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a b s t r a c t 

Attacks exploiting human attentional vulnerability have posed severe threats to cybersecurity. In this 

work, we identify and formally define a new type of proactive attentional attacks called Informational 

Denial-of-Service (IDoS) attacks that generate a large volume of feint attacks to overload human opera- 

tors and hide real attacks among feints. We incorporate human factors (e.g., levels of expertise, stress, 

and efficiency) and empirical psychological results (e.g., the Yerkes-Dodson law and the sunk cost fallacy) 

to model the operators’ attention dynamics and their decision-making processes along with the real-time 

alert monitoring and inspection. To assist human operators in dismissing the feints and escalating the 

real attacks timely and accurately, we develop a Resilient and Adaptive Data-driven alert and Attention 

Management Strategy (RADAMS) that de-emphasizes alerts selectively based on the abstracted category 

labels of the alerts. RADAMS uses reinforcement learning to achieve a customized and transferable design 

for various human operators and evolving IDoS attacks. The integrated modeling and theoretical analysis 

lead to the Product Principle of Attention (PPoA), fundamental limits, and the tradeoff among crucial hu- 

man and economic factors. Experimental results corroborate that the proposed strategy outperforms the 

default strategy and can reduce the IDoS risk by as much as 20% . Besides, the strategy is resilient to large 

variations of costs, attack frequencies, and human attention capacities. We have recognized interesting 

phenomena such as attentional risk equivalency, attacker’s dilemma, and the half-truth optimal attack 

strategy. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Human vulnerability and human-induced security threats have 

een a long-standing and fast-growing problem for the secu- 

ity of Industrial Control Systems (ICSs). According to Verizon 

 Bassett et al., 2021 ), 85% data breaches involve human errors. At- 

entional vulnerability is one of the representative human vulner- 

bilities. Adversaries have exploited human inattention to launch 

ocial engineering attacks and phishing attacks toward employ- 

es and users. According to the report ( Tessian, 2020 ), 29% of 

mployees fall for a phishing scam, and 36% send a misdirected 

mail, owing to lack of attention. These attentional attacks are re- 

ctive as they exploit the existing human attention patterns. On 
� This work was supported in part by the National Science Foundation (NSF) un- 

er Grants ECCS-1847056, CNS-2027884, and BCS-2122060; and in part by Army 

esearch Office (ARO) under Grant W911NF-19-1-0041 and DOE-NE under Grant 

0–19829. 
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he contrary, proactive attentional attacks can strategically change 

he attention pattern of a human operator or a network admin- 

strator. For example, an attacker can launch feint attacks to trig- 

er a large volume of alerts and overload the human operators so 

hat operators fail to inspect the alert associated with real attacks 

 Hitzel, 2019 ). We refer to this new type of attacks as the Informa-

ional Denial-of-Service (IDoS) attacks, which aim to deplete the 

imited attention resources of human operators to prevent them 

rom accurate detection and timely defense. 

IDoS attacks bring significant security challenges to ICSs for the 

ollowing reasons. First, alert fatigue has already been a serious 

roblem in the age of infobesity with terabytes of unprocessed 

ata or manipulated information. According to the Ponemon Insti- 

ute research report ( LLC, 2015 ), organizations spend nearly 21,0 0 0 

ours each year analyzing false alarms, which costs organizations 

n average of $1 . 27 million per year. IDoS attacks exacerbate the 

roblem by generating feints to intentionally increase the percent- 

ge of false-positive alerts. Second, IDoS attacks directly target the 

uman operators and security analysts in the Security Operations 

enter (SOC) that acts as the ‘central immune system’ in ICSs. 

hird, as ICSs become increasingly complicated and time-critical, 
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Fig. 1. The overview diagram of RADAMS against IDoS in ICS, which incorporates the IDoS attack model, the human attention model, and the human-assistive security 

technology in the red, green, and blue boxes, respectively. RADAMS consolidates the technical-level (i.e., generation rules and triage rules in black) and the cognitive-level 

(data-driven human-aware alert de-emphasis in blue) alert management before the manual inspection in green to reduce the operators’ cognitive load. The modern SOC 

adopts a hierarchical alert analysis process. The tier-1 SOC analysts, also referred to as the operators, are in charge of real-time alert monitoring and inspections. The tier-2 

SOC analysts are in charge of the in-depth analysis. All processes in black are not the focus of this work. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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he human operators require higher expertise levels to understand 

he domain information and detect feints ( Stouffer et al., 2011 ) in 

ime to avoid life-threatening failures or huge economic losses. The 

OCs in ICSs are usually understaffed, due to these high-standard 

equirements. Fourth, since human operators behave differently, 

nd IDoS attacks are a broad class of adaptive attacks, it is chal- 

enging (yet highly desirable) to develop a customized and resilient 

efense. Due to the above factors, including the huge economic 

oss, there is an apparent need to understand this class of proac- 

ive attentional attacks, quantify its consequences and risks, and 

evelop associated mitigation strategies. 

To this end, we establish a holistic model of the IDoS attacks, 

he alert generations, and the human operators’ alert responses. 

n the IDoS attack model, we adopt a Markov renewal process to 

haracterize the sequential arrival of feints and real attacks that 

arget different ICS assets. We define a revelation probability to ab- 

tract the alert generation and triage process of existing detection 

ystems. The revelation probability maps the attacks’ hidden types 

nd targets stochastically to the associated alerts’ observable cat- 

gory labels. To model the human operators’ attention dynamics 

nd alert responses under the IDoS attacks, we directly incorpo- 

ate the operators’ levels of expertise, stress, and efficiency into 

he security design based on the existing results from the litera- 

ure in psychology, including the Yerkes-Dodson law ( Yerkes et al., 

908 ) and the sunk cost fallacy ( Arkes and Blumer, 1985 ). To as-

ist human operators in alert inspection and response, compensate 

or their attentional vulnerabilities, and combat IDoS attacks, we 

evelop human-centered technologies that selectively make some 

lerts less noticeable based on their category labels. Reinforcement 

earning is applied to make the human-assistive security technol- 

gy resilient, automatic , and adaptive to various human models and 

ttack scenarios. 
2 
Fig. 1 illustrates the overview diagram of Resilient and Adap- 

ive Alert and Attention Management Strategy (RADAMS). We use 

he following control room scenario to elaborate on the entire pro- 

ess of RADAMS under IDoS attacks. Supervisory computers and 

ecurity Information and Event Management (SIEM) continuously 

onitor the physical readings and cyber log files, respectively, to 

enerate alerts with device-level information. Since manual inspec- 

ion and response of these alerts (illustrated in green) are indis- 

ensable for ICSs at the current stage, RADAMS adopts the follow- 

ng technical-level and cognitive-level automated alert selection 

chemes, illustrated in black and blue, respectively, to assist man- 

al alert inspection. The technical-level alert selection scheme fo- 

uses on selecting and prioritizing alerts based on the device-level 

nformation and abstract system-level metrics. Although the above 

lert triage process significantly reduces the workload of the man- 

al inspection, a sizeable number of alerts remain to be inspected, 

specially under a large volume of feints. To this end, RADAMS 

ncorporates the cognitive-level alert selection to accommodate 

he operators’ cognition limitation in the subsequent alert inspec- 

ions. After the technical-level and cognitive-level alert manage- 

ent, RADAMS presents the selected alerts to the tier-1 SOC an- 

lysts in the control room for real-time monitoring and response. 

he alerts associated with the real attack will be identified and 

scalated to tier-2 analysts for in-depth analysis. The analysis out- 

omes of tier-2 analysts are used to mitigate the current threats 

nd improve the generation rules and technical-level triage rules. 

RADAMS enriches the existing alert selection frameworks with 

he IDoS attack model, the human attention model, and the 

uman-assistive security technology highlighted in red, green, and 

lue, respectively. Through the integrated modeling and theoretical 

nalysis, we obtain the Product Principle of Attention (PPoA), which 

tates that the Attentional Deficiency Level (ADL), i.e., the proba- 
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Table 1 

Summary of notations in Section 3 . 

Variable Meaning 

t k ∈ [0 , ∞ ) Arrival time of the k -th attack. 

τ k = t k +1 − t k ∈ [0 , ∞ ) Inter-arrival time at attack stage k ∈ Z 0+ . 
κAT ∈ K AT Transition kernel of attacks. 

z ∈ Z Probability Density Function (PDF) of the inter-arrival time. 

θ k ∈ � := { θFE , θRE } Attack’s type at attack stage k ∈ Z 0+ . 
φk ∈ � Attack’s target at attack stage k ∈ Z 0+ . 
s k ∈ S Alert’s category label at attack stage k . 

o(s k | θ k , φk ) Revelation kernel of category labels. 

b(θ k , φk ) Steady-state distribution. 

κCL ∈ K CL Transition kernel of category labels. 
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ility of incomplete alert responses, and the risk of IDoS attacks 

epend on the product of the supply and the demand of human 

ttention resources. The closed-form expressions under mild as- 

umptions lead to several fundamental limits, including the mini- 

um ADL and the maximum length of de-emphasized alerts to re- 

uce IDoS risk. We explicitly characterize the tradeoff among cru- 

ial factors such as the ADL, the reward of alert attention, and the 

mpact of alert inattention. 

Finally, we propose an algorithm to learn the adaptive Atten- 

ion Management (AM) strategy based on the operator’s alert in- 

pection outcomes. We present several case studies based on the 

imulation of different IDoS attacks and alert inspecting processes. 

he numerical results show that the proposed optimal AM strat- 

gy outperforms the default strategy and can effectively reduce the 

DoS risk by as much as 20% . The strategy is also resilient to a

arge range of cost variations, attack frequencies, and human at- 

ention capacities. We have observed the phenomenon of atten- 

ional risk equivalency , which states that the deviation from the 

ptimal to sub-optimal strategies for some category labels can re- 

uce the risk under the default strategy to approximately the same 

evel. The results also corroborate that RADAMS can adapt to dif- 

erent category labels to strike a balance of quantity (i.e., inspect 

ore alerts) and quality (i.e., complete alert responses to dismiss 

eints and escalate real attacks). We identify the attacker’s dilemma 

here destructive IDoS attacks induce unbearable costs to the at- 

acker. We also identify the half-truth attack strategy as the op- 

imal IDoS attack strategy when feints are generated at a high 

ost. 

.1. Contribution, notations, and organization of the paper 

Our main contributions are fourfold. First, we have formally de- 

ned a new type of attentional attacks called IDoS attacks. Second, 

e propose a consolidated alert and attention management strat- 

gy that is explicitly aware of human cognition limitations to de- 

end against IDoS attacks. Third, we provide theoretical underpin- 

ings of RADAMS under IDoS attacks and propose a learning algo- 

ithm to implement RADAMS in real time. Fourth, we present com- 

rehensive case studies to demonstrate the effectiveness, adaptive- 

ess, robustness, and resilience of the proposed assistive strategies. 

