Formal Verification of a Distributed Dynamic
Reconfiguration Protocol”

William Schultz’
Northeastern University
Boston, MA, USA
schultz.w@northeastern.edu

Abstract

We present a formal, machine checked TLA+ safety proof of
MongoRaftReconfig, a distributed dynamic reconfiguration
protocol. MongoRaftReconfig was designed for and imple-
mented in MongoDB, a distributed database whose replica-
tion protocol is derived from the Raft consensus algorithm.
We present an inductive invariant for MongoRaftReconfig that
is formalized in TLA+ and formally proved using the TLA+
proof system (TLAPS). We also present a formal TLAPS proof
of two key safety properties of MongoRaftReconfig, Leader-
Completeness and StateMachineSafety. To our knowledge,
these are the first machine checked inductive invariant and
safety proof of a dynamic reconfiguration protocol for a Raft
based replication system.

CCS Concepts: « Theory of computation — Automated
reasoning; - Computing methodologies — Distributed
algorithms.

Keywords: Formal Verification, Theorem Proving, TLA+,
Dynamic Reconfiguration, Distributed Systems, Raft

ACM Reference Format:

William Schultz, Ian Dardik, and Stavros Tripakis. 2022. Formal
Verification of a Distributed Dynamic Reconfiguration Protocol.
In Proceedings of the 11th ACM SIGPLAN International Conference
on Certified Programs and Proofs (CPP °22), January 17-18, 2022,
Philadelphia, PA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3497775.3503688

“This work has been partially supported by NSF award CNS-1801546.
TBoth authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP °22, January 17-18, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9182-5/22/01...$15.00
https://doi.org/10.1145/3497775.3503688

Ian Dardik™
Northeastern University
Boston, MA, USA
dardik.i@northeastern.edu

143

Stavros Tripakis
Northeastern University
Boston, MA, USA
stavros@northeastern.edu

1 Introduction

Distributed replication systems based on the replicated state
machine model [35] have become ubiquitous as the founda-
tion of modern, fault-tolerant data storage systems. In order
for these systems to ensure availability in the presence of
faults, they must be able to dynamically replace failed nodes
with healthy ones, a process known as dynamic reconfigura-
tion.

The protocols for building distributed replication systems
have been well studied and implemented in a variety of
systems [7, 8, 16, 41]. Paxos [19] and, more recently, Raft [29],
have served as the logical basis for building provably correct
distributed replication systems. Dynamic reconfiguration,
however, is an additionally challenging and subtle problem
[1] for the protocols underlying these systems.

Furthermore, few of these reconfiguration protocols have
been formally verified [26, 34, 39]. The Raft consensus pro-
tocol, originally published in 2014, provided a dynamic re-
configuration algorithm in its initial publication, but did not
include a precise discussion of its correctness or include a
formal specification or proof. A critical safety bug [28] in
one of its reconfiguration protocols was found after initial
publication, demonstrating that the design and verification
of reconfiguration protocols for these systems is a challeng-
ing task. This also demonstrates that formal verification is
valuable for ensuring correctness of these protocols.

MongoDB [25] is a general purpose, document oriented
database which implements a distributed replication sys-
tem [36] for providing high availability and fault tolerance.
MongoDB’s replication system uses a log-based consensus
protocol that derives from Raft [47]. MongoDB recently in-
troduced a novel dynamic reconfiguration protocol, Mongo-
RaftReconfig, for its replication system. The MongoRaftRe-
config protocol is described in detail in [38], which includes
a TLA+ formal specification of the protocol and a manual
safety proof.

In this paper, we present the first formal verification of
the safety properties of MongoRaftReconfig. We present a
formally stated inductive invariant for the protocol, which
we prove and then utilize to establish two high level safety
properties of the protocol. In particular, we prove (1) Leader-
Completeness, which, intuitively, states that if a log entry is
committed it is durable, and (2) StateMachineSafety, which
says that log entries committed at a particular index must be

https://doi.org/10.1145/3497775.3503688
https://doi.org/10.1145/3497775.3503688
https://doi.org/10.1145/3497775.3503688

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

consistent across all nodes in the system. We carry out our
verification efforts using TLAPS, the TLA+ proof system [9].
To our knowledge, this is the first machine checked inductive
invariant and safety proof of a reconfiguration protocol for
a Raft based replication system.

To summarize, we make the following contributions:

e A formally stated TLA+ inductive invariant for the
MongoRaftReconfig protocol. To our knowledge, this
is both the first inductive invariant for a Raft-based
reconfiguration protocol and the first that has been
formalized.

A formally verified TLAPS proof of our inductive in-
variant.

A formally verified TLAPS proof that MongoRaftRe-
config satisfies the two above safety properties, Lead-
erCompleteness and StateMachineSafety. To our knowl-
edge, this is the first machine checked safety proof of
a Raft-based reconfiguration protocol.

All of our TLA+ specifications, TLAPS proof code, and in-
structions for checking our proofs are included in the sup-
plementary material [37] for this paper. Where appropriate
throughout this paper, we cite the relevant files located in
this material.

The rest of this paper is organized as follows. In Section 2
we provide some general background about MongoDB repli-
cation and TLA+. Section 3 provides a formal statement of
the verification results that we establish in this paper. Section
4 presents our inductive invariant for MongoRaftReconfig,
and Section 5 presents our formal safety proof of Mongo-
RaftReconfig in TLAPS, which makes use of our inductive
invariant. Section 6 discusses related work, and Section 7
discusses conclusions and future work.

2 Background
2.1 The MongoDB Static Replication Protocol

MongoDB is a general purpose, document oriented database
that stores data in JSON-like objects. A MongoDB database
consists of a set of collections, where a collection is a set of
unique documents. To provide high availability, MongoDB
provides the ability to run a database as a replica set, which
is a set of MongoDB servers that act as a consensus group,
where each server maintains a logical copy of the database
state.

MongoDB replica sets utilize a replication protocol that
is derived from Raft [27], with some extensions. We refer
to MongoDB’s abstract replication protocol, without recon-
figuration, as MongoStaticRaft, to distinguish it from the
MongoRaftReconfig protocol verified in this paper. Mongo-
StaticRaft can be viewed as a modified version of standard
Raft that satisfies the same underlying correctness proper-
ties, and it is described in more detail in [36, 47]. We provide
a high level overview here, since MongoRaftReconfig is built
on top of MongoStaticRaft.

