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Abstract—Edge computing has become an increasingly popular
computing paradigm. Deploying edge clouds allows performing
data-intensive computing at the edge of the network instead of
a remote cloud to reduce data access latency and improve data
processing efficiency. One of the key challenges in data-intensive
edge computing is how to effectively place the data at the edge
clouds such that the access latency to the data is minimized.
In this paper, we study such a data placement problem in edge
computing where different data items have diverse popularity.
We first propose a data popularity based placement method
when the data requests are unknown. It maps both data items
and edge servers to a virtual plane and places data based on
its virtual coordinate in the plane. We consider data popularity
during both the mapping of data items to the plane and making
the placement decision. We further propose an optimization-
based placement strategy for the case when the data requests
are known. By formulating an integer programming problem, our
proposed solution aims to find the optimal placement decision.
Simulation results show that both proposed strategies efficiently
reduce the average latency of data access.

I. INTRODUCTION

With the increasing amount of data generated by diverse
applications and devices, especially the large amount of data
collected by pervasive and mobile devices, data transmission
has become the bottleneck of traditional cloud-based plat-
forms. Sending all the data to the cloud for data processing
or intelligent services is time-consuming and causes long
response latency. Therefore, a recent trend is to process the
data at the edge of the network near the users to shorten
the response time, improve processing efficiency, and reduce
network congestion. In addition, with the advancement of
federated learning and artificial intelligence of things (AIoT),
not only millions of data are generated from daily smart
devices, such as smart light bulbs, cameras, various sensors,
but also a large number of parameters of complex machine
learning (ML) models have to be trained and exchanged
by these AIoT devices. Classical cloud-based platforms have
struggled to effectively communicate and process these data or
models with sufficient privacy and secure protection. This has
further accelerated the growth of this new computing paradigm
- data-intensive edge computing [1]–[3].

As shown in Fig. 1, a typical edge computing environment
consists of mobile users, edge servers, the edge network, and
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Fig. 1. An edge-cloud computing environment where data items are placed
at edge servers or the remote cloud server.

a remote cloud. Edge servers are geographically dispersed
at the edge of the network near the mobile users, and own
heterogeneous computing and storage capability [1]. Each
edge server can provide data-intensive services (such as video
analytics, augmented reality, distributed machine learning) for
those mobile users in the specific nearby area by holding some
data items or ML models and performing the computation
based on these data and models. Hereafter, we use data to refer
to both data and models as long as they are required to perform
the service requested by the mobile users. When a mobile
user requests data, its request is forwarded to the nearest edge
server. If the edge server has the data, it can respond to the
mobile user immediately with the data (as data d1 in Fig. 1)
or perform the corresponding computing service for the user
if needed. Otherwise, the edge server has to retrieve the data
from other edge servers (data d2 or d5) or even from the remote
cloud (data d3). Clearly, data placement is a critical issue in
edge computing since the location of data affects the response
latency of the requested service. If the data is stored at a nearby
edge server, the service can be performed very quickly, while a
request needed to access a remote cloud takes much longer to
be performed. In addition, as shown in Fig. 1, multiple mobile
users at different locations may request the same data (data
d2), and different data has diverse popularity (i.e., different
number of requests from users). Therefore, in this paper, we
study the data placement problem in edge computing with the
consideration of data popularity from user requests.

Data placement has been well studied in distributed systems
[4]. However, edge computing has its own characteristics [1]978-1-6654-4331-9/21/$31.00 ©2021 IEEE



(such as time-sensitive data, diverse edge resources, data/ML
privacy concerns), thus data placement problem in edge com-
puting has also drawn significant attentions from researchers
recently [5]–[8]. Both [5] and [6] have studied the data
placement strategy for workflows in edge computing, where
workflow’s dependency, reliability, and user cooperation are
considered. Both use intelligent swarm optimization methods
to solve the optimization problem. Li et al. [7] investigated a
joint optimization of data placement and task scheduling to
reduce the computation delay and response time. To solve
the formulated data placement optimization, a tabu search
algorithm designed for the knapsack problem is used. Most of
these optimization-based methods are usually suffering from
poor stability and high overheads. Breitbach et al. [8] have also
studied both data placement and task placement by considering
multiple context dimensions. For its data placement part, the
proposed data management scheme adopts a context-aware
replication, where the parameters of the replication strategy
are tuned based on context information. Most recently, Xie
et al. [9], [10] proposed a novel virtual space-based method,
which maps both switches and data indexes/items into a virtual
space and places data based on the virtual distance in the
space. Their method can enable efficient retrieval via greedy
forwarding. However, none of them consider data popularity
when placing data on edge servers in edge computing.