The rest of the paper is organized as follows. The related works 

re presented in Section 2 . Sections 3, 4 , and 5 introduce the

DoS attack model, the human operator model, and the human- 

ssistive security technology, respectively. We summarize main no- 

ations for these three sections in Table 1 , 2 , and 3 , respectively.

e analyze the attentional deficiency level and the risk of IDoS 

ttacks in closed form for the class of ambitious operators in 

ection 6 , where the main notations are summarized in Table 4 . 

ection 7 presents a case study of alert inspection under IDoS at- 

acks and the adaptive AM strategies. Section 8 concludes the pa- 

er. 
3 
. Related work 

.1. Alert management 

Previous works have applied various alert management meth- 

ds during the alert generation, detection, and response processes 

o mitigate alert fatigue and enhance cybersecurity, as shown in 

he following three subsections. 

.1.1. Source management 

On the one hand, proactive defense ( Huang and Zhu, 2020a ) 

nd deception techniques, including honeypots ( Huang and Zhu, 

019; 2020b ) and moving target defense ( Jajodia et al., 2011 ), 

ave managed to reduce alerts at the outset by deterring, delay- 

ng, and preventing attacks. On the other hand, previous works 

ave designed incentive mechanisms (e.g., Casey et al. (2016) ; 

iu et al. (2009) ) and information mechanisms (e.g., Huang and 

hu (2021b, 2022) ) to enhance insiders’ compliance, reduce users’ 

isbehavior, and consequently reduce false positives. 

.1.2. Detection management 

A rich literature has attempted to develop detection systems 

apable of reducing false positives while maintaining the ability 

o detect malicious behaviors. Methods include statistical analysis 

 Spathoulas and Katsikas, 2010 ), fuzzy inference ( Elshoush and Os- 

an, 2010 ), kernel density estimation ( Su et al., 2019 ), and ma-

hine learning approaches ( Bouzar-Benlabiod et al., 2020; Goeschel, 

016; Ohta et al., 2008; Pietraszek and Tanner, 2005 ). Alert aggre- 

ation and correlation methods ( Salah et al., 2013 ) have also been 

pplied to dismiss repeated and innocuous alerts and generate 

lerts of system-level threat information. Recently, the authors in 

ryant and Saiedian (2020) have implemented a hybrid kill-chain 

ased classification model to boost detection rates, improve alert 

escription, and lower the number of false-positive alerts. There is 

 rich literature on alert filtering and selection, and we refer the 

eaders to Cotroneo et al. (2017) for the empirical analysis and val- 

dation of these state-of-the-art filtering techniques. 

.1.3. Response management 

Despite the significant advances in alert reduction methods in- 

roduced in Section 2.1.1 and 2.1.2 , the demand for alert inspection 

till exceeds the operators’ capacity. To this end, researchers have 

eveloped various alert triage and prioritization approaches that 

an be classified into the following three categories. 

The first category ranks alerts based on rules. These rules can 

e generated through fuzzy logic ( Alsubhi et al., 2012; Newcomb 

t al., 2016 ) and attack graphs ( Noel and Jajodia, 2008 ). Many

orks have attempted to learn from security experts and auto- 

ate the process of mining triage rules out of cybersecurity an- 

lysts’ operation traces ( Zhong et al., 2016; 2018b ). The second 

ategory assigns scores to alerts and quantitatively optimizes the 
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Table 2 

Summary of notations in Section 4 . 

Variable Meaning 

w FE , w RE , w UN , w NI Alert dismissal, alert escalation, uninspected alerts, and inadequate alert response. 

w 
k ∈ W Operator’s alert response at attack stage k . 

κ�k 
SW (s 

k +�k | s k ) Operator’s default switching probability. 

D max (s k ) ∈ R + Maximum Allowable Delay (MAD) for responding to alerts of category label s k ∈ S . 
t k 
AoI 

= t − t k k -th alert’s Age of Information (AoI). 

y EL ∈ Y EL Operator’s expertise level. 

d̄ (y EL , s 
k , θ k , φk ) ∈ R + Average inspection time to reach a complete alert response w FE or w RE . 

d(y EL , s 
k , θ k , φk ) Actual Inspection Time Needed (AITN). 

n t ∈ Z 0+ Number of alerts that arrive during the current inspection up to time t ∈ [0 , ∞ ) . 

y t SL = f SL (n 
t ) ∈ R + Operator’s stress level at time t . 

ω 
t = f LOE (y 

t 
SL ) ∈ [0 , 1] Operator’s Level of Operational Efficiency (LOE) at time t . 

n̄ (y EL , s 
k ) ∈ R 0+ Attention threshold. 

˜ ω 
t 1 ,t 2 := 

∫ t 2 
t 1 

ω 
t dt Effective Inspection Time (EIT) during inspection time [ t 1 , t 2 ] . 

p SP (y EL , s 
k , θ k , φk ) Probability of a complete response. 

Table 3 

Summary of notations in Section 5 . 

Variable Meaning 

I h ∈ Z 0+ , t I h ∈ [0 , ∞ ) Index and time of the alert under the h -th inspection (i.e., inspection stage h ∈ Z 0+ ). 
a m ∈ A Attention management (AM) strategy of period m ∈ Z + . 
a h ∈ A AM action at inspection stage h ∈ Z 0+ . 

κ̄
I h +1 −I h ,a 

h 

SW 
(s I h +1 | s I h ) Operator’s switching probability under a h . 

c̄ (w 
k , s k ) ∈ R Stage cost. 

c(s I h , a h ) ∈ R Expected Consolidated Cost (ECoC). 

˜ c (s I h , a h ) ∈ R Consolidated Cost (CoC). 

σ 0 , σ ∗ ∈ � Default and optimal AM strategy. 

Table 4 

Summary of Notations in Section 6 . 

Variable Meaning 

p UN (s 
I h , a h ) Attentional Deficiency Level (ADL). 

β > 0 Poisson arrival rate. 

z̄ PDF of Erlang distribution with shape m + 1 and rate β . 

p h SD (w 
I h | s I h , a h ; θ I h , φI h ) Probability that the operator makes alert response w 

I h at inspection stage h . 

λ(s I h , m, φI h ) Expected reward of a complete alert response. 
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lert triage process by minimizing the cyber risk. The score can 

e computed through a causal dependency graph of an alert event 

 Hassan et al., 2019 ), game-theoretic approaches ( Laszka et al., 

017 ), and the Quantitative Value Function (QVF) hierarchy pro- 

ess ( Shah et al., 2019a ). The authors in Ganesan et al. (2016) ;

hah et al. (2019a) further incorporate organization-specific fac- 

ors and constraints into the design of the optimal alert selection. 

he third category relies on data and learning methods. Supervised 

earning ( Bierma et al., 2016; Renners et al., 2017 ), deep learning 

 Aminanto et al., 2020; McElwee et al., 2017 ), and adversarial rein- 

orcement learning Tong et al. (2020) are used to prioritize alerts. 

he authors in Zhong et al. (2018a) have developed a triage oper- 

tion retrieval system to provide novice analysts with on-the-job 

uggestions using relevant data triage operations conducted by se- 

ior analysts. 

The above three categories of rule-based, risk-aware , and data- 

riven alert triage methods rank alerts based on their contextual 

nformation and organizational factors. Our human-centered ap- 

roach generalizes these classical alert triage approaches by ex- 

licitly modeling the attentional behaviors of human operators and 

electing alerts based on human cognitive capacity. 

.2. Feint attacks and human attentional models 

Feints have been widely studied in sports, military, and biology 

 Project, 2017 ). They are recently used to attack detection systems 

orona et al. (2013) . In particular, the authors in Mutz et al. (2003) ;

atton et al. (2001) have developed tools that can generate false 
4 
ositives by matching detection signatures. The tools are tested on 

NORT ( Roesch et al., 1999 ), and the empirical results verify the 

easibility of feint attacks on detection systems. Compared to these 

mpirical practices of feint attacks that exploit the vulnerability of 

etection systems, we focus on the attentional vulnerabilities and 

he impact of feints on human operators. Moreover, we abstract 

odels to formally characterize cyber feint attacks, quantify the 

isk, and develop human-assistive security technologies. 

We can classify human vulnerabilities into acquired vulnera- 

ilities (e.g., lack of security awareness and noncompliance) and 

nnate ones (e.g., bounded attention and rationality) based on 

hether they can be mitigated through short-term training and 

ecurity rules. Many works (e.g., Casey et al. (2016) ; Huang and 

hu (2021b) ; Wang et al. (2021) ) have emphasized the urgency 

nd necessity to reduce acquired human vulnerability and pro- 

osed human-assistive strategies. However, few works have fo- 

used on mitigation strategies for innate vulnerabilities. Visual 

upport systems have been used for rapid cyber event triage 

 Miserendino et al., 2017 ) and alert investigations ( Franklin et al., 

017 ), and eye-tracking data have been incorporated to enhance at- 

ention for phishing identification ( Huang et al., 2022 ). The authors 

n Sundaramurthy et al. (2015) perform an anthropological study in 

 corporate SOC to model and mitigate security analyst burnout. 

hese works lay the foundations of empirical solutions to miti- 

ate human attentional vulnerabilities. Our work combines real- 

ime human behavioral and decision data with the well-identified 

uman factors to enable quantitative characterizations of the em- 

irical relationship such as the Yerkes-Dodson law ( Yerkes et al., 
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Fig. 2. The timelines of an IDoS attack, alerts under AM strategies, and manual inspections are depicted in red, blue, and green, respectively. The inspection stage h ∈ Z 0+ is 
equivalent to the attack stage I h ∈ Z 0+ . The red arrows represent the sequential arrivals of feints and real attacks. The semi-transparent blue and the dashed green arrows 

represent the de-emphasized alerts and the alerts without inspections, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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908 ). The learning-based method for attention management also 

akes our human-assistive technology adaptive and transferable to 

arious human-technical systems. 

. IDoS attacks and sequential alert arrivals 

As illustrated in the first column of Fig. 1 , after the IDoS at-

acker has generated feint and real attacks, the detection system 

onitors the readings from physical layers and log files from cyber 

ayers and generates alerts according to the generation rules . Then, 

he alerts are sent to the SOC and a triage system automatically 

enerates their category labels (e.g., the alerts’ criticality) based on 

he technical-level triage rules . The rules for alert generation and 

riage are pre-defined and their designs are not the focus of this 

ork. 

