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ADVERT: An Adaptive and Data-Driven
Attention Enhancement Mechanism for

Phishing Prevention
Linan Huang, Shumeng Jia, Emily Balcetis, and Quanyan Zhu

Abstract—Attacks exploiting the innate and the acquired
vulnerabilities of human users have posed severe threats
to cybersecurity. This work proposes ADVERT, a human-
technical solution that generates adaptive visual aids in
real-time to prevent users from inadvertence and reduce
their susceptibility to phishing attacks. Based on the eye-
tracking data, we extract visual states and attention states
as system-level sufficient statistics to characterize the user’s
visual behaviors and attention status. By adopting a data-
driven approach and two learning feedback of different
time scales, this work lays out a theoretical foundation
to analyze, evaluate, and particularly modify humans’
attention processes while they vet and recognize phishing
emails. We corroborate the effectiveness, efficiency, and
robustness of ADVERT through a case study based on
the data set collected from human subject experiments
conducted at New York University. The results show that
the visual aids can statistically increase the attention level
and improve the accuracy of phishing recognition from
74.6% to a minimum of 86%. The meta-adaptation can
further improve the accuracy to 91.5% (resp. 93.7%) in
less than 3 (resp. 50) tuning stages.

Index Terms—Attention management, phishing mitiga-
tion, reinforcement learning, Bayesian optimization, eye
tracking, human vulnerability, cybersecurity.

I. INTRODUCTION

HUMAN is often considered the weakest link in
cybersecurity. Adversaries can exploit human er-

rors and vulnerabilities to launch deceptive attacks (e.g.,
social engineering and phishing) that lead to information
leakages and data breaches. Moreover, these attacks
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often serve as the initial stages of sophisticated at-
tacks (e.g., supply chain attacks and advanced persistent
threats) that inflict tremendous damage on critical infras-
tructures. We classify human vulnerabilities into innate
vulnerabilities (e.g., bounded attention and rationality)
and acquired vulnerabilities (e.g., lack of security aware-
ness and incentives). Previous works have mitigated the
acquired vulnerabilities through security training [1],
rule enforcement [2], and incentive designs [3], [4], but
these methods are less than sufficient to deal with the
innate ones, especially due to the unpredictability and
heterogeneity of human behaviors. To this end, there is
a need for security-assistive technologies to deter and
adaptively correct the user misbehavior resulting from
the innate vulnerabilities.

In this work, we focus on inattention, one type of
innate human vulnerability, and use phishing email as a
prototypical scenario to explore the users’ visual behav-
iors when they determine whether a sequence of emails is
secure or not. Based on the users’ eye-tracking data and
phishing recognition results, we develop ADVERT1 to
provide a human-centric data-driven attention enhance-
ment mechanism for phishing prevention. In particular,
ADVERT enables an adaptive visual-aid generation to
guide and sustain the users’ attention to the right content
of an email and consequently makes users less likely
to fall victim to phishing. The design of the ADVERT
contains two feedback loops of attention enhancement
and phishing prevention at short and long time scales,
respectively, as shown in Fig. 1.

The bottom part of Fig. 1 in blue illustrates the design
of adaptive visual aids (e.g., highlighting, warnings, and
educational messages) to engage human users in email
vetting. First, as a human user reads emails and judges
whether they are phishing or legitimate, a covert eye-
tracking system can record the user’s eye-gaze locations
and pupil sizes in real-time. Second, based on the eye-
tracking data, we abstract the email’s Areas of Interest
(AoIs), e.g., title, hyperlinks, attachments, etc., and de-
velop a Visual State (VS) transition model to characterize

1ADVERT is an acronym for ADaptive Visual aids for Efficient
Real-time security-assistive Technology.
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Fig. 1: The design diagram of ADVERT. The adaptive learning loops of the attention enhancement mechanism and
the phishing prevention mechanism are highlighted using juxtaposed blue and orange backgrounds, respectively.
Since a user needs to persistently pay attention to an email to make a phishing judgment, the meta-adaptation
feedback in orange updates less frequently than the feedback of attention enhancement in blue.

the eye-gaze dynamics. Third, we develop system-level
attention metrics to evaluate the user’s attention level
based on the VS transition trajectory. Then, we quantize
the attention level to obtain the Attention State (AS) and
develop adaptive learning algorithms to generate visual
aids as feedback of the AS. The visual aids change the
user’s hidden cognitive states and lead to the set of eye-
tracking data with different patterns of VS transition and
AS, which then updates the design of visual aids and
enhances attention iteratively.

The attention enhancement loop serves as a stepping-
stone to achieving the ultimate goal of phishing pre-
vention. The orange background in the top part of Fig.
1 illustrates how we tune the hyperparameters in the
attention enhancement loop to safeguard users from
phishing emails. First, we create a metric to evaluate the
user’s accuracy in phishing recognition under the current
attention enhancement mechanism. Then, we iteratively
revise the hyperparameters to achieve the highest ac-
curacy. Since the accuracy evaluation depends on the
implementation of the entire attention enhancement loop,
the evaluation is costly and time-consuming. Thus, we
leverage Bayesian Optimization (BO) to propose an
efficient meta-level tuning algorithm that improves the
accuracy.

The contributions of this work are threefold. First,
we provide a holistic model of the human-in-the-loop
system for email vetting and phishing recognition. By
abstracting the complex human processes of sensing,

thinking, and acting as a stochastic feedback control
system of various parameters, we establish a system-
level characterization of human attention and security
judgment. Such characterization focuses on the inter-
action between the human and the technical systems,
especially the inputs (e.g., visual aids) and the outputs
(e.g., gaze locations, attention status, and security de-
cisions) of the human system. Moreover, we propose
new attention metrics to quantify the impact of hidden
attention status on observable performance metrics, e.g.,
accuracy of recognizing phishing. These metrics enable
a real-time modification of the human attention process
through the adaptive visual-aid generation.

Second, we provide an adaptive technology called
ADVERT to counteract inattention and improve the hu-
man recognition of phishing attacks. Two algorithms are
developed to illustrate the design, where the individual
adaptation algorithm improves the visual aid design
for each individual user, and the population adaptation
algorithm further learns the optimal visual aid for the
user population. Since the data-driven approach achieves
customized solutions in terms of the users and the
content of the emails, ADVERT can be applied to various
security threat scenarios caused by inattention. Since the
feedback learning framework enables an adaptive and
systematic design of the optimal visual aids, ADVERT
can be applied with insufficient domain knowledge.

Finally, we corroborate the effectiveness, efficiency,
and robustness of ADVERT through a case study based
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on the data set collected from human subject experiments
conducted at New York University [5]. The results show
that the visual aids can sufficiently enhance the attention
level and improve the accuracy of phishing recognition
from 74.6% to a minimum of 86%. When we further tune
the hyperparameters, we manage to improve the accuracy
of phishing recognition from 86.8% to 93.7% in less than
50 tuning stages, while the largest accuracy improvement
happens within 3 tuning stages. The results have also
provided insights and guidance for the ADVERT design;
e.g., the attention threshold for visual-aid selection (resp.
the period length for visual-aid generation) has a small
(resp. periodic) impact on phishing recognition.