144

William Schultz, lan Dardik, and Stavros Tripakis

A MongoDB replica set running MongoStaticRaft consists
of a set of server processes, Server = {sy, s, ..., S }. There
exists a single primary server and a set of secondary servers.
As in standard Raft, there is a single primary elected per
term. The primary server accepts client writes and inserts
them into an ordered operation log known as the oplog. The
oplog is a logical log where each entry contains information
about how to apply a single database operation. Each entry
is assigned a monotonically increasing timestamp, and these
timestamps are unique and totally ordered within a server
log. These log entries are then replicated to secondaries
which apply them in order leading to a consistent database
state on all servers. When the primary learns that enough
servers have replicated a log entry in its term, the primary
will mark it as committed, guaranteeing that the entry is
permanently durable in the replica set.

2.2 The MongoDB Dynamic Reconfiguration
Protocol: MongoRaftReconfig

MongoRaftReconfig, the protocol verified in this paper, is an
extension of MongoStaticRaft that allows for dynamic recon-
figuration. MongoRaftReconfig utilizes a logless approach to
managing configuration state and decouples the processing
of configuration changes from the main database operation
log. The full details of MongoRaftReconfig are presented in
[38], but we provide a high level overview here. In Mongo-
RaftReconfig, each server of a replica set maintains a single,
durable configuration, where a configuration is formally de-
fined as a tuple (m, v, t), where m € 297" is a subset of all
servers, v € N is a numeric configuration version, and t € N
is the numeric term of the configuration. Configurations are
totally ordered by their (version, term) pair, where term
is compared first, followed by version. Servers can install
any configuration newer than their own. Reconfiguration
operations, which can only be processed by primary servers,
update a server’s local configuration to a new configuration
specified by the client.

Prior to the work presented in this paper, [38] presented
a formal TLA+ specification of MongoRaftReconfig, results
from model checking its safety on finite protocol instances,
and a manual, prose safety proof. There existed, however,
no formal inductive invariant or machine checked proof
for the safety properties of MongoRaftReconfig. The formal
inductive invariant we present in this paper bears some
structural similarity to the manual proof given in [38], but
the TLAPS proofs presented in this paper were developed
independently, and are not based on the prior, manual proof.

2.3 TLA+ and TLAPS

TLA+ [20] is a formal specification language for describing
distributed and concurrent systems that is based on first
order and temporal logic [33]. Since MongoRaftReconfig is
formally specified using the TLA+ language and it is the

Formal Verification of a Distributed Dynamic Reconfiguration Protocol

language used for our proofs, we provide a brief overview
of TLA+ and its associated proof system, TLAPS [9].

2.3.1 Specifications in TLA+. Specifying a system in TLA+
consists of defining a set of state variables, vars, along with
a temporal logic formula which describes the set of per-
mitted system behaviors over these variables. The canon-
ical way of defining a specification is as the conjunction
of an initial state predicate, Init, and a next state relation,
Next, which determine, respectively, the set of allowed initial
states and how the protocol may transition between states.
The overall system is then defined by the temporal formula
Init A O] Next] yqrs, where O denotes the “always" operator
of temporal logic, meaning that a formula holds true at every
step of a behavior, and vars denotes a sequence of all state
variables of a specification. [Next],qrs is equivalent to the
expression Next V (vars’ = vars), which means that specifi-
cations of this form allow for stuttering steps i.e. transitions
that do not change the state. A primed TLA+ expression
containing state variables, expressed by attaching a ’ symbol,
denotes the value of that expression in the next state of a sys-
tem behavior. The next state relation is typically written as a
disjunction A; V A, V...V A,, of actions A;, where an action
is a logical predicate that depends on both the current and
next state of a behavior. Correctness properties and system
specifications in TLA+ are both written as temporal logic
formulas. This allows one to express notions of property
satisfaction in a concise manner. We say that a specification
S satisfies a property P iff the formula § = P is valid (i.e.
true under all assignments).

2.3.2 The TLA+ Proof System. The TLA+ proof system
[9], abbreviated as TLAPS, is an accompanying tool for the
TLA+ language that allows one to write and mechanically
check hierarchically structured proofs [18] in TLA+. Proofs
consist of a series of statements that support the proof goal,
which is the top level statement that must be proved. Each
statement, in turn, must be proved either compositely using
a nested structural proof, or as a leaf proof via a backend
solver. TLAPS is independent of any particular SMT solver or
theorem prover, and includes support for various backends
e.g. Z3 [11], Isabelle [43], and Zenon [4].

Figure 1 shows an example of a lemma and its proof in
TLAPS. The AssUME-PROVE idiom treats the lemma as an
implication. That is, if Conditions hold, then Implication must
follow. Leaf statements are proved using the By statement,
and can reference theorems and lemmas by name, operator
definitions, and previous statements by label. Each structural
proof must end with a QED statement, closing the goal of
either a nested or overall proof.

2.4 The MongoRaftReconfig TLA+ Specification

A formal TLA+ specification of MongoRaftReconfig was orig-
inally included in [38], but was not discussed in detail. This
same specification serves as the basis for the TLAPS proofs

145

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

LEMMA NameOfLemma 2
AssUME Conditions
PROVE Implication
PROOF
(1)1. Statement1.1 BY DEF Conditions
(1)2. Statement1.2
(2)1. Statement2.1 BY Useful Theorem
(2)2. Statement2.2 BY (1)1, (2)1
(2). QED BY (2)2
(1). QED BY (1)1, (1)2

Figure 1. Example of a hierarchically structured TLAPS
proof.

TypeOK =
log € [Server — Seq(N)]
committed € 2IH
term € [Server — N]
state € [Server — {Primary, Secondary}]
config € [Server — 2%¢mve"]
configVersion € [Server — N]
configTerm € [Server — N]

Figure 2. The state variables of the MongoRaftReconfig proto-
col and their corresponding types stated as a type correctness
predicate in TLA+. The notation [A — B] represents the set
of all functions from set A to set B and Seq(.S) represents
the set of all sequences containing elements from the set S.

presented in this paper, so we give a brief overview of the
specification here. The complete specification can be found
in the MongoRaftReconfig.tla file of the supplementary mate-
rial provided with this paper [37].

