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1 | INTRODUCTION

The microbial decay of fine root litter is a major component of
the terrestrial carbon (C) cycle (Schlesinger & Bernhardt, 2013),

but our understanding of the soil microorganisms mediating this
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Abstract

Fine root litter is a primary source of soil organic matter (SOM), which is a globally
important pool of C that is responsive to climate change. We previously established
that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay
and increased the storage of soil carbon (C; +18%) across a widespread northern
hardwood forest ecosystem. However, the microbial mechanisms that have directly
slowed fine root decay are unknown. Here, we show that experimental N deposi-
tion has decreased the relative abundance of Agaricales fungi (-31%) and increased
that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover,
experimental N deposition has increased the relative abundance of lignin-derived
compounds residing in SOM (+53%), and this biochemical response is significantly
related to shifts in both fungal and bacterial community composition. Specifically,
the accumulation of lignin-derived compounds in SOM is negatively related to the
relative abundance of ligninolytic Mycena and Kuehneromyces fungi, and positively
related to Microbacteriaceae. Our findings suggest that by altering the composi-
tion of microbial communities on decaying fine roots such that their capacity for
lignin degradation is reduced, experimental N deposition has slowed fine root litter
decay, and increased the contribution of lignin-derived compounds from fine roots
to SOM. The microbial responses we observed may explain widespread findings that
anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More
broadly, our findings directly link composition to function in soil microbial commu-
nities, and implicate compositional shifts in mediating biogeochemical processes of

global significance.
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biogeochemically important process is limited (Silver & Miya, 2001).
Globally, the production of fine root litter accounts for ~22% of ter-
restrial net primary production (NPP; McCormack et al., 2015) and
~50% of plant litter entering soil (Freschet et al., 2013). Moreover,
mounting evidence indicates fine root litter is the primary source
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of soil organic matter (SOM; Jackson et al., 2017; Rasse, Rumpel, &
Dignac, 2005; Thomas, Zak, & Filley, 2012), which is the largest pool
of terrestrial C (Batjes, 1996). However, it is presently unclear which
ecological factors control the decay of fine roots (Hobbie, Oleksyn,
Eissenstat, & Reich, 2010; Schimel & Schaeffer, 2012; Silver & Miya,
2001; Sun et al., 2018), as well as how the microbial metabolism of
fine roots into SOM will be impacted by anthropogenic environmen-
tal change.

We have established that ca. 20 years of experimental nitrogen
(N) deposition, which simulates a pervasive driver of global change
(Galloway et al., 2004, 2008), has slowed fine root decay and in-
creased soil C (+18%) across the geographic extent of a northern
hardwood forest ecosystem in the Upper Great Lakes region (Xia,
Talhelm, & Pregitzer, 2017, 2018; Zak, Holmes, Burton, Pregitzer,
& Talhelm, 2008). Although experimental N deposition has not
altered the production of leaf (Pregitzer, Burton, Zak, & Talhelm,
2008) or fine root litter (Burton, Pregitzer, Crawford, Zogg, & Zak,
2004), it has slowed the decay of both (Xia, Talhelm, & Pregitzer,
2017, 2018; Zak et al., 2008). Previously, we established that fine
root litter accounts for 70% of lignified plant material entering soil
in our experiment (Xia, Talhelm, & Pregitzer, 2015), as well as the
majority of lignin-derived monomers in SOM (Thomas et al., 2012).
Thus, it appears that C derived from fine roots, not leaf litter, has in-
creased soil C storage under experimental N deposition. However,
we presently do not understand how experimental N deposition
has altered the community of microorganisms metabolizing fine
root litter into SOM.

We previously obtained evidence that experimental N depo-
sition has slowed lignin decay in fine root litter to a greater
extent than leaf litter, a response that has occurred despite no
effect of experimental N deposition on the biochemistry of fine
root litter (Xia, Talhelm, & Pregitzer, 2017, 2018). This difference
plausibly arises from the high lignin content of fine roots (45%)
relative to leaf litter (14%; Xia et al., 2015), and because lignin
content controls the long-term rate of plant litter decay (Barnes,
Zak, Denton, & Spurr, 1998; Berg, 2014). Although lignified ma-
terial was previously quantified as acid insoluble fraction (AIF) in
our long-term experiment, which can include other recalcitrant
compounds (Xia et al.,, 2015; Xia, Talhelm, & Pregitzer, 2017),
AIF was highly predictive of lignin content in fine roots (Xia
etal.,2017). Importantly, the physiological capacity to metabolize
lignin varies among and within fungi and bacteria. For example,
some fungal species in the class, Agaricomycetes, deploy class |l
peroxidase enzymes to completely oxidize lignin to CO, (Floudas
et al., 2012; Kirk & Farrell, 1987), whereas some species in the
phylum, Actinobacteria, and other bacterial lineages incom-
pletely degrade lignin into soluble phenolic compounds (Ahmad
et al., 2010; Bugg, Ahmad, Hardiman, & Singh, 2011; Kirk &
Farrell, 1987). In our long-term study, experimental N deposition
has slowed leaf litter decay by reducing peroxidase gene expres-
sion (-73%; Zak et al., 2019), altering expressed peroxidase com-
position (Entwistle, Romanowicz, et al., 2018), and increasing
the potential for incomplete lignin decay by bacteria (Eisenlord

et al., 2013; Freedman & Zak, 2014), but it has not altered the
abundance of ligninolytic fungi on this substrate (Entwistle,
Zak, & Argiroff, 2018; Freedman, Upchurch, Zak, & Cline, 2016;
Hassett, Zak, Blackwood, & Pregitzer, 2009). However, the
concentration of lignin in fine root litter is three times greater
than in leaf litter (Xia et al., 2015), and we previously found that
experimental N deposition decreases the abundance of ligni-
nolytic fungi on lignin-rich artificial substrates decaying in the
field (Entwistle, Zak, et al., 2018). If experimental N deposition
has also decreased the abundance of ligninolytic fungi on fine
root litter, this response could explain why fine root decay has
slowed to a greater extent than leaf litter. If this expectation
is correct, then reduced fine root decay under experimental N
deposition should be the primary source of C accumulating in
soil due to experimental N deposition, which should alter SOM
biochemistry by increasing the contribution of lignin-derived
compounds to SOM formation.

