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Robust Approximation of the Stochastic Koopman Operator\ast 
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Abstract. We analyze the performance of dynamic mode decomposition (DMD)-based approximations of the
stochastic Koopman operator for random dynamical systems where either the dynamics or observ-
ables are affected by noise. For many DMD algorithms, the presence of noise can introduce a bias in
the DMD operator, leading to poor approximations of the dynamics. In particular, methods using
time delayed observables, such as Hankel DMD, are biased when the dynamics are random. We
introduce a new, robust DMD algorithm that can approximate the stochastic Koopman operator de-
spite the presence of noise. We then demonstrate how this algorithm can be applied to time delayed
observables, which allows us to generate a Krylov subspace from a single observable. This allows
us to compute a realization of the stochastic Koopman operator using a single observable measured
over a single trajectory. We test the performance of the algorithms over several examples.
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1. Introduction. For many complex systems and processes, governing equations cannot be
derived through first principles or the models generated by them may be too complicated to be
of practical use. Additionally, for such a system, the true state of the system may be difficult
or even impossible to measure, making a state-space model impractical for applications such
as control or prediction. Instead, only a limited set of measurements, or observables, will be
made available. One of the tools available to model such a system is the Koopman operator.
The Koopman operator represents a system in a high-dimensional linear space, which allows
us to use spectral methods to analyze the system.

Originally introduced in [9], the Koopman operator has gained traction for its utility
as a data driven method through various form of Koopman mode decomposition (KMD),
which decomposes the system based on eigenfunctions of the Koopman operator [11], [12].
Introduced in [14], generalized Laplace analysis (GLA) is an early data driven method of
KMD based on the generalized Laplace transform. Another data driven method is dynamic
mode decomposition (DMD), which was introduced in [17] and shown to be connected to
KMD in [16]. DMD algorithms attempt to find a matrix which approximates a finite sec-
tion of the Koopman operator [13]. There are many different variations of DMD, and it
can be used for a wide array of applications. Despite their widespread use, many DMD
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APPROXIMATING THE STOCHASTIC KOOPMAN OPERATOR 1931

algorithms possess a major drawback; they can fail if the data contains noise or other ran-
domness.

We can also use the Koopman methodology for random systems, provided the system is
a homogeneous Markov process. These include, for example, stochastic differential equations
driven by Gaussian white noise and discrete systems generated by generated by independent
and identically distributed (i.i.d.) random maps. For such systems, the eigenvalues produced
by standard DMD algorithms converge to the spectrum of the stochastic Koopman operator,
provided the observables themselves do not contain any randomness and lie within a finite
dimensional invariant subspace [20]. However, if the observables do contain noise, the results
from standard DMD algorithms are biased [5]. Total least squares (TLS) DMD [5], [7] was
developed to remove the bias for systems with measurement noise but only converges when
the underlying dynamics are deterministic. In [18], subspace DMD was introduced to converge
for observables with additive noise even when the underlying dynamics are random. While
many of these methods can combat the bias from measurement noise in DMD, they impose
relatively strict assumptions on either the dynamics or the structure of the noise.

Of particular interest are Krylov subspace based DMD methods, where the iterates of a
single observable under the Koopman evolution is used to (approximately) generate an invari-
ant subspace of the Koopman operator [3],[13]. For deterministic systems, Hankel DMD uses
time delays of a single observable to generate the Krylov subspace and was shown to converge
in [1]. This allows us to generate a model of a deterministic system using the data from a single
trajectory of a single observable. However, for random systems, the time delayed observables
contain randomness from the dynamics, and Hankel DMD does not converge. Further, the
noise introduced is neither i.i.d. nor independent of the state. In [4], a new stochastic Hankel
DMD algorithm was shown to converge, but it requires the stochastic Koopman evolution of
the observable, which in general requires multiple realizations of the system.

In this paper, we introduce a new DMD algorithm which allows us to work with a more
general set of observables with noise. This algorithm provably approximates the stochastic
Koopman operator in the large data limit and allows for more general randomness in the
observables than i.i.d. measurement noise. With these weaker conditions, we can use time
delayed observables to form a Krylov subspace of observables, which gives us a variation of
Hankel DMD for random systems. This allows us to compute a realization of the stochas-
tic Koopman operator using data from a single observable over a single realization of the
system. The paper is organized as follows: First we review the basics of random dynam-
ical systems and the stochastic Koopman operator. Then, we establish the convergence of
standard DMD algorithms for random systems in the absence of noise. Finally, we demon-
strate the failure of standard DMD algorithms in the presence of noise and introduce a new
algorithm which can accurately approximate the stochastic Koopman operator using noisy
observables.

2. Preliminaries. In this paper, we consider random dynamical systems that are generated
by random i.i.d. maps. We can use these systems to represent homogeneous Markov processes:
systems for which transition probabilities are completely determined by the state; they depend
neither on the time nor the past of the system. The random systems considered in this paper
will be as follows:D
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1932 MATHIAS WANNER AND IGOR MEZI\'C

Let (\Omega ,\frakF , P ) be a probability space, and let (\BbbT = \BbbZ or \BbbZ +) be a semigroup. Let \{ \theta t\} t\in \BbbT 
be a group or semigroup of measurable transformations on \Omega which preserve the measure P .
This forms a measure preserving dynamical system on \Omega . We will denote the one step map
\theta := \theta 1. Now, let (M,\frakB ) be a measurable space. Let T be a function that associates to each
\omega a random map T\omega such that

1. The map T\omega :M \rightarrow M is \frakB measurable, and
2. The maps T\theta t\omega , t \in \BbbT , are i.i.d.

If the maps T\omega satisfy the above properties, we will call T an i.i.d. random system. For the
duration of the paper, the above two properties will always be assumed to hold.

Now, given a T that satisfies the above properties, we can define the n-step evolution of
T by

(2.1) Tn\omega = T\theta n - 1\omega \circ T\theta n - 2\omega \circ \cdot \cdot \cdot \circ T\theta \omega \circ T\omega .

For a given x \in M and \omega \in \Omega , the points T t\omega x are the trajectory of x. We will denote
xt = T t\omega 0

x0 and \omega t = \theta t\omega when considering a sample trajectory with initial conditions x0 and
\omega 0.

These systems driven by i.i.d. maps can be used to represent homogeneous Markov pro-
cesses. If M is a polish space, for any discrete time Markov process we can find a set of i.i.d.
maps that satisfies the transition probabilities of the Markov process ([8, Theorem 1.1]). In
this paper, we only need to consider the discrete time case, since the algorithms considered
only require a discrete set of data.

Remark 1. If we let T 0
\omega equal the identity, we can immediately see from (2.1) that the

maps T t\omega form a cocycle over the positive integers:

(2.2) T 0
\omega = idM , and T t+s\omega = T t\theta s(\omega ) \circ T

s
\omega .

With this in mind, the T is also a random dynamical system on \BbbZ + in the sense of [2]. However,
these are a more general class of system and do not necessarily have the i.i.d. property we
require in this paper.

2.1. Koopman operators. Typically, we will not have access the state of the system at
any given time. Instead, we will be able to measure some set of functions on the state space.

Definition 2.1. An observable is any \frakB measurable map f :M \rightarrow \BbbC .
We are interested in the evolution of observables over time. For a deterministic system, the

Koopman family of operators is defined to evolve an observable, f , on the state space under
the flow, St, of the system U tf = f \circ St. Studying the Koopman evolution of observables
has several benefits. First, the state of the system can be reconstructed from a sufficient set
of observables, so no information is lost moving to the observable space. Second, a certain
choice of observables may lead to a simple representation of the system with linear dynamics.
Additionally, since the Koopman operator is a linear operator, it allows us to use spectral
methods to study the system.

