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Attacks exploiting human attentional vulnerability have posed severe threats to cybersecurity. In this
work, we identify and formally define a new type of proactive attentional attacks called Informational
Denial-of-Service (IDoS) attacks that generate a large volume of feint attacks to overload human opera-
tors and hide real attacks among feints. We incorporate human factors (e.g., levels of expertise, stress,
and efficiency) and empirical psychological results (e.g., the Yerkes-Dodson law and the sunk cost fallacy)
to model the operators’ attention dynamics and their decision-making processes along with the real-time
alert monitoring and inspection. To assist human operators in dismissing the feints and escalating the
real attacks timely and accurately, we develop a Resilient and Adaptive Data-driven alert and Attention
Management Strategy (RADAMS) that de-emphasizes alerts selectively based on the abstracted category
labels of the alerts. RADAMS uses reinforcement learning to achieve a customized and transferable design
for various human operators and evolving IDoS attacks. The integrated modeling and theoretical analysis
lead to the Product Principle of Attention (PPoA), fundamental limits, and the tradeoff among crucial hu-
man and economic factors. Experimental results corroborate that the proposed strategy outperforms the
default strategy and can reduce the IDoS risk by as much as 20%. Besides, the strategy is resilient to large
variations of costs, attack frequencies, and human attention capacities. We have recognized interesting
phenomena such as attentional risk equivalency, attacker’s dilemma, and the half-truth optimal attack
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1. Introduction

Human vulnerability and human-induced security threats have
been a long-standing and fast-growing problem for the secu-
rity of Industrial Control Systems (ICSs). According to Verizon
(Bassett et al., 2021), 85% data breaches involve human errors. At-
tentional vulnerability is one of the representative human vulner-
abilities. Adversaries have exploited human inattention to launch
social engineering attacks and phishing attacks toward employ-
ees and users. According to the report (Tessian, 2020), 29% of
employees fall for a phishing scam, and 36% send a misdirected
email, owing to lack of attention. These attentional attacks are re-
active as they exploit the existing human attention patterns. On
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the contrary, proactive attentional attacks can strategically change
the attention pattern of a human operator or a network admin-
istrator. For example, an attacker can launch feint attacks to trig-
ger a large volume of alerts and overload the human operators so
that operators fail to inspect the alert associated with real attacks
(Hitzel, 2019). We refer to this new type of attacks as the Informa-
tional Denial-of-Service (IDoS) attacks, which aim to deplete the
limited attention resources of human operators to prevent them
from accurate detection and timely defense.

IDoS attacks bring significant security challenges to ICSs for the
following reasons. First, alert fatigue has already been a serious
problem in the age of infobesity with terabytes of unprocessed
data or manipulated information. According to the Ponemon Insti-
tute research report (LLC, 2015), organizations spend nearly 21,000
hours each year analyzing false alarms, which costs organizations
an average of $1.27 million per year. IDoS attacks exacerbate the
problem by generating feints to intentionally increase the percent-
age of false-positive alerts. Second, IDoS attacks directly target the
human operators and security analysts in the Security Operations
Center (SOC) that acts as the ‘central immune system’ in ICSs.
Third, as ICSs become increasingly complicated and time-critical,
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Fig. 1. The overview diagram of RADAMS against IDoS in ICS, which incorporates the IDoS attack model, the human attention model, and the human-assistive security
technology in the red, green, and blue boxes, respectively. RADAMS consolidates the technical-level (i.e., generation rules and triage rules in black) and the cognitive-level
(data-driven human-aware alert de-emphasis in blue) alert management before the manual inspection in green to reduce the operators’ cognitive load. The modern SOC
adopts a hierarchical alert analysis process. The tier-1 SOC analysts, also referred to as the operators, are in charge of real-time alert monitoring and inspections. The tier-2
SOC analysts are in charge of the in-depth analysis. All processes in black are not the focus of this work. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

the human operators require higher expertise levels to understand
the domain information and detect feints (Stouffer et al., 2011) in
time to avoid life-threatening failures or huge economic losses. The
SOCs in ICSs are usually understaffed, due to these high-standard
requirements. Fourth, since human operators behave differently,
and IDoS attacks are a broad class of adaptive attacks, it is chal-
lenging (yet highly desirable) to develop a customized and resilient
defense. Due to the above factors, including the huge economic
loss, there is an apparent need to understand this class of proac-
tive attentional attacks, quantify its consequences and risks, and
develop associated mitigation strategies.

To this end, we establish a holistic model of the IDoS attacks,
the alert generations, and the human operators’ alert responses.
In the IDoS attack model, we adopt a Markov renewal process to
characterize the sequential arrival of feints and real attacks that
target different ICS assets. We define a revelation probability to ab-
stract the alert generation and triage process of existing detection
systems. The revelation probability maps the attacks’ hidden types
and targets stochastically to the associated alerts’ observable cat-
egory labels. To model the human operators’ attention dynamics
and alert responses under the IDoS attacks, we directly incorpo-
rate the operators’ levels of expertise, stress, and efficiency into
the security design based on the existing results from the litera-
ture in psychology, including the Yerkes-Dodson law (Yerkes et al.,
1908) and the sunk cost fallacy (Arkes and Blumer, 1985). To as-
sist human operators in alert inspection and response, compensate
for their attentional vulnerabilities, and combat IDoS attacks, we
develop human-centered technologies that selectively make some
alerts less noticeable based on their category labels. Reinforcement
learning is applied to make the human-assistive security technol-
ogy resilient, automatic, and adaptive to various human models and
attack scenarios.

Fig. 1 illustrates the overview diagram of Resilient and Adap-
tive Alert and Attention Management Strategy (RADAMS). We use
the following control room scenario to elaborate on the entire pro-
cess of RADAMS under IDoS attacks. Supervisory computers and
Security Information and Event Management (SIEM) continuously
monitor the physical readings and cyber log files, respectively, to
generate alerts with device-level information. Since manual inspec-
tion and response of these alerts (illustrated in green) are indis-
pensable for ICSs at the current stage, RADAMS adopts the follow-
ing technical-level and cognitive-level automated alert selection
schemes, illustrated in black and blue, respectively, to assist man-
ual alert inspection. The technical-level alert selection scheme fo-
cuses on selecting and prioritizing alerts based on the device-level
information and abstract system-level metrics. Although the above
alert triage process significantly reduces the workload of the man-
ual inspection, a sizeable number of alerts remain to be inspected,
especially under a large volume of feints. To this end, RADAMS
incorporates the cognitive-level alert selection to accommodate
the operators’ cognition limitation in the subsequent alert inspec-
tions. After the technical-level and cognitive-level alert manage-
ment, RADAMS presents the selected alerts to the tier-1 SOC an-
alysts in the control room for real-time monitoring and response.
The alerts associated with the real attack will be identified and
escalated to tier-2 analysts for in-depth analysis. The analysis out-
comes of tier-2 analysts are used to mitigate the current threats
and improve the generation rules and technical-level triage rules.

RADAMS enriches the existing alert selection frameworks with
the IDoS attack model, the human attention model, and the
human-assistive security technology highlighted in red, green, and
blue, respectively. Through the integrated modeling and theoretical
analysis, we obtain the Product Principle of Attention (PPoA), which
states that the Attentional Deficiency Level (ADL), i.e., the proba-
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Table 1
Summary of notations in Section 3.
Variable Meaning
tk € [0, 00) Arrival time of the k-th attack.
Tk =tkt1 _tk ¢ [0,00)  Inter-arrival time at attack stage k € 7%+,
Kar € Kar Transition kernel of attacks.
zeZ Probability Density Function (PDF) of the inter-arrival time.

Ok e®:= {GFEveRE}

Attack’s type at attack stage k e Z0+.

Pk e @ Attack’s target at attack stage k e Z%+.
skes Alert’s category label at attack stage k.
o(sk|6%, %) Revelation kernel of category labels.
b(Ok, ¢*) Steady-state distribution.

Kcr € Ker Transition kernel of category labels.

bility of incomplete alert responses, and the risk of IDoS attacks
depend on the product of the supply and the demand of human
attention resources. The closed-form expressions under mild as-
sumptions lead to several fundamental limits, including the mini-
mum ADL and the maximum length of de-emphasized alerts to re-
duce IDoS risk. We explicitly characterize the tradeoff among cru-
cial factors such as the ADL, the reward of alert attention, and the
impact of alert inattention.

Finally, we propose an algorithm to learn the adaptive Atten-
tion Management (AM) strategy based on the operator’s alert in-
spection outcomes. We present several case studies based on the
simulation of different IDoS attacks and alert inspecting processes.
The numerical results show that the proposed optimal AM strat-
egy outperforms the default strategy and can effectively reduce the
IDoS risk by as much as 20%. The strategy is also resilient to a
large range of cost variations, attack frequencies, and human at-
tention capacities. We have observed the phenomenon of atten-
tional risk equivalency, which states that the deviation from the
optimal to sub-optimal strategies for some category labels can re-
duce the risk under the default strategy to approximately the same
level. The results also corroborate that RADAMS can adapt to dif-
ferent category labels to strike a balance of quantity (i.e., inspect
more alerts) and quality (i.e., complete alert responses to dismiss
feints and escalate real attacks). We identify the attacker’s dilemma
where destructive IDoS attacks induce unbearable costs to the at-
tacker. We also identify the half-truth attack strategy as the op-
timal IDoS attack strategy when feints are generated at a high
cost.

