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Abstract: Adhesive-bonding has become increasingly adopted for multi-material lightweight ap-
plications (e.g., automotive structures). There is a growing interest in understanding the fatigue
behaviors in this type of joint for supporting structural durability modeling in practice. In this paper,
an analytical fracture mechanics modeling procedure is presented in the context of a generalized
sandwich specimen. Its closed form stress intensity factor solutions were then derived and applied
for the correlating fatigue test data obtained from the lap-shear and coach-peel test specimens with
demonstrated effectiveness. Some important implications of these analytical solutions on joint design
are also discussed.

Keywords: fracture mechanics modeling; stress intensity factor; fatigue; adhesive joint; aluminum alloy

1. Introduction

Multi-material structures have become a major trend in the future transportation
systems for achieving effective light-weight and smart functionalities [1-3]. In addition
to new dissimilar materials joining methods [4-9] that are currently under development,
adhesive bonding offers reliable and convenient solutions [10]. However, structural dura-
bility modeling of adhesive joints for vehicle development has been a major challenge to
meet today’s rapid virtual prototyping needs, as discussed in [4,7]. This is mainly due to
the fact that the stress state governing fatigue in adhesive joints is more complex than that
in welded joints due to the significant mismatch in the mechanical properties between the
adhesive and adherends. Most of the studies in the literature to date has been focused on
either developing empirical methods through selected durability testing for supporting
product development [11,12], which can introduce uncertainties in actual applications, or
establish effective fundamental mechanics-based models, most of which remain difficult to
be readily used for structural applications [13,14].

The existing investigations, particularly for those relevant to automotive applica-
tions, can be characterized into a few categories. The first category is the experimental
approach through performing the testing of joint static strengths and/or joint fatigue
properties [1,15-19] by focusing on joint geometry, specimen type, load level, or the load ra-
tio effects on the fatigue behaviors. As discussed in [5], it is difficult to relate the joint static
strength to fatigue performance even in an empirical sense, since the former is relatively
less sensitive to stress concentration while the latter is governed by joint stress concentra-
tion behaviors. As far as fatigue testing using simple specimen types (e.g., lap-shear and
coach-peel) is concerned, one unresolved issue is how to make use of the raw test data in
terms of the nominal stress or strain versus cycle to failure to the joint fatigue properties
that can be used as the input to the computational model of structures.

The second category can be characterized as continuum mechanics-based modeling
approach by focusing on a detailed stress state in adhesive joints either through finite
element methods or idealized analytical models. This approach offers the advantages of
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gaining mechanical insights that can be translated to broader applications. Representative
publications along this line are the shear lag model by Volkersen [13], by assuming elastic
shear deformation in the adhesive layer and elastic tension deformation in the adherend
layers, and a single lap joint model by Goland and Reissner [14], by incorporating the
bending moment due to an eccentrically applied load. These two types of models represent
the classical one dimensional (1D) linear elastic approach. Their further improvements can
be found [20-35] by considering the 2D, and even 3D effects as well as the geometric and
material nonlinearity. For the latter cases, the solutions are often only attenable through
finite element methods. As a result, most of the solutions in this category exhibit some level
of mesh-size sensitivity, therefore introducing some uncertainties at geometric discontinuity
locations in which the stress or strain singularity typically exists when sharp corners or
notches are present.

The third approach is fracture mechanics modeling by computing a fracture mechanics
parameter directly such as the stress intensity factor or energy release rate, which can then
be related to the joint fatigue behaviors. Dillard [36] summarized how the fracture mechan-
ics were developed and applied to the adhesive joint. Recently, Chen et al. [1] analyzed the
geometry influence on the fatigue performance by computing the well-established J integral
(i.e., energy release rate) of the lap-shear and coach-peel specimens of the adhesive-bonded
aluminum alloy joints. When assuming a pre-determined initial crack size, the results
seemed to show some promise in their test data correlation. However, the pre-determined
initial crack size has to be determined through experimental testing, which can introduce
uncertainties. As a result, the generality of the approach requires further study.

