
Formal Verification of a Distributed Dynamic
Reconfiguration Protocol∗

William Schultz
†

Northeastern University

Boston, MA, USA

schultz.w@northeastern.edu

Ian Dardik
†

Northeastern University

Boston, MA, USA

dardik.i@northeastern.edu

Stavros Tripakis

Northeastern University

Boston, MA, USA

stavros@northeastern.edu

Abstract
We present a formal, machine checked TLA+ safety proof of

MongoRaftReconfig, a distributed dynamic reconfiguration

protocol. MongoRaftReconfig was designed for and imple-

mented in MongoDB, a distributed database whose replica-

tion protocol is derived from the Raft consensus algorithm.

We present an inductive invariant forMongoRaftReconfig that
is formalized in TLA+ and formally proved using the TLA+

proof system (TLAPS).We also present a formal TLAPS proof

of two key safety properties of MongoRaftReconfig, Leader-
Completeness and StateMachineSafety. To our knowledge,

these are the first machine checked inductive invariant and

safety proof of a dynamic reconfiguration protocol for a Raft

based replication system.

CCS Concepts: • Theory of computation→Automated
reasoning; •Computingmethodologies→Distributed
algorithms.

Keywords: Formal Verification, Theorem Proving, TLA+,

Dynamic Reconfiguration, Distributed Systems, Raft

ACM Reference Format:
William Schultz, Ian Dardik, and Stavros Tripakis. 2022. Formal

Verification of a Distributed Dynamic Reconfiguration Protocol.

In Proceedings of the 11th ACM SIGPLAN International Conference
on Certified Programs and Proofs (CPP ’22), January 17–18, 2022,
Philadelphia, PA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3497775.3503688

∗
This work has been partially supported by NSF award CNS-1801546.

†
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9182-5/22/01. . . $15.00

https://doi.org/10.1145/3497775.3503688

1 Introduction
Distributed replication systems based on the replicated state

machine model [35] have become ubiquitous as the founda-

tion of modern, fault-tolerant data storage systems. In order

for these systems to ensure availability in the presence of

faults, they must be able to dynamically replace failed nodes

with healthy ones, a process known as dynamic reconfigura-
tion.

The protocols for building distributed replication systems

have been well studied and implemented in a variety of

systems [7, 8, 16, 41]. Paxos [19] and, more recently, Raft [29],

have served as the logical basis for building provably correct

distributed replication systems. Dynamic reconfiguration,

however, is an additionally challenging and subtle problem

[1] for the protocols underlying these systems.

Furthermore, few of these reconfiguration protocols have

been formally verified [26, 34, 39]. The Raft consensus pro-

tocol, originally published in 2014, provided a dynamic re-

configuration algorithm in its initial publication, but did not

include a precise discussion of its correctness or include a

formal specification or proof. A critical safety bug [28] in

one of its reconfiguration protocols was found after initial

publication, demonstrating that the design and verification

of reconfiguration protocols for these systems is a challeng-

ing task. This also demonstrates that formal verification is

valuable for ensuring correctness of these protocols.

MongoDB [25] is a general purpose, document oriented

database which implements a distributed replication sys-

tem [36] for providing high availability and fault tolerance.

MongoDB’s replication system uses a log-based consensus

protocol that derives from Raft [47]. MongoDB recently in-

troduced a novel dynamic reconfiguration protocol, Mongo-
RaftReconfig, for its replication system. The MongoRaftRe-
config protocol is described in detail in [38], which includes

a TLA+ formal specification of the protocol and a manual

safety proof.

In this paper, we present the first formal verification of

the safety properties of MongoRaftReconfig. We present a

formally stated inductive invariant for the protocol, which

we prove and then utilize to establish two high level safety

properties of the protocol. In particular, we prove (1) Leader-
Completeness, which, intuitively, states that if a log entry is

committed it is durable, and (2) StateMachineSafety, which
says that log entries committed at a particular index must be

143

https://doi.org/10.1145/3497775.3503688
https://doi.org/10.1145/3497775.3503688
https://doi.org/10.1145/3497775.3503688

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA William Schultz, Ian Dardik, and Stavros Tripakis

consistent across all nodes in the system. We carry out our

verification efforts using TLAPS, the TLA+ proof system [9].

To our knowledge, this is the first machine checked inductive

invariant and safety proof of a reconfiguration protocol for

a Raft based replication system.

To summarize, we make the following contributions:

• A formally stated TLA+ inductive invariant for the

MongoRaftReconfig protocol. To our knowledge, this

is both the first inductive invariant for a Raft-based

reconfiguration protocol and the first that has been

formalized.

• A formally verified TLAPS proof of our inductive in-

variant.

• A formally verified TLAPS proof that MongoRaftRe-
config satisfies the two above safety properties, Lead-
erCompleteness and StateMachineSafety. To our knowl-

edge, this is the first machine checked safety proof of

a Raft-based reconfiguration protocol.

All of our TLA+ specifications, TLAPS proof code, and in-

structions for checking our proofs are included in the sup-

plementary material [37] for this paper. Where appropriate

throughout this paper, we cite the relevant files located in

this material.

The rest of this paper is organized as follows. In Section 2

we provide some general background about MongoDB repli-

cation and TLA+. Section 3 provides a formal statement of

the verification results that we establish in this paper. Section

4 presents our inductive invariant for MongoRaftReconfig,
and Section 5 presents our formal safety proof of Mongo-
RaftReconfig in TLAPS, which makes use of our inductive

invariant. Section 6 discusses related work, and Section 7

discusses conclusions and future work.

2 Background
2.1 The MongoDB Static Replication Protocol
MongoDB is a general purpose, document oriented database

that stores data in JSON-like objects. A MongoDB database

consists of a set of collections, where a collection is a set of

unique documents. To provide high availability, MongoDB

provides the ability to run a database as a replica set, which
is a set of MongoDB servers that act as a consensus group,

where each server maintains a logical copy of the database

state.

MongoDB replica sets utilize a replication protocol that

is derived from Raft [27], with some extensions. We refer

to MongoDB’s abstract replication protocol, without recon-

figuration, as MongoStaticRaft, to distinguish it from the

MongoRaftReconfig protocol verified in this paper. Mongo-
StaticRaft can be viewed as a modified version of standard

Raft that satisfies the same underlying correctness proper-

ties, and it is described in more detail in [36, 47]. We provide

a high level overview here, since MongoRaftReconfig is built

on top of MongoStaticRaft.

