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Abstract

The Refinement Calculus of Reactive Systems (RCRS) is a compositional formal framework for mod-
eling and reasoning about reactive systems. RCRS provides a language which can describe atomic
components as symbolic transition systems or QLTL formulas, and composite components formed using
three primitive composition operators: serial, parallel, and feedback. The semantics of the language is
given in terms of monotonic property transformers, an extension of monotonic predicate transformers to
reactive systems. RCRS can specify both safety and liveness properties. It can also model input-output
systems which are both non-deterministic and non-input-receptive (i.e., which may reject some inputs at
some points in time), and can thus be seen as a behavioral type system. RCRS provides a set of tech-
niques for symbolic computer-aided reasoning, including compositional static analysis and verification.
RCRS comes with a publicly available implementation which includes a complete formalization of the
RCRS theory in the Isabelle proof assistant.
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1 Introduction

This paper presents the Refinement Calculus of Reactive Systems (RCRS), a comprehensive framework for
compositional modeling of and reasoning about reactive systems. RCRS originates from the precursor theory
of synchronous relational interfaces [85, 86], and builds upon the classic refinement calculus [12]. A number of
publications on RCRS exist [72, 34, 73, 69, 36, 37]. This paper collects some of these results and extends them
in significant ways. The novel contributions of this paper and relation to our previous work are presented in
§1.1.

The motivation for RCRS stems from the need for a compositional treatment of reactive systems. Gen-
erally speaking, compositionality is a divide-and-conquer principle. As systems grow in size, they grow in
complexity. Therefore dealing with them in a monolithic manner becomes unmanageable. Compositional-
ity comes to the rescue, and takes many forms [84]. Many industrial-strength systems have employed for
many years mechanisms for compositional modeling. An example is the Simulink tool from the Mathworks.
Simulink is based on the widespread notation of hierarchical block diagrams. Such diagrams are both in-
tuitive, and naturally compositional: a block can be refined into sub-blocks, sub-sub-blocks, and so on,
creating hierarchical models of arbitrary depth. This allows the user to build large models (many thousands
of blocks) while at the same time managing their complexity (at any level of the hierarchy, only a few blocks
may be visible).

But Simulink’s compositionality has limitations, despite its hierarchical modeling approach. Even rel-
atively simple problems, such as the problem of modular code generation (generating code for a block
independently from context), require techniques not always available in standard code generators [57, 56].
Perhaps more serious, and more relevant in the context of this paper, is Simulink’s lack of formal seman-
tics, and consequent lack of rigorous analysis techniques that can leverage the advances in the fields of
computer-aided verification and programming languages.

RCRS provides a compositional formal semantics for Simulink in particular, and hierarchical block di-
agram notations in general, by building on well-established principles from the formal methods and pro-
gramming language domains. In particular, RCRS relies on the notion of refinement (and its counterpart,
abstraction) which are both fundamental in system design. Refinement is a binary relation between com-
ponents, and ideally characterizes substitutability: the conditions under which some component can replace
another component, without compromising the behavior of the overall system. RCRS refinement is composi-
tional in the sense that it is preserved by composition: if A’ refines A and B’ refines B, then the composition
of A’ and B’ refines the composition of A and B.

RCRS can be viewed as a refinement theory. It can also be viewed as a behavioral type system, similar to
type systems for programming languages, but targeted to reactive systems. By behavioral we mean a type
system that can capture not just data types of input and output ports of components (bool, int, etc.), but
also complete specifications of the behavior of those components. As discussed more extensively in [86], such
a behavioral type system has advantages over a full-blown verification system, as it is more lightweight. For
instance, a type system allows type checking, which does not require the user to provide a formal specification
of the correctness properties that a model must satisfy. The model must simply type-check.

As also argued in [86], in order to have a type system it is essential for a framework to be able to express
non-input-receptive (also called non-input-enabled or non-input-complete) components, i.e., components that
reject some input values. RCRS allows this. To see why non-input-receptiveness is essential consider,
for example, a square-root component which requires its input to be non-negative. Such a component
can be described in RCRS alternatively as: either (1) a non-input-receptive component C, with input-
output contract + > 0 Ay = /x (where z,y are the input and output variables, respectively); or (2) an
input-receptive component C_, with contract x > 0 — y = /z. Now, connecting the non-input-receptive
square-root component C to a component which outputs £ = —1 results in a type error (in RCRS this is



called incompatibility). Connecting Cx to a non-deterministic component which outputs an arbitrary value
for  (this can be specified by the formula/contract true) also results in a type error in RCRS. Yet in both
these cases, replacing Cx by the input-receptive component C_, results in no type error (no incompatibility).
Instead, C'_, will simply output a non-deterministically chosen value, even though the requirement that
the input to square root is non-negative is not satisfied. This simple example demonstrates the need for
non-input-receptiveness, and also illustrates the concept of type-checking in the RCRS context. A more
extensive argument for non-input-receptiveness can be found in [86] (see also [88]). Let us also remark that
input-receptive components could be thought of as “programs that terminate on all inputs” whereas non-
input-receptive components could be thought of as “programs that terminate on some inputs”. However,
this is a matter of interpretation. RCRS as a semantic framework is agnostic to whether components are
internally programs implemented in a standard programming language, or something entirely different.

RCRS allows components which are both non-input-receptive and non-deterministic. This combination
results in a game-theoretic interpretation of the composition operators, like in interface theories [25, 86].
Refinement also becomes game-theoretic, as in alternating refinement [7]. Game-theoretic composition can
be used for an interesting form of type inference. For example, if we connect the non-input-receptive square-
root component C7 above to a non-deterministic component C3 with input-output contract x > u+1 (where
x is the output of C3, and u its input), and apply the (game-theoretic) serial composition of RCRS, we obtain
the condition v > —1 on the external input of the overall composition. The constraint u > —1 represents
the weakest condition on u which ensures compatibility of the connected components.