1.1. Contribution, notations, and organization of the paper

Our main contributions are fourfold. First, we have formally de-
fined a new type of attentional attacks called IDoS attacks. Second,
we propose a consolidated alert and attention management strat-
egy that is explicitly aware of human cognition limitations to de-
fend against IDoS attacks. Third, we provide theoretical underpin-
nings of RADAMS under IDoS attacks and propose a learning algo-
rithm to implement RADAMS in real time. Fourth, we present com-
prehensive case studies to demonstrate the effectiveness, adaptive-
ness, robustness, and resilience of the proposed assistive strategies.

The rest of the paper is organized as follows. The related works
are presented in Section 2. Sections 3, 4, and 5 introduce the
IDoS attack model, the human operator model, and the human-
assistive security technology, respectively. We summarize main no-
tations for these three sections in Table 1, 2, and 3, respectively.
We analyze the attentional deficiency level and the risk of IDoS
attacks in closed form for the class of ambitious operators in
Section 6, where the main notations are summarized in Table 4.
Section 7 presents a case study of alert inspection under IDoS at-
tacks and the adaptive AM strategies. Section 8 concludes the pa-
per.

2. Related work
2.1. Alert management

Previous works have applied various alert management meth-
ods during the alert generation, detection, and response processes
to mitigate alert fatigue and enhance cybersecurity, as shown in
the following three subsections.

2.1.1. Source management

On the one hand, proactive defense (Huang and Zhu, 2020a)
and deception techniques, including honeypots (Huang and Zhu,
2019; 2020b) and moving target defense (Jajodia et al., 2011),
have managed to reduce alerts at the outset by deterring, delay-
ing, and preventing attacks. On the other hand, previous works
have designed incentive mechanisms (e.g., Casey et al. (2016);
Liu et al. (2009)) and information mechanisms (e.g., Huang and
Zhu (2021b, 2022)) to enhance insiders’ compliance, reduce users’
misbehavior, and consequently reduce false positives.

2.1.2. Detection management

A rich literature has attempted to develop detection systems
capable of reducing false positives while maintaining the ability
to detect malicious behaviors. Methods include statistical analysis
(Spathoulas and Katsikas, 2010), fuzzy inference (Elshoush and Os-
man, 2010), kernel density estimation (Su et al., 2019), and ma-
chine learning approaches (Bouzar-Benlabiod et al., 2020; Goeschel,
2016; Ohta et al., 2008; Pietraszek and Tanner, 2005). Alert aggre-
gation and correlation methods (Salah et al., 2013) have also been
applied to dismiss repeated and innocuous alerts and generate
alerts of system-level threat information. Recently, the authors in
Bryant and Saiedian (2020) have implemented a hybrid kill-chain
based classification model to boost detection rates, improve alert
description, and lower the number of false-positive alerts. There is
a rich literature on alert filtering and selection, and we refer the
readers to Cotroneo et al. (2017) for the empirical analysis and val-
idation of these state-of-the-art filtering techniques.

2.1.3. Response management

Despite the significant advances in alert reduction methods in-
troduced in Section 2.1.1 and 2.1.2, the demand for alert inspection
still exceeds the operators’ capacity. To this end, researchers have
developed various alert triage and prioritization approaches that
can be classified into the following three categories.

The first category ranks alerts based on rules. These rules can
be generated through fuzzy logic (Alsubhi et al.,, 2012; Newcomb
et al, 2016) and attack graphs (Noel and Jajodia, 2008). Many
works have attempted to learn from security experts and auto-
mate the process of mining triage rules out of cybersecurity an-
alysts’ operation traces (Zhong et al., 2016; 2018b). The second
category assigns scores to alerts and quantitatively optimizes the
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Variable Meaning

WFE, WRE, WuN, WN|
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KS%(SHAlek)
Dmax(sk) eR*
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d(yeL, sk, 0%, ¢%)

nt e 7%+
¥y = fa(n') e RT

o' = fioe(¥s) €[0.1]
A(YeL, s5) € RO*

@t = [ otdt

psp Ver. S5, 6%, pF)

Operator’s expertise level.

Attention threshold.

Alert dismissal, alert escalation, uninspected alerts, and inadequate alert response.
Operator’s alert response at attack stage k.

Operator’s default switching probability.

Maximum Allowable Delay (MAD) for responding to alerts of category label s* € S.
k-th alert’s Age of Information (Aol).

Average inspection time to reach a complete alert response Wrg Or wgg.

Actual Inspection Time Needed (AITN).

Number of alerts that arrive during the current inspection up to time t € [0, c0).
Operator’s stress level at time t.

Operator’s Level of Operational Efficiency (LOE) at time ¢.

Effective Inspection Time (EIT) during inspection time [t, t;].
Probability of a complete response.

Table 3
Summary of notations in Section 5.

Variable Meaning

I € 2%, th € [0, o)

Index and time of the alert under the h-th inspection (i.e., inspection stage h € Z%*).

am e A Attention management (AM) strategy of period m € Z*.
a"e A AM action at inspection stage h e 7%+,
l?}@{,"""“h (sl |slh) Operator’s switching probability under a".
c(wk, 5 e R Stage cost.
c(sh, a") e R Expected Consolidated Cost (ECoC).
E(sh, ahy e R Consolidated Cost (CoC).
0% 0*eX Default and optimal AM strategy.
Table 4
Summary of Notations in Section 6.
Variable Meaning
pun (s, a) Attentional Deficiency Level (ADL).
B>0 Poisson arrival rate.
z PDF of Erlang distribution with shape m + 1 and rate B.

p}SID (Wh s, a'; O ph)
A(sh, m, pM)

Probability that the operator makes alert response wh at inspection stage h.
Expected reward of a complete alert response.

alert triage process by minimizing the cyber risk. The score can
be computed through a causal dependency graph of an alert event
(Hassan et al., 2019), game-theoretic approaches (Laszka et al.,
2017), and the Quantitative Value Function (QVF) hierarchy pro-
cess (Shah et al., 2019a). The authors in Ganesan et al. (2016);
Shah et al. (2019a) further incorporate organization-specific fac-
tors and constraints into the design of the optimal alert selection.
The third category relies on data and learning methods. Supervised
learning (Bierma et al., 2016; Renners et al., 2017), deep learning
(Aminanto et al., 2020; McElwee et al., 2017), and adversarial rein-
forcement learning Tong et al. (2020) are used to prioritize alerts.
The authors in Zhong et al. (2018a) have developed a triage oper-
ation retrieval system to provide novice analysts with on-the-job
suggestions using relevant data triage operations conducted by se-
nior analysts.

The above three categories of rule-based, risk-aware, and data-
driven alert triage methods rank alerts based on their contextual
information and organizational factors. Our human-centered ap-
proach generalizes these classical alert triage approaches by ex-
plicitly modeling the attentional behaviors of human operators and
selecting alerts based on human cognitive capacity.

2.2. Feint attacks and human attentional models

Feints have been widely studied in sports, military, and biology
(Project, 2017). They are recently used to attack detection systems
Corona et al. (2013). In particular, the authors in Mutz et al. (2003);
Patton et al. (2001) have developed tools that can generate false

positives by matching detection signatures. The tools are tested on
SNORT (Roesch et al., 1999), and the empirical results verify the
feasibility of feint attacks on detection systems. Compared to these
empirical practices of feint attacks that exploit the vulnerability of
detection systems, we focus on the attentional vulnerabilities and
the impact of feints on human operators. Moreover, we abstract
models to formally characterize cyber feint attacks, quantify the
risk, and develop human-assistive security technologies.

We can classify human vulnerabilities into acquired vulnera-
bilities (e.g., lack of security awareness and noncompliance) and
innate ones (e.g., bounded attention and rationality) based on
whether they can be mitigated through short-term training and
security rules. Many works (e.g., Casey et al. (2016); Huang and
Zhu (2021b); Wang et al. (2021)) have emphasized the urgency
and necessity to reduce acquired human vulnerability and pro-
posed human-assistive strategies. However, few works have fo-
cused on mitigation strategies for innate vulnerabilities. Visual
support systems have been used for rapid cyber event triage
(Miserendino et al., 2017) and alert investigations (Franklin et al.,
2017), and eye-tracking data have been incorporated to enhance at-
tention for phishing identification (Huang et al., 2022). The authors
in Sundaramurthy et al. (2015) perform an anthropological study in
a corporate SOC to model and mitigate security analyst burnout.
These works lay the foundations of empirical solutions to miti-
gate human attentional vulnerabilities. Our work combines real-
time human behavioral and decision data with the well-identified
human factors to enable quantitative characterizations of the em-
pirical relationship such as the Yerkes-Dodson law (Yerkes et al.,
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Fig. 2. The timelines of an IDoS attack, alerts under AM strategies, and manual inspections are depicted in red, blue, and green, respectively. The inspection stage h e Z%* is
equivalent to the attack stage I, e Z%*. The red arrows represent the sequential arrivals of feints and real attacks. The semi-transparent blue and the dashed green arrows
represent the de-emphasized alerts and the alerts without inspections, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

1908). The learning-based method for attention management also
makes our human-assistive technology adaptive and transferable to
various human-technical systems.