However, since a random system can have many possible realizations we cannot simply de-
fine the stochastic Koopman operator as the composition with the flow. Instead, the stochastic
Koopman operators are defined using the expectation of the evolution of observables.D
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APPROXIMATING THE STOCHASTIC KOOPMAN OPERATOR 1933

Definition 2.2. The stochastic Koopman operator, \scrK t, is defined for for i.i.d. random sys-
tems by

\scrK tf(x) = \BbbE P (f \circ T t\omega (x)) =
\int 
\Omega 
f \circ T t\omega (x)dP.

For a discrete time map we will denote the one step Koopman evolution as \scrK 1 = \scrK . The
operators \scrK t are also called the transition operators for a Markov process.

In order for Definition 2.2 to be useful, we require this family of operators to be consistent
in a certain sense. The stochastic Koopman family of operators should form a semigroup:

(2.3) \scrK t+sf = \scrK s \circ \scrK tf, s, t \geq 0.

For the deterministic Koopman operators, this is clearly true provided the system is autono-
mous and solutions exist and are unique, since in this case the flow forms a semigroup. For
the stochastic Koopman family of operators on a i.i.d. system, the semigroup property is
guaranteed by the independence of the maps T s\theta t\omega and T t\omega , since

\scrK t+sf(x) = \BbbE P (f(T t+s\omega x)) = \BbbE P (f(T s\theta t\omega T
t
\omega x)) = \BbbE P (\scrK sf(T t\omega x)) = \scrK t\scrK sf(x).

2.2. Stationarity and ergodicity. We will also assume that our systems will be stationary,
meaning they have a stationary measure, \mu .

Definition 2.3. A measure \mu is called invariant, or stationary, if

\mu (A) =

\int 
M

\int 
\Omega 
\chi A(T\omega x)dP d\mu ,

where \chi A is the indicator function for A \subset M .

If \mu is a stationary measure, we have the equality

(2.4)

\int 
M

\int 
\Omega 
f(T t1+s\omega x, . . . , T tn+s\omega x) dPd\mu =

\int 
M

\int 
\Omega 
f(T t1\omega x, . . . , T

tn
\omega x) dPd\mu 

for any s, t1, . . . , tn ([6, page 86]).
Since our DMD algorithms will be using data sampled off of a single trajectory of our

system, we need the trajectory to sample the measure \mu . For this we require that \mu be an
ergodic measure.

Definition 2.4. A set A \subset M is called invariant if\int 
\Omega 
\chi A(T\omega x) = \chi A(x)

for almost every x.

Definition 2.5. A stationary measure \mu is called ergodic if every invariant set has measure
0 or 1.

The ergodicity assumptions ensures that almost every trajectory samples the entire space,
not just some invariant subset. With this assumption, we can use time averages to evaluate
integrals over the space.D
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1934 MATHIAS WANNER AND IGOR MEZI\'C

Lemma 2.6. Suppose \mu is an ergodic measure. Let

h(x, \omega ) = \^h(T t1\omega x, T
t2
\omega x, . . . , T

tn
\omega x)

for some t1, t2, . . . , tn, with h \in L1(\mu \times P ). Then we have

(2.5) lim
m\rightarrow \infty 

1

m

m - 1\sum 
j=0

h(xj , \omega j) =

\int 
M

\int 
\Omega 
h(x, \omega )dPd\mu 

for almost every (x0, \omega 0) with respect to \mu \times P .

Proof. This is Theorem 2.2 in Chapter 1 of [8], applied to the sum on the left-hand side
of (2.5).

3. DMD. DMD is an algorithm which allows the computation of an approximation of
the Koopman operator from data. Assuming the eigenfunctions, \phi j , of \scrK span our function
space, we can decompose any (possibly vector valued) observable f as

f =
\sum 
j

vj\phi j .

The expected evolution of f is then given by

(3.1) \BbbE P (f(T\omega x)) =
\sum 
j

vj\scrK \phi j(x) =
\sum 
j

\lambda jvj\phi j(x).

In this Koopman mode decomposition, the functions \phi j are the Koopman eigenfunctions with
eigenvalue \lambda j , and the vectors vj are called the Koopman modes associated with f . However,
the expansion above can contain an infinite number of terms. In order to work with (3.1) using
finite arithmetic, we must restrict ourselves to a finite dimensional subspace of our original
function space.

Let F be a finite dimensional subspace of L2(\mu ) and \=F be its orthogonal complement.
Let P1 and P2 be the projections on to F and \=F . For any function g \in L2(\mu ), we can compute
the Koopman evolution as

\scrK g = P1\scrK g + P2\scrK g = P1\scrK P1g + P2\scrK P1g + P1\scrK P2g + P2\scrK P2g.

The operator P1\scrK P1 maps F into itself. For any g \in F , we have P2g = 0, so we can view
P1\scrK P1 as an approximation of \scrK provided \| P2\scrK P1\| is small. If F is an invariant subspace
under \scrK , we have \| P2\scrK P1\| = 0, and \scrK g = P1\scrK P1g for all g \in F . If we let f1, f2, . . . , fk be a
basis for F , we can represent the restriction of P1\scrK P1 to F as a matrix K that acts on the
basis by

(3.2) K
\bigl[ 
f1 f2 . . . fk

\bigr] T
=

\bigl[ 
\scrK f1 \scrK f2 . . . \scrK fk

\bigr] T
.
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APPROXIMATING THE STOCHASTIC KOOPMAN OPERATOR 1935

Remark 2. The matrix K can also be thought of as the matrix acting (on the right) on the
vector of coefficients of functions represented in the basis f1, . . . , fk: for any function g \in F
we can write

g =

k\sum 
j=1

ajfj = a
\bigl[ 
f1 . . . fk

\bigr] T
,

and a =
\bigl[ 
a1 . . . ak

\bigr] 
is the row vector of coefficients of g. Then (aK) is the row vector of

coefficients for \scrK g, since

\scrK g = \scrK (a
\bigl[ 
f1 . . . fk

\bigr] T
) = a

\bigl[ 
\scrK f1 . . . \scrK fk

\bigr] 
= aK

\bigl[ 
f1 . . . fk

\bigr] T
.

DMD algorithms compute an approximation of the matrixK from data. If we can measure
the observables f1, f2, . . . , fk along a trajectory x0, x1, . . . , xn, we can form the vector valued
observable f :M \rightarrow \BbbR k by

f =
\bigl[ 
f1 f2 . . . fk

\bigr] T
.

Each f(xt) is called a data snapshot. Given a data matrix whose columns are snapshots of f ,

D =
\bigl[ 
f(x0) f(x1) . . . f(xn)

\bigr] 
,

we can construct an operator A : \BbbR k \rightarrow \BbbR k, called the DMD operator, which (approximately)
maps each data snapshot to the next one, i.e.,

Af(xi) \approx f(xi+1).

Standard DMD algorithms (see [17],[20],[13],[10] and the sources therein) construct a matrix
C to minimize the error

n - 1\sum 
i=0

\| Cf(xi) - f(xi+1)\| 22.