A. Notations and Organization of the Paper

Throughout the paper, we use subscripts to index time
and stages. Calligraphic letter S defines a set and |S |
represents its cardinality. The indicator function 1{A}
takes value 1 if condition A is true and value 0 if A is
false. The rest of the paper is organized as follows. The
related works are presented in Section II. We elaborate
on the two feedback loops of Fig. 1 in Section III and
IV, respectively. Section V presents a case study of
ADVERT for email vetting and phishing recognition.
Section VI discusses the limitations, and Section VII
concludes the paper.

II. RELATED WORKS

A. Phishing Attack Detection and Prevention

Phishing is the act of masquerading as a legitimate
entity to serve malware or steal credentials. The authors
in [6] have identified three human vulnerabilities that
make humans the unwitting victims of phishing.
• Lack of knowledge for computer system security;

e.g., www.ebay-members-security.com does not be-
long to www.ebay.com.

• Inadequacy to identify visual deception; e.g., the
phishing email can contain an image of a legitimate
hyperlink, but the image itself serves as a hyperlink
to a malicious site. A human cannot identify the
deception by merely looking at it.

• Lack of attention (e.g., careless users fail to notice
the phishing indicators, including spelling errors
and grammar mistakes) and inattentional blindness
(e.g., users focusing on the main content fail to
perceive unloaded logos in a phishing email [7]).

Many works have attempted to mitigate the above
three human vulnerabilities to prevent phishing attacks.
First, security education and anti-phishing training, e.g.,
role-playing phishing simulation games [8] and fake
phishing attacks [9], have been used to compensate for
the user’s lack of security knowledge and increase users’
security awareness. Second, detection techniques based

on visual similarities [10] and machine learning [11]
have been applied to help users identify visual deception.
Modern web browsers and email clients also provide
security indicators (e.g., the protocol used, the domain
name, and the SSL/TLS certificate) to assist users in
decision-making [12]. Third, passive warnings (i.e., do
not block the content-area) and active warnings (i.e.,
prohibits the user from viewing the content-data) have
been developed empirically to draw users’ attention and
prevent them from falling victim to phishing [11], [13].
Our work lays out a foundation to compensate for the
third human vulnerability of inattention systematically
and quantitatively.

B. Counterdeception Technologies
Adversarial cyber deception has been a long-standing

problem. It is easy for an attacker to deceive yet much
more difficult for regular users to identify the decep-
tion given the universal human vulnerabilities. Previous
works have mainly focused on human solutions (e.g.,
security training [1]) or technical solutions (e.g., defen-
sive deception technologies [14]–[16]), to deter, detect,
and respond to deceptive attacks. This work focuses
on designing a human-technical solution through eye-
tracking data, visual aids, and learning techniques to
counteract adversarial cyber deception.

Biosensors, including eye trackers and electroen-
cephalogram (EEG) devices, provide a window into an
analytical understanding of human perception and cogni-
tion to enhance security and privacy [17]. In particular,
researches have investigated the users’ gaze behaviors
and attention when reading Uniform Resource Locators
(URLs) [18], phishing webs [19], and phishing emails
[5], [20], [21]. These works illustrate the users’ visual
processing of phishing contents [18]–[20], [22] and
the effects of visual aids [21]. The authors in [19]
further establish correlations between eye movements
and phishing identification to estimate the likelihood that
users may fall victim to phishing attacks. Compared to
these works that analyze human perception, we use eye-
tracking data to design visual aids and modify the human
perception process for better security decisions. More-
over, we use biometric data at different granularities.
Compared to previous works that exploit the statistics of
the biometric data (e.g., the number of fixations and gaze
duration distributions), we use the dynamic transitions
of the eye-tracking data to extract attention metrics for
corrective measures in real-time.

C. Human Vulnerability Quantification and Learning
Human plays significant roles in cybersecurity. It is

challenging to model, quantify, and affect human behav-
iors and their mental processes such as reasoning, per-
ception, and cognition. Therefore, various modeling and
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learning approaches are developed to mitigate human
vulnerabilities in cyberspace, as shown in the following
two paragraphs, respectively.

The authors in [23], [24] use Signaling Detection
Theory (SDT) to quantify phishing susceptibility and
prioritize behavioral interventions for reducing phishing
risk, respectively. Adopting SDT, they treat the phishing
risk management as a vigilance task, where individuals
monitor their environment to distinguish signals (i.e.,
phishing emails) from noises (i.e., legitimate emails).
Their approaches investigate phishing on a detailed level
based on varying factors, including task, individual, and
environmental ones. We adopt a system-level character-
ization, where system-scientific tools such as feedback,
Reinforcement Learning (RL), and BO are used to adapt
to these varying factors.

Due to the modeling challenges and the unpredictabil-
ity, RL [25] has been used to characterize and miti-
gate human vulnerabilities, including bounded rational-
ity [26], prospect theory [27], incompliance [3], and
bounded attention [28], [29]. Using RL to detect, evalu-
ate, and compensate for risks induced by human vulnera-
bilities is still in its infancy, but it is a promising direction
as RL provides a quantitative and adaptive solution.

III. ATTENTION ENHANCEMENT MECHANISM

As illustrated by Step 1 of Fig. 1, we consider a group
of M human users who vet a list of N emails and classify
them as phishing or legitimate. As a user m ∈M :=
{1, · · · ,M} reads an email n ∈N := {1, · · · ,N} on the
screen for a duration of T n

m , the eye-tracking device
records the vertical and the horizontal coordinates of
his eye gaze point in real-time. To compress the sensory
outcomes and facilitate RL-driven attention enhancement
solutions, we aggregate potential gaze locations (i.e.,
pixels on the screen) into a finite number of I non-
overlapping Areas of Interest (AoIs) as shown in Fig.
2. We index each potential AoI by i ∈I := {1,2, ..., I}.

Each email does not need to contain all the AoIs,
and the AoI partition remains unknown to the users.
Previous works [18]–[20] have identified the role of AoIs
in helping human users recognize phishing, and different
research goals can lead to different AoI partitions. For
example, the main content AoI (i.e., area 5 in Fig. 2)
can be divided into finer AoIs based on the phishing
indicators such as misspellings, grammar mistakes, and
threatening sentences. We refer to all other areas in
the email (e.g., blank areas) as the uninformative area.
When the user’s eyes move off the screen during the
email vetting process, no coordinates of the gaze location
are available. We refer to these off-screen areas as the
distraction area.

11

12

Fig. 2: A sample email with 12 AoIs. In sequence,
they are the email’s title, the sender’s information, the
receiver’s information, the salutation, the main content,
the URL, the sender’s signature, the organization logo,
the ‘print’ and ‘share’ buttons, the timestamp, the ‘book-
mark’ and ‘forward’ buttons, and the sender’s profile
picture. The AoI partition in red boxes and their index
numbers in black circles are invisible to users.

A. Visual State Transition Model

As illustrated by Step 2 in Fig. 1, we establish the
following transition model based on the AoI to which the
user’s gaze location belongs at different times. We define
S := {si}i∈I ∪{sua,sda} as the set of I+2 Visual States
(VSs), where si represents the i-th AoI; sua represents
the uninformative area; and sda represents the distraction
area. We provide an example transition map of these VSs
in Fig. 3. The links represent the potential shifts of the

Area of Inadvertence

Area of Distraction​

Logo 𝑠!

Title 𝑠"

Main 
content 
𝑠# URL 𝑠$

...