In this paper, we investigate the data placement strategy in
edge computing with the aim of reducing the average access
latency of data. We consider two scenarios: (1) data requests
are unknown, but data popularity (defined as request frequen-
cies of data items) are known; (2) data requests are known.
For the first scenario, inspired by [9], [10], we adopt a virtual-
space based placement method, but take into consideration
of data popularity when we generate the coordinates of data
items. Based on an observation that in a dense network, the
node in center region has smaller shortest path to other areas
compared with nodes in the surrounding regions, we carefully
design our mapping strategy so that a popular data item is
placed closer to the network center in the virtual plane. Then
the placement of data is purely based on the distance between
data item and edge server in the virtual plane. To address
the storage limits at servers, we also consider how to offload
data items to other servers by processing the mapping in an
order based on data popularity. For the second scenario, with
the detailed data requests, we formulated a data placement
optimization problem as an integer linear programming (ILP)
problem. Such problem can be solved by existing ILP solver
or by a simple greedy heuristic. Finally, we conduct extensive
simulations with both synthetic data and real world tracing
data. Simulation results show that our proposed data popularity
based strategies can achieve better performance compared to
existing solutions [9], [10] for the first scenario. For the second
scenario, the optimization-based solution can find much better
solution than the popularity-based methods.

In summary, the contributions of this paper are three-folds.
• To our best knowledge, our proposed data popularity

based data placement strategy is the first virtual-space

based method to consider data popularity in data place-
ment in edge computing. Our proposed method maps
more popular data closer to the network center and thus it
is placed to a nearby server, which shortens the shortest
paths during the data retrieval process and reduces the
overall response latency.

• We also propose an optimization-based data placement
strategy which can find optimal placement decision given
that the data requests are known.

• We have conducted extensive simulations to verify the
efficiency and effectiveness of the proposed data place-
ment strategies. It confirms the advancement of taking
data popularity into consideration in our design.

The rest of this paper is organized as follows. Section II
introduces the system model used. Section III and Section IV
present our proposed placement schemes based on data pop-
ularity and optimization, respectively. Evaluations of the pro-
posed methods are provided in Section V. Finally, Section VI
concludes the paper with possible future directions.
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Fig. 2. Virtual space based approach: edge servers and data items are
mapping to a virtual plane and associated with virtual coordinates.

II. SYSTEM MODEL

We consider a network formed by edge clouds, as shown
in the top layer of Fig. 2 (i.e., network plane) and denoted
by G(V,E). Here, V = {v1, v2, · · · , vN} is a set of N edge
servers and E = {e1, e2, · · · , eM} is a set of M direct links
between edge servers. Each edge server vi has a maximal
capacity ci = c(vi) of its storage. For a direct link between
edge server vi and vj denoted as ei,j , we use |ei,j | and τi,j =
τ(ei,j) to represent its physical distance and propagation delay,
respectively. We assume that the propagation delay is linearly
proportional to the physical distance. For a given pair of edge
servers vi and vj , we use li,j = l(vi, vj) to represent the
shortest path length in term of total delay from vi to vj in
G. We then have a delay matrix L = {li,j} which holds total
delay of all the shortest paths in the edge network.

Assume that there are a set of data items D =
{d1, d2, · · · , dW } in the data-intensive edge environment,
which could be multiple types of data, such as text, image,
video, IoT sensing or scientific data. Each data di has a specific



TABLE I
SUMMARY OF NOTATIONS.

Symbol Notation or Definition
V,E,D,R the set of edge servers, links, data items and requests
N,M,W,U the number of edge servers, links, data and requests
vi, dl, rk a edge server, a data item, and a data request
ei,j , τi,j a direct link between vi and vj , its propagation delay

ci the maximal storage capacity of server vi
li,j the shortest path length from server vi to vj
si, pi the size and popularity of data di

v(ri), d(ri) the arriving server and requested data of ri
f(di) = vj a data place mapping f places di to vj

L the network delay matrix, L = {li,j}
B the scalar product matrix, B = 1

2
JL(2)J

λ1, λ2, υ1, υ2 two largest eigenvalues and their eigenvectors of B
Q the coordinate matrix of servers

qmax the largest absolute value of elements in Q
pmax the maximal data popularity