A MongoDB replica set running MongoStaticRaft consists
of a set of server processes, Server = {s1, s2, . . . , sn }. There
exists a single primary server and a set of secondary servers.

As in standard Raft, there is a single primary elected per

term. The primary server accepts client writes and inserts

them into an ordered operation log known as the oplog. The
oplog is a logical log where each entry contains information

about how to apply a single database operation. Each entry

is assigned a monotonically increasing timestamp, and these

timestamps are unique and totally ordered within a server

log. These log entries are then replicated to secondaries

which apply them in order leading to a consistent database

state on all servers. When the primary learns that enough

servers have replicated a log entry in its term, the primary

will mark it as committed, guaranteeing that the entry is

permanently durable in the replica set.

2.2 The MongoDB Dynamic Reconfiguration
Protocol: MongoRaftReconfig

MongoRaftReconfig, the protocol verified in this paper, is an

extension of MongoStaticRaft that allows for dynamic recon-

figuration. MongoRaftReconfig utilizes a logless approach to

managing configuration state and decouples the processing

of configuration changes from the main database operation

log. The full details of MongoRaftReconfig are presented in

[38], but we provide a high level overview here. In Mongo-
RaftReconfig, each server of a replica set maintains a single,

durable configuration, where a configuration is formally de-

fined as a tuple (m, v , t), wherem ∈ 2
Server

is a subset of all

servers, v ∈ N is a numeric configuration version, and t ∈ N
is the numeric term of the configuration. Configurations are

totally ordered by their (version, term) pair, where term
is compared first, followed by version. Servers can install

any configuration newer than their own. Reconfiguration

operations, which can only be processed by primary servers,

update a server’s local configuration to a new configuration

specified by the client.

Prior to the work presented in this paper, [38] presented

a formal TLA+ specification of MongoRaftReconfig, results
from model checking its safety on finite protocol instances,

and a manual, prose safety proof. There existed, however,

no formal inductive invariant or machine checked proof

for the safety properties of MongoRaftReconfig. The formal

inductive invariant we present in this paper bears some

structural similarity to the manual proof given in [38], but

the TLAPS proofs presented in this paper were developed

independently, and are not based on the prior, manual proof.

2.3 TLA+ and TLAPS
TLA+ [20] is a formal specification language for describing

distributed and concurrent systems that is based on first

order and temporal logic [33]. Since MongoRaftReconfig is

formally specified using the TLA+ language and it is the

144

Formal Verification of a Distributed Dynamic Reconfiguration Protocol CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

language used for our proofs, we provide a brief overview

of TLA+ and its associated proof system, TLAPS [9].

2.3.1 Specifications inTLA+. Specifying a system in TLA+

consists of defining a set of state variables, vars , along with

a temporal logic formula which describes the set of per-

mitted system behaviors over these variables. The canon-

ical way of defining a specification is as the conjunction

of an initial state predicate, Init , and a next state relation,

Next , which determine, respectively, the set of allowed initial

states and how the protocol may transition between states.

The overall system is then defined by the temporal formula

Init ∧ □[Next]vars , where □ denotes the “always" operator

of temporal logic, meaning that a formula holds true at every

step of a behavior, and vars denotes a sequence of all state

variables of a specification. [Next]vars is equivalent to the

expression Next ∨ (vars ′ = vars), which means that specifi-

cations of this form allow for stuttering steps i.e. transitions

that do not change the state. A primed TLA+ expression

containing state variables, expressed by attaching a
′
symbol,

denotes the value of that expression in the next state of a sys-

tem behavior. The next state relation is typically written as a

disjunction A1 ∨A2 ∨ ...∨An of actions Ai , where an action

is a logical predicate that depends on both the current and

next state of a behavior. Correctness properties and system

specifications in TLA+ are both written as temporal logic

formulas. This allows one to express notions of property

satisfaction in a concise manner. We say that a specification

S satisfies a property P iff the formula S ⇒ P is valid (i.e.

true under all assignments).

2.3.2 The TLA+ Proof System. The TLA+ proof system

[9], abbreviated as TLAPS, is an accompanying tool for the

TLA+ language that allows one to write and mechanically

check hierarchically structured proofs [18] in TLA+. Proofs

consist of a series of statements that support the proof goal,

which is the top level statement that must be proved. Each

statement, in turn, must be proved either compositely using

a nested structural proof, or as a leaf proof via a backend

solver. TLAPS is independent of any particular SMT solver or

theorem prover, and includes support for various backends

e.g. Z3 [11], Isabelle [43], and Zenon [4].

Figure 1 shows an example of a lemma and its proof in

TLAPS. The assume-prove idiom treats the lemma as an

implication. That is, if Conditions hold, then Implicationmust

follow. Leaf statements are proved using the by statement,

and can reference theorems and lemmas by name, operator

definitions, and previous statements by label. Each structural

proof must end with a qed statement, closing the goal of

either a nested or overall proof.

2.4 The MongoRaftReconfig TLA+ Specification
A formal TLA+ specification of MongoRaftReconfig was orig-

inally included in [38], but was not discussed in detail. This

same specification serves as the basis for the TLAPS proofs

lemma NameOfLemma Δ
=

assume Conditions
prove Implication
proof

⟨1⟩1. Statement1.1 by def Conditions
⟨1⟩2. Statement1.2

⟨2⟩1. Statement2.1 by UsefulTheorem
⟨2⟩2. Statement2.2 by ⟨1⟩1, ⟨2⟩1
⟨2⟩. qed by ⟨2⟩2

⟨1⟩. qed by ⟨1⟩1, ⟨1⟩2

Figure 1. Example of a hierarchically structured TLAPS

proof.

TypeOK ≜
log ∈ [Server → Seq (N)]
committed ∈ 2

N×N

term ∈ [Server → N]
state ∈ [Server → {Primary, Secondary}]
config ∈ [Server → 2

Server]
configVersion ∈ [Server → N]
configTerm ∈ [Server → N]

Figure 2. The state variables of theMongoRaftReconfig proto-
col and their corresponding types stated as a type correctness

predicate in TLA+. The notation [A → B] represents the set
of all functions from set A to set B and Seq (S) represents
the set of all sequences containing elements from the set S .

presented in this paper, so we give a brief overview of the

specification here. The complete specification can be found

in the MongoRaftReconfig.tla file of the supplementary mate-

rial provided with this paper [37].

