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a b s t r a c t 

Understanding the void evolution in irradiation environment is of great interest and significance, as 

irradiation-induced voids typically lead to pronounced volumetric swelling and degradation of me- 

chanical properties. In situ studies on the irradiation response of nanovoids at elevated temperature 

remain limited. In this work, we performed systematic in situ 1 MeV Kr ++ irradiations on Cu with 

nanovoids in a transmission electron microscope up to 350 °C. The in situ studies revealed intriguing 
void spheroidization, shrinkage and migration. Furthermore, the morphology evolution and migration of 

nanovoids showed a strong dependence on irradiation temperature and initial void size. Post-irradiation 

analyses identified defect clusters in the form of stacking fault tetrahedrons, and the remaining large 

faceted nanovoids. The underlying mechanisms of irradiation-induced void spheroidization and shrinkage 

were discussed based on phase-field modeling. 

Published by Elsevier Ltd on behalf of Acta Materialia Inc. 
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. Introduction 

In the past decades, the formation and growth of irradiation- 

nduced voids (or bubbles) have been extensively investigated be- 

ause of their profound impact on the microstructure and me- 

hanical properties of irradiated materials [1–5] . As a typical type 

f vacancy clusters in solids, voids are widely observed in metals 

nd alloys after their irradiations by energetic particles, such as 

lectrons [6] , protons [7] , neutrons [8] and ions [ 9 , 10 ]. The phe-

omenon of volumetric expansion accompanied with voids in irra- 

iated materials is commonly referred to as void swelling [11–13] . 

oid swelling often leads to degradation of the mechanical proper- 

ies via irradiation hardening, embrittlement, and premature frac- 

ure [14–16] . To design advanced materials for future nuclear reac- 

ors, it is essential to explore how voids evolve under the irradia- 

ion environment [17] . 

Considering efficiency and safety, ion irradiation has been 

idely used for emulating the void evolutions in nuclear reactors 

n spite of the existence of numerous microstructure and proper- 

ies differences induced by the two techniques [18] . Prior investi- 
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ations showed that void swelling involves thermodynamic factors, 

uch as surface energy increase or decrease, as well as kinetic fac- 

ors governed by interfacial reactions and reactions of defects with 

inks [19–22] . According to early experimental studies, several ma- 

or characteristics of void swelling have been resolved. First, void 

ucleation and growth show a strong dependence on irradiation 

emperature and the magnitude of void swelling often peaks at 

ntermediate temperatures in the range of 0.25 to 0.60 T m (melt- 

ng temperature) [ 3 , 23 , 24 ] . In principle, at low temperatures, void

rowth is limited by insufficient vacancy diffusivity, while at very 

igh temperatures it is suppressed by a loss of vacancy supersat- 

ration, because of the accelerated recombination between oppo- 

ite type of defects and the approach of the defect concentration 

o the thermal equilibrium value [25] . Second, in most cases, the 

eometry of irradiation-induced voids cannot be simply described 

s perfect spheres [21] . A couple of complex configurations have 

een reported, involving shape variations among different materi- 

ls [ 19 , 26–28 ]. Due to surface energy anisotropy, the voids in crys-

alline metals often exhibit distinct facets corresponding to low- 

ndex close-packed planes [26] . For instance, different faceted voids 

ere found in irradiated Ni [21] , Al [29] , Mg [30] , Cu [3] , Fe [31] ,

u-Ni alloys [28] , and steels [32] . Moreover, there are other fac- 

ors that may influence the irradiation-induced void swelling, such 

s the inert gas [33] , solute atoms [34] , biased sinks [35] , dose
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nd dose rate [36] , as well as external stress [37] . The theoreti-

al underpinning for void evolution at elevated temperatures, pro- 

ounded based on experimental observations, can only be verified 

y testing the postulates through simulations. Therefore, we per- 

ormed phase-field simulations for validating the proposed mech- 

nisms. 

Theoretically, void nucleation and growth have been studied 

sing the classical nucleation theory [38] , chemical rate theory 

pproach [ 23 , 39 , 40 ] and cluster dynamics [ 41 , 42 ]. Recently, the

hase-field approach has proved to be an effective method for cap- 

uring the morphological evolution of interfaces in various materi- 

ls science processes at diffusive time scales [43] , and it has been 

uccessfully applied to describing the void formation and evolution 

n irradiated metals [ 22 , 44–48 ]. We used a phase field approach to

xplain the shrinkage of the nanovoids (NVs) in single-crystalline 

u (110) observed during in situ 1 MeV Kr ++ radiation at room 

emperature (RT) [49] . However, a systematic experimental study 

oupled with phase field simulation that considers the influence 

f temperature on the irradiation response of NVs is still lacking. 

n this work, we investigated the temperature dependent heavy ion 

rradiation damage in Cu (110) films with NVs. In situ heavy ion ir- 

adiations were performed in a transmission electron microscope 

TEM) at elevated temperatures between 190 and 350 °C. The irra- 
iation temperatures cover the onset and peak welling regimes for 

u [50] . Our experimental study combined with phase-field sim- 

lations provides new insights for understanding the radiation re- 

ponse of voids in solids. 

. Experimental 

Cu films, ~ 2 μm thick, were deposited on HF-etched Si (112) 

ubstrates at RT by using magnetron sputtering with an ultrahigh 

urity (99.995 wt.%) Cu target. Before deposition, the chamber was 

vacuated to a base pressure < 8 × 10 −8 torr. The deposition rate 

as controlled at ~ 0.6 nm/s. After deposition, the film texture was 

nalyzed using an X-ray diffractometer with a Cu K α1 source. 