The state variables of the specification and their types are
shown in Figure 2. The initial states, next state relation, and
specification definition of MongoRaftReconfig are summa-
rized in Figure 3. The operator Quorums(m) is defined as
the set of all majority quorums [42] for a given set of servers
m. Reconfigurations are modeled by the Reconfig(s, m) ac-
tion, which represents a reconfiguration that occurs on pri-
mary server s to a new configuration with member set
m € 2%¢Tve" Configuration propagation is modeled by the
SendConfig(s, t) action, which represents the propagation
of a configuration from server s to server ¢. Elections are
modeled by the action BecomeLeader(s, (), which repre-
sents the election of server s by a set of voters (. The ac-
tion UpdateTerms(s,t) propagates the term of a server s
to server ¢, if the term of s is newer than ¢. The actions
ClientRequest(s), GetEntries(s, t), RollbackEntries(s,t),
and CommitEntry(s,)) are responsible for log related ac-
tions that are conceptually unrelated to reconfiguration, so
we do not discuss their details here. Their full definitions can

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

— MopuLE MongoRaftReconfig ——
MRRInit =
Alog = [i € Server — ()]
A committed = {}
A currentTerm = [i € Server — 0]
A state = [i € Server — Secondary]
A configVersion = [i € Server + 1]
A configTerm = [i € Server — 0]
A FinitConfig € 25¢Tver .
A initConfig # 0
A config = [i € Server — initConfig]

MRRNext =

s, t € Server :

3 Q € Quorums(config[s]) :
V ClientRequest(s)
V GetEntries(s, t)
V RollbackEntries(s, t)
Vv CommitEntry(s, Q)
V SendConfig(s, t)
V Reconfig(s, m)
V BecomeLeader(s, Q)
V UpdateTerms(s, t)

MRRSpec = MRRInit A O[MRRNext] yars
[

Figure 3. Summary of the MongoRaftReconfig TLA+ speci-
fication. The full specification consists of 359 lines of TLA+
code, excluding comments, and can be found in the Mongo-
RaftReconfig.tla file of the supplementary material.

be found in the specifications provided in the supplementary
material [37].

Note that our specifications are written at a deliberately
high level of abstraction, ignoring some lower level details
of the protocol. In practice, we have found the abstraction
level of our specifications most useful for understanding
and communicating the essential behaviors and safety char-
acteristics of the protocol, while also serving to make our
automated verification and proof efforts more feasible. In the
future, however, we believe it would be valuable to explore
techniques for formally relating our abstract specifications
to real world protocol implementations, with an aim of veri-
fying whether a system implementation faithfully reflects
our high level specifications [5, 10, 15].

3 Verification Problem Statement

In this paper we establish that the MongoRaftReconfig pro-
tocol satisfies LeaderCompleteness and StateMachineSafety,
which are two key, high level safety properties of both the
MongoDB replication system and standard Raft. Informally,
the LeaderCompleteness property states that if a log entry

146

William Schultz, lan Dardik, and Stavros Tripakis

is committed in term 7', then it is present in the log of any
leader in term 7 > T It is stated more precisely in Defini-
tion 3.1, where committed € N x N refers to the set of com-
mitted log entries as (index, term) pairs, and InLog(i, t, s)
is a predicate determining whether a log entry (4, t) is con-
tained in the log of server s. StateMachineSafety states that
if two log entries are committed at the same log index, these
entries must be the same, and is stated formally as Definition
3.2.

Definition 3.1 (Leader Completeness).

Vs € Server : ¥Y(cindex, cterm) € committed :
(state[s] = Primary A cterm < term[s]) =

InLog(cindex, cterm, s)
Definition 3.2 (State Machine Safety).

V(ind;, t;),(ind;, t;) € committed :
(mdl = an7) = (ti = tj)

Both LeaderCompleteness and StateMachineSafety are safety
properties. More specifically, they are both invariants, mean-
ing that they must hold in all reachable states of Mongo-
RaftReconfig. Thus, our verification goals can be stated for-
mally as Theorems 3.3 and 3.4, where MRRSpec refers to
the specification of MongoRaftReconfig as given in Figure 3.

Theorem 3.3 (MRRImpliesLeaderCompleteness).
MRRSpec = OLeaderCompleteness

Theorem 3.4 (MRRImpliesStateMachineSafety).
MRRSpec = OStateMachineSafety

Theorems 3.3 and 3.4 are the safety results established and
formally verified in this paper, and they can be found in the
MongoRaftReconfigProofs.tla file of our supplementary mate-
rial [37]. The proofs of Theorems 3.3 and 3.4 are discussed in
Section 5. Both of these theorems are proved using the help
of an inductive invariant, which we discuss next, in Section
4.

4 The Inductive Invariant
4.1 Background

A standard method to establish an invariant Inv is to find an
inductive invariant that implies Inv [24]. Formally, a state
predicate Inv is an invariant of a system Spec if the following
holds:

Spec = Olnv

(1)

Suppose that Spec is of the form Spec = Init AO[Next]ars,
as in the case of MongoRaftReconfig. Then, in order to estab-
lish Formula 1, it is sufficient to find a state predicate Ind

Formal Verification of a Distributed Dynamic Reconfiguration Protocol

MRRInd =
T { A TypeOK

A ElectionSafety

A PrimaryConfigTermEqualToCurrentTerm
B A ConfigVersionAndTermUnique

A PrimaryInTermContainsNewestConfigOf Term
A ActiveConfigsOverlap

A ActiveConfigsSafe At Terms

A LogEntryInTermImpliesConfigInTerm
A PrimaryHasEntriesItCreated
A LogMatching

Ly

A PrimaryTermAtLeastAsLargeAsLogTerms
Ly A TermsOfEntries GrowMonotonically

A UniformLogEntriesInTerm

C
! A Committed TermMatchesEntry

A LeaderCompleteness

A LogsLater ThanCommitted MustHave Committed
A ActiveConfigsOverlap WithCommitted Entry

A NewerConfigsDisableCommitsinOlder Term

(@)

N

{ A Committed EntryIndexesAreNonZero
{ A ConfigsNonEmpty

Figure 4. Our inductive invariant for MongoRaftReconfig.

such that the following conditions hold:

Init = Ind (2)
Ind A Next = Ind’ (3)
Ind = Inv (4)

Conditions 2 and 3 are referred to as initiation and consecu-
tion, respectively, and they are sufficient to show that Ind is
an inductive invariant. Conditions 2, 3, and 4 are together
sufficient to establish Formula 1.