H(dl), h(dl) the hash value and its 4-byte binary value of dl
r(dl), θ(dl) the Polar coordinate of dl
x(dl), y(dl) the Cartesian coordinate of dl
xl,i (xtl,i) the data placement decision (at time t)), xl,i ∈ {0, 1}

ζl the downloading cost from the cloud of dl
µl the placement cost of dl

size si = s(di) and popularity pi = p(di) (which will be
explained in Section III-A). We assume that there are also
a sequence of data requests R = {r1, r2, · · · , rU}, each of
which arrives at a server v(ri) and asks for one data item
d(ri). Note that if a request includes multiple data items we
can treat it as multiple requests.

Then, the data placement problem aims to find an edge
server vj for each of data item di to hold it. Such a problem
can be represented as finding a mapping f from D to V , where
f(di) = vj . The goal of data placement problem is to find a
mapping to minimize the average access cost (or delay) of
all requests to stored data items in edge network G and also
satisfy the storage constraint (i.e., the storage of data items
does not exceed the server’s storage capacity).

Table I summaries the notations used in our system model
and proposed methods.

III. DATA POPULARITY BASED DATA PLACEMENT

In this section, we first introduce data popularity and then
devise a data placement strategy based on it.

A. Data Popularity

Data popularity measures how much a given piece of data
is requested by the users. This gives an indication of the
importance of that data. Taking popularity into account allows
to place the data or their replicas better to improve access
efficiency in any distributed systems [4]. This is also true for
the data placement problem in data-intensive edge computing.
Obviously, placing more popular data items at the edge server
with shorter delay within the network can significantly reduce
the data access cost during data retrievals, since popular data
are repeatedly requested by various users from all edge servers.
Therefore, in this section, we introduce data popularity to
assist the data placement strategy in edge computing.

Although data popularity has been widely used in dis-
tributed systems, to our best knowledge, most of the existing
data placement strategies for edge computing do not consider
data popularity. The only exception is [7], where the authors
considered data popularity as a part of their estimation of
value of data block in their formulated placement problem.
The placement problem is then formulated as a complex
combinatorial optimization problem solved by a tabu search
algorithm. Different from their solution, we use data popularity
in the virtual space mapping where data items are mapped to a
virtual space based on their popularity, and then the placement
decision is made based on the coordinates in the virtual space.

Data popularity can be assessed differently depending on the
application and generally based on three factors: the number of
accesses (or requests), the lifetime, and the request distribution
over time/space. In this paper, we simply use the number of
requests as the data popularity. However, it is not difficult to
extend our definition to include other two factors (or even other
popularity measurements). For each data item di, we assume
that its popularity pi = p(di) describes its number of access
requests over time. We consider two ways to determine the
popularity. In a static setting, we assume data popularity for
each data is static over a long period of time and is known
to the system. In a dynamic setting, we assume that data
popularity varies over time and can be dynamically adjusted
based on a specific time window. In both cases, larger data
popularity means the data item is more frequently accessed by
mobile users. Obviously, the locations of popular data items
are at the roots of the overall data placement problem.

B. Data Popularity based Data Placement

Our data popularity-based data placement strategy adopts
a virtual-space approach similar to [9], [10]. It maintains
a virtual two-dimensional circular plane and maps all edge
servers and data items to such a plane, as shown in Fig. 2.
How to perform the mappings is critical in our design. We
first construct the virtual coordinates of edge servers in the
plane based on the delay distribution among them in the
network, then map the data items onto the plane by calculating
their virtual coordinates based on their data popularity. When
mapping the data items onto the plane, we try to spread them
out while making sure that the more popular data is closer to
the center. The intuition behind this design is the shortest paths
to all other servers are shorter at the center area. Finally, we
place data items to the edge server with the closest distance in
the virtual plane. Note that [9], [10] do not consider the data
popularity of data items in their virtual-space-based placement
methods. Next, we present these specific steps in detail.