Plan-view and cross-section TEM specimens were prepared by 

olishing, dimpling, and low energy (3.5 keV) Ar ion milling. Before 

nd after irradiations, the specimens were carefully examined by 

 Thermo-Fischer Scientific/FEI Talos 200X analytical microscope 

perated at 200 kV. The in situ heavy-ion irradiations were con- 

ucted in the Intermediate Voltage Electron Microscope (IVEM) at 

rgonne National Laboratory, where an ion accelerator is attached 

o a Hitachi-900 TEM. Three different TEM specimens were pre- 

nnealed at the irradiation temperatures for ~ 0.5 h, and then irra- 

iated by 1 MeV Kr ++ , respectively, at 190, 250 and 350 °C. Before
rradiations, the temperature calibration for TEM holder and spec- 

mens was conducted in a vacuum chamber with a thermocouple 

pot weld on a disk specimen. The temperature variance between 

he controller and the sample was found to be within ± 3 °C. 
The radiation dose (in dpa) was calculated using Stopping and 

ange of Ions in Matter (SRIM) 2008 with Kinch-Pease method 

 51 , 52 ], with a displacement threshold energy of 30 eV for Cu [25] .

he calculations indicate that > 99% Kr ions transmitted through 

he TEM foils, and more detailed SRIM calculation results can be 

ound elsewhere [53] . The maximum dose was ~ 0.5 dpa for the 

rradiation at 190 °C, and 1.0 dpa for the cases at 250 and 350 °C,
ith the same dose rate around 3 × 10 −4 dpa/s. 

. Results 

.1. Faceted nanovoids in as-deposited cu (110) films 

Fig. 1 (a) shows the conventional θ−2 θ XRD profile of Cu film 

nd Si substrate, and Fig. 1 (b) shows the (110) and (100) ϕ-scan 

rofiles of Si substrate (blue) and Cu film (red), respectively. These 
505 
RD results indicate an epitaxial growth of Cu (110) film on the 

i (112) substrate, and the corresponding film-substrate orienta- 

ion relationship is summarized and schematically illustrated in 

ig. 1 (c): Cu (110) // Si (112), Cu [ 1 ̄1 0 ] // Si [ ̄1 ̄1 1 ] and Cu [001]

/ Si [ ̄1 10 ]. The plan-view TEM micrographs recorded at under- 

ocus ( �f = −1.5 μm) and over-focus ( �f = + 1.5 μm) imag-

ng conditions along beam direction B = [110] in Fig. 1 (d) and 

e) show the formation of faceted NVs with dark or white Fres- 

el fringes. In addition, the inserted selected area diffraction (SAD) 

attern in Fig. 1 (e) confirms single-crystal-like diffraction spots of 

u (110). The enlarged view of a high-resolution TEM (HRTEM) im- 

ge in Fig. 1 (f) reveals the NV is primarily faceted on the {111}

lane and elongated along the 〈 112 〉 direction. The cross-section 
EM micrographs in Fig. 1 (g) and (h) taken at an under-focus 

 �f = −1.5 μm) condition display the cylindrical nanovoids along 

he film growth direction. The inserted SAD patterns in Fig. 1 (g) 

nd (h) show clear evidence of single-crystal-like diffraction re- 

pectively along the beam directions of B = [ 1 1 0 ] and [001]. 

he HRTEM micrograph in Fig. 1 (i) (recorded along B = [001]) 

haracterizes an elongated NV along the growth direction. In or- 

er to describe the configuration of such faceted NVs, three di- 

ensional parameters are defined as follows: the void length L , 

idth W , and height H . As marked in Fig. 1 (f) and (i), L and W

escribe the projected dimensions in plane-view image, while H 

efers to the dimension along the growth direction in the cross 

ection. Statistic studies show that the mean value is 17 nm for L , 

 nm for W , and 20 nm for H . The TEM foil thickness was mea-

ured as ~ 115 nm using the convergent beam electron diffrac- 

ion (CBED) technique (see Supplementary Figure S1) [54] . Since 

he TEM foil thickness is much higher than void dimensions, the 

s-deposited NVs are assumed to be embedded inside the TEM 

pecimens. 

.2. Irradiation-induced void spheroidization and shrinkage 

In situ TEM radiation makes it possible to directly observe 

he void morphology evolution during an irradiation process. It 

hould be emphasized that the experimental results presented in 

he following sections are based on the observations of an area 

f 450 × 450 nm 
2 , and a moderate set of nanovoids limited by 

he manpower available for data analyses. The evolutions of mi- 

rostructures up to 0.2 dpa at three different irradiation tempera- 

ures are compiled in Fig. 2 . With increasing dose, it is evident that 

he preexisting faceted NVs undergo spheroidization through the 

eduction of void length L and the simultaneous expansion of void 

idth W . The spheroidization rate tends to increase with increas- 

ng temperature. Consequently, by 0.20 dpa, most NVs irradiated 

t higher temperatures, 250 and 350 °C, have fully spheroidized as 
hown in Fig. 2 (b5) and (c5). More detailed observations on the 

rradiation-induced void spheroidization can be found in Supple- 

entary Video SV1-SV3. 

At a high dose > 0.30 dpa, the irradiated NVs showed little 

hange in shape, but they shrank gradually. Fig. 3 compares the 

EM micrographs for void shrinkage at different irradiation tem- 

eratures from 0.3 to 1.0 dpa. With increasing dose, it is evident 

hat the spheroidized NVs shrank continuously until they became 

oo tiny to be resolved by TEM. Three representative NVs show- 

ng the typical void shrinkage behaviors are marked by circles. 

ote that the shrinkage process also shows a strong dependence 

n temperature. As shown in Fig. 3 , at a given dose level the mean

V size increases with increasing irradiation temperature, indicting 

he shrinkage rate decreases with increasing temperature. 