.1. Feint and real attacks of heterogeneous targets 

After the essential preparation stages (e.g., initial intrusion, 

rivilege escalation, and lateral movement), IDoS attacks identify 

he vulnerable assets as the attack targets and gain control of the 

CS to launch feint and real attacks sequentially, as illustrated by 

he solid red arrows in Fig. 2 . With a deliberate goal of triggering

lerts, feint attacks require fewer resources to craft. Although feints 

ave limited impacts on the target system, they aggravate the alert 

atigue by depleting human attention resources and preventing hu- 

an operators from a timely response to real attacks. For exam- 

le, the attacker can attempt to access a database with wrong cre- 

entials intentionally, and in the meantime, gradually changes the 

emperature of the reactor of a nuclear power plant. The repeated 

og-in attempts trigger an excessive number of alerts so that the 

verloaded human operators fail to pay sustained attention and re- 

pond timely to the sensor alerts of the temperature deviation. 

We denote feint and real attacks as θF E and θRE , respectively, 
here � := { θF E , θRE } is the set of attacks’ types. Each feint or real
ttack can target cyber assets (e.g., servers, databases, and work- 

tations) or physical assets (e.g., sensors of pressure, temperature, 

nd flow rate) in the ICS. We define � as the set of the poten-

ial attack targets. The stochastic arrival of these attacks is mod- 

led as a Markov renewal process where t k , k ∈ Z 
0+ , is the time

f the k -th arrival. We refer to the k -th attack equivalently as

he attack at attack stage k ∈ Z 
0+ and let θ k ∈ � and φk ∈ � be

he attack’s type and target at attack stage k ∈ Z 
0+ , respectively. 

efine κAT ∈ K AT : � × � × � × � �→ [0 , 1] as the transition ker- 

el, where κAT (θ
k +1 , φk +1 | θ k , φk ) denotes the probability that the 

k + 1) -th attack has type θ k +1 ∈ � and target φk +1 ∈ � when the 
5 
 -th attack has type θ k ∈ � and target φk ∈ �. The inter-arrival 

ime τ k := t k +1 − t k is a continuous random variable with support 

0 , ∞ ) and Probability Density Function (PDF) z ∈ Z : � × � × � ×
�→ R 

0+ , where z(t| θ k +1 , φk +1 , θ k , φk ) is the probability that the 

nter-arrival time is t when the attacks’ types and targets at attack 

tage k and k + 1 are θ k , φk and θ k +1 , φk +1 , respectively. The val-

es of κAT ∈ K AT and z ∈ Z are unknown to human operators and

he designer of RADAMS. Attackers can adapt κAT and z to different 

CSs and alert inspection schemes to achieve the attack goals. We 

ormally define IDoS attacks in Definition 1 . 

efinition 1 (IDoS Attacks) . An IDoS attack is a sequence of feint 

nd real attacks of heterogeneous targets, which can be character- 

zed by the 4-tuple (�, �, K AT , Z ) . 

.2. Technical-level alert triage and system-level metrics 

The alerts triggered by IDoS attacks contain device-level contex- 

ual information, including the software version, hardware param- 

ters, existing vulnerabilities, and security patches. The alert triage 

rocess consists of rules that map the device-level information to 

ystem-level metrics, which helps human operators make timely re- 

ponses. Some essential metrics are listed as follows. 

• Source s SO ∈ S SO : The ICS sensors or the cyber assets that the 

alerts are associated with. 

• Time Sensitivity s T S ∈ S T S : The length of time that the potential 

attack needs to achieve its attack goals. 

• Complexity s CO ∈ S CO : The degree of effort that a human oper- 

ator takes to inspect the alert. 

• Susceptibility s SU ∈ S SU : The likelihood that the attack succeeds 

and inflicts damage on the protected system. 

• Criticality s CR ∈ S CR : The consequence or the impact of the at- 

tack’s damage. 

These alert metrics are observable to the human operators and 

he RADAMS designer and form the category label of an alert. 

e define the category label associated with the k -th alert as 

 
k := (s k 

SO 
, s k 

T S 
, s k 

CO 
, s k 

SU 
, s k 

CR 
) ∈ S , where S := S SO × S T S × S CO × S SU ×

 CR . The joint set S can be adapted to suit the organization’s needs

n the security practice. For example, we have S T S = ∅ if time sen-

itivity is unavailable or unimportant. 

The technical-level alert triage process establishes a stochastic 

onnection between the hidden types and targets of the IDoS 

ttacks and the observable category labels of the associated 

lerts. Let o(s k | θ k , φk ) be the probability of obtaining cate- 

ory label s k ∈ S , when the associated attack has type θ k ∈ �
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nd target φk ∈ �. The revelation kernel o reflects the qual- 

ty of the alert triage. For example, feints with lightweight 

esource consumption usually have a limited impact. Thus, a 

igh-quality triage process should classify the associated alert 

s low criticality with a high probability. Letting b(θ k , φk ) de- 

ote the probability that the k -th attack has type θ k and target 
k at the steady-state, we can compute the steady-state dis- 

ribution b in closed form based on κAT . Then, the transition 

f category labels at different attack stages is also Markov 

nd is represented by κCL ∈ K CL : S × S �→ [0 , 1] . We can com-

ute κCL = 
Pr (s k +1 ,s k ) ∑ 

s k +1 ∈ S Pr (s 
k +1 ,s k ) 

based on κAT , o, b, where Pr (s k +1 , s k ) = 

 

θk ,θk +1 ∈ �
∑ 

φk ,φk +1 ∈ � κAT (θ
k +1 , φk +1 | θ k , φk ) o(s k | θ k , φk ) o(s k +1 | θ k +1

k +1 ) b(θ k , φk ) . In this work, we focus on the case where the de-

ection system introduces the same delay between attacks and 

heir triggered alerts. Since the sequences of attacks and alerts 

ave a one-to-one mapping, we can consider zero delay time 

ithout loss of generality. Hence, the sequence of alerts associated 

ith an IDoS attack (�, �, K AT , Z ) is also a Markov renewal

rocess characterized by the 3-tuple (S , K CL , Z ) . 

. Human attention model under IDoS attacks 

An SOC typically adopts a hierarchical alert analysis 

 Zimmerman, 2014 ). The attention model in this section ap- 

lies to the tier-1 SOC analysts, or the operators, who are in 

harge of monitoring, inspecting, and responding to alerts in real 

ime. As illustrated by the green box in Fig. 1 , the operators choose

o inspect certain alerts, dismiss the feints, and escalate the real 

ttacks to tier-2 SOC analysts for in-depth analysis. The in-depth 

nalysis can last hours to months, during which the tier-2 analysts 

orrelate incidents from different assets in the ICS over long 

eriods to build threat intelligence and analyze the impact. The 

hreat intelligence is then incorporated to form and update the 

eneration rules of the detection system and triage rules of the 

riage process. 

.1. Alert responses 

Due to the high volume of alerts and the potential short- 

erm surge arrivals, human operators cannot inspect all alerts in 

eal time. The uninspected alerts receive an alert response w NI . 

hether the operator chooses to inspect an alert depends on the 

witching probability in Section 4.2 . 

When the operator inspects an alert, he can be distracted by 

he arrival of new alerts and switch to newly-arrived alerts without 

ompleting the current inspection. We elaborate on the attention 

ynamics in Section 4.3 . The alert with incomplete inspection is 

abeled by w UN . Besides the insufficient inspection time, the oper- 

tor’s cognitive capacity constraint can also prevent him from de- 

ermining whether the alert is triggered by a feint or a real attack. 

n this work, we consider prudent operators. When they cannot 

etermine the attack’s type after a full inspection, the associated 

lert is labeled as w UN , as shown in the green flowchart of Fig. 1 .

e elaborate on how the insufficient inspection time and the op- 

rator’s cognitive capacity constraint lead to w UN , i.e., referred to 

s the inadequate alert response , in Section 4.4 . The alerts labeled 

s w NI and w UN are ranked and queued up for delayed inspections 

t later stages. 

When the operator successfully completes the alert inspection 

ith a deterministic decision, he either dismisses the alert (de- 

oted by w F E ) or escalates the alert to tier-2 SOC analysts for 

n-depth analysis (denoted by w RE ), as shown in Fig. 1 . We use

 
k ∈ W := { w F E , w RE , w UN , w NI } to denote the operator’s response
o the alert at attack stage k ∈ Z 

0+ . We can extend the set W to
6 
uit the organization’s security practice. For example, some organi- 

ations let the operators report their estimations and confidence 

evels concerning incomplete alert inspection, i.e., divide the la- 

el w UN into finer subcategories. Then at later stages, the delayed 

nspection can prioritize the alerts based on the estimations and 

onfidence levels. 

.2. Probabilistic switches within allowable delay 

Alerts are monitored in real time when they arrive. When the 

ategory label of the new alert indicates higher time sensitivity, 

usceptibility, or criticality, the operator can delay the current in- 

pection (i.e., label the alert under inspection as w UN ) and switch 

o inspect the new alert. We denote κ�k 
SW 

(s k +�k | s k ) as the opera-
or’s default switching probability when the previous alert at at- 

ack stage k and the new alert at stage k + �k, �k ∈ Z 
+ , have cat-

gory label s k ∈ S and s k +�k ∈ S , respectively. As a probability mea-

ure, 

∞ ∑ 

k =1 

∑ 

s k +�k ∈ S 

κ�k 
SW 

(s k +�k | s k ) ≡ 1 , ∀ k ∈ Z 
0+ , ∀ s k ∈ S . (1)

ince the operator cannot observe the attack’s hidden type and 

idden target, the switching probability κ�k 
SW 

is independent of 
k , φk and θ k +1 , φk +1 . The switching probability depends on the 

ime that the operator has already spent on the current inspec- 

ion. For example, an operator becomes less likely to switch after 

pending a long time inspecting an alert of low criticality or be- 

ond his capacity, which can lead to the Sunk Cost Fallacy (SCF). 

We denote D max (s k ) ∈ R 
+ as the Maximum Allowable Delay 

MAD) for alerts of category label s k ∈ S . At time t ≥ t k , the k -th

lert’s Age of Information (AoI) ( Yates et al., 2021 ) is defined as 

 
k 
AoI 

:= t − t k . This work focuses on time-critical ICSs where a de- 

ensive response for the k -th alert of category label s k ∈ S is only

ffective if the alert’s AoI is within the MAD, i.e., t k 
AoI 

≤ D max (s 
k ) .

herefore, the operator will be reminded when an alert’s AoI ex- 

eeds the MAD so that he can switch to monitor and inspect new 

lerts. The MAD and the reminder scheme help mitigate the SCF 

hen the operators are occupied with old alerts and miss the 

hance to monitor and inspect new alerts in real time. 

