Monthly Notices

MNRAS 513, 1581-1599 (2022)
Advance Access publication 2022 February 28

https://doi.org/10.1093/mnras/stac525

Practical galaxy morphology tools from deep supervised representation
learning

Mike Walmsley “,'* Anna M. M. Scaife “,!"? Chris Lintott ©,* Michelle Lochner,*> Verlon Etsebeth,*
Tobias Géron ,* Hugh Dickinson,® Lucy Fortson,”® Sandor Kruk,”!° Karen L. Masters *,!!

Kameswara Bharadwaj Mantha’-® and Brooke D. Simmons 12

odrell Bank Centre for Astrophysics, Department of Physics & Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
2The Alan Turing Institute, 96 Euston Road, London NW1 2DB, UK

3Oxford Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
4Department of Physics and Astronomy, University of the Western Cape, Bellville, Cape Town 7535, South Africa

SSouth African Radio Astronomy Observatory (SARAO), The Park, Park Road, Pinelands, Cape Town 7405, South Africa

6School of Physical Sciences, The Open University, Milton Keynes, Kents Hill MK7 6AA, UK

"Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St SE, Minneapolis, MN 55455, USA

8School of Physics and Astronony, University of Minnesota, 116 Church St SE, Minneapolis, MN 55455, USA
 Max-Planck-Institut fiir extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei Miinchen, Germany

10 Eyropean Space Agency, ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, the Netherlands

" Departments of Physics and Astronony, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA

12Department of Physics, Lancaster University, Bailrigg, Lancaster LAl 4YB, UK

Accepted 2022 February 21. Received 2022 February 21; in original form 2021 October 20

ABSTRACT

Astronomers have typically set out to solve supervised machine learning problems by creating their own representations
from scratch. We show that deep learning models trained to answer every Galaxy Zoo DECaLS question learn meaningful
semantic representations of galaxies that are useful for new tasks on which the models were never trained. We exploit these
representations to outperform several recent approaches at practical tasks crucial for investigating large galaxy samples. The
first task is identifying galaxies of similar morphology to a query galaxy. Given a single galaxy assigned a free text tag by
humans (e.g. ‘#diffuse’), we can find galaxies matching that tag for most tags. The second task is identifying the most interesting
anomalies to a particular researcher. Our approach is 100 per cent accurate at identifying the most interesting 100 anomalies (as
judged by Galaxy Zoo 2 volunteers). The third task is adapting a model to solve a new task using only a small number of newly
labelled galaxies. Models fine-tuned from our representation are better able to identify ring galaxies than models fine-tuned from
terrestrial images (ImageNet) or trained from scratch. We solve each task with very few new labels; either one (for the similarity
search) or several hundred (for anomaly detection or fine-tuning). This challenges the longstanding view that deep supervised
methods require new large labelled data sets for practical use in astronomy. To help the community benefit from our pretrained
models, we release our fine-tuning code zoobot. Zoobot is accessible to researchers with no prior experience in deep learning.

Key words: methods: data analysis — software: data analysis — software: public release — galaxies: evolution — galaxies: general.

Cun, Bengio & Hinton 2015; Goodfellow, Bengio & Courville

1 INTRODUCTION 2016).

The core of many machine learning approaches is learning
to calculate useful representations, i.e. lower dimensional sum-
maries of images or other data with which a prediction can
be made. Learning hierarchical representations, where the repre-
sentation learned by one layer becomes the input to the next,
is the cornerstone of deep learning. Representations are partic-
ularly important for words and images, where the input feature
space is high dimensional and thus more difficult to make di-
rect predictions with than, for example, typical tabular data (Le-
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To date, astronomers have typically set out to solve supervised
machine learning problems by creating their own representations
from scratch. They often train a randomly initialized model only
on the labelled data they are directly interested in. This is often
true even for researchers solving similar tasks with similar methods
on similar data sets. For example, distinguishing between early-
and late-type galaxies in SDSS imaging (Dominguez Sénchez et al.
2018; Khalifa et al. 2018; Fischer, Dominguez Sdnchez & Bernardi
2019; Khramtsov et al. 2019; Barchi et al. 2020; Variawa, van Zyl
& Woolway 2020; Walmsley et al. 2020). The expressivity of each
model is limited by the size of the training data (to prevent overfitting)
which in turn limits performance on complex tasks requiring such
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expressivity. We aim to demonstrate in this paper that, under certain
conditions, starting from a representation learned elsewhere is more
effective; specifically, that exploiting representations learned while
solving a broad set of galaxy morphology tasks can dramatically
improve performance on new morphology tasks.

We are primarily motivated by results from the natural language
community. Recent empirical research suggests that the performance
of deep natural language models with Transformer architectures
follows fundamental scaling relations (Vaswani et al. 2017). Broadly
speaking, performance increases approximately as a power law
with respect to the number of model parameters, the size of the
training data set, and the computational budget (Kaplan et al.
2020). For example, increasing the number of model parameters will
likely increase performance provided one has access to effectively
unlimited data and compute. Most researchers have neither, and
so the best-performing models are increasingly created by a few
well-resourced groups such as OpenAl (Brown et al. 2020) and
Google Brain (Fedus, Zoph & Shazeer 2021). These natural language
models are trained to predict masked words in sentences (along
with related tasks) and so effectively all digitized writing is useful
training data. This style of training is known as ‘self-supervised’
as the model is trained in a supervised manner on labels (masked
words) already present in the data itself. Having learned an effective
representation of language, the models can then be fine-tuned, i.e.
gradually adapted with additional data, on so-called domain tasks:
tasks of practical interest such as summarizing news articles, coding
websites, or understanding emotion (Kant et al. 2018; Yang et al.
2020b; Austin et al. 2021). Crucially, because the fundamental
language representation is already learned, fine-tuning achieves state-
of-the-art performance using far more modest data and compute than
training from scratch.

Could such an approach work for galaxy morphology? Can we
train models on large data sets of galaxy images and then use the
learned representations as a starting point to solve new practical
morphology tasks? Convolutional neural networks (CNNs), the
now-standard approach for classifying galaxy images, likely follow
similar scaling laws (Sharma & Kaplan 2020). It is possible to
train a CNN on images in an analogous self-supervised manner
by predicting pixel values (generative learning, e.g. Van Den Oord
et al. 2016) or by enforcing that randomly transformed images retain
similar representations (contrastive learning, e.g. Chen et al. 2020). In
astronomy, this is typically done in the context of solving a particular
task (Sarmiento et al. 2021; Zanisi et al. 2021), though recent work
by Hayat et al. (2021) uses self-supervised learning to learn galaxy
representations explicitly for generic downstream tasks.

One important drawback to self-supervised methods, and unsu-
pervised methods more broadly, is that the representations must
be learned directly from image pixel values and so it is difficult
to create representations informed by our physical understanding
of the world. We believe this may lead to predictions that do not
make physical sense. For example, Buncher, Sharma & Carrasco
Kind (2021), aiming to predict how a shallow galaxy image would
appear in a deeper survey, found their unsupervised generative
model would fill in large artefacts in the original images with a
plausible sky background. Spindler, Geach & Smith (2020) found
their unsupervised generative model clustred galaxies according to
whether they have a background partner galaxy in the top or bottom
corner of the image. Contrastive learning allows a degree of physics
input through the choice of augmentations, but these are typically
limited to basic invariances (e.g. flips, rotations, added noise, etc). We
would prefer a representation informed by our human understanding
of an image, beyond the raw pixels themselves: a representation that
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‘understands’ that a background partner galaxy is not scientifically
relevant.

Supervised methods present an alternative way to learn representa-
tions. Their representations are optimized for the supervised task and
so are more strongly influenced by human labels, which are designed
to focus learning on the most scientifically relevant aspects (e.g. bars,
arms, etc.). One is then faced with the apparent dilemma of learning
a representation using either self-supervised approaches with near-
limitless data but limited physical understanding, or supervised
approaches with less data but scientifically relevant labels.

To minimize the number of labels required to learn meaningful
representations from supervised approaches, one can exploit existing
labelled data sets. Pretraining on ImageNet (Russakovsky et al.
2015), a relatively' diverse benchmark data set containing images
of 1000 terrestrial classes, is particularly common in the computer
science literature (Marmanis et al. 2016; Tschandl, Sinz & Kittler
2019; Mathis et al. 2020; Ridnik et al. 2021). Astronomers have
recently experimented with pretraining on ImageNet to better solve
astronomical tasks. Ackermann et al. (2018) and Martinazzo, Es-
padoto & Hirata (2020) each measured the performance on galaxy-
morphology-related tasks of CNNs either initialized randomly or
pretrained on ImageNet. In both cases, the ImageNet-pretrained
CNN performed significantly better. Additionally, Wu et al. (2018)
noted that using frozen ImageNet weights for the first four layers
of their CNN improved performance for cross-matching sources
given a fixed amount of training time.> Astronomers have also
found success with pretraining CNNs on a previously labelled
survey and used them to solve the same task for a new survey:
Dominguez Sanchez et al. (2019) pretrained on SDSS and fine-
tuned to DES, Pérez-Carrasco et al. (2019) pretrained on CAN-
DELS and fine-tuned to CLASH, and Tang, Scaife & Leahy
(2019) pretrained on NVSS and fine-tuned to FIRST (and vice
versa).