Uninformative 
zone 𝑠%&

Distraction
zone 𝑠'&

Areas of Interest 
(AoIs)

Fig. 3: Transitions among VSs in S . The VS indices
are consistent with the AoI indices in Fig. 2.

gaze locations during the email reading process; e.g., a
user can shift his focus from the title to the main content
or the distraction area. We omit most links for illustration
purposes; e.g., it is also possible for a user to regain
attention to the AoIs from distraction or inadvertence.

We denote st ∈S as the VS of user m ∈M vetting
email n ∈ N at time t ∈ [0,T n

m ]. In this work, we do
not distinguish among human users concerning their at-
tention processes while they read different emails. Then,
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each user’s gaze path during the interval [0,T n
m ] can be

characterized as the same stochastic process [st ]t∈[0,T n
m ]

.
The stochastic transition of the VSs divides the entire
time interval [0,T n

m ] into different transition stages. We
visualize an exemplary VS transition trajectory [st ]t∈[0,T n

m ]

in Fig. 4 under I = 4 AoIs and T n
m = 50 seconds.

As denoted by the colored squares, 40 VSs arrive in
sequence, which results in 40 discrete transition stages.

Time (s)

Transition

   Stage

Generation

    Stage

Fig. 4: An exemplary VS transition trajectory [st ]t∈[0,T n
m ]

.
The x-axis and the y-axis represent T n

m = 50 seconds
and I + 2 = 6 VSs, respectively. We denote VSs sda,
sua, and {si}i∈I in red, black, and blue, respectively.
Each generation stage can contain different numbers of
transition stages.

B. Feedback Visual-Aid Design

Propel visual aids can help guide and sustain the users’
attention. Previous works have proposed different classes
of visual aids to enhance phishing recognition, including
highlights of contents [21], [30], warnings of suspicious
hyperlinks and attachments [13], [31], and anti-phishing
educational messages [32]. These potential classes of
visual aids construct the visual-aid library denoted as
a finite set A .

As illustrated by Step 6 in Fig. 1, different visual
aids can affect the users’ visual behaviors. The influ-
ence, however, can be beneficial (e.g., timely highlights
prevent users from mind-wandering) or detrimental (e.g.,
extensive highlights make humans weary and less at-
tentive to the AoIs). The effectiveness of visual aids
for preventing phishing may not be straightforward,
especially under different environmental (e.g., security
indicator designs) and human factors (e.g., users’ se-
curity knowledge and prior trust) [12]. In this paper,
we focus on adapting visual aids to the human visual
attention. We apply RL to learn the dynamic design of
visual aids based on the real-time evaluation of the user’s
attention status detailed in Section III-C.

The sequence of adaptive visual aids is generated
with a period of length T pl , and we refer to the time
interval between every two visual aids as the generation
stage indexed by k ∈K n

m := {1,2, · · · ,Kn
m}, where Kn

m
is the maximum generation stage during [0,T n

m ]; i.e.,

Kn
mT pl ≤ T n

m and (Kn
m + 1)T pl ≥ T n

m . Then, we denote
ak ∈ A as the visual aid at the k-th generation stage.
Fig. 4 illustrates how visual aids affect the transition
of VSs in Kn

m = 3 generation stages divided by the two
vertical dashed lines. During the second generation stage,
an improper visual aid leads to more frequent transitions
to the distraction area and also a longer sojourn time at
the VS sda. On the contrary, the proper visual aids during
the first and the third generation stages engage the users
and extend their attention spans, i.e., the amount of time
spent on AoIs before a transition to sda or sua.

C. Evaluation of Attention Status
From the VS transition trajectory (e.g., Fig. 4), we aim

to construct the Attention State (AS) used as the feedback
value for the adaptive visual-aid design. We define X
as the set of all possible attention states. Previous works
(e.g., [20], [22]) have defined attention metrics based on
the AoIs, including the proportion of time spent on each
AOI, gaze duration means, fixation count, and average
duration. Compared to these detailed-level metrics ex-
tracted directly from raw eye-gaze data, we propose the
following system-level metric of attention level based on
the VS transition history as will be shown in Section
III-C2. Such system-level metric serves as sufficient
statistics to effectively characterize the attention status.
Moreover, it preserves the users’ privacy because the raw
data of gaze locations can reveal sensitive information
about their biometric identities, including gender, age,
and ethnicity [33], [34].

To this end, we assign scores to each VS in Section
III-C1 to evaluate the user’s attention (e.g., gaze at
AoIs) and inattention (e.g., gaze at uninformative and
distraction areas). The scores can be determined manu-
ally based on the expert recommendation and empirical
studies (e.g., [22]), or based on other biometric data (e.g.,
the pupil sizes in Fig. 8). Moreover, we can apply BO for
further fine-tuning of these scores as shown in Section
IV-B.

1) Concentration Scores and Decay Rates: Both the
gaze location and the gaze duration matter in the iden-
tification of phishing attacks. For example, at the first
glance, users cannot distinguish the spoofed email ad-
dress ‘paypa1@mail.paypaI.com’ from the authentic one
‘paypal@mail.paypal.com’ while a guided close look
reveals that the lower case letter ‘l’ is replaced by the
number ‘1’ and the capital letter ‘I’. Therefore, we
assign a concentration score rco(s) ∈ R to characterize
the sustained attention associated with VS s ∈S . Since
the amount of information that a user can extract from a
VS s∈S is limited, we use an exponential decay rate of
α(s) ∈ R+ to penalize the effect of concentration score
as time elapses. Different VSs can have different con-
centration scores and decay rates. For example, the main



6

content AoI (i.e., area 5 in Fig. 2) usually contains more
information than other AoIs, and an extended attention
span extracts more information (e.g., the substitution of
letter ‘l’ into ‘I’) to identify the phishing email. Thus,
the main content AoI turns to have a high concentration
score and a low decay rate, which is corroborated in
Table I based on the data set collected from human
experiments [5] as will be shown in Section V.

2) Cumulative Attention Level: We construct the met-
ric for attention level illustrated by Step 3 in Fig. 1 as
follows. Let Wk ∈ Z+ be the total number of transition
stages contained in generation stage k ∈K n

m . Then, we
define twk

k ,wk ∈ {1,2, · · · ,Wk}, as the duration of the wk-
th transition stage in the k-th generation stage. Take the
gaze path in Fig. 4 as an example, the first generation
stage contains w1 = 12 transition stages and the first 7
transition stages last for a total of ∑

7
w1=1 tw1

1 = 10 sec-
onds. Based on the sets of scores associated with s∈S ,
we compute the cumulative reward uwk

k (s, t) at time t of
the wk-th transition stage in the k-th generation stage
as uwk

k (s, t) =
∫ t

0 rco(s)e−α(s)τ ·1{s=sτ}dτ,0 ≤ t ≤ twk
k . At

generation stage k, we define w̄t
k as the latest transition

stage before time t, i.e., ∑
w̄t

k
wk=1 twk

k ≤ t and ∑
w̄t

k+1
wk=1 twk

k > t.
Then, we define the user’s Cumulative Attention Level
(CAL) vk(t) over time interval [(k−1)T pl , t] at generation
stage k ∈K n

m as the following cumulative reward

vk(t) := ∑
s∈S

w̄t
k

∑
wk=1

uwk
k (s, t),0≤ t ≤ T pl , (1)

We visualize the CAL of Kn
m = 3 generation stages in

Fig. 5 based on the gaze path in Fig. 4.
Since vk(t) is bounded for all k ∈ K n

m , t ∈ [0,T pl ],
we can quantize it into X finite values to construct the
set X of the attention states illustrated by Step 4 in
Fig. 1. We represent the quantized value of vk(t) ∈R as
vqu

k (t) ∈X for all k ∈K n
m , t ∈ [0,T pl ], and define the

Average Attention Level (AAL) and Quantized Average
Attention Level (QAAL) for each generation stage in
Definition 1.