.3. Attentional factors 

We identify the following human and environmental factors af- 

ecting operators’ alert inspection and response processes. 

• The operator’s expertise level denoted by y EL ∈ Y EL . 

• The k -th alert’s category label s k ∈ S . 

• The k -th attack’s type θ k and target φk . 

• The operator’s stress level y t 
SL 

∈ R 
+ , which changes with time t

as new alerts arrive. 

The first three factors are the static attributes of the analyst, the 

lert, and the IDoS attack, respectively. They determine the average 

nspection time, denoted by d̄ (y EL , s 
k , θ k , φk ) ∈ R 

+ , to reach a com-

lete response w F E or w RE . For example, if the inspected alert is of 

ow complexity, the operator can reach a complete response in a 

horter time. Also, it takes a senior operator less time on average 

o reach a complete alert response than a junior one does. We use 

(y EL , s 
k , θ k , φk ) to represent the Actual Inspection Time Needed 

AITN) when the operator is of expertise level y EL , the alert is of 

ategory label s k , and the attack has type θ k and target φk . AITN 

(y EL , s 
k , θ k , φk ) is a random variable with mean d̄ (y EL , s 

k , θ k , φk ) . 

The fourth factor reflects the temporal aspect of human atten- 

ion during the inspection process. Evidence has shown that the 

ontinuous arrival of the alerts can increase the stress level of hu- 

an operators ( Ancker et al., 2017 ), and 52% of employees attribute 
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c  
heir mistakes to stress ( Tessian, 2020 ). We denote n t ∈ Z 
0+ as the

umber of alerts that arrives during the current inspection up to 

ime t ∈ [0 , ∞ ) and model the operator’s stress level y t 
SL 

as an in-

reasing function f SL of n 
t , i.e., y t 

SL 
= f SL (n 

t ) . At time t ∈ [0 , ∞ ) , the

uman operator’s Level of Operational Efficiency (LOE), denoted by 

 
t ∈ [0 , 1] , is a function f LOE of the stress level y 

t 
SL 
, i.e., 

 
t = f LOE (y 

t 
SL ) = ( f LOE ◦ f SL )(n 

t ) , ∀ t ∈ [0 , ∞ ) . (2)

ased on the Yerkes-Dodson law, the function f LOE follows an in- 

erse U-shape that contains the following two regions. In region 

ne, a small number of alerts result in a moderate stress level 

nd allow human operators to inspect the alert efficiently. In re- 

ion two, the LOE starts to decrease when the number of alerts 

o inspect is beyond some threshold n̄ (y EL , s 
k ) ∈ R 

0+ , and the hu-
an operator is overloaded. The value of the attention thresh- 

ld n̄ (y EL , s 
k ) depends on the operator’s expertise level y EL ∈ Y EL 

nd the alert’s category label s k ∈ S . For example, it requires more

resp. fewer) alerts (i.e., higher (resp. lower) attention threshold) 

o overload a senior (resp. an inexperienced) operator. We can also 

dapt the value of n̄ (y EL , s 
k ) to different scenarios. In the extreme

ase where all alerts are of high complexity and create a heavy 

ognitive load, we let n̄ (y EL , s 
k ) = 0 , ∀ y EL ∈ Y EL , s 

k ∈ S , and the LOE

ecreases monotonously with the number of alert arrivals during 

n inspection. 

.4. Alert responses under time and capacity limitations 

After we identify attentioinal factors in Section 4.3 , we illus- 

rate their impacts on the operators’ alert responses as follows. We 

efine the Effective Inspection Time (EIT) during inspection time 

 t 1 , t 2 ] as the integration ˜ ω 
t 1 ,t 2 := 

∫ t 2 
t 1 

ω 
t dt . When the operator is

verloaded and has a low LOE during [ t 1 , t 2 ] , the EIT ˜ ω 
t 1 ,t 2 is much

horter than the actual inspection time t 2 − t 1 . 

Suppose that the operator of expertise level y EL inspects 

he k -th alert for a duration of [ t 1 , t 2 ] . If the EIT has ex-

eed the AITN d(y EL , s 
k , θ k , φk ) , then the operator can reach a

omplete response w F E or w RE with a high success probabil- 

ty denoted by p SP (y EL , s 
k , θ k , φk ) ∈ [0 , 1] . However, when ˜ ω 

t 1 ,t 2 <

(y EL , s 
k , θ k , φk ) , it indicates that the operator has not completed

he inspection, and the alert response concerning the k -th alert is 

 
k = w UN . The success probability p SP depends on the operator’s 

apacity to identify attacks’ types, which leads to the definition of 

he capacity gap below. 

efinition 2 (Capacity Gap) . For an operator of expertise level 

 EL ∈ Y EL , we define p CG (y EL , s 
k , θ k , φk ) := 1 − p SP (y EL , s 

k , θ k , φk ) as

is capacity gap to inspect an alert with category label s k ∈ S , type
k ∈ �, and target φk ∈ � defined in Section 3 . 

. Human-assistive security technology for cognitive-level alert 

anagement 

As illustrated in Section 4 , the frequent arrival of alerts trig- 

ered by IDoS attacks can overload the human operator and reduce 

he LOE and the EIT. To compensate for the human’s attentional 

imitation, we can intentionally make some alerts less noticeable, 

.g., without sounds or in a light color, based on their category 

abels. As illustrated by the blue box in Fig. 1 , based on the cate-

ory labels from the technical-level triage process, RADAMS auto- 

atically emphasizes and de-emphasizes alerts, referred to as the 

ognitive-level alert management, and then presents them to the 

ier 1 SOC analysts. 

.1. Adaptive attention management strategy 

In this work, we focus on the class of AM strategies, denoted by 

 := { a m } m ∈{ 0 , 1 , ··· ,M} , that de-emphasize consecutive alerts. As ex- 
7 
lained in Section 4.1 , the operator can only inspect some alerts 

n real time. Thus, we use I h ∈ Z 
0+ and t I h ∈ [0 , ∞ ) to denote the

ndex and the time of the alert under the h -th inspection; i.e., the 

nspection stage h ∈ Z 
0+ is equivalent to the attack stage I h ∈ Z 

0+ .
henever the operator starts a new inspection at inspection stage 

 ∈ Z 
0+ , RADAMS determines the AM action a h ∈ A for the h -th

nspection based on the stationary strategy σ ∈ � : S �→ A that is 

daptive to the category label of the h -th alert. We illustrate the 

imeline of the manual inspections and the AM strategies in green 

nd blue, respectively, in Fig. 2 . The solid and dashed green ar- 

ows indicate the inspected and uninspected alerts, respectively. 

he non-transparent and semi-transparent blue arrows indicate the 

mphasized and de-emphasized alerts, respectively. At inspection 

tage h , if a h = a m , RADAMS will make the next m alerts less no-

iceable; i.e., the alerts at attack stages I h + 1 , · · · , I h + m are de-

mphasized. Denote κ̄
I h +1 −I h ,a 

h 

SW 
(s I h +1 | s I h ) as the operator’s switch- 

ng probability to these de-emphasized alerts under the AM action 

 
h ∈ A . Analogously to (1) , the following holds for all h ∈ Z 

0+ and
 
h ∈ A , i.e., 

∞ ∑ 

 h +1 = I h +1 

∑ 

s I h +1 ∈ S 

κ̄
I h +1 −I h ,a 

h 

SW 
(s I h +1 | s I h ) ≡ 1 , ∀ s I h ∈ S . (3) 

he deliberate de-emphasis on selective alerts brings the following 

radeoff. On the one hand, these alerts do not increase the opera- 

or’s stress level, and the operator can pay sustained attention to 

he alert under inspection with high LOE and EIT. On the other 

and, these alerts do not draw the operator’s attention, and the 

perator is less likely to switch to them during the real-time mon- 

toring and inspections. 

Since the operator may switch to inspect a de-emphasized 

lert with switching probability κ̄
I h +1 −I h ,a 

h 

SW 
(e.g., the h -inspection 

n Fig. 2 ), RADAMS recomputes the AM strategy and implements 

he new strategy whenever the operator has started to inspect 

 new alert. Although the operator can switch unpredictably, 

roposition 1 shows that the transition of the inspected alerts’ cat- 

gory labels is Markov. 

roposition 1. For a stationary AM strategy σ ∈ �, the set of ran- 

om variables (S I h , T I h ) h ∈ Z 0+ is a Markov renewal process. 

roof. The sketch of the proof includes two steps. First, we prove 

hat the state transition from s I h to s I h +1 is Markov for all h ∈ Z 
0+ .

ue to the uncertainty of switching in inspection, the transition 

tage I h +1 is also a random variable for all h ∈ Z 
0+ , and we can

epresent the transition probability as 

r (S I h +1 = s I h +1 | s I h ) = 

∞ ∑ 

l=1 

Pr (I h +1 = I h + l) · Pr (S I h +1 = s I h +1 | s I h ) , 

here Pr (I h +1 = I h + l) is the probability that the (h + 1) -th in-

pection happens at attack stage I h + l. The term Pr (S I h +1 = 

 
I h +1 | s I h ) is Markov and can be computed based on κCL . The term
r (I h +1 = I h + l) depends on d(y EL , s 

I h + l ′ , θ I h + l ′ , φI h + l ′ ) , κ l ′ 
SW 

, κ̄ l ′ 
SW 

,
l ′ , for all l ′ ∈ { 1 , · · · , l} . Since s I h + l ′ , θ I h + l ′ , φI h + l ′ , l ′ ∈ { 1 , · · · , l} , are
ll stochastically related to s I h and s I h +1 based on o, κAT and κCL , 
he term Pr (I h +1 = I h + l) depends on s I h and s I h +1 for all l ∈ Z 

+ . 
Then, we show that the distribution of the inter-arrival time 

I h ,m 

IN 
:= T I h +1 − T I h only depends on s I h and s I h +1 . Analogously, the 

umulative distribution function of τ
I h ,m 

IN 
is 

r (τ I h ,m 

IN 
≤ t) = 

∑ ∞ 

l=1 Pr (I h +1 = I h + l) · Pr (τ I h ,m 

IN 
≤ t) , 

nd hence we arrive at the Markov property. �

.2. Stage cost and expected cumulative cost 

For each alert at attack stage k ∈ Z 
0+ , RADAMS assigns a stage

ost c̄ (w 
k , s k ) ∈ R to evaluate the outcomes of alert response w 

k ∈
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Algorithm 1: Algorithm to Learn the Adaptive AM strategy 

based on the Operator’s Real-Time Alert Inspection. 