1) Coordinate Construction: To obtain the coordinates of
edge servers, we basically adopt the M-position algorithm pro-
posed by [9], [10]. The basic idea of the M-position algorithm
is to calculate the coordinates matrix of edge servers based
on the eigenvalue decomposition technique. The coordinates
matrix is represented as Q which is a 2×N matrix where N is
the number of edge servers. The input mainly consists of the
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Fig. 3. Data popularity based placement: (a) virtual coordinates of two data
items in the virtual plane with Polar coordinates; (b) data placement of dl to
the nearest server (its Voronoi cell owner) in the virtual plane.

network delay matrix L = {li,j}. The detail steps of mapping
edge servers to the virtual plane are listed as follows.

a. We first calculate the delay matrix L based on the network
delay τi,j on edges and then compute the square of L,
i.e., L(2) = {l2i,j}.

b. Next, we generate the scalar product matrix B =
1
2JL

(2)J according to L(2) and the matrix J = 1− 1
NA,

where A is a matrix of ones with N ×N size.
c. Then, we find the two largest eigenvalues λ1, λ2 as

well as their corresponding eigenvectors υ1, υ2 of matrix
B. Let Υ and Λ be the matrix of two eigenvectors
and the diagonal matrix of two eigenvalues, respectively.
We can then compute the coordinate matrix of servers
Q = ΥΛ1/2.

d. At last, to place edge servers within a circular region
with unit radius in the virtual space, we normalize Q to

1√
2qmax

Q, where qmax is the largest absolute value of
elements in Q.

By doing so, we can construct the coordinate of edge servers
and map them within a circular region in the virtual plane. The
Euclidean distance between two servers in the virtual plane is
proportional to their network distance (i.e., delay).

To generate the coordinates of data, we leverage a hash
function and the Polar coordinate system (where a point can be
represented by a distance r and angle θ, as shown in Fig. 3(a)).
Firstly, we try to spread data over the virtual plane in order
to balance the load of edge servers. Secondly, we take data
popularity into consideration and place the more popular data
to the location which has a smaller total delay to other edge
servers. Lastly, the coordinates of data should be deterministic.
Namely, whenever we provide the same data, the coordinate
of data should be the same so that the retrieval process can
get the same location of data when the task requests the same
data. The specific steps for calculating the data coordinate of
data item dl are as follows.

a. Calculate the distance r(dl) of data dl based on pl via
r(dl) = 1 − pl/pmax, where pmax is the maximal data
popularity among all data. In the example shown in
Fig. 3(a), d1 is more popular than d2’s, thus its distance
to the center is shorter.

b. Calculate the angle θ(dl) of dl by using the hash value of
data index/ID. We make use of SHA-256 hash function
to generate the hash value H(dl), and convert the last 8

Algorithm 1 Popularity based Data Placement (DP-1)
Input: The list of data items dl and edge servers vi and their
parameters (such as data size sl, data popularity pl, storage
capacity ci), the edge network G(V,E) and network delay
τi,j on its edges.
Output: The data placement decision f(dl).

Coordinate Construction for Edge Servers:
1: Calculate the network delay matrix L = {li,j} with an

all-pairs shortest path algorithm.
2: Prepare L(2) = {l2i,j} and J = 1− 1

NA.
3: Calculate the scalar product matrix B = 1

2JL
(2)J .

4: Prepare Υ and Λ by finding λ1, λ2, υ1, υ2 of matrix B.
5: Compute the coordinate matrix of servers Q = ΥΛ1/2.
6: Normalize Q via Q = 1√

2qmax
Q, then coordinate

(x(vi), y(vi)) of server vi can be obtained from Q.

Coordinate Construction for Data:
1: for each data dl do
2: Calculate its distance r(dl) = 1− pl/pmax.
3: Compute its angle θ(dl) = 2π × h(dl)/(2

32 − 1).
4: Convert the Polar coordinate to the Cartesian one:

(x(dl), y(dl)) = (r(dl) cos θ(dl), r(dl) sin θ(dl)).
5: end for

Data Placement Decision:
1: for each data dl do
2: Find the nearest edge server with minimal Euclidean

distance in the virtual plane:
f(dl) = arg minvi ||(x(vi), y(vi)), (x(dl), y(dl))||.

3: end for

return the data placement decision f(dl).

bytes of the hash value H(dl) to a 4-byte binary value
h(dl). We further normalize h(dl) to the range [0, 2π],
e.g., θ(dl) = 2π×h(dl)/(2

32− 1). In this way, data will
be spread in different directions. Even those data with
the same data popularity will be mapped in the different
coordinates.

c. Convert the Polar coordinate (r(dl), θ(dl)) to the Carte-
sian coordinate, i.e., x(dl) = r(dl) cos θ(dl) and y(dl) =
r(dl) sin θ(dl).