Cohesive zone model (CZM) is another popular analysis method that many researchers
are using to evaluate fatigue behavior [37-39]. This method avoids the stress singularity
problem and can numerically predict fatigue life, and the probabilistic method is sometimes
used to achieve a faster calculation speed than the FE method [37,38], but too many
parameters need to be calibrated to have a good result.

In this paper, we present an analytical approach by considering a general sandwich
specimen containing an adhesive layer subjected to a set of simple loading conditions, on
which closed form stress intensity factors can be developed. Through a linear superposition,
we show that the stress intensity factors for typical lap-shear and coach-peel specimens can
be obtained in closed forms and validated by finite element solutions. Then, the fatigue test
data obtained on the lap-shear and coach-peel specimens made of aluminum-to-aluminum
adhesive joints are shown to be effectively correlated into a narrow band in the form of
an effective stress intensity factor range versus cycles to failure. Insights offered by the
analytical solutions on the joint design parameters will also be discussed in light of the
present study.

2. Analytical Fracture Mechanics Modeling
2.1. Problem Idealization

Two commonly used fatigue test specimen types (e.g., coach-peel and lap-shear [1,40]),
are illustrated in Figure 1. The corresponding mechanical behaviors can be modeled by
considering a general sandwich model, as shown in Figure 2, in which f; through f4
represent the boundary normal tractions measured in force per unit length in x; v; through
vy are the boundary transverse shear tractions; and m; through 4 are the moment tractions
measured in moment per unit length in z. To facilitate the development of closed-form
solutions, it was assumed that the two adherends had the same thickness (i.e., t| = t; = t),
while the adhesive thickness was represented as t,.

With the descriptions given in Figure 2, the coach-peel specimen illustrated in Figure 1a
can be represented by setting all tractions being zero, except that m; = —my = mp and
U] = —0vy = 0y, as shown in Figure 3a. Through a comparison with Figure 1a, my and vy
can be related to remote loading as Fc/W and F/W, respectively, where W is the width
of the specimen or the width into paper. Note that L in Figure 2 is the bond length. The
stress analysis problem associated with the coach-peel specimen shown in Figure 1a is now
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reduced to the problem described as Case 1 in Figure 3a, which possesses symmetry with
respect to the mid-thickness of the adhesive layer.
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Figure 1. Two commonly used fatigue test specimens for adhesive joints. (a) Coach-peel. (b) Lap-shear.
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Figure 2. A sandwich model representation of the bonded section.

Similarly, the typical lap-shear test specimen shown in Figure 1b can be represented
by non-zero f; = f4 = fo, and m; = —my = my, which can be further decomposed into
three subcases within which Case 0 has no contribution to the crack driving force (e.g.,
stress intensity factor) with respect to a hypothetical crack situated in the mid-thickness of
the adhesive layer. Case 2 is under the pure moment loading, acting symmetrically with
respect to both coordinate axes, while Case 3 represents the anti-symmetric loading with
respect to both coordinate axes. As such, Case 2 contributes the Mode I stress intensity
factor (Kj) with respect to a crack situated in the mid thickness of the adhesive layer (t,),
while Case 3 contributes to the Mode II stress intensity factor (Kjj). Note that the lap-shear
loading conditions considered in Figure 3b assumed that the backing plates were used, as
illustrated in Figure 1b. As a result, m( can be expressed as my = fo(t +t;)/2. Then, the
fracture mechanics problems associated the coach-peel and lap-shear specimens in Figure 1
are now transformed to three basic fracture mechanics problems, namely, Cases 1 through
3, for the development of closed-form solutions.
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Figure 3. The sandwich model representations of the lap-shear and coach-peel loading conditions
through the loading mode deposition. (a) Case 1 corresponds to the coach-peel loading condition.
(b) Cases 0, 2, and 3 correspond to the decompositions of lap-shear loading condition.