In a nutshell, RCRS consists of the following elements:

1. A modeling language (syntax), which can describe atomic components, and composite components
formed by a small number of primitive composition operators (serial, parallel, and feedback). The
language is described in §3.

2. A formal semantics, presented in §4. Component semantics are defined in terms of monotonic property
transformers (MPTs). MPTs are extensions of monotonic predicate transformers used in theories of
programming languages, and in particular in refinement calculus [12]. Predicate transformers transform
sets of post-states (states reached by the program after its computation) into sets of pre-states (states
where the program begins). Property transformers transform sets of a component’s output traces
(infinite sequences of output values) into sets of input traces (infinite sequences of input values). Using
this semantics we can express both safety and liveness properties.

MPTs are very general objects. In practice the systems we deal with fall into restricted subclasses of
MPTs which are both easier to represent syntactically and also to manipulate symbolically. Section 4
includes a detailed study of MPT subclasses and their corresponding closure properties with respect to
the composition operators. In particular, we show that the restricted subclasses of relational property
transformers (RPTs) and guarded property transformers (GPTs) are both closed under serial and
parallel composition. We also show that the semantics of all atomic RCRS components are GPTs, and
that components with feedback are also GPTs as long as they are deterministic and do not contain
algebraic loops (i.e., instantaneous feedback).

3. A set of symbolic reasoning techniques, described in §5. In particular, RCRS offers techniques to
e compute the symbolic representation of a composite component from the symbolic representations
of its sub-components;
e simplify composite components into atomic components;

e reduce checking refinement between two components to checking satisfiability of certain logical
formulas;

e reduce input-receptiveness and compatibility checks to satisfiability;

e compute the legal inputs of a component symbolically.



We note that these techniques are for the most part logic-agnostic, in the sense that they do not depend
on the particular logic used to represent components. In addition, many of these techniques are purely
syntactic, and therefore very efficient.

4. A toolset, described briefly in §6. The toolset consists mainly of:

e a full implementation of the RCRS theory (more than 27k lines of Isabelle code) in the Isabelle
proof assistant [65];

e a translator of Simulink diagrams into RCRS code.
Our implementation is open-source and publicly available from http://rcrs.gitlab.io/.

RCRS is inspired by and shares key principles (e.g., refinement) with existing formal compositional
frameworks such as FOCUS [18], input-output automata [58], reactive modules [6], interface automata [25],
and Dill’s trace theory [32]. At the same time, RCRS differs and complements these frameworks in important
ways. For instance, FOCUS, I0-automata, and reactive modules, are limited to input-receptive systems,
while RCRS is explicitly designed to handle non-input-receptive specifications. An extensive discussion of
how RCRS is related to these and other works is provided in Section 7.

1.1 Novel contributions of this paper and relation to our prior work

Several of the ideas behind RCRS originated in the theory of synchronous relational interfaces [85, 86]. The
main novel contributions of RCRS w.r.t. that theory are: (1) RCRS is based on the semantic foundation
of monotonic property transformers, whereas relational interfaces are founded on relations; (2) RCRS can
handle liveness properties, whereas relational interfaces can only handle safety; (3) RCRS has been completely
formalized and most results reported in this and other RCRS papers have been proven in the Isabelle proof
assistant; (4) RCRS comes with a publicly available toolset (http://rcrs.gitlab.io/) which includes the
Isabelle formalization, a Translator of Simulink hierarchical block diagrams, and a Formal Analyzer which
performs, among other functions, compatibility checking, refinement checking, and automatic simplification
of RCRS contracts [34, 36, 37].

RCRS was introduced in [72], which focuses on monotonic property transformers as a means to extend
relational interfaces with liveness properties. [72] covers serial composition, but not parallel nor feedback. It
also does not cover symbolic reasoning nor the RCRS implementation. Feedback is considered in [73], with
a particular aim of studying instantaneous feedback for non-deterministic and non-input-receptive systems.
The study of instantaneous feedback is an interesting problem, but beyond the scope of the current paper.
In this paper we consider non-instantaneous feedback, i.e., feedback for systems without same-step cyclic
dependencies (no algebraic loops).

[34] presents part of the RCRS implementation, focusing on the translation of Simulink (and hierarchical
block diagrams in general) into an algebra of components with three composition primitives, serial, parallel,
and feedback, like RCRS. As it turns out, there is not a unique way to translate a graphical notation like
Simulink into an algebraic formalism like RCRS. The problem of how exactly to do it and what are the
trade-offs is an interesting one, but beyond the scope of the current paper. This problem is studied in depth
in [34] which proposes three different translation strategies and evaluates their pros and cons. [34] leaves
open the question whether the results obtained by the different translations are equivalent. This question is
settled in [70], by proving that a class of translations, including the ones proposed in [34], are semantically
equivalent for any input block diagram. [69] also concerns the RCRS implementation, discussing solutions
to subtle typing problems that arise when translating Simulink diagrams into RCRS/Isabelle code.

In summary, the current paper does not cover the topics covered in [34, 73, 69, 70], only briefly covers
the RCRS Toolset, and can be seen as a significantly revised and extended version of [72], focusing on
the RCRS theory. The main novel contributions with respect to [72] are the following: (1) a language of
components (§3); (2) a revised MPT semantics (§4), including in particular novel operators for feedback
(84.1.4), a classification of MPT subclasses (§4.2), and a complete semantics of both atomic and composite
components in terms of MPTs (§4.3); (3) a new section on symbolic reasoning (§5).
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2 Preliminaries

Sets, types. We use capital letters X, Y, X, ... to denote types or sets, and small letters to denote
elements of these types © € X, y € Y, etc. We denote by B the type of Boolean values true and false. We
use A, V, =, and — for the Boolean operations. The type of natural numbers is denoted by N, while the
type of real numbers is denoted by R. The Unit type contains a single element denoted ().