In our case, Spec instantiates to MRRSpec and we have
two instances of Inv, namely, LeaderCompleteness and StateMa-
chineSafety. In principle, we need to discover two distinct
inductive invariants, one for LeaderCompleteness and another
one for StateMachineSafety. In our case, the same inductive
invariant turns out to be sufficient for both properties.

4.2 Invariant Overview

The inductive invariant that we developed for MongoRafiRe-
config is referred to as MRRInd and consists of 20 high level
conjuncts, shown in Figure 4. Its full definition is given in
140 lines of TLA+ code, and is provided in the MongoRaftRe-
configlndInv.tla file of our supplementary material [37].

147

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

The inductive invariant, shown in Figure 4, is composed
of several conceptually distinct subcomponents. The first
conjunct, TypeOK, establishes basic type-correctness con-
straints on the state variables of MongoRaftReconfig. This
is necessary in most cases when stating inductive invari-
ants in TLA+, since it is an untyped formalism [23]. The
full definition of TypeOK is shown in Figure 2. The ini-
tial set of 6 conjuncts, labeled as E; in Figure 4, along with
TypeOK , is itself an inductive invariant, and it establishes
the ElectionSafety property, a key auxiliary invariant of the
protocol that is needed to establish LeaderCompleteness.
The conjuncts in group L, are a set of invariants related to
logs of servers in the system, and they collectively establish
LogMatching, another important auxiliary invariant. The
L, group establishes a few additional log related invariants,
which rely on previous conjuncts. In general, these log re-
lated conjuncts are not fundamentally related to dynamic
reconfiguration, but are necessary to state precisely for a
protocol that manages logs in a Raft like fashion. Group C}
establishes some required, trivial aspects of the set of com-
mitted log entries. The conjunct group C, establishes the
high level LeaderCompleteness property, by relating how
configurations interact with the set of committed log entries
present in the system. Finally, the last conjunct, labeled as NV,
asserts that every configuration is non empty i.e. it contains
some servers. This is an auxiliary invariant that is helpful
for proving other facts.

4.3 Discovering an Inductive Invariant

Discovering such an inductive invariant for a protocol of
this complexity is non-trivial. To our knowledge, this is the
first inductive invariant proposed for a dynamic reconfigura-
tion protocol that is built on a Raft based replication system.
The discovery of MRRInd took approximately 1-2 human
months of work and it involved repeated efforts of itera-
tion and refinement. To aid in this discovery process, we
leveraged a technique proposed in [22] that utilizes the TLC
explicit state model checker [46] to probabilistically verify
candidate inductive invariants. If a candidate Inv is not in-
ductive, the TLC model checker can, with some probability,
report a counterexample to induction. A counterexample to
induction is a state transition s — ¢ satisfying MRRNext,
where s satisfies Inv and t violates Inv. These counterex-
amples are helpful to understand why a candidate invariant
fails to be inductive, and how it may need to be modified
or strengthened further. This probabilistic method can only
be used on finite protocol instances, and it does not pro-
vide a proof that an invariant is inductive. Nevertheless, the
technique proved to be highly effective, as it helped us to
discover an inductive invariant that we eventually proved
formally correct using TLAPS, as discussed more in Section 5.
Furthermore, we did not discover any errors in our inductive
invariant during the TLAPS proof process.

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

Note that, although having a tool for finding counterex-
amples to induction is helpful for finding errors in candidate
inductive invariants, it still does not provide much guidance
in developing an inductive invariant from scratch. That is,
it does not necessarily provide a systematic methodology
for converging to a correct inductive invariant. Rather, de-
velopment of our inductive invariant still required a large
amount of creativity and human reasoning, largely driven
by strong prior intuitions about the correctness of the proto-
col. For example, rather than aiming to develop the entire
inductive invariant at once, we were able to develop it in
components, based partially on human intuition about cer-
tain auxiliary lemmas that we knew must hold true of the
overall protocol. For example, the ElectionSafety and the
LogMatching invariants (shown in Figure 4) are two such
lemmas that we worked on establishing first, before moving
on to discover the additional conjuncts needed to establish
the LeaderCompleteness property.

5 TLAPS Proofs

In this section we present an overview of our formally veri-
fied safety proof of MongoRaftReconfig, which was completed
using TLAPS, the TLA+ proof system [9]. Section 5.1 gives
an overview of the proof that MRRInd is an inductive in-
variant of MongoRaftReconfig, and Section 5.2 describes how
this fact is used to prove LeaderCompleteness and StateMa-
chineSafety, which are the key, high level safety properties
that were defined in Section 3.

5.1 TLAPS Proof of Inductive Invariant

To establish that MR RInd is an inductive invariant, we must
prove that MRRInd satisfies both the initiation (2) and con-
secution (3) conditions for MongoRaftReconfig, as described
in Section 4. This is captured in Lemma 5.1.

Lemma 5.1 (MRRInd is an inductive invariant).

MRRInit = MRRInd
MRRInd AN MRRNext = MRRInd’

(@)
(b)

Cases (a) and (b) of Lemma 5.1 represent, respectively,
initiation and consecution. The initiation case of Lemma 5.1
follows in a straightforward manner from the definitions
of MRRInit and MRRInd. Proving the consecution case
of Lemma 5.1, however, is the most difficult and time con-
suming aspect of the verification efforts presented in this
paper. At a high level, this proof consists of showing that,
assuming MRRInd holds in a current state, every transition
of the protocol upholds MRRInd in the next state. To break
this verification problem into smaller steps, we decompose
the proof first by each conjunct of MRRInd, and then we
decompose by each protocol transition.