We hypothesize that ImageNet pretraining works well for new
terrestrial tasks because the classification task is broad (i.e. distin-
guish 1000 classes including ‘toilet paper’ and ‘triceratops’) and
so the representation is likely to be appropriate for new terrestrial
classes, but will work less well for galaxy morphology tasks because
the terrestrial-trained representation is less appropriate. ImageNet
classes have dramatically different shapes, textures and signal-to-
noise levels than galaxies, and so only the most basic representations
(edges, curves, etc., detected by the first convolutional layers, He
et al. 2019) are likely to be useful. On the other hand, we believe
that while pretraining on other galaxy surveys is helpful because
the representations learned will be appropriate for galaxy images,
the classification task is narrow (e.g. distinguish mergers from non-
mergers) and so the representations are likely to be specific to that
task.

The core argument of this paper is that general purpose
supervised galaxy morphology representations would be better
learned from solving a broad galaxy morphology task. These
representations would be both more relevant to galaxy images
than are learned from ImageNet (which is comprised of terrestrial
images) and more widely applicable to new morphology tasks than

! As compared to other benchmark data sets e.g. MNIST, CIFAR 10. Diversity
in ImageNet is the subject of significant attention (e.g. Recht et al. 2019;
Yang et al. 2020a), in part because of its widespread use.

>This does not necessarily imply improved performance at convergence,
however, as pretrained models may converge faster (He, Girshick & Dollar
2019).
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representations learned from a single narrow morphology task (as in
previous work).

We argue that the models trained by Walmsley et al. (2022) on
Galaxy Zoo DECaLS have learned to answer just such a broad task
and thus provide ideal cross-task representations. The Galaxy Zoo
DECaLS project asked volunteers on www.galaxyzoo.org a diverse
set of questions designed to capture the essential phenomenological
features of galaxy morphology such as bars (strong and weak),
spiral arms (counts, winding), bulge size, inclination, and so forth.
Models were then trained to answer these diverse questions. To do
so, the models learned to create general representations suitable for
morphology tasks beyond the questions themselves, just as ImageNet
classifiers learn general representations for terrestrial tasks beyond
identifying the ImageNet classes.

We first investigate the DECalS models’ representations and
show that visually similar galaxies are mapped to similar parts of
feature space, even for morphology aspects not explicitly measured
by the Galaxy Zoo questions (Section 2). We then go on to use that
representation to develop and demonstrate practical scientific tools
for similarity searches (Section 2.4), anomaly detection (Section 3),
and transfer learning (Section 4). We share our code and data in Data
Availability Statement Section.

2 REPRESENTATIONS AND VISUAL
SIMILARITY

Image representations are crucial for many practical tasks of interest
to astronomers. An image representation function maps the infor-
mation content of a high-dimensional image to a lower dimensional
vector. A useful representation should allow for the definition of a
meaningful distance metric, i.e. similar images should be closer in
representation space than dissimilar images, and small changes to an
image should lead to small changes in the representation and vice
versa.

In this section, we present evidence that the GZ DECaLS models
trained in Walmsley et al. (2022) (hereafter W+22) learn such
a representation for galaxies. We then use that representation to
introduce a method for identifying objects that are similar to a user-
selected query galaxy, and demonstrate the method’s effectiveness
on a diverse and independently selected set of galaxies.

2.1 Data

Throughout this paper, we experiment with galaxies sourced from
the Dark Energy Camera Legacy Survey (DECaLS) DRS (Dey et al.
2019). The selection and image acquisition process is described in
detail in W+22. Briefly, galaxies are selected from the NASA-Sloan
Atlas v1.0.1 (Albareti et al. 2017) if they have an angular radius
of petrotheta >3 arcsec and have been observed by DECalLS
in the grz bands as of DRS. FITS images are downloaded from
the DECaLS cutout service at native telescope resolution with the
visible sky area set according to galaxy angular radius,’ interpolated
to 424 x 424 pixel thumbnails, and finally rescaled and colourized
for human viewing on Galaxy Zoo.

Unlike GZ DECaLS, we apply an r-band magnitude cut of 14.0 <
r < 17.77. The fainter limit ensures galaxies are within the bulk of
the population with SDSS spectroscopy (Albareti et al. 2017) and the
brighter limit excludes galaxies with unreliable radii measurements

35 = max (min (ps50%0.04, pgp+0.02), 0.1), where petro50 and petro90

are the NSA columns measuring 50 and 90 per cent Petrosian radii.
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and fields saturated by nearby stars. We also exclude galaxies flagged
as likely to be incorrectly sized due to photometric errors in the
NASA-Sloan Atlas (see W+22). The resulting catalogue includes
305 657 galaxy images.

For our anomaly detection algorithm (Section 3), to directly
compare our performance with that of Astronomaly (Lochner
& Bassett 2021), we also experiment with the 60 000 Galaxy Zoo
2 images shared as a public training set for the Kaggle ‘Galaxy
Challenge’ competition.* The construction and selection of these
images is described in Willett et al. (2013) and Dieleman, Willett &
Dambre (2015), respectively.

2.2 Calculating representations

The trained GZ DECaLS models must internally represent galaxies
in a way that is appropriate for predicting the answers to GZ DECaLLS
questions. Here, we describe how we extract those representations.
The procedure is essentially identical to making predictions, except
that we save the activation values before the final layer rather than
the predictions themselves.

Galaxy images are passed to the model following the same
procedure with which the model was trained, described in detail
in W+22. Briefly, images are converted to grey-scale, resampled
from 424 to 300 pixels on a side, and then cropped about a random
centroid to 224 pixels across (effectively zooming the image by
25 per cent). This provides an image with an appropriate field of
view and with input dimensions matching those for which our chosen
model architecture was designed. Each time an image is loaded into
memory, it is uniquely augmented with an aliased rotation through a
random angle and randomly selected horizontal and vertical flips.

W+22’s models use the EfficientNetBO architecture (Tan & Le
2019). EfficientNet is composed of a series of mobile inverted
bottleneck blocks (Sandler et al. 2018), comparable to standard
convolution and pooling blocks. These stacked blocks are followed
by a 1 x 1 convolutional layer (Szegedy et al. 2015) with 1280
filters, the output of which is global average-pooled (i.e. each filter
is replaced with the mean of that filter’s activations) for a 1280-
dimensional vector. This vector is what we refer to throughout as
the learned representation. In normal use, this vector would form
the input for the final dense layer, and the outputs of that dense layer
would be interpreted as the model predictions. Here, however, we
remove the final dense layer and directly record the 1280-dimensional
internal representation.

Unlike W+22, which was concerned with predicting well-
calibrated posteriors for galaxy morphologies, we do not use dropout
or model ensembling to marginalize over the network weights.
Instead, we use a single forward pass from a single model. Marginal-
izing might in principle improve performance by removing feature-
space noise from the specific weights and augmentations used, but
the effect of averaging representations is unclear and so we defer this
to future work. We use the weights of a GZ DECaLS model trained
on all labelled galaxies (i.e. both training and validation sets) and
used by W+22 as part of the ensemble for creating the GZ DECaLS
automated catalogue. We refer to this model as ‘the DECaL.S model’
in this work.

In this section (for similarity searches) and the following sec-
tion (Section 3, for anomaly detection), we treat the representation
as fixed and therefore precalculate and store the representation for
each galaxy. We do not need to make any further CNN predictions

“https://www.kaggle.com/c/galaxy-zoo- the- galaxy-challenge/data
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Figure 1. Visualization of the representation learned by our CNN, showing similar galaxies occupying similar regions of feature space. Created using Incremental
PCA and umap to compress the representation to 2D, and then placing galaxy thumbnails at the 2D location of the corresponding galaxy.

when our methods are applied, removing the significant time and
hardware requirements typically associated with applying CNN. In
Section 4, we investigate fine-tuning the representation for improved
performance.

2.3 Visualizing

We use the dimensionality reduction algorithm umap (Mclnnes et al.
2018) to visualize the representations learned by the DECaLLS model.
umap attempts to balance local and global structure (i.e. distances to
close neighbours versus far neighbours) when compressing a higher
dimensional space. umap is commonly used for visualising high-
dimensional spaces in both computer science and astronomy (e.g.
Clarke et al. 2020; Reis et al. 2021).

MNRAS 513, 1581-1599 (2022)

We assume that the 1280-dimensional (D = 1280) representation
includes some redundant information because we imposed no inde-
pendence requirements or weight decay during network training. We
therefore first compress the representation space with incremental
principal component analysis (Ross et al. 2008) to D = 15 while
preserving 98 per cent of the initial variation. We find this gives
more compelling visualizations than using umap directly.

Having compressed the representation from D = 1280 to D = 15
with incremental PCA and then to D =2 with umap, we can
inspect how the representation corresponds to visual appearance by
showing galaxy thumbnails located according to their position in the
compressed representation. Fig. 1 shows the result for all galaxies.
The effect of visual appearance is clear: smooth ellipticals occupy
the upper corner, flocculent spirals occupy the lower left, rings and
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diffuse discs occupy the lower centre, and edge-on-discs occupy
the right corner. Online Figs Al and A2 show equivalent plots for
galaxies filtered (using the GZ DECaLS automated vote fractions
from W+22) to include only featured or spiral galaxies, respec-
tively, and show similarly striking visual arrangements within each
class.