Definition 1. Let v̄k ∈ R and v̄qu
k ∈ X denote the

user’s Average Attention Level (AAL) and Quantized
Average Attention Level (QAAL) over generation stage
k ∈ K n

m , respectively. They are measured by the im-
provement in CAL and the quantized value of the CAL
improvement per unit time, i.e., v̄k := vk(T pl)/T pl and
v̄qu

k := vqu
k (T pl)/T pl , respectively.

D. Q-Learning via Consolidated Data
In Section III-D, We elaborate on the adaptive learning

block (i.e., Step 5 in Fig. 1). Since the inspection time
of a user reading one email is not sufficiently long, we
consolidate a group of email inspection data to learn the
optimal visual-aid generation policy over a population.
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Fig. 5: The user’s cumulative attention level vk(t −
(k− 1)T pl),k ∈K n

m , t ∈ [(k− 1)T pl ,kT pl ], over Kn
m = 3

generation stages in T n
m = 50 seconds. The horizontal

lines quantize vk(t) into X = 4 values that form the
finite set X = {−30,0,30,60}. The purple star and the
blue square denote the values of v̄k · T pl and v̄qu

k · T
pl ,

respectively, at each generation stage k ∈K n
m .

The QAAL v̄qu
k ∈X represents the attention state at

the generation stage k∈K n
m . Since the goal is to enhance

the user’s attention represented by the CAL, the reward
function R : X ×A 7→R should be monotone concern-
ing the value of v̄qu

k , e.g., R(v̄qu
k ,ak) := v̄qu

k ,∀ak ∈ A .
In this work, we assume that each visual aid ak ∈ A
exerts the same statistical effect on the attention process
regardless of different users and emails. Thus, we can
consolidate the data set of M̄ ∈ {1, · · · ,M} users and
N̄ ∈ {1, · · · ,N} emails2 to learn the optimal visual-
aid generation policy σ ∈ Σ : X 7→ A in a total of
K̄ := ∑

M̄
m=1 ∑

N̄
n=1 Kn

m stages. With a given discounted
factor β ∈ (0,1), the expected long-term objective can
be represented as maxσ∈ΣE[∑K̄

k=1(β )
k ·R(v̄qu

k ,σ(v̄qu
k ))].

The Q-table [Qk(v̄
qu
k ,ak)]v̄qu

k ∈X ,ak∈A represents the
user’s attention pattern at generation stage k ∈ ¯K :=
{1, · · · , K̄}, i.e., the estimated payoff of applying vi-
sual aid ak ∈ A when the attention state is v̄qu

k ∈X .
Let the sequence of learning rate γk(v̄

qu
k ,ak) satisfy

∑
∞
k=0 γk(v̄

qu
k ,ak) = ∞ and ∑

∞
k=0(γk(v̄

qu
k ,ak))

2 < ∞ for all
v̄qu

k ∈ X ,ak ∈ A . Then, we can update the attention
pattern at each generation stage k ∈ ¯K as follows, i.e.,

Qk+1(v̄
qu
k ,σk(v̄

qu
k )) = Qk(v̄

qu
k ,σk(v̄

qu
k ))

+ γk(v̄
qu
k ,σk(v̄

qu
k )) · [R(v̄qu

k ,σk(v̄
qu
k ))

+β max
a∈A

Qk(v̄
qu
k+1,a)−Qk(v̄

qu
k ,σk(v̄

qu
k ))],

(2)

2When sufficiently large data sets are available, we can carefully
choose these M̄ users to share similar attributes (e.g., ages, sexes,
races, etc.) and these N̄ emails to belongs to the same categories (e.g.,
business or personal emails).
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where the visual-aid generation policy σk(v̄
qu
k ) at gener-

ation stage k ∈ ¯K is an εk-greedy policy; i.e., with prob-
ability εk ∈ [0,1], the visual aid ak is selected randomly
from A and with probability 1− εk, the optimal visual
aid a∗k ∈ argmaxa∈A Qk(v̄

qu
k ,a) is implemented. To obtain

a convergent visual-aid generation policy, the value of εk
gradually decreases from 1 to 0.

IV. PHISHING PREVENTION MECHANISM

The attention enhancement mechanism in Section
III tracks the attention process in real-time to enable
the adaptive visual-aid generation. By properly modi-
fying the user’s attention and engaging him in vetting
emails, the attention enhancement mechanism serves as a
stepping-stone to achieving the ultimate goal of phishing
prevention. Empirical evidence and observations have
shown that a high attention level, or mental arousal,
does not necessarily yield good performance [35]. In
the specific task of phishing recognition, recent works
[36], [37] have also identified curvilinear relationships
between phishing recognition accuracy and critical at-
tentional factors, including a participant’s cue utilization,
cognitive reflection, and cognitive load. Thus, besides
attention metrics, e.g., the AAL, we need to design anti-
phishing metrics to measure the users’ performance of
phishing recognition as will be shown in Section IV-A.

In Section IV-B, we develop an efficient meta-level
algorithm to tune the hyperparameters (e.g., the period
length T pl of the visual-aid generation, the number of
attention states X , the attention scores rco(s),α(s),∀s ∈
S , etc.) in the attention enhancement mechanism. We
denote these hyperparameters as one d-dimensional vari-
able θ = [T pl ,X , [rco(s)]s∈S , [α(s)]s∈S ]∈Rd , where d =
2+ 2|S |. Let the i-th element θ i be upper and lower
bounded by θ̄ i and θ

i, respectively. Thus, θ ∈ Θd :=
{[θ i]i∈{1,··· ,d} ∈ Rd |θ i ≤ θ i ≤ θ̄ i}.

A. Metrics for Phishing Recognition

As illustrated by Step 7 in Fig. 1, we provide a metric
to evaluate the outcome of the users’ phishing identifica-
tion under a given hyperparameter θ ∈Θd . After vetting
email n∈ {1, · · · , N̄}, the user m∈ {1, · · · ,M̄} judges the
email to be phishing or legitimate. The binary variable
zn

m(θ) ∈ {zco,zwr} represents whether the judgment is
correct (denoted by zco) or not (denoted by zwr). We
can reshape the two-dimension index (m,n) as a one-
dimension index n̂ and rewrite zn

m(θ) as zn̂(θ). Once
these users have judged in total of Nbo emails, we define
the following metric cac ∈C : Θd 7→ [0,1] to evaluate the
accuracy of phishing recognition, i.e.,

cac(θ) :=
1

Nbo

Nbo

∑
n̂=1
|1{zn̂(θ)=zco}|,∀θ ∈Θ

d . (3)

The goal is to find the optimal hyperparameter θ ∗ ∈
Θd to maximize the accuracy of phishing identification,
i.e., θ ∗ ∈ argmax

θ∈Θd cac(θ). However, we cannot know
the value of cac(θ) for a θ ∈Θd a priori until we imple-
ment this hyperparameter θ in the attention enhancement
mechanism. The implemented hyperparameter affects the
adaptive visual-aid generation that changes the user’s at-
tention and the anti-phishing performance metric cac(θ).
Since the experimental evaluation at a given θ ∈ Θd

is time-consuming, we present an algorithm in Section
IV-B to determine how to choose and update the hyper-
parameter to maximize the detection accuracy.