1 Input K: The total number of attack stages; 

2 Initialize The operator starts the h -th inspection under AM 

action a h ∈ A ; I h = k 0 ; ˜ c 
I h (s I h , a h ) = 0 ; 

3 for k ← k 0 + 1 to K do 

4 if The operator has finished the I h -th alert (i.e., EIT > AITN ), 

then 

5 if Capable (i.e., rand ≤ p SP (y EL , s 
k , θ k , φk ) ) then 

6 Dismiss (i.e., w 
I h = w F E ) or escalate (i.e., w 

I h = w RE ) 

the I h -th alert; 

7 else 

8 Queue up the I h -th alert, i.e., w 
I h = w UN ; 

9 end 

10 ˜ c I h (s I h , a h ) = ˜ c I h (s I h , a h ) + c̄ (w 
I h , s I h ) ; 

11 I h +1 ← k ; The operator starts to inspect the k -th alert 

with category label s I h +1 ; 

12 Update Q 
h +1 (s I h , a h ) via ( ?? ) and obtain the AM action 

a h +1 by ε-greedy policy; 

13 ˜ c h +1 (s I h +1 , a h +1 ) = 0 ; h ← h + 1 ; 

14 else 

15 if The operator chooses to switch or The MAD is reached, 

i.e., t k − t I h ≥ D max (s I h ) then 

16 Queue up the I h -th alert (i.e., w 
I h = w UN ); 

17 ˜ c I h (s I h , a h ) = ˜ c I h (s I h , a h ) + c̄ (w UN , s 
I h ) ; 

18 I h +1 ← k ; The operator starts to inspect the k -th 

alert with category label s I h +1 ; 

19 Update Q 
h +1 (s I h , a h ) via ( ?? ) and obtain the AM 

action a h +1 by ε-greedy policy; 

20 ˜ c h +1 (s I h +1 , a h +1 ) = 0 ; h ← h + 1 ; 

21 else 

22 The operator continues the inspection of the I h -th 

alert with decreased LOE; 

23 The k -th alert is queued up for delayed inspection 

(i.e., w 
k = w NI ); 

24 ˜ c I h (s I h , a h ) = ˜ c I h (s I h , a h ) + c̄ (w NI , s 
k ) ; 

25 end 

26 end 

27 end 

28 Return Q 
h (s, a ) , ∀ s ∈ S , a ∈ A ; 
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 under the category label s k ∈ S . The value of the cost varies un-

er different scenarios. In this work, we can estimate it using the 

alary of SOC analysts and the estimated loss of the associated at- 

ack. For example, c̄ (w UN , s 
I h ) and c̄ (w NI , s 

I h ) are positive costs as

hose alerts without a complete response incur additional work- 

oads. The delayed inspections also expose the organization to the 

hreats of time-sensitive attacks. On the other hand, c̄ (w F E , s 
I h ) and 

¯ (w RE , s 
I h ) are negative costs because the alerts with complete alert 

esponse w F E and w RE reduce the workload of tier 2 SOC analysts 

nd enable them to obtain threat intelligence. 

When the operator starts a new inspection at inspection stage 

 + 1 , RADAMS will evaluate the effectiveness of the AM strategy 

or the h -th inspection. The performance evaluation is reflected by 

he Expected Consolidated Cost (ECoC) c : S × A �→ R at each in-

pection stage h ∈ Z 
0+ . We denote the realization of c(s I h , a h ) as

he Consolidated Cost (CoC) ˜ c I h (s I h , a h ) . Since the AM strategy σ
t each inspection stage can affect the future human inspection 

rocess and the alert responses, we define the Expected Cumu- 

ative Cost (ECuC) u (s I h , σ ) := 

∑ ∞ 

h =0 γ
h c(s I h , σ (s I h )) under adaptive

trategy σ ∈ � as the long-term performance measure. The goal of 

he assistive technology is to design the optimal adaptive strategy 
∗ ∈ � that minimizes the ECuC u under the presented IDoS attack 

ased on the category label s I h ∈ S at each inspection stage h . We

efine v ∗(s I h ) := min σ∈ � u (s I h , σ ) as the optimal ECuC when the

ategory label is s I h ∈ S . We refer to the default AM strategy σ 0 ∈ �

s the one when no AM action is applied under all category labels, 

.e., σ 0 (s I h ) = a 0 , ∀ s I h ∈ S . 

.3. Reinforcement learning 

Due to the absence of the following exact model parameters, 

ADAMS has to learn the optimal AM strategy σ ∗ ∈ � based on 

he operator’s alert responses in real time. 

• Parameters of the IDoS attack model (e.g., κAT and z) and the 

alert generation model (e.g., o) in Section 3 . 

• Parameters of the human attention model (e.g., f LOE and f Sl ), in- 

spection model (e.g., κ�k 
SW 

, κ̄
I h +1 −I h ,a 

h 

SW 
, and d), and alert response 

model (e.g., y EL and p SP ) in Section 4 . 

Define Q 
h (s I h , a h ) as the estimated ECuC during the h -th inspec-

ion when the category label is s I h ∈ S and the AM action is a h .

ased on Proposition 1 , the state transition is Markov, which en- 

bles Q-learning as follows. 

 
h +1 (s I h , a h ) : = (1 −αh (s I h , a h )) Q 

h (s I h , a h ) + αh (s I h , a h )[ ̃  c I h (s I h , a h ) 

+ γ min 
a ′ ∈ A 

Q 
h (s I h +1 , a ′ )] , (4) 

here s I h and s I h +1 are the observed category labels of the 

lerts at the attack stage I h and I h +1 , respectively. When 

he learning rate αh (s I h , a h ) ∈ (0 , 1) satisfies 
∑ ∞ 

h =0 α
h (s I h , a h ) =

 , 
∑ ∞ 

h =0 (α
h (s I h , a h )) 2 < ∞ , ∀ s I h ∈ S , ∀ a h ∈ A , and all state-action

airs are explored infinitely, min a ′ ∈ A 
Q 

h (s I h , a ′ ) converges to the 
ptimal ECuC v ∗(s I h ) with probability 1 as h → ∞ . At each in-

pection stage h ∈ Z 
0+ , RADAMS selects AM strategy a h ∈ A based

n the ε-greedy policy; i.e., RADAMS chooses a random ac- 

ion with a small probability ε ∈ [0 , 1] , and the optimal action

rg min a ′ ∈ A 
Q 

h (s I h , a ′ ) with probability 1 − ε. 
We present the algorithm to learn the adaptive AM strategy 

ased on the operator’s real-time alert monitoring and inspection 

rocess in Algorithm 1 . 

Each simulation run corresponds to the operator’s work shift 

f 24 hours at the SOC. Since the SOC can receive over 10 thou- 

and of alerts in each work shift, we can use infinite horizon to 

pproximate the total number of attack stages K > 10 , 0 0 0 . When-

ver the operator starts to inspect a new alert at inspection stage 
8 
 h +1 , RADAMS applies Q-learning in (4) based on the category la- 

el s I h +1 of the newly arrived alert and determines the AM ac- 

ion a h +1 for the h + 1 inspection based on the ε-greedy policy 
s shown in lines 12 and 19 of Algorithm 1 . The CoC ˜ c I h (s I h , a h )

f the h -th inspection under the AM action a h ∈ A and the cate-

ory label s I h of the inspected alert can be computed iteratively 

ased on the stage cost c̄ (w 
k , s k ) of the alerts during the attack

tage k ∈ { I h , · · · , I h +1 − 1 } , as shown in lines 13, 20, and 24 of

lgorithm 1 . 

. Theoretical analysis 

In Section 6 , we focus on the class of ambitious oper- 

tors who attempt to inspect all alerts, i.e., κSW 
(s k +�k | s k ) = 

 { �k =1 } , ∀ s k , s k +�k ∈ S , ∀ �k ∈ Z 
+ . To assist this class of operators,

he implemented AM action a m , m ∈ { 0 , 1 , · · · , M} , chooses to make

he selected alerts fully unnoticeable. Then, under a m ∈ A , the op- 

rator at inspection stage h can pay sustained attention to inspect 

he alert of category label s I h ∈ S for m + 1 attack stages. Moreover,

he operator switches to the new alert at attack stage I h +1 , i.e., 
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I

e∑

L  

A

P

f UN  
 

s I h + m +1 ∈ S κ̄
I h +1 −I h ,a m 
SW 

(s I h + m +1 | s I h ) = 1 { I h +1 −I h = m +1 } . Throughout the 
ection, we omit the variable of the expertise level y EL in functions 

, d̄ , p SP , and p CG because y EL is a constant for all attack stages. 

.1. Security metrics 

We propose two security metrics in Definition 3 to evaluate 

he performance of ambitious operators under IDoS attacks and 

ifferent AM strategies. The first metric, denoted as p UN (s 
I h , a h ) ,

s the probability that the operator chooses w UN during the h -th 

nspection under the category label s I h ∈ S and AM action a h ∈ A .

his metric reflects the Attentional Deficiency Level (ADL) of the 

DoS attack. For example, as the attackers generate more feints at 

 higher frequency, the operator is persistently distracted by the 

ew alerts, and it becomes unlikely for him to fully respond to 

n alert. The ADL p UN (s 
I h , a h ) is high in this scenario. We use the

CuC u (s I h , σ ) as the second metric that evaluates the IDoS risk un-

er the category label s I h ∈ S and the AM strategy σ ∈ �. For both

etrics, smaller values are preferred. 

efinition 3 (Attentional Deficiency Level and Risk) . Under cate- 

ory label s I h ∈ S and the stationary AM strategy σ ∈ �, we define

p UN (s 
I h , σ (s I h )) and u (s I h , σ ) as the Attentional Deficiency Level 

ADL) and the risk of the IDoS attacks defined in Section 3 , respec-

ively. 

.2. Closed-form computations 

The Markov renewal process that characterizes the IDoS attack 

r the associated alert sequence follows a Poisson process when 

ondition 1 holds. 

ondition 1 (Poisson Arrival) . The inter-arrival times τ k , ∀ k ∈ 

 
0+ , are independent and exponentially distributed random 

ariables with the same arrival rate denoted by β > 0 , i.e., 

(τ | θ k +1 , φk +1 , θ k , φk ) = βe −βτ , τ ∈ [0 , ∞ ) for all θ k +1 , θ k ∈ � and
k +1 , φk ∈ �. 