2) Data Placement: After we construct the coordinate of
edge servers and data items, it is straightforward to place data
to edge servers. Our goal is to place the data to the nearest
edge server with minimal Euclidean distance in the virtual
plane, i.e.,

f(dl) = arg min
vi

||(x(vi), y(vi)), (x(dl), y(dl))||

= arg min
vi

√
(x(vi)− x(dl))2 + (y(vi)− y(dl))2.

In other words, we can first form a Voronoi diagram based on
the edge servers’ coordinates in the virtual plane, as shown
in Fig. 3(b). If a data item is mapped within a Voronoi cell,



then it will be placed at the edge server owning that Voronoi
cell. In this matter, the more popular data will be placed to the
location near the center of the network, thus having a smaller
average delay.

Overall, Algorithm 1 shows the detail of this data placement
solution, which we call Basic Data Placement based on
Data Popularity (DP-1). The construction of coordinates for
all edge servers takes O(N3), which is dominated by the
complexity of all-pairs shortest path and eigen decomposition
of the matrix. The construction of coordinates for all data items
can be done in O(W ). The data placement decision is made
within O(WN). Therefore, the total time complexity of DP-1
is O(N3 + WN). Recall that N and W are the number of
edge servers and data items, respectively.

If an edge server has limited storage capacity, then one
edge server may not hold all the data within its Voronoi cell.
We need to offload some data to other servers. Therefore, we
design a data popularity based offloading strategy. Basically,
we first sort the data items based on their data popularity
in descending order and then place each data item one by
one following such order. When considering a data item dl,
we first find vi = f(dl) based on the basic data placement
(DP-1). If the current storage plus the data size of dl does
not exceed the maximal capacity c(vi) of this server, then
dl is placed in vi. Otherwise, we offload this data to other
edge servers by finding the nearest neighbor edge server vj
with available storage capacity enough for this data item. This
process repeats for every data item, and thus all data are placed
in appropriate edge servers while not violating the storage
constraint. We call this placement strategy Data Popularity
based Data Placement (DP-2). The total time complexity
of DP-2 is O(N3 + WN + W logW ), where the additional
O(W logW ) is from ordering the data popularity.

3) Data Access: After data placement, data dl can be
accessed via the shortest path routing towards the placed server
f(dl). In addition, virtual-space based solution can also enable
a greedy forwarding strategy, where each server only need
to know the coordinates of its neighboring servers. In such
a method, the data request is greedily routed towards the
coordinate (x(dl), y(dl)) of the data item in virtual plane.
Although greedy forwarding may fail at a local minimum,
randomized or Delaunay based [11]–[13] methods can be used
to recover from the local minimum. This greedy forwarding
method enjoys lower storage at servers and switches, as shown
in [9], [10]. When offloading (as in DP-2) is used, an additional
relay from the original target is needed for greedy forwarding.

IV. OPTIMIZATION BASED DATA PLACEMENT

While the proposed data popularity data placement can
place popular data in the network center to shorten the average
delay, the real delay of each data in the network is still far from
optimal. In this section, with the assumption that data requests
(i.e., a sequence of data requests R = {r1, r2, · · · , rU})
are known, we model the data placement as an optimization
problem and further introduce an optimization-based data
placement strategy.

A. Problem Formulation

We first introduce a binary indicator xl,i to store the data
placement decision of dl, i.e.,

xl,i =

{
1, dl is placed at server vi, i.e.,f(dl) = vi,

0, otherwise.

Recall that data will be only placed in a single edge server,
while one server can hold a couple of data but it cannot violate
its maximal storage capacity. Therefore,

N∑
i=1

xl,i = 1, for all dl and
W∑
l=1

xl,isl ≤ ci, for all vi.

The goal of data placement is to reduce the total accessing
cost (or delay) for all requests R. Here, the total accessing
delay can be defined as

U∑
k=1

lv(rk),f(d(rk)) =
U∑

k=1

N∑
i=1

xd(rk),i · lv(rk),i.

Recall that v(rk) and d(rk) are the original requesting server
and the requested data item for request rk, while li,j is the
shortest delay from vi to vj . Therefore, the overall data
placement problem is defined as the following optimization
problem.

min

U∑
k=1

N∑
i=1

xd(rk),i · lv(rk),i (1)

s.t.
N∑
i=1

xl,i = 1, ∀l (2)

N∑
l=1

xl,isl ≤ ci, ∀i (3)

xl,i ∈ {0, 1}, ∀l, ∀i. (4)

B. Solving the Optimization Problem

Obviously, the above optimization problem is an integer
linear programming problem. Therefore, we can leverage
linear programming techniques to solve it, such as branch and
bound, and dynamic programming. In this paper, we make use
of an optimal ILP solver [14] to determine the data placement
decision xl,i. We call this placement method Optimization
based Data Placement (OPT).