We conclude that even after compression from D = 1280to D =
2, visual similarity strongly affects location in representation space.
In the following section, we exploit this representation to identify
visually similar galaxies.

2.4 Similarity searches

Automatically quantifying the similarity of two galaxies is a long-
standing but elusive goal. The most obvious use for quantified
similarity is searching for counterparts to known rare objects. The
serendipitous discovery of qualitatively new sources such as Hanny’s
Voorwerp (Lintott et al. 2009) raises the inevitable question ‘are there
more?’ Effective searches for the most similar galaxies (Ardizzone,
Di Gesu & Maccarone 1996; Csillaghy, Hinterberger & Benz 2000;
Abd El Aziz, Selim & Xiong 2017) allow us to make the leap from
a one-off curiosity to a new class of objects. Quantifying similarity
is also foundational to any effort at creating automated clusters or
taxonomies of galaxies, a topic of much recent interest (Schutter
& Shamir 2015; Hocking et al. 2018; Ralph et al. 2019; Spindler
et al. 2020; Cheng et al. 2021). The hope is that automated analysis
of large-scale modern surveys will reveal galaxy populations that
are more objective, and perhaps better connected to the underlying
physics of galaxy formation, than the Hubble sequence and its
extensions.

What makes two galaxies similar? Physically meaningful simi-
larity implies not just similar pixels but similar morphology. Our
representations provide a new opportunity for measuring morpho-
logical similarity. Since galaxies of similar morphology have similar
representations, we can use the distance in representation space as
an estimate of similarity. We can therefore retrieve the most similar
galaxies to a given galaxy simply by listing its nearest neighbours in
representation space.

Identifying nearest neighbours in the D = 1280 CNN representa-
tion is computationally expensive, even with efficient algorithms like
sklearn’s KDTree. For convenience, we reduce the dimensionality
using Incremental PCA (as we did prior to applying umap in
Section 2.3 above). Any choice of PCA dimensionality above D > 10
(84 per cent variance preserved) has a minimal effect on the 50
closest neighbours, while reducing the dimensions from D = 1280
to D = O(10) reduces the time per search from O(h)> to O(s). We
use D = 10 here.

We choose the Manhattan distance > ;|p; — ¢;| as our distance
metric, implying that similarity is linearly proportional to distance.
The Manhattan distance is theoretically preferable to the Euclidean
distance for nearest-neighbour searches in high dimensions (Ag-
garwal, Hinneburg & Keim 2001). We also experimented with the
Euclidean distance and could not confidently identify a qualitative
difference in the similarity of the galaxies returned using each
distance metric.

The Galaxy Zoo Talk forum® provides an independent and diverse
selection of galaxies with which to test our similarity search. When

SCalculating the 50 closest neighbours takes approximately 1 h on a standard
laptop: fast enough to be possible, but slow enough to be inconvenient.
Shttps://www.zooniverse.org/projects/zookeeper/galaxy-zoo/talk/
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writing forum posts about galaxies, Galaxy Zoo volunteers can
choose to use ‘tag’ phrases prefaced with a hash, e.g. ‘#starforming’,
analogously to Twitter hashtags. For each of the most commonly
used tags (‘#starforming’, ‘#disturbed’, etc.), we use the galaxy most
commonly given that tag as our query galaxy and search for similar
galaxies in our compressed D = 10 representation space.

The results from those similarity searches are shown in Fig. 2. We
successfully find similar galaxies in almost all cases. This includes
cases like ‘#dustlane’ where the feature in question is highly specific;
most of the returned galaxies are not just edge-on-spirals but edge-
on-spirals with dust lanes.

These searches are representative of the typical performance of our
method. We do not ‘cherry-pick’ the searches with the best outcomes.
We only exclude tags for being related to data not in the image
(‘“#agn’, “#decals’, etc.) or being directly equivalent to a decision tree
question (‘#spiral’, ‘#merging’, etc.). Tags have also been grouped
semantically (e.g. ‘#dust-lane’ to ‘#dustlane’, ‘#ringed’ to ‘#ring’,
etc.). Fig. 2 otherwise simply shows searches for the most popular
18 tags.

We emphasize that the DECaL.S model was not explicitly trained
on any of these tags. The model was only trained to predict
volunteer votes to the (different) questions in the GZ decision tree
(see W+22). In these similarity searches, the model is identifying
similar objects based on only a single example: the query galaxy
itself. In computer science terminology, the model is performing
one-shot learning on a fixed embedding (Fei-Fei, Fergus & Perona
20006).

The occasional failures help us understand what the model can
and cannot recognize, which speaks to model interpretability. For
example, with the ‘#overlapping’ example, the volunteers are likely
referring to the small companion galaxy (centre left) but the search
returns additional irregular galaxies rather than additional galaxies
with small companions. The similarity search is more successful at
‘#diffuse’ where the query image includes a pair of substantively
sized galaxies and the search returns similar interacting pairs. We
can infer that the DECaLS model likely focuses on the main
galaxies in the image and has a lower limit for how small (in
angular size) a background galaxy can be to affect the represen-
tation.

The ‘#asteroids’ example, where volunteers selected the image due
to the small colourful speckle, also illustrates this effect. Further, the
model is only provided grey-scale images, and so could not identify
similar colourful speckles even without the size issue above. One
could address the lack of sensitivity to colour by training on colour
images, at the cost of potential bias for users who prefer a colour-
insensitive similarity search (e.g. for investigating links between
morphology and star formation).

We provide a public interface to our similarity search
at https://share.streamlit.io/mwalmsley/decals_similarity/main/simil
arity.py. Users enter the coordinates of their desired query galaxy
which are then matched to the closest-on-sky DECalLS galaxy in
our sample. Images and a table of the most similar galaxies are then
returned. Code and instructions for a self-hosted version are available
at https://github.com/mwalmsley/decals_similarity.

3 FINDING INTERESTING ANOMALIES

3.1 Context

We showed in Section 2.4 that if we have a single example galaxy,
we can find similar examples. But what if we don’t know what we
are looking for?

MNRAS 513, 1581-1599 (2022)
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“Starburst”

“Disturbed”

"Dust lane"
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Figure 2. Similarity search results for the most common volunteer tags (on which the model was not trained). The query galaxy (left, green border) is the
galaxy for which the volunteers most used that tag). The other galaxies on each row are those expected by the DECaLS CNN to be most similar i.e. with the
least separation to the query galaxy in representation space. The repeated ‘overlapping’ galaxy is not an error; the background and foreground galaxies are
both independently listed in the catalogue and identified as similar. Similarity search results for the most common volunteer tags (on which the model was not
trained). The query galaxy (left, green border) is the galaxy for which the volunteers most used that tag). The other galaxies on each row are those expected by
the DECaLS CNN to be most similar i.e. with the least separation to the query galaxy in representation space.

“Asteroid"
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"Lenticular

Figure 2. — continued

that need more research”

-Objects

Many fundamental insights have been driven by rare objects rare objects (e.g. Henrion et al. 2013; Baron & Poznanski 2017;
found serendipitously in ‘big data’ catalogues (Cardamone et al. Storey-Fisher et al. 2021). However, not all rare objects are useful.
2009; Welsh et al. 2011; Boyajian et al. 2016). Such searches Instrumental artefacts, completely smooth ellipticals, and highly
may be assisted by machine learning methods aimed at identifying disturbed post-mergers are all ‘anomalous’ in the technical sense of
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deviating from the typical distribution of images.” Only some of these
will be valuable to the user. It is therefore crucial that any automated
search for anomalies takes into account the user’s interests.

Finding interesting anomalies guided by user feedback is the focus
of the computer science subfield of active anomaly detection (Kong
et al. 2020). Previous work has considered various schemes where
traditional unsupervised anomaly detectors (e.g. Isolation Forests,
Liu, Ting & Zhou 2008) are coupled to user feedback in an active
learning loop where the algorithm identifies rare data points, those
rare data points are rated for interest, and a supervised algorithm
is trained based on those ratings (Pelleg & Moore 2004; Das et al.
2017, Siddiqui et al. 2018). The recently introduced software package
Astronomaly (Lochner & Bassett 2021, hereinafter LB21) applies
this approach in an astronomical context.

Astronomaly has two parts: the first is a browser interface
where users can express their interest in images or 1D data; the second
is a set of data processing components which can be configured to
extract features, identify rare datapoints, and model user interest.
Together, they can be used to apply the active learning loop described
above to galaxy images, spectra, light curves etc.

Astronomaly is intended as a general anomaly finding frame-
work which astronomers can extend to suit their specific science
goals. Here, we show how several extensions motivated by our
new galaxy representations make an Ast ronomaly style approach
significantly better at identifying merging galaxies, as measured on
the benchmark task introduced by LB21. We then show how our
improved approach can also find mergers, rings and irregular galaxies
in the DECaLS survey.

3.2 Method

In this section, we develop a method to search our CNN representa-
tion for anomalies likely to be interesting to a specific user. We build
a model of interest as a function of representation by intelligently
asking that user about their interest in the galaxies which best help
narrow down their preferences (active learning). We then predict
their interest in every galaxy to estimate which galaxies they most
care about.