In Fig. 3 (c1)-(c5), all the NVs irradiated at 350 °C remain their 

ircular shape while shrinking continuously at a higher dose. How- 

ver, at 250 °C some of the fully spheroidized NVs occasionally 

resented ‘craters’ on their surfaces. Two of such peculiar ‘imper- 
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Fig. 1. Texture analysis, and microstructure characterization of as-deposited NV-Cu (110) films. (a) θ−2 θ XRD profile of sputtered film showing the epitaxial growth of Cu 

(110) on Si (112) substrate. (b) XRD ϕ-scan of Cu {100} (red) and Si {110} (blue). (c) Schematic illustration of film-substrate orientation relationship. (d)-(f) Plan-view TEM 

micrographs of faceted nanovoids in as-deposited Cu films. L and W in (f) mark the length and width of an elongated nanovoid. (g)-(i) Cross-sectional TEM micrographs of 

faceted nanovoids along growth direction. The H in (i) denotes the height of a cylindrical nanovoid. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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ect’ NVs are marked by the arrows in the insets of Fig. 3 (b3) and

b4). It was found that the imperfect voids were able to recover 

rom eclipse features (self heal). One typical example is summa- 

ized and shown in Fig. 4 . As shown in Fig. 4 (a1), a circular large

oid was measured to be 15 nm in diameter at 0.559 dpa. The void

ecame concaved from its lower left corner as marked by the ar- 

ow in Fig. 4 (a2), and the concavity eroded into the void during 

rradiation shown in Fig. 4 (a3)-(a4). After a while, the void recov- 

red its spherical geometry at 0.656 dpa as shown in Fig. 4 (a5). 

uring subsequent irradiation, a similar concave process repeated 

rom lower right portion of the void, followed by its recovery 

s shown in Fig. 4 (b1)-(b5). By 0.766 dpa in Fig. 4 (b5), the void

ad decreased its diameter from 15 to 12 nm. In addition, some 

rradiation-induced defect clusters were captured in the vicinity of 

he NV, as shown in Fig. 4 (a5) and (b1). These defect clusters are

ssumed to be SFTs based on our subsequent post-irradiation anal- 

ses. The in situ TEM observation of Fig. 4 can be found in Supple-

entary Video SV4. 
506 
To quantify the morphology evolution of NVs, two parameters 

re defined as follows. First, the aspect ratio μ = W/L was used to 

escribe the spheroidization process. Second, the porosity P was 

efined to describe the shrinkage process by taking into the con- 

ideration of both void size D (diameter) and density, given by: 

 = 

∑ 

V i 
St 

(1) 

here �V i is the sum of the volume for observed NVs, S is the 

bserved area ~ 0.18 μm 
2 , and t is the TEM foil thickness, approx- 

mately 115 nm. For each case, more than 20 NVs were manually 

easured based on the in-situ videos SV1-SV3. Fig. 5 summarizes 

he variations of μ and P with increasing dose � at different ir- 

adiation temperatures. It shows that the void spheroidization oc- 

urred primarily at low dose ( < 0.3 dpa) through the reduction of 

oid length L and extension of void width W , leading to the in- 

rease of μ demonstrated in Fig. 5 (a). Before irradiation, μ had 

n initial value of 0.4 because of the elongation of the NVs along 
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Fig. 2. TEM sequential snapshots demonstrating the spheroidization process of faceted nanovoids at low dose < 0.2 dpa and various temperatures: (a1)-(a5) 190 °C, (b1)-(b5) 
250 °C, and (c1)-(c5) 350 °C. The corresponding in situ videos can be found in Supplementary Videos SV1-SV3. 

Fig. 3. TEM snapshots demonstrating the shrinkage process of spherical nanovoids at higher doses over 0.3–1.0 dpa and various temperatures: (a1)-(a3) 190 °C, (b1)-(b4) 
250 °C, and (c1)-(c5) 350 °C. The insets in (b3) and (b4) denote two peculiar NVs that contracted locally at 250 °C. 

<

d

u  

t

t  

I

a

b

t  

t

 112 > direction, as shown in Fig. 1 (f). With increasing radiation 

ose, μ increased gradually, and by 0.2 dpa it nearly reached the 

nity at 350 °C, 0.96 at 250 °C, and 0.84 at 190 °C. In addition to
he current studies at high temperatures, a reference of the varia- 

ion of μ at RT is also plotted in black squares in Fig. 5 (a) [49] .
507 
t is worth pointing out that although μ also increases slightly 

t RT, such increment arises from the different reduction rates in 

oth L and W , possibly caused by the effect of void surface curva- 

ure on the interstitial diffusion [49] . At a higher dose ( > 0.3 dpa),

he aspect ratio μ barely changed, so the voids could be regarded 
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Fig. 4. Morphology evolution of a void irradiated at 250 °C. The arrows mark irradiation-induced ‘craters’ on the void surface. The corresponding in situ TEM video can be 

found in SV4. 

Fig. 5. The influences of irradiation temperature and void size on void spheroidization and shrinkage. (a) Variation of aspect ratio μ ( W / L ) with increasing dose � to 0.3 

dpa. A reference data set [49] of RT irradiation is also plotted in black squares. (b) The spheroidization rate ( d μ/ d �) versus void diameter D . (c) Variation of porosity P with 

increasing dose � over 0.3–1.0 dpa. (d) The void growth rate ( dD / d �) versus void diameter D . 