The state variables of the specification and their types are

shown in Figure 2. The initial states, next state relation, and

specification definition of MongoRaftReconfig are summa-

rized in Figure 3. The operator Quorums (m) is defined as

the set of all majority quorums [42] for a given set of servers

m . Reconfigurations are modeled by the Reconfig (s,m) ac-
tion, which represents a reconfiguration that occurs on pri-

mary server s to a new configuration with member set

m ∈ 2
Server

. Configuration propagation is modeled by the

SendConfig (s, t) action, which represents the propagation

of a configuration from server s to server t . Elections are
modeled by the action BecomeLeader (s,Q), which repre-

sents the election of server s by a set of voters Q . The ac-

tion UpdateTerms (s, t) propagates the term of a server s
to server t , if the term of s is newer than t . The actions

ClientRequest (s), GetEntries (s, t), RollbackEntries (s, t),
and CommitEntry (s,Q) are responsible for log related ac-

tions that are conceptually unrelated to reconfiguration, so

we do not discuss their details here. Their full definitions can

145

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA William Schultz, Ian Dardik, and Stavros Tripakis

module MongoRaftReconfig

MRRInit ≜
∧ log = [i ∈ Server ↦→ ⟨⟩]
∧ committed = {}
∧ currentTerm = [i ∈ Server ↦→ 0]
∧ state = [i ∈ Server ↦→ Secondary]
∧ configVersion = [i ∈ Server ↦→ 1]
∧ configTerm = [i ∈ Server ↦→ 0]
∧ ∃ initConfig ∈ 2

Server
:

∧ initConfig ≠ ∅
∧ config = [i ∈ Server ↦→ initConfig]

MRRNext ≜
∃ s, t ∈ Server :

∃Q ∈ Quorums (config [s]) :
∨ ClientRequest (s)
∨ GetEntries (s, t)
∨ RollbackEntries (s, t)
∨ CommitEntry (s, Q)
∨ SendConfig (s, t)
∨ Reconfig (s,m)
∨ BecomeLeader (s, Q)
∨ UpdateTerms (s, t)

MRRSpec ≜ MRRInit ∧✷[MRRNext]vars

Figure 3. Summary of the MongoRaftReconfig TLA+ speci-

fication. The full specification consists of 359 lines of TLA+

code, excluding comments, and can be found in the Mongo-
RaftReconfig.tla file of the supplementary material.

be found in the specifications provided in the supplementary

material [37].

Note that our specifications are written at a deliberately

high level of abstraction, ignoring some lower level details

of the protocol. In practice, we have found the abstraction

level of our specifications most useful for understanding

and communicating the essential behaviors and safety char-

acteristics of the protocol, while also serving to make our

automated verification and proof efforts more feasible. In the

future, however, we believe it would be valuable to explore

techniques for formally relating our abstract specifications

to real world protocol implementations, with an aim of veri-

fying whether a system implementation faithfully reflects

our high level specifications [5, 10, 15].

3 Verification Problem Statement
In this paper we establish that the MongoRaftReconfig pro-

tocol satisfies LeaderCompleteness and StateMachineSafety,
which are two key, high level safety properties of both the

MongoDB replication system and standard Raft. Informally,

the LeaderCompleteness property states that if a log entry

is committed in term T , then it is present in the log of any

leader in term T ′ > T . It is stated more precisely in Defini-

tion 3.1, where committed ∈ N × N refers to the set of com-

mitted log entries as (index , term) pairs, and InLog (i , t, s)
is a predicate determining whether a log entry (i , t) is con-
tained in the log of server s . StateMachineSafety states that

if two log entries are committed at the same log index, these

entries must be the same, and is stated formally as Definition

3.2.

Definition 3.1 (Leader Completeness).

∀s ∈ Server : ∀(cindex , cterm) ∈ committed :

(state [s] = Primary ∧ cterm < term [s]) ⇒
InLog (cindex , cterm, s)

Definition 3.2 (State Machine Safety).

∀(indi , ti),(indj , tj) ∈ committed :

(indi = indj) ⇒ (ti = tj)

Both LeaderCompleteness and StateMachineSafety are safety
properties. More specifically, they are both invariants, mean-

ing that they must hold in all reachable states of Mongo-
RaftReconfig. Thus, our verification goals can be stated for-

mally as Theorems 3.3 and 3.4, where MRRSpec refers to

the specification of MongoRaftReconfig as given in Figure 3.

Theorem 3.3 (MRRImpliesLeaderCompleteness).

MRRSpec ⇒ □LeaderCompleteness

Theorem 3.4 (MRRImpliesStateMachineSafety).

MRRSpec ⇒ □StateMachineSafety

Theorems 3.3 and 3.4 are the safety results established and

formally verified in this paper, and they can be found in the

MongoRaftReconfigProofs.tla file of our supplementary mate-

rial [37]. The proofs of Theorems 3.3 and 3.4 are discussed in

Section 5. Both of these theorems are proved using the help

of an inductive invariant, which we discuss next, in Section

4.

4 The Inductive Invariant
4.1 Background
A standard method to establish an invariant Inv is to find an

inductive invariant that implies Inv [24]. Formally, a state

predicate Inv is an invariant of a system Spec if the following
holds:

Spec ⇒ □Inv (1)

Suppose that Spec is of the form Spec = Init ∧□[Next]vars ,
as in the case of MongoRaftReconfig. Then, in order to estab-

lish Formula 1, it is sufficient to find a state predicate Ind

146

Formal Verification of a Distributed Dynamic Reconfiguration Protocol CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

MRRInd ≜

T
{

∧TypeOK

E1



∧ElectionSafety
∧PrimaryConfigTermEqualToCurrentTerm
∧ConfigVersionAndTermUnique
∧PrimaryInTermContainsNewestConfigOfTerm
∧ActiveConfigsOverlap
∧ActiveConfigsSafeAtTerms

L1


∧LogEntryInTermImpliesConfigInTerm
∧PrimaryHasEntriesItCreated
∧LogMatching

L2


∧PrimaryTermAtLeastAsLargeAsLogTerms
∧TermsOfEntriesGrowMonotonically
∧UniformLogEntriesInTerm

C1

{
∧CommittedEntryIndexesAreNonZero
∧CommittedTermMatchesEntry

C2


∧LeaderCompleteness
∧LogsLaterThanCommittedMustHaveCommitted
∧ActiveConfigsOverlapWithCommittedEntry
∧NewerConfigsDisableCommitsInOlderTerm

N
{

∧ConfigsNonEmpty

Figure 4. Our inductive invariant for MongoRaftReconfig.

such that the following conditions hold:

Init ⇒ Ind (2)

Ind ∧ Next ⇒ Ind ′
(3)

Ind ⇒ Inv (4)

Conditions 2 and 3 are referred to as initiation and consecu-
tion, respectively, and they are sufficient to show that Ind is

an inductive invariant. Conditions 2, 3, and 4 are together

sufficient to establish Formula 1.