Here, our objective was to determine if anthropogenic N depo-
sition has altered the composition of soil microorganisms decaying
fine root litter. To accomplish this, we compared the composition of
fungal and bacterial communities colonizing decaying fine root litter
exposed to ambient N and experimental N deposition. We also in-
vestigated the biochemical composition of SOM under ambient and
experimental N deposition to determine if, by slowing the decay of
fine roots, experimental N deposition has increased the concentra-

tion of lignin-derived compounds in SOM.

2 | MATERIALS AND METHODS

2.1 | Description of study sites

We tested the effects of experimental N deposition on the composi-
tion of microbial communities decomposing fine root litter and the
biochemical composition of both fine root litter and SOM in four rep-
licate northern hardwood forest stands in upper and lower Michigan,
USA (Figure S1). Each stand contains six 30 x 30 m plots; half receive
ambient N deposition (n = 3) and half have received experimental
N deposition since 1994 (n = 3; ambient N + 30 kg N ha™* year™ as
NaNOQ, pellets in six equal applications during the growing season).
To reduce edge effects, each plotis surrounded by a 10 m wide buffer
zone that receives the same treatment as its respective plot. The for-
est stands are dominated by sugar maple (Acer saccharum Marsh.,
>80% basal area) on sandy spodosols that are Typic Haplorthods
of the Kalkaska series (>85% sand). The forest floor consists of a
thick Oe/Oa horizon that contains a mat of fine roots at its boundary
with the A horizon. The forest stands are matched in both vegeta-
tion and soil characteristics (Burton, Ramm, Pregitzer, & Reed, 1991)
and encompass the full latitudinal range of the northern hardwood
ecosystem in the Upper Great Lakes region; this ~500 km distance
spans gradients of ambient N deposition, mean annual temperature,
and precipitation (Table S1). Thus, our experimental design allows
us to generalize our findings across this important and widespread
ecosystem.
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2.2 | Field-based decomposition experiment

To obtain fine roots for our field decomposition experiment, we col-
lected 60 soil cores (5 cm diameter) to a depth of 10 cm in each plot,
which included both Oe/Oa and A horizons (sensu Xia, Talhelm, &
Pregitzer, 2018). Although these soil cores contain fine root mate-
rial from both the O and A horizons, the vast majority are derived
from the dense mat of fine roots that sits at the O/A horizon bound-
ary (Xia et al., 2018; Zak, Freedman, Upchurch, Steffens, & Kogel-
Knabner, 2017). We transported the cores on ice to the University
of Michigan and stored them at -20°C. Sample collection was car-
ried out in September and October 2013. We thawed the soil cores,
passed them through a 2 mm sieve, retrieved first- through third-
order fine roots (Pregitzer et al., 2002; Xia et al., 2015), and pooled
the roots by plot. We rinsed soil from the roots and dried them at
60°C for 24 hr. We collected the three distal root orders because,
as the ephemeral absorptive modules of the root network, they are
morphologically similar and exhibit the highest turnover (Guo et al.,
2008; McCormack et al., 2015; Xia, Guo, & Pregitzer, 2010), thus
comprising the largest input of fine root C to soil.

We placed three mesh litter bags of fine roots (~2 g dry mass in
each bag) at three separate positions in the same plot from which
the roots originated, in their original location in the soil profile at the
boundary of the Oe/Oa and A horizons (3 litter bags x 24 plots = 72
litter bags total). While it could be argued that fine roots may have
decayed differently had they been incubated at the surface of the O
horizon or deeper in the mineral soil, one of the few studies to test
the effects of vertical location in the soil profile on fine root decay
found that fine roots located in the O and A horizons of a red pine
(Pinus resinosa) plantation did not decay at different rates (Li, Fahey,
Pawlowska, Fisk, & Burtis, 2015). Moreover, the vast majority of fine
roots in these northern hardwood forest stands are located at the
boundary of the O and A horizons (Xia et al., 2018; Zak et al., 2017).
Thus, we are confident that the abiotic and biotic conditions expe-
rienced by the fine roots we deployed reflected those experienced
by the majority of fine root litter in these forests. We constructed
each 15 x 15 cm litter bag with 300 um polyester mesh on top and
20 pm polyester mesh on the bottom, which allowed microfauna
and fungal hyphae to enter the bags, respectively (Hobbie, 2005; Xia
et al., 2018). Litter bags were placed in the field in June 2014, col-
lected after 12 months of decomposition, and immediately stored
on ice. Each bag was weighed, and its contents were homogenized
by hand. A subsample was removed for physical and chemical anal-
yses, dried at 60°C for 24 hr, and the remaining material was stored

at -80°C prior to microbial community analyses.

2.3 | DNAsolation

To determine if experimental N deposition altered the composition
of fungal and bacterial communities, we characterized these com-
munities using ribosomal DNA (rDNA) sequence abundances. We
isolated total genomic DNA from three replicate subsamples taken

from each root litter bag (0.05 g fine root material per subsample)

using the DNeasy Plant Mini Kit (Qiagen) following a modified man-
ufacturer's protocol. Specifically, following chemical lysis as speci-
fied, we performed physical lysis by bead beating with four 2.38 mm
stainless steel beads at 1,200 rpm for 45 s using the PowerlLyzer 24
Bench Top Bead-Based Homogenizer (MoBio Laboratories). Debris
was pelleted by centrifugation at 16,000 g for 5 min. After DNA ex-
tractions were completed, we verified the quality of extracted DNA
with a NanoDrop 8000 Spectrophotometer (Thermo Scientific) and
gel electrophoresis. We pooled replicate extractions from each litter
bag and stored DNA at -80°C prior to PCR amplification.