2.2. Closed-Form Stress Intensity Factor Solutions
2.2.1. Case 1

Consider a sandwich specimen containing a symmetrically positioned crack of a
and remaining ligament of L, as shown in Figure 4a. Its Mode I stress intensity factor
(SIF) can be derived by defining a corresponding elastic foundation problem, as shown
in Figure 4b. It should be pointed out that Figure 4b looks rather similar to the elastic
foundation problem introduced by Kanninen [41] as a double cantilever beam for deriving
the Kj expression corresponding to the symmetrically positioned crack in a homogenous
specimen (i.e., t; = 0 in Figure 4a). In this study, the adhesive layer t, was considered
here by defining a composite spring representation of the elastic foundation with a spring
length (t + t,)/2. The resulting composite spring (two in series) constant can be expressed
as follows, as given in Appendix A in detail:
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Figure 4. The crack problem definition for Case 1. (a) Geometry and load conditions. (b) Elastic

foundation idealization.

By taking advantage of the double cantilever beam solution given by Kanninen [41],
the governing equation for the beam situated on the elastic foundation with spring constant
k¢ can be written as:

EI

4 _
d*w { kcw(x), when x > 0 o)

dx* 0, when x <0
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where E is the Young’s modulus; [ is the moment of inertia; k. is the spring constant; and
w(x) is the deflection of the beam neutral axis. The resulting K; can be derived in two parts.
One is due to the contribution by the transverse force vy:

%0 v sinh?(BL) + sin*(BL) sinh(BL)cosh(BL) — sin(BL)cos(BL)
K =235 ba( Stay o) ) * (st =) ®

which corresponds to the imposition of the following boundary conditions in solving
Equation (2):

w"(—a) =0, EIw" (—a) = vy, and w" (L) = w"” (L) =0 4)

The other part is due to the contribution by moment iy, as:

my mo [ sinh®(BL) + sin*(BL)
K= 2\/51537 (sinhz(ﬁL) — sinz(ﬁL)> ©)

which corresponds to the imposition of the following boundary conditions in solving
Equation (2):

Elw" (—a) = my, w" (—a) =0, and w" (L) = w" (L) =0 ©)

In Equations (3) and (5), B can be expressed as:

p=(1s QU (U Ry )
— \4EI ~ \ Etg + Eqt t

The detailed derivations can be found in Appendix A.

2.2.2. Case 2

The fracture mechanics problem corresponding to Case 2 (see Figure 3b) is described in
Figure 5a. Its elastic foundation idealization is similar to the one in Figure 4b, but subjected
to mp and the symmetry conditions as shown in Figure 5b. The corresponding governing
equation can be written in a similar manner to the one shown in Equation (2) as:

d*w —kcw(x), when0 < x < L
EIdx‘L_{ 0, whenx <0 ®)
with the following boundary conditions:
Elw" (7ﬂ) = my, w” (751) =0 and w/(L) = w" (L) =0 (9)

yw

my
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S EEEEEEE)
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Figure 5. The crack problem definition for Case 2. (a) Geometry and load conditions. (b) Elastic
foundation idealization.

By following the similar derivation process that leads to Equations (3) and (5), it can
be seen that the Mode I stress intensity factor corresponding to Case 2 can be expressed as:

B mq ( sinh(BL)cosh(BL) — sin(BL)cos(BL)
K= 2\@167/02 (sinh(ﬁL)cosh(,BL) + sin(ﬁL)cos(ﬁL)) (10)
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2.2.3. Case 3

Case 3, which is given in Figure 3b, represents the pure Mode II conditions, or an-
tisymmetric loading with respect to both the crack plane and one-half ligament (i.e., L),
as shown in Figure 6a. The corresponding elastic foundation idealization with respect to
the composite shear springs is given in Figure 6b. As such, the loads are anti-symmetric
along both coordinate axes. The composite shear spring constant can be shown to have the
following expression (see Appendix A):

2GGy(t + )

k =
s Gty + Gyt

(11)

where G and G, are the shear modulus of the adherend and adhesive, respectively. An
average shear strain in the x direction can be defined as:

—_

2u(x)
t

sxy(x> = E(w’(x) + ) (12)

where w and u are the beam deflection and axial displacement in x, respectively. The
governing equations become:
E Iw/// T (

(x) =
w(x) = B = o (w'( ’x +2”<>

(13)
)

The corresponding boundary conditions are:

m(0) = mo, £(0) = fo, w' (L) =0, w(L) =0, F(L) =0, and w'(L) = Z”EL) (14)

By following a similar process used in Cases 1 and 2, the resulting Mode II stress
intensity factor Kjj can be expressed as (see Appendix B for details):

fo/2+C

fo/2—

mo/a

K = \/Ecoth()\L) where A = B2~ 1ito\ Gtat Gt (15)
% o2 Y

5‘ : . mo/2

TE ] ol S 3.2 E— -
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y mo/2 a L ]
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Figure 6. The crack problem definition for Case 3. (a) Geometry and load conditions. (b) Elastic
foundation idealization.

2.3. Analytical Results and Implications

To gain insights into the closed-form solutions developed in Section 2.2 above, the
non-dimensional plots of the stress intensity factors with selected geometry and loading
conditions of interest to later discussions are plotted in Figure 7. The x-axis is the bond
length divided by the substrate thickness L/t. The y-axis is the stress intensity factor

divided by the corresponding load and exponents of thickness =-, &, or f Note that
wE Vi Vi
the symbols represent the finite element computation results for validation purposes, which

will be discussed in the next section (Section 2.4). The following observations can be made:
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approached those without considering an adhesive layer (i.e., t;, = 0) and vice versa.
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Figure 7. The normalized stress intensity factor as a function of L/¢: analytical versus FE validation
results. (a) Case 1 with moment mg on one side. (b) Case 1 with transverse load vy on one side.
(c) Case 2 with moment mg on two sides. (d) Case 3 with both moment my and tension force fy on
two sides.

2.4. FE Validations

Finite element models were used to validate the analytical solutions developed in the
above section. For this purpose, a well-established crack closure integral method [42,43]
was adopted here. As illustrated in Figure 8, the method followed a two-step procedure.
The first step was to perform finite element computation to obtain nodal forces with respect
to a crack body with an initial crack size ag (indicated by dashed lines in Figure 8a). The
second is to advance the initial crack by Aa corresponding to one element size on the crack
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plane and obtain the nodal displacements (see solid lines in Figure 8a). The crack advance
increment Aa needs to be small enough to be accurate, as demonstrated for Mode I and
the mixed mode crack problems in [42]. The resulting energy release rate can be expressed
as the work required to close the crack. Under linear elastic deformation conditions, the
work equals one-half of the nodal force before the crack advances Aa by the corresponding
displacement difference after the crack advances by Aa, which can be expressed as:

— 1 1
G = Algglo %Fy (w1 —wa) a8
Gp = Alirilo oz Fx(ug —u2)
where Fy and F, are the nodal forces perpendicular or along the crack growth direction
in Step 1; and w and u are the displacements perpendicular or along the crack growth
direction of nodes 1 and 2 in Step 2. Then, the SIFs can be obtained as:

K;=+/GE

Kir = vGpE 17)

" 1

——

_____ a | Aa
(a)

y - symmetry

(b)

Figure 8. The crack closure integral method and implementation in the SIF calculation in this study.
(a) Crack closure integral illustration. (b) A representative 2D FE model used for Case 1 in Figure 7a.

