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Abstract— In a truly decentralized system, agents must
be able to make decisions based on their observations,
without reliance on a centralized coordinator or fusion rule.
A condition, called at least one can tell, is developed that
characterizes when decentralized agents can determine
whether behavior generated by a system is good (i.e., legal)
or bad (i.e., illegal). It is shown that the at least one can tell
condition is decidable and when the condition holds, finite-
state decentralized observers can be constructed. Links be-
tween the at least one can tell condition and decentralized
discrete-event systems are also made.

Index Terms— Joint observability, discrete-event sys-
tems; supervisory control; decentralized observation

I. INTRODUCTION

The move towards multi-agent, autonomous systems in
daily living, including decentralized micro-grids for power,
autonomous robots, self-driving cars, and smart small appli-
ances and electronics, requires truly decentralized decision-
making, obviating the need for a centralized decision point or
fusion rule or coordinator. In this work we explore agents who
make decentralized observations and we examine under what
conditions the agents’ decisions suffice to determine if some
behavior is legal or not.

In particular, we introduce a new decentralized observation
condition which we call at least one can tell and which
attempts to capture the idea that for any possible behavior that
a system can generate, at least one decentralized observation
agent can tell whether that behavior was “good” or “bad”, for
given formal specifications of “good” and “bad”. Specifically,
we place ourselves in a discrete-event system (DES) setting [1],
[5], [14] where systems, “good” behaviors, and “bad” behav-
iors, are all modeled as regular languages over finite alphabets.
Decentralized observation is modeled by projection of words
from the system alphabet onto subalphabets capturing the
events observable by each decentralized agent.

We provide several equivalent formulations of the at least
one can tell condition, and we relate it to (and show that it is
different from) previously introduced joint observability [9],
[10]. In fact, contrary to joint observability which is undecid-
able [9], [10], we show that the at least one can tell condition
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is decidable. We also show that when the condition holds,
finite-state decentralized observers exist.

Some proofs are omitted due to lack of space. Omitted
proofs are available in an extended version of this paper [12].

II. BACKGROUND

The setting of this work is that of systems whose behavior
can be thought of as sequences of actions or events, also
referred to as discrete-event systems (DESs) and modelled as
automata or languages. For more details on automata theory
and languages, see the classic book by Hopcroft and Ullman
[4] and for details on discrete-event systems the book by
Wonham and Cai [14].

A. Preliminaries

A finite set of letters Σ is called an alphabet. The set of all
finite sequences over Σ, also called words, is denoted by Σ∗.
The empty word (i.e., the sequence of length 0) is denoted
ε. Given a subalphabet Σ1 ⊆ Σ, the projection function from
Σ onto Σ1 is the function P1 : Σ∗ → Σ∗1 that removes from
words in Σ all letters except those in Σ1. For example, if Σ =
{a, b} and Σ1 = {a}, then P1(abbab) = aa and P1(bb) = ε. A
language L over Σ is a set L ⊆ Σ∗. L will be used to denote
the behavior of some system or process, where elements of
Σ are events. In that context, the projection function will be
used to capture observations of the behavior of that system or
process. pr(L) denotes the set of all prefixes of all words in
L, e.g., pr({ab, ba}) = {ε, a, b, ab, ba}.

A finite automaton over Σ is a tuple A = (Σ, Q,Q0, F,∆),
where Q is a finite set of states; Q0 ⊆ Q is a set of initial
states; F ⊆ Q is a set of final or accepting states; and ∆ ⊆
Q × Σ × Q is the transition relation. When the set Q0 is a
singleton and the relation ∆ can be represented as a function
∆ : Q × Σ → Q, we say that A is a deterministic finite
automaton (DFA) and otherwise it is a nondeterministic finite
automaton (NFA).

A run of A is a finite sequence of states and transitions
q0

a1−→ q1 · · ·
an−→ qn, for n ≥ 0, such that q0 ∈ Q0 and

(qi, ai+1, qi+1) ∈ ∆ for all i = 0, ..., n− 1. The run is called
accepting if qn ∈ F . The run is said to generate the word
a1 · · · an. A word ρ ∈ Σ∗ is said to be accepted or recognized
by A if there is an accepting run of A generating ρ. The
language accepted or recognized by A is the set of all words
in Σ∗ accepted by A. L(A) denotes the language generated
by A and Lm(A) the language accepted by A.