508 
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Fig. 6. Irradiation-induced void shrinkage and migration at 350 °C. (a)-(c) Shrinkage of void V1 from 0.15 to 0.50 dpa. (d)-(f) Migration of void V1 during irradiation from 

0.75 to 0.86 dpa. (g) The compiled TEM snapshots at different doses (marked by numbers) clearly demonstrate the shrinkage and migration of small void V1 with increasing 

dose. More detailed information can be found in Supplementary Video SV6. 
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s spheres; its volume or size, therefore, would be easily calcu- 

ated using its diameter D . Fig. 5 (b) shows that the spheroidization

ate ( d μ/ d �) is greater for the smaller faceted NVs. The calculated

orosity decreases with increasing dose (0.3–1.0 dpa) as shown in 

ig. 5 (c). Furthermore, at a given dose level the porosity declines 

ith decreasing temperature, suggesting the void shrinkage pro- 

ess is suppressed at higher temperature. Moreover, the variation 

f growth rate ( dD / d �) in Fig. 5 (d) reveals that smaller spherical

Vs appear to shrink faster for specimens irradiated at 250 and 

50 °C. 

.3. Irradiation-induced void migration at 350 °C 

In addition to void spheroidization and shrinkage, we also cap- 

ured the irradiation-induced void migration at 350 °C. The accel- 
rated (by 32 times) in situ TEM video in Supporting Video SV5 

hows that during 1 MeV Kr ion irradiation, from 0.25 to 1.00 

pa at 350 °C, some small voids were obviously changing their 

ositions. We carefully examined 35 NVs in total, as labeled in 

upplementary Figure S1, and 25 of them started migrating only 

hen the void diameter reduced to several nanometers. One typi- 

al example of irradiation-induced void shrinkage and migration is 

hown in Fig. 6 . As shown in Fig. 6 (a)-(c), there are three voids la-

elled as V1-V3, and they all remained stationary while shrinking 

radually from 0.15 to 0.50 dpa. The position of void V1 relative to 

2 and V3 was measured and marked in Fig. 6 (a). With increas- 

ng dose, V1 was changing its position and started migrating over 

.50 dpa until it eventually disappeared by ~0.86 dpa, as demon- 

trated in Fig. 6 (d)-(f). Such irradiation-induced void shrinkage and 

igration can be better visualized in Fig. 6 (g) where the successive 

EM snapshots of void V1 from 0.50 to 0.8641 dpa are complied. 

he corresponding video for Fig. 6 can be found in Supplementary 

ideo SV6. 

As the large voids remained mostly stationary, like the V2 and 

3 in Fig. 6 , they were taken as reference points for measuring the 

elative positions of mobile voids at different doses. Consequently, 

he void cumulative migration distance λ, instantaneous migration 

elocity v , and migration trajectories can be calculated. As shown 

n Fig. 7 a, 25 out of 35 voids migrated by a long distance > 20 nm

efore they vanished. The maximum migration distance λmax is ~

27 nm, and the average migration distance λave is 50 nm, around 
509 
alf of the TEM foil thickness. The logarithmic plot of void migra- 

ion velocity v in Fig. 7 (b) reveals that ln v is inversely proportional

o void diameter D and can be empirically described by: 

n v = C 0 + 

C 

D 

(2) 

here C 0 and C are coefficients that may depend on the irradiated 

aterials and radiation conditions. Evident migrations, defined as 

 > 0.1 nm/s, mostly occurred for smaller NVs with a dimeter D 

 6.5 ± 1.5 nm. Moreover, the migration trajectories in Fig. 7 (c) 

ndicate that small NVs tend to migrate in all directions. Some of 

hem might be confined at a local region and migrate back and 

orth from time to time, while others might migrate continuously 

long one direction. It seems that the void migration is analogous 

o Brownian motion and follows a random walk under irradiation 

nvironment at high temperature. 

.4. Post-irradiation analysis 

To identify the radiation-induced defect clusters, post- 

rradiation TEM analysis was performed. The TEM results in 

ig. 8 (a)-(c) reveal that high-density stacking fault tetrahedrons 

SFTs) were produced in all specimens regardless of temperature. 

ig. 8 (d) compares the SFT edge length ( L SFT ) distributions, and 

t shows that the average value of L SFT increases slightly with 

ncreasing temperature, ranging from 1 to 7 nm, in good agree- 

ent with previous reports on the radiation-induced SFTs in Cu 

 49 , 55 , 56 ]. Conversely, the SFT density ρSFT decreases monotoni- 

ally at higher temperature, as shown in Fig. 8 (e). The correlation 

etween the SFT edge length ( L SFT ) and the number of vacancies 

 N V ) is given by [57] : 

 V = 3 

(
L SF T 
a 

)2 

(3) 

here a is the lattice parameter, 0.3615 nm for Cu. Using Eq. (3) ,

he vacancy concentration ( C v ) stored in SFTs can be expressed as: 

 v = N v 
ρSF T M 

ρN A 

(4) 

here N A is the Avogadro’s number, ρ is matrix density 

8.92 g/cm 
3 for Cu), and M is material atomic mass (63.55 g/mol 
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Fig. 7. Statistic studies on the radiation-induced void migration. (a) The void migration distance λ is plotted as a function of irradiation dose �. (b) The logarithmic plot 

of void migration velocity v against void diameter D . (c) Trajectories of all the inspected voids, indicating their random walks through the crystalline lattice. The SAD insert 

shows single crystal-like diffraction along the Cu < 011 > zone axis. 