An effective SIF for the mixed mode crack problem becomes:

K. = VK2 + Ki1?

Two-dimensional (2D) plane stress (“CPS4” in ABAQUS) FE models with an element
size approximate to 0.5 mm (0.1t) along the x direction was used to provide a sufficient
resolution of SIF as a function crack size. As illustrated in Figure 8b, a crack size of a situated
within the mid-thickness of the adhesive layer was introduced. Half symmetry conditions
(i.e., y symmetry in ABAQUS) were considered, which corresponded to Case 1 in Figure 7a.
All FE models used had the same overall dimensions of L + a4 = 40 mm and { = 5 mm and
dimensionless sandwich properties t/t, = 5, E/E, = 100, and v = v, = 0.3. In addition,
the homogenous condition (i.e., t, = 0) was also considered for comparison purposes. It
should be noted that the case in Figure 7d corresponds to the anti-symmetry with respect to
the crack plane (i.e., x anti-symmetry in ABAQUS) and the transverse plane in the middle
of the bond line (i.e., y anti-symmetry in ABAQUS). As the crack size a increased, the
corresponding nodes were sequentially deactivated along the crack plane. The final SIF
results are shown in Figure 7 as symbols. The agreement between the analytical and FE
results were evident.

(18)

3. Applications in Fatigue Test Data Analysis
3.1. Fatigue Test Details

To demonstrate the applications of the stress intensity factor solutions developed for
the adhesive bonded sandwich specimens in Section 2, here, we considered the fatigue tests
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conducted by Chen et al. [1]. The adhesive bonded fatigue test specimens used in [1] were
of two types: lap-shear and coach-peel. The adherend material was aluminum A5754-O,
with a Young’s modulus of 68,948 MPa and Poisson’s ratio of 0.33. The adhesive material
was BETAMATE4601, with a Young’s modulus of 2860 MPa and Poisson’s ratio of 0.35. The
specimen width was 25.4 mm. Other specimen geometry details are shown in Figure 9 [1].
The adhesive thickness was reported to be 0.275 mm, while the two adherend thicknesses
(t1 and tp) were considered, as summarized in Table 1, as taken from [1].

All Unit: mm

80 12.7

-]

FTITITTITITITTS 25.4

50

25.4

(b)
Figure 9. The test specimen geometry and dimensions (unit: mm) [1]. (a) Coach-peel; (b) Lap-shear.

Table 1. The adherend thickness combinations of the specimens [1].

Joint Types Adherend Thickness Combinations

1 mm-1 mm
Lap-shear t1—t;, 1 mm-2 mm
2 mm-2 mm

1 mm-1 mm
Coach-peel t;-tp 1 mm-2 mm
2 mm-2 mm

Fatigue tests were conducted with a load ratio R = 0.1 and a frequency of 40 Hz. The
failure criterion used was complete joint separation through cohesive failure within the
adhesive layer. The run-out criterion was set as 107 cycles, which was not considered in
this study.

3.2. SIFs for Coach-Peel Test Specimens

For the coach-peel test specimens with t; = t, = t, the SIF solution developed for
Case 1 with the transverse load Equation (3), was directly applicable here, by setting
L+a =254 mm + t; /2, corresponding to the dimensions shown in Figure 9a. Note that in
these coach-peel specimens, the initial crack size a in Equation (2) represents the distance
between the position load projected to the crack plane and the position where the adhesive
layer starts (c in Figure 1a). The non-dimensional analytical results of 1 mm-1 mm are
shown in Figure 10 along with the FE results as a validation. The x- and y-axis definitions
are the same as Figure 7b. For t; # t,, the FE solutions based on the crack closure integral
described in Figure 8 were used here. See the FE model for simulating the coach-peel
loading conditions shown as the insert in Figure 9a.
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Figure 10. The SIF results: the analytical versus the FE results for the coach-peel test specimens.

3.3. SIFs for Lap-Shear Test Specimens

For analyzing the lap-shear test specimens, Case 2 and Case 3 contributed to K;
(through Equation (10)) and Kj; (through Equation (15)), respectively. The combined
effective SIF can be obtained from Equation (18), leading to:

_fo |3 (t+ts 2 ('sinh(BL) cosh(BL) — sin(BL) cos(BL) \*
Ke_% 4( t >(sinh(ﬁL)cosh(ﬁL)+sin(ﬁL)cos(,BL)) + [eoth (ALY (19)

Both the analytical and FE non-dimensional results were compared in Figure 11,
corresponding to t; = t; = 1 mm. The x- and y-axis definitions are the same as Figure 7d.
Note that the total bond length was 2(L + a) = 12.7 mm, corresponding to the lap-shear
specimen shown in Figure 9b. Again, for t; # t;, the FE results based on the crack closure
integral method shown in Figure 8 were used to correlate the fatigue test data in this
study. See the FE model to simulate the lap-shear loading conditions shown as the insert in
Figure 9b.