We will contrast our method with the specific method used by
LB21 to demonstrate the quantitative performance of Astrono-
maly on Galaxy Zoo 2 data, which we will simply call ‘Baseline’.
We describe the task itself and compare results in Section 3.3.1.
Baseline is a particular choice of Astronomaly components
designed to work well with this galaxy morphology task while being
simple and applicable to other images.

The general approach of Astronomaly (as in LB21) is as
follows. Galaxy images are converted to features and ranked by
rarity. The rarest galaxies are rated by the user according to personal
interest. A regression model is fit to these rare galaxies of known
interest to predict interest for all other galaxies. Finally, the predicted
user interest is combined with the machine learning rarity scores to
find galaxies with both high expected interest and high rarity i.e.
interesting anomalies. Those top galaxies themselves can then be
rated to continue the active learning cycle of labelling, estimating
interest, and choosing new galaxies to label.

LB21’s specific Baseline approach chose ellipse fitting as a feature
extractor, an Isolation Forest to rank by rarity, and a Random Forest
(Breiman 2001) to model user interest. We replace each of these

7Each of these classes were routinely identified as anomalies by common
anomaly finding approaches during the development of this section.
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steps. We also qualitatively change Astronomaly’s novel active
learning approach from labelling the galaxies thought to be most
interesting to labelling the galaxies which, if labelled, would best
help to find those interesting galaxies.

Astronomaly’s ellipse-fitting feature extractor works, in short,
by placing a series of ellipses enclosing increasing proportions
of flux, and recording the properties of those ellipses (e.g. axial
ratio) as tabular features. This was chosen to create features which
were sensitive to the shape of galaxies (LB21). In this work, we
instead use the DECaLS model as a feature extractor, with the
learned representation forming the features for each galaxy. We
believe our learned representation is particularly vital for tasks
where the interesting morphology (e.g. irregular shapes, rings) cannot
be well-described as a series of ellipses of increasing flux. More
broadly, because the galaxies are arranged in representation space by
visual similarity (Section 2), interesting galaxies are likely to have
similar representations and so representations are a useful feature for
predicting user interest.

Next, we change the regressor modelling user interest. We replace
Baseline’s Random Forest with a Gaussian Process (GP; Rasmussen
& Williams 2006). Gaussian Processes define a probability distribu-
tion over possible functions. The space of possible functions is set by
the choice of kernel, « (x, x ). The kernel defines an effective distance
between points, with the range of probable values for each point
being constrained by the values of known nearby points. The kernel
hyperparameters (e.g. the typical distance over which known points
have a strong constraining effect) are fit to maximize the likelihood of
the observed (training) data. See Murphy (2012) for a concise review
and Rasmussen & Williams (2006) for a comprehensive treatment.

GPs are particularly appropriate here for two reasons. First, they
can flexibly model smooth distributions; they make no parametric
assumptions about the shape of the user interest distribution other
than through the kernel itself. We use a rational quadratic kernel®
assuming user interest is similar for similar galaxies and varies
over some typical scale, and add a white component to model
intrinsic label uncertainty on user interest and to model noise in
the underlying representation. Secondly, through marginalizing over
the many possible functions allowed by the kernel, GPs provide rela-
tively reliable uncertainties. Indeed, GP uncertainties are sometimes
considered the ‘gold standard’ against which more scalable methods
are measured (Houlsby 2014). Knowing the uncertainty of our user
interest predictions for each galaxy is critical for applying active
learning.

A key part of active learning is the acquisition function i.e. which
galaxies to label. Astronomaly selects galaxies to label with a
‘joint” score based on both expected interest and rarity. For each
galaxy, if galaxies with similar features have already been labelled,
the regressor is considered more reliable and the joint score is
weighted towards the regressor’s predicted interest. If not, the joint
score is instead weighted towards the galaxy’s rarity. Users are then
asked to label the galaxies with the highest joint score i.e. the galaxies
thought most likely to be interesting anomalies. Whilst effective, this
algorithmically greedy approach may be inefficient in some cases.
We may not yet know which galaxies are likely candidates, and
should therefore devote at least some labelling effort to explicitly
helping the regressor model user preferences.

Which galaxies would best help model user preferences? Active
learning acquisition functions are generally concerned with mod-
elling a function globally: in our case, modelling the user interest on

8We also find that performance is similar using a Matern kernel.
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all galaxies. But here, we are specifically interested in finding the
most interesting galaxies, i.e. modelling the function near its maxima.
We are not concerned with whether a galaxy is very boring or merely
somewhat boring. Modelling maxima is an optimization problem,
and we therefore use an acquisition function from the Bayesian
optimization literature.

Specifically, we choose to use maximum expected improvement
(‘max EI) as our acquisition function. EI, introduced by Mockus &
Mockus (1991) and further developed in Jones, Schonlau & Welch
(1998), is calculated as

_ +y
EI() = (u(x) = f(x) = b <M)

o(x)
pux) — f(x*) — e)

o(x)

+ o) ( (1
where ((x) and o (x) are the mean and variance of the GP modelling
user interest, f{x") is the current maximum recorded user interest,
and @ and ¢ are the CDF and PDF of a standard normal variable,
respectively. Intuitively, EI measures the expected gain in maximum
interest from a rating, x, given the current estimate, wu(x), and
uncertainty, o(x), for x’s likely interest. € is a hyperparameter
balancing exploration and exploitation and is subtracted from the
expected improvement, causing the algorithm to ignore gains smaller
than € (typically in well-explored regions) and instead explore more
uncertain regions where the potential gains are still larger than e.
€ is particularly important for this problem because we potentially
aim to find diverse anomalies in many different regions each of high
interest, rather than just the anomalies in the single region of highest
interest. We find that a non-zero € is crucial to avoiding occasional
(10-20 per cent) failures where the acquired galaxies fall into a single
local maxima. We choose € = 0.5 throughout, representing an interest
increase of 0.5 on the 0-5 rating scale used by Astronomaly.

3.3 Experiments

3.3.1 Galaxy Zoo 2 ‘Odd’ Galaxies

LB21 primarily demonstrate the performance of Astronomaly
through identifying unusual galaxies in Galaxy Zoo 2. Specifically,
they aim to identify the rare (approximately 1.5 per cent) subset of
galaxies which more than 90 per cent of GZ2 volunteers described as
‘Odd’ in the ‘Is there anything odd?’ task. We repeat this demonstra-
tion with the method in this work and compare performance against
‘Baseline’, the specific Ast ronomaly configuration used by LB21
and summarized in the previous Section.

Starting from the same Galaxy Zoo 2 images as LB21, we
calculate representations using our DECaLS-trained CNN following
the procedure described in Section 2.2. As in Section 2.2, we
further reduce the dimensionality using Incremental PCA, in this
case with 40 components preserving 98.1 per cent of the variation.
We then use GP-based active learning to model user interest in this
reduced representation. As in LB21, we simulate receiving user
ratings through the Astronomaly interface using the recorded
GZ2 ‘Odd’ vote fraction’ scaled and binned to integers from 0 to 5,
and consider anomalies as those galaxies with ‘Odd’ vote fractions
above 90 per cent.

9We use the vote fraction as released in the ‘Galaxy Challenge’ Kaggle
competition, following LB21’s experimental protocol. Note that these vote
fractions are not identical to the latest published GZ2 catalogue (Hart et al.
2016), which we suggest for general scientific use.
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Figure 3. Rank weighted scores (above) and accuracy (below) for identifying
‘Odd’ galaxies (as voted by volunteers) in GZ2 images. Calculated after
training on 200 user ratings following either the method of LB21 (baseline,
black) or this work (CNN and GP, blue). The expected value from randomly
selecting galaxies is shown in red for comparison. We also show an
intermediate method, using the ellipse-fitting features of Baseline and our
GP active learning strategy, in magenta. Experiments are repeated 15 times,
with individual runs shown as traces. The method introduced in this work
dramatically improves both metrics.

We acquire (i.e. simulate rating for interest) galaxies in batches
of 10, chosen to ensure that it takes no more than a few seconds
to retrain the GP and identify the next galaxies to rate. This helps
the user rate galaxies quickly and enjoy a responsive experience.
Introducing batching did not reduce performance. The first batch of
galaxies is chosen randomly.'® We rate for interest a total of 200
galaxies, matching LB21.

Fig. 3 compares the results of our CNN and GP-based approach
with the Baseline. Fig. 3 follows the same format as fig. 5 in LB21,
comparing their ‘rank weighted score’ metric against the number of
top galaxies, N, to consider when calculating the score. This rank
weighted score measures how highly the true interesting anomalies
are ranked among the N galaxies predicted as most likely to be
interesting. We also provide conventional accuracy and average
precision scores in Fig. 3 and Table 1. All experiments are repeated
15 times to marginalize over stochastic effects.

From Fig. 3 it can be seen that Baseline easily outperforms random
selection, with two-thirds of the 50 galaxies predicted as most likely
to be interesting anomalies actually being so. Using the method
presented in this work, with both CNN representations and GP-based

10Experiments with selecting the first batch via Isolation Forest did not show
a performance improvement.
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Table 1. Performance metrics for finding each anomaly in each data set with either the Ast ronomaly configuration used by LB21 on this task (Baseline) or
introduced in this work (CNN and GP). ‘Failed’ indicates a failure to find the specified anomalies, indicated by a score comparable to random selection. Errors
are (roughly) estimated as the 3o error on the mean over 15 runs. The best metrics are shown in bold. Our method significantly improves every metric in every

case, and avoids failures on some combinations of target anomaly and data set.