Cartesian product. For types X and Y, X x Y is the Cartesian product of X and Y, and if z € X and
y € Y, then (x,y) is a tuple from X x Y. The empty Cartesian product is Unit. We assume that we have
only flat products X7 x ... X X,,, and then we have

(Xix..xX)x(Mx..xY,)=X1x..xX,xY1 x...xY,

Functions. If X and Y are types, X — Y denotes the type of functions from X to Y. The function type
constructor associates to the right (e.g., X =Y - Z =X — (Y — Z)) and the function interpretation
associates to the left (e.g., f(z)(y) = (f(z))(y)). In order to construct functions we use lambda notation,
eg., Ar,y:x+y+1): N —= N — N. Similarly, we can have tuples in the definition of functions, e.g.,
Mz,y) :z+y+2): (NxN) = N. The composition of two functions f : X - Y andg:Y — Z,is a
function denoted go f : X — Z, where (go f)(z) = g(f(x)).

Predicates. A predicate is a function returning Booleans, e.g., p : X — Y — B with p(z)(y) = (z = y).
We define the smallest predicate L : X — B where L(x) = false for all x € X. The greatest predicate
is T: X — B, with T(z) = true for all z € X. We will often interpret predicates as sets. A predicate
p: X — B can be viewed as the set of all x € X such that p(z) = true. For example, viewing two predicates
p,q: X — B as sets, we can write p C ¢, meaning that for all z, p(x) = ¢(z).

Relations. A relation is a predicate with at least two arguments, e.g., r : X — Y — B. For such a relation
r, we denote by in(r) : X — B the predicate in(r)(z) = (Jy : r(z)(y)). If the relation r has more than two
arguments, then we define in(r) similarly by quantifying over the last argument.

We extend point-wise all operations on Booleans to operations on predicates and relations. For example,
if .7’ : X - Y — B are two relations, then r A7’ and r V 1’ are the relations given by (r A 7/)(x)(y) =
r(z)(y) Ar'(z)(y) and (r V') (z)(y) = r(z)(y) V7' (x)(y). We also introduce the order on relations r C r' =
(Va,y : r(@)(y) = 1'(2)(y)).

The composition of two relations r: X - Y - Band 7' : Y — Z — Bis arelation (ror’) : X — Z - B,

where (ror')(z)(z) = (Jy : () (y) Ar'(y)(2))-

Infinite sequences. If ¥ is a type, then 3¢ = (N — X) is the set of all infinite sequences over X, also
called traces. For a trace o € X%, let 0; = o(i) be the i-th element in the trace. Let o° € X* denote the
suffix of o starting from the i-th step, i.e., 0 = 0,041 ---. We often view a pair of traces (o,0') € ¥¢ x X%
as being also a trace of pairs (\i : (0y,0})) € (X x X/)~.

Properties. A property is a predicate p over a set of infinite sequences. Formally, p € (£¥ — B). Just

like any other predicate, a property can also be viewed as a set. In particular, a property can be viewed as
a set of traces.

3 Language
3.1 An Algebra of Components

We model systems using a simple language of components. The grammar of the language is as follows:
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(a) Serial composition: C; C’ (b) Parallel composition: C || C’ (c) Feedback composition: £dbk(C)

Figure 1: The three composition operators of RCRS.

component = atomic_component | composite_component
atomic_component ::= STS_component | QLTL_component
STS_component ::= GEN_STS_component | STATELESS_STS_component
| DET_STS_component | DET_STATELESS_STS_component
composite_component := component ; component | component || component | fdbk(component)

The elements of the above grammar are defined in the remainder of this section, where examples are
also given to illustrate the language. In a nutshell, the language contains atomic components of two kinds:
atomic components defined as symbolic transition systems (STS_component), and atomic components defined
as quantified first-order LTL (QLTL) formulas over input and output variables (QLTL_component).

STS components are split in four categories: general STS components, stateless STS components, de-
terministic STS components, and deterministic stateless STS components. Semantically, the general STS
components subsume all the other more specialized STS components, but we introduce the specialized syntax
because symbolic compositions of less general components become simpler, as we shall explain in the sequel
(see §5).

Also, as it turns out, atomic components of our framework form a lattice, shown in Fig. 8, from the
more specialized ones, namely, deterministic stateless STS components, to the more general ones, namely
QLTL components. The full definition of this lattice will become apparent once we provide a symbolic
transformation of STS to QLTL components, in §5.1.

Apart from atomic components, the language also allows one to form composite components, by composing
(atomic or other composite) components via three composition operators: serial ;, parallel ||, and feedback
fdbk, as depicted in Fig. 1. The serial composition of two components C,C’ is formed by connecting the
output(s) of C to the input(s) of C’. Their parallel composition is formed by “stacking” the two components
on top of each other without forming any new connections. The feedback of a component C' is obtained by
connecting the first output of C' to its first input.

Our language is inspired by graphical notations such as Simulink, and hierarchical block diagrams in
general. But our language is textual, not graphical. An interesting question is how to translate a graphical
block diagram into a term in our algebra. We will not address this question here, as the issue is quite
involved. We refer the reader to [34], which includes an extensive discussion on this topic. Suffice it to say
here that there are generally many possible translations of a graphical diagram into a term in our algebra (or
generally any algebra that contains primitive serial, parallel, and feedback composition operators). These
translations achieve different tradeoffs in terms of size, readability, computational properties, and so on.
See [34] for details.