Recall that random variable T 
I h ,m 

IN 
represents the inspection time 

f the I h -th alert under the AM action a h = a m ∈ A . For the am-

itious operators under AM action a m ∈ A at inspection stage h , 

he next inspection happens at attack stage I h +1 = I h + m + 1 . Thus,

 h +1 is no longer a random variable. As a summation of m + 1 i.i.d.

xponential distributed random variables of rate β , T 
I h ,m 

IN 
follows an 

rlang distribution denoted by PDF function z̄ with shape m + 1 and 

nd rate β > 0 when condition 1 holds, i.e., z̄ (τ ) = 
βm +1 τm e −βτ

m ! , τ ∈ 

0 , ∞ ) . 

Denote p h 
SD 

(w 
I h | s I h , a h ; θ I h , φI h ) as the probability that the op-

rator makes alert response w 
I h at inspection stage h . To ob- 

ain a theoretical underpinning, we consider the case where 

he AITN equals the average inspection time, i.e., d(s k , θ k , φk ) = 

 ̄(s k , θ k , φk ) . Then, the operator under AM action a m makes a

omplete alert response (i.e., w 
I h ∈ { w F E , w RE } ) at inspection stage

 for category label s I h if the inspection time τ
I h ,m 

IN 
is greater 

han the AITN. The probability of the above event can be rep- 

esented as 
∫ ∞ 

d(s I h ,θ I h ,φI h ) 
p SP (s 

I h , θ I h , φI h ) ̄z (τ ) dτ = p SP (s 
I h , θ I h , φI h ) ·

 m 

n =0 
1 
n ! e 

−βd(s I h ,θ I h ,φI h ) (βd(s I h , θ I h , φI h )) n , which leads to 

p h SD (w UN | s I h , a m ; θ I h , φI h ) = 1 − p SP (s 
I h , θ I h , φI h ) 

·∑ m 

n =0 
1 
n ! 
e −βd(s I h ,θ I h ,φI h ) (βd(s I h , θ I h , φI h )) n . 

(5) 

hen, the ADL p UN (s 
I h , a h ) can be computed as 

∑ 

I h ∈ �,φI h ∈ �
Pr (θ I h , φI h | s I h ) · p h SD (w UN | s I h , a h ; θ I h , φI h ) , (6) 
9 
here the conditional probability Pr (θ I h , φI h | s I h ) can be 

omputed via the Bayesian rule, i.e., Pr (θ I h , φI h | s I h ) = 

o(s I h | θ I h ,φI h ) b(θ I h ,φI h ) ∑ 

θ
I h ∈ �,φ

I h ∈ �
o(s I h | θ I h ,φI h ) b(θ I h ,φI h ) 

. 

We can compute the ECoC c(s I h , a m ) explicitly as 

c(s I h , a m ) = m ̄c (w NI , s 
I h ) + 

∑ 

θ I h ∈ �,φI h ∈ � Pr (θ I h , φI h | s I h ) 
·∑ 

w I h ∈ W 
p h SD (w 

I h | s I h , a m ; θ I h , φI h ) ̄c (w 
I h , s I h ) . 

(7) 

or prudent operators in Section 4.1 , we have 

p h SD (w i | s I h , a h ; θi , φI h ) = 1 − p h SD (w UN | s I h , a h ; θi , φI h ) , (8) 

or all i ∈ { F E , RE } , s I h ∈ S , a h ∈ A , φI h ∈ �, h ∈ Z 
0+ . Plugging (8) into

7) , we can simplify the ECoC c(s I h , a m ) as 

c(s I h , a m ) = 

∑ 

φI h ∈ �

∑ 

i ∈{ F E ,RE } 
Pr (θi , φ

I h | s I h ) · p h SD (w i | s I h , a m ; θi , φI h ) 

·[ ̄c (w i , s 
I h ) − c̄ (w UN , s 

I h )] + m ̄c (w NI , s 
I h ) + c̄ (w UN , s 

I h ) . 

(9) 

s shown in Proposition 2 , the ADL and the risk are monotone 

unction of βd(s I h , θ I h , φI h ) for each AM strategy. 

roposition 2. If condition 1 holds, then the ADL p UN (s 
I h , σ (s I h )) 

nd the risk u (s I h , σ ) of an IDoS attack under category label s I h ∈
 and AM strategy σ ∈ � increase in the value of the product 

d(s I h , θ I h , φI h ) . 

roof. First, since p h 
SD 

(w UN ) in (5) increases monotonously with 

espect to the product βd(s I h , θ I h , φI h ) , the values of p h 
SD 

(w F E ) and

p h 
SD 

(w RE ) in (8) decrease monotonously with respect to the prod- 

ct. Plugging (5) into (6) , we obtain that p UN (s 
I h , a m ) in (10) under

ny a m ∈ A and s I h ∈ S is a summation of functions increasing in

d(s I h , θ I h , φI h ) . 

p UN (s 
I h , a m ) = 

∑ 

φI h ∈ �

∑ 

i ∈{ F E ,RE } Pr (θi , φI h | s I h )[1 −

p SP (s 
I h , θi , φ

I h ) ·
m ∑ 

n =0 

1 
n ! 
e −βd(s I h ,θi ,φ

I h ) (βd(s I h , θi , φ
I h )) n ] . 

(10) 

Second, since c̄ (w F E , s 
I h ) and c̄ (w RE , s 

I h ) are negative, 

nd c̄ (w UN , s 
I h ) is positive, the ECoC in (9) decreases with 

d(s I h , θ I h , φI h ) under any a m ∈ A and s I h ∈ S . Then, the risk

lso decreases with the product, due to the monotonicity of the 

ellman operator Bertsekas and Tsitsiklis (1996) . �

emark 1 (Product Principle of Attention (PPoA)) . On the one 

and, as β increases, the feint and real attacks arrive at a higher 

requency on average, resulting in a higher demand of atten- 

ion resources from the human operator. On the other hand, as 

(s I h , θ I h , φI h ) increases, the human operator requires a longer in- 

pection time to determine the attack’s type, leading to a lower 

upply of attention resources. Proposition 2 characterizes the PPoA; 

.e., for any stationary AM strategy σ ∈ �, the ADL and the risk of 

DoS attacks depend on the product of the supply and demand of 

ttention resources. 

.3. Fundamental limits under AM strategies 

Section 6.3 aims to show the fundamental limits of the 

DoS attack’s ADL, the ECoC, and the risk under differ- 

nt AM strategies. Define the shorthand notation: p (s I h ) := 

 

φI h ∈ �
∑ 

i ∈{ F E ,RE } Pr (θi , φI h | s I h ) p CG (s I h , θi , φI h ) . 

emma 1. If Condition 1 holds and M → ∞ , then for each s I h ∈ S , the

DL p UN (s 
I h , a m ) decreases strictly to p (s I h ) as m increases. 

roof. Since 1 
n ! e 

−βd(s I h ,θ I h ,φI h ) )(βd(s I h , θ I h , φI h )) n > 0 

or all m ∈ { 0 , · · · , M} , the value of p (s I h , a m ) in
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Table 5 

Benchmark values of the average inter-arrival time μ(θ k , θ k +1 ) = 

1 /β(θ k , θ k +1 ) , ∀ θ k , θ k +1 ∈ �. 

Average inter-arrival time from feints to real attacks 6s 

Average inter-arrival time from real attacks to feints 10s 

Average inter-arrival time between feints 15s 

Average inter-arrival time between real attacks 8s 

Table 6 

Benchmark values of the average inspection time d̄ (s k CR , θ
k ) , ∀ θ k ∈ 

�, s k CR ∈ S CR . 

Average time to inspect feints of low criticality 6s 

Average time to inspect feints of high criticality 8s 

Average time to inspect real attacks of low criticality 15s 

Average time to inspect real attacks of high criticality 20s 
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10) strictly decreases as m increases. Moreover, since 

im m →∞ 

∑ m 

n =0 
1 
n ! e 

−βd(s I h ,θ I h ,φI h ) )(βd(s I h , θ I h , φI h )) n = 1 , we have 

in m ∈{ 0 , ··· ,M} p UN (s 
I h , a m ) = p (s I h ) for all s I h ∈ S . �

emark 2 (Fundamental Limit of ADL) . Lemma 1 characterizes 

hat the minimum ADL under all AM strategies a m ∈ A is p (s I h ) .

he value of p (s I h ) depends on the operator’s capacity gap 

p CG (s 
I h , θF E , φ

I h ) and the frequency of feint and real attacks with

ifferent tar gets, i.e., Pr (θ I h , φI h | s I h ) , ∀ θ I h ∈ �, φI h ∈ �. 

Denote the expected reward of making a complete alert re- 

ponse (i.e., the rewards to dismiss feints and escalate real attacks) 

s 

λ(s I h , m, φI h ) := 

∑ 

i ∈{ F E ,RE } 
c̄ (w i , s 

I h ) · Pr (θi , φI h | s I h ) 

·p h SP (s I h , θi , φI h ) ·
[

m ∑ 

n =0 

1 
n ! 
e −βd(s I h ,θi ,φ

I h ) (βd(s I h , θi , φ
I h )) n 

]
. 

Combining (9) and (10) , we can rewrite ECoC as a combination 

f the following three terms in (11) . 

(s I h , a m ) = p UN (s 
I h , a m ) ̄c (w UN , s 

I h ) 

+ m ̄c (w NI , s 
I h ) + 

∑ 

φI h ∈ �
λ(s I h , m, φI h ) . (11) 

ased on Lemma 1 , the first term p UN (s 
I h , a m ) ̄c (w UN , s 

I h ) and the

hird term 

∑ 

φI h ∈ � λ(s I h , m, φI h ) decrease in m , while the second 

erm m ̄c (w NI , s 
I h ) in (11) increases in m linearly at the rate of

¯ (w NI , s 
I h ) . The tradeoff among the three terms is summarized be- 

ow. 

emark 3 (Tradeoff among ADL, Reward of Alert Attention, and 

mpact for Alert Inattention) . Based on Lemma 1 and (11) , increas- 

ng m reduces the ADL and achieves a higher reward of complet- 

ng the alert response. However, the increase of m also linearly in- 

reases the impact for alert inattention represented by m ̄c (w NI , s 
I h ) ,

he cost of uninspected alerts. Thus, we need to strike a balance 

mong these terms to reduce the IDoS risk. 