Since projection can be used to capture the observations
of a system, it is natural to ask whether the projection of
a language recognized by a finite automaton A can also be
recognized by a finite automaton. In fact, the answer is “yes”.
Informally the process is as follows. Let A be an automaton
over Σ and let Σ1 ⊆ Σ. We wish to find an automaton A′ over
Σ1 that recognizes P1(Lm(A)), where P1 : Σ∗ → Σ∗1, and for
a language L ⊆ Σ∗, P1(L) = {P1(ρ) | ρ ∈ L}. We start by
replacing all alphabet labels in A by ε, which results in an
NFA A′ with ε-transitions that recognizes P1(Lm(A)). If A′

is required to be deterministic, we can use the standard subset
construction of [4] to convert an NFA with ε-transitions into
a DFA.

The inverse projection P−1
1 : Σ∗1 → 2Σ∗

of a word returns
all words whose projection could have yielded the original
word. Inverse projection can be extended to languages:
P−1

1 (L) = {ρ | P1(ρ) ∈ L}. Inverse projection allows
us to speak about the words an agent thinks could have been
produced based on the agent’s observations. Inverse projection
of a regular language can also be recognized by a finite
automaton. For Σ1 ⊆ Σ, let A be an automaton over Σ1.
To find an automaton that recognizes P−1

1 (Lm(A)), add self-
loops of all events in Σ \ Σ1 at all states of A.

B. Previous work: joint observability (JO)

Previous work [9], [10] introduced the following definition
of joint observability:

Definition 1 (Joint Observability): Given alphabet Σ and
subalphabets Σi ⊆ Σ, for i = 1, ..., n, and given regular
languages K ⊆ L ⊆ Σ∗, K is called jointly observable if
there exists a total function

f : Σ∗1 × · · · × Σ∗n → {0, 1}

such that

∀ρ ∈ L : ρ ∈ K ⇐⇒ f(P1(ρ), ..., Pn(ρ)) = 1

where Pi : Σ∗ → Σ∗i is the projection function onto Σi, for
i = 1, ..., n.

In the definition above L models the plant, and K models
the good behaviors of the plant. We want to know whether the
behavior of the plant was good or bad. But we can’t observe
the behavior of the plant directly, so we have to rely on the
decentralized projections. Joint observability says that whether
a behavior is good can be completely determined based only
on the decentralized observations of agents.

The following is a necessary and sufficient condition for
joint observability:

Theorem 1 ( [9], [10]): K is jointly observable iff

6 ∃ρ, ρ′ ∈ L : ρ ∈ K ∧ ρ′ ∈ L−K ∧
∀i ∈ {1, ..., n} : Pi(ρ) = Pi(ρ

′) (1)
Informally, Condition (1) says that whether strings are good or
not cannot possibly be determined if there are two strings—
one good and one bad—that look the same to all agents.

We call Condition (1) the JO condition, or simply JO. It
turns out that JO is undecidable [9], [10].

C. Previous work: co-observability
Previous work in DES [8] introduced the definition of co-

obserability to answer the following question: under what
conditions do decentralized agents exist to guarantee that only
the words in K are produced by some plant G.

Definition 2 (Co-observability): Given a plant G (where G
is a DFA), a legal language K that is Lm(G)-closed (i.e.,
pr(K) ∩ Lm(G) = K) and sets of events Σi,c and Σi,o
representing the events that agent i (i = 1, . . . , n) may control
(through disablement) and observe, respectively, K is called
co-observable w.r.t. G if

∀s, s1, s2, . . . , sn ∈ Σ∗ :
( ∧
i=1,...,n

Pi(s) = Pi(si)
)

=⇒

(
∀σ ∈ Σc : s ∈ pr(K) ∧ sσ ∈ L(G)

∧
i∈Nσ

siσ ∈ pr(K)

=⇒ sσ ∈ pr(K)
)

(2)

where Σc =
⋃
i=1,...,n Σi,c, and Nσ = {i | σ ∈ Σi,c} is the

set of the indices of all agents that can control σ.
If we look at the contrapositive of (2), then co-observability

says that for every controllable event that would lead to an
illegal word (i.e., sσ 6∈ K), an agent that can control that event
(i ∈ Nσ) can determine from its observations that the event
should be disabled (since at least one siσ 6∈ K). It turns out
that decentralized agents exist if and only if K is controllable
and co-observable w.r.t. G, where controllability captures the
requirement that an event that cannot be controlled by any
agent cannot lead to an illegal word.