Algorithm 1: Extended DMD

Let x0, x1, . . . , xn be a trajectory of our random dynamical system and f : M \rightarrow \BbbC k be a
vector valued observable on our system.
1: Construct the data matrices

X =
\bigl[ 
f(x0) f(x1) . . . f(xn - 1)

\bigr] 
, Y =

\bigl[ 
f(x1) f(x2) . . . f(xn)

\bigr] 
.

2: Form the matrix

C = Y X\dagger ,

where X\dagger is the Moore--Penrose psuedoinverse.
3. Compute the eigenvalues and left and right eigenvectors, (\lambda i, wi, vi) i = 1, 2, . . . , k, of
C. Then the dynamic eigenvalues are \lambda i, the dynamic modes are vi, and the numerical
eigenfunctions are given by

\^\phi i = wTi X.D
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1936 MATHIAS WANNER AND IGOR MEZI\'C

Let f1, f2, . . . , fk be the components of f . If we let \^fi be the ith row of X,

\^fi =
\bigl[ 
fi(x0) fi(x1) . . . fi(xn - 1)

\bigr] 
,

we see that \^fi represents fi by evaluating it along a trajectory. With standard DMD, we
construct the DMD operator C represented in the basis \^f1, \^f2, . . . , \^fk. Similarly, the numer-
ical eigenfunctions, \^\phi i will be approximations of eigenfunctions of the stochastic Koopman
operator evaluated along our trajectory. Unfortunately, depending on the choice of basis, this
DMD construction may be numerically unstable. This leads to the second algorithm [17].

Algorithm 2: SVD-based extended DMD

Let x0, x1, . . . , xn be a trajectory of our random dynamical system and, f1, f2, . . . , fl, l \geq k,
be a set of l observables on our system.
1: Construct the data matrices

X =
\bigl[ 
f(0) f(1) . . . f(n - 1)

\bigr] 
, Y =

\bigl[ 
f(1) f(2) . . . f(n)

\bigr] 
.

2: Compute the truncated SVD of X using the first k singular values:

X =WkSkV
\ast 
k .

3: Form the matrix

A = S - 1
k W \ast 

kY Vk.

4. Compute the eigenvalues and left and right eigenvectors, (\lambda i, wi, ui) i = 1, 2, . . . , k, of A.
Then the dynamic eigenvalues are \lambda i, the dynamic modes are

vi =WSui,

and the numerical eigenfunctions are given by

\^\phi i = wTi V
\ast 
k .

The benefit of SVD-based DMD is that it is more numerically stable. If X has a large
condition number, the pseudoinversion of X can introduce large errors to the DMD operator
and make Algorithm 1 unstable. To combat this, Algorithm 2 computes the SVD of X and
truncates to include only the dominant singular values. Since Sk has a smaller condition
number than X, the inversion of Sk in Algorithm 2 is more numerically stable than the
psuedoinversion of X. Algorithm 2 uses singular values and vectors to choose a basis of
observables to construct the DMD operator; the matrix A generated is the same as the one
produced by Algorithm 1 using the k-dimensional observable fnew = S - 1

k W \ast f .D
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APPROXIMATING THE STOCHASTIC KOOPMAN OPERATOR 1937

4. Convergence of DMD for random systems. The utility of Algorithms 1 and 2 comes
from the convergence of the dynamic eigenvalues and numerical eigenfunctions to eigenvalues
and eigenfunctions of \scrK .

Proposition 4.1. Let T be an i.i.d. random system with ergodic measure \mu . Let F be a
k-dimensional subspace of L2(\mu ) which is invariant under the action of \scrK , and let f1, f2, . . . , fk
span F . Let \lambda j,n be the dynamic eigenvalues and vj,n be the dynamic modes produced by
Algorithm 1 using the trajectory x0, x1, . . . , xn. Then, as n \rightarrow \infty , the dynamic eigenvalues
converge to the eigenvalues of \scrK restricted to F for almost every initial condition (x0, \omega 0)
with respect to (\mu \times P ). If the eigenvalues of \scrK are distinct, the numerical eigenfunctions
converge to a sampling of the eigenfunctions along the trajectory.

The proof of Proposition 4.1 is fairly standard in the DMD literature (e.g., [20]) and does
not differ from the deterministic case, but we include it for completeness.

Proof. Let f1, f2, . . . , fk, and K be as described in (3.2). Let Xn, Yn, and Cn be the
matrices produced by Algorithm 1 for the trajectory x0, x1, . . . , xn, and let \omega 0, \omega 1, . . . , \omega n be

the evolution of the noise. Let f =
\bigl[ 
f1 f2 . . . fk

\bigr] T
as above. Define the matrices

G0 =

\int 
M

\bigl[ 
f1 f2 . . . fk

\bigr] T \bigl[ 
f\ast 1 f\ast 2 . . . f\ast k

\bigr] 
d\mu =

\int 
M

f f\ast d\mu 

and

G1 =

\int 
M

\bigl[ 
\scrK f1 \scrK f2 . . . \scrK fk

\bigr] T \bigl[ 
f\ast 1 f\ast 2 . . . f\ast k

\bigr] 
d\mu =

\int 
M

Kf f\ast d\mu = KG0.

We can see that G0 has full rank, since if v was in its nullspace we would have

\| f\ast v\| 2 = v\ast G0v = 0,

which implies v = 0 since f1, f2, . . . , fk are linearly independent. This gives us K = G - 1
0 G1.

Now, let G0,n = 1
nXnX

\ast 
n and G1,n = 1

nXnY
\ast 
n . We have G0,n \rightarrow G0 and G1,n \rightarrow G1 for

almost every initial condition (x0, \omega 0). To see this, by Lemma 2.6 we have

lim
n\rightarrow \infty 

G1,n = lim
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

f(xm+1)f
\ast (xm) = lim

n\rightarrow \infty 

1

n

n - 1\sum 
m=0

f(T\omega mxm)f
\ast (xm)

=

\int 
M

\int 
P
f(T\omega x)f

\ast (x) dPd\mu =

\int 
M

Kf(x) f\ast (x) d\mu = G1,

and similarly for G0, we have

lim
n\rightarrow \infty 

G0,n = lim
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

f(xm)f
\ast (xm) =

\int 
M

\int 
\Omega 
f(x)f\ast (x) dPd\mu = G0.

Since G0 has full rank and G0,n \rightarrow G0, G0,n is full rank for n large enough, so G - 1
0,n exists

and
lim
n\rightarrow \infty 

G - 1
0,nG1,n = G - 1

0 G1 = K.

D
ow

nl
oa

de
d 

10
/0

2/
22

 to
 7

0.
18

5.
12

9.
12

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1938 MATHIAS WANNER AND IGOR MEZI\'C

Because G0,n = 1
nXnX

\ast 
n, we know Xn has full row rank for n large enough, so

Cn = Yn(Xn)
\dagger = YnX

\ast 
n(XnX

\ast 
n)

 - 1 =

\biggl( 
1

n
YnX

\ast 
n

\biggr) \biggl( 
1

n
XnX

\ast 
n

\biggr)  - 1

= G - 1
0,nG1,n,

which shows that Cn \rightarrow K. This shows that the dynamic eigenvalues, \lambda j,n, converge to the
eigenvalues of K, \lambda j , as n\rightarrow \infty .

To show the numerical eigenfunctions converge to samplings of our eigenfunctions, let wj,n
and wj be the left eigenvectors of Cn and K, respectively. Consider the functions \phi j,n = wTj,nf

and \phi j = wTj f . We know \phi j is a Koopman eigenfunction, since

\scrK \phi j = \scrK (wTj f) = wTj Kf = \lambda jw
T
j f = \lambda j\phi j .