Define λmin (s 
I h , φI h ) := 

∑ 

i ∈{ F E ,RE } c̄ (w i , s 
I h ) Pr (θi , φ

I h | s I h ) p h 
SP 

(s I h , θ
I h ) , λ

ε0 
max (s 

I h , φI h ) := (1 − ε0 ) λmin (s 
I h , φI h ) , c min (s 

I h ) := 

∑ 

φI h ∈ �
min (s 

I h , φI h ) + p (s I h ) ̄c (w UN , s 
I h ) + m ̄c (w NI , s 

I h ) , and c 
ε0 
max (s 

I h ) :=
 

φI h ∈ � λ
ε0 
max (s 

I h , φI h ) + [ p (s I h ) + ε0 (1 − p (s I h ))] ̄c (w UN , s 
I h ) + 

 ̄c (w NI , s 
I h ) . 

roposition 3. Consider the scenario where Condition 1 holds 

nd M > m (s I h ) . For any ε0 ∈ (0 , 1] and s I h ∈ S , there exists

 (s I h ) ∈ Z 
+ such that c(s I h , a m ) ∈ [ c min (s 

I h ) , c 
ε0 
max (s 

I h )] , ∀a m ∈A , when

 ≥m (s I h ) . Moreover, the lower bound c min (s 
I h ) and the upper bound

 

ε0 
max (s 

I h ) increase in m linearly at the same rate c̄ (w NI , s 
I h ) . 

roof. For any ε0 ∈ (0 , 1] , there exists m (s I h ) ∈ Z 
+ such

hat 
∑ m 

n =0 
1 
n ! e 

−βd(s I h ,θ I h ,φI h ) (βd(s I h , θ I h , φI h )) n ∈ [1 − ε0 , 1] when 

 ≥ m (s I h ) . Based on Lemma 1 , if m > m (s I h ) , then p UN (s 
I h , a m ) ∈

 p (s I h ) , p (s I h ) + ε0 (1 − p (s I h ))] . Plugging it into (11) , we obtain the

esults. �

Let σm ∈ � denote the AM strategy that chooses to de- 

mphasize the next m ≥ m (s I h ) alerts for all category label s I h ∈ S .

he monotonicity of the Bellman operator Bertsekas and Tsitsik- 

is (1996) leads to the following corollary. 

orollary 1. Consider the scenario where Condition 1 holds and M > 

 (s I h ) . For any ε0 ∈ (0 , 1] and s I h ∈ S , the upper and lower bounds

f the risk u (s I h , σm ) increase in m linearly at the same rate of

¯ (w , s I h ) . 
NI 

10 
emark 4 (Fundamental Limit of ECoC and Risk) . Proposition 3 

nd Corollary 1 show that the maximum length of the de- 

mphasized alerts for any s I h ∈ S should not exceed m (s hm ) to re-

uce the ECoC and the risk of IDoS attacks. 

. Case study 

The following section presents case studies to demonstrate the 

mpact of IDoS attacks on human operators’ alert inspections and 

lert responses, and further illustrate the effectiveness of RADAMS. 

hroughout the section, we adopt the attention model in Section 4 . 

.1. Experiment setup 

We consider an IDoS attack targeting either the Programmable 

ogic Controllers (PLCs) in the physical layer or the data centers 

n the cyber layer of an ICS. We denote these two targets as φP 

nd φC , respectively. They constitute the binary set of attack tar- 

ets � = { φP , φC } defined in Section 3.1 . The SOC of the ICS is in

harge of monitoring, inspecting, and responding to both the cy- 

er and the physical alerts. We consider two system-level met- 

ics defined in Section 3.2 , the source S SO = { s SO,P , s SO,C } and the
riticality S CR = { s CR,L , s CR,H } , i.e., S = S SO × S CR . Let s SO,P and s SO,C 

epresent the source of physical and cyber layers, respectively. We 

ssume that the alert triage process can accurately identify the 

ource of attacks, i.e., Pr (s SO,i | φ j ) = 1 { i = j} , ∀ i, j ∈ { P, C} . Let s CR,L and

 CR,H represent low and high criticality, respectively. We assume 

hat the triage process cannot accurately identify feints as low crit- 

cality and real attacks as high criticality. The revelation kernel 

s separable and takes the form of o(s SO , s CR | θi , φ j ) = Pr (s SO | φ j ) ·
r (s CR | θi ) , s SO ∈ S SO , s CR ∈ S CR , i ∈ { F E, RE} , j ∈ { P, C} . We choose the

alues of o so that the attack is more likely to be feint (resp. real)

hen the criticality level is low (resp. high). 

The inter-arrival time at attack stage k ∈ Z 
0+ follows an ex- 

onential distribution with rate β(θ k , θ k +1 ) parameterized by 

he attack’s type θ k , θ k +1 . Thus, the average inter-arrival time 

(θ k , θ k +1 ) := 1 /β(θ k , θ k +1 ) also depends on the attack’s type at 

he current and the next attack stages as shown in Table 5 . We

hoose the benchmark values based on the literature (e.g., Shah 

t al. (2019a,b) and the references within) and attacks can change 

hese values in different IDoS attacks. 

The average inspection time d̄ in Section 4.3 depends on the 

riticality s k 
CR 

and attack’s type θ k at attack stage k ∈ Z 
0+ , as shown

n Table 6 . We choose the benchmark values of d̄ (s k 
CR 

, θ k ) based on

hah et al. (2019a) , and these values can change for different hu- 

an operators and IDoS attacks. We add a random noise uniformly 

istributed in [ −5 , 5] to the average inspection time to simulate 

he AITN. 

The stage cost c̄ (w 
k , s k 

SO 
) at attack stage k ∈ Z 

0+ in 

ection 5.2 depends on the alert response w 
k ∈ W and the 
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Table 7 

The benchmark values of the stage cost c̄ (w 
k , s k SO ) , ∀ w 

k ∈ W , s k SO ∈ S SO . 

Reward of dismissing feints w FE $80 

Reward of identifying real attacks w RE in physical layer $500 

Reward of identifying real attacks w RE in cyber layer $100 

Cost of incomplete alert response w UN or w NI $300 

Fig. 3. Alert response w 
k ∈ W for the k -th attack whose type is shown in the y - 

axis. The k -th vertical dash line represents the k -th alert’s arrival time t k . 

Fig. 4. The convergence of the estimated ECuC Q h (s I h , a h ) vs. the number of inspec- 

tion stages. 
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ource s k 
SO 

∈ S SO . We determine the benchmark values of c̄ (w 
k , s k 

SO 
)

er alert in Table 7 based on the salary of the SOC analysts and

he estimated loss of the associated attacks. 

.2. Analysis of numerical results 

We plot the dynamics of the operator’s alert responses in Fig. 3 

nder the benchmark experiment setup in Section 7.1 . We use 

reen, purple, orange, and yellow to represent w UN , w NI , w F E , and

 RE , respectively. The heights of squares are also used to distin- 

uish the four categories. 

.2.1. Adaptive learning during the real-Time monitoring and 

nspection 

Based on Algorithm 1 , we illustrate the learning process of the 

stimated ECuC Q 
h (s I h , a h ) for all s I h ∈ S and a h ∈ A at each inspec-

ion stage h ∈ Z 
0+ in Fig. 4 . We choose αh (s I h , a h ) = 

k c 

k TI (s 
I h ) −1+ k c 

as

he learning rate, where k c ∈ (0 , ∞ ) is a constant parameter and

 (s I h ) ∈ Z 
0+ is the number of visits to s I h ∈ S up to stage h ∈ Z 

0+ .
T I 

11 
ere, the AM action a h is implemented randomly at each inspec- 

ion stage h , i.e., ε = 1 . Thus, all four AM actions ( M = 3 ) are ex-

lored equally on average for each s I h ∈ S as shown in Fig. 4 . Since

he number of visits to different category labels depends on the 

ransition probability κAT , the learning stages for four category la- 

els are of different lengths. 

We denote category labels (s SO,P , s CR,L ) , (s SO,P , s CR,H ) , 

s SO,C , s CR,L ) , and (s SO,C , s CR,H ) in blue, red, green, and black,

espectively. To distinguish four AM actions, a deeper color 

epresents a larger m ∈ { 0 , 1 , 2 , 3 } for each category label

 SO,i , s CR, j , i ∈ { P, C} , j ∈ { H, L } . The inset black box magnifies

he selected area. The optimal strategy σ ∗ ∈ � is to take a 3 for 

ll category labels. The risk v ∗(s I h ) = u (s I h , σ ∗) under the optimal

trategy has the approximated values of $1153, $1221, $1154, and 

1358 for the above category labels in blue, red, green, and black, 

espectively. Based on Algorithm 1 , we also simulate the operator’s 

eal-time monitoring and inspection under IDoS attacks when 

M strategy is not applied. The risks v 0 (s I h ) := u (s I h , σ 0 ) under

he default AM strategy σ 0 ∈ � have the approximated values of 

1377, $1527, $1378, and $1620 for the category label (s SO,P , s CR,L ) , 

s SO,P , s CR,H ) , (s SO,C , s CR,L ) , and (s SO,C , s CR,H ) , respectively. These

esults illustrate that the optimal AM strategy σ ∗ ∈ � can signif- 

cantly reduce the risk under IDoS attacks for all category labels 

nd the reduction percentage can be as high as 20% . 

We further investigate the IDoS risk under the optimal AM 

trategy σ ∗ as follows. As illustrated in Fig. 4 , when the critical- 

ty level is high (i.e., the attack is more likely to be real), the at-

acks targeting cyber layers (denoted in black) result in a higher 

isk than the one targeting physical layers (denoted in red). This 

symmetry results from the different rewards of identifying real 

ttacks in physical or cyber layers denoted in Table 7 . Since dis- 

issing feints brings the same reward in physical and cyber layers, 

he attacks targeting physical or cyber layers result in similar IDoS 

isks when the criticality level is low. Within physical or cyber lay- 

rs, high-criticality alerts result in a higher risk than low-criticality 

lerts do. 

The value of Q 
h (s I h , a m ) , m ∈ { 0 , 1 , 2 } , represents the risk when

ADAMS deviates to sub-optimal AM action a m for a single cate- 

ory label s I h ∈ S . As illustrated by the red and black lines in Fig. 4 ,

his single deviation can increase the risk under alerts of high criti- 

ality. However, it hardly increases the risk under alerts of low crit- 

cality as illustrated by the green and blue lines in the inset black 

ox of Fig. 4 . These results illustrate that we can deviate from the 

ptimal AM strategy to sub-optimal ones for some category labels 

ith approximately equivalent risk, which we refer to as the atten- 

ional risk equivalency in Remark 5 . 

emark 5 (Attentional Risk Equivalency) . The above results illus- 

rate that we can contain the IDoS risk by selecting proper sub- 

ptimal strategies. If applying the optimal AM strategy σ ∗ is costly, 

hen RADAMS can choose not to apply AM strategy for (s SO,C , s CR,L )

r (s SO,P , s CR,L ) without significantly increasing the IDoS risks. 

.2.2. Optimal AM strategy and resilience margin under different 

tage costs 

We define resilience margin as the difference of the risks under 

he optimal and the default AM strategies. We investigate how the 

ost of incomplete alert response in Table 7 affects the optimal AM 

trategy and the resilience margin in Fig. 5 . 