148

William Schultz, lan Dardik, and Stavros Tripakis

Specifically, consider the definition of MRRInd, which is
composed of 20 conjuncts (as shown in Figure 4):

MRRInd = LA LA ...A Iy

Our first decomposition step breaks down case (b) of Lemma
5.1 into the following, independent proof goals, one for each

conjunct of MRRInd:
MRRInd N MRRNext = I

MRRInd A MRRNext = I,
5)

MRRInd A MRRNext = I},

Furthermore, MR R Next is the disjunction of eight protocol
actions (as shown in Figure 3):

MRRNext = A,V Ay V -+ V Ag (6)

So, we further decompose each goal of Statement 5 into one
case for each protocol action. That is, we decompose each
goal MRRInd A MRRNext = I into the following proof

goals:
MRRInd A Ay = I}

MRRInd A Ay = I/
(7)

MRRInd A As = I/

Our proof follows this methodology for every conjunct of
MRRInd and every action of MRRNext. This produces a
set of proof goals whose size is the product of the number of
protocol actions (8) and the number of invariant conjuncts
(20), totaling 8 % 20 = 160 proof goals. This decomposition
allowed us to focus on proving one, small goal at a time,
while incrementally building a library of reusable lemmas.
The TLAPS proof of Lemma 5.1 can be found in the Mon-
goRaftReconfigProofs.tla file of our supplementary material
[37], while our library of lemmas can be found in the Lib.tla,
BasicQuorumsLib.tla, and LeaderCompletenessLib.tla files.

5.2 TLAPS Proof of Safety

Lemma 5.1 establishes that MRRInd is an inductive invariant
of MongoRaftReconfig. In this section we provide an overview
of our proofs for establishing that MongoRaftReconfig satis-
fies LeaderCompletness and StateMachineSafety (Theorems
3.3 and 3.4), which utilize MRRInd. We do this by establish-
ing lemmas 5.2 and 5.3, which, together with Lemma 5.1, are
sufficient to establish Theorems 3.3 and 3.4.

Lemma 5.2.
MRRInd = LeaderCompleteness
Lemma 5.3 (IndImpliesStateMachineSafety).
MRRInd = StateMachineSafety

Formal Verification of a Distributed Dynamic Reconfiguration Protocol

LeaderCompleteness is a conjunct of MRRInd so the im-
plication of Lemma 5.2 follows trivially. The proof of Lemma
5.3, which can be found in the StateMachineSafetyLemmas.tla
file of our supplementary material [37], is not trivial and we
present it in the following section as a concrete example of
a TLAPS proof.

5.3 Example of a TLAPS Proof

In this section we present the proof of Lemma 5.3 to serve
as an example of TLAPS. The proof relies on one additional
lemma, stated as Lemma 5.4. The proof of Lemma 5.4 is
contained in the StateMachineSafetyLemmas.tla file of the
supplementary material [37].

Lemma 5.4 (CommitsAreLogEntries).

MRRInd =
Yc € committed : s € Server :

InLog(c.entry, s)

The TLAPS proof of Lemma 5.3 is shown in Figure 5. The
proof uses the ASSUME-PROVE idiom to show that MRRInd
implies StateMachineSafety. By the definition of the StateMa-
chineSafety property, we can establish the proof goal given in
(1)1. Steps (1)2 and (1)3 assume that c1 and c2 are arbitrary
committed entries that share the same index but are not
identical, and PROVE FALSE OBvVIOUS establishes that these
assumptions will lead to a contradiction. (1)4 is a composite
proof that shows that c1 and ¢2 cannot share the same term.
Steps (1)5 through (1)8 use Lemma 5.4 to show that there
exist servers s1 and s2 that respectively contain the commit-
ted entries c1 and ¢2 in their logs. The two cases (1)9 and
(1)10 show that if either c1 or ¢2 has a larger term than the
other, then we derive a contradiction as expected. Finally,
it suffices to only consider cases (1)9 and (1)10 because of
step (1)4, and hence the proof is complete.

5.4 Proof Statistics

We now present some summary statistics about our TLAPS
proof and its development to give a better sense of its scope,
size, and difficulty. The entire TLAPS proof, including the
statement of the inductive invariant and the protocol speci-
fication, consists of 3189 lines of TLA+ code, excluding com-
ments. 140 of these lines are used for defining the inductive
invariant and 359 of these lines are used for specifying the
MongoRaftReconfig protocol. There are a total of 3 top level
theorems and 78 formally stated lemmas. In terms of proof
effort, we spent approximately 4 human-months on develop-
ment of the TLAPS proof, which does not include the time
to develop the inductive invariant described in Section 4. De-
velopment of the inductive invariant took approximately an
additional 1-2 human-months of work. For the TLAPS proof
system to check the correctness of the completed proof from
scratch it takes approximately 38 minutes on a 2020 Macbook
Air using 8 Apple M1 CPU Cores. This computation time

149

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

consists mostly of queries to an underlying backend solver
e.g. Isabelle or an SMT solver.

5.5 Experience with TLAPS

The hierarchical structure enforced by TLAPS led to well
organized and generally readable proofs in our experience.
Despite our overall positive experience, there two main short-
comings of TLAPS that we highlight below.

First, TLAPS does not offer much guidance when a back-
end solver fails on a leaf proof. In general, TLAPS does not
distinguish between obligations that fail because they are
false, versus obligations that are too difficult for the backend
solvers. Second, we found that the TLAPS library did not
always cater to our needs as conveniently as we hoped. For
example, the MongoRaftReconfig specification includes state
variables that are represented as TLA+ sequences, which are
indexed using N \ {0}. While the TLAPS standard library
has theorems for induction on N (NaturalsInduction.tla), we
were not able to find direct support for induction over the
domain of sequences. Support for induction over the domain
of sequences was not seamless, yet we were able to prove
the desired theorem by tailoring parts of the library to our
needs.

5.6 Discussion

Formally verifying safety properties for a large, real world
distributed protocol is, in our experience, a very labor inten-
sive task. Even if one has built up strong intuitions about cor-
rectness of a protocol, verification may take several months.
Nevertheless, we believe that formal verification is of great
value since, even for protocols that have been formally spec-
ified or model checked, design errors are still possible. For
example, a safety bug in EPaxos [26], a well known variant
of the original Paxos protocol, was discovered several years
after its initial publication [40], even though EPaxos was ac-
companied by a TLA+ specification and manual safety proof
in its original publication. Similarly, a bug in one of Raft’s
original reconfiguration protocols was also discovered after
initial publication [28].