2.4 | PCR amplification, amplicon sequencing, and
sequence quality control

We performed PCR amplification of fungal rDNA using the primers
LROR and LR3 (Vilgalys & Hester, 1990) that target the D1-D2 re-
gion of the 28S rRNA gene, which is suitable for both taxonomic
and phylogenetic analyses (Liu, Porras-Alfaro, Kuske, Eichorst, & Xie,
2012; Porter & Golding, 2012). The V1-V3 regions of the bacterial
16S rRNA gene were targeted using the primers 27f and 519r (Lane,
1991). For each gene, we performed triplicate PCR reactions for
each sample using the Expand High Fidelity PCR System (Roche) and
a Mastercycler ProS thermocycler (Eppendorf). PCR reaction con-
ditions are described in Table S2. Primers contained an additional
16 bp barcode for sample multiplexing for sequencing (described
below; for barcode sequences, see Table S3).

We pooled triplicate reactions and purified PCR products
using the MinElute PCR Purification Kit (Qiagen). The quality of
purified PCR products was assessed as described above, and we
quantified DNA mass with the Quant-iT PicoGreen dsDNA Assay
Kit (LifeTechnologies) and a BioTek SynergyHT Multi-Detection
Microplate Reader (BioTek Instruments). Sequencing was performed
at the University of Michigan DNA Sequencing Core on 16 SMRT
chips with a PacBio RS Il system (Pacific Biosciences) utilizing cir-
cular consensus sequencing, which achieves error rates comparable
to other high-throughput sequencing platforms (Fichot & Norman,
2013; Travers, Chin, Rank, Eid, & Turner, 2010). PCR products were
pooled in equal masses per sample per SMRT chip prior to sequenc-
ing. Mean amplicon lengths were 688 and 525 bp for fungal 28S and
bacterial 16S, respectively. Only sequences with at least fivefold cir-
cular consensus coverage were retained.

We processed sequences using mothur v1.40.5 (Schloss et al.,
2009). We removed sequences containing homopolymers >8 nu-
cleotides in length, with average quality scores <30 using a 50-nt
sliding window, an ambiguous base call, or >1 mismatch in either the
barcode or primer sequence. Fungal sequences were aligned against
a 28S reference alignment from the RDP LSU training set (Mueller,
Balasch, & Kuske, 2014) and bacterial 16S sequences were aligned
against the SILVA v132 reference alignment (Quast et al., 2013).
Chimeric sequences were identified using UCHIME (Edgar, Haas,
Clemente, Quince, & Knight, 2011) and removed. We clustered fun-
gal sequences and bacterial sequences into operational taxonomic
units (OTUs) at 99% and 97% sequence similarity, respectively. The
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most abundant sequence for each OTU was used as the represen-
tative for that OTU, and taxonomic assignments were made using
the RDP classifier with the LSU training set v11 for fungi (Cole
et al., 2014) and the SILVA v132 reference alignment with the naive
Bayesian classifier (Wang, Garrity, Tiedje, & Cole, 2007) in mothur
for bacteria. Raw sequences are available in fastq format in GenBank
under the accession numbers SRR8591550 (16S) and SRR8591551
(28S).

2.5 | Microbial community composition

Some fungi in the class Agaricomycetes, and some bacteria in the
phylum Actinobacteria, can metabolize lignin (Floudas et al., 2012;
Kirk & Farrell, 1987); thus, we tested if experimental N deposition
altered the relative abundances of these two groups. We further
summed sequence abundances in fungal orders and bacterial fami-
lies, and compared relative abundances between the ambient and
experimental N deposition treatments for orders and families that
accounted for at least 1% of fungal and bacterial sequences, respec-
tively, and exhibited a change in relative abundance of at least 20%.
Furthermore, species of Agaricomycete fungi and Actinobacteria
span a diverse range of autecologies (Hibbett et al., 2014; Kirk &
Farrell, 1987), and it is difficult to directly interpret the functional
consequences of changes in the relative abundance of these broad
groups. Thus, we assessed the effect of experimental N deposition on
fungal and bacterial community composition (i.e., -diversity), using
multivariate analyses at the genus and family levels, respectively.
First, abundances were Hellinger-transformed to avoid subsampling
biases (McMurdie & Holmes, 2013, 2014). We then performed dis-
tance-based redundancy analysis (db-RDA) on Bray-Curtis dissimi-
larity calculated from these abundances to visualize differences in
community composition due to site and experimental N deposition.
We plotted the scores for abundant (>1%) classified fungal genera and
bacterial families to determine which taxa drove differences in com-
munity composition in response to experimental N deposition.

2.6 | Biochemical analyses and relationships with
microbial community composition

We characterized the biochemical composition of undecomposed
fine roots, decayed fine roots, and SOM using pyrolysis gas chro-
matography-mass spectrometry (py-GC/MS). Mineral soil (0-10 cm)
was obtained from each plot receiving ambient N and experimental
N for biochemical analysis of SOM. We elected to characterize the
biochemistry of SOM in mineral soil for four reasons. First, organic
matter has rapidly accumulated (+18%) in the mineral soil of our ex-
periment (Zak et al., 2008). Second, the lignin-derived compounds
remaining in mineral soil appear to be derived primarily from fine root
litter (Thomas et al., 2012), emphasizing the importance of relating
microbial composition on fine root litter to the biochemistry of SOM
in mineral soil. Third, we recently obtained evidence that experimen-
tal N deposition has caused an accumulation of occluded particulate
organic matter in our experiment, which was hypothesized to be an