Fig. 8. Irradiation-induced SFTs. (a)-(c) Post-irradiation TEM micrographs examined along Cu < 110 > zone axis (evidenced by SAD patterns) showing triangular-shape SFTs 

at all temperatures. The lower left inset in (a) is the HRTEM image of a representative SFT with its edge length marked by L SFT . (d) Size distributions of SFTs at various 

irradiation temperatures. (e) Variations of SFT size ( L SFT ), density ( ρSFT ) and its corresponding vacancy concentration ( C v ). The data points of RT irradiation from [49] are also 

plotted in (e). 
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or Cu). The calculated C v is also plotted in Fig. 8 (e), and it de-

reases with increasing temperature. 

In addition to SFTs, the TEM images in Fig. 9 compare the con- 

gurations of two representative NVs after the irradiation at 350 °C 
o 1 dpa. Fig. 9 (a) shows a small circular-shape NV, around 10 nm 

n diameter, surrounded by numerous SFTs. Nevertheless, the large 

V in Fig. 9 (b), around 23 nm in diameter, still have several facets

hat are indexed as {111}, {200}, {113} and {510} crystal planes 

ased on the inset SAD pattern. 
c

510 
.5. Phase-field modeling 

To understand the underlying mechanism of the void evolu- 

ion caused by high-temperature irradiation, we performed phase 

eld simulations in two-dimensions with a thin film configuration. 

hase-field models are mesoscale microstructure simulating tools, 

hich come under the category of field-theoretic models, used to 

apture the nucleation and growth kinetics of voids simultane- 

usly. The phase-field employed here, found elsewhere in [ 42 , 45 ], 

ontains both vacancies and interstitials with biased source terms. 



C. Fan, R.G.S. Annadanam, Z. Shang et al. Acta Materialia 201 (2020) 504–516 

Fig. 9. Post-irradiation analysis of remaining nanovoids after 1.00 dpa irradiation at 350 °C. (a) A small NV with a diameter of 10 nm. (b) A large NV with a diameter of 

23 nm has facets on several low-index crystallographic planes. 
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he simulation domain has a total of 231 × 151 grid points, with 

he solid region occupying 151 × 151 grid points and the rest be- 

ng empty space on both sides of the film. A void that is 30 × 13

rid point with an aspect ratio of 0.43 was initialized at the cen- 

er of the film. The initial condition can be found in Supplemen- 

ary Figure S2, and the currently used model was developed and 

eported elsewhere [58] . In our simulations, the concentration of 

he point defects in the solid region is taken to be thermally equi- 

ibrium. The equations are non-dimensionalized to qualitatively de- 

cribe the temperature effect on void evolution through the control 

arameter D v / D i . The ratios of the normalized point-defect diffu- 

ivities, D v / D i , are set as 0.02, 0.33, and 0.67 to qualitatively model

oid evolution at low, medium, and high temperature, respectively. 

lthough radiation produces equal number of vacancies and inter- 

titials, in Cu some of the vacancies agglomerate in the form of 

FTs (see Fig. 8 ) that are immobile and cannot interact with pre- 

xisting NVs. To account for such effect, we have, in our model, 

ssumed a biased cascade source. For low-temperature irradiation, 

he number of vacancies introduced in each cascade event is only 

0% of the number of interstitials; for the medium and high tem- 

erature cases, the number of vacancies introduced in each cas- 

ade event is 95% of the number of interstitials. In addition, the 

urface energy anisotropy is also included in the current model by 

aking the gradient coefficients of the phase field variable orienta- 

ion dependent, as what has been reported in another independent 

tudy [47] . 

The simulation results are summarized in Fig. 10 . The snap- 

hots of vacancy concentration C v in Fig. 10 (a1)-(c7) compare 

he radiation-induced void spheroidization and shrinkage at dif- 

erent temperatures. The corresponding dimensional changes of 

oid length L and width W are plotted as a function of time τ
n Fig. 10 (d1)-(d3). Note that in Fig. 10 (d1), both L and W de-

reased with increasing time at low radiation temperature, but the 

eduction rate of L is greater than that of W . In Fig. 10 (d2) and

d3), however, W initially increased until it reached L , but then 

oth of them decreased thereafter. As a result, the void under- 

ent a spheroidization process with its aspect ratio of W / L increas- 

ng rapidly from 0.43 to 1.00, as shown in Fig. 10 (e1). Meanwhile, 

he void kept shrinking for all the cases, as indicated by the void 

rea A reduction in Fig. 10 (e2). Especially, Fig. 10 (e1) and (e2) also
 t  

511 
uggest that, with increasing temperature, the radiation-induced 

pheroidization is promoted, while the shrinkage process is sup- 

ressed. In conclusion, these simulation results qualitatively agree 

ith our experimental findings in Figs. 2 and 3 . The simulation 

ideos can be found in Supplementary Video SV7. 

. Discussion 

An individual NV in solids tends to minimize its total sur- 

ace energy γ for a specific volume and thus often has a poly- 

edral shape with low-indexed crystallographic facets [59] . Ther- 

odynamically, the equilibrium shape of a NV should satisfy the 

inimum-energy condition that can be described by the Wulff

onstruction ( γ plot) [ 60 , 61 ]. However, the NVs formed in Cu dur-

ng magnetron sputtering could exhibit a more complex shape, 

ince sputtering is a nonequilibrium deposition process [62] . NVs 

ave been observed in several sputtered metallic thin films, and 

heir morphology and distribution are likely to be influenced by 

pparatus geometry and deposition conditions [63–65] . In the cur- 

ent study, the introduced NVs in sputtered Cu film are primar- 

ly faceted on {111} planes and elongated along < 112 > direction, 

s shown in Fig. 1 . The in situ TEM observations in Figs. 2 and

 demonstrate that high-temperature heavy-ion irradiations led to 

he geometry change of such faceted and elongated NVs in two as- 

ects: spheroidization (shape change) and shrinkage (size change). 

urthermore, smaller and spherical voids were able to migrate 

hen irradiated at 350 °C. 