Furthermore, developing a formal inductive invariant and
safety proof often provides deeper insights into why a proto-
col is correct, which fully automated techniques like model
checking, on their own, are often unable to provide. Gaining
deeper, formalized understanding of why a protocol is correct
is valuable both from a theoretical perspective and also for
system designers and engineers who may implement these
protocols with extensions, modifications, or optimizations.

6 Related Work

Previously, there have been a variety of distributed proto-
cols formalized using TLAPS, including Classic Paxos [6],
Byzantine Paxos [21], and the Pastry distributed hash table
protocol [2].

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA William Schultz, lan Dardik, and Stavros Tripakis
LEMMA IndImpliesStateMachineSafety 2
ASSUME MRRInd

PROVE StateMachineSafety

The Raft protocol, upon initial publication, included a
TLA+ formal specification of its static protocol, without dy-

(1)0. TypeOK BY DEF MRRInd
(1)1. SUFFICES VY c1, ¢2 € committed :
(cl.entry[1] = c2.entry[1]) = (cl=c2)
BY DEF StateMachineSafety
(1)2. TAKE cl, c2 € committed
(1)3. SUFFICES ASSUME cl.entry[1] = c2.entry[1], ¢l # c2
PROVE FALSE OBVIOUS
(1)4. cl.term # c2.term
(2)1. SUFFICES ASSUME cl.term = c2.term
PROVE FALSE OBVIOUS
(2)2. cl.entry[2] = c2.entry|[2]
BY (2)1 pEF MRRInd,
Committed TermMatchesEntry
(2)3. cl.entry[1] = c2.entry[1] BY (1)3
(2)4. cl=c2
BY (1)0, (2)1, (2)2, (2)3, Z3 pEF TypeOK
(2). QED BY (1)3, (2)4
(1)5. pick s1 € Server : InLog(cl.entry, s1)
BY CommitsAreLogEntries
(1)6. PIcK s2 € Server : InLog(c2.entry, s2)
BY CommitsAreLogEntries
(1)7. log[s1][cl.entry[1]] = cl.term
BY (1)5 DEF MRRInd, Committed TermMatchesEntry,
InLog, TypeOK
(1)8. log[s2][c2.entry[1]] = c2.term
BY (1)6 DEF MRRInd, CommittedTermMatchesEntry,
InLog, TypeOK
(1)9. cASE cl.term > c2.term
(2)1. 3¢ € poMAIN log[s1] : log[s1][i] = cl.term
BY (1)5 DEF MRRInd,
Committed TermMatchesEntry, InLog, TypeOK
(2)2. 37 € poMAIN log[s1] : log[s1][i] > c2.term
BY (1)9, (2)1 pEF TypeOK
(2)3. Len(log[s1]) = c2.entry|[1]
Alog[sl][c2.entry[1]] = c2.term
(3)1. c2.term < c2.term BY DEF MRRInd, TypeOK
(3). QED BY (1)5, (2)2, (3)1 pEF MRRInd, TypeOK,
LogsLater ThanCommitted Must Have Committed
(2)4. log[s1][cl.entry[1]] = c2.term
BY (1)3, (2)3 pEF MRRInd, TypeOK,
Committed EntryIndexesAreNonZero
(2). QED BY (1)4, (1)7, (2)4 DEF TypeOK
(1)10. cASE cl.term < c2.term
(2)1. 34 € poMAIN log|[s2] : log[s2][i] = c2.term
BY (1)6 DEF MRRInd, InLog, TypeOK,
Committed TermMatchesEntry
(2)2. 3i € poMAIN log[s2] : log[s2][i] > cl.term
BY (1)10, (2)1 DEF TypeOK
(2)3. Len(log[s2]) > cl.entry|[1]
Alog[s2][cl.entry[1]] = cl.term
(3)1. cl.term < cl.term BY DEF MRRInd, TypeOK
(3). QED BY (1)6, (2)2, (3)1 pEF MRRInd, TypeOK,
LogsLaterThanCommittedMustHaveCommitted
(2)4. log[s2][c2.entry[1]] = cl.term
BY (1)3, (2)3 pEFr MRRInd, TypeOK,
Committed EntryIndexesAreNonZero
(2). QED BY (1)4, (1)8, (2)4 DEF TypeOK
(1). QED BY (1)4, (1)9, (1)10 pEF MRRInd, TypeOK

Figure 5. The TLAPS proof of Lemma 5.3.

150

namic reconfiguration [27]. Later, a formal verification of
the safety properties of the static Raft protocol was com-
pleted using the Verdi framework for distributed systems
verification [44]. The formal verification of static Raft in
Verdi consisted of approximately 50,000 lines of Coq [3],
took around 18 months to develop, and consisted of 90 total
invariants. In comparison, our proof consists of 3189 lines
of TLA+ code. Note, however, that it is difficult to directly
compare our work with [44] because (1) our TLA+ specifi-
cations are written at a higher level of abstraction, and (2)
part of the work in [44] was aimed at producing a verified,
runnable Raft implementation, which was not our goal. The
work of [44] did not include a verification of Raft’s dynamic
reconfiguration protocols. To our knowledge, our work is
the first formally verified safety proof for a reconfiguration
protocol that integrates with a Raft based system.

In general, developing formally verified proofs and induc-
tive invariants for real world distributed protocols remains
a challenging and non-trivial problem. In recent years, tools
like Ivy [31] have attempted to ease the burden of inductive
invariant discovery and verification by taking an interactive
approach to invariant development, and constraining the
specification language for describing these systems so it falls
into a decidable fragment of first order logic [32]. These re-
strictions, however, can place additional burden on the user
in cases where a protocol or its invariants do not naturally
fall into this decidable fragment [30].

Recent work has built on top of the Ivy system in an
attempt to automatically infer inductive invariants for dis-
tributed protocols, with varying degrees of success. Tools
like IC3PO [12, 13], SWISS [14], and DistAl [45] represent
the state of the art in automated inductive invariant discov-
ery for distributed protocols. With some human guidance,
they have recently been able to scale to larger protocols like
Paxos, but have not yet been applied to protocols like Raft.

Apalache [17] is a symbolic model checker for TLA+ spec-
ifications that has been developed in recent years and can
check inductiveness of protocol invariants for bounded pa-
rameters. It does not, however, currently have any proce-
dures for automatic discovery of inductive invariants. In
future it would be interesting to compare the effectiveness of
using Apalache versus the probabilistic, TLC-based method
for finding counterexamples to induction when debugging a
candidate inductive invariant.