3. IDoS attacks and sequential alert arrivals

As illustrated in the first column of Fig. 1, after the IDoS at-
tacker has generated feint and real attacks, the detection system
monitors the readings from physical layers and log files from cyber
layers and generates alerts according to the generation rules. Then,
the alerts are sent to the SOC and a triage system automatically
generates their category labels (e.g., the alerts’ criticality) based on
the technical-level triage rules. The rules for alert generation and
triage are pre-defined and their designs are not the focus of this
work.

3.1. Feint and real attacks of heterogeneous targets

After the essential preparation stages (e.g., initial intrusion,
privilege escalation, and lateral movement), IDoS attacks identify
the vulnerable assets as the attack targets and gain control of the
ICS to launch feint and real attacks sequentially, as illustrated by
the solid red arrows in Fig. 2. With a deliberate goal of triggering
alerts, feint attacks require fewer resources to craft. Although feints
have limited impacts on the target system, they aggravate the alert
fatigue by depleting human attention resources and preventing hu-
man operators from a timely response to real attacks. For exam-
ple, the attacker can attempt to access a database with wrong cre-
dentials intentionally, and in the meantime, gradually changes the
temperature of the reactor of a nuclear power plant. The repeated
log-in attempts trigger an excessive number of alerts so that the
overloaded human operators fail to pay sustained attention and re-
spond timely to the sensor alerts of the temperature deviation.

We denote feint and real attacks as O and 6Ogg, respectively,
where © := {0, Oge} is the set of attacks’ types. Each feint or real
attack can target cyber assets (e.g., servers, databases, and work-
stations) or physical assets (e.g., sensors of pressure, temperature,
and flow rate) in the ICS. We define @ as the set of the poten-
tial attack targets. The stochastic arrival of these attacks is mod-
eled as a Markov renewal process where tk k € Z0+, is the time
of the k-th arrival. We refer to the k-th attack equivalently as
the attack at attack stage k € Z0+ and let 6% ¢ ® and ¢ ¢ ® be
the attack’s type and target at attack stage k e Z%F, respectively.
Define kst € Kar: ® x & x ® x &~ [0, 1] as the transition ker-
nel, where k47 (051, pk+1|0k, ¢*) denotes the probability that the
(k + 1)-th attack has type 0¥+1 ¢ ® and target ¢p**+! € ® when the

k-th attack has type 6% ¢ ® and target ¢* ¢ ®. The inter-arrival
time tk :=tkt1 —tk is a continuous random variable with support
[0, o) and Probability Density Function (PDF) ze Z: ® x ® x ® x
® > ROF, where z(t|0k+1, pkt+1 9k ¢k) is the probability that the
inter-arrival time is t when the attacks’ types and targets at attack
stage k and k+ 1 are 6%, ¢* and 6k+1, pk+1  respectively. The val-
ues of kapr € K4r and z € 2 are unknown to human operators and
the designer of RADAMS. Attackers can adapt k47 and z to different
ICSs and alert inspection schemes to achieve the attack goals. We
formally define IDoS attacks in Definition 1.

Definition 1 (IDoS Attacks). An IDoS attack is a sequence of feint
and real attacks of heterogeneous targets, which can be character-
ized by the 4-tuple (®, ®, K1, 2).

3.2. Technical-level alert triage and system-level metrics

The alerts triggered by IDoS attacks contain device-level contex-
tual information, including the software version, hardware param-
eters, existing vulnerabilities, and security patches. The alert triage
process consists of rules that map the device-level information to
system-level metrics, which helps human operators make timely re-
sponses. Some essential metrics are listed as follows.

- Source sgg € 8so: The ICS sensors or the cyber assets that the
alerts are associated with.

Time Sensitivity st € Ss: The length of time that the potential
attack needs to achieve its attack goals.

Complexity sco € 8co: The degree of effort that a human oper-
ator takes to inspect the alert.

Susceptibility s, € Sgy: The likelihood that the attack succeeds
and inflicts damage on the protected system.

Criticality scg € Scg: The consequence or the impact of the at-
tack’s damage.

These alert metrics are observable to the human operators and
the RADAMS designer and form the category label of an alert.
We define the category label associated with the k-th alert as
sk 1= (sky. skg. sko sk, skp) €8, where 8 := 850 x S5 x Sco x Ssy x
8cr. The joint set § can be adapted to suit the organization’s needs
in the security practice. For example, we have St¢ = ¢ if time sen-
sitivity is unavailable or unimportant.

The technical-level alert triage process establishes a stochastic
connection between the hidden types and targets of the IDoS
attacks and the observable category labels of the associated
alerts. Let o(sk|0k, ¢%) be the probability of obtaining cate-
gory label sk €8, when the associated attack has type 6% c ®
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and target ¢k € ®. The revelation kernel o reflects the qual-
ity of the alert triage. For example, feints with lightweight
resource consumption usually have a limited impact. Thus, a
high-quality triage process should classify the associated alert
as low criticality with a high probability. Letting b(8%, ¢*) de-
note the probability that the k-th attack has type 6% and target
¢k at the steady-state, we can compute the steady-state dis-
tribution b in closed form based on k7. Then, the transition
of category labels at different attack stages is also Markov
and is represented by k¢ € Ko :8 x8+— [0,1]. We can com-

k+1 ¢k
Pr(s“+1.s%) based on kyr, 0, b, where Pr(sk+1, sk =

ute K = —————=5——
P CL Zs"“es pr(skﬂ,sk)

D0k pk1c@ 2ok kil cq KAT (01, P10k pkyo(sk|Ok, pk)o(sk+T|ok+1,

d*1)b(O*, ¢¥). In this work, we focus on the case where the de-
tection system introduces the same delay between attacks and
their triggered alerts. Since the sequences of attacks and alerts
have a one-to-one mapping, we can consider zero delay time
without loss of generality. Hence, the sequence of alerts associated
with an IDoS attack (®, ®,XK,r,2) is also a Markov renewal
process characterized by the 3-tuple (8, X, Z).

4. Human attention model under IDoS attacks

An SOC typically adopts a hierarchical alert analysis
(Zimmerman, 2014). The attention model in this section ap-
plies to the tier-1 SOC analysts, or the operators, who are in
charge of monitoring, inspecting, and responding to alerts in real
time. As illustrated by the green box in Fig. 1, the operators choose
to inspect certain alerts, dismiss the feints, and escalate the real
attacks to tier-2 SOC analysts for in-depth analysis. The in-depth
analysis can last hours to months, during which the tier-2 analysts
correlate incidents from different assets in the ICS over long
periods to build threat intelligence and analyze the impact. The
threat intelligence is then incorporated to form and update the
generation rules of the detection system and triage rules of the
triage process.

4.1. Alert responses

Due to the high volume of alerts and the potential short-
term surge arrivals, human operators cannot inspect all alerts in
real time. The uninspected alerts receive an alert response wy;.
Whether the operator chooses to inspect an alert depends on the
switching probability in Section 4.2.

When the operator inspects an alert, he can be distracted by
the arrival of new alerts and switch to newly-arrived alerts without
completing the current inspection. We elaborate on the attention
dynamics in Section 4.3. The alert with incomplete inspection is
labeled by wyy. Besides the insufficient inspection time, the oper-
ator’s cognitive capacity constraint can also prevent him from de-
termining whether the alert is triggered by a feint or a real attack.
In this work, we consider prudent operators. When they cannot
determine the attack’s type after a full inspection, the associated
alert is labeled as wyy, as shown in the green flowchart of Fig. 1.
We elaborate on how the insufficient inspection time and the op-
erator’s cognitive capacity constraint lead to wyy, i.e., referred to
as the inadequate alert response, in Section 4.4. The alerts labeled
as wy; and wyy are ranked and queued up for delayed inspections
at later stages.

When the operator successfully completes the alert inspection
with a deterministic decision, he either dismisses the alert (de-
noted by wrg) or escalates the alert to tier-2 SOC analysts for
in-depth analysis (denoted by wgg), as shown in Fig. 1. We use
wk € W := {Wpg, Wgg, Wyn. Wyi} to denote the operator’s response
to the alert at attack stage k € Z0t. We can extend the set W to
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suit the organization’s security practice. For example, some organi-
zations let the operators report their estimations and confidence
levels concerning incomplete alert inspection, i.e., divide the la-
bel wyy into finer subcategories. Then at later stages, the delayed
inspection can prioritize the alerts based on the estimations and
confidence levels.

