user interest on
 We also find that performance is similar using a Matern kernel. 
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Figure 3. Rank weighted scores (abo v e) and accuracy (below) for identifying 
‘Odd’ galaxies (as voted by volunteers) in GZ2 images. Calculated after 
training on 200 user ratings following either the method of LB21 (baseline, 
black) or this work (CNN and GP, blue). The expected value from randomly 
selecting galaxies is shown in red for comparison. We also show an 
intermediate method, using the ellipse-fitting features of Baseline and our 
GP activ e learning strate gy, in magenta. Experiments are repeated 15 times, 
with individual runs shown as traces. The method introduced in this work 
dramatically impro v es both metrics. 

o  

t  

t
I
g  

g
 

w  

c
t  

w
a  

i
p  

1
 

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/2/1581/6539338 by guest on 02 O
ctober 2022
ll galaxies. But here, we are specifically interested in finding the 
ost interesting galaxies, i.e. modelling the function near its maxima. 
e are not concerned with whether a galaxy is very boring or merely

omewhat boring. Modelling maxima is an optimization problem, 
nd we therefore use an acquisition function from the Bayesian 
ptimization literature. 
Specifically, we choose to use maximum e xpected impro v ement 

‘max EI’) as our acquisition function. EI, introduced by Mockus & 

ockus ( 1991 ) and further developed in Jones, Schonlau & Welch
 1998 ), is calculated as 

I ( x) = ( μ( x) − f ( x + ) − ε) � 

(
μ( x) − f ( x + ) − ε

σ ( x) 

)

+ σ ( x ) φ

(
μ( x ) − f ( x + ) − ε

σ ( x ) 

)
, (1) 

here μ( x ) and σ ( x ) are the mean and variance of the GP modelling
ser interest, f ( x + ) is the current maximum recorded user interest,
nd � and φ are the CDF and PDF of a standard normal variable,
especti vely. Intuiti vely, EI measures the expected gain in maximum 

nterest from a rating, x , given the current estimate, μ( x ), and
ncertainty, σ ( x ), for x ’s likely interest. ε is a hyperparameter
alancing exploration and exploitation and is subtracted from the 
 xpected impro v ement, causing the algorithm to ignore gains smaller
han ε (typically in well-explored regions) and instead explore more 
ncertain regions where the potential gains are still larger than ε. 
is particularly important for this problem because we potentially 

im to find diverse anomalies in many different regions each of high
nterest, rather than just the anomalies in the single region of highest
nterest. We find that a non-zero ε is crucial to a v oiding occasional
10–20 per cent) failures where the acquired galaxies fall into a single
ocal maxima. We choose ε = 0.5 throughout, representing an interest 
ncrease of 0.5 on the 0–5 rating scale used by Astronomaly . 

.3 Experiments 

.3.1 Galaxy Zoo 2 ‘Odd’ Galaxies 

B21 primarily demonstrate the performance of Astronomaly 
hrough identifying unusual galaxies in Galaxy Zoo 2. Specifically, 
hey aim to identify the rare (approximately 1.5 per cent) subset of
alaxies which more than 90 per cent of GZ2 volunteers described as
Odd’ in the ‘Is there anything odd?’ task. We repeat this demonstra-
ion with the method in this work and compare performance against 
Baseline’, the specific Astronomaly configuration used by LB21 
nd summarized in the previous Section. 

Starting from the same Galaxy Zoo 2 images as LB21 , we
alculate representations using our DECaLS-trained CNN following 
he procedure described in Section 2.2 . As in Section 2.2 , we
urther reduce the dimensionality using Incremental PCA, in this 
ase with 40 components preserving 98.1 per cent of the variation. 
e then use GP-based active learning to model user interest in this

educed representation. As in LB21 , we simulate receiving user 
atings through the Astronomaly interface using the recorded 
Z2 ‘Odd’ vote fraction 9 scaled and binned to integers from 0 to 5,

nd consider anomalies as those galaxies with ‘Odd’ vote fractions 
bo v e 90 per cent. 
 We use the vote fraction as released in the ‘Galaxy Challenge’ Kaggle 
ompetition, following LB21 ’s experimental protocol. Note that these vote 
ractions are not identical to the latest published GZ2 catalogue (Hart et al. 
016 ), which we suggest for general scientific use. 

t
p

1

a

We acquire (i.e. simulate rating for interest) galaxies in batches 
f 10, chosen to ensure that it takes no more than a few seconds
o retrain the GP and identify the next galaxies to rate. This helps
he user rate galaxies quickly and enjoy a responsive experience. 
ntroducing batching did not reduce performance. The first batch of 
alaxies is chosen randomly. 10 We rate for interest a total of 200
alaxies, matching LB21 . 

Fig. 3 compares the results of our CNN and GP-based approach
ith the Baseline. Fig. 3 follows the same format as fig. 5 in LB21 ,

omparing their ‘rank weighted score’ metric against the number of 
op galaxies, N , to consider when calculating the score. This rank
eighted score measures how highly the true interesting anomalies 

re ranked among the N galaxies predicted as most likely to be
nteresting. We also provide conventional accuracy and average 
recision scores in Fig. 3 and Table 1 . All experiments are repeated
5 times to marginalize o v er stochastic effects. 
From Fig. 3 it can be seen that Baseline easily outperforms random

election, with two-thirds of the 50 galaxies predicted as most likely
o be interesting anomalies actually being so. Using the method 
resented in this work, with both CNN representations and GP-based 
MNRAS 513, 1581–1599 (2022) 

0 Experiments with selecting the first batch via Isolation Forest did not show 

 performance impro v ement. 
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M

Table 1. Performance metrics for finding each anomaly in each data set with either the Astronomaly configuration used by LB21 on this task (Baseline) or 
introduced in this work (CNN and GP). ‘Failed’ indicates a failure to find the specified anomalies, indicated by a score comparable to random selection. Errors 
are (roughly) estimated as the 3 σ error on the mean o v er 15 runs. The best metrics are shown in bold. Our method significantly impro v es ev ery metric in every 
case, and a v oids failures on some combinations of target anomaly and data set. 