In our case, Spec instantiates to MRRSpec and we have

two instances of Inv , namely, LeaderCompleteness and StateMa-
chineSafety. In principle, we need to discover two distinct

inductive invariants, one for LeaderCompleteness and another
one for StateMachineSafety. In our case, the same inductive

invariant turns out to be sufficient for both properties.

4.2 Invariant Overview
The inductive invariant that we developed for MongoRaftRe-
config is referred to asMRRInd and consists of 20 high level

conjuncts, shown in Figure 4. Its full definition is given in

140 lines of TLA+ code, and is provided in the MongoRaftRe-
configIndInv.tla file of our supplementary material [37].

The inductive invariant, shown in Figure 4, is composed

of several conceptually distinct subcomponents. The first

conjunct, TypeOK , establishes basic type-correctness con-

straints on the state variables of MongoRaftReconfig. This
is necessary in most cases when stating inductive invari-

ants in TLA+, since it is an untyped formalism [23]. The

full definition of TypeOK is shown in Figure 2. The ini-

tial set of 6 conjuncts, labeled as E1 in Figure 4, along with

TypeOK , is itself an inductive invariant, and it establishes

the ElectionSafety property, a key auxiliary invariant of the

protocol that is needed to establish LeaderCompleteness .
The conjuncts in group L1 are a set of invariants related to

logs of servers in the system, and they collectively establish

LogMatching , another important auxiliary invariant. The

L2 group establishes a few additional log related invariants,

which rely on previous conjuncts. In general, these log re-

lated conjuncts are not fundamentally related to dynamic

reconfiguration, but are necessary to state precisely for a

protocol that manages logs in a Raft like fashion. Group C1

establishes some required, trivial aspects of the set of com-

mitted log entries. The conjunct group C2 establishes the

high level LeaderCompleteness property, by relating how

configurations interact with the set of committed log entries

present in the system. Finally, the last conjunct, labeled asN ,

asserts that every configuration is non empty i.e. it contains

some servers. This is an auxiliary invariant that is helpful

for proving other facts.

4.3 Discovering an Inductive Invariant
Discovering such an inductive invariant for a protocol of

this complexity is non-trivial. To our knowledge, this is the

first inductive invariant proposed for a dynamic reconfigura-

tion protocol that is built on a Raft based replication system.

The discovery of MRRInd took approximately 1-2 human

months of work and it involved repeated efforts of itera-

tion and refinement. To aid in this discovery process, we

leveraged a technique proposed in [22] that utilizes the TLC

explicit state model checker [46] to probabilistically verify

candidate inductive invariants. If a candidate Inv is not in-

ductive, the TLC model checker can, with some probability,

report a counterexample to induction. A counterexample to
induction is a state transition s → t satisfying MRRNext ,
where s satisfies Inv and t violates Inv . These counterex-
amples are helpful to understand why a candidate invariant

fails to be inductive, and how it may need to be modified

or strengthened further. This probabilistic method can only

be used on finite protocol instances, and it does not pro-

vide a proof that an invariant is inductive. Nevertheless, the

technique proved to be highly effective, as it helped us to

discover an inductive invariant that we eventually proved

formally correct using TLAPS, as discussed more in Section 5.

Furthermore, we did not discover any errors in our inductive

invariant during the TLAPS proof process.

147

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA William Schultz, Ian Dardik, and Stavros Tripakis

Note that, although having a tool for finding counterex-

amples to induction is helpful for finding errors in candidate

inductive invariants, it still does not provide much guidance

in developing an inductive invariant from scratch. That is,

it does not necessarily provide a systematic methodology

for converging to a correct inductive invariant. Rather, de-

velopment of our inductive invariant still required a large

amount of creativity and human reasoning, largely driven

by strong prior intuitions about the correctness of the proto-

col. For example, rather than aiming to develop the entire

inductive invariant at once, we were able to develop it in

components, based partially on human intuition about cer-

tain auxiliary lemmas that we knew must hold true of the

overall protocol. For example, the ElectionSafety and the

LogMatching invariants (shown in Figure 4) are two such

lemmas that we worked on establishing first, before moving

on to discover the additional conjuncts needed to establish

the LeaderCompleteness property.

5 TLAPS Proofs
In this section we present an overview of our formally veri-

fied safety proof ofMongoRaftReconfig, which was completed

using TLAPS, the TLA+ proof system [9]. Section 5.1 gives

an overview of the proof that MRRInd is an inductive in-

variant of MongoRaftReconfig, and Section 5.2 describes how

this fact is used to prove LeaderCompleteness and StateMa-
chineSafety, which are the key, high level safety properties

that were defined in Section 3.

5.1 TLAPS Proof of Inductive Invariant
To establish thatMRRInd is an inductive invariant, we must

prove that MRRInd satisfies both the initiation (2) and con-

secution (3) conditions for MongoRaftReconfig, as described
in Section 4. This is captured in Lemma 5.1.

Lemma 5.1 (MRRInd is an inductive invariant).

MRRInit ⇒ MRRInd (a)

MRRInd ∧ MRRNext ⇒ MRRInd ′
(b)

Cases (a) and (b) of Lemma 5.1 represent, respectively,

initiation and consecution. The initiation case of Lemma 5.1

follows in a straightforward manner from the definitions

of MRRInit and MRRInd . Proving the consecution case

of Lemma 5.1, however, is the most difficult and time con-

suming aspect of the verification efforts presented in this

paper. At a high level, this proof consists of showing that,

assuming MRRInd holds in a current state, every transition

of the protocol upholds MRRInd in the next state. To break

this verification problem into smaller steps, we decompose

the proof first by each conjunct of MRRInd , and then we

decompose by each protocol transition.

Specifically, consider the definition of MRRInd , which is

composed of 20 conjuncts (as shown in Figure 4):

MRRInd ≜ I1 ∧ I2 ∧ . . . ∧ I20

Our first decomposition step breaks down case (b) of Lemma

5.1 into the following, independent proof goals, one for each

conjunct of MRRInd :

MRRInd ∧ MRRNext ⇒ I ′
1

MRRInd ∧ MRRNext ⇒ I ′
2

...