III. DECENTRALIZED OBSERVABILITY: At Least One Can
Tell

Even though JO has been used in [9], [10] as a stepping
stone to showing the undecidability of decentralized super-
visory control problems, JO itself is not really decentralized,
because it requires a centralized decision point f . In this paper,
we investigate “truly decentralized” observation conditions.
We begin with a definition that tries to capture the at least
one can tell property: namely, that there is no centralized
decision point, but for every behavior of the plant, at least one
of the decentralized observers can tell whether this behavior
is good or bad, i.e., whether it belongs in K or not. We call
this condition OCT.

We also present some equivalent formulations of OCT that
are similar to conditions in the DES literature.

A. The OCT condition
Definition 3 (At Least One Can Tell): Given alphabet Σ

and subalphabets Σi ⊆ Σ, for i = 1, ..., n, and given regular
languages K ⊆ L ⊆ Σ∗, the at least one can tell condition
(or simply OCT) is defined as follows:

∀ρ ∈ L : ∃i ∈ {1, ..., n} : CanTell(i, ρ) (3)

where CanTell is defined as follows:

CanTell(i, ρ) =

ρ ∈ K =⇒ 6 ∃ρ′ ∈ L−K : Pi(ρ) = Pi(ρ
′) (4)

∧
ρ ∈ L−K =⇒ 6 ∃ρ′ ∈ K : Pi(ρ) = Pi(ρ

′) (5)



Informally, the at least one can tell states that for any
behavior ρ that can be generated by the system (i.e., ρ ∈ L),
there exists at least one decentralized agent i that “can tell”
whether ρ was a “good” behavior (i.e., ρ ∈ K) or a “bad” one
(i.e., ρ ∈ L − K). Agent i “can tell” by looking at its local
observation, i.e., at the projection of ρ, Pi(ρ). In order for
agent i to be sure, there should be no other system behavior
ρ′ which has exactly the same projection as ρ, yet does not
belong to the same “good” or “bad” class as ρ.

In view of what follows, it is useful to state explicitly the
negation of the OCT condition:

Lemma 1: The negation of OCT is equivalent to:(
∃ρ ∈ K : ∀i ∈ {1, ..., n} : ∃ρi ∈ L−K : Pi(ρ) = Pi(ρi)

)
(6)

∨(
∃ρ ∈ L−K : ∀i ∈ {1, ..., n} : ∃ρi ∈ K : Pi(ρ) = Pi(ρi)

)
(7)

B. DES reformulations of OCT
This section explores the relationship between OCT and

work in the supervisory control of discrete-event systems. We
highlight the resemblance between our work on OCT which
can be situated entirely within theoretical computing (i.e.,
automata theory and formal languages) without reference to
control-theoretic properties and existing work in the supervi-
sory control of DES community.

There are decentralized control conditions within the
discrete-event systems literature that bear some resemblance to
OCT but are not the same. Consider the following definition,
which on first blush looks similar to a combination of co-
observability [8] and D&A co-observability [15]. As we will
see in Theorem 2,

it is actually decomposability [7] (which, informally, says
that whether a string is legal can be determined from the
observations of legal strings) plus a counterpart to decompos-
ability that roughly says that whether a string is illegal can be
determined from the observations of illegal strings.

Definition 4 (Discrete-Event Systems OCT): Given alpha-
bet Σ and subalphabets Σ1,Σ2, . . . ,Σn ⊆ Σ, and given regular
languages K ⊆ L ⊆ Σ∗, we say that the discrete-event systems
OCT (DESOCT) condition holds if

∀s, s1, s2, . . . , sn ∈ Σ∗ :
( ∧
i=1,...,n

Pi(s) = Pi(si)
)

=⇒((
(
∧

i=1,...,n

si ∈ K ∧ s ∈ L) =⇒ s ∈ K
)

∧ (8)(
(
∧

i=1,...,n

si ∈ L−K ∧ s ∈ L) =⇒ s 6∈ K
))

where Pi : Σ∗ → Σ∗i is the projection function onto Σi, for
i = 1, ..., n.

It can be shown, via logical transformations, that Defini-
tion 4 is equivalent to OCT.

Lemma 2: The DESOCT condition is equivalent to the
OCT condition.

Definition 4 can be rewritten as a combination of language
inclusions, which will make it immediately apparent that
DESOCT is decidable for regular language inputs.