In addition, we will also consider a simple greedy heuristic
to solve the above optimization problem approximately. In this
Greedy Data Placement (GRD), we also take data popularity
into consideration. Specifically, we first sort all requested data
items based on data popularity so that we can process the most
popular data first. In each round, we only process one data
item (say dl) and make its placement decision greedily based
on the access cost. Particularly, we calculate its access cost if
we put dl in each server with sufficient storage, and choose the
server with the smallest access cost. This process stops until all
requested data items are placed. The total time complexity of
this method is O(W logW+N3+WN), where O(W logW ),
O(N3) and O(WN) are for popularity ordering, all-pairs
shortest path, and W rounds of greedy selection on access
cost, respectively.



C. Further Discussion

So far, we only consider the accessing cost of data items
from all requests. If the placement itself has a cost (such as
downloading from the cloud or migrating from other servers),
then the optimization-based method can also take that into
consideration. This is similar when the data placement strate-
gies need to be run periodically. Assume the data placement
decision in time slot t−1 and t are xt−1l,i and xtl,i, respectively.
When we consider the data placement for t, we have to check
whether the requested data is already stored at a server in the
network at t− 1.

In terms of placement cost, we consider two scenarios.
• A requested data item dl has not been placed in the edge

network yet. Thus
∑N

i=1 x
t−1
l,i = 0 and

∑N
i=1 x

t
l,i = 1

for each data dl, l ∈ X . In this case, dl needs to be
downloaded from the remote cloud with a downloading
cost ζl.

• The requested data dl has been placed at vi in the edge
network, but it needs to be switched from vi to vj . In
other words,

∑N
i=1 x

t−1
l,i = 1 and

∑N
j=1 x

t
l,j = 1, but

i 6= j, i, j ∈ N .
Then, the placement cost of dl can be defined as follows:

µl = (1−
N∑
i=1

xt−1l,i ) ·
N∑
i=1

xtl,i ·ζl +
N∑
i=1

N∑
k 6=i,k=1

(xtl,i ·xt−1l,k · lk,i).

The objective of the optimization in each time slot becomes
minimizing both accessing cost and placement cost, i.e.,

min
X∑
l=1

µl +
U∑

k=1

N∑
i=1

xtd(rk),i · lv(rk),i. (5)

All of the constraints (Equ. (2)-(4)) are still the same. Since
this revised problem is also an integer linear programming
problem, we can still use the ILP solver to determine the
optimal placement decision xtl,i in time t.

V. PERFORMANCE EVALUATION

We have evaluated the performance of the proposed algo-
rithms via both synthetic and trace-driven simulations in a
mobile edge computing simulator developed by our research
group. We now first introduce the simulation setup, and then
report the detailed simulation results.

A. Simulation Setup

For the synthetic simulation, to test our proposed data
placement strategies, we randomly construct a network topol-
ogy with 30 edge servers based on a binomial distribution.
The delay (or cost) τ(e) of each link is uniformly drawn
from [1, 2]. The maximal storage capacity of each server is
randomly drawn from [64, 128]. We set the number of data
items W to 1, 000. The size sl of each data item dl varies
from [1, 10], while its download cost ζl from remote cloud
is linearly proportional to its size and ranges from [1, 20].
For data popularity pl of each data, we randomly generate
it from [20, 50]. Then a sequence of U data access requests
are generated for a large time period, and the normalized
frequency of data requests for each data item follows the

TABLE II
PARAMETERS USED IN OUR SIMULATIONS.

Parameter Value
the number of edge servers 30
the delay of each link [1, 2]
the maximal storage capacity of edge servers [64, 128]
the maximal number of data items 1,000
the size of each data [1, 10]
the download cost of each data [1, 20]
the popularity of each data [20, 50]
the length of time window 10
the length of time period 30 mins
the number of users 10
the number of data requests generated per user per min [1, 4]
the number of data required by each request [1, 6]

generated data popularity. In our implementation, we allow
each request to require multiple data items. In addition, to
simulate the dynamic data popularity, we also calculate and
update the data popularity of data item for a time window
with size of 10. For each of the reported experiments, we
perform multiple times and report the average results. The
only performance metric is the average accessing cost of
all requests (or the average total cost, which include both
accessing and placement costs as defined in Section IV-C, of
all requests when data placement is performed periodically).
Here, the accessing cost is based on shortest path routing.