Example 1. As an example, consider the Simulink diagram shown in Fig. 2. This diagram can be represented
in our language as a composite component Sum defined as

Sum = fdbk(Add ; UnitDelay;Split)

where Add, UnitDelay, and Split are atomic components (for a definition of these atomic components see
§3.2). Here Split models the “fan-out” element in the Simulink diagram (black bullet) where the output
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Figure 2: A Simulink diagram modeling the 1-step delayed sum of its input In. Each atomic block as well as
the entire system can be formalized as STS components (see §3.2). The entire system can also be formalized
as a composite component (see below).

wire of UnitDelay splits in two wires going to Out and back to Add.! A graphical representation of the
composition Add;UnitDelay;Split is given in Figure 3. The operator fdbk connects the unnamed output
from this figure to the unnamed input.

— + 1 "
> + 1z (D
In Add UnitDelay ~ Split Out

Figure 3: Graphical representation of the composition Add ;UnitDelay;Split

3.2 Symbolic Transition System Components

We introduce all four categories of ST'S components and at the same time provide syntactic mappings from
specialized STS components to general STS components.

3.2.1 General STS Components

A general symbolic transition system component (general STS component) is a transition system described
symbolically, with Boolean expressions over input, output, state, and next state variables defining the initial
states and the transition relation. When we say “Boolean expression” (here and in the definitions that
follow) we mean an expression of type B, in some arbitrary logic, not necessarily restricted to propositional
logic. For example, if z is a variable of numerical type, then « > 0 is a Boolean expression. In the definition
that follows, s’ denotes the primed, or next state variable, corresponding to the current state variable s. Both
can be vectors of variables. For example, if s = (s1, 82) then s’ = (s, s5). We assume that s’ has the same
type as s.

Definition 1 (STS component). A (general) STS component is a tuple
sts(z: X5,y 5y, s: X, init_exp : B, trs_exp : B)

where x,y,s are input, output and state variables (or tuples of variables) of types ¥,,%,,Xs, respectively,
init_exp is a Boolean expression on s (in some logic), and trs_exp is a Boolean expression on xz,y,s,s’ (in
some logic).

Intuitively, an STS component is a non-deterministic system which for an infinite input sequence o, € X%
produces as output an infinite sequence o, € ¥j/. The system starts non-deterministically at some state
05(0) satisfying init_exp. Given first input o,(0), the system non-deterministically computes output o,(0)
and next state os(1) such that ¢rs_ezp holds (if no such values exist, then the input o,(0) is illegal, as

1Note that the Simulink input and output ports In and Out are not explicitly represented in Sum. They are represented
implicitly: In corresponds to the second input of Add, which carries over as the unique external input of Sum (thus, Sum is an
“open system” in the sense that it has open, unconnected, inputs); Out corresponds to the second output of Split, which carries
over as the unique external output of Sum.



discussed in more detail below). Next, it uses the following input o,(1) and state o4(1) to compute o,(1)
and 04(2), and so on.

We will sometimes use the term contract to refer to the expression trs_exp. Indeed, trs_exp can be seen
as specifying a contract between the component and its environment, in the following sense. At each step in
the computation, the environment must provide input values that do not immediately violate the contract,
i.e., for which we can find values for the next state and output variables to satisfy trs_exp. Then, it is the
responsibility of the component to find such values, otherwise it is the component’s “fault” if the contract
is violated. This game-theoretic interpretation is similar in spirit with the classic refinement calculus for
sequential programs [12].

We use ¥, Xy, 3, in the definition above to emphasize the types of the input, output and the state, and
the fact that, when composing components, the types should match. However, in practice we often omit the
types, unless they are required to unambiguously specify a component. Also note that the definition does not
fix the logic used for the expressions init_exp and trs_exp. Indeed, our theory and results are independent
from the choice of this logic. The choice of logic matters for algorithmic complexity and decidability. We
will return to this point in §5. Finally, for simplicity, we often view the formulas init_exp and trs_exp as
semantic objects, namely, as predicates. Adopting this view, init_exp becomes the predicate init : ¥, — B,
and trs_exp the predicate trs_exp : ¥, — X — Mg — Xy — B. Equivalently, trs_exp can be interpreted as
a relation trs_exp : (X5 x ;) — (E5 x £,) — B.

Throughout this paper we assume that init_exp is satisfiable, meaning that there is at least one valid
initial state.

Examples. In the examples provided in this paper, we often specify systems that have tuples as input,
state and output variables, in different equivalent ways. For example, we can introduce a general STS
component with two inputs as sts((n : Nyz : R),s : Ry : R,s > 0,8 > s Ay+ s = z™), but also as
sts((n,2) :NxR,;s: R,y :R,s>0,8 >sAy+s=a"),orsts(z: NxR,y:R,s:R,s>0,8 >sAy+s=
snd(z)5(*)), where fst and snd return the first and second elements of a pair.

Example 2. Let us model a system that at every step ¢ outputs the input received at previous step 7 — 1
(assume that the initial output value is 0). This corresponds to Simulink’s commonly used UnitDelay block,
which is also modeled in the diagram of Fig. 2. This block can be represented by an STS component, where
a state variable s is needed to store the input at moment ¢ such that it can be used at the next step. We
formally define this component as

UnitDelay = sts(z,y,s,s =0,y = s A s = z).

We use first-order logic to define init_exp and trs_exp. Here init_exp is s = 0, which initializes the state
variable s with the value 0. The trs_ezp is y = s A s’ = x, that is at moment ¢ the current state variable s
which stores the input x received at moment ¢ — 1 is output and its value is updated.