4.2. Probabilistic switches within allowable delay

Alerts are monitored in real time when they arrive. When the
category label of the new alert indicates higher time sensitivity,
susceptibility, or criticality, the operator can delay the current in-
spection (i.e., label the alert under inspection as wyy) and switch
to inspect the new alert. We denote x4 (s+2k|sk) as the opera-
tor’s default switching probability when the previous alert at at-
tack stage k and the new alert at stage k + Ak, Ak € Z+, have cat-
egory label sk € 8 and skt2k ¢ g, respectively. As a probability mea-
sure,

o0
3N k(s AKsk) =1, Vk e 20, Vsk e 8. (1)
Ak=1 sk+Ake g
Since the operator cannot observe the attack’s hidden type and
hidden target, the switching probability Ks%\’/‘ is independent of
0k, ¢* and O¥+1 pk+1 The switching probability depends on the
time that the operator has already spent on the current inspec-
tion. For example, an operator becomes less likely to switch after
spending a long time inspecting an alert of low criticality or be-
yond his capacity, which can lead to the Sunk Cost Fallacy (SCF).
We denote Dmax(s") e R* as the Maximum Allowable Delay
(MAD) for alerts of category label sk € S. At time t > tk, the k-th
alert’s Age of Information (Aol) (Yates et al., 2021) is defined as

tk ; ==t —tk. This work focuses on time-critical ICSs where a de-

fensive response for the k-th alert of category label sk € § is only
effective if the alert’s Aol is within the MAD, ie., tX < Dmax(s).
Therefore, the operator will be reminded when an alert’s Aol ex-
ceeds the MAD so that he can switch to monitor and inspect new
alerts. The MAD and the reminder scheme help mitigate the SCF
when the operators are occupied with old alerts and miss the

chance to monitor and inspect new alerts in real time.
4.3. Attentional factors

We identify the following human and environmental factors af-
fecting operators’ alert inspection and response processes.

» The operator’s expertise level denoted by yg; € Yg;.

- The k-th alert’s category label sk € 8.

« The k-th attack’s type 6% and target ¢k.

« The operator’s stress level y§, € R*, which changes with time ¢
as new alerts arrive.

The first three factors are the static attributes of the analyst, the
alert, and the IDoS attack, respectively. They determine the average
inspection time, denoted by d(yg;, s¥, 0%, ¢*) € R*, to reach a com-
plete response wgg or wgg. For example, if the inspected alert is of
low complexity, the operator can reach a complete response in a
shorter time. Also, it takes a senior operator less time on average
to reach a complete alert response than a junior one does. We use
d(yg, sk, 6% ¢*) to represent the Actual Inspection Time Needed
(AITN) when the operator is of expertise level yg;, the alert is of
category label sk, and the attack has type 6% and target ¢k. AITN
d(ygL, sk, O, ¢*) is a random variable with mean d(yg, sk, 8%, ¢¥).

The fourth factor reflects the temporal aspect of human atten-
tion during the inspection process. Evidence has shown that the
continuous arrival of the alerts can increase the stress level of hu-
man operators (Ancker et al., 2017), and 52% of employees attribute
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their mistakes to stress (Tessian, 2020). We denote n ¢ Z0+ as the
number of alerts that arrives during the current inspection up to
time t € [0, 00) and model the operator’s stress level y§, as an in-
creasing function fs; of n', i.e., y§ = fg (n*). At time t € [0, 00), the
human operator’s Level of Operational Efficiency (LOE), denoted by
o' €10, 1], is a function fiof of the stress level % , i.e.,

o' = froe (V) = (fioe o for) ("), Vt € [0, 00). (2)
Based on the Yerkes-Dodson law, the function fjor follows an in-
verse U-shape that contains the following two regions. In region
one, a small number of alerts result in a moderate stress level
and allow human operators to inspect the alert efficiently. In re-
gion two, the LOE starts to decrease when the number of alerts
to inspect is beyond some threshold 7i(yg;, s¥) € RO, and the hu-
man operator is overloaded. The value of the attention thresh-
old fi(yg,s*) depends on the operator’s expertise level yg; € Yg;
and the alert’s category label sk € 8. For example, it requires more
(resp. fewer) alerts (i.e., higher (resp. lower) attention threshold)
to overload a senior (resp. an inexperienced) operator. We can also
adapt the value of Ai(yg, s¥) to different scenarios. In the extreme
case where all alerts are of high complexity and create a heavy
cognitive load, we let fi(yg, s*) = 0, Vyg; € Yg, sk € 8, and the LOE
decreases monotonously with the number of alert arrivals during
an inspection.

4.4. Alert responses under time and capacity limitations

After we identify attentioinal factors in Section 4.3, we illus-
trate their impacts on the operators’ alert responses as follows. We
define the Effective Inspection Time (EIT) during inspection time
[t1,t;] as the integration &1tz := fflz w'dt. When the operator is
overloaded and has a low LOE during [t, t;], the EIT &1-%2 is much
shorter than the actual inspection time t; — t;.

Suppose that the operator of expertise level yg; inspects
the k-th alert for a duration of [tq,t;]. If the EIT has ex-
ceed the AITN d(yg., sk, 6%, ¢*), then the operator can reach a
complete response Wgg or wgg with a high success probabil-
ity denoted by psp(ver, sk, 0%, ¢*) € [0, 1]. However, when &t <
d(ygL sk, 6%, @K), it indicates that the operator has not completed
the inspection, and the alert response concerning the k-th alert is
wk = wyy. The success probability psp depends on the operator’s
capacity to identify attacks’ types, which leads to the definition of
the capacity gap below.

Definition 2 (Capacity Gap). For an operator of expertise level
YEL € Y1, we define peg (. s¥. 0%, ¢F) := 1 — pop(ypL. s, 0K, ¢F) as
his capacity gap to inspect an alert with category label sk € 8, type
0k e ©, and target ¢* € ® defined in Section 3.

5. Human-assistive security technology for cognitive-level alert
management

As illustrated in Section 4, the frequent arrival of alerts trig-
gered by IDoS attacks can overload the human operator and reduce
the LOE and the EIT. To compensate for the human’s attentional
limitation, we can intentionally make some alerts less noticeable,
e.g., without sounds or in a light color, based on their category
labels. As illustrated by the blue box in Fig. 1, based on the cate-
gory labels from the technical-level triage process, RADAMS auto-
matically emphasizes and de-emphasizes alerts, referred to as the
cognitive-level alert management, and then presents them to the
tier 1 SOC analysts.

5.1. Adaptive attention management strategy

In this work, we focus on the class of AM strategies, denoted by
A :={am}me(01,.. my» that de-emphasize consecutive alerts. As ex-
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plained in Section 4.1, the operator can only inspect some alerts
in real time. Thus, we use I, € Z%+ and t' € [0, c0) to denote the
index and the time of the alert under the h-th inspection; i.e., the
inspection stage h € Z%* is equivalent to the attack stage I, € Z0+.
Whenever the operator starts a new inspection at inspection stage
h e 79+, RADAMS determines the AM action a" € A for the h-th
inspection based on the stationary strategy o € ¥ : S A that is
adaptive to the category label of the h-th alert. We illustrate the
timeline of the manual inspections and the AM strategies in green
and blue, respectively, in Fig. 2. The solid and dashed green ar-
rows indicate the inspected and uninspected alerts, respectively.
The non-transparent and semi-transparent blue arrows indicate the
emphasized and de-emphasized alerts, respectively. At inspection
stage h, if a" = a,, RADAMS will make the next m alerts less no-
ticeable; i.e,, the alerts at attack stages I, +1,---,I, +m are de-

I g
emphasized. Denote /2;’(,‘71 - (sh+1]sh) as the operator’s switch-
ing probability to these de-emphasized alerts under the AM action
a € A. Analogously to (1), the following holds for all h € Z%t and
ah e 4, ie,

oo

33 Rl (shelshy =1, Vs e s. (3)
1=l +1shi1es
The deliberate de-emphasis on selective alerts brings the following
tradeoff. On the one hand, these alerts do not increase the opera-
tor’s stress level, and the operator can pay sustained attention to
the alert under inspection with high LOE and EIT. On the other
hand, these alerts do not draw the operator’s attention, and the
operator is less likely to switch to them during the real-time mon-
itoring and inspections.

Since the operator may switch to inspect a de-emphasized

alert with switching probability E;’W‘_I’“ah (e.g., the h-inspection
in Fig. 2), RADAMS recomputes the AM strategy and implements
the new strategy whenever the operator has started to inspect
a new alert. Although the operator can switch unpredictably,
Proposition 1 shows that the transition of the inspected alerts’ cat-
egory labels is Markov.

Proposition 1. For a stationary AM strategy o € %, the set of ran-
dom variables (S, Tl), .o, is a Markov renewal process.