If K has distinct eigenvalues, the vectors wj,n each converge to wj , so \phi j,n \rightarrow \phi j . The

numerical eigenfunctions, \^\phi j,n, are the values of the function \phi j,n sampled along the trajectory
x0, . . . , xn - 1.

The convergence of Proposition 4.1 is based on the convergence of time averages to inner
products of functions in L2(\mu ). In particular, the i, jth entry of G0,n and G1,n converge
to \langle fi, fj\rangle and \langle \scrK fi, fj\rangle , respectively, where \langle \cdot , \cdot \rangle is the L2(\mu ) inner product. As such, we
cannot glean any information about dynamics outside the support of \mu . There could be
an eigenvalue/eigenfunction pair, (\lambda , \phi ), such that \phi is zero on the support of \mu . Such a
pair cannot be captured by Algorithm 1, since \phi = 0 almost everywhere with respect to \mu . In
particular, if \mu is a singular measure concentrated on some attractor, the eigenvalues governing
the dissipation to the attractor cannot be found using ergodic sampling.

5. DMD with noisy observables.

5.1. Preliminaries. The proof above shows that DMD converges for random dynamical
systems with i.i.d. dynamics. However, it is important to note that although the systems can
have randomness, the observables cannot. The stochastic Koopman operator acts on functions,
f : M \rightarrow \BbbC , which depend only on the state of the system. If we allow our observables to
have some noise (i.e., dependence on \omega ), the proof fails. In particular, observables with i.i.d.
measurement noise and time delayed observables (used in Hankel DMD) both have some
dependence on \omega and therefore cannot be used with the above DMD methods.

Examining the failure of standard DMD with noisy observables is instructive. First we
must define our requirements for ``noisy observables.""

Definition 5.1. A noisy observable is a measurable map \~f : M \times \Omega \rightarrow \BbbC , such that the
random function \~f\omega = \~f( \cdot , \omega ) :M \rightarrow \BbbC is \frakB measurable for almost every \omega .

For notation, we will always denote a noisy observable, \~f , with a tilde and let the space
of noisy observables be H . We will also define f to be its mean:

f(x) =

\int 
\Omega 

\~f\omega (x)dP.

With these definitions, we can interpret f as the ``true"" observable on the system, whereas
\~f is the ``measured"" observable, which comes with some degree of uncertainty. We are inter-
ested in the evolution of f rather than \~f , since it depends only on the evolution in the stateD
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space and not the noise. Computing the DMD operator with the evolution of \~f can fit the
model to the noise and give a poor approximation of the system. In what follows, we will
assume that f exists and is in L2(\mu ). To avoid some clutter in the equations and algorithms,
we will also denote the time samples of an observable with a hat: \^f(t) = \~f(xt, \omega t).

In order to evaluate the stochastic Koopman evolution of f , we will need to place further
restrictions on \~f . We need the random function \~f\omega to be independent from the past of the
dynamics. Precisely, we require that \~f\theta t\omega is independent of T\theta t\omega for all s < t (which implies
\~f\omega t is independent of T\omega s for all s < t for any sample path). Roughly speaking, this means the
random function \~f\omega t cannot be predicted by the past of the dynamics onM . The independence
condition gives us

(5.1)

\int 
\Omega 

\~f\theta j\omega (T
j
\omega x)dP (\omega ) =

\int 
\Omega 

\int 
\Omega 

\~f\psi (T
j
\omega x)dP (\psi )dP (\omega ) =

\int 
\Omega 
f(T j\omega x)dP = \scrK jf(x).

Finally, in order to approximate integrals from data, we will need some ergodicity assump-
tions on our noisy observables. Namely, we will need time averages to converge in a similar
sense to Lemma 2.6. In particular, we will need

(5.2) lim
n\rightarrow \infty 

1

n

n - 1\sum 
j=0

\^f(t+ j)\^g(t) =

\int 
M

\int 
\Omega 

\~f\theta j\omega (T
j
\omega x)\~g\omega (x)dP (\omega )d\mu (x)

for two vector valued noisy observables \~f and \~g and almost every initial condition (x0, \omega 0).

Remark 3. While we make the ergodicity assumption for generality, we will show that
(5.2) holds for observables with i.i.d. measurement noise and time delayed observables, the
primary observables of interest in this paper. More generally, we can consider the skew product
system \Theta on M \times \Omega given by \Theta (x, \omega ) = (T\omega x, \theta \omega ) and treat \~f as an observable on M \times \Omega . If
\mu \times P is an ergodic measure for \Theta , we can evaluate time averages as in (5.2).

5.2. Failure of DMD with noisy observables. Now, using the ergodicity (5.2) and in-
dependence (5.1) assumptions above, we can see exactly how DMD fails. The convergence
of DMD depends largely on estimation of inner products using time averages. As before let
f1, . . . , fk be observables which span a k-dimensional subspace F , and let K be the restriction

of \scrK to F as in (3.2). Let f =
\bigl[ 
f1 . . . fk

\bigr] T
. We have from Lemma 2.6 that

Gj = lim
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

f(xm+j)f
\ast (xm) =

\int 
M

\int 
\Omega 
f(T j\omega x)f

\ast (x)dPd\mu =

\int 
M

Kjf f\ast d\mu .

We can use the fact that Gj = KGj - 1 to estimate K. However, suppose we have a noisy
observable \~f \in H with \BbbE P (\~f\omega ) = f such that (5.2) and (5.1) hold. When we take the
comparable time average, we have

\~Gj = lim
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

\^f(m+ j)\^f(m)\ast =

\int 
M

\int 
\Omega 

\~f\theta j\omega (T
j
\omega x)

\~f\ast \omega (x)dPd\mu .
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1940 MATHIAS WANNER AND IGOR MEZI\'C

This is not equal to Gj , since \~f\omega and \~f\theta j\omega \circ T j\omega are not necessarily independent. In fact, if we

examine the difference in \~Gj and Gj , we obtain

\~Gj  - Gj =

\int 
M
Cov(\~f\theta j\omega \circ T j\omega ,\~f\omega )d\mu ,

where Cov(\~f\theta j\omega \circ T j\omega ,\~f\omega )(x) denotes the covariance of \~f\theta j\omega (T
t
\omega x) and

\~f\omega (x), since, using (5.1),

Cov(\~f\theta j\omega \circ T j\omega ,\~f\omega )(x) = \BbbE P (\~f\theta j\omega (T
j
\omega x)

\~f\ast \omega (x)) - \BbbE P (\~f\theta j\omega (T
j
\omega x))\BbbE P (\~f\ast (x))

= \BbbE P (\~f\theta j\omega (T
j
\omega x)

\~f\omega (x)
\ast ) - Kjf f\ast .

Since Algorithms 1 and 2 depend on the numerical approximations of Gj , we can conclude
that the error stems from the covariances of the observables. However, if we could somehow
guarantee this covariance was zero, we could still compute K. We will do this by choosing
a second set of observables, \~g\omega , such that Cov(\~f\theta j\omega \circ T j\omega , \~g\omega ) = 0. We can guarantee this by

ensuring \~g meets some independence conditions with T\omega and \~f . This brings us to our third
algorithm, which gives us the freedom to choose \~g.