B. Efficient Hyperparameter Tuning

We illustrate the meta-adaptation (i.e., Step 8 in Fig.
1) in Section IV-B. As illustrated in Fig. 6, we refer to
the duration of every Nbo security decisions as a tuning
stage. Consider a time and budget limit that restricts us
to conduct L tuning stages in total. We denote θl as
the hyperparameter at the l-th tuning stage where l ∈
L := {1,2, · · · ,L}. Since each user’s email inspection
time is different, each tuning stage can contain different
numbers of generation stages.

𝑁!"

...

...
Correctness 
of judgement

Email types

1
...

𝑧!" 𝑧#$

𝜃% ∈ Θ 𝜃& ∈ Θ
Tuning 
Stages

Generation 
stages

Generation 
stages

... ...

𝑁!"

Fig. 6: Hyperparameter tuning based on the user’s phish-
ing recognition. Each tuning stage consists of Nbo emails
and contains several generation stages.

To find the optimal hyperparameter θ ∗ ∈ Θd within
L tuning stages is challenging. The empirical methods
(e.g., a naive grid search or a random search over
Θd ⊂ Rd) become inefficient when d > 1. BO [38]
provides a systematic way to update the hyperparam-
eter and balance between exploration and exploitation.
BO consists of a Bayesian statistical model of the
objective function cac ∈ C and an acquisition function
for deciding the hyperparameter to implement at the
next tuning stage. The statistical model of cac ∈ C
is a Gaussian process N (µ0,Σ0) with a mean func-
tion µ0(θ) = µ̄0 and covariance function or kernel
Σ0(θ , θ̄) = λ 0 · exp(∑d

i=1 λ i(θ i− θ̄ i)2) for all θ , θ̄ ∈Θd ,
where µ̄0, λ 0 and λ i, i ∈ {1,2, · · · ,d}, are parameters
of the kernel. The kernel Σ0 is required to be positive
semi-definite and has the property that the points closer
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in the input space are more strongly correlated. For any
l ∈L , we define three shorthand notations µ0(θ1:l) :=
[µ0(θ1), · · · ,µ0(θl)], cac(θ1:l) := [cac(θ1), · · · ,cac(θl)],
and

Σ
0(θ1:l ,θ1:l) :=

 Σ0(θ1,θ1) · · · Σ0(θ1,θl)
...

. . .
...

Σ0(θl ,θ1) · · · Σ0(θl ,θl)

 .

Then, the evaluation vector of l ∈L elements is assumed
to be multivariate Gaussian distributed, i.e., cac(θ1:l) ∼
N (µ0(θ1:l),Σ

0(θ1:l ,θ1:l)). Conditioned on the values of
θ1:l , we can infer the value of cac(θ) at any other θ ∈
Θ\{θl′}l′∈{1,··· ,l} by Bayesian rule, i.e.,

cac(θ)|cac(θ1:l)∼N (µn(θ),(Σn(θ))2), (4)

where µn(θ) = Σ0(θ ,θ1:l) · Σ0(θ1:l ,θ1:l)
−1 · (cac(θ1:l)−

µ0(θ1:l))+µ0(θ) and (Σn(θ))2 = Σ0(θ ,θ)−Σ0(θ ,θ1:l) ·
Σ0(θ ,θ1:l)

−1 ·Σ0(θ1:l ,θ).
We adopt expected improvement as the acquisition

function. Define c∗l := maxl′∈{1,··· ,l} cac(θl′) as the opti-
mal evaluation among the first l evaluations and a short-
hand notation (cac(θ)− c∗l )

+ := max{cac(θ)− c∗l ,0}.
For any l ∈ L , we define El [·] := E[·|cac(θ1:l)] as
the expectation taken under the posterior distribution
of cac(θ) conditioned on the values of l evaluations
cac(θ1:l). Then, the expected improvement is EIl(θ) :=
El [(cac(θ)− c∗l )

+]. The hyperparameter at the next tun-
ing stage is chosen to maximize the expected improve-
ment at the current stage, i.e,

θl+1 ∈ arg max
θ∈Θd

EIl(θ). (5)

The expected improvement can be evaluated in a closed
form, and (5) can be computed inexpensively by gradient
methods [38].

At the first L0 ∈ {1,2, · · · ,L} tuning stages, we choose
the hyperparameter θl , l ∈ {1,2, · · · ,L0}, uniformly from
Θd . We can use the evaluation results cac(θl), l ∈
{1,2, · · · ,L0}, to determine the parameters µ̄0,λ 0, and
λ i, i∈ {1,2, · · · ,d}, by Maximum Likelihood Estimation
(MLE); i.e., we determine the values of these parameters
so that they maximize the likelihood of observing the
vector [cac(θ1:L0)]. For the remaining L − L0 tuning
stages, we choose θl , l ∈ {L0,L0+1, · · · ,L}, in sequence
as summarized in Algorithm 1.

V. CASE STUDY

In this case study, we verify the effectiveness of
ADVERT via a data set collected from human subject
experiments conducted at New York University [5]. We
elaborate on the experiment setup and the data process-
ing procedure in Section V-A. Based on the features
obtained from the data set, we generate synthetic data
under adaptive visual aids to demonstrate the proposed

Algorithm 1: Hyperparameter tuning via BO.

1 Implement the initial L0 evaluations
cac(θl), l ∈ {1,2, · · · ,L0};

2 Place a Gaussian process prior on cac ∈ C , i.e.,
cac(θ1:L0)∼N (µ0(θ1:L0),Σ0(θ1:L0 ,θ1:L0));

3 for l← L0 to L do
4 Obtain the posterior distribution of cac(θ) in

(4) based on the existing l evaluations;
5 Compute EIl(θ),∀θ ∈Θd , based on the

posterior distribution;
6 Determine θl+1 via (5);
7 Implement θl+1 at the next tuning stage

l +1 to evaluate cac(θl+1);
8 end
9 Return the maximized value of all observed

samples, i.e., θ ∗ ∈ argmaxθl∈{θ1,··· ,θL} cac(θl);

attention enhancement mechanism and the phishing pre-
vention mechanism in Section V-B and V-C, respectively.

A. Experiment Setting and Data Processing

The data set involves M = 160 undergraduate students
(nWhite = 27, nBlack = 19, nAsian = 64, nHispanic/Latinx = 17,
nother = 33) who are asked to vet N = 12 different emails
(e.g., the email of NYU friends network in Fig. 2)
separately and then give a rating of how likely they
would take actions solicited in the emails (e.g., maintain
membership in Fig. 2). When presented to different
participants, each email is described as either posing a
cyber threat or risk-free legitimate opportunities to inves-
tigate how the above description affects the participants’
phishing recognition.