Definition 5 (Language OCT): Given alphabet Σ and sub-
alphabets Σ1,Σ2, . . . ,Σn ⊆ Σ, and given regular languages
K ⊆ L ⊆ Σ∗, we say that the language OCT (LANGOCT)
condition holds if⋂

i=1,...,n

P−1
i (Pi(K)) ∩ L ⊆ K (9)

∧⋂
i=1,...,n

P−1
i (Pi(L−K)) ∩ L ⊆ L−K (10)

Theorem 2: The DESOCT condition is equivalent to the
LANGOCT condition.

IV. DECIDABILITY, COMPUTATIONAL COMPLEXITY, FINITE
IMPLEMENTATION

We now show that OCT is decidable for regular languages
and we provide an asymptotic computational complexity anal-
ysis. We also show that, when the OCT condition is met, there
exists a finite implementation.

A. OCT decidability and computational complexity
Using the formulation of OCT given by LANGOCT ((9) and

(10)), we can demonstrate decidability of OCT. In addition, we
will show that OCT can be decided in time O(pn+2 ·mn+1)
where n is the number of agents, and p and m are the number
of states of the automata recognizing the languages L and K,
respectively.

Theorem 3: If K and L are regular languages, OCT is
decidable. Moreover, if K and L are recognized by DFAs
whose state sets have cardinality m and p, respectively, then
for n agents, OCT is decidable in time O(pn+2 ·mn+1).

Proof: Decidability follows from Lemma 2, Theorem 2,
and the fact that the operations of projection, inverse projec-
tion, intersection, and checking set containment are decidable
for regular languages. Let us now examine the computational
complexity. Let K be recognized by a DFA AK with m states
and let L be recognized by a DFA AL with p states. We can
compute a DFA AL−K recognizing L − K by noting that
L − K = L ∩ K, where K denotes the complement of set
K (unlike in the DES literature where the overbar notation is
used to denote prefix-closure). Language K is recognized by
a DFA AK with exactly the same states as AK , as it suffices
to turn the accepting states of AK into rejecting states and
vice-versa. Then, AL−K can be built as the product of AL
and AK [4]. The number of states of AL−K is p ·m.

Consider first condition (9). The language Pi(K) is recog-
nized by the same automaton that recognizes K but with all
events not in Σi replaced by ε. This process can be completed
in O(m) time and the number of states of the resulting
automaton is still m. The inverse projection P−1

i (Pi(K))
is achieved by adding in self-loops of events not in Σi to
the resulting automaton. This can be done in O(m) time
and the number of states of the resulting automaton is still
m. The intersection of the n terms P−1

i (Pi(K)), for i =
1, . . . n, together with L can be done in O(mn · p) time,
since intersection of automata can be represented with an
automaton whose state space is the Cartesian product of the
constituent automata. The result is an NFA M1 with mn · p



states, such that Lm(M1) =
⋂

i=1,...,n

P−1
i (Pi(K)) ∩ L. For

condition (9) we need to check whether Lm(M1) ⊆ K.
This is equivalent to checking Lm(M1) ∩ K = ∅, which
in turn amounts to computing the product of M1 with AK .1

Therefore, the overall time complexity of checking condition
(9) is O(mn · p ·m) = O(mn+1 · p).

Reasoning similarly, we can show that the overall complex-
ity for checking condition (10) is O

(
(p ·m)n · p · (p ·m)

)
=

O(pn+2 ·mn+1). The details can be found in [12].
We can see that the complexity of condition (10) is higher

than that of condition (9), therefore, the overall complexity of
OCT is O(pn+2 ·mn+1).

B. Functional characterization of OCT

Definition 3 captures our intuition about the at least one can
tell property, namely, that at least one of the decentralized
agents can be sure whether the behavior of the plant was
good or bad. However, Definition 3 does not make explicit the
existence of such decentralized observation agents. We rectify
this by giving the definition that follows, which we then prove
equivalent to OCT.