5.3. Noise resistant DMD algorithms.

Algorithm 3: Noise resistant DMD

Let \~f \in H k, and \~g \in H l, l \geq k. As before, let \^f(t) = \~f(xt, \omega t) and \^g(t) = \~g(xt, \omega t) denote
their samples along a trajectory at time t.
1: Construct the data matrices

X =
\bigl[ 
\^f(0) \^f(1) . . . \^f(n - 1)

\bigr] 
,

Y =
\bigl[ 
\^f(1) \^f(2) . . . \^f(n)

\bigr] 
,

and
Z =

\bigl[ 
\^g(0) \^g(1) . . . \^g(n - 1)

\bigr] 
.

2: Form the matrices \~G0 =
1
nXZ

\ast and \~G1 =
1
nY Z

\ast .
3: Compute the matrix

C = \~G1
\~G\dagger 
0.

4: Compute the eigenvalues and left and right eigenvectors, (\lambda i, wi, vi) of C. The dynamic
eigenvalues are \lambda i, the dynamic modes are vi, and the numerical eigenfunctions are given by

\^\phi i = wTi X.

The idea behind Algorithm 3 is to use a second noisy observable, \~g, which meets some
independence requirements with \~f , to generate a second basis for F . If \~g meets the proper
independence requirements, the convergence can be shown in a similar manner to Proposition
4.1.D
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Proposition 5.2. Let \~f \in H k and \~g \in H l be such that \~f and \~g satisfy (5.2) and \~f satisfies
(5.1). Suppose \~g\omega is independent of \~f\omega , \~f\theta \omega , and T\omega . Define f(x) = \BbbE \Omega (\~f\omega (x)) and g(x) =
\BbbE \Omega (\~g\omega (x)). Suppose the components of f , f1, . . . , fk, span a k-dimensional invariant subspace,
F , of \scrK and F \subset span\{ g1, . . . , gl\} , where g1, . . . , gl are the components of g. Then the matrix
C generated by Algorithm 3 converges to the restriction of \scrK to F as n\rightarrow \infty .

Proof. Let K be the restriction of \scrK to F . Let \~G0,n and \~G1,n be the matrices generated
in Algorithm 3 with n data points. Using the independence conditions on \~g, \~f , and T\omega and
(5.1), define

(5.3) G0 =

\int 
M

\int 
\Omega 

\~f\omega (x)\~g
\ast 
\omega (x)dPd\mu =

\int 
M

\int 
\Omega 

\~f\omega (x)dP

\int 
\Omega 

\~g\ast 
\omega (x)dPd\mu =

\int 
M

f g\ast d\mu 

and

(5.4) G1 =

\int 
M

\int 
\Omega 

\~f\theta \omega (T\omega x)\~g
\ast 
\omega (x)dPd\mu =

\int 
M

\int 
\Omega 

\~f(T\omega x)dP

\int 
\Omega 

\~g\ast 
\omega (x)dPd\mu = K

\int 
M

f g\ast d\mu .

We can show that G0 has full row rank; if v is in its left nullspace, we would have

\langle vT f , gi\rangle = 0

for each i, which shows v = 0 since F \subset span\{ gi\} . This gives us K = G1G
\dagger 
0. We will show

that \~G0,n \rightarrow G0 and \~G1,n \rightarrow G1 as n \rightarrow \infty . Taking the limit of G0,n with (5.2) and using
(5.3), we have

lim
n\rightarrow \infty 

\~G0,n = lim
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

\^f(m)\^g\ast (m) =

\int 
M

\int 
\Omega 

\~f\omega (x)\~g
\ast 
\omega (x) dPd\mu = G0

and similarly \~G1,n \rightarrow G1 using (5.4). Since G0 has full rank and \~G0,n \rightarrow G0, we have
\~G\dagger 
0,n \rightarrow G\dagger 

0, so
\~G1,n

\~G\dagger 
0,n \rightarrow K.

It follows from Proposition 5.2 that the eigenvalues and eigenvectors of C go to those
of K. Therefore, the dynamic eigenvalues limit to Koopman eigenvalues. The numerical
eigenfunctions, however, are more complicated. If wi is a left eigenvector of K, we have wTi f
is a Koopman eigenfunction. The numerical eigenfunctions, however, limit to wTi X, which a
sampling of wTi

\~f . In this regard, the numerical eigenfunction is a sampling of an eigenfunction
with some zero mean noise added to it.

The key idea in the proof of Proposition 5.2 is the assumption that we have a second
observable \~g that is uncorrelated with \~f . This allows us to estimate the inner product of
g and f using time averages without introducing a covariance term. We call \~g our ``dual
observable"" since we are using it to evaluate these inner products. While the necessity of a
second observable may seem restrictive, Proposition 5.2 allows us to work with very general
observables. If we specialize to more specific classes of observables, we will find that we often
do not need a second observable. Often, we can use time delays of single observable \~f so that
\~f\omega and \~f\theta s\omega are independent.D

ow
nl

oa
de

d 
10

/0
2/

22
 to

 7
0.

18
5.

12
9.

12
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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5.4. Observables with i.i.d. measurement noise. Often, when measuring an observable
on a system, the measurement will be imprecise. The error in the measurement are often
modeled as an i.i.d. random variable. We call an observable with this type of noise an
observable with measurement noise.

Definition 5.3. A noisy observable, \~f , is an observable with i.i.d. measurement noise if
\~f\theta t\omega is an i.i.d. random function and is independent of the random maps T\theta s\omega for all s.

Let f = \BbbE P ( \~f\omega ). We note that for any given \omega , the measurement error,

\~e\omega (x) = \~f\omega (x) - f(x),

can vary over the state spaceM ; it does not need to be a constant additive noise. Since \~f\omega t is an
i.i.d. random variable and independent of T\omega t for all t, the ordered pair (xt, \~f\omega t) \in M\times L2(M)
is an ergodic process, with ergodic measure \nu = \mu \times \~f\ast (P ), where \~f\ast (P ) is the pushforward
of P . This allows us to evaluate the time averages as in (5.2). The proof of this follows from
the lemma below and the fact that i.i.d. processes are mixing ([6, Theorem 4, page 143]).

Lemma 5.4. Let xt and yt be independent stationary processes. If xt is ergodic and yt is
mixing, then (xt, yt) is ergodic.

Proof. The result follows from Theorem 6.1 on page 65 of [15], where we can represent
the processes as a measure preserving shifts on the space of sequences of xt and yt ([15, page
6]).

If the components of \~f are observables with measurement noise, it turns out we don't need
second observable to use in Algorithm 3. Instead, we can use a time shift of \~f to generate \~g.
The i.i.d. property of \~f will give us the independence properties we need.

Corollary 5.5. Suppose \~f is a vector valued observable with i.i.d. measurement noise, and
the components of f = \BbbE P (\~f\omega ) span a k-dimensional invariant subspace, F . Suppose further
that the restriction of \scrK to F has full rank. Then Algorithm 3 converges setting \^g(t) = \^f(t - 1).

Proof. Let K be the resriction of \scrK to F . By Lemma 5.4, (xt, f\omega t) is an ergodic stationary
sequence. Then, using ergodicity and the independence properties of \~f , we have

lim
n\rightarrow \infty 

1

n

n\sum 
m=1

\^f(m)\^g\ast (m) = lim
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

\^f(m)\^f\ast (m - 1) =

\int 
M

\int 
\Omega 

\~f\theta \omega (T
j+1
\omega x)\~f\ast \omega (x) dPd\mu 

=

\int 
M

\int 
\Omega 

\~f\theta \omega (T\omega x)dP

\int 
\Omega 

\~f\omega (x)dPd\mu = K

\int 
M

f f\ast d\mu ,

which has full rank since K has full rank. Similarly,

lim
n\rightarrow \infty 

1

n

n\sum 
m=1

\^f(m+ 1)\^g\ast (m) = lim
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

\^f(m+ 1)\^f\ast (m - 1) = K2

\int 
M

f f\ast d\mu .