While the participants vet the emails, the Tobii Pro
T60XL eye-tracking monitor records their eye locations
on a 1920×1200 resolution screen and the current pupil
diameters of both eyes with a sampling rate of 60Hz.
Fig. 7 illustrates the time-expanded eye-gaze trajectory
of a participant vetting the sample email in Fig. 2. The
z-coordinate of a 3D point (x,y,z) represents the time
when the participant gazes at the pixel (x,y) in the
email area. The participant’s eye gaze locations move
progressively from the points in warmer color to the ones
in cooler color. Fig. 7 illustrates the zigzag pattern of
the participant’s eye-gaze trajectory; i.e., the participant
reads emails from left to right and top to bottom. The
participant starts with the title, spends the majority of
time on the main content, and glances at other AoIs (e.g.,
the links and the signatures). There is also a small chance
of revisiting the email content and looking outside the
email area.

Fig. 8 illustrates the participant’s pupil sizes of left and
right eyes in red and blue, respectively, concerning the
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Fig. 7: A time-expanded plot of a typical eye-gaze
trajectory with a sampling rate of 60 Hz. The x-y plane
(in the unit of pixels) represents the email area. The
z-axis represents the time (in the unit of seconds) of
the participant’s eye-gaze trajectory. The warmer color
indicates a smaller value on the z-axis (i.e., an earlier
gaze of the point).

same trial of the data set to generate Fig. 7. At different
times, the average of the pupil diameters (resp. gaze
locations) of the right and left eyes represent the pupil
size (resp. gaze location). Following Section III-A, we
obtain the 15 VSs illustrated by the grey squares in Fig.
8 based on the gaze locations of the email pixels in Fig.
7. Since the covert eye-tracking system does not require
head-mounted equipment or chinrests, the tracking can
occur without the participants’ awareness. We refer the
reader to the supplement materials of [5] for the survey
data and the details of the experimental procedure3.

1) Estimate Concentration Scores and Decay Rates
based on Pupil Sizes: Empirical works in [39], [40]
have demonstrated that pupils dilate as a consequence of
attentional efforts. Building on the findings, we assume
that the average pupil diameters of both eyes at time t
of the generation stage k ∈K n

m is approximately propor-
tional to the participant’s attention level dvk

dt (t) at time t.
We obtain the benchmark values of rco(s),α(s),∀s∈S ,
in Table I by minimizing the Mean Square Error (MSE)
between the CAL in Section III-C and the cumulative
pupil size through global optimization methods such as
Simulated Annealing (SA) [41]. The results in Table I
corroborate that the main content AoI s5 ∈ S has the

3The processed data used in this manuscript, including the temporal
transitions of AoIs and the pupil sizes, is available at https://osf.io/
4y32d/. The raw eye-tracking data in the format of videos are available
upon request.

AoIs Meaning rco(si) α(si)

s1 Title 9.48 2.17
s2 Sender 3.55 4.04
s3 Receiver 7.62 0.22
s4 Salutation 13.76 0.57
s5 Main Content 21.05 0.16
s6 URL 7.84 10.90
s7 Signature 6.47 5.46
s8 Logo 6.44 5.16
s9 Print& Share 4.86 13.91
s10 Time 3.81 6.68
s11 Bookmark& Forward 7.34 2.19
s12 Profile 7.26 2.02
s13 Attachment 4.74 3.46

TABLE I: The concentration score rco(si) and decay rate
α(si) for I = 13 AoIs.

highest concentration score and the lowest decay rate.
2) Synthetic VS Trajectory Generation under Visual

Aids: In the case study, we consider I = 13 AoIs. The
sample email in Fig. 2 illustrates the first 12 AoIs. The
13-th AoI is on the email attachment. Under visual aid
a ∈A , we denote Pi, j(a) as the probability of attention
arriving at VS s j ∈ S from VS si ∈ S and φ i(a) as
the average sojourn time at VS si ∈ S . We specify
the participants’ VS transition trajectory [st ]t∈[0,T n

m ]
,∀m∈

M ,n ∈ N , as a semi-Markov transition process with
probability transition matrix P(a) := [Pi, j(a)]si,s j∈S and
exponential sojourn distribution of the scale parameter
φ(a) := [φ i(a)]si∈S ,∀a ∈A .

In particular, we consider a binary set of visual aid
A = {aN ,aY}, where aN represents the benchmark case
without visual aids and aY represents the visual aid
of highlighting the entire email contents. Based on the
VS transition trajectory from the data set, we obtain
the probability transition matrix P(aN) and the sojourn
distribution parameter φ(aN) under the benchmark case
aN . The transition matrix P(aY ) and sojourn distribution
φ(aY ) under visual aid aY modify P(aN) and φ(aN)
based on the following observations. On the one hand,
the visual aid aY decreases Pi,ua(aY ),Pi,da(aY ),∀si ∈S ;
i.e., the participants will be guided by the visual aid
to pay more frequent attention to the AoIs than the
uninformative and distraction areas. On the other hand,
the visual aid aY decreases φ 5(aY ); i.e., the persistent
highlighting makes participants weary and reduces their
attention spans on the email’s main content.

We illustrate P(aN) and P(aY ) using heat maps in Fig.
9a and Fig. 9b, respectively. In Fig. 10, we illustrate
an exemplary transition trajectory of I + 2 VSs under
aN and aY in blue and red, respectively. The trajectory
corroborates that participants under visual aid aY incline
to pay attention to AoIs yet have less sustained attention.
Accurately quantifying the impact of the visual aid
on the VS transition depends on many factors [42],
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Fig. 8: Gaze locations and pupil sizes collected in the trial of the data set illustrated in Fig. 7. The grey squares
illustrate the transition of 15 VSs. The red and blue lines represent the variations of the participant’s left and right
pupil sizes, respectively, as he reads the email. The x-axis represents the time (in the unit of seconds) during the
email inspection.

including the graphic design, the human subject, and
the cognitive task. In Section V-A2, we provide one
potential estimation of the impact based on the human
experiments to illustrate the implementation procedure
and the effectiveness of the ADVERT framework.
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(a) Under visual aid aN .
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(b) Under visual aid aY .

Fig. 9: Heat maps of the transition matrices P(a),a∈A .
The row and the column represent the source and the
destination of the I+2 VSs, respectively. Under aY , the
participants tend to pay attention to AoIs rather than the
uninformative and distraction areas.

B. Validation of Attention Enhancement Mechanism

Based on the benchmark attention score in Section
V-A1, Fig. 11 illustrates the CAL of the VS transition
trajectory shown in Fig. 10. We consider X = 2 attention
states X = {xH ,xL} with the attentive state xH and
the inattentive state xL. Define Xat ∈ R as the attention
threshold. If the AAL at generation stage k ∈ K n

m is
higher (resp. lower) than the attention threshold, i.e.,
v̄k ≥ Xat (resp. v̄k ≤ Xat ), then the attention state xk ∈X
at generation k is the attentive state xH (resp. inattentive
state xL). Fig. 12 further illustrates the impact of visual
aids aN and aY on the AAL in red and blue, respectively.
The figure demonstrates that aY can increase the mean
of AAL yet increase its variance.

In Algorithm 2, we present the Q-learning process
for participant m ∈M who reads email n ∈N for T n

m

Time (s)

V
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u
a
l 
S
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s

Fig. 10: The VS transition trajectory when the visual
aids in four generation stages are aY ,aN ,aN , and aY ,
respectively. The inspection lasts for 12 seconds and the
period length T pl is 3 seconds.

seconds. Define ηk(x,a) as the total number of visits
to attention state x ∈ X and visual aid a ∈ A up
to generation stage k. Then, we choose the learning
rate γk(xk,ak) =

η0

ηk(x,a)−1+η0 for all xk ∈X ,ak ∈ A to
guarantee the asymptotic convergence, where η0 ∈ (0,∞)
is a constant parameter.