5

,,,,,,,, analytical K,
----- analytical K” |

analytical Ke 4

o FEK,
351 o FEK,
o FEK,

Figure 11. The SIF results: the analytical versus FE solutions for the lap-shear test specimen.

3.4. Fatigue Test Data Correlation Using SIFs

It is important to note that the SIF value results shown in Figures 10 and 11 become
essentially stabilized as long as the initial bond length L/t is larger than 2. As such, the
combined stress intensity factor range AK,, given in Equations (3) and (19), can be used
to describe the fatigue crack propagation behaviors of the test specimens described in
Section 3.1. For comparison purposes, the effective SIF corresponding to the applied line
force (N/mm) of unity, designated as K (MPa+/m), for the two specimen types shown in
Figure 9 and different thickness combinations are shown in Figure 12.
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K (MPavm)

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1 mm-1mm

Imm-2mm 2mm-2mm Imm-Imm 1mm-2mm 2mm-2mm

t,—t, combination t,~t, combination

() (b)

Figure 12. The comparison of SIF values over different specimen types and thickness combinations.
(a) Coach—peel. (b) Lap—shear.

The cohesive failure fatigue test data from [1] is presented in Figure 13a as a nominal
stress range (Ao, ) versus the cycles to failure in the log-log scale. Here, the nominal stress
range is defined as the remote load range AF divided by the adhesive bond area (i.e.,
A = L, x W, in which L, is the bond length). Not surprisingly, the test data exhibited
significant scatter, as shown in Figure 13a, particularly between the coach-peel and lap-
shear specimen types. With the SIF values given in Figure 12, corresponding to the unit
line force, the nominal stress range in Figure 13a can be converted to the equivalent stress
intensity factor range (AK,) through:

AK, = Aoy x Ly x KV (20)

where Aoy, is the nominal stress range and KY is the effective SIF under unit line force.
Figure 13b shows the same fatigue test data in terms of AK, versus the cycles to failure.
It is evident that AK, is effective in correlating the same test data shown in Figure 13a in
which differences between the coach-peel and lap-shear specimens are no longer obvious.
To further delineate the data trend, all coach-peel test data were further evaluated by
comparing the nominal stress range with the equivalent stress intensity factor range, as
shown in Figure 14. The results in Figure 14 further illustrate the ability of AK, in reconciling
mg Sizlff%ze&gg%plg}e fatigue data that resulted from the different thickness combinations,
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4. Discussions
4.1. Existence of Critical Bond Length

As discussed in Section 2.3, there exists a threshold or critical bond length (L./t)
in terms of L/t beyond which the SIF values tend to become stabilized. This can have
important engineering implications in the optimum joint design to ensure that the adhesive
bond length L is somewhat larger than L., but not too large to incur manufacturing costs
and adding weight. For illustration purposes, we can define the critical bond length L. as
the length within which K > 1.05Kj. Here, K represents the stabilized value corresponding
to the infinitely long bond line. Figures 15 and 16 show the results corresponding to Case 1
(see Section 2.2.1) subjected to the pure moment m( loading. In Figures 15a and 16a, the
x- and y-axis definitions were the same as in Figure 7a. Figures 15b and 16b demonstrate
ow the non-dimensional critical bond length L./t is influenced by the non- dlmensmnal
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tot folutobl neetleag fthabfopuingctudakapplioatienserited blosbthifting thirése inteesity
factor solutions needed for computing AK, can be implemented by obtaining the line
forces fy, vp and line moment 1, described in Figure 3 through nodal forces and nodal
moments available in the structural FE results by using the simultaneous equation method
presented in [44-46]. As such, complex 3D adhesive joint stress calculation problems can be
transformed into an equivalent 2D sandwich specimen problem. Such 3D implementations
for structural applications will be discussed in a future publication.