accumulation of fine root-derived C (Zak et al., 2017). Finally, pre-
vious biochemical characterizations of mineral soil SOM have not
detected the expected accumulation of lignin-derived compounds
in response to experimental N deposition (Thomas et al., 2012; Zak
et al., 2017); thus, we employed a high-resolution method (i.e., py-
GC/MS) to definitively test this alternative. Dried fine root and soil
samples (~1 g per sample type per plot) were ground for 6 min using
a ball mill. Samples were then pyrolyzed at 600°C in quartz tubes
for 20 s using a DS Pyroprobe 5150 pyrolyzer, and analyzed using a
ThermoTrace GC Ultra gas chromatograph (Thermo Fisher Scientific)
and ITQ 900 mass spectrometer (Thermo Fisher Scientific; sensu
Pold, Grandy, Melillo, & DeAngelis, 2017). Mass spectrometry peaks
were assigned to compounds using AMDIS software and a previously
compiled compound library, and relative abundances for each com-
pound were determined by dividing by the largest peak present in that
sample (Grandy, Neff, & Weintraub, 2007; Grandy, Strickland, Lauber,
Bradford, & Fierer, 2009; Wickings, Grandy, Reed, & Cleveland, 2011).
Individual compounds were summed by their origins to determine the
relative abundances of broad compound classes (i.e., aromatic, lignin,
lipids, N-bearing, phenols, polysaccharides, proteins, and compounds
of unknown origin). To evaluate if SOM biochemistry was related to
microbial community composition on decaying fine roots, we fit vec-
tors of compound abundances in SOM to db-RDA ordinations and
overlaid vectors with a significant fit (see Statistical analyses 2.7).
Although compounds other than lignin, such as suberin, are also
important biochemical constituents of fine roots (McCormack et al.,
2015), we elected to focus our study on lignin for four reasons. First,
lignin dominated fine root litter biochemistry (35%-45%) in our long-
term experiment based on previous findings (Xia et al., 2015, 2017)
and the results we have obtained in our present study (see Figure 1).
Second, the biochemical composition of lignin-derived monomers
in SOM in our experiment was biochemically more similar to fine
root-derived lignin than to leaf litter-derived lignin (Thomas et al.,
2012), a finding that specifically implicates fine root-derived lignin
as an important source of SOM. Third, the decay of AlF in fine roots
(which is dominated by lignin in our long-term experiment) was re-
duced under experimental N deposition (Xia et al., 2017, 2018), lead-
ing us to address the mechanism by which this reduction of decay
has occurred in the present study. Finally, suberin is relatively more
abundant in higher order (e.g., fourth and fifth order) transport fine
roots, as opposed to the ephemeral absorptive fine root modules
(orders 1-3; McCormack et al., 2015) that are the focus of our pres-
ent study due to their dominance of fine root turnover (Xia et al.,
2010, 2015). Taken together, these lines of evidence support our
focus on the microbial degradation of fine root lignin in response to

experimental N deposition.

2.7 | Statistical analyses

We used two-way ANOVA to test the effect of experimental N dep-
osition, site, and their interaction on Hellinger-transformed taxon
abundances (e.g., Agaricales) and log,-transformed compound
abundances. Among-group means were compared using protected
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FIGURE 1 Biochemical composition
of fine root litter and soil organic matter
based on the relative abundance (%)

of compound classes. Bars represent
mean relative abundances and error bars
are 1 SEM (n = 12). *p < .1 for effect of
experimental N deposition by two-way

50% 1

40% A

30% 1

20% 1

Giobal Change Biology RYUTR SV

Undecayed root litter

|:| Ambient N

. Experimental N

ﬁ"“ﬂﬁﬁﬁm

\L\Q‘(\(\ \ %

o“°

V\‘0

O o
‘(\"" Q(O‘

?0\1‘*‘

Decaying root litter

Wﬁﬁﬁmfl

ANOVA -
0%
wo
c
o
= 0/ -
n 50%
o
Q. 40% 1
&
o 30%
E 20% 1
o
€ 10%]
)
S ol
[e] W&
[ W

50% 1

40% 1

30% 1

20% 1

10% 1

0%

3O A0 o
e aa‘\“ “.o‘\é ‘0\‘3 oV
ey v

o\ﬂ‘*‘a
Q

Soil organic matter

<
«\“‘\
&)
P,(

Fisher's least significant difference test in the agricolae package
(de Mendiburu, 2017) in R. We tested the effects of experimental
N deposition, site, and their interaction on community composi-
tion using two-way permutational multivariate analysis of variance
(PERMANOVA; Anderson, 2001) and Bray-Curtis dissimilarity ma-
trices calculated from Hellinger-transformed fungal genus and bac-
terial family abundances. PERMANOVA was implemented in the
2018) in R. PERMANOVA
cannot distinguish differences in composition from heterogeneous

vegan package v2.5-3 (Oksanen et al.,

variance; thus, we tested the homogeneity of multivariate disper-
sion using PERMDISP (Anderson, 2004) in vegan (“betadisper”
function). A nonsignificant PERMDISP result confirms that a sig-
nificant PERMANOVA test has detected a true difference in com-
position. Vectors for compound abundances were fit to db-RDA
ordinations using the “envfit” function in vegan. Due to the broad
geographic expanse of our experiment and inherent heterogene-
ity of the soil environment, we accepted statistical significance at
a =.1. Data processing and visualization were performed using the

collection of packages comprising the tidyverse v1.2.1 (Wickham,

o‘“
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2017) in R. Statistical analyses were performed in R v3.5.1 (R Core
Team, 2018) and RStudio v1.1.453 (RStudio Team, 2018), and code
for sequence processing and statistical analyses is available at https
://github.com/ZakLab-Soils/N-deposition_roots.