For the trace-driven simulation, we extract user mobility
from the real mobility trace data. We use the CRAWDAD
dataset kaist/wibro [15] developed by a Korean Team, which
collected the CBR and VoIP traffic from the WiBro network in
Seoul, Korea. We randomly sample a batch of data from this
dataset and perform our simulation over a 30-minute period
with user location updates every minute. Users will select the
nearest edge server to perform the data request. The location
of edge servers also comes from the trace data but fixed during
the simulation. The number of user is 10 while the number
of edge servers ranges from 10 to 30. Each user generates
up to 4 data requests per minutes. So the maximal number
of data requests is up to 40 per minutes. The number of data
items required by each request ranges from 1 to 6. The other
parameters are the same as the synthetic simulation. This set
of simulations is only used for the evaluation of optimization
based data placement methods proposed in Section IV.

Table II summaries the simulation parameters we used.

B. Results on Data Popularity based Data Placement

In this set of synthetic simulations, we consider that the
data requests are unknown, but long-term data popularity
is known. Therefore, the data placement is kind of static.
We first compare our proposed data popularity based data
placement strategies DP-1 and DP-2 against existing methods
COIN [9] and GRED [10]. Both COIN and GRED also
place data indexes or items using virtual space-based methods
but do not consider data popularity. Compared with COIN,
GRED considers load balance using the Centroidal Voronoi
Tesselation technique when placing data to edge servers. DP-
1 does not consider the server’s capacity constraint, while
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Fig. 4. Data popularity based methods: (a) against existing placement
methods [9], [10] where data requests are randomly generated at (left) any
servers or (right) servers near the boundary. (b) average accessing cost of
different data items with different data popularity.

DP-2 offloads data items to the nearest server if the original
assigned server is full. In the experiments, we set the number
of requests to 1000. Results are reported in Fig. 4(a). The
left plot shows the result of the average accessing cost when
data requests are generated at random edge servers. Clearly, if
we do not consider storage capacity, our static data placement
DP-1 has slightly better performance than COIN. However, if
we consider the storage capacity, our proposed method DP-2
performs much better than GRED (which also considers the
loads among servers). In the right plot, we consider a scenario
where data requests randomly come from edge servers near the
boundary of the network. Since these requests need a longer
delay to reach other parts of the network, the accessing costs of
all methods are higher than those in the left plot. Furthermore,
we can observe that our proposed algorithms (DP-1 or DP-2)
are much better than the existing methods (COIN or GRED) in
this case. This is mainly because DP-1 and DP-2 consider data
popularity and ensure that more popular data items are placed
closer to the network center where the average accessing delay
to boundary region is much smaller.

We further take a closer look at the accessing costs for
different data items with various data popularity. Fig. 4(b)
plots the average accessing costs of different groups of data
items with a specific range of data popularity. Here, we group
the data items into five groups based on their normalized
popularity (ranging from 0 to 1) and then report the average
accessing cost of each group. Clearly, the more popular data
has a lower accessing cost. The overall trend in average costs
decreases when data popularity increases. This confirms the
advantage of taking data popularity into consideration for data
placement.

C. Results on Optimization based Data Placement

In this set of synthetic simulations, we assume that the
requests R are known for data placement strategies, there-
fore, optimization-based methods can be used. In addition,
we generate the 10-30 requests per time window (with a
size of 10), so that we can also test our method based on
dynamic data popularity (denoted as DP-3). Besides DP-1/DP-
3, OPT, and GRD, we also implement a random placement
(RAND) scheme, where data items are randomly placed at
an edge server. We measure the average accessing costs of

10 15 20 25 30
Number of requests

0

50

100

150

200

250

300

350

Av
er

ag
e 

ac
ce

ss
in

g 
co

st

OPT
DP-1
DP-3
RAND
GRD

10 15 20 25 30
Number of requests

0

100

200

300

400

500

600

700

800

Av
er
ag

e 
to
ta
l c
os
t

OPT
RAND
GRD

(a) average accessing cost (b) average total cost

Fig. 5. Optimization based methods: Comparison of proposed solutions with
different numbers of requests, when (a) only accessing cost is considered, or
(b) both accessing cost and placement cost are considered.