MRRInd ∧ MRRNext ⇒ I ′
20

(5)

Furthermore, MRRNext is the disjunction of eight protocol

actions (as shown in Figure 3):

MRRNext ≜ A1 ∨ A2 ∨ · · · ∨ A8 (6)

So, we further decompose each goal of Statement 5 into one

case for each protocol action. That is, we decompose each

goal MRRInd ∧ MRRNext ⇒ I ′
j into the following proof

goals:

MRRInd ∧ A1 ⇒ I ′
j

MRRInd ∧ A2 ⇒ I ′
j

...

MRRInd ∧ A8 ⇒ I ′
j

(7)

Our proof follows this methodology for every conjunct of

MRRInd and every action of MRRNext . This produces a
set of proof goals whose size is the product of the number of

protocol actions (8) and the number of invariant conjuncts

(20), totaling 8 ∗ 20 = 160 proof goals. This decomposition

allowed us to focus on proving one, small goal at a time,

while incrementally building a library of reusable lemmas.

The TLAPS proof of Lemma 5.1 can be found in the Mon-
goRaftReconfigProofs.tla file of our supplementary material

[37], while our library of lemmas can be found in the Lib.tla,
BasicQuorumsLib.tla, and LeaderCompletenessLib.tla files.

5.2 TLAPS Proof of Safety
Lemma 5.1 establishes that MRRInd is an inductive invariant

ofMongoRaftReconfig. In this section we provide an overview
of our proofs for establishing that MongoRaftReconfig satis-

fies LeaderCompletness and StateMachineSafety (Theorems

3.3 and 3.4), which utilize MRRInd . We do this by establish-

ing lemmas 5.2 and 5.3, which, together with Lemma 5.1, are

sufficient to establish Theorems 3.3 and 3.4.

Lemma 5.2.

MRRInd ⇒ LeaderCompleteness

Lemma 5.3 (IndImpliesStateMachineSafety).

MRRInd ⇒ StateMachineSafety

148

Formal Verification of a Distributed Dynamic Reconfiguration Protocol CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

LeaderCompleteness is a conjunct of MRRInd so the im-

plication of Lemma 5.2 follows trivially. The proof of Lemma

5.3, which can be found in the StateMachineSafetyLemmas.tla
file of our supplementary material [37], is not trivial and we

present it in the following section as a concrete example of

a TLAPS proof.

5.3 Example of a TLAPS Proof
In this section we present the proof of Lemma 5.3 to serve

as an example of TLAPS. The proof relies on one additional

lemma, stated as Lemma 5.4. The proof of Lemma 5.4 is

contained in the StateMachineSafetyLemmas.tla file of the

supplementary material [37].

Lemma 5.4 (CommitsAreLogEntries).
MRRInd ⇒
∀c ∈ committed : ∃s ∈ Server :

InLog (c .entry, s)

The TLAPS proof of Lemma 5.3 is shown in Figure 5. The

proof uses the assume-prove idiom to show that MRRInd
implies StateMachineSafety. By the definition of the StateMa-
chineSafety property, we can establish the proof goal given in
⟨1⟩1. Steps ⟨1⟩2 and ⟨1⟩3 assume that c1 and c2 are arbitrary
committed entries that share the same index but are not

identical, and prove false obvious establishes that these

assumptions will lead to a contradiction. ⟨1⟩4 is a composite

proof that shows that c1 and c2 cannot share the same term.

Steps ⟨1⟩5 through ⟨1⟩8 use Lemma 5.4 to show that there

exist servers s1 and s2 that respectively contain the commit-

ted entries c1 and c2 in their logs. The two cases ⟨1⟩9 and
⟨1⟩10 show that if either c1 or c2 has a larger term than the

other, then we derive a contradiction as expected. Finally,

it suffices to only consider cases ⟨1⟩9 and ⟨1⟩10 because of
step ⟨1⟩4, and hence the proof is complete.

5.4 Proof Statistics
We now present some summary statistics about our TLAPS

proof and its development to give a better sense of its scope,

size, and difficulty. The entire TLAPS proof, including the

statement of the inductive invariant and the protocol speci-

fication, consists of 3189 lines of TLA+ code, excluding com-

ments. 140 of these lines are used for defining the inductive

invariant and 359 of these lines are used for specifying the

MongoRaftReconfig protocol. There are a total of 3 top level

theorems and 78 formally stated lemmas. In terms of proof

effort, we spent approximately 4 human-months on develop-

ment of the TLAPS proof, which does not include the time

to develop the inductive invariant described in Section 4. De-

velopment of the inductive invariant took approximately an

additional 1-2 human-months of work. For the TLAPS proof

system to check the correctness of the completed proof from

scratch it takes approximately 38 minutes on a 2020Macbook

Air using 8 Apple M1 CPU Cores. This computation time

consists mostly of queries to an underlying backend solver

e.g. Isabelle or an SMT solver.

5.5 Experience with TLAPS
The hierarchical structure enforced by TLAPS led to well

organized and generally readable proofs in our experience.

Despite our overall positive experience, there twomain short-

comings of TLAPS that we highlight below.

First, TLAPS does not offer much guidance when a back-

end solver fails on a leaf proof. In general, TLAPS does not

distinguish between obligations that fail because they are

false, versus obligations that are too difficult for the backend

solvers. Second, we found that the TLAPS library did not

always cater to our needs as conveniently as we hoped. For

example, the MongoRaftReconfig specification includes state

variables that are represented as TLA+ sequences, which are

indexed using N \ {0}. While the TLAPS standard library

has theorems for induction on N (NaturalsInduction.tla), we
were not able to find direct support for induction over the

domain of sequences. Support for induction over the domain

of sequences was not seamless, yet we were able to prove

the desired theorem by tailoring parts of the library to our

needs.

5.6 Discussion
Formally verifying safety properties for a large, real world

distributed protocol is, in our experience, a very labor inten-

sive task. Even if one has built up strong intuitions about cor-

rectness of a protocol, verification may take several months.

Nevertheless, we believe that formal verification is of great

value since, even for protocols that have been formally spec-

ified or model checked, design errors are still possible. For

example, a safety bug in EPaxos [26], a well known variant

of the original Paxos protocol, was discovered several years

after its initial publication [40], even though EPaxos was ac-

companied by a TLA+ specification and manual safety proof

in its original publication. Similarly, a bug in one of Raft’s

original reconfiguration protocols was also discovered after

initial publication [28].

Furthermore, developing a formal inductive invariant and

safety proof often provides deeper insights into why a proto-

col is correct, which fully automated techniques like model

checking, on their own, are often unable to provide. Gaining

deeper, formalized understanding of why a protocol is correct

is valuable both from a theoretical perspective and also for

system designers and engineers who may implement these

protocols with extensions, modifications, or optimizations.