7 Conclusions and Future Work

In this paper we presented, to our knowledge, the first formal
verification of a reconfiguration protocol for a Raft based
replication system. We used TLA+ and TLAPS, the TLA+
proof system, to formalize and mechanically verify our in-
ductive invariant and safety proofs.

Formal Verification of a Distributed Dynamic Reconfiguration Protocol

In future, we are interested in exploring ways to further
automate the inductive invariant discovery process to the
extent possible. Formal verification of liveness properties
of MongoRaftReconfig is another possible avenue for future
efforts. In addition, we are interested in examining how the
compositional structure of the protocol could be exploited to
improve the inductive invariant discovery or TLAPS proof
process.

References

(1]

(5]

(8]

(10]

(11]

Marcos Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, and
Alexander Shraer. 2010. Reconfiguring Replicated Atomic Storage: A
Tutorial. Bulletin of the European Association for Theoretical Computer
Science EATCS (2010).

Noran Azmy, Stephan Merz, and Christoph Weidenbach. 2016. A
Rigorous Correctness Proof for Pastry. In 5th Intl. Conf. Abstract State
Machines, Alloy, B, TLA, VDM, and Z (ABZ 2016) (LNCS, Vol. 9675),
Michael Butler, Klaus-Dieter Schewe, Atif Mashkoor, and Miklés Biré
(Eds.). Springer, 86-101.

Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and
program development: Coq’Art: the calculus of inductive constructions.
Springer Science & Business Media.

Richard Bonichon, David Delahaye, and Damien Doligez. 2007. Zenon:
An extensible automated theorem prover producing checkable proofs.
In International Conference on Logic for Programming Artificial Intelli-
gence and Reasoning. Springer, 151-165.

James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully,
Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton,
Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. 2021. Using
Lightweight Formal Methods to Validate a Key-Value Storage Node in
Amazon S3. Association for Computing Machinery, New York, NY,
USA, 836—850. https://doi.org/10.1145/3477132.3483540

Saksham Chand, Yanhong A Liu, and Scott D Stoller. 2016. Formal
verification of multi-Paxos for distributed consensus. In International
Symposium on Formal Methods. Springer, 119-136.

Tushar D Chandra, Robert Griesemer, and Joshua Redstone. 2007.
Paxos made live: an engineering perspective. In Proceedings of the
twenty-sixth annual ACM symposium on Principles of distributed com-
puting. 398-407.

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s
globally distributed database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 1-22.

Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz,
Daniel Ricketts, and Hernan Vanzetto. 2012. TLA+ Proofs. Proceedings
of the 18th International Symposium on Formal Methods (FM 2012),
Dimitra Giannakopoulou and Dominique Mery, editors. Springer-Verlag
Lecture Notes in Computer Science 7436 (January 2012), 147-154. https:
//www.microsoft.com/en-us/research/publication/tla-proofs/

A. Jesse Jiryu Davis, Max Hirschhorn, and Judah Schvimer. 2020. Ex-
treme Modelling in Practice. Proc. VLDB Endow. 13, 9 (may 2020),
1346-1358. https://doi.org/10.14778/3397230.3397233

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th In-
ternational Conference on Tools and Algorithms for the Construction
and Analysis of Systems (Budapest, Hungary) (TACAS 08/ETAPS’ 08).
Springer-Verlag, Berlin, Heidelberg, 337-340.

Aman Goel and Karem Sakallah. 2021. On Symmetry and Quantifi-
cation: A New Approach to Verify Distributed Protocols. In NASA

Formal Methods Symposium. Springer, 131-150.
Aman Goel and Karem A. Sakallah. 2021. Towards an Automatic Proof

of Lamport’s Paxos. In Formal Methods in Computer-Aided Design

151

[14]

[15]

[16]

[17]

(18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

(FMCAD), Ruzica Piskac and Michael W Whalen (Eds.). New Haven,
Connecticut, 112-122. https://doi.org/10.34727/2021/isbn.978-3-85448-
046-4_20

Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. 2021.
Finding Invariants of Distributed Systems: It’s a Small (Enough) World
After All. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). USENIX Association, 115-131. https:
//www.usenix.org/conference/nsdi21/presentation/hance

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan
Parno, Michael L Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
proving practical distributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles. 1-17.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu,
Li Shen, Liu Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong
Liu, Jian Zhang, Jianjun Li, Xuelian Wu, Lingyu Song, Ruoxi Sun,
Shuaipeng Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang.
2020. TiDB: a Raft-based HTAP database. Proceedings of the VLDB
Endowment (2020). https://doi.org/10.14778/3415478.3415535

Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. 2019. TLA+ Model
Checking Made Symbolic. Proc. ACM Program. Lang. 3, OOPSLA,
Article 123 (oct 2019), 30 pages. https://doi.org/10.1145/3360549
Leslie Lamport. 1995. How to write a proof. The American mathematical
monthly 102, 7 (1995), 600-608.

Leslie Lamport. 1998. The Part-Time Parliament. ACM Transactions
on Computer Systems (1998). https://doi.org/10.1145/279227.279229
Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley.

Leslie Lamport. 2011. Byzantizing Paxos by refinement. In International
Symposium on Distributed Computing. Springer, 211-224.

Leslie Lamport. 2018. Using TLC to Check Inductive Invariance. https:
//lamport.azurewebsites.net/tla/inductive-invariant.pdf

Leslie Lamport and Lawrence C Paulson. 1999. Should your specifica-
tion language be typed. ACM Transactions on Programming Languages
and Systems (TOPLAS) 21, 3 (1999), 502-526.

Zohar Manna and Amir Pnueli. 2012. Temporal verification of reactive
systems: safety. Springer Science & Business Media.
MongoDB Github Project 2021. MongoDB Github Project.
//github.com/mongodb/mongo

Tulian Moraru, David G Andersen, and Michael Kaminsky. 2013. There
is more consensus in egalitarian parliaments. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. 358
372.

Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. Doc-
toral thesis (2014).