Definition 6 (Alternative OCT): We say that the alternative
OCT (ALTOCT) condition holds iff there exist total functions
fi : Σ∗i → {Y,N,U}, such that(
∀ρ ∈ L : ∃i ∈ {1, ..., n} :

ρ ∈ K =⇒ fi(Pi(ρ)) = Y

∧
ρ ∈ L−K =⇒ fi(Pi(ρ)) = N

)
∧ (11)(

∀ρ ∈ L : ∀i ∈ {1, ..., n} :

fi(Pi(ρ)) = Y =⇒ ρ ∈ K
∧

fi(Pi(ρ)) = N =⇒ ρ ∈ L−K
)

The value Y means that fi knows that ρ was in K, N means
that fi knows that ρ was not in K, and U means fi doesn’t
know. The bottom, ∀ρ...∀i... part says that no observer can
“lie”, namely, if it says Y then it’s really the case that ρ ∈ K,
and if it says N then it’s really the case that ρ ∈ L−K. The
top, ∀ρ...∃i... part says that at least one observer can tell.

Theorem 4: The ALTOCT condition is equivalent to the
OCT condition.

Theorem 4 justifies the definition of OCT as a truly decen-
tralized observation condition. Indeed, OCT holds if and only
if decentralized functions satisfying condition (11) exist. In
fact, we could equivalently have defined OCT to be the exis-
tence of functions satisfying condition (11). Then, Definition 3
could be seen as a necessary and sufficient condition for at
least one can tell observability.

1It is well-known that checking subset inclusion for languages L1 and L2

can done in polynomial time when L1 is represented by an NFA and L2 by a
DFA. A table in [3] provides a nice summary of the computational complexity
of checking subset inclusion for various different automata representations of
L1 and L2.

C. Finite-state OCT observers

The functions fi in Theorem 4 can be seen as decentralized
observers, each outputting Y,N,U depending on whether they
can tell whether the original behavior ρ was in K, not in K,
or unknown. Each of these functions takes as input the entire
projection Pi(ρ) which is generally unbounded in length.
So a brute-force implementation of these functions requires
unbounded memory. In this section, we show that we can also
implement these functions using finite memory.

A finite-state observer is a DFA Oi over subalphabet Σi,
such that the states of Oi are labeled by one of Y,N,U ,
corresponding to the three observation outcomes of function
fi. The requirement is that for every σ ∈ Σ∗i , the label of the
state that Oi ends up in after reading σ is exactly fi(σ). Note
that Oi is deterministic, so for a given σ there is a unique
state that Oi ends up in after reading σ.

Theorem 5: If OCT holds, then finite-state observers as
above exist satisfying condition (11).

Proof: We build Oi as follows:

• Let Pi(K) be the projection of regular language K onto
Σi. Pi(K) is a regular language. Let A1 be a DFA
recognizing Pi(K). Without loss of generality we can
assume that A1 is complete, meaning there is a transition
from every state of A1 for every input letter.

• Similarly, let A2 be a DFA recognizing Pi(L−K).
• Both A1, A2 are DFA over the same alphabet Σi. Let A

be the synchronous product of A1 and A2. Synchronous
product means that each transition of A corresponds to
a pair of transitions for each of A1, A2, labeled with the
same letter.

• A state q of A is a pair of states (q1, q2), where q1 is a
state of A1 and q2 is a state of A2. We label q as follows:

– q is labeled with Y if q1 is accepting and q2 is
rejecting.

– q is labeled with N if q1 is rejecting and q2 is
accepting.

– q is labeled with U otherwise.

It can be shown that Oi as constructed above satisfies our
requirements for a correct local observer.

We see in the construction in the proof of Theorem 5
that we produce DFA recognizing Pi(K) and Pi(L − K).
While we have not proven that a polynomial-time algorithm
for finite-state observers does not exist, we speculate that it
does not since the first conjunct in the consequent of (8)
is the same expression that appears in co-observability and
producing finite-state supervisors for co-observable systems
cannot be done in polynomial time [6]. The result from
Theorem 3 and the proof from Theorem 5 are in keeping
with results in the field of DES where, if the number of
agents is fixed, verification of the necessary and sufficient
conditions for supervisory control solutions to exist can be
decided in polynomial time in the size of the state sets but
where, even when the conditions are satisfied, the synthesis
of corresponding supervisors cannot be done in polynomial
time (cf., [13] for centralized control and [6] for decentralized
control).



V. RELATIONSHIP TO EXISTING WORK IN
DECENTRALIZED OBSERVATION AND CONTROL

In this section we highlight how OCT relates to and is
different from existing concepts in decentralized observation
(in particular, joint observability) and in decentralized control
of DES (in particular, co-observability).

It is easy to show that OCT is a stronger condition than JO.
Theorem 6: OCT implies JO.