Data set Anomaly Method Average precision Accuracy (top 50) Accuracy (top 200)
GZ2 Odd Baseline 0.16 =+ 0.02 66 per cent = 16 per cent 40 per cent £ 7 per cent
GZ2 Odd Ellipse 4+ GP 0.21 £0.10 99 per cent £ 5 per cent 63 per cent = 22 per cent
GZ2 Odd CNN + GP 0.55 £ 0.10 100 per cent 87 per cent £ 11 per cent
DECaLS Merger Baseline 0.12 +£0.03 25.5 per cent + 18.6 per cent 24.9 per cent + 7.7 per cent
DECaLS Merger CNN + GP 0.58 + 0.20 100 per cent 88 per cent 1 15.4 per cent
DECaLS Ring Baseline Failed Failed Failed

DECaLS Ring CNN + GP 0.63 £0.11 99.9 per cent & 1.5 per cent 95.8 per cent £ 13 per cent
DECaLS Trregular Baseline Failed Failed Failed

DECaLS Irregular CNN + GP 0.58 £0.04 100 per cent 91 per cent £ 5.4 per cent

active learning, all of the top 50 galaxies and indeed all of the top 100
galaxies are interesting anomalies. Given that interesting anomalies
represent only 1.5 per cent of the data set, this improvement is
notable. 87 per cent of the top 200 galaxies are interesting anomalies,
compared with 40 per cent using Baseline and 1.5 per cent using
random selection.

Fig. 4 investigates why the new method is more successful. In this
figure, we visualize the representations of both Astronomaly’s
ellipse-fitting method and of our CNN using a 2D umap projection,'!
as in Section 2.3. We then colour galaxies according to either
Isolation Forest predictions or those of the Gaussian Process interest
model. We also show the galaxies considered as anomalies and the
galaxies selected for rating by the user, either due to the Isolation
Forest ranking or our acquisition function. The CNN representation
is far more effective at grouping ‘Odd’ galaxies together'? than the
ellipse representation, and this, in turn, makes user interest easier
to model. The interest model matches the density of interesting
anomalies well and the user-rated galaxies concentrate along the
region of highest interesting anomaly density. In contrast, the ellipse
representation places ‘Odd’ galaxies along a distributed border in our
visualization. This is crucial for the success of the Isolation Forest
in making an initial prioritization (which will prefer border regions).
However, the galaxies considered most anomalous by the Isolation
Forest, and hence rated by the user, tend to lie only in specific
patches on the border and so the user ratings of those galaxies do not
efficiently measure user interest along the full anomalous border.

We highlight that our CNN can calculate effective feature vectors
from Galaxy Zoo 2 images even though it has never been trained
on Galaxy Zoo 2 data. The CNN was only trained on GZ DECaLS
images, which are significantly deeper and of higher resolution than
the Galaxy Zoo 2 images (W+22). It is well-known that CNNs can
suffer from substantial performance drops in the presence of minor
domain shifts barely visible to humans (e.g. contrast adjustments,

HNote that we are using umap to further compress (and hence visualise)
the features already extracted by each method (ellipse-fitting or our CNN)
and not directly applying umap to the images themselves. We tested using
umap as a feature extractor and found it under-performed Ast ronomaly’s
ellipse-fitting method (though improved on random chance).

12The CNN representation may be placing ‘Odd’ galaxies largely together
because, as stated previously, most ‘Odd’ galaxies are major mergers. An
isolation forest would not work well with the CNN representation due to this
effect, as the ‘Odd’ galaxies are largely not considered quantitatively unusual.
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added Gaussian noise, adversarial attacks — see Moosavi-Dezfooli
et al. 2017; Hendrycks & Dietterich 2019; Ilyas et al. 2019), and it is
therefore encouraging that the CNN representation used here remains
useful across different surveys without any need for retraining.

3.3.2 DECalS mergers, rings, and irregular galaxies

The vast majority of ‘Odd’ GZ2 galaxies are major mergers (LB21).
While scientifically valuable, major mergers may not be representa-
tive of all interesting anomalies and so mergers alone may not provide
a comprehensive test of an anomaly finding method. We therefore
apply our method to finding irregular galaxies and ring galaxies in
DECaLS (along with mergers again for comparison), using the vote
fractions reported by GZ DECaLS volunteers.

We use the same DECaLS images previously described and used
in Section 2. We select only galaxies with at least 30 total volunteer
responses!? to ensure reliable vote fractions. Of 253 286 volunteer-
labelled galaxies, the Astronomaly ellipse method fails for 2112
galaxies, returning nan features; we exclude any galaxies with failed
ellipse measurements from the experiment. We filter to relevant
galaxies using automated vote fraction prediction cuts of featured
fraction > 0.6 and face-on fraction > 0.75, for a final experiment
catalogue of 58 982 galaxies (56 828 for identifying mergers). For
each class of anomaly, we choose the minimum vote fraction to be
defined as an interesting anomaly such that the rate of interesting
anomalies is 1.5 per cent (matching LB21’s GZ2 experiment above);
f > 0.42 for irregular galaxies, f > 0.57 for rings, and f > 0.6 for
mergers. As before, we use the binned volunteer vote fraction to
emulate user interest responses from 0 to 5.

We follow the same method as for the GZ2 ‘Odd’ experiment,
using the CNN representation as galaxy features and acquiring
galaxies (in batches of 10) that maximize the expected improvement
of our GP user interest model. We compare our results to Baseline
in Fig. 5 and Table 1.

Our method again dramatically outperforms both Baseline and
random selection. For each anomaly class, we achieve a high fraction
of true interesting anomalies in the top 200 galaxies; 88 per cent for
mergers, 96 per cent for rings and 91 per cent for irregular galaxies.

3For identifying mergers, where the question was modified during GZ
DECaLS (see W+22), we specifically require 30 votes for the latest version
of the merger question.
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Ellipse Representation, Isolation Forest search
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CNN Representation, GP search

S

Figure 4. Visualization of each anomaly finding method (LB21, left, and this work, right). Small translucent points are GZ2 galaxies, coloured by the user
interest predictions of each method (red for high interest, blue for low interest). The LB21 visualization shows the initial predicted anomaly score from the
Isolation Forest. Solid red points are anomalies, defined as galaxies GZ2 volunteers voted ‘Odd’. Solid black points are galaxies chosen to be rated by the
user following each method, to help inform the user interest model. Our representation gathers anomalies together better (red points are more clustred in the
right-hand panel) making it easier for our active learning approach to identify the part of the representation most likely to include anomalies.
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Figure5. Rank weighted scores (above) and accuracy (below) foridentifying
interesting anomalies (mergers, rings, or irregular galaxies) in GZ DECaLS
images. Calculated after training on 200 user ratings following either the
method of LB21 (baseline, dashed) or this work (CNN and GP, solid). The
method introduced in this work dramatically improves both metrics.

Baseline achieves 25 per cent for mergers and is comparable to
random selection for rings and irregular galaxies.

Fig. 6 shows (for each anomaly class) a random selection of the
top 200 galaxies identified by our method as having the highest
expected interest. These are representative of the galaxies that a user
being recommended interesting anomalies might see. Our method
successfully presents rings, mergers or irregulars according to the
user’s interests.

‘We have shown how our CNN representations can, when combined
with GP-based modelling of user interest, be used to better find
interesting optical galaxies than in previous work — even though it
was not specifically trained to do so. In the next section, we turn to
how to improve the representations themselves.

4 TRANSFER LEARNING AND FINE-TUNING

We have shown that the representations learned by our GZ DECaLS
model are useful for tasks on which it was never trained. We used the
representations to find similar galaxies (Section 2) and interesting
anomalies (Section 3) without any modification. Going further, we
can also tailor the representations for a specific task.

One relevant task is to find more of a specific type of galaxy based
on a small set of known examples. We can do so better than with a
similarity search by learning from multiple examples (not one), and
we do not need a blind anomaly search as we know what we are
looking for. By starting from our GZ DECaLS representations, we
can solve this supervised classification task using far fewer known
examples than otherwise required.

In this section, we fine-tune the DECaLS model for finding ring
galaxies and find that it outperforms equivalent models trained from
scratch, fine-tuned from ImageNet, or fine-tuned from single GZ
DECaLS tasks.

MNRAS 513, 1581-1599 (2022)
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(a) Random selection from the top 200 DECaL$ galaxies identified as mergers with our method

(b) Random selection from the top 200 DECaLS galaxies identified as rings with our method

(C) Random selection from the top 200 DECaLS galaxies identified as irregulars with our method

Figure 6. Random selections from the top 200 interesting anomalies identified using our CNN and GP method, representing what a user might have found.
Interesting anomalies are defined (using the GZ DECaLS vote fractions) as either mergers (upper), rings (middle), or irregular galaxies (lower).