Data set Anomaly Method Average precision Accuracy (top 50) Accuracy (top 200) 

GZ2 Odd Baseline 0.16 ± 0.02 66 per cent ± 16 per cent 40 per cent ± 7 per cent 
GZ2 Odd Ellipse + GP 0.21 ± 0.10 99 per cent ± 5 per cent 63 per cent ± 22 per cent 
GZ2 Odd CNN + GP 0.55 ± 0.10 100 per cent 87 per cent ± 11 per cent 

DECaLS Merger Baseline 0.12 ± 0.03 25.5 per cent ± 18.6 per cent 24.9 per cent ± 7.7 per cent 
DECaLS Merger CNN + GP 0.58 ± 0.20 100 per cent 88 per cent ± 15.4 per cent 

DECaLS Ring Baseline Failed Failed Failed 
DECaLS Ring CNN + GP 0.63 ± 0.11 99.9 per cent ± 1.5 per cent 95.8 per cent ± 13 per cent 

DECaLS Irregular Baseline Failed Failed Failed 
DECaLS Irregular CNN + GP 0.58 ± 0.04 100 per cent 91 per cent ± 5.4 per cent 
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ctive learning, all of the top 50 galaxies and indeed all of the top 100
alaxies are interesting anomalies. Given that interesting anomalies
epresent only 1.5 per cent of the data set, this impro v ement is
otable. 87 per cent of the top 200 galaxies are interesting anomalies,
ompared with 40 per cent using Baseline and 1.5 per cent using
andom selection. 

Fig. 4 investigates why the new method is more successful. In this
gure, we visualize the representations of both Astronomaly ’s
llipse-fitting method and of our CNN using a 2D umap projection, 11 

s in Section 2.3 . We then colour galaxies according to either
solation Forest predictions or those of the Gaussian Process interest
odel. We also show the galaxies considered as anomalies and the

alaxies selected for rating by the user, either due to the Isolation
orest ranking or our acquisition function. The CNN representation

s far more ef fecti ve at grouping ‘Odd’ galaxies together 12 than the
llipse representation, and this, in turn, makes user interest easier
o model. The interest model matches the density of interesting
nomalies well and the user-rated galaxies concentrate along the
egion of highest interesting anomaly density. In contrast, the ellipse
epresentation places ‘Odd’ galaxies along a distributed border in our
isualization. This is crucial for the success of the Isolation Forest
n making an initial prioritization (which will prefer border regions).
o we ver, the galaxies considered most anomalous by the Isolation
orest, and hence rated by the user, tend to lie only in specific
atches on the border and so the user ratings of those galaxies do not
fficiently measure user interest along the full anomalous border. 

We highlight that our CNN can calculate ef fecti v e feature v ectors
rom Galaxy Zoo 2 images even though it has never been trained
n Galaxy Zoo 2 data . The CNN was only trained on GZ DECaLS
mages, which are significantly deeper and of higher resolution than
he Galaxy Zoo 2 images ( W + 22 ). It is well-known that CNNs can
uffer from substantial performance drops in the presence of minor
omain shifts barely visible to humans (e.g. contrast adjustments,
NRAS 513, 1581–1599 (2022) 

1 Note that we are using umap to further compress (and hence visualise) 
he features already extracted by each method (ellipse-fitting or our CNN) 
nd not directly applying umap to the images themselves. We tested using 
map as a feature extractor and found it under-performed Astronomaly ’s 
llipse-fitting method (though impro v ed on random chance). 
2 The CNN representation may be placing ‘Odd’ galaxies largely together 
ecause, as stated previously, most ‘Odd’ galaxies are major mergers. An 
solation forest would not work well with the CNN representation due to this 
ffect, as the ‘Odd’ galaxies are largely not considered quantitatively unusual. 
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D
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dded Gaussian noise, adversarial attacks – see Moosavi-Dezfooli
t al. 2017 ; Hendrycks & Dietterich 2019 ; Ilyas et al. 2019 ), and it is
herefore encouraging that the CNN representation used here remains
seful across different surv e ys without any need for retraining. 

.3.2 DECaLS merg er s, rings, and irregular galaxies 

he vast majority of ‘Odd’ GZ2 galaxies are major mergers ( LB21 ).
hile scientifically valuable, major mergers may not be representa-

ive of all interesting anomalies and so mergers alone may not provide
 comprehensive test of an anomaly finding method. We therefore
pply our method to finding irregular galaxies and ring galaxies in
ECaLS (along with mergers again for comparison), using the vote

ractions reported by GZ DECaLS volunteers. 
We use the same DECaLS images previously described and used

n Section 2 . We select only galaxies with at least 30 total volunteer
esponses 13 to ensure reliable vote fractions. Of 253 286 v olunteer -
abelled galaxies, the Astronomaly ellipse method fails for 2112
alaxies, returning nan features; we exclude any galaxies with failed
llipse measurements from the experiment. We filter to rele v ant
alaxies using automated vote fraction prediction cuts of featured
raction > 0.6 and face-on fraction > 0.75, for a final experiment
atalogue of 58 982 galaxies (56 828 for identifying mergers). For
ach class of anomaly, we choose the minimum vote fraction to be
efined as an interesting anomaly such that the rate of interesting
nomalies is 1.5 per cent (matching LB21 ’s GZ2 experiment above);
 > 0.42 for irregular galaxies, f > 0.57 for rings, and f > 0.6 for

ergers. As before, we use the binned v olunteer v ote fraction to
mulate user interest responses from 0 to 5. 