Proof. The sketch of the proof includes two steps. First, we prove
that the state transition from s’ to s’+1 is Markov for all h € Z0+.
Due to the uncertainty of switching in inspection, the transition
stage I,; is also a random variable for all h € z%+, and we can
represent the transition probability as

Pr(S" = slher|sh) = “Pr(ly,q = Iy + 1) - Pr(Sh = sh1|sh),
=1

where Pr(I;,q =1I;+1) is the probability that the (h+ 1)-th in-
spection happens at attack stage I+l The term Pr(Sh+1 =
sh+1]slh) is Markov and can be computed based on ;. The term
Pr(ly,; = Iy +1) depends on d(yg,sht!, oh+!' ¢ht!) «lL il .
' for all I € {1,--- ,1}. Since sh+" @+ ¢h+' 1" € {1,... 1}, are
all stochastically related to s’ and s'+ based on o, k4r and k¢,
the term Pr(I,,; = I, +1) depends on sh and sh+1 for all | € Z*.

Then, we show that the distribution of the inter-arrival time
r,l,(}'m :=Th+1 —Th only depends on s and s'+1. Analogously, the
cumulative distribution function of t,l,{}'m is

Pr(Tjy™ <t) = Y02 Pr(lyey = Iy + 1) - Pr(zy™ < t),
and hence we arrive at the Markov property. O

5.2. Stage cost and expected cumulative cost

For each alert at attack stage k e Z%*, RADAMS assigns a stage
cost ¢(wk, sk) € R to evaluate the outcomes of alert response wk e



L. Huang and Q. Zhu

W under the category label sk € 8. The value of the cost varies un-
der different scenarios. In this work, we can estimate it using the
salary of SOC analysts and the estimated loss of the associated at-
tack. For example, ¢(wyy, s") and ¢(wyy, sh) are positive costs as
those alerts without a complete response incur additional work-
loads. The delayed inspections also expose the organization to the
threats of time-sensitive attacks. On the other hand, ¢(wpg, sh) and
C(wgg, slh) are negative costs because the alerts with complete alert
response Wgg and wgg reduce the workload of tier 2 SOC analysts
and enable them to obtain threat intelligence.

When the operator starts a new inspection at inspection stage
h+ 1, RADAMS will evaluate the effectiveness of the AM strategy
for the h-th inspection. The performance evaluation is reflected by
the Expected Consolidated Cost (ECoC) c: 8 x A +— R at each in-
spection stage h € Z0t. We denote the realization of c(sh,a") as
the Consolidated Cost (CoC) & (sh,a). Since the AM strategy o
at each inspection stage can affect the future human inspection
process and the alert responses, we define the Expected Cumu-
lative Cost (ECuC) u(sh, o) := 322y c(sh, o (s')) under adaptive
strategy o € X as the long-term performance measure. The goal of
the assistive technology is to design the optimal adaptive strategy
o* € ¥ that minimizes the ECuC u under the presented IDoS attack
based on the category label sh e § at each inspection stage h. We
define v*(sh) := miny .y u(sh, o) as the optimal ECuC when the
category label is sh e 8. We refer to the default AM strategy 0% ¢ &
as the one when no AM action is applied under all category labels,
ie., 00(sh) = ag, Vsh e 8.

5.3. Reinforcement learning

Due to the absence of the following exact model parameters,
RADAMS has to learn the optimal AM strategy o* € ¥ based on
the operator’s alert responses in real time.

 Parameters of the IDoS attack model (e.g., k4r and z) and the
alert generation model (e.g., 0) in Section 3.
- Parameters of the human attention model (e.g., fior and fg), in-

_ h
spection model (e.g., /(SAM’;, IE;W . , and d), and alert response
model (e.g., yg; and psp) in Section 4.

Define Q"(s', a") as the estimated ECuC during the h-th inspec-
tion when the category label is s € § and the AM action is a”.
Based on Proposition 1, the state transition is Markov, which en-
ables Q-learning as follows.

QMi(sh ahy 1 = (1—al(sh, a"))Q" (s, a®)+al (sh, a)[eh (s™, am)

+y minQ"(sh-. a)], (4)
aeA

where sh and s+1 are the observed category labels of the
alerts at the attack stage I, and I,4, respectively. When
the learning rate af(sh,a") e (0,1) satisfies Y32 alt(sh,ah) =
00, 152 o (ah(sh, a"))? < oo, Vshh € 8, Vat € 4, and all state-action
pairs are explored infinitely, ming ., Q"(sh,a’) converges to the
optimal ECuC v*(sh) with probability 1 as h — co. At each in-
spection stage h € 0+, RADAMS selects AM strategy a" € A based
on the e-greedy policy; ie., RADAMS chooses a random ac-
tion with a small probability € €[0, 1], and the optimal action
argming_, Q" (s, a’) with probability 1 —e.

We present the algorithm to learn the adaptive AM strategy
based on the operator’s real-time alert monitoring and inspection
process in Algorithm 1.

Each simulation run corresponds to the operator’s work shift
of 24 hours at the SOC. Since the SOC can receive over 10 thou-
sand of alerts in each work shift, we can use infinite horizon to
approximate the total number of attack stages K > 10, 000. When-
ever the operator starts to inspect a new alert at inspection stage
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Algorithm 1: Algorithm to Learn the Adaptive AM strategy
based on the Operator’s Real-Time Alert Inspection.

1 Input K: The total number of attack stages;

2 InitializeThe operator starts the h-th inspection under AM
action a" € A; I, = ko; & (sh, a) = 0;

3 for k < kg +1 to K do

4 | if The operator has finished the I,-th alert (i.e., EIT > AITN),
then
if Capable (i.e., rand < psp(ygL, ¥, 6%, ¢*)) then
6 Dismiss (i.e., wh = wgg) or escalate (i.e., wh = wgg)
the I,-th alert;
7 else
8 | Queue up the I,-th alert, i.e., wh = wyy;
9 end
10 (s, aly = & (s, ah) + E(whh, sh);
1 Iy < k; The operator starts to inspect the k-th alert
with category label slh+1;
12 Update Q"+ (sl a) via (??) and obtain the AM action
a1 by e-greedy policy;
13 e+l (sher g1y =0; h <« h+1;
1 | else
15 if The operator chooses to switch or The MAD is reached,
ie, tk — th > Dpmax(shh) then
16 Queue up the I;-th alert (i.e., wh = wyy);
17 (s, ahy = & (s, aly + E(wyy, sth);
18 Iy,1 < k; The operator starts to inspect the k-th
alert with category label sh+1;
19 Update Q"1 (s, a) via (??) and obtain the AM
action a"*! by e-greedy policy;
20 etl(sher g1y =0; h <« h+1;
21 else
22 The operator continues the inspection of the I;-th
alert with decreased LOE;
23 The k-th alert is queued up for delayed inspection
(i.e., wk=wy));
24 Elh (slh s ah) = Elh (Slh S ah) + E(WNI, Sk);
25 end
26 | end
27 end

28 Return Q"' (s,a),Vs e 8, a € A;

Ih.1, RADAMS applies Q-learning in (4) based on the category la-
bel s'+1 of the newly arrived alert and determines the AM ac-
tion a1 for the h+1 inspection based on the e-greedy policy
as shown in lines 12 and 19 of Algorithm 1. The CoC &h(sh, ah)
of the h-th inspection under the AM action a" € A and the cate-
gory label sl of the inspected alert can be computed iteratively
based on the stage cost ¢(wk,sk) of the alerts during the attack
stage ke {l,---,I,,; — 1}, as shown in lines 13, 20, and 24 of
Algorithm 1.

6. Theoretical analysis

In Section 6, we focus on the class of ambitious oper-
ators who attempt to inspect all alerts, ie. Kgy (sKT2K[sk) =
1pket). VsK, skT2K e S YAk € Z+. To assist this class of operators,
the implemented AM action a;,, m € {0, 1, --- , M}, chooses to make
the selected alerts fully unnoticeable. Then, under an € A, the op-
erator at inspection stage h can pay sustained attention to inspect
the alert of category label sh € 8 for m + 1 attack stages. Moreover,
the operator switches to the new alert at attack stage I, q, ie,
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_ —Iy.a
Ygrmet g Ky (s |sh) = 1,,-1,=m+1)- Throughout the
section, we omit the variable of the expertise level yg; in functions
d, d, psp, and pcg because yg; is a constant for all attack stages.

6.1. Security metrics

We propose two security metrics in Definition 3 to evaluate
the performance of ambitious operators under IDoS attacks and
different AM strategies. The first metric, denoted as pyy(sh, a),
is the probability that the operator chooses wyy during the h-th
inspection under the category label s € $ and AM action a" € A.
This metric reflects the Attentional Deficiency Level (ADL) of the
IDoS attack. For example, as the attackers generate more feints at
a higher frequency, the operator is persistently distracted by the
new alerts, and it becomes unlikely for him to fully respond to
an alert. The ADL pyy(s', a) is high in this scenario. We use the
ECuC u(sh, o) as the second metric that evaluates the IDoS risk un-
der the category label s € 8§ and the AM strategy o € . For both
metrics, smaller values are preferred.

Definition 3 (Attentional Deficiency Level and Risk). Under cate-
gory label s € § and the stationary AM strategy o € X, we define
pun(sh, o (sh)) and u(sh, o) as the Attentional Deficiency Level
(ADL) and the risk of the IDoS attacks defined in Section 3, respec-
tively.

6.2. Closed-form computations

The Markov renewal process that characterizes the IDoS attack
or the associated alert sequence follows a Poisson process when
Condition 1 holds.