The rest of the proof follows Proposition 5.2.

Remark 4. It is useful to note that if T\omega and \theta were invertible, we would be able to define
\~g\omega = \~f\theta  - 1\omega \circ (T - 1

\omega ), and \~g would meet the conditions of Proposition 5.2 exactly. However, ifD
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they are not invertible, we cannot necessarily define \~g\omega \in L2(M) explicitly since T\omega may not
be invertible. However, since we are still able to evaluate time averages, the proof is nearly
identical.

6. Time delayed observables and Krylov subspace methods. Another important type
of noisy observable are time delayed observables. Allowing time delayed observables in DMD
is useful for two reasons. First, time delays allow us to enrich our space of observables.
Oftentimes, there are functions on our state space which cannot be measured by a certain set
of observables but can be observed if we allow time delays. For example, the velocity of a
moving mass cannot be observed by any function on the position but can be approximated
using the position at two different times. Second, using time delays allows us to identify an
invariant (or nearly invariant) subspace spanned by the Krylov sequence f,\scrK f, . . . ,\scrK k - 1f .

Of particular interest is an analogue of Hankel DMD for random systems, which uses a
Krylov sequence of observables to generate our finite subspace. With Hankel DMD, we use a
single observable, f , and its time delays to approximate the sequence f,\scrK f, . . . ,\scrK k - 1f . If \~f
is an observable with measurement noise (or has no noise), we can define

\~f(x, \omega ) =
\bigl[ 
\~f(x, \omega ) \~f(T\omega x, \theta \omega ) . . . \~f(T k - 1

\omega x, \theta k - 1\omega )
\bigr] T
.

By (5.1), its mean is \int 
\Omega 

\~f dP =
\bigl[ 
f \scrK f . . . \scrK k - 1f

\bigr] T
,

where f = \BbbE P ( \~f). We can then use time delays of \~f to approximate the Krylov sequence
f,\scrK f, . . . ,\scrK k - 1f . Additionally, if we set \~g(t) = \~f(t  - k) in Algorithm 3, we will have the
necessary independence conditions, and the time averages will converge as in (5.2) due to the
pair (xt, \~f\omega t) being an ergodic stationary variable.

Corollary 6.1 (noise resistant Hankel DMD). Let \~f be an observable with measurement
noise, with time samples \^f(t) = \~f(xt, \omega t). Let its mean, f , be such that the Krylov sequence
f,\scrK f, . . . ,\scrK k - 1f spans a k-dimensional invariant subspace F and the restriction of \scrK to F
has full rank. Let

\^f(t) =
\bigl[ 
\^f(t) \^f(t+ 1) . . . \^f(t+ k  - 1)

\bigr] T
,

and

\^g(t) = \^f(t - k) =
\bigl[ 
\^f(t - k) \^f(t - k + 1) . . . \^f(t - 1)

\bigr] T
.

Then the matrix A generated by Algorithm 3 converges to the restriction of \scrK to F . If \~f has
no noise (i.e., \~f(x, \omega ) = f(x)) we can use

\^g\prime (t) = \^f(t - k + 1) =
\bigl[ 
\^f(t - k + 1) \^f(t - k + 2) . . . \^f(t)

\bigr] T
.

We refer to Corollary 6.1 as a variant of Hankel DMD for random systems since the X,Y,
and Z matrices in Algorithm 3 will be Hankel matrices, and it generates a Krylov subspace
of \scrK . For a different choice of \~g (i.e., \~g = \~f), this is equivalent to Hankel DMD.D
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Proof. Using (5.1), we can see that the components of f are f,\scrK f, . . . ,\scrK k - 1f , which spans
F . Additionally, using the independence properties of \~f , we have \~f\omega t and

\~f\omega t+s are independent

for s \geq k. Since (xt, \~f\omega t) is ergodic by Lemma 5.4, we can take the time averages

lim
n\rightarrow \infty 

1

n

n+k - 1\sum 
m=k

f(m)g\ast (m) = lim
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

f(m+ k)f\ast (m) =

\int 
M

\int 
\Omega 

\~f\theta k\omega (T
k
\omega x)

\~f\ast \omega (x)dPd\mu 

=

\int 
M

\int 
\Omega 

\~f\theta k\omega (T
k
\omega x)

\~f\ast (x)dPd\mu = Kk

\int 
M

f f\ast d\mu ,

which has full rank since K has full rank. Similarly, we can take the time average

lim
n\rightarrow \infty 

1

n

n+k - 1\sum 
m=k

f(m+ 1)g\ast (m) = Kk+1

\int 
M

f f\ast d\mu ,

and the rest of the proof follows Proposition 5.2. If \~f\omega = f , then \~f\omega t and
\~f\omega t+k - 1

are indepen-

dent and we can take the time averages using \^g(t) = \^f(t - k + 1).

Corollary 6.1 allows us to compute an approximation of \scrK using the data from a single
observable evaluated along a single trajectory. However, the method does not require that the
we only use time delays of a single observable. In general, even if \~f is vector valued, we can
take time delays of \~f as in Corollary 6.1 so long as we span the proper subspace. The dual
observable, \~g, is also generated in the same way.

7. Conditioning of Algorithm 3. Asymptotically, the convergence rate of Algorithm 3
is governed by the rate at which G0,n and G1,n converges to G0 and G1, as defined in the
proof of Proposition 5.2. This is governed by the convergence rate of ergodic sampling.
However, Algorithm 3 also requires the pseudo-inversion of G0,n \approx G0. If the matrix G0 is
ill-conditioned, small errors in the time averages approximations of G0 and G1 can cause large
errors in our DMD operator. The condition number of G0, \kappa (G0), can become large if either
set of observables, f1, . . . , fk or g1, . . . , gl, are close to being linearly dependent.

Both of these issues arise particularly often when using Hankel DMD. With Hankel DMD,
we use the basis f,\scrK f, . . . ,\scrK k - 1f as our basis for F . This is often a poor choice of basis, as
f and \scrK f may be close to being linearly dependent. This is particularly the case when data
from a continuous time system is sampled with a short period, such as from a discretization
of an ODE or SDE. Similarly, if j is large or \scrK has eigenvalues close to zero, \scrK jf and \scrK j+1f
may be close to being linearly dependent, which will also cause conditioning issues.

7.1. SVD based algorithms. To combat these conditioning issues, we have some leeway
in the observables we choose for \~f and \~g. Looking at G0, we have

(7.1) G0 =

\int 
M

g f\ast d\mu =

\int 
M

\bigl[ 
f1 f2 . . . fk

\bigr] T \bigl[ 
g\ast 1 g\ast 2 . . . g\ast l

\bigr] 
d\mu .

Ideally, \{ g1, . . . , gl\} and \{ f1, . . . , fk\} would be orthonormal bases for F , so \kappa (G0) would be
1. However, we rarely can choose such bases a priori. Instead, we can try to augment \~f
and \~g with extra observables and use the SVD to choose k observables which form a betterD
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conditioned basis for F , similar to Algorithm 2. This brings us to the SVD implementation
of Algorithm 3.