4.1 Context

Fine-tuning is a technique where a model is trained on one problem
(typically one with plentiful labelled data) and then adapted to a
second problem (typically one with less labelled data). Once trained
on the first problem, the upper layers of the model (the ‘head’) are
removed and the remaining layers frozen (i.e. the weights are fixed).
This ‘base’ model simply calculates representations, exactly as we
have done in Section 2.2. A new ‘head’ model is added, with outputs
appropriate to the new problem and with fewer parameters to avoid
overfitting the more limited labels. The new head is trained to predict
outputs for the second problem given the frozen representation (from
the base model) and the new labels. This allows the new head to
benefit from the previously learned representation, as we have been
doing throughout this work. Finally, once the new head is trained,
some or all of the base model layers may be unfrozen and both head
and base model trained together (typically at a low learning rate to
avoid overfitting). This gradually adapts the representation to best
solve the second problem, starting from the already useful initial
representation learned for the first problem. We refer the reader to
Goodfellow et al. (2016) for a further introduction to fine-tuning.

MNRAS 513, 1581-1599 (2022)

What is the best base model to fine-tune for a new galaxy
classification problem? In our Section 1, we noted various efforts
by astronomers to use fine-tuning to mitigate the lack of available
labelled data for their target problem. The base models were
trained either on identical narrow questions on comparable surveys
(Dominguez Sanchez et al. 2019; Pérez-Carrasco et al. 2019; Tang
et al. 2019) or on the broad but terrestrial ImageNet data set (Acker-
mann et al. 2018; Wu et al. 2018; Martinazzo et al. 2020). Training
on identical questions is not possible where we want to answer new
questions for which no labels yet exist. We argued that ImageNet
is qualitatively different to galaxy images and so pretraining on
ImageNet is unlikely to be as helpful as pretraining to answer a
broad set of questions on galaxy images. Both approaches would
lead to generic representations, but ImageNet would lead to a generic
terrestrial representation while galaxy images would lead to a generic
galaxy morphology representation. We have shown in the preceding
sections that such generic galaxy representations are indeed learned
and are immediately useful for diverse tasks beyond classification.
We now test if our representations can help astronomers outperform
ImageNet pretraining on new classification tasks.
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4.2 Experiments

To measure the effectiveness of fine-tuning from our representation
to solve new classification tasks, we experiment with identifying ring
galaxies.

Rings have long been thought to be typically'* caused by res-
onances in a disc driven by a bar, or, where no bar is present,
driven by an oval-shape or spiral potential (Schwarz 1981). More
recent theoretical work suggests they may in fact be related to
dynamical manifolds (Athanassoula, Romero-Gémez & Masdemont
2009). Both theories predict ring morphologies broadly similar to
those observed (Buta 2013). However, each theory makes specific
predictions about the nature and frequency of ring subtypes and so
it may be possible to distinguish the true cause(s) from a sufficiently
large ring sample.

Rings are also useful to measure secular evolution. The slow nature
of ring formation (in both theories) suggests a lack of recent major
mergers and so any difference in characteristics between rings and
standard disc galaxies may help test the effect of major mergers on
topics such as quenching (Smethurst et al. 2017) and black hole
growth (Simmons et al. 2013). Such an investigation would again
likely require a large ring sample in order to control for other variables
(mass, redshift, environmental density, etc.)

Existing expert catalogues contain of order tens to hundreds of
rings (Buta & Combes 1996; Lavery et al. 2004; Nair & Abraham
2010; Struck 2010; Moiseev et al. 2011; Comerdn et al. 2014; Buta
et al. 2015, 2019). This is in stark contrast to the size of modern
surveys such as DECaLS (Dey et al. 2019), which contain hundreds
of thousands to millions of galaxies with imaging appropriate for
identifying rings. Even if rings make up only a few percent of
galaxies, this suggests that there are thousands to tens of thousands
of rings yet to be identified in DECaLS alone.

Efforts at automatic identification are sparse. Our literature search
revealed only two papers (Timmis & Shamir 2017; Shamir 2020) au-
tomatically identifying 185 and 443 ring candidates in PAnSTARRS
and SDSS, respectively. The largest ring catalogue, Buta (2017),
was created using crowdsourcing. 3692 galaxies were identified by
Galaxy Zoo 2 volunteers and then classified by a single expert (R.
Buta).

For our experiment in automatically finding rings, we first need to
identify large samples of ringed and not-ringed galaxies in DECaLS
images. As mentioned in Section 3, Galaxy Zoo DECaLS volunteers
were asked if each galaxy had rings via the ‘Are there any of these
rare features?” question (see W22 for a full schema). We use these
votes to identify likely rings and not-rings.

We make initial selection cuts on the DECalLS DRS catalogue
(Section 2.1). For simplicity, we select galaxies with volunteer votes
from the GZD-5 campaign (253286 galaxies). We use the ML-
predicted vote fractions of ‘Smooth’ < 0.25 and ‘Not Edge On’
> 0.75 to select a subset of 82 898 candidate ring galaxies.'> Note
that we use the ML-predicted morphology vote fractions, rather than
the volunteer vote fractions, because we ultimately hope to make the
same selection cuts on galaxies not previously classified by humans.
We then use volunteer ‘ring’ vote fractions to select relatively clean

14Some so-called collisional rings are caused by mergers (Lavery et al. 2004).
These are thought to be rare and could be an interesting target for the similarity
search in Section 2.4.

150ur volunteer ‘ring’ vote fraction criterion is less reliable for galaxies
failing these cuts; galaxies with volunteer ‘ring’ vote fractions f > 0.25 which
are also predicted to be extremely smooth or edge-on are often judged to not
be rings by the authors.
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samples of rings and not-rings. Based on inspection by one of the
authors (MW) of several hundred random galaxy images selected at
various ‘ring’ vote fractions, we choose to consider galaxies with
a fraction f > 0.25 as rings (12 per cent, N = 9947; of which we
judge approximately 90 per cent are truly ringed based on random
inspection) and galaxies with a vote fraction f < 0.05 as ‘not rings’
(61 per cent, N = 50 855). Galaxies with intermediate vote fractions
(27 per cent, N = 22096) are discarded. Our priority is to make
a simple, reliable test of how different methods perform at finding
rings under equivalent conditions rather than finding as many rings
as possible. We note that, with approximately 10000 likely rings,
this is the largest ring catalogue to date.

What is the best way to train a model to find these ring galaxies?
We test three training methods. First, and most conventionally,
training from scratch using a random weight initialization (‘scratch’).
Secondly, training a new head on a pretrained base model with
frozen weights (‘frozen’). Third, once the new head has been trained,
allowing some or all of the base model layers to also be trained (‘fine-
tuned’). We test pretraining with either GZ DECaLS (i.e. using our
representation as a starting point) or with ImageNet. This allows
us to measure whether our GZ DECaLS representation is helpful,
whether it is more helpful than the ImageNet representation, and
whether further fine-tuning of either representation can improve
performance. To investigate whether learning to solve many diverse
tasks is important for creating a helpful representations, we also test
pretraining with GZ DECaLS labels but only using the labels from a
single task (e.g. only training to predict ‘Smooth or Featured?’ votes).

We ensure that, other than the different training methods described
above, all other factors are equivalent between tests. Below, we
describe the specific details of our architecture, data splits, and
training procedure.

4.2.1 Architecture

We use the same EfficientNetBO architecture and training procedure
as previously introduced in Section 2.2. We instantiate the network
in three ways: (i) randomly, (ii) with the weights from pretraining
on ImageNet as provided by Keras Applications,' or (iii) with the
weights from pretraining on GZ DECaLS by W+22 (released with
this work, see Data Availability Statement Section), either pretraining
to predict all GZ DECaLS tasks (as done throughout this work) or
pretraining on only a single GZ DECaLS task (this section only). In
all cases, we replace the final dense layer with a new head comprised
of two 64-unit dense layers, each with dropout probability of p = 0.75
and relu activations (Agarap 2018), and a final 1-unit dense layer
with sigmoid activation. This head design was chosen to have a low
capacity to minimize overfitting on small data sets. For pretrained
models, the head is trained to convergence on the frozen base model
(using the Adam optimizer and an initial learning rate of 10~*) before
the base model is unfrozen and allowed to also train (with a lower
learning rate of 107°). Using our chosen head, EfficientNetBO has
approximately 4.1-m parameters, comparable to older designs such
as VGG16 (Simonyan & Zisserman 2015), and is therefore best
viewed as a more advanced network rather than a ‘bigger’ network.

Two elements of EfficientNet are particularly important to this
work. First, EfficientNet includes batch normalization layers (loffe
& Szegedy 2015) which we never unfreeze during fine-tuning (i.e. we
preserve the activation statistics from initial training), as is standard
practice. Secondly, EfficientNet is divided into a repeating pattern

16https://keras.io/api/applications/
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of mobile inverted bottleneck blocks, just as previous designs tend
to include repeating blocks of convolutional layers and a pooling
layer. We investigate partially fine-tuning EfficientNet by unfreezing
increasing numbers of these blocks, from the output layer down,
and measuring how performance varies. We follow the same block
naming schema as Tan & Le (2019)’s EfficientNet implementation;'”
the ‘top’ block is the Conv2D and batch normalization block listed
as Stage 9 in Tan & Le (2019) table 1, ‘block7’ is the mobile
convolutional block listed as Stage 8, ‘block6’ is listed as Stage 7,
and so forth.'®

4.2.2 Restricting data set size

Not all astronomers have access to tens of thousands of labelled
galaxies. It is therefore crucial to measure how the performance of
each training method varies with the number of available labels.
We expect that starting from the GZ DECaLS representation will
be particularly useful for astronomers with fewer labelled galaxies,
where training from scratch would be more likely to overfit.