Condition 1 (Poisson Arrival). The inter-arrival times t*, Vk e
7%+, are independent and exponentially distributed random
variables with the same arrival rate denoted by S >0, ie,
2(T|6%+1, pk+1 9k oK) = Be=PT T € [0, o) for all 6%+ 6% ¢ ® and
¢k+17 ¢k c d.

Recall that random variable "lJ,',‘Vm represents the inspection time
of the I,-th alert under the AM action a" = a;, € A. For the am-
bitious operators under AM action a; € A at inspection stage h,
the next inspection happens at attack stage I ; = I, + m + 1. Thus,
I, is no longer a random variable. As a summation of m + 1 ii.d.

exponential distributed random variables of rate g, ’[JI’;Vm follows an
Erlang distribution denoted by PDF function Z with shape m + 1 and

ﬁm“rme’ﬁf
Iy E—

mi T e

and rate 8 > 0 when condition 1 holds, i.e., Z(t) =
[0, 00).

Denote pft (wh|sh, al; 0, ¢') as the probability that the op-
erator makes alert response wh at inspection stage h. To ob-
tain a theoretical underpinning, we consider the case where
the AITN equals the average inspection time, ie., d(s¥, 6k, ¢k) =
d(sk, 6% ¢k). Then, the operator under AM action a,, makes a
complete alert response (i.e., wh e {wrg, wgg}) at inspection stage
h for category label sh if the inspection time r,’,’\',‘m is greater
than the AITN. The probability of the above event can be rep-

resented as f;fs’h,e’h,q)'n) psp(sh, Ol pn)Z(T)dT = psp(sth, O, plh) -
Y heo %fﬂd(slh’elh‘qﬁ’h)(,Bd(slh, O, ¢'n))™, which leads to

Py (Wunlsh, am; 0%, @lh) =1 — pep(shh, G, ph)

Iy e PRI (B(sh. G, $h))1. ®)

Then, the ADL pyy(s', a") can be computed as

Y Pr(@h. @hsh) - pip (wynlsh. a6, pM), 6)
0'"he®,phed
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probability Pr(@, ¢|sh) can be
Bayesian rule, ie., Pr(@h,¢h|sh) =

where the conditional
computed via the

o(s'n|0'h.¢'n)b(0"n.p'h)
o(s'h 6" @' )b (6" ") "

=

o' co.¢hco
We can compute the ECoC c(sh, ay,) explicitly as

c(sh, am) = MEWI, 1) + Xgi, g o PO, Pl sh)
Y whew Pl Whsh, ap; 0%, @h)c(wh, sh).

For prudent operators in Section 4.1, we have
ply (wilsh, a; 6;, @) =1 — ply (wylsh, al; 6;, '), (8)
for all i € {FE,RE},sh € 8,a" € A, ¢'n € ®, h e zO*. Plugging (8) into

(7), we can simplify the ECoC c(sh, an,) as

C(Slh7 am) = Z Z Pr(ei’ ¢Ih |Slh) : pQD(Wi|SI“7 am; 9i7 ¢lh)
¢'hed ic{FE.RE}

[E(w;, sl) — E(wyn, s™)] + mE(wyy, sh) + E(wyn, s).
(9)
As shown in Proposition 2, the ADL and the risk are monotone
function of Bd(s™, 0, @) for each AM strategy.

(7)

Proposition 2. If condition 1 holds, then the ADL pyn(sh, o (sh))
and the risk u(s', o) of an IDoS attack under category label sh e
8§ and AM strategy o € X increase in the value of the product
Bd(sh, 6, @),

Proof. First, since p’S‘D(WUN) in (5) increases monotonously with
respect to the product Bd(sh, 6", ¢h), the values of pl) (wpg) and
p’s‘D(WRE) in (8) decrease monotonously with respect to the prod-
uct. Plugging (5) into (6), we obtain that pyy (s, ay) in (10) under
any am € A and sh € § is a summation of functions increasing in
Bd(s'n, 0", plh).

Pun(s".am) = Y- Yicirg ey Pr(6;. @h|s)[1-
Phed

m (10)
Dp(sh, B;, @) - 3 e PAEn AN (Bd(sh, 6;, pl))"].

n=0
Second, since C(wpg,sh) and G(wgg,sh) are negative,

and c(wyy,sh) is positive, the ECoC in (9) decreases with
Bd(sh,0m, ¢h) under any ameA and sh e8. Then, the risk
also decreases with the product, due to the monotonicity of the
Bellman operator Bertsekas and Tsitsiklis (1996). O

Remark 1 (Product Principle of Attention (PPoA)). On the one
hand, as B increases, the feint and real attacks arrive at a higher
frequency on average, resulting in a higher demand of atten-
tion resources from the human operator. On the other hand, as
d(sh, 0, ¢h) increases, the human operator requires a longer in-
spection time to determine the attack’s type, leading to a lower
supply of attention resources. Proposition 2 characterizes the PPoA;
i.e., for any stationary AM strategy o € X, the ADL and the risk of
IDoS attacks depend on the product of the supply and demand of
attention resources.

6.3. Fundamental limits under AM strategies

Section 6.3 aims to show the fundamental limits of the
IDoS attack’s ADL, the ECoC, and the risk under differ-
ent AM strategies. Define the shorthand notation: B(s’h)::

¥ o Lictrere) Pr(0;. @' [sh) pec (sh. 6;. ¢'h).

Lemma 1. If Condition 1 holds and M — oo, then for each sh € 8, the
ADL pyn(sh, am) decreases strictly to E(s’h) as m increases.

Proof. Since e pash 0ol (d(sh, oh, gh))m > 0
for all me{0,---,M}, the wvalue of pyy(sh,an) in
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(10) strictly decreases as m increases. Moreover, since
1liMm_ oo ZrT:O %e’ﬁd(slh-glh-tl’l“))(ﬂd(s’h, 91,1’ ¢1h))n =1, we have
Miny,cqo.... py Pun (s, am) = p(sh) for all sh € 8. O

Remark 2 (Fundamental Limit of ADL). Lemma 1 characterizes
that the minimum ADL under all AM strategies am € A is E(s’h).
The value of B(s’h) depends on the operator’s capacity gap
pec(sh, Opp, ') and the frequency of feint and real attacks with
different targets, i.e., Pr(8%, ¢ |sh), Vol ¢ ®, ¢l ¢ ®.

Denote the expected reward of making a complete alert re-
sponse (i.e., the rewards to dismiss feints and escalate real attacks)
as

A(sh,m, @)= > C(w;,sh) - Pr(6;, ¢ph|sh)
ic{FE.RE}
Dl (sh, 6;, pM) - [io LePAC 6.8 (Bd (sh, 6, ¢’h))”}-

Combining (9) and (10), we can rewrite ECoC as a combination
of the following three terms in (11).

c(sh, am) = pun(sh, am)C(wyn, s)

+ mc(wyp, s + 3 A(sh, m, ¢ph).
Phed

(11)

Based on Lemma 1, the first term pyy(sh, am)é(wyy, sh) and the
third term Z¢,h€¢k(slh, m, ¢h) decrease in m, while the second

term mc(wyy, sh) in (11) increases in m linearly at the rate of
C(wyy, sh). The tradeoff among the three terms is summarized be-
low.

Remark 3 (Tradeoff among ADL, Reward of Alert Attention, and
Impact for Alert Inattention). Based on Lemma 1 and (11), increas-
ing m reduces the ADL and achieves a higher reward of complet-
ing the alert response. However, the increase of m also linearly in-
creases the impact for alert inattention represented by mc(wyy, s™),
the cost of uninspected alerts. Thus, we need to strike a balance
among these terms to reduce the IDoS risk.

Define Amin (s, ¢'n) 1= Y ic(pg gy C(W;, s) Pr(6;, @' |sh) pli, (s, 6;,
D), Ay (st @l := (1 — €0) Amin (s, @Mh),  Crpin (sTh) = Zplhea
Amin (ST, @') + p(s')E(wyp, s'h) + mE(wyp, sh),  and 2y (sh) :=
Lpheo Adax (s, ') + [p(sh) + €9 (1 — p(sh))1e(wyn. s) +
mc(wyy, sh).

Proposition 3. Consider the scenario where Condition 1 holds
and M > m(sh). For any e€ye (0,1] and sh eS8, there exists
m(sh) e Z* such that c(sh, am) € [Cin(sh), €%y (s")].Yam € A, when
m>m(s'). Moreover, the lower bound c;, (s™) and the upper bound
;2. (sl increase in m linearly at the same rate ¢(wyy, s').

Proof. For any €ge (0,1], there exists m(sh) e Z* such
that Y o Le-BdEh0"m¢") (Bd(sh, O, ¢ph))M e [1 €y, 1] when
m > m(s™). Based on Lemma 1, if m > m(sh), then pyn(sh, am) €
[p(sh), p(s™h) + €g(1 — p(sh))]. Plugging it into (11), we obtain the
results. O B

Let 0™ e ¥ denote the AM strategy that chooses to de-
emphasize the next m > m(sh) alerts for all category label sh ¢ 8.
The monotonicity of the Bellman operator Bertsekas and Tsitsik-
lis (1996) leads to the following corollary.