3 | RESULTS

3.1 | Fineroot and SOM biochemistry

Experimental N deposition did not affect the relative abundance
of any compound class in undecayed or decaying fine root litter
(ANOVA, p > .1; Figure 1). However, we found that experimental N
deposition increased the relative abundance of lignin-derived com-
pounds in SOM by 53% (5.2% under ambient N to 7.9% under experi-
mental N; p = .092; Figure 1). Although this response was not highly
statistically significant, it was ecologically significant due to its mag-
nitude (>50% change), its uniformity across a large geographic ex-
panse (site by treatment interaction, p > .1), and the rapidity with

which it occurred (~20 years).


https://github.com/ZakLab-Soils/N-deposition_roots
https://github.com/ZakLab-Soils/N-deposition_roots

ARGIROFF ET AL.

RRVAB S icbui ChanseBioiosy

3.2 | Sequence processing, OTU clustering, and
taxonomic distribution

Our sequencing effort yielded 126,159 high-quality (i.e., passed fil-
tering steps described in Materials and Methods) fungal sequences
(5,257 + 1,656 per sample; mean + SD) and 154,135 high-qual-
ity bacterial sequences (6,422 + 1,058 per sample). We obtained
2,071 non-singleton fungal OTUs and 5,957 non-singleton bacte-
rial OTUs across all samples. Basidiomycota (63%) and Ascomycota
(35%) represented the majority of fungal sequences. The fungal
classes Agaricomycetes (57%), Sordariomycetes (11%), unclassified
Ascomycota (8%), Leotiomycetes (6%), Tremellomycetes (5%), and
Eurotiomycetes (5%) were most abundant. Dominant bacterial phyla
included Proteobacteria (55%), Bacteroidetes (15%), Acidobacteria
(10%), and Actinobacteria (7%).

3.3 | Effects of experimental N deposition on
microbial community composition

The abundance of Agaricomycetes declined (-22%, from 62.3 + 4.8%
to 48.8 £ 7.5%, mean + SE) in response to experimental N deposition
(ANOVA, p = .085; Figure S2). Similarly, experimental N deposition
reduced the abundance of Agaricales (-31%; p = .059; Figure 2),
the most abundant order of Agaricomycetes colonizing fine root
litter. Fungal orders that responded positively to experimental N

Fungal orders

deposition did not belong to the class, Agaricomycetes. For exam-
ple, experimental N deposition increased the abundance of fun-
gal orders Chaetothyriales (+566%; p = .011), Hypocreales (+37%;
p = .033), and Tremellales (+291%; p = .009; Figure 2). The re-
sponses of Hypocreales (site by treatment; p = .017) and Tremellales
(p = .042) varied in magnitude, but not direction by site (Figure S3).
Additionally, the relative abundance of Actinobacteria increased
(+24%, from 6.5 + 0.5% to 8.1 + 0.7%) in response to experimental
N deposition (ANOVA,; treatment; p = .025), driven primarily by sites
B and C (site by treatment interaction; p = .024; Figure S2). Among
bacterial families, Microbacteriaceae were favored by experimental
N deposition (+81%; p = .005); this response varied in magnitude by
site, but not in direction (site by treatment; p = .053; Figure S3).
Experimental N deposition significantly altered the genus-
level composition of fungal communities on decaying fine roots
(PERMANOVA; p = .001; Figure 3a), without altering dispersion
(PERMDISP; p = .17). The shift in community composition due
to experimental N deposition (denoted by the “Exp. N” vector in
Figure 3b) was associated with a lower abundance of the ligninolytic
fungal genera Mycena and Kuehneromyces (Figure 3b). Specifically,
the points labeled “Myc” and “Kue” in Figure 3b represent the load-
ings for these genera in the site by treatment ordination in Figure 3a;
if an arrow were drawn from the origin in the ordination to a genus
loading, it would represent the direction in which the abundance of

that genus increased. Thus, the relative abundance of Mycena and
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FIGURE 3 Distance-based redundancy analysis (db-RDA) ordinations determined from Bray-Curtis dissimilarity calculated using
Hellinger-transformed abundances of fungal genera (a, b) and bacterial families (c, d). Ordinations were constrained to include variation
due to experimental N deposition and site, which together accounted for 37.7% of variation in Bray-Curtis dissimilarity for fungi and
33.2% for bacteria. Panels (a) (fungi) and (c) (bacteria) display site by treatment mean loadings (error bars are 1 SE). Panels (b) (fungi) and
(d) (bacteria) include taxon loadings (which represent the direction from the origin in which a genus increases in relative abundance) and
compound class vectors from soil organic matter (SOM). Classified taxa that accounted for >1% of sequences were included. Involvement
of non-actinobacterial families in lignin degradation was based on Wilhelm et al., (2018). *p < .1, **p < .05 for vector fit. Cha, Chaetomium;
Chr, Christiansenia; Exo, Exophiala; Hyp, Hypocrea; Hem, Hemimycena; Kue, Kuehneromyces; Myc, Mycena; Ram, Ramariopsis; Umb,
Umbelopsis; Lig, lignin-derived compounds; N-Bear, N-bearing compounds (b). Ace, Acetobacteraceae; Aci, Acidobacteriaceae Subgroup
1; Bur, Burkholderiaceae; Cau, Caulobacteraceae; Chi, Chitinophagaceae; Gem, Gemmatimonadaceae; Mib, Microbacteriaceae; Mip,
Micromonosporaceae; Rho, Rhodanobacteraceae; Sol, Solibacteraceae Subgroup 3; Spb, Sphingobacteriaceae; Spg, Sphingomonadaceae;

Xan, Xanthobacteraceae; Lig, lignin-derived compounds; Lip, lipid (d)

Kuehneromyces increased in the opposite direction of the vectors
representing the shift in fungal community composition due to ex-
perimental N deposition (“Exp. N”). In other words, the experimen-
tal N deposition treatment is associated with a lower abundance of
these two genera. This pattern indicates that a decline in the abun-
dance of these genera drove the significant change in fungal commu-
nity composition on decaying fine roots in response to experimental
N deposition.