When varying the data set size, the class balance must remain
constant regardless of data set size so that the final losses are compa-
rable.'® We choose the balance to be equal. For each experiment run,
we first set aside 30 per cent of rings (2984), chosen randomly, and
divide them into validation (10 per cent) and test (20 per cent) sets.
We then similarly set aside 30 per cent of not-rings and randomly
select 2984 not-rings to match each ring. To construct the training
set, we oversample (i.e. repeat) the remaining 6962 rings by a factor
of 5 such that the number of remaining ringed galaxies is close to,
but slightly below, the number of not-ringed galaxies.”” We then
cut surplus not-ringed galaxies such that the class balance is exactly
equal (6962 rings repeated five times each, and 34 810 unique not-
rings). We then artificially reduce the data set size as required for the
desired data set size by dropping random galaxies from the training
subset. This provides realistic variation in the training class balances
while preserving the average balance. We do not drop galaxies from
the validation subset; preserving these galaxies drastically reduces
the noise in our performance metrics introduced by early stopping
(below).

Every model is independently trained with a new train, validation,
and test split. This allows us to measure the significant uncertainty in
loss caused by the choice of training data, particularly in the low data
regime; training on these 10 or those 10 galaxies can dramatically
affect model performance.

4.2.3 Training procedure

Models are trained using the binary cross-entropy loss. To efficiently
use our limited GPU resources, we use early stopping (i.e. we
end training for models with a non-decreasing validation loss).The
number of update steps per epoch increases with data set size and
so we calculate the patience (i.e. the maximum number of epochs

https://github.com/qubvel/efficientnet

'8 The blockN and Stage N+ 1 numbers are offset because the implementation
names the first block as ‘stem’ rather than Stage 1.

19Class imbalance makes prediction easier. Consider the limiting case where
there is only one class; a toy model predicting only that class would be
perfectly accurate.

20This also allows us to train on more non-ringed galaxies than simply picking
an equal number of non-ringed galaxies, because each of the 5 repeats of a
ring galaxy are matched by a unique non-ring galaxy.
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Figure 7. Test accuracy as a function of the total number of labelled ring
galaxies to train on, split by base model pretraining. Models are pretrained
on either all (‘Multi’) GZ DECaLS tasks (i.e. starting from our DECaLS
representation), pretrained to solve only the Smooth/Featured/Artifact GZ
DECaLS task, pretrained on ImageNet, or trained from scratch. Solid versus
dashed lines compare models where only the upper-most layers are allowed
to train (‘Frozen’) versus where all layers are allowed to train (‘Finetuned’).
Models pretrained on GZ DECaLS are better able to classify rings at all
training set sizes.

with no validation loss improvement before cancelling training) on a
sliding scale from 10 to 30. Specifically, after some experimentation,
we choose the patience as min(max(10, int(epochs/6)), 30) and
the total possible epochs®! as 5 x 10%/train data set size. We find
this ensures that all models are trained to convergence but GPU
resources are not unduly wasted past convergence. Training time is
strongly dependent on data set size. Training on the full data set takes
approximately 6 h on an NVIDIA A100 GPU. As our performance
metric, we record the zest loss of the weights with the lowest observed
validation loss during training (i.e. the best-performing checkpoint
as measured on the validation data set).

We experiment with the following training methods. For initial
weights pretrained on all GZ DECaLS tasks, on the ‘Smooth or
Featured’ task only, or on Imagenet, we test six fine-tuning options
(the top block only, blocks 7+, 6+, 54, 44, and all blocks), each
first training atop a frozen base model before fine-tuning. For initial
weights pretrained on the GZ DECaLS ‘Spiral’ task only, ‘Bar’ task
only, and ‘Bulge’ task only, we test two fine-tuning options (top block
only and all blocks), each first training atop a frozen base model
similarly. We also train a model from scratch. All combinations of
training method and training data set size are repeated 5 times for
each of the 12 data set sizes, for a total of 60 models per training
method. We record performance metrics from a total of 2940 models.

4.3 Results

We find that models pretrained with all GZ DECaLS tasks outperform
both models pretrained with ImageNet and models trained from
scratch for data sets of all available sizes. Fig. 7 reports the mean
accuracies.

For very small training data sets (below 10 unique rings), all
models struggle similarly but the DECaLS-pretrained models already
improve on random chance. With 10-100 rings, the DECaLS-
pretrained models vastly outperform all others. With 100-1000
rings, the fine-tuned ImageNet model improves significantly but

21No model is trained to the maximum number of epochs; this is solely used
to calculate the patience for early stopping.
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Figure 8. Test accuracy as a function of the total number of labelled ring
galaxies to train on, split by base model pretraining (as Fig. 7, above), but
comparing the performance of models pretrained on only one GZ DECaLS
task to models pretrained to solve all GZ DECaLS tasks simultaneously.
The individual GZ tasks are either Spiral Yes/No, Smooth/Featured/Artefact,
Bar Strong/Weak/None, or Bulge Size. All models are finetuned. Models
pretrained to solve all GZ DECaLS tasks are better able to classify rings than
models pretrained on any individual GZ DECaLS task.

the DECaLS-pretrained models remain firmly ahead. With 10°—10*
rings, training from scratch suddenly becomes feasible; the from-
scratch model dramatically improves from random chance (i.e.
failing to train) to outperform the ImageNet model. The DECaLS-
pretrained model remains ahead with our full training data set of 6962
rings, though the from-scratch would likely equal or overtake it with
around 10*-10° labelled rings. Since approximately 12 per cent of
galaxies in our data set have rings, this would correspond to labelling
10°-10° galaxies.

Two further comparisons suggest that training on multiple tasks
is crucial for constructing a useful representation for this new
task (identifying rings). Fig. 8 shows that, after fine-tuning all
layers to classify rings, models pretrained on all DECaLS tasks
significantly outperform equivalent models pretrained on any one
of several individual tasks. Fig. 9 compares the final performance of
models fine-tuned to increasing depths — from only the top mobile
bottleneck block (“Top’), through the intermediate blocks (Blocks 6
and above, 4 and above) and down to all layers (‘All’). Fine-tuning
more layers consistently improves the performance of all models,
but the magnitude of this performance improvement is dramatically
different. For models pretrained on either Imagenet or on the DECalS
‘Smooth or Featured’ single task, fine-tuning only the top block has
little to no effect on accuracy versus the frozen equivalent (where
only the dense layers are trained to classify rings). Fine-tuning
the intermediate blocks and above is necessary to achieve good
performance, increasing accuracy from approx. 70 per cent to approx.
85 per cent. In contrast, for models pretrained on all DECaLS tasks,
even the frozen models outperform the fully fine-tuned Imagenet
and single task models, with further fine-tuning providing only a
small additional performance improvement. Together, we interpret
these comparisons as strong evidence that the representations learned
from training on all DECaLS tasks are more immediately appropriate
to new tasks than representations learned from single DECaLS tasks
or from Imagenet.

Our practical advice is that if you have fewer than 10* labelled
galaxies of one class, and the task you are solving is of a similar
nature to the Galaxy Zoo questions, you are likely to perform better
with our pretrained model than with a comparable model either
trained from scratch or pretrained on ImageNet. The further gain
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from introducing fine-tuning (rather than simply using the frozen
pretrained representation) may depend on how similar the task is to
the Galaxy Zoo questions.

To help the community benefit from our pretrained models, we
release the code as the PYTHON package zoobot at https:/gith
ub.com/mwalmsley/zoobot. We provide extensive documentation
at zoobot.readthedocs.io aimed at researchers (including Masters
or PhD students) with a strong interest in deep learning but no
prior experience. The package additionally contains simple working
examples to extend pretrained models and apply fine-tuning. We
hope this will help make deep learning accessible to astronomers
working with smaller labelled data sets.

5 DISCUSSION

We have shown that, using our representation, finding a range of
interesting anomalous galaxies is straightforward. What should we
do with this capability? Specifically, how do we build systems that
lead to new scientific insights from those anomalies? First, we
would like to make human-in-the-loop anomaly recommendation
available to as many interested humans as possible. Citizen scientists
have repeatedly driven discoveries of unique objects or new classes
(Lintott 2019). We hope to make methods like the one presented
here available to them on the Zooniverse citizen science platform.
This might also enable us to exploit the shared interests of the crowd
through recommendation engines. We could make predictions like
‘people with similar interests to you also liked this galaxy’. We would
also to like to encourage formal collaboration with observatories for
follow-up, which — given the size of new surveys — may become the
limiting factor.