We follow the same method as for the GZ2 ‘Odd’ experiment,
sing the CNN representation as galaxy features and acquiring
alaxies (in batches of 10) that maximize the expected improvement
f our GP user interest model. We compare our results to Baseline
n Fig. 5 and Table 1 . 

Our method again dramatically outperforms both Baseline and
andom selection. For each anomaly class, we achieve a high fraction
f true interesting anomalies in the top 200 galaxies; 88 per cent for
ergers, 96 per cent for rings and 91 per cent for irregular galaxies.
3 For identifying mergers, where the question was modified during GZ 

ECaLS (see W + 22 ), we specifically require 30 votes for the latest version 
f the merger question. 
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Figure 4. Visualization of each anomaly finding method ( LB21 , left, and this work, right). Small translucent points are GZ2 galaxies, coloured by the user 
interest predictions of each method (red for high interest, blue for low interest). The LB21 visualization shows the initial predicted anomaly score from the 
Isolation Forest. Solid red points are anomalies, defined as galaxies GZ2 volunteers voted ‘Odd’. Solid black points are galaxies chosen to be rated by the 
user following each method, to help inform the user interest model. Our representation gathers anomalies together better (red points are more clustred in the 
right-hand panel) making it easier for our active learning approach to identify the part of the representation most likely to include anomalies. 

Figure 5. Rank weighted scores (abo v e) and accuracy (below) for identifying 
interesting anomalies (mergers, rings, or irregular galaxies) in GZ DECaLS 
images. Calculated after training on 200 user ratings following either the 
method of LB21 (baseline, dashed) or this work (CNN and GP, solid). The 
method introduced in this work dramatically impro v es both metrics. 
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aseline achieves 25 per cent for mergers and is comparable to
andom selection for rings and irregular galaxies. 

Fig. 6 shows (for each anomaly class) a random selection of the
op 200 galaxies identified by our method as having the highest
xpected interest. These are representative of the galaxies that a user
eing recommended interesting anomalies might see. Our method 
uccessfully presents rings, mergers or irregulars according to the 
ser’s interests. 
We have shown how our CNN representations can, when combined 

ith GP-based modelling of user interest, be used to better find
nteresting optical galaxies than in previous work – even though it 
as not specifically trained to do so. In the next section, we turn to
ow to impro v e the representations themselves. 

 TRANSFER  L E A R N I N G  A N D  FI NE-TUNING  

e have shown that the representations learned by our GZ DECaLS
odel are useful for tasks on which it was never trained. We used the

epresentations to find similar galaxies (Section 2 ) and interesting 
nomalies (Section 3 ) without any modification. Going further, we 
an also tailor the representations for a specific task. 

One rele v ant task is to find more of a specific type of galaxy based
n a small set of known examples. We can do so better than with a
imilarity search by learning from multiple examples (not one), and 
e do not need a blind anomaly search as we know what we are

ooking for. By starting from our GZ DECaLS representations, we 
an solve this supervised classification task using far fewer known 
xamples than otherwise required. 

In this section, we fine-tune the DECaLS model for finding ring
alaxies and find that it outperforms equi v alent models trained from
cratch, fine-tuned from ImageNet, or fine-tuned from single GZ 

ECaLS tasks. 
MNRAS 513, 1581–1599 (2022) 
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M

Figure 6. Random selections from the top 200 interesting anomalies identified using our CNN and GP method, representing what a user might have found. 
Interesting anomalies are defined (using the GZ DECaLS vote fractions) as either mergers (upper), rings (middle), or irregular galaxies (lower). 
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.1 Context 

ine-tuning is a technique where a model is trained on one problem
typically one with plentiful labelled data) and then adapted to a
econd problem (typically one with less labelled data). Once trained
n the first problem, the upper layers of the model (the ‘head’) are
emo v ed and the remaining layers frozen (i.e. the weights are fixed).
his ‘base’ model simply calculates representations, exactly as we
ave done in Section 2.2 . A new ‘head’ model is added, with outputs
ppropriate to the new problem and with fewer parameters to a v oid
 v erfitting the more limited labels. The new head is trained to predict
utputs for the second problem given the frozen representation (from
he base model) and the new labels. This allows the new head to
enefit from the previously learned representation, as we have been
oing throughout this work. Finally, once the new head is trained,
ome or all of the base model layers may be unfrozen and both head
nd base model trained together (typically at a low learning rate to
 v oid o v erfitting). This gradually adapts the representation to best
olve the second problem, starting from the already useful initial
epresentation learned for the first problem. We refer the reader to
oodfellow et al. ( 2016 ) for a further introduction to fine-tuning. 
NRAS 513, 1581–1599 (2022) 
What is the best base model to fine-tune for a new galaxy
lassification problem? In our Section 1 , we noted various efforts
y astronomers to use fine-tuning to mitigate the lack of available
abelled data for their target problem. The base models were
rained either on identical narrow questions on comparable surv e ys
Dominguez Sanchez et al. 2019 ; P ́erez-Carrasco et al. 2019 ; Tang
t al. 2019 ) or on the broad but terrestrial ImageNet data set (Acker-
ann et al. 2018 ; Wu et al. 2018 ; Martinazzo et al. 2020 ). Training

n identical questions is not possible where we want to answer new
uestions for which no labels yet exist. We argued that ImageNet
s qualitatively different to galaxy images and so pretraining on
mageNet is unlikely to be as helpful as pretraining to answer a
road set of questions on galaxy images. Both approaches would
ead to generic representations, but ImageNet would lead to a generic
errestrial representation while galaxy images would lead to a generic
alaxy morphology representation. We have shown in the preceding
ections that such generic galaxy representations are indeed learned
nd are immediately useful for diverse tasks beyond classification.
e now test if our representations can help astronomers outperform

mageNet pretraining on new classification tasks. 
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.2 Experiments 

o measure the ef fecti veness of fine-tuning from our representation 
o solve new classification tasks, we experiment with identifying ring 
alaxies. 