6 Related Work
Previously, there have been a variety of distributed proto-

cols formalized using TLAPS, including Classic Paxos [6],

Byzantine Paxos [21], and the Pastry distributed hash table

protocol [2].

149

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA William Schultz, Ian Dardik, and Stavros Tripakis

lemma IndImpliesStateMachineSafety Δ
=

assume MRRInd
prove StateMachineSafety

⟨1⟩0. TypeOK by def MRRInd
⟨1⟩1. suffices ∀c1, c2 ∈ committed :

(c1.entry [1] = c2.entry [1]) =⇒ (c1 = c2)
by def StateMachineSafety

⟨1⟩2. take c1, c2 ∈ committed
⟨1⟩3. suffices assume c1.entry [1] = c2.entry [1], c1 ≠ c2

prove false obvious

⟨1⟩4. c1.term ≠ c2.term
⟨2⟩1. suffices assume c1.term = c2.term

prove false obvious

⟨2⟩2. c1.entry [2] = c2.entry [2]
by ⟨2⟩1 def MRRInd,
CommittedTermMatchesEntry

⟨2⟩3. c1.entry [1] = c2.entry [1] by ⟨1⟩3
⟨2⟩4. c1 = c2

by ⟨1⟩0, ⟨2⟩1, ⟨2⟩2, ⟨2⟩3, Z 3 def TypeOK
⟨2⟩. qed by ⟨1⟩3, ⟨2⟩4

⟨1⟩5. pick s1 ∈ Server : InLog (c1.entry, s1)
by CommitsAreLogEntries

⟨1⟩6. pick s2 ∈ Server : InLog (c2.entry, s2)
by CommitsAreLogEntries

⟨1⟩7. log [s1] [c1.entry [1]] = c1.term
by ⟨1⟩5 def MRRInd, CommittedTermMatchesEntry,
InLog, TypeOK

⟨1⟩8. log [s2] [c2.entry [1]] = c2.term
by ⟨1⟩6 def MRRInd, CommittedTermMatchesEntry,
InLog, TypeOK

⟨1⟩9. case c1.term > c2.term
⟨2⟩1. ∃ i ∈ domain log [s1] : log [s1] [i] = c1.term

by ⟨1⟩5 def MRRInd,
CommittedTermMatchesEntry, InLog, TypeOK

⟨2⟩2. ∃ i ∈ domain log [s1] : log [s1] [i] > c2.term
by ⟨1⟩9, ⟨2⟩1 def TypeOK

⟨2⟩3. Len (log [s1]) ≥ c2.entry [1]
∧ log [s1] [c2.entry [1]] = c2.term

⟨3⟩1. c2.term ≤ c2.term by def MRRInd, TypeOK
⟨3⟩. qed by ⟨1⟩5, ⟨2⟩2, ⟨3⟩1 def MRRInd, TypeOK ,

LogsLaterThanCommittedMustHaveCommitted
⟨2⟩4. log [s1] [c1.entry [1]] = c2.term

by ⟨1⟩3, ⟨2⟩3 def MRRInd, TypeOK ,

CommittedEntryIndexesAreNonZero
⟨2⟩. qed by ⟨1⟩4, ⟨1⟩7, ⟨2⟩4 def TypeOK

⟨1⟩10. case c1.term < c2.term
⟨2⟩1. ∃ i ∈ domain log [s2] : log [s2] [i] = c2.term

by ⟨1⟩6 def MRRInd, InLog, TypeOK ,

CommittedTermMatchesEntry
⟨2⟩2. ∃ i ∈ domain log [s2] : log [s2] [i] > c1.term

by ⟨1⟩10, ⟨2⟩1 def TypeOK
⟨2⟩3. Len (log [s2]) ≥ c1.entry [1]

∧ log [s2] [c1.entry [1]] = c1.term
⟨3⟩1. c1.term ≤ c1.term by def MRRInd, TypeOK
⟨3⟩. qed by ⟨1⟩6, ⟨2⟩2, ⟨3⟩1 def MRRInd, TypeOK ,

LogsLaterThanCommittedMustHaveCommitted
⟨2⟩4. log [s2] [c2.entry [1]] = c1.term

by ⟨1⟩3, ⟨2⟩3 def MRRInd, TypeOK ,

CommittedEntryIndexesAreNonZero
⟨2⟩. qed by ⟨1⟩4, ⟨1⟩8, ⟨2⟩4 def TypeOK

⟨1⟩. qed by ⟨1⟩4, ⟨1⟩9, ⟨1⟩10 def MRRInd, TypeOK

Figure 5. The TLAPS proof of Lemma 5.3.

The Raft protocol, upon initial publication, included a

TLA+ formal specification of its static protocol, without dy-

namic reconfiguration [27]. Later, a formal verification of

the safety properties of the static Raft protocol was com-

pleted using the Verdi framework for distributed systems

verification [44]. The formal verification of static Raft in

Verdi consisted of approximately 50,000 lines of Coq [3],

took around 18 months to develop, and consisted of 90 total

invariants. In comparison, our proof consists of 3189 lines

of TLA+ code. Note, however, that it is difficult to directly

compare our work with [44] because (1) our TLA+ specifi-

cations are written at a higher level of abstraction, and (2)

part of the work in [44] was aimed at producing a verified,

runnable Raft implementation, which was not our goal. The

work of [44] did not include a verification of Raft’s dynamic

reconfiguration protocols. To our knowledge, our work is

the first formally verified safety proof for a reconfiguration

protocol that integrates with a Raft based system.

In general, developing formally verified proofs and induc-

tive invariants for real world distributed protocols remains

a challenging and non-trivial problem. In recent years, tools

like Ivy [31] have attempted to ease the burden of inductive

invariant discovery and verification by taking an interactive

approach to invariant development, and constraining the

specification language for describing these systems so it falls

into a decidable fragment of first order logic [32]. These re-

strictions, however, can place additional burden on the user

in cases where a protocol or its invariants do not naturally

fall into this decidable fragment [30].

Recent work has built on top of the Ivy system in an

attempt to automatically infer inductive invariants for dis-

tributed protocols, with varying degrees of success. Tools

like IC3PO [12, 13], SWISS [14], and DistAI [45] represent

the state of the art in automated inductive invariant discov-

ery for distributed protocols. With some human guidance,

they have recently been able to scale to larger protocols like

Paxos, but have not yet been applied to protocols like Raft.