Similarly, experimental N deposition significantly altered bacte-
rial community composition on decaying fine roots (PERMANOVA,;

p = .014; PERMDISP; p = .39; Figure 3c). The actinobacterial family,
Microbacteriaceae, was among the bacterial families positively asso-
ciated with the change in community composition due to experimen-
tal N deposition (Figure 3d). This family contains ligninolytic species
(Taylor et al., 2012), which incompletely metabolize lignocellulose into
soluble phenolic compounds. The effects of experimental N depo-
sition on other bacterial families putatively involved in lignin degra-
dation (Wilhelm, Singh, Eltis, & Mohn, 2018) were idiosyncratic. The
community composition of fungal and bacterial communities differed
among sites (PERMANOVA, site; p <.001). The effect of experimental
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N deposition was not uniform across sites for fungi or bacteria (site
by treatment; p < .05). However, the significant site by treatment in-
teraction was apparent in db-RDA ordinations (Figure 3a,c), in which
clear separation occurred between communities under ambient and

experimental N deposition at all sites, except site D.

3.4 | Relationships between SOM biochemistry and
microbial community composition

To directly link changes in SOM biochemistry with changes in bac-
terial and fungal community composition elicited by experimental
N deposition, we fit a vector for the relative abundance of each
compound class in SOM to fungal and bacterial db-RDA ordinations.
We found that the shift in fungal community composition driven by
experimental N deposition was significantly associated with greater
relative abundances of lignin-derived compounds (r? = .39; p = .011)
and N-bearing compounds (r? = .33; p = .022) in SOM (Figure 3b).
Similarly, the change in bacterial community composition elicited
by experimental N deposition was significantly related to a greater
relative abundance of lignin-derived compounds (r? = .29; p = .032;
Figure 3d), although the relationship was less direct than that with
fungal community composition (Figure 3b). In contrast, a lower
abundance of lipids was associated with changes in bacterial com-
munity composition under experimental N deposition (> = .21;
p =.072; Figure 3d).

4 | DISCUSSION

Anthropogenic N deposition has slowed the accumulation of CO, in
the atmosphere by increasing C storage in northern forests (Keenan
et al., 2017; Pan et al., 2011). Nitrogen deposition fosters this ter-
restrial C sink by slowing microbial litter decay and increasing SOM
(Chen et al., 2018; Frey et al., 2014; Janssens et al., 2010; Pregitzer
et al., 2008; Zak et al., 2008). Here, we provide evidence that anthropo-
genic N deposition has altered the composition of fungal and bacterial
communities on decaying fine root litter by suppressing the relative
abundance of ligninolytic fungi and favoring bacteria with weaker
ligninolytic capacity, which plausibly explains why the decay of fine
root litter has declined and soil C storage has increased in our long-
term N deposition experiment (Xiaetal.,2017,2018; Zak et al., 2008).
Moreover, we demonstrate that shifts in microbial community
composition are significantly related to an increase in the relative
abundance of lignin-derived compounds in SOM, which suggests
that changes in the microbial decay of fine root litter have caused
the end products of this process to accumulate as SOM to a greater
extent under experimental N deposition. A recent modeling study
estimated that up to 51% of C accumulating in surface soil (O and A
horizons to a depth of 10 cm) in this experiment could be explained
by reduced decay of fine root litter (Xia et al., 2018), and our find-
ings shed light onto the compositional changes in microbial com-
munities eliciting this response. Furthermore, mounting evidence

suggests that anthropogenic N deposition slows fine root decay in

other ecosystems (Kou et al., 2018; Sun, Dong, Wang, Li, & Mao,
2016), and that fine root C is a primary source of SOM in general
(Jackson et al., 2017; Rasse et al., 2005; Thomas et al., 2012). Thus,
the microbial responses we observed here may underlie widespread
findings that anthropogenic N deposition increases soil C storage in
terrestrial ecosystems, including those contributing to the increas-
ing C sink in the Northern Hemisphere that has slowed the rate at
which anthropogenic CO, has accumulated in the atmosphere (Frey
et al., 2014; Janssens et al., 2010; Keenan et al., 2017; Maaroufi et
al., 2015; Pan et al., 2011).

Our findings suggest that declines in the relative abundance of
ligninolytic fungi have reduced fine root decay in our experiment,
as well as the others detailed above. Specifically, experimental N
deposition decreased the relative abundance of Agaricomycetes
(-22%) and its most abundant order, Agaricales (-31%; Figure 2).
Agaricomycetes contains the “white-rot” fungi, which decay lig-
nin using class Il peroxidases (Baldrian, 2008; Floudas et al., 2012;
Kirk & Farrell, 1987). However, there is considerable functional di-
versity within the Agaricomycetes (Hibbett et al., 2014); thus, the
lower relative abundance of the genera Mycena and Kuehneromyces
associated with experimental N deposition (Figure 3b) is a par-
ticularly important piece of evidence we obtained. Specifically,
Kuehneromyces and Mycena are genera of white-rot fungi that decay
lignin using class Il peroxidases (Ghosh, Frankland, Thurston, &
Robinson, 2003; Hofrichter, 2002; Kellner et al., 2014; Miyamoto,
2000). Mycena were the most abundant fungi on decaying fine roots
(~22% of fungal sequences overall) in our study, and were also dom-
inant saprotrophs on decaying fine roots in other forest ecosystems
(Kohout et al., 2018; Philpott, Barker, Prescott, & Grayston, 2018);
thus, this genus may be important for how fine root decay responds
to anthropogenic N deposition more generally. Taken together, our
results clearly demonstrate that experimental N deposition is asso-
ciated with a lower relative abundance of ligninolytic fungi on de-
caying fine roots.