Based on the benchmark data set of M = 160 par-
ticipants who inspect N = 12 emails in Section V-A,
the inspection time T n

m ,∀m ∈M,n ∈N , follows a Burr
distribution; i.e., its cumulative distribution function is
described by FBurr(t | ρ1,ρ2,ρ3) = 1− 1

(1+(t/ρ1)
ρ2)

ρ3 with

the scale parameter ρ1 = 11.7, and the shape parameters
ρ2 = 62.5,ρ3 = 0.04. The average inspection time of
M×N samples is 18.7 seconds. During T n

m seconds of
the email vetting process, the eye-tracking device records
the participant’s gaze locations, which leads to the VS
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Fig. 11: The CAL of the VS transition trajectory shown
in Fig. 10. The horizontal dotted line represents the at-
tention threshold Xat . The visual aids in four generation
stages are aY ,aN ,aN , and aY , respectively, and the result-
ing attention states are xL,xH ,xH , and xL, respectively.

Fig. 12: The normalized histogram of average attention
level under visual aids aN and aY in red and blue,
respectively.

transition trajectory. In Algorithm 2, we simulate the
human email-reading process through the synthetic VS
transition trajectory generated by the sufficient statistics
P(at) and φ(at). Every T pl seconds, ADVERT updates
the Q-matrix and the visual aid based on (2).

Following Section III-D, we develop Algorithm 3
to illustrate the entire attention enhancement loop that
involves the consolidation of the data set from M̄ ∈
{1, · · · ,M} participants and N̄ ∈ {1, · · · ,N} emails. After
the participant m∈ {1, · · · ,M̄} finishes reading the email
n ∈ {1, · · · , N̄}, Algorithm 2 returns the Q-matrix and
the attention state at the final generation stage Kn

m.
These results then serve as the inputs for the next email
inspection until Nbo emails have been inspected.

Based on Algorithm 3, we plot the entire Q-learning
updates with Nbo = 100 emails in Fig. 13 that contains
a total of 609 generations stages. The learning results
show that the visual aid aY outweighs aN for both
attention states and should be persistently applied under
the current setting.

Algorithm 2: [Individual Adaptation] Optimal
visual-aid learning and attention enhancement for
participant m ∈M vetting email n ∈N .

10 Input: Initial Q-matrix [Q0(x,a)]x∈X ,a∈A , initial
attention state x0 ∈X , the number of visits
ηk(x,a), and the hyperparameter θ = [Xat ,T pl ];

11 Initialize time t = 0 and the inspection length T n
m

based on the Burr distribution FBurr;
12 Set the initial visual aid a0 ∈A based on the

initial Q-matrix Q0, the initial attention state x0
and the εk-greedy policy in Section III-D;

13 while t < T n
m do

14 Obtain VS transition st ∈S based on P(at)
and φ(at) (i.e., use synthetic visual data to
achieve Step 2 in Fig. 1);

15 Evaluate the CAL vk(t) based on rco,α as
shown by Step 3 in Fig. 1;

16 if t = kT pl ,k ∈ Z+ then
17 if v̄k ≥ Xat (shown by Step 4 in Fig. 1)

then attentive attention state xk = xH

else inattentive attention state xk = xL;
18 Update Q-matrix Qk based on (2) as

shown by Step 5 in Fig. 1;
19 Implement the visual aid ak ∈A based

on the current Q-matrix Qk and the
εk-greedy policy (i.e., Step 6 in Fig. 1);

20 if xk = x,ak = a then update the number
of visits ηk+1(x,a)← ηk(x,a)+1;

21 Output the number of updates Kn
m← k;

22 end
23 end
24 Implement the pre-trained neural network in

Section V-C1 to estimate whether participant m
has made the correct judgment concerning email
n, i.e., zn

m(θ) ∈ {zco,zwr} (i.e., use synthetic
decision data to achieve Step 7 in Fig. 1);

25 Return: Q-matrix [QKn
m(x,a)]x∈X ,a∈A , final

attention state xKn
m ∈X , number of visits

ηKn
m(x,a), and zn

m(θ);

C. Validation of Phishing Prevention Mechanism

After we obtain a participant’s synthetic response
(characterized by his VS transition trajectory) under
the adaptive visual aids, we apply a pre-trained neural
network to estimate whether the participant has made a
correct judgment as shown in line 24 of Algorithm 2. In
Section V-C1, we elaborate on the training process of the
neural network based on the data set used in Section V-A.
We apply BO in Algorithm 1 to evaluate the accuracy
metric cac ∈ C , as illustrated by Step 8 in Fig. 1. In
Section V-C2, we show the results.
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Algorithm 3: [Population Adaptation] Optimal
visual-aid learning through a consolidated data
set of M̄ ∈ {1, · · · ,M} participants vetting N̄ ∈
{1, · · · ,N} emails.

26 Input: Hyperparameter θ = [Xat ,T pl ];
27 Initialize Q-matrix [Q0(x,a)]x∈X ,a∈A as a zero

matrix, η0(x,a) = 0,∀x ∈X ,a ∈A , and initial
attention state x0 ∈X ;

28 for participant m ∈ {1, · · · ,M̄} vetting email
n ∈ {1, · · · , N̄} do

29 Implement Algorithm 2 with the inputs of
[Q0(x,a)]x∈X ,a∈A , x0 ∈X , and η0(x,a);

30 Save the outputs of [QKn
m(x,a)]x∈X ,a∈A ,

xKn
m ∈X , ηKn

m(x,a), and zn
m(θ);

31 Cascade the outputs to the inputs of the next
loop: Q0← QKn

m , x0← xKn
m , and η0← ηKn

m ;
32 end
33 Return: the accuracy metric cac(θ) based on (3);
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Fig. 13: The Q-learning updates under hyperparameters
Xat = 5.56 and T pl = 3 seconds. The red and blue lines
represent the Q-matrix values under visual aids aN and
aY , respectively. The solid and dashed lines represent
the Q-matrix values under attention states xL and xH ,
respectively.

1) Neural Network: In this case study, we regard
the majority choice of the M = 160 participants as
the email’s true label. Without visual aids, these par-
ticipants achieve an accuracy of 74.6% on average.
Under the assumption that the hyperparameters affect
the participants’ phishing recognition only through their
VS transitions, we construct a neural network with an
LSTM layer, a dropout layer, and a fully-connected layer
to establish the relationship from the sequence of VS
transition trajectory [st ]t∈T n

m to the label of judgment
correctness zn

m ∈ {zco,zwr}. We split the entire trials of
the eye-tracking data set into 1113 training data and

128 test data4. The trained neural network achieves a
sensitivity of 0.89, a specificity of 0.21, an f1-score of
0.73, and an accuracy of 0.61.