Example 3. As another example, consider again the composite component Sum modeling the diagram of
Fig. 2. Sum could also be defined as an atomic STS component:

Sum = sts(z,y,s,s =0,y =sAs =s+ux).

In §5 we will show how we can automatically and symbolically simplify composite component terms such
as £dbk(Add ;UnitDelay;Split), to obtain syntactic representations of atomic components such as the one
above.

These examples illustrate systems coming from Simulink models. However, our language is more general,
and able to accommodate the description of other systems, such as state machines & la nuXmv [19], or
input/output automata [58]. In fact, both UnitDelay and Sum are deterministic, so they could also be
defined as deterministic STS components, as we will see below. Our language can capture non-deterministic
systems easily.



Example 4. An example of a non-deterministic STS component is the following:
C= StS(.I,y,S,S = 071'+S < y)

For an input sequence o, € N“, C' outputs a non-deterministically chosen sequence o, such that the transition
expression x + s < y is satisfied. Since there is no formula in the transition expression tackling the next state
variable, this is updated also non-deterministically with values from N.

Our language can also capture non-input-receptive systems, that is, systems which disallow some input
values as illegal.

Example 5. For instance, a component performing division, but disallowing division by zero, can be specified
as follows: .
Div = sts((z,y), 2, (), true,y Z0A 2z = =).
Yy

Note that Div has an empty tuple of state variables, s = (). Such components are called stateless, and are
introduced in the sequel.

Example 6. Even though RCRS is primarily a discrete-time framework, we have used it to model and verify
continuous-time systems such as those modeled in Simulink (see §6). We do this by discretizing time using a
time step parameter At > 0 and applying Euler numerical integration. We can model Simulink’s Integrator
block in RCRS as an STS component parameterized by At:

Integrator,, = sts(m,y, s,s =0,y =sA s=s+ux- At)

More complex dynamical system blocks can be modeled in a similar fashion. For instance, Simulink’s
Transfer Fcn block, with transfer function

52 +2
0.582 +2s+1
can be modeled in RCRS as the following STS component parameterized by At:

TransferFcna; = sts(a@y, (s1,82),81 =0A s =0,trs)
where trs = (y=-8-s1+2-z) A
(s) =81+ (—4-s1—2 89 +x)-At) A
(sh = 83+ 81+ At)

3.2.2 Variable Name Scope

We remark that variable names in the definition of atomic components are local. This holds for all atomic
components in the language of RCRS (including STS and QLTL components, defined in the sequel). This
means that if we replace a variable with another one in an atomic component, then we obtain a semanti-
cally equivalent component. For example, the two STS components below are equivalent (the semantical
equivalence symbol = will be defined formally in Def. 21, once we define the semantics):

sts((z,v),2,8,s >0,z > s+ z+y) =sts((u,v),w,t,t > 0,w >t +u+wv)

3.2.3 Stateless STS Components

A special STS component is one that has no state variables:

10



Definition 2 (Stateless STS component). A stateless STS component is a tuple
C = stateless(z : X5,y : £y, to_exp : B)

where x,y are the input and output variables, and io_exp is a Boolean expression on x and y. Stateless STS
components are special cases of general STS components, as defined by the mapping stateless2sts:

stateless2sts(C) = sts(z, vy, (), true, i0_exp).

Note that the transformation stateless2sts is purely syntactic. This is also the case for the transfor-
mations of other special cases of components described in the sequel.

Example 7. A trivial stateless STS component is the one that simply transfers its input to its output (i.e.,
a “wire”). We denote such a component by Id, and we formalize it as

Id = stateless(z,y,y = ).

Another simple example is a component with no inputs and a single output, which always outputs a
constant value ¢ (of some type). This can be formalized as the following component parameterized by c:

Const. = stateless((),y,y = ¢).

Component Add from Fig. 2, which outputs the sum of its two inputs, can be modeled as a stateless STS
component:
Add = stateless((z,y),2,2 =z +y).

Component Split from Fig. 2 can also be modeled as a stateless STS component:
Split = stateless(z, (y,2),y = x Az = x).
The Div component introduced above is stateless, and therefore can be also specified as follows:

Div = stateless((z,y),z,y #0Az = f)
Y

The above examples are not only stateless, but also deterministic. We introduce deterministic STS
components next.

3.2.4 Deterministic STS Components

Deterministic STS components are those which, for given current state and input, have at most one output
and next state. Syntactically, they are introduced as follows:

Definition 3 (Deterministic STS component). A deterministic STS component is a tuple
det(x:X,,s: Xs,a: Xy, inpt_exp : B, next_exp : 3, out_exp : Ey)

where x,s are the input and state variables, a € Xy is the initial value of the state variable, inpt_exp is a
Boolean expression on s and x defining the legal inputs, next_exp is an expression of type X on x and s
defining the nest state, and out_exp is an expression of type 3y, on x and s defining the output. Deterministic
STS components are special cases of general STS components, as defined by the mapping det2sts:

det2sts(C) = (z,y, s,s = a, inpt_exp A\ s’ = next_exp Ny = out_exp)

where y is a new variable name (or tuple of new variable names) of type L.

11



Note that a deterministic STS component has a separate expression inpt_exp to define legal inputs. A
separate such expression is not needed for general STS components, where the conditions for legal inputs
are part of the expression trs_ezp. For example, compare the definition of Div as a general STS above, and
as a stateless deterministic STS below (see §3.2.5).

Example 8. As mentioned above, all three components, UnitDelay, Add, and Split from Fig. 2, as well as
Div and Const, are deterministic. They could therefore be specified in our language as deterministic STS
components, instead of general STS components:

UnitDelay = det(az, ,0 true,r 5)
Const, = det((),(),(),true,(),c)
Add = det((z,y ), true, (),z +y)
Split = det(z, (), (), true, (), (z,2))
Div = det((x,y ),y #0,(), y)

The component Sum modeling the entire system is also deterministic, and could be defined as a deter-
ministic STS component:
Sum = det(z, 5,0, true, s + x, s).