Algorithm 4: SVD implemented noise resistant DMD

Let \~f \in H l1 , and \~g \in H l2 , l1, l2 \geq k be noisy observables on our system. Let \^f(t) = \~f(xt, \omega t)
and \^g(t) = \~g(xt, \omega t) denote the time samples of the observables.
1: Construct the data matrices

X =
\bigl[ 
\^f(0) \^f(1) . . . \^f(n - 1)

\bigr] 
,

Y =
\bigl[ 
\^f(1) \^f(2) . . . \^f(n)

\bigr] 
,

and
Z =

\bigl[ 
\^g(0) \^g(1) . . . \^g(n - 1)

\bigr] 
.

2: Form the matrices \~G0 =
1
nXZ

\ast and \~G1 =
1
nY Z

\ast .

3: Compute the truncated SVD of \~G0 using the first k singular values:

\~G0 \approx WkSkV
\ast 
k .

5: Form the matrix
A = S - 1

k W \ast 
k
\~G1Vk.

6: Compute the eigenvalues and left and right eigenvectors, (\lambda i, wi, ui) of A. The dynamic
eigenvalues are \lambda i, the dynamic modes are

vi =WkSkui,

and the numerical eigenfunctions are

\^\phi i = wiS
 - 1
k W \ast 

kX.

Similar to Algorithm 2, Algorithm 4 uses the SVD to choose a basis of observables to use
in Algorithm 1. It is equivalent to performing Algorithm 3 using data from the observable
(S - 1
k W \ast 

k )
\~f , while leaving \~g unchanged. It is important to note that Algorithm 4 uses the

components of (S - 1
k W \ast 

k )f as a basis for F where f = \BbbE P (\~f) as usual. When we add observables

to \~f , we must ensure that we stay within our invariant subspace. One way to guarantee this
is to use time delays of our original observables.

7.2. Augmented dual observables. Typically, augmenting \~f with extra observables and
using Algorithm 4 to truncate the singular values is an effective way to improve the con-
ditioning of the problem. However, we have an alternate tool at our disposal. While each
component of f must lie within F , the components of g can be arbitrary, and we do not need
to take an SVD to truncate the extra observables in g. Since we do not need to worry about
leaving our invariant subspace, we can add arbitrary functions of \~g (e.g., powers of \~g) to our
dual observable and still expect convergence. However, while this can improve conditioning,
it also can slow down the convergence of the time averages and should only be done when the
error stems from poor conditioning.D
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1946 MATHIAS WANNER AND IGOR MEZI\'C

8. Numerical examples. In this section, we will test the various DMD algorithms pre-
sented in this paper using both observables with measurement noise and time delayed ob-
servables. For each system and each DMD method, we generate five realizations of the DMD
operator and compare the eigenvalues with analytically obtained true (or approximate) eigen-
values of the stochastic Koopman eigenvalues. Since the purpose of this paper is to provide a
new algorithm that is provably unbaised, we only compare the noise resistant algorithms to
standard DMD algorithms. Comparisons on the speed of convergence and numerical stability
of various DMD algorithms are not the primary purpose of this paper.

8.1. Random rotation on a circle. Consider a rotation on the circle. The dynamical
system is defined by

(8.1) xt+1 = xt + \nu ,

where \nu \in S1. If we perturb (8.1) by adding noise to the rotation rate we obtain the random
system

(8.2) xt + 1 = xt + \nu + \pi (\omega t),

where \pi (\omega t) \in S1 is an i.i.d. random variable. For the stochastic Koopman operator associated
with (8.2), the functions \varphi n(x) = einx are eigenfunctions with eigenvalues \lambda i = \BbbE (ein(\nu +\pi (\omega )),
since

\scrK \varphi i(x) = \BbbE (\varphi i(T\omega x)) =
\int 
\Omega 
ein(x+\nu +\pi (\omega ))dP = einx

\int 
\Omega 
ein(\nu +\pi (\omega ))dP = \varphi i(x)\lambda i.

We can compare these eigenvalues with the results obtained from our different DMD
algorithms. We will set our system parameter to \nu = 1

2 and draw \pi (\omega t) from the uniform

distribution over [ - 1
2 ,

1
2 ]. In this case the eigenvalues are \lambda i =

i - iein
n . For the first test, we

will compare Algorithms 1 and 3 using a set of observables with measurement noise. We will
let our observable be

(8.3) \^f(t) = [sin(xt), . . . , sin(5xt), cos(xt), . . . , cos(5xt)]
T +m(t),

where m(t) \in [ - 0.5, 0.5]10 is measurement noise drawn from the uniform distribution. Algo-
rithm 1 is applied directly to the data from measurements of \~f , and for Algorithm 3 we let
\~g(t) = \~f(t - 1).

For the second test, we let f = sin(x)+ sin(2x)+ sin(3x), and use time delays to generate
\^f :

(8.4) \^f(t) =
\bigl[ 
f(xt) f(xt+1) . . . f(xt+d).

\bigr] T
.

To perform Hankel DMD, we take five time delays (d = 5 in (8.4)) to generate \~f and use
the data directly in Algorithm 1. However, if we try to perform noise resistant Hankel DMD
using these observables, Algorithm 3 is poorly conditioned and the eigenvalues are inaccurate.
Instead, we use 24 time delays of \~f to generate \~f (setting d = 24 in (8.4) and use Algorithm
4 (letting \^g(t) = \^f(t - 24)) to truncate all except the leading six singular values. Finally, weD
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Figure 8.1. (Left) Outputs of Algorithm 1 and Algorithm 3 using (8.3) as observables on (8.2) with
25,000 data points. Algorithm 1 shows a clear bias in the approximate eigenvalues while Algorithm 3 captures
them accurately. (Right) DMD outputs from Algorithms 1 and 4 using (8.4) as observables on (8.2) with
25,000 data points. Algorithm 4 is performed a second time after augmenting the dual observable to improve
conditioning. Algorithm 1 shows a bias in the eigenvalues while Algorithm 4 gives an unbiased approximation
of the eigenvalues in both cases. Each algorithm is run five times on different sample trajectories.

use Algorithm 4 again using only eight time delays to generate \~f but augment \^g with extra
observables to improve conditioning. We let \^g contain the observables \^f, \^f2, and \^f3, as well
as 42 time shifts of each of these functions:

\^g =
\bigl[ 
\^f(t - 42) \^f(t - 42)2 \^f(t - 42)3 . . . \^f(t) \^f(t)2 \^f(t)3

\bigr] T
.

As can be seen in Figure 8.1, Algorithm 1 fails to accurately approximate the eigenvalues of
\scrK in both tests. For the first test, Algorithm 3 gives accurate approximations to the eigenvalues
of \scrK . Approximating the stochastic Koopman operator using the time delayed observables,
(8.4) is more difficult because the conditioning of the matrix G0 is very poor, which amplifies
the errors in our time averages. However, including extra time delays and using Algorithm 4
to truncate to the leading singular values obtains accurate results. Further, the precision is
increased when we augment \~g with extra observables.

8.2. Linear system with additive noise. Consider the linear system in \BbbR 4:

(8.5) x(t+ 1) =

\left[    
0.75 0.5 0.1 2
0 0.2 0.8 1
0  - 0.8 0.2 0.5
0 0 0  - 0.85

\right]    
\left[    
x1(t)
x2(t)
x3(t)
x4(t)

\right]    = Ax(t).