Apalache [17] is a symbolic model checker for TLA+ spec-

ifications that has been developed in recent years and can

check inductiveness of protocol invariants for bounded pa-

rameters. It does not, however, currently have any proce-

dures for automatic discovery of inductive invariants. In

future it would be interesting to compare the effectiveness of

using Apalache versus the probabilistic, TLC-based method

for finding counterexamples to induction when debugging a

candidate inductive invariant.

7 Conclusions and Future Work
In this paper we presented, to our knowledge, the first formal

verification of a reconfiguration protocol for a Raft based

replication system. We used TLA+ and TLAPS, the TLA+

proof system, to formalize and mechanically verify our in-

ductive invariant and safety proofs.

150

Formal Verification of a Distributed Dynamic Reconfiguration Protocol CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

In future, we are interested in exploring ways to further

automate the inductive invariant discovery process to the

extent possible. Formal verification of liveness properties

of MongoRaftReconfig is another possible avenue for future

efforts. In addition, we are interested in examining how the

compositional structure of the protocol could be exploited to

improve the inductive invariant discovery or TLAPS proof

process.

References
[1] Marcos Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, and

Alexander Shraer. 2010. Reconfiguring Replicated Atomic Storage: A

Tutorial. Bulletin of the European Association for Theoretical Computer
Science EATCS (2010).

[2] Noran Azmy, Stephan Merz, and Christoph Weidenbach. 2016. A

Rigorous Correctness Proof for Pastry. In 5th Intl. Conf. Abstract State
Machines, Alloy, B, TLA, VDM, and Z (ABZ 2016) (LNCS, Vol. 9675),
Michael Butler, Klaus-Dieter Schewe, Atif Mashkoor, and Miklós Biró

(Eds.). Springer, 86–101.

[3] Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and
program development: Coq’Art: the calculus of inductive constructions.
Springer Science & Business Media.

[4] Richard Bonichon, David Delahaye, and Damien Doligez. 2007. Zenon:

An extensible automated theorem prover producing checkable proofs.

In International Conference on Logic for Programming Artificial Intelli-
gence and Reasoning. Springer, 151–165.

[5] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully,

Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton,

Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. 2021. Using
Lightweight Formal Methods to Validate a Key-Value Storage Node in
Amazon S3. Association for Computing Machinery, New York, NY,

USA, 836–850. https://doi.org/10.1145/3477132.3483540
[6] Saksham Chand, Yanhong A Liu, and Scott D Stoller. 2016. Formal

verification of multi-Paxos for distributed consensus. In International
Symposium on Formal Methods. Springer, 119–136.

[7] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. 2007.

Paxos made live: an engineering perspective. In Proceedings of the
twenty-sixth annual ACM symposium on Principles of distributed com-
puting. 398–407.

[8] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-

pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,

Christopher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s

globally distributed database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 1–22.

[9] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz,

Daniel Ricketts, and Hernan Vanzetto. 2012. TLA+ Proofs. Proceedings
of the 18th International Symposium on Formal Methods (FM 2012),
Dimitra Giannakopoulou and Dominique Mery, editors. Springer-Verlag
Lecture Notes in Computer Science 7436 (January 2012), 147–154. https:
//www.microsoft.com/en-us/research/publication/tla-proofs/

[10] A. Jesse Jiryu Davis, Max Hirschhorn, and Judah Schvimer. 2020. Ex-

treme Modelling in Practice. Proc. VLDB Endow. 13, 9 (may 2020),

1346–1358. https://doi.org/10.14778/3397230.3397233
[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the Theory and Practice of Software, 14th In-
ternational Conference on Tools and Algorithms for the Construction
and Analysis of Systems (Budapest, Hungary) (TACAS’08/ETAPS’08).
Springer-Verlag, Berlin, Heidelberg, 337–340.

[12] Aman Goel and Karem Sakallah. 2021. On Symmetry and Quantifi-

cation: A New Approach to Verify Distributed Protocols. In NASA
Formal Methods Symposium. Springer, 131–150.

[13] Aman Goel and Karem A. Sakallah. 2021. Towards an Automatic Proof

of Lamport’s Paxos. In Formal Methods in Computer-Aided Design

(FMCAD), Ruzica Piskac and Michael W Whalen (Eds.). New Haven,

Connecticut, 112–122. https://doi.org/10.34727/2021/isbn.978-3-85448-
046-4_20

[14] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. 2021.

Finding Invariants of Distributed Systems: It’s a Small (Enough) World

After All. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). USENIX Association, 115–131. https:
//www.usenix.org/conference/nsdi21/presentation/hance

[15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan

Parno, Michael L Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:

proving practical distributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles. 1–17.

[16] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu,

Li Shen, Liu Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong

Liu, Jian Zhang, Jianjun Li, Xuelian Wu, Lingyu Song, Ruoxi Sun,

Shuaipeng Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang.

2020. TiDB: a Raft-based HTAP database. Proceedings of the VLDB
Endowment (2020). https://doi.org/10.14778/3415478.3415535

[17] Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. 2019. TLA+ Model

Checking Made Symbolic. Proc. ACM Program. Lang. 3, OOPSLA,
Article 123 (oct 2019), 30 pages. https://doi.org/10.1145/3360549

[18] Leslie Lamport. 1995. How towrite a proof. The Americanmathematical
monthly 102, 7 (1995), 600–608.

[19] Leslie Lamport. 1998. The Part-Time Parliament. ACM Transactions
on Computer Systems (1998). https://doi.org/10.1145/279227.279229

[20] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley.

[21] Leslie Lamport. 2011. Byzantizing Paxos by refinement. In International
Symposium on Distributed Computing. Springer, 211–224.

[22] Leslie Lamport. 2018. Using TLC to Check Inductive Invariance. https:
//lamport.azurewebsites.net/tla/inductive-invariant.pdf

[23] Leslie Lamport and Lawrence C Paulson. 1999. Should your specifica-

tion language be typed. ACM Transactions on Programming Languages
and Systems (TOPLAS) 21, 3 (1999), 502–526.

[24] Zohar Manna and Amir Pnueli. 2012. Temporal verification of reactive
systems: safety. Springer Science & Business Media.

[25] MongoDB Github Project 2021. MongoDB Github Project. https:
//github.com/mongodb/mongo

[26] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2013. There

is more consensus in egalitarian parliaments. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. 358–
372.

[27] Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. Doc-
toral thesis (2014).