Note that these alternative specifications for each of those components, although syntactically distinct,
will turn out to be semantically equivalent by definition, when we introduce the semantics of our language,
in §4.

3.2.5 Stateless Deterministic STS Components

STS components which are both deterministic and stateless can be specified as follows:

Definition 4 (Stateless deterministic STS component). A stateless deterministic STS component is a tuple
C = stateless_det(x : X, inpt_exp : B, out_exp : X))

where x is the input variable, inpt_exp is a Boolean expression on x defining the legal inputs, and out_exp is
an expression of type X, on x defining the output. Stateless deterministic STS components are special cases
of both deterministic STS components, and of stateless STS components, as defined by the mappings

stateless_det2det(C)
stateless_det2stateless(C)

det(z, (), (), inpt-exp, (), out_exp) (1)
stateless(z,y, inpt_exp Ay = out_exp) (2)

where y is a new variable name or a tuple of new variable names.

Example 9. Many of the examples introduced above are both deterministic and stateless. They could be
specified as follows:

Id = stateless_det (x true x)
Const, = stateless,det( true c)

Add = stateless,det( ), true,x + y)
Split = stateless. det (z,true ,z))
Div = stateless,det((ac y),y # 0, y)

12



3.3 Quantified Linear Temporal Logic Components

Although powerful, STS components have limitations. In particular, they cannot express liveness prop-
erties [4]. To remedy this, we introduce another type of components, based on Linear Temporal Logic
(LTL) [68] and quantified propositional LTL (QPTL) [82, 52], which extends LTL with 3 and V quantifiers
over propositional variables. In this paper we use quantified first-order LTL (which we abbreviate as QLTL).
QLTL further extends QPTL with functional and relational symbols over arbitrary domains, quantification
of variables over these domains, and a next operator applied to variables.? We need this expressive power
in order to be able to handle general models (e.g., Simulink) which often use complex arithmetic formulas,
and also to be able to translate STS components into semantically equivalent QLTL components (see §5.1).

3.3.1 QLTL

QLTL formulas are generated by the following grammar. We assume a set of constants and functional
symbols (0, 1,..., true, false, +,...), a set of predicate symbols (=, <,<,...), and a set of variable names
(x7 y? Z? t ')'

Definition 5 (Syntax of QLTL). A QLTL formula ¢ is defined by the following grammar:

term == x|y| ... | (variable names)
0]1]...|true| ... | (constants)
term +term | ... | (functional symbol application)
Oterm (next applied to a term)
® n= (term =term) | (term <term) | ... | (atomic QLTL formulas)
- | (negation)
eV (disjunction)
e U | (until)
Voo (forall)

As in standard first order logic, the bounded variables of a formula ¢ are the variables in scope of the
universal quantifier V, and the free variables of ¢ are those that are not bounded. The logic connectives A,
= and < can be expressed with — and V. Quantification is over atomic variables. The existential quantifier
3 can be defined via the universal quantifier usually as =V—. The primitive temporal operators are next for
terms (O) and until ( U ). As is standard, QLTL formulas are evaluated over infinite traces, and ¢ U ¢
intuitively means that ¢ continuously holds until some point in the trace where ¢ holds.

Formally, we will define the relation o = ¢ (o satisfies ) for a QLTL formula ¢ over free variables z, y, . . .,
and an infinite sequence o € ¢, where ¥ = ¥, x ¥, x ..., and X,,%,,... are the types (or domains) of
variables z,y,.... As before we assume that o can be written as a tuple of sequences (o4, 0y,...) where
oy € X3,0y € XY, ... The semantics of a term ¢ on variables z,y, ... is a function from infinite sequences
to infinite sequences ((t)) : ¥ — X, where ¥ = X, x ¥, X ..., and ¥, is the type of t. When giving the
semantics of terms and formulas we assume that constants, functional symbols, and predicate symbols have
the standard semantics. For example, we assume that +,<,... on numeric values have the semantics of
standard arithmetic.

Definition 6 (Semantics of QLTL). Let x be a variable, t,t' be terms, ¢, be QLTL formulas, P be a

2A logic similar to the one that we use here is presented in [51], however in [51] the next operator can be applied only once
to variables, and the logic from [51] uses also past temporal operators.
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predicate symbol, f be a functional symbol, ¢ be a constant, and o € X“ be an infinite sequence. Then:

fE&N (o) = (i f((E) (o)), (t')(0)(9)))
{oth(o) = (th(eh)
o Ptt) = Pt)()0),(t')(e)0))
oE e = ~(okFy)
cEPVY = okEpVoEY }
cEe Uy = (In>0:V0<i<n:o"'E@)Ad" EVY)
o (Vr:p) = (Vo€ Xy :(ofz:=03]) F o)

where olx := ol] denotes the trace o' € ¥ obtained by replacing o, in o by o.,.

Intuitively, the semantics of variable x is a function which returns the sequence o, corresponding to =z,
given a sequence o. The semantics of constant c is the constant function which returns the sequence which
has c at every step. The semantics of a function f applies f at every step of a sequence . Given sequence o,
the semantics of Ot applies the semantics of ¢, ((t)), to the sequence o', that is, to o starting from position
1 instead of position 0. The satisfaction relation between sequences and formulas is denoted }=. A sequence
o satisfies a predicate P if it satisfies P at position 0. o satisfies ¢ if it does not satisfy ¢. o satisfies
@ V1 if it satisfies either ¢ or ¥. o satisfies ¢ U 9 if ¢ is satisfied at some point, and until that point ¢ is
continuously satisfied. Finally, o satisfies Vz : ¢ if o[z := o] satisfies ¢, for any o7.