every method for serving all data requests and report them
in Fig. 5(a). First, the average accessing cost of all methods
increase as the number of data requests increases. This is
reasonable, since serving more requests needs more access
cost. Specifically, OPT and GRD can significantly reduce the
average accessing cost, while the other three methods perform
similarly. OPT has the best performance since it optimally
solves the optimization problem. However, GRD also has a
nice performance, even though it does not always guarantee
the optimal. DP-1 performs slightly better than DP-3 since
DP-1 knows the global data popularity while DP-3 is based on
dynamic popularity within a small window. RAND performs
worst, especially when the number of requests is large. With
the increase in the number of requests, we anticipate the
difference between DP-1 and DP-3 will gradually shrink, and
the difference with random strategy will become larger.

Then, we consider the scenario defined in Section IV-C,
where data placement is performed periodically. In this case,
we measure not only the accessing cost but also the placement
cost during the placement phase (as defined in Equ. (5)).
Fig. 5(b) shows the average total cost of OPT and GRD
compared with RAND. The results are similar to those in
Fig. 5(a), where OPT and GRD perform better than RAND.
Also, since including the placement cost, the average total
cost of the same schemes is larger than that of the average
accessing cost. It is clear that our proposed OPT method can
handle the new optimization problem well.

Next, we evaluate the performance of the proposed solutions
via simulations based on trace-driven mobility data [15].
The number of edge servers is first set to 30 and the user
mobility follows the trace-driven mobility data. We perform
the simulation under the 30-minute period. Fig. 6(a) displays
the accessing costs of different methods in different time slots.
Clearly, OPT and GRD perform the best and have similar
near-optimal results, while RAND performs worst with much
higher accessing costs. As shown in the zoom-in subplot,
OPT achieves less accessing costs than GRD in most cases.
For the optimization with the total cost where both accessing
and deployment costs are considered, Fig. 6(b) shows similar
results, i.e., both OPT and GRD still perform much better than
RAND does and OPT outperforms GRD at certain time slots.

Last, we also investigate the effect of different numbers of
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Fig. 6. Optimization based methods: Comparison of proposed solutions
under different time slots, when (a) only accessing cost is considered, or (b)
both accessing cost and placement cost are considered.
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Fig. 7. Optimization based methods: Comparison of proposed solutions
under different edge servers and data requests.

edge servers and data requests using the trace-driven simula-
tion. The results reported in Fig. 7(a) are from the simulations
where the number of edge servers N ranges from 10 to 50 and
the maximal number of data requests U is set to 30. In terms
of edge servers connection, the link between edge servers are
generated randomly. Here we consider data placement for a
single time slot and only the accessing cost. From Fig. 7(a),
we can see that the average cost does not change with the
increasing of the number of edge servers. The advances of
OPT and GRD are consistent. Fig. 7(b) shows the results of
simulations under different number of data requests U . It is
obvious that with more data requests, more overall accessing
cost is needed. The overall trends are similar to those in Fig. 5.

VI. CONCLUSION

In this paper, we study the data placement problem in the
edge clouds while data items have various popularity. We
mainly propose two types of data placement schemes, i.e.,
data popularity-based and optimization-based data placement.
When the data requests are unknown, our data popularity-
based scheme maps data items and edge servers to a virtual
plane based on data popularity and network delay, respectively,
and then the data placement is based on the virtual coordinates.
When the data requests are known, an optimization-based
scheme can be used to minimize the total accessing cost (and
placing cost). Our simulations confirm the efficiency of the
proposed algorithms compared with the existing methods.

It is obviously when the data requests are known,
optimization-based solution gives better solution as shown in
Fig. 5. However, in practice, it is difficult to predict future

data requests, therefore, virtual-space-based method can be
used due to its simplicity. Our proposed data popularity-based
data placement schemes outperform the existing virtual-space
methods since it takes data popularity into the consideration.
In addition, it is clear that these two types of methods
(optimization-based vs data popularity) are complementary.
The appropriate method should be selected for different usage
scenarios. In the future, we plan to further investigate how to
combine the proposed data placement methods with efficient
computing task scheduling (such as [7], [8], [16]–[18]), routing
[19], and privacy protection (such as [20], [21]), to better serve
data-intensive edge computing.
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