Rings have long been thought to be typically 14 caused by res-
nances in a disc driven by a bar , or , where no bar is present,
riven by an oval-shape or spiral potential (Schwarz 1981 ). More
ecent theoretical work suggests they may in fact be related to 
ynamical manifolds (Athanassoula, Romero-G ́omez & Masdemont 
009 ). Both theories predict ring morphologies broadly similar to 
hose observed (Buta 2013 ). Ho we ver, each theory makes specific
redictions about the nature and frequency of ring subtypes and so
t may be possible to distinguish the true cause(s) from a sufficiently
arge ring sample. 

Rings are also useful to measure secular e volution. The slo w nature
f ring formation (in both theories) suggests a lack of recent major
ergers and so any difference in characteristics between rings and 

tandard disc galaxies may help test the effect of major mergers on
opics such as quenching (Smethurst et al. 2017 ) and black hole
rowth (Simmons et al. 2013 ). Such an investigation would again 
ikely require a large ring sample in order to control for other variables
mass, redshift, environmental density, etc.) 

Existing expert catalogues contain of order tens to hundreds of 
ings (Buta & Combes 1996 ; Lavery et al. 2004 ; Nair & Abraham
010 ; Struck 2010 ; Moiseev et al. 2011 ; Comer ́on et al. 2014 ; Buta
t al. 2015 , 2019 ). This is in stark contrast to the size of modern
urv e ys such as DECaLS (Dey et al. 2019 ), which contain hundreds
f thousands to millions of galaxies with imaging appropriate for 
dentifying rings. Even if rings make up only a few percent of
alaxies, this suggests that there are thousands to tens of thousands 
f rings yet to be identified in DECaLS alone. 
Efforts at automatic identification are sparse. Our literature search 

evealed only two papers (Timmis & Shamir 2017 ; Shamir 2020 ) au-
omatically identifying 185 and 443 ring candidates in PanSTARRS 

nd SDSS, respectively. The largest ring catalogue, Buta ( 2017 ), 
as created using crowdsourcing. 3692 galaxies were identified by 
alaxy Zoo 2 volunteers and then classified by a single expert (R.
uta). 
For our experiment in automatically finding rings, we first need to 

dentify large samples of ringed and not-ringed galaxies in DECaLS 

mages. As mentioned in Section 3 , Galaxy Zoo DECaLS volunteers 
ere asked if each galaxy had rings via the ‘Are there any of these

are features?’ question (see W + 22 for a full schema). We use these
otes to identify likely rings and not-rings. 

We make initial selection cuts on the DECaLS DR5 catalogue 
Section 2.1 ). For simplicity, we select galaxies with volunteer votes 
rom the GZD-5 campaign (253 286 galaxies). We use the ML-
redicted vote fractions of ‘Smooth’ < 0.25 and ‘Not Edge On’ 
 0.75 to select a subset of 82 898 candidate ring galaxies. 15 Note

hat we use the ML-predicted morphology vote fractions, rather than 
he v olunteer v ote fractions, because we ultimately hope to make the
ame selection cuts on galaxies not previously classified by humans. 
e then use volunteer ‘ring’ vote fractions to select relatively clean 
4 Some so-called collisional rings are caused by mergers (Lavery et al. 2004 ). 
hese are thought to be rare and could be an interesting target for the similarity 
earch in Section 2.4 . 
5 Our volunteer ‘ring’ vote fraction criterion is less reliable for galaxies 
ailing these cuts; galaxies with volunteer ‘ring’ vote fractions f > 0.25 which 
re also predicted to be extremely smooth or edge-on are often judged to not 
e rings by the authors. 
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amples of rings and not-rings. Based on inspection by one of the
uthors (MW) of several hundred random galaxy images selected at 
arious ‘ring’ vote fractions, we choose to consider galaxies with 
 fraction f > 0.25 as rings (12 per cent, N = 9947; of which we
udge approximately 90 per cent are truly ringed based on random
nspection) and galaxies with a vote fraction f < 0.05 as ‘not rings’
61 per cent, N = 50 855). Galaxies with intermediate vote fractions
27 per cent, N = 22 096) are discarded. Our priority is to make
 simple, reliable test of how different methods perform at finding
ings under equi v alent conditions rather than finding as many rings
s possible. We note that, with approximately 10 000 likely rings,
his is the largest ring catalogue to date. 

What is the best way to train a model to find these ring galaxies?
e test three training methods. First, and most conventionally, 

raining from scratch using a random weight initialization (‘scratch’). 
econdly, training a new head on a pretrained base model with
rozen weights (‘frozen’). Third, once the new head has been trained,
llowing some or all of the base model layers to also be trained (‘fine-
uned’). We test pretraining with either GZ DECaLS (i.e. using our
epresentation as a starting point) or with ImageNet. This allows 
s to measure whether our GZ DECaLS representation is helpful, 
hether it is more helpful than the ImageNet representation, and 
hether further fine-tuning of either representation can impro v e 
erformance. To investigate whether learning to solve many diverse 
asks is important for creating a helpful representations, we also test
retraining with GZ DECaLS labels but only using the labels from a
ingle task (e.g. only training to predict ‘Smooth or Featured?’ votes).

We ensure that, other than the different training methods described 
bo v e, all other factors are equi v alent between tests. Belo w, we
escribe the specific details of our architecture, data splits, and 
raining procedure. 