Other temporal operators can be defined as follows. Eventually (F ¢ = true U ¢) states that ¢ must
hold in some future step. Always (G ¢ = —F =) states that ¢ must hold at all steps. The next operator for
formulas X can be defined using the next operator for terms O. The formula X ¢ is obtained by replacing
all occurrences of the free variables in ¢ by their next versions (i.e., z is replaced by Oz, y by Oy, etc.).
For example the propositional LTL formula X (z A Xy = G z) can be expressed as

(Oxz =true A (O O y =true) = G (Oz = true)).

We additionally introduce the operator: L := —(¢ U —). Intuitively, ¢ L1 holds if whenever ¢
holds continuously up to some step n — 1, ¥ must hold at step n. Later we will use the operator L to
transform a STS component into a QLTL component.

Lemma 1. The semantics of p Ly is given by
oclEpLy = (Yn>0:(V0<i<n:o' )= o" =)
Two QLTL formulas ¢ and ¥ are semantically equivalent, denoted ¢ <= 1, if

Vo:(oy¢) < (0 F1)
Lemma 2. Let ¢ be a QLTL formula. Then:
1. 3z :Gye) <= G (Iz: ) when ¢ does not contain temporal operators.
Ly <= Gy
trueLp <= G
pLtrue <= true

pLfalse <= false

S &

Yy : (L) <= (Jy: p) Ly, when ¢ does not contain temporal operators and y is not free in ).
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7.(G (pAY) = (G 9) N (G P)

The proof of the above result, as well as of most results that follow, is omitted. All omitted proofs have
been formalized and proved in the Isabelle proof assistant, and are available as part of the public distribution
of RCRS from http://rcrs.gitlab.io/. In particular, the results contained in this paper can be accessed
from the theory RCRS_Overview.thy — either directly in that file or via references to the other RCRS files.

Example 10. Using QLTL we can express safety, as well as liveness requirements. Informally, a safety
requirement expresses that something bad never happens. An example is the formula

thermostat = G (180° <t At < 220°),

which states that the thermostat-controlled temperature t stays always between 180° and 220°.

A liveness requirement informally says that something good eventually happens. An example is the
formula F (¢ > 200°) stating that the temperature ¢ is eventually over 200°.

A more complex example is a formula modeling an oven that starts increasing the temperature from an
initial value of 20° until it reaches 180°, and then keeps it between 180° and 220°.

oven = (t =20° A ((t < Ot At < 180°) U thermostat)).

In this example the formula ¢ < Ot specifies that the temperature increases from some point to the next.

3.3.2 QLTL Components

A QLTL component is an atomic component where the input-output behavior is specified by a QLTL formula:

Definition 7 (QLTL component). A QLTL component is a tuple qltl(x : .,y : Ly, ), where z,y are
input and output variables (or tuples of variables) of types 5,5, and ¢ is a QLTL formula over x and y.

Intuitively a QLTL component C' = qltl(z,y, ) represents a system that takes as input an infinite
sequence o, € Y3 and produces as output an infinite sequence o, € ¥ such that (0;,0,) | ¢. If there
is no oy such that (o,,0,) = ¢ is true, then input o, is illegal for C, i.e., C' is not input-receptive. There
could be many possible o, for a single o, in which case the system is non-deterministic.

Example 11. As a simple example, we can model the oven as a QLTL component with no input variables
and the temperature as the only output variable:

qlt1((),t, oven)

3.4 Well Formed Composite Components

Not all composite components generated by the grammar introduced in §3.1 are well formed. Two compo-
nents C' and C’ can be composed in series only if the number of outputs of C' matches the number of inputs
of C’, and in addition the input types of C’ are the same as the corresponding output types of C. Also, fdbk
can be applied to a component C' if the type of the first output of C' is the same as the type of its first input.
Formally, for every component C we define below %;,(C) - the input type of C, ¥,,+(C) - the output type
of C, and wf(C) - the well-formedness of C, by induction on the structure of C. In the definitions below,
both n and m are natural numbers. Recall that the empty Cartesian product is Unit, so that if n = 0 then
X1 x--- x X, denotes the Unit type.
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Yin(sts(x: X,y : By, s Xy, init, trs)) = X,

Yin(stateless(x : Zl,y Xy, trs)) = X,

Yin(det(z : Xy, 51 Xy, a,inpt, next,out : X)) = X,

Yin(stateless_det(z : Xy, inpt, out : ) = X,

Yin (qltl(x Yoy 8y, ) = X,

Zm(C ) ) = Zin(c)

Yin(£db k(C’)) = X x---x X, provided ¥;,(C) = X1 x--- x X,

for some n >1

That is, the input type of an atomic component is the type X, of input variable z. The input type of
serial composite component C';C’ is the input type of the “upstream” component C. The input type of
parallel composite component C || C’ is the Cartesian product of the input types of C' and C’. Assuming
that C has n > 1 inputs with types X1, ..., X,,, the input type of feedback composite component £dbk(C) is
the Cartesian product X5 x -+ - x X,,, i.e., the first input is omitted. If n = 1 then the input type of £dbk(C')
is Unit.