Corollary 1. Consider the scenario where Condition 1 holds and M >
m(s™). For any €y € (0,1] and s € 8, the upper and lower bounds
of the risk u(shh,o™) increase in m linearly at the same rate of
c(wyy, sl ).
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Table 5
Benchmark values of the average inter-arrival time (0%, 9%+1) =
1/'3(9k’ 9"“), Vok, k+1 ¢ @.

Average inter-arrival time from feints to real attacks 6s
Average inter-arrival time from real attacks to feints 10s
Average inter-arrival time between feints 15s
Average inter-arrival time between real attacks 8s

Table 6 ~
Benchmark values of the average inspection time d(sfy, 0%), VO e
O, SER € Scr-

Average time to inspect feints of low criticality 6s
Average time to inspect feints of high criticality 8s
Average time to inspect real attacks of low criticality 15s
Average time to inspect real attacks of high criticality = 20s

Remark 4 (Fundamental Limit of ECoC and Risk). Proposition 3
and Corollary 1 show that the maximum length of the de-
emphasized alerts for any s € $ should not exceed m(s"™) to re-
duce the ECoC and the risk of IDoS attacks.

7. Case study

The following section presents case studies to demonstrate the
impact of IDoS attacks on human operators’ alert inspections and
alert responses, and further illustrate the effectiveness of RADAMS.
Throughout the section, we adopt the attention model in Section 4.

7.1. Experiment setup

We consider an IDoS attack targeting either the Programmable
Logic Controllers (PLCs) in the physical layer or the data centers
in the cyber layer of an ICS. We denote these two targets as ¢p
and ¢, respectively. They constitute the binary set of attack tar-
gets @ = {¢p, ¢c} defined in Section 3.1. The SOC of the ICS is in
charge of monitoring, inspecting, and responding to both the cy-
ber and the physical alerts. We consider two system-level met-
rics defined in Section 3.2, the source Ssp = {Ssp.p.Ssoc} and the
criticality SCR = {SCR.Lv SCR,H}- i.e., 8§ = SSO X SCR' Let SSO,P and SSO,C
represent the source of physical and cyber layers, respectively. We
assume that the alert triage process can accurately identify the
source of attacks, i.e., Pr(sso i|¢;) = 1ji_j}. Vi, j € {P, C}. Let scg; and
scry represent low and high criticality, respectively. We assume
that the triage process cannot accurately identify feints as low crit-
icality and real attacks as high criticality. The revelation kernel
is separable and takes the form of o(ssp, Scrl6;, @) = Pr(ssole;) -
PI'(SCR|0,'), Sso € 850, ScR € Scr» ie {FE, RE}, ] € {P, C} We choose the
values of o so that the attack is more likely to be feint (resp. real)
when the criticality level is low (resp. high).

The inter-arrival time at attack stage k e Z9+ follows an ex-
ponential distribution with rate B(6% 6%t1) parameterized by
the attack’s type 6k 6%t1. Thus, the average inter-arrival time
w0k, 6%y .= 1/8(0%, 6*%+1) also depends on the attack’s type at
the current and the next attack stages as shown in Table 5. We
choose the benchmark values based on the literature (e.g., Shah
et al. (2019a,b) and the references within) and attacks can change
these values in different IDoS attacks.

The average inspection time d in Section 4.3 depends on the
criticality s’éR and attack’s type @* at attack stage k € Z9+, as shown
in Table 6. We choose the benchmark values of d_(ng, 6%) based on
Shah et al. (2019a), and these values can change for different hu-
man operators and IDoS attacks. We add a random noise uniformly
distributed in [-5,5] to the average inspection time to simulate
the AITN.

The stage cost c(wk sk)) at attack stage kez%* in
Section 5.2 depends on the alert response wKe W and the
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Table 7
The benchmark values of the stage cost ¢(w¥, sk;), Ywk e W, sk e 8so.
Reward of dismissing feints wgg $80
Reward of identifying real attacks wge in physical layer ~ $500
Reward of identifying real attacks wge in cyber layer $100
Cost of incomplete alert response wyy or wy; $300
Wy N WNT WFE WRE |
<
= Ore
K%
X
[}
8
E h
0 100 200 300 400 500 600
Time (s)

Fig. 3. Alert response w* ¢ W for the k-th attack whose type is shown in the y-
axis. The k-th vertical dash line represents the k-th alert’s arrival time t*.
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Fig. 4. The convergence of the estimated ECuC Q" (s, a") vs. the number of inspec-
tion stages.

source s’S‘O € 850. We determine the benchmark values of ¢(w*, s’s‘o)
per alert in Table 7 based on the salary of the SOC analysts and

the estimated loss of the associated attacks.
7.2. Analysis of numerical results

We plot the dynamics of the operator’s alert responses in Fig. 3
under the benchmark experiment setup in Section 7.1. We use
green, purple, orange, and yellow to represent wyy, Wyj, Wrg, and
wgg, respectively. The heights of squares are also used to distin-
guish the four categories.

7.2.1. Adaptive learning during the real-Time monitoring and
inspection

Based on Algorithm 1, we illustrate the learning process of the
estimated ECuC Q" (s, a") for all s € § and a" € A at each inspec-

tion stage h e Z%+ in Fig. 4. We choose ai(sh, ah) = — ke
Jery (sTh)—1-+ke

the learning rate, where k. € (0, 00) is a constant parameter and
krj(sh) e 79+ is the number of visits to s’ € $ up to stage h e 70+,

1
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Here, the AM action a" is implemented randomly at each inspec-
tion stage h, ie., € = 1. Thus, all four AM actions (M = 3) are ex-
plored equally on average for each s € 8 as shown in Fig. 4. Since
the number of visits to different category labels depends on the
transition probability k47, the learning stages for four category la-
bels are of different lengths.

We denote category labels (sso.p.Scrr),  (Sso.p,ScrRH)
(Sso.c:Scrr), and (Ssoc.Scry) in blue, red, green, and black,
respectively. To distinguish four AM actions, a deeper color
represents a larger me{0,1,2,3} for each category label
Ss0.i-Scrj-1 € {P.C},j e {H.L}. The inset black box magnifies
the selected area. The optimal strategy o* € ¥ is to take as for
all category labels. The risk v*(sh) = u(sh, o*) under the optimal
strategy has the approximated values of $1153, $1221, $1154, and
$1358 for the above category labels in blue, red, green, and black,
respectively. Based on Algorithm 1, we also simulate the operator’s
real-time monitoring and inspection under IDoS attacks when
AM strategy is not applied. The risks v0(sh) := u(sh,o%) under
the default AM strategy 0® € ¥ have the approximated values of
$1377, $1527, $1378, and $1620 for the category label (sso p. ScrL).
(Ss0.p» ScrH ) (Sso.csScre)» and  (Ssoc,Scru), respectively. These
results illustrate that the optimal AM strategy o* € ¥ can signif-
icantly reduce the risk under IDoS attacks for all category labels
and the reduction percentage can be as high as 20%.

We further investigate the IDoS risk under the optimal AM
strategy o* as follows. As illustrated in Fig. 4, when the critical-
ity level is high (i.e., the attack is more likely to be real), the at-
tacks targeting cyber layers (denoted in black) result in a higher
risk than the one targeting physical layers (denoted in red). This
asymmetry results from the different rewards of identifying real
attacks in physical or cyber layers denoted in Table 7. Since dis-
missing feints brings the same reward in physical and cyber layers,
the attacks targeting physical or cyber layers result in similar IDoS
risks when the criticality level is low. Within physical or cyber lay-
ers, high-criticality alerts result in a higher risk than low-criticality
alerts do.

The value of Q" (s, ay), m € {0, 1, 2}, represents the risk when
RADAMS deviates to sub-optimal AM action a,, for a single cate-
gory label s e 8. As illustrated by the red and black lines in Fig. 4,
this single deviation can increase the risk under alerts of high criti-
cality. However, it hardly increases the risk under alerts of low crit-
icality as illustrated by the green and blue lines in the inset black
box of Fig. 4. These results illustrate that we can deviate from the
optimal AM strategy to sub-optimal ones for some category labels
with approximately equivalent risk, which we refer to as the atten-
tional risk equivalency in Remark 5.

Remark 5 (Attentional Risk Equivalency). The above results illus-
trate that we can contain the IDoS risk by selecting proper sub-
optimal strategies. If applying the optimal AM strategy o * is costly,
then RADAMS can choose not to apply AM strategy for (Sso.c, Scr.L)
or (Ssp.p. Scg,.) without significantly increasing the IDoS risks.

7.2.2. Optimal AM strategy and resilience margin under different
stage costs

We define resilience margin as the difference of the risks under
the optimal and the default AM strategies. We investigate how the
cost of incomplete alert response in Table 7 affects the optimal AM
strategy and the resilience margin in Fig. 5.