We can perturb (8.5) by perturbing the matrix A with a random matrix \delta and adding a
random forcing term b. We obtain the random system

(8.6) x(t+ 1) = (A+ \delta t)x(t) + bt,D
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1948 MATHIAS WANNER AND IGOR MEZI\'C

where bt \in \BbbR 4 and \delta t \in \BbbR 4\times 4 are i.i.d. random variables. Let (wi, \lambda i), i = 1, . . . , 4 be the left
eigenpairs of A. If bt and \delta t are assumed to have zero mean, wTi x is an eigenfunction of \scrK with
eigenvalue \lambda i. For this example we will assume each component of bt and \delta t is drawn from
randomly from a uniform distribution. The components of bt will be drawn from [ - 0.5, 0.5]
while those of \delta t will be drawn from [ - 0.25, 0.25]. As before, we will test Algorithms 1 and
3 using observables with measurement noise and time delayed observables. For the first test,
we will use state observables with Gaussian measurement noise:

(8.7) \^f(t) = x(t) +m(t),

where each component of m(t) \in \BbbR 4 is drawn from the standard normal distribution. As
before, will let \^g(t) = \^f(t - 1).

For the second test, to generate the time delayed observables, we only use the first com-
ponent of the state, \^f(t) = x1(t), and use three time delays:

(8.8) \^f(t) =
\bigl[ 
\^f(t) \^f(t+ 1) \^f(t+ 2) \^f(t+ 3)

\bigr] 
.

We will apply Algorithm 1 directly to this matrix, while for Algorithm 3 we let \^g(t)
= \^f(t - 3).

Figure 8.2 shows that the eigenvalues generated by Algorithm 1 again fail to accurately
approximate those of \scrK . However, for both sets of observables, Algorithm 3 estimates the
eigenvalues of \scrK well. Since we did not run into conditioning issues, we did not test the results
using Algorithm 4 or an augmented dual observable.

Figure 8.2. (Left) Outputs of Algorithm 1 and Algorithm 3 using state observables with measurement
noise (8.7) on 5,000 data points from (8.6). (Right) Outputs of Algorithm 1 and Algorithm 3 using (8.8)
as observables on (8.6) with 5,000 data points. For both cases, Algorithm 3 is unbiased in approximating
the eigenvalues while Algorithm 1 exhibits a clear bias. Each algorithm is run five times on different sample
trajectories.
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8.3. Stuart Landau equations. Consider the stochastic Stuart Landau equations defined
by

dr = (\delta r  - r3 +
\epsilon 2

r
)dt+ \epsilon dWr,(8.9)

d\theta = (\gamma  - \beta r2)dt+
\epsilon 

r
dW\theta ,(8.10)

where Wr and W\theta satisfy

dWr = cos \theta dWx + sin \theta dWy,

dW\theta =  - sin \theta dWx + cos \theta dWy

for independent Wiener processes dWx and dWy. It was shown in [19] that for small \epsilon and
\delta > 0, the (continuous time) stochastic Koopman eigenvalues are given by

\lambda l,n =

\Biggl\{ 
 - n2\epsilon 2(1+\beta 2)

2\delta + in\omega 0 +\scrO (\epsilon 4), l = 0,

 - 2l\delta + in\omega 0 +\scrO (\epsilon 2), l > 0,

where \omega 0 = \gamma  - \beta \delta .
Let \gamma = \beta = 1, \delta = 1/2, and \epsilon = 0.05 in (8.9) and (8.10). Define the observables

fk(r, \theta ) = eik(\theta  - (\mathrm{l}\mathrm{o}\mathrm{g}(2r)).

First, we will let

(8.11) \^f(t) = [f1(xt), f - 1(xt), . . . , f6(xt), f - 6(xt)]
T +m1(t) + im2(t),

where each component of m1(t) and m2(t) is drawn independently from a normal distribution
with mean 0 and variance 1/4. In Algorithm 3, we let \^g(t) = \^f(t - 1). The (continuous time)
eigenvalues generated by Algorithms 1 and 3 are shown from a simulation with 10,000 data
points with a time step of 0.05 in Figure 8.3.

To test Hankel DMD, we use the observable

f =

6\sum 
k=1

(fk + f - k)

and let \~f contain f and d time delays of f :

(8.12) \^f(t) =
\bigl[ 
f(xt) f(xt+1) . . . f(xt+d)

\bigr] 
.

Due to the poor conditioning of Algorithms 1 and 3, the eigenvalues they generate are highly
innaccurate, so we instead implement Algorithms 2 and 4. In each case, we let d = 399 and
truncate the SVD to the leading 12 singular values. As usual, we let \^g = \^f(t - d) in Algorithm
4. The results shown in Figure 8.3 are from a simulation with 100,000 data points and a time
step of 0.05.D
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1950 MATHIAS WANNER AND IGOR MEZI\'C

Figure 8.3. (Left) Outputs of Algorithm 1 and Algorithm 3 using observables with measurement noise
(8.11). The data is taken over 20,000 data points from (8.9) and (8.10) with a time step of 0.05. The
eigenvalues produced by Algorithm 1 are biased towards the left-hand plane while Algorithm 1 captures them
accurately. (Right) Outputs of Algorithm 2 and Algorithm 4 using (8.12) as observables on (8.9) and (8.10).
The Algorithms used 200,000 data points with a time step of 0.05. Algorithm 4 captures most of the eigenvalues
without bias while Algorithm 2 biases all eigenvalues towards the imaginary axis. Each algorithm is run five
times on different sample trajectories.

As can be seen in Figure 8.3, Algorithm 1 exhibits a clear bias towards the left of the
complex plane using observables with measurement noise, although it appears to accurately
estimate the imaginary part of the eigenvalue. Algorithm 3, on the other hand, appears
to give a mostly accurate spectrum. When using time delayed observables for Hankel DMD,
Algorithms 1 and 3 were very poorly conditioned and gave eigenvalues far outside the windows
shown in Figure 8.3. When using Algorithms 2 and truncating to the 12 dominant singluar
values, we again see that the imaginary parts of the eigenvalues seem to be captured, but
the real parts are all biased to the right. Algorithm 4, however, again captures the correct
spectrum but with some error for the most dissipative eigenvalues.

9. Conclusions. In this paper we analyzed the convergence of DMD algorithms for random
dynamical systems, culminating in the introduction of a new DMD algorithm that converges
to the spectrum of the stochastic Koopman operator in the presence of both random dynamics
and noisy observables. This allows us to avoid the bias in standard DMD algorithms that can
come from ``overfitting"" to the noise. We then specialized the algorithm to handle observables
with i.i.d. measurement noise and time delayed observables and showed that measurements of
a single set of observables was sufficient to generate an approximation of the stochastic Koop-
man operator. In particular, we demonstrated that a single trajectory of a single observable
could be used to generate a Krylov subspace of the operator, which allows us to use DMD
without needing to choose a basis of observables.

This algorithm provides a method for modeling complex systems where a deterministic
model is unfeasible. This could be because a full state model would be to complex, observables
of the full state are unavailable, or measurements come with uncertainty. A possible extensionD

ow
nl

oa
de

d 
10

/0
2/

22
 to

 7
0.

18
5.

12
9.

12
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

APPROXIMATING THE STOCHASTIC KOOPMAN OPERATOR 1951

of this algorithm could adapt it to handle data from systems with control inputs, which could
be used to develop control algorithms for random dynamical systems.
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