.2.1 Ar chitectur e 

e use the same EfficientNetB0 architecture and training procedure 
s previously introduced in Section 2.2 . We instantiate the network
n three ways: (i) randomly, (ii) with the weights from pretraining
n ImageNet as provided by Keras Applications, 16 or (iii) with the
eights from pretraining on GZ DECaLS by W + 22 (released with

his work, see Data Availability Statement Section), either pretraining 
o predict all GZ DECaLS tasks (as done throughout this work) or
retraining on only a single GZ DECaLS task (this section only). In
ll cases, we replace the final dense layer with a new head comprised
f two 64-unit dense layers, each with dropout probability of p = 0.75
nd relu acti v ations (Agarap 2018 ), and a final 1-unit dense layer
ith sigmoid acti v ation. This head design was chosen to have a low

apacity to minimize o v erfitting on small data sets. For pretrained
odels, the head is trained to convergence on the frozen base model

using the Adam optimizer and an initial learning rate of 10 −3 ) before
he base model is unfrozen and allowed to also train (with a lower
earning rate of 10 −5 ). Using our chosen head, EfficientNetB0 has
pproximately 4.1-m parameters, comparable to older designs such 
s VGG16 (Simonyan & Zisserman 2015 ), and is therefore best
iewed as a more advanced network rather than a ‘bigger’ network. 
Two elements of EfficientNet are particularly important to this 

ork. First, EfficientNet includes batch normalization layers (Ioffe 
 Szegedy 2015 ) which we never unfreeze during fine-tuning (i.e. we

reserve the acti v ation statistics from initial training), as is standard
ractice. Secondly, EfficientNet is divided into a repeating pattern 
MNRAS 513, 1581–1599 (2022) 

6 https:// keras.io/api/applications/ 
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Figure 7. Test accuracy as a function of the total number of labelled ring 
galaxies to train on, split by base model pretraining. Models are pretrained 
on either all (‘Multi’) GZ DECaLS tasks (i.e. starting from our DECaLS 
representation), pretrained to solve only the Smooth/Featured/Artifact GZ 

DECaLS task, pretrained on ImageNet, or trained from scratch. Solid versus 
dashed lines compare models where only the upper-most layers are allowed 
to train (‘Frozen’) versus where all layers are allowed to train (‘Finetuned’). 
Models pretrained on GZ DECaLS are better able to classify rings at all 
training set sizes. 
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f mobile inverted bottleneck blocks, just as previous designs tend
o include repeating blocks of convolutional layers and a pooling
ayer. We investigate partially fine-tuning EfficientNet by unfreezing
ncreasing numbers of these blocks, from the output layer down,
nd measuring how performance v aries. We follo w the same block
aming schema as Tan & Le ( 2019 )’s EfficientNet implementation; 17 

he ‘top’ block is the Conv2D and batch normalization block listed
s Stage 9 in Tan & Le ( 2019 ) table 1, ‘block7’ is the mobile
onvolutional block listed as Stage 8, ‘block6’ is listed as Stage 7,
nd so forth. 18 

.2.2 Restricting data set size 

ot all astronomers have access to tens of thousands of labelled
alaxies. It is therefore crucial to measure how the performance of
ach training method varies with the number of available labels.
e expect that starting from the GZ DECaLS representation will

e particularly useful for astronomers with fewer labelled galaxies,
here training from scratch would be more likely to o v erfit. 
When varying the data set size, the class balance must remain

onstant regardless of data set size so that the final losses are compa-
able. 19 We choose the balance to be equal. For each experiment run,
e first set aside 30 per cent of rings (2984), chosen randomly, and
ivide them into validation (10 per cent) and test (20 per cent) sets.
e then similarly set aside 30 per cent of not-rings and randomly

elect 2984 not-rings to match each ring. To construct the training
et, we o v ersample (i.e. repeat) the remaining 6962 rings by a factor
f 5 such that the number of remaining ringed galaxies is close to,
ut slightly below, the number of not-ringed galaxies. 20 We then
ut surplus not-ringed galaxies such that the class balance is exactly
qual (6962 rings repeated five times each, and 34 810 unique not-
ings). We then artificially reduce the data set size as required for the
esired data set size by dropping random galaxies from the training
ubset. This provides realistic variation in the training class balances
hile preserving the average balance. We do not drop galaxies from

he validation subset; preserving these galaxies drastically reduces
he noise in our performance metrics introduced by early stopping
below). 

Every model is independently trained with a new train, validation,
nd test split. This allows us to measure the significant uncertainty in
oss caused by the choice of training data, particularly in the low data
egime; training on these 10 or those 10 galaxies can dramatically
ffect model performance. 

.2.3 Training procedure 

odels are trained using the binary cross-entropy loss. To efficiently
se our limited GPU resources, we use early stopping (i.e. we
nd training for models with a non-decreasing validation loss).The
umber of update steps per epoch increases with data set size and
o we calculate the patience (i.e. the maximum number of epochs
NRAS 513, 1581–1599 (2022) 

7 https:// github.com/qubvel/ efficientnet
8 The blockN and Stage N + 1 numbers are offset because the implementation 
ames the first block as ‘stem’ rather than Stage 1. 
9 Class imbalance makes prediction easier. Consider the limiting case where 
here is only one class; a toy model predicting only that class would be 
erfectly accurate. 
0 This also allows us to train on more non-ringed galaxies than simply picking 
n equal number of non-ringed galaxies, because each of the 5 repeats of a 
ing galaxy are matched by a unique non-ring galaxy. 
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ith no validation loss impro v ement before cancelling training) on a
liding scale from 10 to 30. Specifically, after some experimentation,
e choose the patience as min(max(10, int(epochs/6)), 30) and

he total possible epochs 21 as 5 × 10 6 /train data set size. We find
his ensures that all models are trained to convergence but GPU
esources are not unduly wasted past convergence. Training time is
trongly dependent on data set size. Training on the full data set takes
pproximately 6 h on an NVIDIA A100 GPU. As our performance
etric, we record the test loss of the weights with the lowest observed

alidation loss during training (i.e. the best-performing checkpoint
s measured on the validation data set). 