Proof: By contrapositive. Suppose JO doesn’t hold.
Then, by Theorem 1, there exist ρ, ρ′ such that ρ ∈ K,
ρ′ ∈ L − K, and for all i = 1, ..., n, Pi(ρ) = Pi(ρ

′). We
will show that (6) holds. Indeed, this is done by setting ρi to
ρ′ for each i = 1, ..., n. By Lemma 1, (6) implies the negation
of OCT.

The two conditions are not equivalent, however.
Theorem 7: JO does not imply OCT.

Proof: Consider the following example: Σ = {a, b},
Σ1 = {a}, Σ2 = {b}, K = (ab)∗ and L = (ab)∗b∗. We
have two observers, and in this case JO holds: if the numbers
of a’s and b’s are equal, we know that the word was in K,
otherwise there are more b’s than a’s, and the word must have
been in L−K. But the decentralized observers alone cannot
tell: one observer sees a bunch of a’s, the other a bunch of b’s.
There is no way of comparing the number of a’s and b’s (since
there is no centralized decision point). So OCT shouldn’t hold
here. Indeed, take ρ = abb, ρ1 = ab, and ρ2 = abab. Note
that ρ ∈ L−K, ρ1 ∈ K and ρ2 ∈ K. We will show that (7)
holds. Indeed, P1(ρ) = P1(ρ1) = a, so observer 1 cannot tell.
Similarly, P2(ρ) = P2(ρ2) = bb, so observer 2 cannot tell. By
Lemma 1, (7) implies that OCT does not hold.

The distinction between JO and OCT can also be seen by
noticing that a counterexample to JO is a pair ρ, ρ′, such that
Pi(ρ) = Pi(ρ

′) for all i = 1, ..., n (Theorem 1), whereas as
Lemma 1 indicates and as we saw in the proof of Theorem 7,
a counterexample to OCT is a set of n+1 words, ρ, ρ1, ..., ρn,
such that for each i = 1, ..., n, we have Pi(ρ) = Pi(ρi).
Crucially, ρ′ is the same word which must “match” ρ in every
projection, whereas the words ρ1, ..., ρn need not be the same.

Joint observability and OCT are both conditions for whether
decentralized agents—based on their observations—can de-
termine if a word is in some prescribed language or not.
Whereas JO indirectly requires a centralized decision point
or fusion rule where information is combined, OCT does not.
In this respect, we can see why OCT is stronger than JO: if
even autonomously agents can determine whether a word is in
some language, then a fortiori combining information (albeit
unnecessary) would also allow them to determine whether a
word is in the language.

Decentralized observation problems similar to the ones we
examine here are also studied in [11]. In particular, the so-
called local observation problems defined in [11] are sim-
ilar in spirit to the ALTOCT condition, but with a crucial
difference. In ALTOCT, the local decision functions fi can
each return three possible values, Y,N,U , whereas in the
local observation problems defined in [11], the local decision
functions fi are only allowed two possible return values, 0
or 1. Another difference is that the local observation problems

defined in [11] include a global combination function B which
can be any Boolean function, whereas in our setting of OCT
and ALTOCT, the combination is implicitly disjunction: if at
least one local observer says Y then this is enough to ensure
that the behavior ρ of the plant was good, and if at least one
local observer says N then we can be sure that ρ was bad.
(By definition, it is impossible to have the case where some
observer says Y and another says N .)

Decentralized control problems under partial observation
are investigated in [2], [8], [15]. For decentralized discrete-
event systems problems that require control, problem so-
lutions require that the agents’ observations together with
their control capabilities are enough to effect the necessary
control. Co-observability and other variations (such as D&A
co-observability [15]) differ from joint observability and the
one can tell condition in the following way. Co-observability
roughly says “based on what sequence of events has occurred
so far, can decentralized supervisors know enough about an
upcoming event to know whether to prevent it from occur-
ring”. Together with controllability, co-observability ensures
that decentralized supervisory control problems can be solved
because for any event that could lead somewhere illegal, at
least one agent that can stop that event from occuring knows
enough from the agent’s observations to do so. In contrast,
joint observability and the at least one can tell condition are
divorced from a particular control problem at hand. Rather,
they speak to whether a string that has already occurred is or
is not in K and whether or not decentralized agents are able
to determine that.

We confirm formally that, in fact, joint observability and at
least one can tell are different from co-observability. We start
by showing that neither JO nor co-observability is a condition
stronger than the other one.