.1. Void spheroidization and shrinkage 

It has been found that the elongated NVs tend to become spher- 

cal under high-temperature irradiation environments. As shown 

n Fig. 5 (a), the void aspect ratio μ increases through the reduc- 

ion of void length L and the concurrent expansion of width W . 

he spheroidization may be caused by two factors: surface migra- 

ion and diffusion, driven by local curvature (surface tension) and 

urface energy anisotropy, respectively. Meanwhile, the NVs kept 

hrinking as shown in Fig. 3 . During irradiation, even though an 

qual number of vacancies and interstitials are created at the same 

ime, many vacancies are stored in SFTs (see Fig. 8 ) that are im-
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Fig. 10. Phase field simulations on the irradiation-induced void spheroidization and shrinkage. The interstitial diffusivity D i is kept as a constant of 60 for all three cases, 

while the vacancy diffusivity D v is set as 1 for the low temperature in (a1)-(a5), 20 for the medium temperature in (b1)-(b6), and 40 for the high temperature in (c1)-(c7). 

(d1)-(d3) The evolution of void length ( L ) and width ( W ). (e1) and (e2) Temperature effect on variations of void aspect ratio ( W / L ) and void area ( A ). The corresponding 

videos can be found in Supplementary Video SV7. 
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obile 3D vacancy clusters and unable to interact with preexist- 

ng NVs. Hence the void shrinkage is attributed to the net flux of 

nterstitials into the NVs. Also compared with vacancies, intersti- 

ials have greater diffusivity due to their lower migration energy 

arrier [25] . Taking into consideration of above defect bias, our 

odified phase field modeling in Fig. 10 shows the same trend of 

oid shrinkage as observed during in situ TEM irradiations. The bi- 

sed cascades in the simulation qualitatively modeled the effects of 

FTs on the void evolution. Recent molecular dynamics simulation 

tudies also demonstrated that radiation can induce void shrinkage 

hen atomic displacements occur in the vicinity of NVs, plausibly 

ue to a biased formation of vacancies and their emissions away 

rom NVs [ 66 , 67 ]. 

It is worth pointing out that the specimen used for in situ TEM 

xperiment is approximately 100 nm in thickness, so the foil free 
512 
urfaces, top or bottom, shall play an important role in absorbing 

oint defects and affect void shrinkage or swelling. Unlike disloca- 

ions that are interstitial biased sinks, free surfaces are classified 

s neutral (or unbiased) sinks that absorb both interstitials and va- 

ancies [ 68 , 69 ]. On the free surfaces of TEM foil, the vacancy con-

entration is assumed to be thermally in equilibrium C 0 v . On the 

V surface, however, the vacancy concentration C V v is related to the 

urface curvature and given by [70] : 

 
V 
v = C 0 v exp 

(
2 γ�

RkT 

)
(5) 

here γ is free surface energy, � is atomic volume, R is void ra- 

ius, k is Boltzmann’s constant, and T is temperature. Eq. (5) sug- 

ests that the equilibrium vacancy concentration on the TEM foil 

urface is lower than that on the void surface. In other words, the 
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oil surfaces can counterbalance more vacancies and facilitate void 

hrinkage rather than swelling. In addition, Eq. (5) also suggests 

hat the NVs would gradually emit vacancies and eventually evap- 

rate at high temperature even without irradiation. The vacancy 

mission rate ˙ R v can be described by [71] : 

˙ 
 v = 

D v C 
0 
v 

R 

[
1 − exp 

(
2�γ

kT R 

)]
(6) 

Using Eq. (6) , the predictions of ˙ R v at 250 °C and 350 °C are
lotted in Supplementary Figure S3, together with the experimen- 

ally measured data points. It shows that the thermal evaporation 

s negligible for the large voids ( > 5 nm in diameter) of interest. 

herefore, the void shrinkage observed in the current study is pri- 

arily caused by the heavy ion irradiation effect. 

Fig. 5 (b) and (d) show that the rates of spheroidization and 

hrinkage are higher for smaller NVs. With decreasing void size, 

he driving force of curvature for surface mobility increases, so 

he spheroidization is accelerated for smaller NVs. In our previ- 

us work [49] , we demonstrated the effects of curvature on the 

pherodization rate using the phase-field approach by simulating 

he evolution of two voids that vastly differ in size. In addition, as 

he void shrinkage originates from the net flux of interstitials, the 

ommon form of the void growth rate ˙ R is given by [25] : 

˙ 
 = 

�

R 

[
D i C i − D v ( C v −C V v ) 

]
(7) 

here D i and D v are interstitial and vacancy diffusivity, C i and 

 v are interstitial and vacancy concentration in the solid, and �, 

 and C V v are the same parameters defined in Eq. (5) . Combining 

qs. (5) and (7) , it is concluded that the shrinkage rate of NVs in-

reases with decreasing void radius R , consistent with our in situ 

bservations and previous reports [ 72 , 73 ]. 