We experiment with the following training methods. For initial
eights pretrained on all GZ DECaLS tasks, on the ‘Smooth or
eatured’ task only, or on Imagenet, we test six fine-tuning options
the top block only, blocks 7 + , 6 + , 5 + , 4 + , and all blocks), each
rst training atop a frozen base model before fine-tuning. For initial
eights pretrained on the GZ DECaLS ‘Spiral’ task only, ‘Bar’ task
nly, and ‘Bulge’ task only, we test two fine-tuning options (top block
nly and all blocks), each first training atop a frozen base model
imilarly. We also train a model from scratch. All combinations of
raining method and training data set size are repeated 5 times for
ach of the 12 data set sizes, for a total of 60 models per training
ethod. We record performance metrics from a total of 2940 models.

.3 Results 

e find that models pretrained with all GZ DECaLS tasks outperform
oth models pretrained with ImageNet and models trained from
cratch for data sets of all available sizes. Fig. 7 reports the mean
ccuracies. 

F or v ery small training data sets (below 10 unique rings), all
odels struggle similarly but the DECaLS-pretrained models already

mpro v e on random chance. With 10–100 rings, the DECaLS-
retrained models vastly outperform all others. With 100–1000
ings, the fine-tuned ImageNet model impro v es significantly but
1 No model is trained to the maximum number of epochs; this is solely used 
o calculate the patience for early stopping. 

https://github.com/qubvel/efficientnet
art/stac525_f7.eps
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Figure 8. Test accuracy as a function of the total number of labelled ring 
galaxies to train on, split by base model pretraining (as Fig. 7 , abo v e), but 
comparing the performance of models pretrained on only one GZ DECaLS 
task to models pretrained to solve all GZ DECaLS tasks simultaneously. 
The individual GZ tasks are either Spiral Yes/No, Smooth/Featured/Artefact, 
Bar Strong/Weak/None, or Bulge Size. All models are finetuned. Models 
pretrained to solve all GZ DECaLS tasks are better able to classify rings than 
models pretrained on any individual GZ DECaLS task. 
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he DECaLS-pretrained models remain firmly ahead. With 10 3 −10 4 

ings, training from scratch suddenly becomes feasible; the from- 
cratch model dramatically impro v es from random chance (i.e. 
ailing to train) to outperform the ImageNet model. The DECaLS- 
retrained model remains ahead with our full training data set of 6962
ings, though the from-scratch would likely equal or o v ertake it with
round 10 4 –10 5 labelled rings. Since approximately 12 per cent of
alaxies in our data set have rings, this would correspond to labelling
0 5 –10 6 galaxies. 
Two further comparisons suggest that training on multiple tasks 

s crucial for constructing a useful representation for this new 

ask (identifying rings). Fig. 8 shows that, after fine-tuning all 
ayers to classify rings, models pretrained on all DECaLS tasks 
ignificantly outperform equi v alent models pretrained on any one 
f se veral indi vidual tasks. Fig. 9 compares the final performance of
odels fine-tuned to increasing depths – from only the top mobile 

ottleneck block (‘Top’), through the intermediate blocks (Blocks 6 
nd abo v e, 4 and abo v e) and down to all layers (‘All’). Fine-tuning
ore layers consistently impro v es the performance of all models, 

ut the magnitude of this performance impro v ement is dramatically 
ifferent. For models pretrained on either Imagenet or on the DECalS
Smooth or Featured’ single task, fine-tuning only the top block has 
ittle to no effect on accuracy versus the frozen equi v alent (where
nly the dense layers are trained to classify rings). Fine-tuning 
he intermediate blocks and abo v e is necessary to achieve good
erformance, increasing accuracy from approx. 70 per cent to approx. 
5 per cent. In contrast, for models pretrained on all DECaLS tasks,
ven the frozen models outperform the fully fine-tuned Imagenet 
nd single task models, with further fine-tuning providing only a 
mall additional performance impro v ement. Together, we interpret 
hese comparisons as strong evidence that the representations learned 
rom training on all DECaLS tasks are more immediately appropriate 
o new tasks than representations learned from single DECaLS tasks 
r from Imagenet. 
Our practical advice is that if you have fewer than 10 4 labelled

alaxies of one class, and the task you are solving is of a similar
ature to the Galaxy Zoo questions, you are likely to perform better
ith our pretrained model than with a comparable model either 

rained from scratch or pretrained on ImageNet. The further gain 
rom introducing fine-tuning (rather than simply using the frozen 
retrained representation) may depend on how similar the task is to
he Galaxy Zoo questions. 

To help the community benefit from our pretrained models, we 
elease the code as the PYTHON package zoobot at https://gith 
b.com/mwalmsle y/zoobot. We pro vide e xtensiv e documentation 
t zoobot.readthedocs.io aimed at researchers (including Masters 
r PhD students) with a strong interest in deep learning but no
rior experience. The package additionally contains simple working 
xamples to extend pretrained models and apply fine-tuning. We 
ope this will help make deep learning accessible to astronomers 
orking with smaller labelled data sets. 