The anomalies we find will depend strongly on our choice of
representation. Our DECaL.S CNN representation is learned directly
from data and so might be considered more flexible than handcrafted
parametric feature extractors like ellipse fitting, which assume a
particular functional form (e.g. that a galaxy can be described as
a series of ellipses of increasing total flux). However, our CNN
representation will have its own assumptions (from e.g. the choice
of convolution sizes) and these are perhaps harder to identify than
with parametric feature extractors. There is likely no single ‘best’
representation. Similarly, there is likely no single best active learning
strategy. Our GP search and acquisition function assume that the user
has degrees of interest (for example, that a user interested in rings will
find discs a little interesting, face-on-discs more interesting, and rings
most interesting) so that our initially random search can move up the
resulting interest gradients to find the target galaxies. A user who
only wants to find anomalies which are utterly distinct from other
galaxies might be better served by starting from a machine-learning
prioritized list of the most quantitatively unusual galaxies, as in e.g.
LB21. Frameworks like Astronomaly are therefore important
for enabling researchers to choose their own representations and
active learning strategies while abstracting away shared technical
details such as the browser interface. Our pretrained CNN is publicly
available (Data Availability Statement Section) and we plan on
incorporating it into future versions of Astronomaly.

Counter-intuitively, our fine-tuning results show that pretraining
on ImageNet can actively harm performance. It has been previously
assumed (e.g. Dobbels et al. 2019) that pretraining on ImageNet is
good practice for astronomers. Evidence for the benefits of ImageNet
pretraining was gathered with experiments on relatively small data
sets (Ackermann et al. 2018; Martinazzo et al. 2020), where the
benefits of pretraining would be expected to be greater. We find
that ImageNet pretraining is indeed useful with small data sets
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Figure 9. The effect of fine-tuning on ring classification test accuracy, split by base model pretraining. The model layer blocks are named, from the output,
‘Top’, ‘Block7’, ‘Block6’, etc — see main text for details. We show results for fine-tuning the top (Top), blocks six and above (Blocks 6+), blocks four and
above (Blocks 4+) and all blocks (All). For models pretrained with either ImageNet (left) or on the GZ DECaLS ‘Smooth or Featured’ task (centre), fine-tuning
intermediate layers is crucial to achieve good performance. In contrast, for models pretrained to solve all GZ DECaLS tasks simultaneously (right), performance
is high without fine-tuning and fine-tuning provides only a small additional benefit. This suggests the representation learned from all DECaLS tasks is more
immediately appropriate to new tasks than representations learned from single DECaLS tasks or from Imagenet.

(consistent with those previous experiments) but that as the data set
size increases, ImageNet pretraining may eventually lead to worse
performance than training from scratch. Recent computer science
results show that the network initialization can dramatically change
the minima found at convergence (Fort, Hu & Lakshminarayanan
2019). It may be that, beyond a certain data set size, the ImageNet
initialization sets the network on a path to learn features which
are ultimately less helpful than those that would otherwise be
learned directly. We encourage researchers to experiment with both
our galaxy-appropriate pretrained weights and with training from
scratch.

When aiming to solve a new task on galaxy images, it may seem
self-evident, in retrospect, that pretraining on galaxy images is more
effective than pretraining on terrestrial images. Doing so is not
standard practice. We are the first to do this in a supervised context.
It remains to be seen whether pretraining on large supervised data
sets or on even larger self-supervised data sets will be more effective
for astronomers. Self-supervised contrastive learning in particular
continues to advance (Grill et al. 2020; Caron et al. 2021) and
has found very recent practical applications in astronomy (Hayat
et al. 2021; Sarmiento et al. 2021; Stein et al. 2021). One key
benefit in our context is the opportunity to distinguish classes where
broad supervised labels are unhelpful (for example, we note that the
similarity search returns two ‘wrong size’ images under the ‘star’
search, perhaps because the GZ decision tree labels are not useful in
distinguishing these two cases). The best approach may ultimately
be a combination of the two, with self-supervised ‘pre-pretraining’
followed by supervised pretraining and finally fine-tuning to the task
at hand. As the complexity grows, we may see some ML-centric
researchers specialize in this process while others focus on carrying
out specific applications and drawing scientific conclusions.

Bias propagation is a potential concern. The initial representation
could include subtle unwanted correlations from the initial data
set, which could then be inherited by the fine-tuned model and
affect the downstream predictions even if the downstream data set
is itself unbiased. Detecting such biases is itself an active field of
computer science research and so this, again, would likely benefit
from specialized attention. We note that only a small minority
of recent deep learning applications in the astronomical literature
include experiments to check for biases or to understand why specific
predictions are made (e.g. Ghosh et al. 2020). This might either make
inherited bias more of a concern, in that such biases are unlikely to
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be detected without a change in culture within the field, or less of
a concern, in that the field currently broadly accepts models with a
potential direct bias and so inherited bias is merely a second-order
effect on an existing issue.

The question of how best to classify a new survey with no labels
becomes increasingly pressing as we approach first light for the Vera
Rubin Observatory (LSST Science Collaboration 2009) and Euclid
(Laureijs et al. 2011). We noted (Section 3) that our model was able
to identify ‘Odd’ galaxies in Galaxy Zoo 2 despite only being trained
on DECaLS. It is plausible (see e.g. Dominguez Sanchez et al. 2019)
that retraining on a few hundred survey-specific labels might have
further improved performance. If, as our results suggest, CNN trained
on broad tasks are relatively transferable between galaxy surveys, we
may be able to use these pretrained models to rapidly classify entirely
new surveys like LSST. A short citizen science campaign answering
a Galaxy-Zoo-like task on an active-learning-selected subset could
provide enough new labels to adapt our representations. The adapted
representations could then be used for time-sensitive downstream
tasks like finding difference-image transients for which one cannot
afford to wait several years to build the data sets that traditional ‘from
scratch’ approaches require.

If large data sets become central to deep learning in astronomy,
as they have in the natural language community, it is crucial that we
allow fair access for researchers at less well-resourced institutions.
The data, code, and trained models from this work are all publicly
available (Data Availability Statement Section).

6 CONCLUSION

Representations are the core of many machine learning methods.
We have shown that, when trained on the broad task of answering
every Galaxy Zoo DECaLS question, our convolutional neural
network learns an internal representation of galaxies arranged by
morphological similarity. This general representation is directly
useful for new practical tasks on which the network was never trained.

The first practical task we showed was a similarity search method.
Similarity searches aim to return the most similar galaxies to a
query galaxy. To do so, they require a quantified measurement of the
similarity between two galaxies — a problem underlying the search
for automatic taxonomies of galaxies. Because our representation
arranges galaxies by similarity, our measurement of similarity is
simply estimated as the distance in representation space between
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galaxies. The most similar galaxies are the query galaxy’s nearest
neighbours. We tested our search method using free text hashtags
(e.g. “#starforming’, ‘#disturbed’, etc.) from the Galaxy Zoo forum.
For each common hashtag, we searched for the galaxies most similar
to the galaxy most frequently given that tag. Our searches were
successful in a clear majority of cases, even where the hashtag
was highly specific (e.g. ‘#dustlane’) and even though none of the
tags corresponded to the original training labels (Galaxy Zoo vote
fractions).

The second practical task was finding rare galaxies that were
personally interesting to a given user. We used GP regression to
model user interest, and our uncertainty about that interest, for
each galaxy. We selected which galaxies to be rated for interest
by our user with active learning and a Bayesian optimization
acquisition function. We simulated a user expressing their interest
through the Astronomaly interface (Lochner & Bassett 2021)
with Galaxy Zoo vote fractions as a ground truth for interest values.
We carefully replicated the test originally used to demonstrate a
specific Astronomaly configuration and achieved a significant
improvement in performance. All of the top 100 galaxies predicted
by our method to be most interesting were voted ‘Odd’ by Galaxy
Zoo 2 volunteers. We then carried out comparable tests to identify
mergers, rings and irregular galaxies in the DECaLS survey and
found similarly improved results. Our method successfully identified
each class of anomaly for our simulated user.

The third practical task was fine-tuning a convolutional neural
network to solve a new galaxy classification task; specifically, to
find ringed galaxies in DECaLS. We experimented with training the
same architecture (EfficientNetBO0) in three ways: from scratch, fine-
tuned from ImageNet, and fine-tuned from Galaxy Zoo DECaLS
(i.e. from our representations). In each case, we measured how the
test loss varied with training data set size. We found that fine-tuning
from Galaxy Zoo DECaLS performed best, especially when few
labelled rings were available (as would typically be the case for a
new task). We therefore suggest that researchers use our pretrained
weights rather than ImageNet weights for models aiming to solve
new galaxy classification tasks.

Together, solving these tasks demonstrates the utility that an
appropriate representation can have. We believe the future of machine
learning for galaxy morphology lies in the thoughtful creation and
sharing of representations, so that researchers can build on top of
one another’s models rather than creating them from scratch for each
new problem.
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To help the community benefit from our pretrained models, we
release much of the code from this work as the documented
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from scratch, calculating the representations of new galaxies, and
fine-tuning the trained model to new classification problems. The
repository also includes the weights of the trained model used in this
work.

We release the remaining code for this work at https://github.com
/mwalmsley/morphology-tools for reproducibility and future exten-
sion. This includes code for our similarity searches, our human-in-
the-loop anomaly detection method, and our fine-tuning experiments.

The Galaxy DECaLS images and Galaxy Zoo DECaLS volunteer
votes (with the exception of votes to the final multiple-choice
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Surveys, powered by a combination of citizen science and deep
learning. The complete ring catalogue will be publicly available.
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