.2. Void migration 

The migrations of irradiation-induced defect clusters, two- or 

hree-dimensional in configuration, could have profound impact 

n the evolutions of material microstructure and property [ 50 , 74 ]. 

t has been long known that the two-dimensional defect clusters, 

uch as interstitial loops, are highly mobile [ 74 , 75 ]. Unlike individ-

al point defects that diffuse by means of random atomic jump, 

he dislocation loops migrate along certain crystallographic orien- 

ations, and their mobility is closely associated with cluster config- 

ration, lattice structure, habit plane, Burgers vector, and the local 

nvironment [75–81] . For instance, a perfect loop can exhibit fast 

ne-dimensional migration under radiation, and it moves along a 

ertain direction parallel to its Burgers vector, driven by the collec- 

ive motion of numerous neighboring atoms in the loop [ 75 , 82 , 83 ].

n addition, molecular dynamics simulations reveal that the mo- 

ility of dislocation loops strongly depends on the loop size and 

ecreases significantly as the loop size approaches that of dislo- 

ation lines in unirradiated materials [84] . In contrast, the three- 

imensional defect clusters, including SFTs and voids, are assumed 

o be extremely difficult to diffuse through crystalline lattice. For 

nstance, SFTs are regarded as immobile clusters and no experi- 

ental evidence has ever been reported on their mobility [85] . 

owever, NVs are predicted to be mobile in the presence of ther- 

al gradient, which accounts for the formation of holes and in- 

ragranular bubbles in nuclear fuels [86–88] . Recently, a couple of 

hase-field simulation studies have been reported regarding the 

igration behaviors of NVs under gradient temperature field [89–

4] . According to one of the studies, the void velocity v caused by 

hermal gradient is described by [89] : 

 = C 0 + 

C 
(8) 
D 

513 
Note that the Eq. (8) is quite different from our statistic re- 

ult in Eq. (2) , as it takes no consideration of irradiation environ- 

ent. In our case, the thin TEM foil was heated to 350 °C, and 
t remained an isothermal state during irradiation, so there was 

o long-range temperature gradient throughout the sample. More- 

ver, we found that the voids apparently stopped moving without 

r ion beam. As such, we speculate that the void migration may 

esult from the interaction of NVs with radiation cascades. 

The damage cascade is normally pictured as a displacement 

pike with a high ‘hot’ vacancy core surrounded by a ‘cold’ inter- 

titial shell [95] . Its local field is thus largely out of equilibrium 

ecause of thermal and concentration gradients in a radial direc- 

ion from core to shell. When a cascade occurs closely to a void, 

he extra interstitials on the cascade shell would diffuse into the 

oid and lead to void shrinkage. Meanwhile, the vacancy-rich core 

ight collapse into an SFT [ 96 , 97 ]. This speculation is supported 

y three evidence. First, for the 1 MeV Kr ++ irradiation in Cu, the 
amage cascade size is estimated to be ~ 7 nm [98] , comparable to 

he critical size for a void to migrate observed experimentally. The 

oids with diameters much larger than cascade hardly migrate as 

he local driving force of thermal and concentration gradients are 

oo low. Second, the irradiation-induced SFTs have edge lengths of 

 to 7 nm (see Fig. 8 ), slightly smaller than the cascade size. The

ocations of these immobile SFTs are likely to be where the cas- 

ades took place during irradiation. Third, the small mobile voids 

end to follow a random walk in any directions ( Fig. 7 c), which

s analogous to the random Brownian motion of small particles in 

uid due to their collision with fast-moving molecules. Similarly, 

he migration of small voids in solids might result from their in- 

eraction with local damage cascades. 

.3. Irradiation temperature effect on void evolution 

Our experiments and simulations reveal that the void 

pheroidization and shrinkage are largely influenced by irra- 

iation temperature. First, at higher temperature, the surface 

igration and diffusion of point defects increase, so the void 

pheroidization is assumed to be accelerated with increasing tem- 

erature. This hypothesis agrees with our in situ TEM observations 

n Fig. 2 and is well explained by our phase field simulations in 

ig. 10 . The surface diffusion of atoms is built into the phase-field 

odel through the mobility function, Eq. (9) , of the point defects 

hich also allows for the bulk diffusion in the matrix. The sim- 

lations reported in Fig. 10 clearly indicate the spheroidization 

nd its rate dependence on the temperature. It is evident from 

q. (9) that increasing the diffusivity of vacancies enhances the 

urface mobility of atoms and thus verifying the mechanism for 

pheroidization and its rate dependence on temperature. 

 α = D αC α( 1 −C v −C i ) (9) 

In particular, at 250 °C the irradiated and fully spheroidized 
Vs still exhibited craters from time to time, as shown in Fig. 4 .

his phenomenon must be related to the interaction between ra- 

iation cascades and pre-existing NVs. To support this assumption, 

nother phase field simulation was conducted, and the simulation 

esults are summarized in Fig. 11 . In this case, we set the ratio of

he point diffusivities, D v / D i , to 0.2. Fig. 11 (a) illustrates the ini-

ial shape and size of a perfect circular void in two dimensions, 

nd the white crosses mark 4 fixed locations of damage cascades 

earby. With increasing dose, it is evident that the circular void 

xperiences local curvature variations, as marked by the arrows in 

ig. 11 (c) and (d). In the meantime, the void keeps shrinking. When 

= 200 in Fig. 11 (d), the void diameter has reduced from 16.0 to 

2.2. The simulation video can be found in Supplementary Video 

V8. 
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Fig. 11. Phase field modeling on the surface curvature change for a nearly perfect spherical void, caused by radiation cascades nearby. (a) When τ = 0, the introduced void 

has a perfect circular shape with an initial diameter of 16. Four cascades were placed symmetrically at a larger concentric circle, 5 units away from the void surface, as 

marked by the white crosses. (b)-(d) With increasing time, the void surface changes locally, and void size decreases, due to the on-going cascades. The corresponding video 

can be found in Supplementary Video SV8. 
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On the other hand, with increasing temperature the va- 

ancy diffusivity increases, so more interstitials will be consumed 

hrough point-defect recombination before they can diffuse into 

Vs. As a result, the NV shrinkage process recedes at a higher radi- 

tion temperature, as demonstrated in Fig. 5 (c). This phenomenon 

s also inferred by the drop of remaining vacancy concentration 

stored in SFTs) in irradiated specimens with increasing tempera- 

ure as shown in Fig. 8 (e). Phase-field simulations were performed 

o confirm the hypothesized mechanism for the shrinkage rate de- 

endence on temperature. By varying the ratio of point defect dif- 

usivities, we studied the temperature effects on the void evolu- 

ion. The ratios chosen for point defect diffusivities emulate the 

orking temperatures in the experiments. By keeping the cas- 

ade nucleation profile and initial size of the void same across the 

imulations, we verified the hypothesis for shrinkage rate depen- 

ence on temperature. Increased recombination reactions due to 

nhanced vacancy diffusivity relative to interstitials is indeed the 

eason for the reduction in shrinkage rate of voids at elevated tem- 

eratures. 