 DI SCUSSI ON  

e have shown that, using our representation, finding a range of
nteresting anomalous galaxies is straightforward. What should we 
o with this capability? Specifically, how do we build systems that
ead to new scientific insights from those anomalies? First, we 
 ould lik e to mak e human-in-the-loop anomaly recommendation 

vailable to as many interested humans as possible. Citizen scientists 
ave repeatedly driven discoveries of unique objects or new classes 
Lintott 2019 ). We hope to make methods like the one presented
ere available to them on the Zooniverse citizen science platform. 
his might also enable us to exploit the shared interests of the crowd

hrough recommendation engines. We could make predictions like 
people with similar interests to you also liked this galaxy’. We would
lso to like to encourage formal collaboration with observatories for 
ollow-up, which – given the size of new surv e ys – may become the
imiting factor. 

The anomalies we find will depend strongly on our choice of
epresentation. Our DECaLS CNN representation is learned directly 
rom data and so might be considered more flexible than handcrafted
arametric feature extractors like ellipse fitting, which assume a 
articular functional form (e.g. that a galaxy can be described as
 series of ellipses of increasing total flux). Ho we ver, our CNN
epresentation will have its own assumptions (from e.g. the choice 
f convolution sizes) and these are perhaps harder to identify than
ith parametric feature extractors. There is likely no single ‘best’ 

epresentation. Similarly, there is likely no single best active learning 
trategy. Our GP search and acquisition function assume that the user
as degrees of interest (for example, that a user interested in rings will
nd discs a little interesting, face-on-discs more interesting, and rings 
ost interesting) so that our initially random search can mo v e up the

esulting interest gradients to find the target galaxies. A user who
nly wants to find anomalies which are utterly distinct from other
alaxies might be better served by starting from a machine-learning 
rioritized list of the most quantitatively unusual galaxies, as in e.g.
B21 . Framew orks lik e Astronomaly are therefore important 

or enabling researchers to choose their own representations and 
ctive learning strategies while abstracting away shared technical 
etails such as the browser interface. Our pretrained CNN is publicly
v ailable (Data Av ailability Statement Section) and we plan on
ncorporating it into future versions of Astronomaly . 

Counter-intuitively, our fine-tuning results show that pretraining 
n ImageNet can actively harm performance. It has been previously 
ssumed (e.g. Dobbels et al. 2019 ) that pretraining on ImageNet is
ood practice for astronomers. Evidence for the benefits of ImageNet 
retraining was gathered with experiments on relatively small data 
ets (Ackermann et al. 2018 ; Martinazzo et al. 2020 ), where the
enefits of pretraining would be expected to be greater. We find
hat ImageNet pretraining is indeed useful with small data sets 
MNRAS 513, 1581–1599 (2022) 
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M

Figure 9. The effect of fine-tuning on ring classification test accuracy, split by base model pretraining. The model layer blocks are named, from the output, 
‘Top’, ‘Block7’, ‘Block6’, etc – see main text for details. We show results for fine-tuning the top (Top), blocks six and abo v e (Blocks 6 + ), blocks four and 
abo v e (Blocks 4 + ) and all blocks (All). For models pretrained with either ImageNet (left) or on the GZ DECaLS ‘Smooth or Featured’ task (centre), fine-tuning 
intermediate layers is crucial to achieve good performance. In contrast, for models pretrained to solve all GZ DECaLS tasks simultaneously (right), performance 
is high without fine-tuning and fine-tuning provides only a small additional benefit. This suggests the representation learned from all DECaLS tasks is more 
immediately appropriate to new tasks than representations learned from single DECaLS tasks or from Imagenet. 
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consistent with those previous experiments) but that as the data set
ize increases, ImageNet pretraining may eventually lead to worse
erformance than training from scratch. Recent computer science
esults show that the network initialization can dramatically change
he minima found at convergence (Fort, Hu & Lakshminarayanan
019 ). It may be that, beyond a certain data set size, the ImageNet
nitialization sets the network on a path to learn features which
re ultimately less helpful than those that would otherwise be
earned directly. We encourage researchers to experiment with both
ur galaxy-appropriate pretrained weights and with training from
cratch. 

When aiming to solve a new task on galaxy images, it may seem
elf-evident, in retrospect, that pretraining on galaxy images is more
f fecti ve than pretraining on terrestrial images. Doing so is not
tandard practice. We are the first to do this in a supervised context.
t remains to be seen whether pretraining on large supervised data
ets or on even larger self-supervised data sets will be more ef fecti ve
or astronomers. Self-supervised contrastive learning in particular
ontinues to advance (Grill et al. 2020 ; Caron et al. 2021 ) and
as found very recent practical applications in astronomy (Hayat
t al. 2021 ; Sarmiento et al. 2021 ; Stein et al. 2021 ). One key
enefit in our context is the opportunity to distinguish classes where
road supervised labels are unhelpful (for example, we note that the
imilarity search returns two ‘wrong size’ images under the ‘star’
earch, perhaps because the GZ decision tree labels are not useful in
istinguishing these two cases). The best approach may ultimately
e a combination of the two, with self-supervised ‘pre-pretraining’
ollowed by supervised pretraining and finally fine-tuning to the task
t hand. As the complexity grows, we may see some ML-centric
esearchers specialize in this process while others focus on carrying
ut specific applications and drawing scientific conclusions. 
Bias propagation is a potential concern. The initial representation

ould include subtle unwanted correlations from the initial data
et, which could then be inherited by the fine-tuned model and
ffect the downstream predictions even if the downstream data set
s itself unbiased. Detecting such biases is itself an active field of
omputer science research and so this, again, w ould lik ely benefit
rom specialized attention. We note that only a small minority
f recent deep learning applications in the astronomical literature
nclude experiments to check for biases or to understand why specific
redictions are made (e.g. Ghosh et al. 2020 ). This might either make
nherited bias more of a concern, in that such biases are unlikely to
NRAS 513, 1581–1599 (2022) 

s  
e detected without a change in culture within the field, or less of
 concern, in that the field currently broadly accepts models with a
otential direct bias and so inherited bias is merely a second-order
ffect on an existing issue. 