Diego Ongaro. 2015. Bug in single-server membership changes. https:
//groups.google.com/g/raft-dev/c/t4xj6d) TP6E/m/d2D9LrWRza8)
Diego Ongaro and John Ousterhout. 2014. In Search of an Un-
derstandable Consensus Algorithm. In 2014 USENIX Annual Techni-
cal Conference (USENLX ATC 14). USENIX Association, Philadelphia,
PA, 305-319. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017.
Paxos Made EPR: Decidable Reasoning about Distributed Protocols.
Proc. ACM Program. Lang. 1, OOPSLA, Article 108 (oct 2017), 31 pages.
https://doi.org/10.1145/3140568

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. 2016. Ivy: Safety Verification by Interactive Gen-
eralization. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Santa Barbara,
CA, USA) (PLDI ’16). Association for Computing Machinery, New York,
NY, USA, 614-630. https://doi.org/10.1145/2908080.2908118

Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjerner. 2010. Decid-
ing effectively propositional logic using DPLL and substitution sets.
Journal of Automated Reasoning 44, 4 (2010), 401-424.

https:

https://doi.org/10.1145/3477132.3483540
https://www.microsoft.com/en-us/research/publication/tla-proofs/
https://www.microsoft.com/en-us/research/publication/tla-proofs/
https://doi.org/10.14778/3397230.3397233
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://www.usenix.org/conference/nsdi21/presentation/hance
https://www.usenix.org/conference/nsdi21/presentation/hance
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1145/3360549
https://doi.org/10.1145/279227.279229
https://lamport.azurewebsites.net/tla/inductive-invariant.pdf
https://lamport.azurewebsites.net/tla/inductive-invariant.pdf
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118

—

[—

—

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

[33] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual

Symposium on Foundations of Computer Science (sfcs 1977). 46-57. https:
//doi.org/10.1109/SFCS.1977.32

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind
Krishnamurthy. 2015. Designing Distributed Systems Using Approxi-
mate Synchrony in Data Center Networks. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 43-57. https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/ports

Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Computing Surveys
(CSUR) (1990). https://doi.org/10.1145/98163.98167

William Schultz, Tess Avitabile, and Alyson Cabral. 2019. Tunable Con-
sistency in MongoDB. Proc. VLDB Endow. 12, 12 (aug 2019), 2071-2081.
https://doi.org/10.14778/3352063.3352125

William Schultz and Ian Dardik. 2021. TLAPS Safety Proof of Mongo-
RaftReconfig. https://doi.org/10.5281/zenodo.5768484

William Schultz, Siyuan Zhou, Ian Dardik, and Stavros Tripakis. 2022.
Design and Analysis of a Logless Dynamic Reconfiguration Proto-
col. In 25th International Conference on Principles of Distributed Sys-
tems (OPODIS 2021) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 217), Quentin Bramas, Vincent Gramoli, and Alessia Milani
(Eds.). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl,
Germany.

Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio P. Jun-
queira. 2012. Dynamic Reconfiguration of Primary/Backup Clus-
ters. In 2012 USENIX Annual Technical Conference (USENIX ATC 12).
USENIX Association, Boston, MA, 425-437. https://www.usenix.org/
conference/atc12/technical-sessions/presentation/shraer

Pierre Sutra. 2020. On the correctness of Egalitarian Paxos. Inform.
Process. Lett. 156 (2020), 105901.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jor-
dan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,

William Schultz, lan Dardik, and Stavros Tripakis

Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, Bram Gruneir,
Justin Jaffray, Lucy Zhang, and Peter Mattis. 2020. CockroachDB: The
Resilient Geo-Distributed SQL Database. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Port-
land, OR, USA) (SIGMOD °20). Association for Computing Machin-
ery, New York, NY, USA, 1493-1509. https://doi.org/10.1145/3318464.
3386134

Marko Vukoli¢ et al. 2013. The origin of quorum systems. Bulletin of
EATCS 2, 101 (2013).

Makarius Wenzel, Lawrence C Paulson, and Tobias Nipkow. 2008. The
isabelle framework. In International Conference on Theorem Proving in
Higher Order Logics. Springer, 33-38.

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D.
Ernst, and Thomas Anderson. 2016. Planning for Change in a Formal
Verification of the Raft Consensus Protocol. In Proceedings of the 5th
ACM SIGPLAN Conference on Certified Programs and Proofs (St. Peters-
burg, FL, USA) (CPP 2016). Association for Computing Machinery, New
York, NY, USA, 154-165. https://doi.org/10.1145/2854065.2854081
Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and
Gabriel Ryan. 2021. DistAl: Data-Driven Automated Invariant Learn-
ing for Distributed Protocols. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association,
405-421. https://www.usenix.org/conference/osdi21/presentation/
yao

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model Check-
ing TLA+ Specifications. In Correct Hardware Design and Verification
Methods, Laurence Pierre and Thomas Kropf (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 54-66.

Siyuan Zhou and Shuai Mu. 2021. Fault-Tolerant Replication with
Pull-Based Consensus in MongoDB. In 18th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 21). USENIX
Association, 687-703. https://www.usenix.org/conference/nsdi21/

presentation/zhou

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ports
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ports
https://doi.org/10.1145/98163.98167
https://doi.org/10.14778/3352063.3352125
https://doi.org/10.5281/zenodo.5768484
https://www.usenix.org/conference/atc12/technical-sessions/presentation/shraer
https://www.usenix.org/conference/atc12/technical-sessions/presentation/shraer
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/2854065.2854081
https://www.usenix.org/conference/osdi21/presentation/yao
https://www.usenix.org/conference/osdi21/presentation/yao
https://www.usenix.org/conference/nsdi21/presentation/zhou
https://www.usenix.org/conference/nsdi21/presentation/zhou

	Abstract
	1 Introduction
	2 Background
	2.1 The MongoDB Static Replication Protocol
	2.2 The MongoDB Dynamic Reconfiguration Protocol: MongoRaftReconfig
	2.3 TLA+ and TLAPS
	2.4 The MongoRaftReconfig TLA+ Specification

	3 Verification Problem Statement
	4 The Inductive Invariant
	4.1 Background
	4.2 Invariant Overview
	4.3 Discovering an Inductive Invariant

	5 TLAPS Proofs
	5.1 TLAPS Proof of Inductive Invariant
	5.2 TLAPS Proof of Safety
	5.3 Example of a TLAPS Proof
	5.4 Proof Statistics
	5.5 Experience with TLAPS
	5.6 Discussion

	6 Related Work
	7 Conclusions and Future Work
	References