In contrast, experimental N deposition favored ligninolytic
bacteria and non-ligninolytic fungi. The relative abundance of
Actinobacteria increased under experimental N deposition (+24%),
including the family, Microbacteriaceae (+81%; Figures 2 and
3d). Experimental N deposition also increased the abundance of
Saccharibacteria (+46%) and the fungal orders Chaetothyriales
(+566%), Hypocreales (+37%), and Tremellales (+291%; Figure 2).
These responses are likely ecologically important because lignino-
lytic Actinobacteria, including some Microbacteriaceae, degrade lig-
nin to soluble phenolic compounds rather than oxidizing the polymer
to CO, (Ahmad et al., 2010; Bugg et al., 2011; Taylor et al., 2012);
this is consistent with greater phenolic dissolved organic C produc-
tion in our experiment (Pregitzer, Zak, Burton, Ashby, & Macdonald,
2004). Some Saccharibacteria can modify aromatic compounds,
but there is no evidence to indicate they degrade lignin (Luo, Xie,
Sun, Li, & Cupples, 2009). Other bacterial lineages have been im-
plicated in lignin decay, including some that have responded to ex-
perimental N deposition (Figure 3d; Janusz et al., 2017); however,
the cumulative effect of these changes in composition on bacterial
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lignin degradation remains to be tested. Some Hypocreales and
Chaetothyriales also possess oxidases that could modify lignin
(Assavanig, Amornikitticharoen, Ekpaisal, Meevootisom, & Flegel,
1992; Holker, Dohse, & Hofer, 2002; Martinez et al., 2008; Teixeira
et al., 2017), and yeasts in Tremellales dominate the late, lignin-rich
stages of oak leaf litter decomposition (Voriskova & Baldrian, 2013).
However, these fungal lineages lack peroxidases capable of complete
lignin oxidation (Floudas et al., 2012). Together, these responses sug-
gest that experimental N deposition has favored a microbial commu-
nity with a lower capacity to degrade lignin in fine root litter.

In combination with a higher relative abundance of lignin-de-
rived compounds in SOM, our observations specifically link changes
in microbial community composition on fine root litter to the accu-
mulation of SOM (Table S1; Pregitzer et al., 2008; Zak et al., 2008).
Foremost, experimental N deposition significantly altered fungal
community composition by decreasing the relative abundance of
ligninolytic Mycena and Kuehneromyces, and these shifts in composi-
tion were significantly associated with a greater relative abundance
of lignin-derived compounds in SOM (Figure 3a,b). Similarly, the rel-
ative abundance of lignin-derived compounds in SOM was positively
related to the shift in bacterial community composition elicited by
experimental N deposition (Figure 3c,d). The substantial declines
in the relative abundance of ligninolytic fungi and increases in the
relative abundance of bacteria with weaker ligninolytic capacity we
observed (Figures 2 and 3) likely account for the reduction in fine
root lignin decay (Xia et al., 2017) and mass loss (Xia et al., 2018) pre-
viously reported from our experiment, wherein fine root litter was
allowed to decay in the field in an identical manner as our current
study. Moreover, our findings suggest that by substantially altering
the composition of microbial communities on fine roots, experimen-
tal N deposition has slowed the decay of lignin-rich fine root litter,
thereby increasing the contribution of lignin-derived compounds
from fine roots to SOM formation.

Itis unclear why experimental N deposition decreased the abun-
dance of ligninolytic fungi on fine root litter, whereas this response
has not occurred on leaf litter in the same long-term experiment or
others (e.g., Morrison et al., 2016; Morrison, Pringle, van Diepen, &
Frey, 2018; Whalen, Smith, Grandy, & Frey, 2018). A reduction in
the competitive ability of ligninolytic fungi on lignin-rich substrates
has been proposed to explain the negative effects of experimental
N deposition on ligninolytic enzyme activity and litter decay (e.g.,
DeForest, Zak, Pregitzer, & Burton, 2004; Entwistle, Zak, et al., 2018;
Janssens et al., 2010; Morrison et al., 2018; Talbot & Treseder, 2012;
Waldrop, Zak, Sinsabaugh, Gallo, & Lauber, 2004), but the mecha-
nisms underlying putative changes in competitive ability on lignin-
rich substrates are not understood. Our observation that the relative
abundance of ligninolytic fungi was reduced to a greater extent on
fine root litter than leaf litter could be consistent with this hypoth-
esis, although the role of competition and its specific mechanisms
are unknown. A trade-off between stress tolerance and competitive
ability has recently been proposed to explain the effects of experi-
mental N deposition on ligninolytic fungi (Morrison et al., 2018), and
numerous other mechanisms involving niche differentiation and an
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increased efficiency of non-ligninolytic fungi have also been sug-
gested (e.g., Talbot & Treseder, 2012). Our findings, including the
relationships between microbial composition and other components
of SOM (e.g., N-bearing compounds and lipids; Figure 3), emphasize
the need to understand whether biotic interactions influence how
experimental N deposition alters microbial community composition.
For example, the distinction between these putative competition-
mediated changes in composition and physiological responses (i.e.,
downregulated peroxidase transcription) would be represented dif-
ferently in mechanistic ecosystem models (Allison, 2012; Hawkes
& Keitt, 2015; Treseder et al., 2012). At present, these competitive
processes are speculative and their mechanisms are not understood;
amechanistic understanding of these interactions will facilitate their
extension to the effects of anthropogenic N deposition on fine root
decay and soil C storage in other ecosystems.