It should also be pointed out that the present analytical solutions are limited to
ty = tp = t. For sandwich specimens with unequal thickness combinations, further
developments on the approximate stress intensity factor solutions are needed to extend the
generality of the present approach, which will be reported in the near future.

5. Conclusions

In this paper, a set of closed-form stress intensity factor solutions for a general sand-
wich specimen containing an adhesive layer was presented by considering the traction
loading conditions involved in commonly used lap-shear and coach-peel test specimens.
The analytical solutions based on a novel elastic foundation idealization were validated
through direct finite element computations. The results show that the resulting equivalent
stress intensity factor AK, is effective in correlating the fatigue test data from the adhesive
joints. In addition, the analytical solutions show that there exists a threshold bond layer
length (L./t) beyond which the stress intensity factor value become stabilized, which can
be used to determine the minimum bond area for achieving the optimum joint design in
practice. The stress intensity factor solutions are transferable to a general 3D structural
environment through the determination of the relevant line forces and moment shown in
Figure 3 by an existing traction-based structural stress method already in the literature.
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Appendix A. Derivation of Composite Spring Constant
Appendix A.1. Spring Constants Corresponding to Cases 1 and 2

First, we can consider the spring constant of the isotropic beam (i.e., f; = 0). Assume
that each segment of a beam (unit length and unit width) is a bar under tension force F, as
shown in Figure Ala, then the average strain is:

F
_v_za_F
€= 3 =T (A1)
Then, the deflection at the neutral axis is:
t Ft
w =g X 5= 5 (A2)
Then, the spring constant can be obtained:
F 2E
ke=—= A
¢ w t (A3)
The corresponding S is:
ke \t 64
p= (4151) = (Ad)

Now, if the beam is a composite beam, we have bar 1 with ¢1, E; and bar 2 with tp, E.
Assuming that we know the displacement at the neutral axis of bar 1 is w,,, as shown in
Figure Alb, we can find the strain of each beam:

c F/A F F
a=f L AR A (A5)
Then, the equivalent deflection can be:
b
wngelxi—kszxtz (A6)
And the equivalent spring constant is:
F F 2EE
kceq = = 122 (A7)

Weq % + %tzz N 2E1ty + Exty

In a sandwich model with t; = t, E; = E, t, = t;/2, and E; = E,, the constant is:

2EE,

_— A
Et, + Egt (A8)

kceq =
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The corresponding S is:

(ke 1/4_ 6E,t 1/41 A9)
= 4E] ~ \ Et; + Eqt t

Note that when dealing with composite beams, it is assumed that the area outside the
bond area is one beam with E and ¢. This is more like an adhesive failure (i.e., the crack
propagates at the interface between adhesive and adherend). However, when the adhesive
is thin and negligible, this can be used in cohesive failure, whose crack goes through the

adhesive layer.

T

w
¢l

@) (b)
Figure A1l. A diagram of determining the spring constant. (a) Isotropic beam. (b) Composite beam.

Appendix A.2. Composite Shear Spring Constant Corresponding to Case 3

Similar to Appendix A1, we can consider the shear spring constant of the isotropic
beam, (i.e., t; = 0.) According to the stress—strain relationship,

T = ksexy = 2Geyy (A10)
It is easy to find:
E
ks =26 = (A1)

And the corresponding A is:

4k 2
A=/ — = Al12
Et2  tJ/1+o (AL2)

In a composite beam with ¢, E; and t5, E, as shown in Figure A2, the equivalent axial
displacement is u,,. Since the shear strain is related to the displacement of both directions,
it is hard to find the equivalent displacement unless we assume w = 0 and consider u only.
Therefore, we can define the strain-displacement relationship as:

1/2u u t
Sxy = E (t> = ?, u = 2835]/ * E (A13)

We can find the strain of each beam:

T T

Exyl = 2G,’ Exy2 = 2G, (A14)

Then, the equivalent axial displacement can be:

t
tieg = 2(exy1 X 5 +Exy2 X 12) (A15)
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And the equivalent strain is:

51
lu Exyl X 5 T Exyp X ¢t
Exyeq = E teq _ xyl tz] xy2 2 (Al6)
eq 5 i

The equivalent spring constant is:

T 2G1Gy(t + 2tp)

Kse (A17)

In a sandwich model with t; = t, G; = G, t, = t,/2, and G, = G, the constant is:

2GG,(t+ 1)

= Al
Kseq Gty + Gyt (A18)
The corresponding A is:
4k, 2 G (t +t )
A=) —F = ‘ < A19
Et2 tv1+ o0\ Gty + Gat (A19)
7
T > ueq

(a) (b)

Figure A2. A diagram of determining the shear spring constant. (a) Isotropic beam; (b) Composite beam.

Appendix B. Elastic Foundation Solution with Shear Spring

First, we can consider an isotropic beam (i.e., t; = 0). Assume that the shear stress is
proportional to the average strain:

() = ke (6) = 5 (/) + 22 (a20)

The small segment and loads are shown in Figure A3. The beam bending equation
can obtain:
Elw" (x) = m(x) (A21)

And the moment equilibrium of the small segment is:
m'(x) = t(x) X = (A22)

Therefore, using the derivative of Equation (A21) and combining Equations (A20) and
(A22), we can obtain the deflection governing equation:

Elw"” (x) = % <w'(x) + 2”5”) (A23)
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However, this equation has u(x) and cannot be solved directly. The stress—strain—
displacement relationship in the axial direction is:

du  f(x)
F e A=y (A24)
And the force equilibrium can be:
fH(x) =7(x) (A25)

Similarly, using the derivative of Equation (A24) and combining Equations (A20) and (A25),
we can obtain the axial displacement governing equation:

. T(x) ks , 2u(x)
u" (x) = “FF = 2E <w (x)+ ; ) (A26)
m(x’ m(x 5 d.X')

Figure A3. A free body diagram of a small segment of the upper substrate.

Equations (A23) and (A26) are the governing equations of this model. In Case 3, the
boundary conditions are:
2u(L
m(0) = mo = % £(0) = fo, w" (L) = 0, w(L) = 0, f(L) =0, and w'(L) = ”E ) (A27)
Solving the governing equations, we can obtain the deflection and axial displacement as:

u(x) = geM + Fe M 4 ox+c3

A2
6 6c, o
w(x) = Z§eM — Zhe™M 4 cyx® + esx 4 6
_ _foA A _ _ foA AL . A28
Whereco——%e,\f_ﬁ,cl——%m,cz—q—o, (A28)
2fo 4fo 4foL 4k
3= — c5 = e = — A=1/=5
3= TEm(el—e )5 = EA(el—e 1)/ %6 = TEAA(el—¢ 0} £

At the position that load was applied, the rotation angle and axial displacement are:

12 AL —AL _
w’(—a) = w’(O) — E:’;O = —% [W +6a]

for _ _fo [ Maea (A29)
M(—LZ) = M(O) — % = —?% WEH\L) +ﬂ>

The strain energy of each crack is:

Q=—myxw'(—a)— fo xu(—a) +a

AL —AL
. 4f0 [ e~ +e (ABO)

"~ ER [ A(eM —eAL)
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Assume that the cracks grow simultaneously from both sides, then at each side, the
energy release rate is:
A0 90 4fy [ pe M2
Gzi_izﬂ i (A31)
da 0L  Ef2\eM — AL
Finally, we can obtain the stress intensity factor:

2f0 M _ p—AL 2f0
Kip = VGE = =— ———+ = —~coth(AL A32
11 \ﬁe)\L_‘_e,/\L \/ECO ( ) ( )
When dealing with a composite beam, Equation (A32) can be used by replacing
the shear spring into an equivalent shear spring, in which the details can be found in

Appendix A.
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