2) Bayesian Optimization Results: As explained in
Section IV, for each different application scenario, a
meta optimization of the accuracy metric cac(Xat ,T pl)
is required to find the optimal attention threshold Xat

and the period length T pl for visual-aid generation. To
obtain the value of cac(Xat ,T pl) under different values of
the hyperparameter θ = [Xat ,T pl ], we need to implement
the hyperparameter in Algorithm 3 and repeat for nrp

times to reduce the noise. Thus, the evaluation is costly,
and BO in Algorithm 1 is a favorable method to achieve
the meta optimization. We illustrate the BO for L = 60
tuning stages in Fig. 14. Each blue point represents the
average value of cac(Xat ,T pl) over nrp = 20 repeated
samples under the hyperparameter θ = [Xat ,T pl ]. Based
on the estimated Gaussian model in red, we observe that
the attention threshold Xat ∈ [1,33] has a small impact
on phishing recognition while the period length T pl ∈
[60,600] has a periodic impact on phishing recognition.
The optimal hyperparameters for phishing prevention are
Xat,∗ = 8.8347 and T pl,∗ = 6.63 seconds.

Fig. 14: The estimated Gaussian model of the ob-
jective function cac(θ) concerning the hyperparameter
θ = [Xat ,T pl ] in red with its contour on the bottom.
The blue points represent the sample values of 60 tuning
stages.

We illustrate the temporal procedure of BO for L = 60
tuning stages in Fig. 15. As we increase the number of
tuning stages to obtain more samples, the maximized

4There are 1920 trials in total, and we carefully exclude the
remaining 679 trials for two reasons. First, Tobii Pro T60XL records
the participants’ eye locations with a validity level ranging from 0 (high
confidence) to 4 (eye not found). We exclude a trial if more than 70%
of its vetting time has a validity value of 4. Second, we exclude trials
of irresponsible participants who spend the majority (i.e., over 70%)
of time in uninformative areas.
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value of the accuracy metric cac ∈ C monotonously
increases as shown in red. The blue line and its error
bar represent the mean and variances of the sample
values at each tuning stage, respectively. Throughout the
L = 60 tuning stages, the variance remains small, which
indicates that ADVERT is robust to the noise of human
attention and decision processes.

Compared to the benchmark accuracy of 74.6% with-
out visual aids, participants with visual aid achieve the
accuracy of a minimum of 86% under all 60 tuning
stages of different hyperparameters. The above accuracy
improvement corroborates that the ADVERT’s attention
enhancement mechanism highlighted by the blue back-
ground in Fig. 1 effectively serves as a stepping stone
to facilitate phishing recognition. The results shown in
the blue line further corroborate the efficiency of the
ADVERT’s phishing prevention mechanism highlighted
by the orange background in Fig. 1; i.e., in less than 50
tuning stages, we manage to improve the accuracy of
phishing recognition from 86.8% to 93.7%. Besides, the
largest accuracy improvement (from 88.7% to 91.4%)
happens within the first 3 tuning stages. Thus, if we
have to reduce the number of tuning stages due to
budget limits, ADVERT can still achieve a sufficient
improvement in the accuracy of recognizing phishing.

0 10 20 30 40 50 60

Tuning Stage

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94
Value of Current Sample

Maximized Value of Observed Samples

Fig. 15: Accuracy metric cac(Xat ,T pl) at L = 60 tuning
stages. The blue line and its error bar represent the mean
value of the samples and their variances, respectively.
The red line represents the maximized value of the
observed samples up to the current tuning stage.

VI. LIMITATIONS AND MITIGATION

The limitations of the data set and the data processing
process are as follows. First, the demographic of the
experimental subjects is limited to 160 undergraduate
students. In the current work, we handle this issue

by diversifying the participants (concerning their races,
genders, and ages) and adopting the feedback loop of
Bayesian optimization (that adapts to unconsidered user
groups). To enable a more comprehensive study of the
human behaviors that cover different user groups, we
can recruit more diversified participants through crowd-
sourcing websites, including Amazon Mechanical Turk
(MTurk). Second, the dataset contains 12 unique emails.
They are certainly not meant to be comprehensive to
cover all phishing scenarios. However, they are sufficient
for this work, which focuses on the system-level control
of human attention processes to improve the accuracy
of phishing recognition. For each email, we conduct the
vetting processes of M = 160 humans, which result in
the distinct 1241 trials of eye-tracking trajectories. These
eye-tracking trials are sufficient to reveal human atten-
tion patterns. Moreover, as a data-driven and system-
level framework, ADVERT can adapt and generalize to
unseen sets of emails. Third, we exclude approximately
one-third of the eye-tracking data due to their low
validity scores that arise from the limitation of the eye-
tracking device and the imprudence of the participants,
as stated in the footnote of Section V-C1. The reduced
sample size may lead to overfitting issues. We can over-
come it by improving the eye-tracking device, revising
the experiment setting, and recruiting a sufficient number
of participants.

VII. CONCLUSIONS AND FUTURE WORK

As a prototypical innate human vulnerability, lack of
attention is one of the main challenges to protecting users
from phishing attacks. To address the challenge, we have
developed a human-technical solution called ADVERT
to guide the users’ attention to the right contents of
the email and consequently improve their accuracy of
phishing recognition.

To enable a real-time evaluation of the user’s visual
behaviors, we have built AoIs from the entire email
area and a transition model to compress the eye-tracking
data into a representative VS transition trajectory. Af-
ter assigning the concentration rewards and decay pa-
rameters to evaluate the user’s CAL, we have defined
privacy-preserving and light-weight metrics, i.e., AAL
and QAAL, to represent the user’s attention state at each
time of visual-aid generation. These metrics enable us to
apply model-free RL methods and generate the optimal
visual aid for real-time attention enhancement. Using the
above attention enhancement mechanism as a stepping-
stone, we have designed an efficient algorithm to tune the
hyperparameters related to the visual aid generation pat-
tern and the attention evaluation parameters. The update
of these hyperparameters at each tuning stage revises the
visual aids, affects the users’ attention, and consequently
improves the accuracy of phishing recognition.
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We have corroborated the effectiveness of ADVERT
through a case study based on the data set collected
from human subject experiments conducted at New
York University. By abstracting the transition matrix
and sojourn distribution from the data set as sufficient
statistics of the stochastic VS transition, we have gener-
ated synthetic VS transition to simulate the participant’s
visual behaviors under visual aids. Meanwhile, we have
trained a neural network to estimate the correctness of
the participant’s phishing recognition based on the VS
transition trajectory. Finally, we have developed two
algorithms to design visual aids that adapt to each
individual and the population, respectively. For the at-
tention enhancement mechanism, the results have shown
that the visual aids can statistically increase the AAL
and improve the accuracy of phishing recognition from
74.6% to a minimum of 86%. The meta-adaptation has
been shown to be effective (e.g., improve the accuracy
of phishing recognition from 86.8% to 93.7% in less
than 50 tuning stages), efficient (e.g., the largest accuracy
improvement happens within 3 tuning stages), and robust
(e.g., the variances of L= 60 samples remain small). The
results have also provided insights and guidance for the
ADVERT design; e.g., the attention threshold (resp. the
period length) has a small (resp. periodic) impact on
phishing recognition.

The future work would focus on designing a more
sophisticated visual support system that can determine
when and how to generate visual aids in lieu of a
periodic generation. We may also embed ADVERT into
VR/AR technologies to mitigate human vulnerabilities
under simulated deception scenarios, where the simu-
lated environment can be easily repeated or changed.
Finally, there would be an opportunity to incorporate
factors such as pressure and incentives into the design
by limiting the participant’s vetting time and providing
rewards for accurately identifying phishing, respectively.
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