The fact that experimental N deposition did not alter the bio-
chemical composition of fine roots after one year of decay (Figure 1),
and that it did increase the lignin content of SOM (Figures 1 and 3),
indicates that the changes in microbial community composition we
documented have functional implications during the later stages of
fine root decay (i.e., beyond 1 year). Several pieces of evidence from
our long-term experiment are consistent with this expectation. For
example, based on the decay of identical fine root litter in identical
litter bags, there was no effect of experimental N deposition on the
mass loss (Xia et al., 2018) or biochemistry (Xia et al., 2017) of fine
root litter after one year of decay. However, experimental N depo-
sition significantly increased the mass of fine root litter remaining
after 3 years of decay (Xia et al., 2018) due to a reduction in the
decay of lignin (Xia et al., 2017). These reductions in the later stages
of fine root decay align with the accumulation of lignin-derived com-
pounds in SOM revealed in our current study (Figures 1 and 3). An
important assumption is that the changes in microbial community
composition we observed after one year persist to later stages of
decay, thereby decreasing the loss of lignin and overall mass loss of
fine root litter. Although this assumption remains to be tested, our
findings clearly suggest that changes in microbial community com-
position (Figures 2 and 3) have slowed the decay of lignin in fine root
litter (Xia et al., 2017, 2018), thereby increasing the amount of lignin-
derived compounds from fine root litter in SOM (Figures 1 and 3).

The biochemical changes in SOM we observed may explain
how experimental N deposition has increased the physical pro-
tection of SOM by mineral occlusion, as we have previously re-
ported (Zak et al., 2017). Although relatively unmodified lignin is
not thought to remain in long-term pools of SOM (Grandy et al.,
2007), it can be stabilized through the adsorption of dissolved
organic matter to mineral surfaces, or the physical occlusion of
particulate litter by clay and silt particles in microaggregates
(Cotrufo et al., 2015; Lehmann & Kleber, 2015). In our experiment,
experimental N deposition has not altered the amount of C in the
highest density soil fraction (>1.8 g/cm) that represents mineral-
adsorbed SOM; however, it has increased mineral-occluded par-
ticulate SOM, which indicates greater physical protection of litter
fragments in microaggregates (Zak et al., 2017). Previous analyses
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have revealed no effect of experimental N deposition on SOM
biochemistry or other factors involved in aggregate formation
(Thomas et al., 2012; Zak et al., 2017). However, it is plausible that
a reduction in the microbial decay of fine root litter has increased
the amount of time a given mass of fine root fragments remain
in contact with soil particles, thereby fostering their occlusion
(Cotrufo et al., 2015). Although this mechanism remains to be di-
rectly tested, our results suggest that reduced microbial decay of
fine root litter may increase the physical stabilization of fine root
material in microaggregates, which could influence the longevity
of the terrestrial C sink.

A reduction in soil pH has recently been proposed as the primary
mechanism by which experimental N deposition decreases the mi-
crobial decay of plant litter and increases soil C storage (Averill &
Waring, 2018, and references therein); however, our findings provide
a distinct and novel mechanism that is independent of soil pH. For
example, experimental N deposition induced Mn-limitation in soils
receiving experimental N deposition in an oak-dominated forest in
New England, likely due to enhanced leaching of Mn from soils at low
pH (Whalen et al., 2018). Since the late stages of litter decay (domi-
nated by lignin degradation) occur more rapidly when Mn concentra-
tions are high (Berg, 2014), likely due to the role of Mn as a diffusible
redox mediator for ligninolytic manganese peroxidase enzymes
(Hofrichter, 2002), pH-induced Mn-limitation was thought to explain
reduced rates of litter decay (Whalen et al., 2018). Additionally, ex-
perimental N deposition could reduce microbial activity due to the
direct negative effects of low pH on microbial physiology (Averill
& Waring, 2018). However, soil pH does not differ among sites in
our long-term experiment (Table S1) nor has experimental N depo-
sition decreased soil pH (4.5 + 0.25 under ambient N conditions and
4.7 +0.32 under experimental N conditions; Eisenlord & Zak, 2010).
Thus, neither Mn-limitation nor the direct negative effects of low
soil pH on microbial activity explain reductions in fine root decay
in our experiment. Instead, our findings suggest a pH-independent
mechanism, in which the decreased abundance of highly ligninolytic
fungi and increased role for less complete bacterial lignin degrada-
tion have slowed the decay of fine root litter.

In summary, we demonstrated that over 20 years of experi-
mental N deposition has reduced the relative abundance of
ligninolytic fungi and increased that of ligninolytic bacteria on de-
caying fine roots, which plausibly explains how fine root decay has
slowed and SOM has accumulated in our study (Xia et al., 2017,
2018; Zak et al., 2008). Furthermore, we found that an accumu-
lation of lignin-derived compounds in SOM was significantly re-
lated to changes in microbial community composition on decaying
fine root litter, particularly a decline in the relative abundance of
ligninolytic fungi. Together, this evidence suggests that by altering
microbial community composition on fine root litter, which is the
dominant source of lignified plant material to soil, experimental
N deposition has caused an accumulation of root-derived C as
SOM. It is important to point out that fine root litter may account
for a smaller proportion of lignin-derived compounds that enter
soil in forest ecosystems dominated by species with higher leaf

litter lignin concentrations (e.g., Quercus, Pinus) than sugar maple.
Nonetheless, our findings unite a growing body of evidence that
experimental N deposition enriches SOM in compounds that are
abundant in fine roots (e.g., lignin and suberin; Frey et al., 2014;
Grandy, Sinsabaugh, Neff, Stursova, & Zak, 2008; van den Enden
et al., 2018; Wang et al., 2019) with the changes in microbial com-
position that are responsible for their accumulation. To better un-
derstand how experimental N will modify terrestrial C storage and
mediate climate under future rates of anthropogenic N deposition
(Galloway et al., 2004, 2008), we must explicitly test ecological
mechanisms (e.g., putative competitive interactions) that may alter
microbial community composition and slow fine root decay, as well
as better understand how the altered products of fine root decom-
position are stabilized into SOM. Taken together, our findings link
the composition and function of microbial communities, as well
as highlight the role of compositional shifts in mediating biogeo-
chemical processes of global significance.
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