The question of how best to classify a new surv e y with no labels
ecomes increasingly pressing as we approach first light for the Vera
ubin Observatory (LSST Science Collaboration 2009 ) and Euclid

Laureijs et al. 2011 ). We noted (Section 3 ) that our model was able
o identify ‘Odd’ galaxies in Galaxy Zoo 2 despite only being trained
n DECaLS. It is plausible (see e.g. Dominguez Sanchez et al. 2019 )
hat retraining on a few hundred surv e y-specific labels might have
urther impro v ed performance. If, as our results suggest, CNN trained
n broad tasks are relatively transferable between galaxy surveys, we
ay be able to use these pretrained models to rapidly classify entirely

ew surv e ys like LSST. A short citizen science campaign answering
 Galaxy-Zoo-like task on an active-learning-selected subset could
rovide enough new labels to adapt our representations. The adapted
epresentations could then be used for time-sensitive downstream
asks like finding difference-image transients for which one cannot
fford to wait several years to build the data sets that traditional ‘from
cratch’ approaches require. 

If large data sets become central to deep learning in astronomy,
s the y hav e in the natural language community, it is crucial that we
llow fair access for researchers at less well-resourced institutions.
he data, code, and trained models from this work are all publicly
vailable (Data Availability Statement Section). 

 C O N C L U S I O N  

epresentations are the core of many machine learning methods.
e have shown that, when trained on the broad task of answering

very Galaxy Zoo DECaLS question, our convolutional neural
etwork learns an internal representation of galaxies arranged by
orphological similarity. This general representation is directly

seful for new practical tasks on which the network was never trained.
The first practical task we showed was a similarity search method.

imilarity searches aim to return the most similar galaxies to a
uery galaxy. To do so, they require a quantified measurement of the
imilarity between two galaxies – a problem underlying the search
or automatic taxonomies of galaxies. Because our representation
rranges galaxies by similarity, our measurement of similarity is
imply estimated as the distance in representation space between

art/stac525_f9.eps
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alaxies. The most similar galaxies are the query galaxy’s nearest 
eighbours. We tested our search method using free text hashtags 
e.g. ‘#starforming’, ‘#disturbed’, etc.) from the Galaxy Zoo forum. 
or each common hashtag, we searched for the galaxies most similar

o the galaxy most frequently given that tag. Our searches were 
uccessful in a clear majority of cases, even where the hashtag 
as highly specific (e.g. ‘#dustlane’) and even though none of the 

ags corresponded to the original training labels (Galaxy Zoo vote 
ractions). 

The second practical task was finding rare galaxies that were 
ersonally interesting to a given user. We used GP regression to 
odel user interest, and our uncertainty about that interest, for 

ach galaxy. We selected which galaxies to be rated for interest 
y our user with active learning and a Bayesian optimization 
cquisition function. We simulated a user expressing their interest 
hrough the Astronomaly interface (Lochner & Bassett 2021 ) 
ith Galaxy Zoo vote fractions as a ground truth for interest values.
e carefully replicated the test originally used to demonstrate a 

pecific Astronomaly configuration and achieved a significant 
mpro v ement in performance. All of the top 100 galaxies predicted
y our method to be most interesting were voted ‘Odd’ by Galaxy
oo 2 volunteers. We then carried out comparable tests to identify 
ergers, rings and irregular galaxies in the DECaLS surv e y and

ound similarly impro v ed results. Our method successfully identified 
ach class of anomaly for our simulated user. 

The third practical task was fine-tuning a convolutional neural 
etwork to solve a new galaxy classification task; specifically, to 
nd ringed galaxies in DECaLS. We experimented with training the 
ame architecture (EfficientNetB0) in three ways: from scratch, fine- 
uned from ImageNet, and fine-tuned from Galaxy Zoo DECaLS 

i.e. from our representations). In each case, we measured how the 
est loss varied with training data set size. We found that fine-tuning
rom Galaxy Zoo DECaLS performed best, especially when few 

abelled rings were available (as would typically be the case for a
ew task). We therefore suggest that researchers use our pretrained 
eights rather than ImageNet weights for models aiming to solve 
ew galaxy classification tasks. 
Together, solving these tasks demonstrates the utility that an 

ppropriate representation can have. We believe the future of machine 
earning for galaxy morphology lies in the thoughtful creation and 
haring of representations, so that researchers can build on top of
ne another’s models rather than creating them from scratch for each 
ew problem. 
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ATA  AVA ILA BILITY  STATEMENT  

o help the community benefit from our pretrained models, we
elease much of the code from this work as the documented
ython package ‘zoobot’ at ht tps://github.com/mwalmsley/zoobot .
his includes code for training the Galaxy Zoo DECaLS models

rom scratch, calculating the representations of new galaxies, and
ne-tuning the trained model to new classification problems. The
epository also includes the weights of the trained model used in this
ork. 
We release the remaining code for this work at https://github.com

mwalmsley/morphology-tools for reproducibility and future exten-
ion. This includes code for our similarity searches, our human-in-
he-loop anomaly detection method, and our fine-tuning experiments.

The Galaxy DECaLS images and Galaxy Zoo DECaLS volunteer
otes (with the exception of votes to the final multiple-choice
uestion) were previously made available by Walmsley et al. ( 2022 ).
he ‘ring’ multiple-choice answers are currently being used as part of
 rigorous follow-up search for ringed galaxies in the DESI Le gac y
urv e ys, powered by a combination of citizen science and deep

earning. The complete ring catalogue will be publicly available. 
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