As shown in the upper figure, the optimal strategy remains to 

hoose AM action a 3 when the alert is of high criticality. When 

he alert is of low criticality, then as the cost increases, the op- 

imal AM strategy changes sequentially from a 3 , a 2 , and a 1 to a 0 ;

.e., RADAMS gradually decreases m ∈ { 0 , 1 , 2 , 3 } , the number of de-

mphasized alerts. As shown in the lower figure, the resilience 

argin increases monotonously with the cost. The optimal strat- 
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Fig. 5. The optimal AM strategy and the risk vs. the cost of an incomplete alert re- 

sponse under category label ( s SO,P , s CR,L ), ( s SO,P , s CR,H ), ( s SO,C , s CR,L ), and ( s SO,C , s CR,H ) in 

solid red, solid green, dashed yellow, and dashed green, respectively. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 6. IDoS risk vs. ρ under the optimal and the default AM strategies in solid red 

and dashed blue, respectively. The black line represents the attack cost per work 

shift of 24 hours. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 7. IDoS risk vs. ηFE ∈ [0 , 1] under the optimal and the default AM strategies 

in red and blue, respectively. The black line represents the resilience margin. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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gy for alerts of high criticality yields a larger resilience margin 

han the one for low criticality. 

emark 6 (Tradeoff of Monitoring and Inspection) . The results 

how that the optimal strategy strikes a balance between real-time 

onitoring a large number of alerts and inspecting selected alerts 

ith high quality. Moreover, the optimal strategy is resilient for a 

arge range of cost values ([$0,$10 0 0]). If the cost is high, and the

lert is of low (resp. high) criticality, then the optimal strategy en- 

ourages monitoring (resp. inspecting) by choosing a small (resp. 

arge) m . However, when the cost of an incomplete alert response 

s relatively low, the optimal strategy is a 4 for all alerts because the 

igh-quality inspection outweighs the high-quantity monitoring. 

.2.3. Arrival frequency of IDos attacks 

As stated in Section 3.1 , feint attacks with the goal of triggering 

lerts require fewer resources to craft. Thus, we let ˆ c RE = $0.04 and 

ˆ  F E ∈ (0 , ̂  c RE ) denote the cost to generate a real attack and a feint, 

espectively. With ˆ c RE and ˆ c F E , we can compute the attack cost of 

eint and real attacks per work shift of 24 hours. Let ρ be the scal-

ng factor for the arrival frequency, and in Section 7.2.3 , the average 

nter-arrival time is ˆ μ(θ k , θ k +1 ) = ρμ(θ k , θ k +1 ) , ∀ θ k , θ k +1 ∈ �. We

nvestigate how the scale factor ρ ∈ (0 , 2 . 5] affects the IDoS risk

nd the attack cost in Fig. 6 . As ρ decreases, the attacker generates 

eint and real attacks at a higher frequency. Then, the risks under 

oth the optimal and the default strategies increase. However, the 
12 
ptimal AM strategy can reduce the increase rate for a large range 

f ρ ∈ [0 . 5 , 2] . 

emark 7 (Attacker’s Dilemma) . From the attacker’s perspective, 

lthough increasing the attack frequency can induce a high risk to 

he organization, and the attacker can gain from it, the frequency 

ncrease also increases the attack cost exponentially, as shown by 

he dotted black line in Fig. 6 . Thus, the attacker has to strike a

alance between the attack cost and the attack gain (represented 

y the IDoS risk). Moreover, attackers with a limited budget are not 

apable to choose small values of ρ (i.e., high attack frequencies). 

.2.4. Percentage of feint and real attacks 

Consider the case where κAT independently generates feints and 

eal attacks with probability ηF E and ηRE = 1 − ηF E , respectively. 

e consider the case where the attacker has a limited budge 

ˆ  max = $270 per work shift (i.e., 86400 s ) and generates feint and 

eal attacks at the same rate ˆ β , i.e., β(θ k , θ k +1 ) = 
ˆ β, ∀ θ k , θ k +1 ∈ �.

onsider the attack cost in Section 7.2.3 , the attacker has the fol- 

owing budget constraint, i.e., 

6 , 400 · ˆ β · (ηF E ̂  c F E + ηRE ̂  c RE ) ≤ ˆ c max . (12) 

he budget constraint results in the following tradeoff. If the at- 

acker chooses to increase the probability of real attack ηRE , then 

e has to reduce the arrival frequency ˆ β of feint and real attacks. 

e investigate how the probability of feints affects the IDoS risk in 

ig. 7 under the optimal and the default AM strategies in red and 

lue, respectively. The feints are of low and high costs in Fig. 7 a

nd 7 b, respectively. 

As shown in Fig. 7 a, when the feints are of low cost, i.e., ˆ c F E =
ˆ  RE / 10 , generating feints with a higher probability monotonously 

ncreases the IDoS risks for both AM strategies. When the proba- 

ility of feints is higher than 80% , the resilience margin is zero; i.e., 

he optimal and the default AM strategies both induce high risks. 

owever, as the probability of feint decreases, the resilience mar- 

in increases to around $500; i.e., the default strategy can mod- 

rately reduce the risk, but the optimal strategy can excessively 

educe the risk. 

emark 8 (Half-Truth Attack for High-Cost Feints) . As shown in 

ig. 7 b, when the feints are of high cost, i.e., ˆ c F E = ˆ c RE / 2 , then the

ptimal attack strategy is to deceive with half-truth , i.e., generating 

eint and real attacks with approximately equal probability to in- 

uce the maximum IDoS risk. As the probability of feints decreases 

rom ηF E = 1 , the risk increases significantly under the default AM 

trategy but moderately under the optimal one. 

The figures in Fig. 7 show that the optimal attack strategy 

nder the budget constraint (12) needs to adapt to the cost of 

eint generation. Regardless of the attack strategy, the optimal AM 

trategy can reduce the risk and achieve a positive resilient mar- 

in for all category labels (s SO,i , s CR, j ) , i ∈ { P, C} , j ∈ { L, H} . More-
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Fig. 8. Risk vs. attention threshold under the optimal and the default AM strategies 

in red and blue, respectively. The black dotted line represents the resilience margin. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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ver, higher feint generation cost reduces the arrival frequency of 

DoS attacks due to (12) . Thus, comparing to Fig. 7 a, the risk in

ig. 7 b is lower for the same ηF E under the optimal or the default

M strategies, especially when ηF E is close to 1. 

.2.5. The Operator’s attention capacity 

We consider the following attention function f LOE ◦ f SL with a 

onstant attention threshold, i.e., n̄ (y EL , s 
k ) = n̄ 0 , ∀ y EL , s 

k ∈ S . Con-

ider the following trapezoid attention function. If n t ≤ n̄ 0 , the LOE 

 
t = 1 ; i.e., the operator can retain the high LOE when the number

f distractions is less than the attention threshold n̄ 0 . If n 
t > n̄ 0 , 

he LOE ω 
t gradually decreases as n t increases. Then, a larger value 

f n̄ 0 indicates a high attention capacity. We investigate how the 

alue of n̄ 0 affects the risk in Fig. 8 . 

As the operator’s attention capacity increases, the risks under 

he optimal and the default AM strategies decrease for all category 

abels. The resilience margin decreases from around $200 to $50 as 

¯ 0 increases from 0 to 2 and then maintains the value of around 

50. Thus, the optimal strategy suits operators with a large range 

f attention capacity, especially for the ones with limited attention 

apacity. 

. Conclusion 

Attentional human vulnerabilities exploited by attackers lead to 

 new class of proactive attacks called the Informational Denial- 

f-Service (IDoS) attacks. IDoS attacks generate a large number of 

eint attacks on purpose to deplete the limited human attention 

esources and exacerbate the alert fatigue problem. In this work, 

e have formally defined IDoS attacks as a sequence of feint and 

eal attacks of heterogeneous targets, which can be characterized 

y the Markov renewal process. We have abstracted the alert gen- 

ration and technical-level triage processes as a revelation prob- 

bility to establish a stochastic relationship between the IDoS at- 

ack’s hidden types and targets and the associated alert’s observ- 

ble category labels. We have explicitly incorporated human fac- 

ors (e.g., levels of expertise, stress, and efficiency) and empiri- 

al results (e.g., the Yerkes-Dodson law and the sunk cost fallacy) 

o model the operators’ attention dynamics and the processes of 

lert monitoring, inspection, and response in real time. Based on 

he system-scientific human attention and alert response model, 

e have developed a Resilient and Adaptive Data-driven alert and 
13 
ttention Management Strategy (RADAMS) to assist human opera- 

ors in combating IDoS attacks. We have proposed a Reinforcement 

earning (RL)-based algorithm to obtain the optimal assistive strat- 

gy according to the costs of the operator’s alert responses in real 

ime. 

Through theoretical analysis, we have observed the Product 

rinciple of Attention (PPoA), the fundamental limits of Attentional 

eficiency Level (ADL) and risk, and tradeoff among the ADL, 

he reward of alert attention, and the impact of alert inattention. 

hrough the experimental results, we have corroborated the effec- 

iveness, adaptiveness, robustness , and resilience of the proposed as- 

istive strategies as follows. First, the optimal AM strategy outper- 

orms the default strategy and can effectively reduce the IDoS risk 

y as much as 20% . Second, the strategy adapts to different cate- 

ory labels to strike a balance of monitoring and inspections. Third, 

he optimal AM strategy is robust to deviations. We can apply sub- 

ptimal strategies at some category labels without significantly in- 

reasing the IDoS risk. Finally, the optimal AM strategy is resilient 

o a large variations of costs, attack frequencies, and human atten- 

ion capacities. 

The current work uses Industrial Control Systems (ICS) as a 

uintessential example to illustrate the IDoS attacks and the as- 

ociated human-aware alert and attention management strategies. 

ADAMS can also be applied to broad types of scenarios (e.g., 

ealthcare, public transport control, and weather warning) that re- 

uire human operators of limited attention resources to monitor 

nd manage massive alerts in real time with a high level of sit- 

ational awareness. RADAMS adopts the “less is more” principle 

y restricting the amount of information processed by the hu- 

an operators to be within their attention capacities. Such prin- 

iple is transferable to other assailable cognitive resources of hu- 

an operators, including memory, reasoning, and learning capac- 

ty. The future work would incorporate more generalized mod- 

ls (e.g., the spatio-temporal self-excited process) to capture the 

istory-dependent temporal arrival of IDoS attacks, the spatial lo- 

ation of the alerts, their impacts on human attention, and the as- 

ociated human-assistive security technologies. 
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