[28] Diego Ongaro. 2015. Bug in single-server membership changes. https:
//groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J

[29] Diego Ongaro and John Ousterhout. 2014. In Search of an Un-

derstandable Consensus Algorithm. In 2014 USENIX Annual Techni-
cal Conference (USENIX ATC 14). USENIX Association, Philadelphia,

PA, 305–319. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro

[30] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017.

Paxos Made EPR: Decidable Reasoning about Distributed Protocols.

Proc. ACM Program. Lang. 1, OOPSLA, Article 108 (oct 2017), 31 pages.
https://doi.org/10.1145/3140568

[31] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and

Sharon Shoham. 2016. Ivy: Safety Verification by Interactive Gen-

eralization. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Santa Barbara,

CA, USA) (PLDI ’16). Association for Computing Machinery, New York,

NY, USA, 614–630. https://doi.org/10.1145/2908080.2908118
[32] Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjørner. 2010. Decid-

ing effectively propositional logic using DPLL and substitution sets.

Journal of Automated Reasoning 44, 4 (2010), 401–424.

151

https://doi.org/10.1145/3477132.3483540
https://www.microsoft.com/en-us/research/publication/tla-proofs/
https://www.microsoft.com/en-us/research/publication/tla-proofs/
https://doi.org/10.14778/3397230.3397233
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://www.usenix.org/conference/nsdi21/presentation/hance
https://www.usenix.org/conference/nsdi21/presentation/hance
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1145/3360549
https://doi.org/10.1145/279227.279229
https://lamport.azurewebsites.net/tla/inductive-invariant.pdf
https://lamport.azurewebsites.net/tla/inductive-invariant.pdf
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA William Schultz, Ian Dardik, and Stavros Tripakis

[33] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977). 46–57. https:
//doi.org/10.1109/SFCS.1977.32

[34] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind

Krishnamurthy. 2015. Designing Distributed Systems Using Approxi-

mate Synchrony in Data Center Networks. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 43–57. https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/ports

[35] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using

the State Machine Approach: A Tutorial. ACM Computing Surveys
(CSUR) (1990). https://doi.org/10.1145/98163.98167

[36] William Schultz, Tess Avitabile, and Alyson Cabral. 2019. Tunable Con-

sistency in MongoDB. Proc. VLDB Endow. 12, 12 (aug 2019), 2071–2081.
https://doi.org/10.14778/3352063.3352125

[37] William Schultz and Ian Dardik. 2021. TLAPS Safety Proof of Mongo-
RaftReconfig. https://doi.org/10.5281/zenodo.5768484

[38] William Schultz, Siyuan Zhou, Ian Dardik, and Stavros Tripakis. 2022.

Design and Analysis of a Logless Dynamic Reconfiguration Proto-

col. In 25th International Conference on Principles of Distributed Sys-
tems (OPODIS 2021) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 217), Quentin Bramas, Vincent Gramoli, and Alessia Milani

(Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,

Germany.

[39] Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio P. Jun-

queira. 2012. Dynamic Reconfiguration of Primary/Backup Clus-

ters. In 2012 USENIX Annual Technical Conference (USENIX ATC 12).
USENIX Association, Boston, MA, 425–437. https://www.usenix.org/
conference/atc12/technical-sessions/presentation/shraer

[40] Pierre Sutra. 2020. On the correctness of Egalitarian Paxos. Inform.
Process. Lett. 156 (2020), 105901.

[41] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jor-

dan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,

Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, BramGruneir,

Justin Jaffray, Lucy Zhang, and Peter Mattis. 2020. CockroachDB: The

Resilient Geo-Distributed SQL Database. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Port-
land, OR, USA) (SIGMOD ’20). Association for Computing Machin-

ery, New York, NY, USA, 1493–1509. https://doi.org/10.1145/3318464.
3386134

[42] Marko Vukolić et al. 2013. The origin of quorum systems. Bulletin of
EATCS 2, 101 (2013).

[43] Makarius Wenzel, Lawrence C Paulson, and Tobias Nipkow. 2008. The

isabelle framework. In International Conference on Theorem Proving in
Higher Order Logics. Springer, 33–38.

[44] DougWoos, James R.Wilcox, Steve Anton, Zachary Tatlock, Michael D.

Ernst, and Thomas Anderson. 2016. Planning for Change in a Formal

Verification of the Raft Consensus Protocol. In Proceedings of the 5th
ACM SIGPLAN Conference on Certified Programs and Proofs (St. Peters-
burg, FL, USA) (CPP 2016). Association for Computing Machinery, New

York, NY, USA, 154–165. https://doi.org/10.1145/2854065.2854081
[45] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and

Gabriel Ryan. 2021. DistAI: Data-Driven Automated Invariant Learn-

ing for Distributed Protocols. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association,

405–421. https://www.usenix.org/conference/osdi21/presentation/
yao

[46] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model Check-

ing TLA+ Specifications. In Correct Hardware Design and Verification
Methods, Laurence Pierre and Thomas Kropf (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 54–66.

[47] Siyuan Zhou and Shuai Mu. 2021. Fault-Tolerant Replication with

Pull-Based Consensus in MongoDB. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21). USENIX
Association, 687–703. https://www.usenix.org/conference/nsdi21/
presentation/zhou

152

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ports
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ports
https://doi.org/10.1145/98163.98167
https://doi.org/10.14778/3352063.3352125
https://doi.org/10.5281/zenodo.5768484
https://www.usenix.org/conference/atc12/technical-sessions/presentation/shraer
https://www.usenix.org/conference/atc12/technical-sessions/presentation/shraer
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/2854065.2854081
https://www.usenix.org/conference/osdi21/presentation/yao
https://www.usenix.org/conference/osdi21/presentation/yao
https://www.usenix.org/conference/nsdi21/presentation/zhou
https://www.usenix.org/conference/nsdi21/presentation/zhou

	Abstract
	1 Introduction
	2 Background
	2.1 The MongoDB Static Replication Protocol
	2.2 The MongoDB Dynamic Reconfiguration Protocol: MongoRaftReconfig
	2.3 TLA+ and TLAPS
	2.4 The MongoRaftReconfig TLA+ Specification

	3 Verification Problem Statement
	4 The Inductive Invariant
	4.1 Background
	4.2 Invariant Overview
	4.3 Discovering an Inductive Invariant

	5 TLAPS Proofs
	5.1 TLAPS Proof of Inductive Invariant
	5.2 TLAPS Proof of Safety
	5.3 Example of a TLAPS Proof
	5.4 Proof Statistics
	5.5 Experience with TLAPS
	5.6 Discussion

	6 Related Work
	7 Conclusions and Future Work
	References