Furthermore, for the Cu irradiated by neutrons, its peak 

welling occurs at ~ 325 °C [3] . However, no void nucleation and 

rowth were observed in the current heavy ion irradiation study. 

his discrepancy is partially because of the TEM foil surface ef- 

ect discussed above, and partially because of the peak swelling 

emperature shift to a higher value due to the heavy ion irradia- 

ion effect [99] . In contrast to the low dose rate (~ 10 −8 dap/s) of

eutron irradiation, the damage date in ion irradiation is usually 

–5 orders of magnitude higher (~ 3 × 10 −4 dap/s in current case) 

100] . The higher dose rate increases defect production rate; mean- 

hile, it also increases the defect recombination rate. As a result, 

o achieve the similar result of neutron irradiation, the ion irra- 

iation requires an increase in temperature to enhance the defect 

igration rate, so it can ensure equivalent portion of survival de- 

ects [18] . We speculate that the void swelling could occur if the 

rradiation temperature increases further, but an incubation period 

ight be required to initiate such swelling. 

.4. Irradiation temperature effect on SFTs 

The post-irradiation analysis in Fig. 8 reveals that the resid- 

al defect clusters are dominated by SFTs, a type of 3D vacancy 

lusters that usually form in face-centered-cubic (FCC) metals with 

ow stacking fault energies [ 57 , 101 , 102 ], driven by vacancy super-

aturation under various conditions, such as quenching and aging 

103] , high-speed deformation [104] , or radiation damage [ 55 , 105 ].

n Cu, it has been demonstrated that SFTs are much more stable 

han other defects, such as voids and dislocation loops (perfect or 

aulted), because of their low formation energies [57] . Prior stud- 

es showed that the irradiation-induced SFTs in Cu are typically < 
514 
 nm in edge length [101] , and can rapidly reach a saturation num- 

er density of ~ 5 × 10 23 m 
− 3 at a low dose, ~ 0.1 dpa [106] ,

hich is consistent with our observations in Fig. 8 (a)-(c). 

In addition, our systematic studies in Fig. 8 (d) and (e) reveal 

hat the SFT size increases with increasing temperature, whereas 

he SFT density evolves in the opposite way. Such temperature- 

ependent evolution must be strongly associated with SFT forma- 

ion process. Unfortunately, a direct observation of the process is 

xperimentally difficult due to spatial resolution and time limita- 

ion [ 96 , 107 ]. To date, although it is widely accepted that SFTs arise

rom the clustering of vacancies, the kinetics of their formation 

echanism remains unclear [107–110] . Several potential formation 

echanisms have been proposed based on theoretical analyses or 

omputer simulations, according to which SFTs could be formed 

hrough the aggregation of individual vacancies [109] , dissociation 

f Frank loops [ 103 , 111 , 112 ], transformation of voids [96] , or di-

ect collapse of radiation cascades [ 97 , 113 ]. Moreover, it was also 

eported that SFTs can form through the interaction of partial dis- 

ocations in the deformed nanocrystalline Au, even when vacancies 

re scanty [114] . In summary, these studies indicate that SFTs are 

nergetically favorable defect configurations and they can form and 

emain stable under various extreme environments. In this work, 

e attempt to understand the influence of irradiation tempera- 

ure on SFT size and density from the cascade model [ 97 , 113 ]. This

odel suggests that SFTs result from the solidifications of displace- 

ent cascade core that is depleted in mass and is often vacancy- 

ich in a liquid-like (or quasi-molten) state [ 115 , 116 ]. It is assumed

hat the cascade periphery is abundant with interstitials that are 

ighly mobile and can escape from the core region through ther- 

al diffusion. When temperature increases, the vacancy core ex- 

ands and gets closer to the interstitial periphery [117] . There- 

ore, smaller SFTs are expected to be removed through the core- 

nterstitial recombination at higher radiation temperatures. Con- 

equently, the SFT density decreases while the SFT size increases 

ith increasing temperature, in agreement with our observations 

hown in Fig. 8 . 

. Conclusions 

In situ TEM Kr ion irradiation was combined with phase field 

imulation to examine the irradiation-induced void spheroidiza- 

ion, shrinkage and migration in highly textured Cu (110) films 

ith NVs. Void spheroidization is accomplished via surface point- 

efect migration and diffusion, driven by surface tension and 

nisotropy energy. The void shrinkage is a result of net interstitial 

ux into NVs. Void migration is more dramatic for smaller NVs ( < 

.5 nm in diameter) and follows a random walk pattern. The void 

igration may be driven by damage cascade induced point defect 

oncentration gradient. Increasing irradiation temperature can fa- 
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ilitate spheroidization but impede void shrinkage; can decrease 

he SFT density, but increase the SFT size, presumably because of 

he accelerated recombination between cascade core and intersti- 

ial rich periphery. 
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