As shown in the upper figure, the optimal strategy remains to
choose AM action a3 when the alert is of high criticality. When
the alert is of low criticality, then as the cost increases, the op-
timal AM strategy changes sequentially from as, a,, and a; to ap;
i.e., RADAMS gradually decreases m < {0, 1, 2, 3}, the number of de-
emphasized alerts. As shown in the lower figure, the resilience
margin increases monotonously with the cost. The optimal strat-
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Fig. 5. The optimal AM strategy and the risk vs. the cost of an incomplete alert re-
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Fig. 6. IDoS risk vs. p under the optimal and the default AM strategies in solid red
and dashed blue, respectively. The black line represents the attack cost per work
shift of 24 hours. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

egy for alerts of high criticality yields a larger resilience margin
than the one for low criticality.

Remark 6 (Tradeoff of Monitoring and Inspection). The results
show that the optimal strategy strikes a balance between real-time
monitoring a large number of alerts and inspecting selected alerts
with high quality. Moreover, the optimal strategy is resilient for a
large range of cost values ([$0,$1000]). If the cost is high, and the
alert is of low (resp. high) criticality, then the optimal strategy en-
courages monitoring (resp. inspecting) by choosing a small (resp.
large) m. However, when the cost of an incomplete alert response
is relatively low, the optimal strategy is a4 for all alerts because the
high-quality inspection outweighs the high-quantity monitoring.

7.2.3. Arrival frequency of IDos attacks

As stated in Section 3.1, feint attacks with the goal of triggering
alerts require fewer resources to craft. Thus, we let gz = $0.04 and
Cr € (0, Cge) denote the cost to generate a real attack and a feint,
respectively. With ¢z and Crg, we can compute the attack cost of
feint and real attacks per work shift of 24 hours. Let p be the scal-
ing factor for the arrival frequency, and in Section 7.2.3, the average
inter-arrival time is /1(6%, O%+1) = pu (8%, Ok+1), YOk 6k+1 ¢ ©. We
investigate how the scale factor p € (0, 2.5] affects the IDoS risk
and the attack cost in Fig. 6. As p decreases, the attacker generates
feint and real attacks at a higher frequency. Then, the risks under
both the optimal and the default strategies increase. However, the
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Fig. 7. IDoS risk vs. ngg € [0, 1] under the optimal and the default AM strategies
in red and blue, respectively. The black line represents the resilience margin. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

optimal AM strategy can reduce the increase rate for a large range
of p €[0.5,2].

Remark 7 (Attacker’s Dilemma). From the attacker’s perspective,
although increasing the attack frequency can induce a high risk to
the organization, and the attacker can gain from it, the frequency
increase also increases the attack cost exponentially, as shown by
the dotted black line in Fig. 6. Thus, the attacker has to strike a
balance between the attack cost and the attack gain (represented
by the IDoS risk). Moreover, attackers with a limited budget are not
capable to choose small values of p (i.e., high attack frequencies).

7.2.4. Percentage of feint and real attacks

Consider the case where k41 independently generates feints and
real attacks with probability ngg and nger = 1 — ngg, respectively.
We consider the case where the attacker has a limited budge
Cmax = $270 per work shift (i.e., 86400s) and generates feint and
real attacks at the same rate B, i.e., B(6%, 0k+1) = B, Vok 0k+1 ¢ @,
Consider the attack cost in Section 7.2.3, the attacker has the fol-
lowing budget constraint, i.e.,

86,400 - B - (1FeCre + NreCre) < Cmax- (12)

The budget constraint results in the following tradeoff. If the at-
tacker chooses to increase the probability of real attack ngg, then
he has to reduce the arrival frequency § of feint and real attacks.
We investigate how the probability of feints affects the IDoS risk in
Fig. 7 under the optimal and the default AM strategies in red and
blue, respectively. The feints are of low and high costs in Fig. 7a
and 7 b, respectively.

As shown in Fig. 7a, when the feints are of low cost, i.e., Crp =
Cre/10, generating feints with a higher probability monotonously
increases the IDoS risks for both AM strategies. When the proba-
bility of feints is higher than 80%, the resilience margin is zero; i.e.,
the optimal and the default AM strategies both induce high risks.
However, as the probability of feint decreases, the resilience mar-
gin increases to around $500; i.e., the default strategy can mod-
erately reduce the risk, but the optimal strategy can excessively
reduce the risk.

Remark 8 (Half-Truth Attack for High-Cost Feints). As shown in
Fig. 7b, when the feints are of high cost, i.e., Crg = Cgg/2, then the
optimal attack strategy is to deceive with half-truth, i.e., generating
feint and real attacks with approximately equal probability to in-
duce the maximum IDoS risk. As the probability of feints decreases
from ngg = 1, the risk increases significantly under the default AM
strategy but moderately under the optimal one.

The figures in Fig. 7 show that the optimal attack strategy
under the budget constraint (12) needs to adapt to the cost of
feint generation. Regardless of the attack strategy, the optimal AM
strategy can reduce the risk and achieve a positive resilient mar-
gin for all category labels (ssp;.Scgj).1€ {P.C}.j e {L. H}. More-
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over, higher feint generation cost reduces the arrival frequency of
IDoS attacks due to (12). Thus, comparing to Fig. 7a, the risk in
Fig. 7b is lower for the same ng under the optimal or the default
AM strategies, especially when ngg is close to 1.

7.2.5. The Operator’s attention capacity

We consider the following attention function fiof o fgg with a
constant attention threshold, i.e., Ai(yg, s¥) = fig, VygL, sK € S. Con-
sider the following trapezoid attention function. If nf < 1y, the LOE
' = 1; i.e., the operator can retain the high LOE when the number
of distractions is less than the attention threshold 7ig. If nt > fip,
the LOE o' gradually decreases as n’ increases. Then, a larger value
of 7y indicates a high attention capacity. We investigate how the
value of 7y affects the risk in Fig. 8.

As the operator’s attention capacity increases, the risks under
the optimal and the default AM strategies decrease for all category
labels. The resilience margin decreases from around $200 to $50 as
ng increases from 0 to 2 and then maintains the value of around
$50. Thus, the optimal strategy suits operators with a large range
of attention capacity, especially for the ones with limited attention
capacity.

8. Conclusion

Attentional human vulnerabilities exploited by attackers lead to
a new class of proactive attacks called the Informational Denial-
of-Service (IDoS) attacks. IDoS attacks generate a large number of
feint attacks on purpose to deplete the limited human attention
resources and exacerbate the alert fatigue problem. In this work,
we have formally defined IDoS attacks as a sequence of feint and
real attacks of heterogeneous targets, which can be characterized
by the Markov renewal process. We have abstracted the alert gen-
eration and technical-level triage processes as a revelation prob-
ability to establish a stochastic relationship between the IDoS at-
tack’s hidden types and targets and the associated alert’s observ-
able category labels. We have explicitly incorporated human fac-
tors (e.g., levels of expertise, stress, and efficiency) and empiri-
cal results (e.g., the Yerkes-Dodson law and the sunk cost fallacy)
to model the operators’ attention dynamics and the processes of
alert monitoring, inspection, and response in real time. Based on
the system-scientific human attention and alert response model,
we have developed a Resilient and Adaptive Data-driven alert and
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Attention Management Strategy (RADAMS) to assist human opera-
tors in combating IDoS attacks. We have proposed a Reinforcement
Learning (RL)-based algorithm to obtain the optimal assistive strat-
egy according to the costs of the operator’s alert responses in real
time.

Through theoretical analysis, we have observed the Product
Principle of Attention (PPoA), the fundamental limits of Attentional
Deficiency Level (ADL) and risk, and tradeoff among the ADL,
the reward of alert attention, and the impact of alert inattention.
Through the experimental results, we have corroborated the effec-
tiveness, adaptiveness, robustness, and resilience of the proposed as-
sistive strategies as follows. First, the optimal AM strategy outper-
forms the default strategy and can effectively reduce the IDoS risk
by as much as 20%. Second, the strategy adapts to different cate-
gory labels to strike a balance of monitoring and inspections. Third,
the optimal AM strategy is robust to deviations. We can apply sub-
optimal strategies at some category labels without significantly in-
creasing the IDoS risk. Finally, the optimal AM strategy is resilient
to a large variations of costs, attack frequencies, and human atten-
tion capacities.

The current work uses Industrial Control Systems (ICS) as a
quintessential example to illustrate the IDoS attacks and the as-
sociated human-aware alert and attention management strategies.
RADAMS can also be applied to broad types of scenarios (e.g.,
healthcare, public transport control, and weather warning) that re-
quire human operators of limited attention resources to monitor
and manage massive alerts in real time with a high level of sit-
uational awareness. RADAMS adopts the “less is more” principle
by restricting the amount of information processed by the hu-
man operators to be within their attention capacities. Such prin-
ciple is transferable to other assailable cognitive resources of hu-
man operators, including memory, reasoning, and learning capac-
ity. The future work would incorporate more generalized mod-
els (e.g., the spatio-temporal self-excited process) to capture the
history-dependent temporal arrival of IDoS attacks, the spatial lo-
cation of the alerts, their impacts on human attention, and the as-
sociated human-assistive security technologies.
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