Theorem 8: JO does not imply co-observability.
Proof: Consider the following example: Σ = {a, b},

Σ1 = {a}, Σ2 = {b}, L = aa+ ba+ aba and K = aba.
Consider a plant G that recognizes L (and generates pr(L))

and assume that K is the legal language. To see that K is not
co-observable w.r.t. G: suppose that Σ1,c = Σ2,c = {a, b}.
Take s = a, s′ = ab, and s′′ = ε. Then we have P1(s) =
P1(s′), P2(s) = P2(s′′), s′σ ∈ pr(K), s′′σ ∈ pr(K), but
sσ 6∈ pr(K). That is, if string a occurs, agent 1 will not know
if a or ab occurred and aba is legal (i.e., in pr(K)) but aa is
not legal so agent 1 will not know whether or not to disable
a. Similarly, agent 2 will not know if a occurred or no events
occurred and again, since aa is illegal but a is legal (since
it’s in pr(K)), agent 2 will also not know whether or not to
disable an upcoming a.

However, the system is JO: since L has only three words,
one can easily compare all possible pairs of words and there is
no pair ρ, ρ′ where P1(ρ) = P1(ρ′) and P2(ρ) = P2(ρ′). Joint
observability can also be seen this way: if agent 1 sees two
a’s and agent 2 sees one b then fusing that information leads
one to know that aba must have occurred and hence is in K;
any other combination of observations by the agents means
a word is in L − K. Once again, JO requires a centralized
decision point, in this case the comparison of the number of
a’s seen by agent 1 with the number of b’s seen by agent 2.



Theorem 9: Co-observability does not imply JO.
Proof: Consider the following example: Σ = {a, b},

Σ1 = {a}, Σ2 = {b}, L = b∗a∗b∗ and K = pr(ab)
To see that K is not JO, take ρ = ab, ρ′ = ba. Then ρ ∈ K,

ρ′ ∈ L −K, P1(ρ) = a = P1(ρ′) and P2(ρ) = b = P2(ρ′),
which is a counterexample to joint observability.

Consider a plant G that recognizes L (and generates pr(L))
and a legal language K. Suppose that Σ1,c = Σ2,c = {a, b}.
Since there are no uncontrollable events, K is trivially control-
lable. Moreover, it can easily be shown that K is co-observable
w.r.t. G. Co-observability is equivalent to the existence of
decentralized agents that guarantee that only words in pr(K)
are generated. The following agents work: after agent 1 sees
an a, it disables a and after agent 2 sees a b, it disables b.

From Theorems 6 and 9, we have the following result.
Corollary 1: Co-observability does not imply OCT.
We know from Theorem 6 that OCT is stronger than JO

so it is natural to ask whether it is also stronger than co-
observability. As we see below, the answer is “no”.

Theorem 10: OCT does not imply co-observability.
Proof: Consider the following example: Σ = {a, b},

Σ1 = {a}, Σ2 = {b}, L = ba+ aba and K = aba.
It is easy to see that OCT holds since all strings in K have

have two a’s and all illegal strings have one a. So agent 1 can
always tell whether a string is in K or not.

Consider a plant G that recognizes L (and generates pr(L))
and legal language K. Let Σ1,c = {b} and Σ2,c = {a}.
The system is controllable since there are no uncontrollable
events. However, the system is not co-observable since after
s = ab occurs, agent 2—which is the only agent that can
possibly disable a—will not know if a should be disabled since
P2(ab) = P2(b) = b and aba ∈ pr(K) but ba 6∈ pr(K). So
agent 2 upon seeing a single b cannot know if ab or b occurred
and hence cannot know whether to disable the upcoming a.

Co-observability is a condition for determining whether
agents know enough about a system to make control decisions.
So it is not surprising that whether or not a plant can be
controlled to ensure that only words in K are generated will
not necessarily affect whether, if that same plant were allowed
to evolve without disruption, agents could determine if a string
that plant generates is in K or not. Thus it is not surprising
that Theorems 8, 9, and 10 and Corollary 1 confirm OCT/JO
and co-observability are not comparable in terms of one being
stronger than the other.

VI. CONCLUSIONS

We have shown that checking decentralized observability
amounts to ensuring that at least one agent can tell if a
word is legal or not. This condition is decidable for regular
languages and if it is satisifed then finite-state observers can
be constructed (albeit not likely in polynomial time).
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