Sout(sts(z : B,y : By, s : Xy, init, trs)) = %,

Yout(stateless(z : Xy, y 1 Xy, trs)) = X,

Yout(det(z : Xy, 51 Xy, a,inpt, next,out : X)) = X,

Yout(stateless_det(z : X, inpt, out : X)) = X,

Yout (qltl(m 2957 y: Zyv )) = Ey

Eout(cv ) ) = Eout(C’/>

Zout(c( || ,) = Zout(C’) X Zout(Cﬂ)

Y out (£dbk(C)) = Yo x---xY, provided ¥,,(C) =Y x --- x Y,

for some n > 1

That is, the output type of an atomic component is the type ¥, of output variable y. The output type of
serial composite component C'; C’ is the output type of the “downstream” component C’. The output type
of parallel composite component C' || C' is the Cartesian product of the output types of C' and C’. Assuming
that C has n > 1 outputs with types Y1, ..., Y, the output type of feedback composite component £dbk(C')
is the Cartesian product Y5 x --- x Y, i.e., the first output is omitted. If n = 1 then the output type of
£dbk(C) is Unit.

wf(sts(z,y, s, init, trs)) = true
Wf(stateless(x Y, trs)) = true
wf(det(x, s, a,inpt, next,out)) = true
(stateless _det(z,inpt,out)) = true
(qltl(w Y, ) = true
wi(C ; C") = wf(C) AwE(C") A Zput(C) = Xy (C")
wi(C || C") = wf(C)Awf(C")
wi (£dbk(C )) = wf(C)AZH(C) =X x X1+ x X,

AXout(C)=X XYy - XY, for some n,m > 0.

That is, all atomic components are by definition well-formed. A serial composite component C'; C’ is well-
formed iff both its subcomponents C' and C’ are well-formed, and the output type of C is equal to the input
type of C’. A parallel composite component C || C’ is well-formed iff both its subcomponents C' and C’ are
well-formed. A feedback composite component £dbk(C) is well-formed iff C' is well-formed and the type of
the first output of C is equal to the type of its first input.

Atomic components are by definition well-formed. The composite components considered in the sequel
are required to be well-formed too.

16



We note that the above well-formedness conditions are not restrictive. Components that do not have
matching inputs and outputs can still be composed by adding appropriate switching components which
reorder inputs, duplicate inputs, and so on. An example of such a component is the component Split,
introduced earlier.

Example 12. As another example, consider the diagram in Fig. 4.

== Dyl

Figure 4: Another block diagram.

This diagram can be expressed in our language as the composite component:
A;Switchl; (B || Id);Switch2;(C || Id)
where

Switchl = stateless_det((x,y),true,(z,y,x))

Switch2 = stateless_det((u,v,x),true, (u,z,v))

Component Switchl takes as input the two outputs x and y of A and outputs three outputs by replicating
x as its third output. This triplet of outputs (z,y,z) is fed as input to the parallel composite component
B || 1d. The first two outputs, « and y, are fed as inputs to the corresponding two inputs of B. The third
output, which is also equal to x, if fed as input to the identity component Id, which simply acts as a “wire”
transferring its input to its output. Therefore, if we let u and v be the two outputs of B, the output of
B || 1d is the triplet (u,v,z). Now, we want to feed u and x as the two inputs to C. To do that, we use
Switch2, which swaps the order of v and z, so that its output triplet becomes (u,x,v). Now we can feed
the latter triplet into C' || Id.

This completes the presentation of the syntax of RCRS. In the section that follows we define the formal
semantics of RCRS.

4 Semantics

In RCRS, the semantics of components is defined in terms of monotonic property transformers (MPTs).
This is inspired by classical refinement calculus [12], where the semantics of sequential programs is defined in
terms of monotonic predicate transformers [31]. Predicate transformers are functions that transform sets of
post-states (states reached after the program executes) into sets of pre-states (states from which the program
begins). Property transformers map sets of output traces (that a component produces) into sets of input
traces (that a component consumes).

In this section we define MPTs formally, and introduce some basic operations on them, which are neces-
sary for giving the semantics of components. We also introduce subclasses of MPTs which are easier to work
with in practice, especially in terms of symbolic computation, and we also study their closure properties with
respect to the operators. The definitions of some of these operations (e.g., product and fusion) are simple
extensions of the corresponding operations on predicate transformers [12, 11]. Several of the subclasses and
closure properties that we examine here are also extensions to the MPT context of known subclasses of
predicate transformers and their closure properties in the refinement calculus theory [12]. Other operations,
in particular those related to feedback, are new (§4.1.4). The definition of component semantics is also new

(54.3).
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4.1 Monotonic Property Transformers

A property transformer is a function S : (X3 — B) — (X% — B), where X;,%, are input and output types
of the component in question. Note that x is the input and y is the output. A property transformer has
a weakest precondition interpretation: it is applied to a set of output traces @ C X, and returns a set of
input traces P C X%, such that all traces in P are legal and, when fed to the component, are guaranteed to
produce only traces in @ as output.

Interpreting properties as sets, monotonicity of property transformers simply means that these functions
are monotonic with respect to set inclusion. That is, S is monotonic if for any two properties ¢,q’, if ¢ C ¢’
then S(q) C S(q’).

Similar to the domain or precondition of a relation, for an MPT S we define its set of legal input traces
as legal(S) = S(T), where T is the greatest predicate on traces. Note that, because of monotonicity, and the
fact that ¢ C T holds for any property ¢, we have that S(q) C legal(S) for all g. This justifies the definition
of legal(S) as a “maximal” set of input traces for which a system does not fail, assuming no restrictions on
the post-condition. An MPT § is said to be input-receptive if legal(S) = T.

4.1.1 Some Commonly Used MPTs
Definition 8 (Skip). Skip is defined to be the MPT such that for all q, Skip(q) = q.

Skip models the identity function, i.e., the system that accepts all input traces and simply transfers them
unchanged to the output (this will become more clear when we express Skip in terms of assert or update
transformers, below). Note that Skip is different from Id, defined above, although the two are strongly
related: Id is a component, i.e., a syntactic object, while Skip is an MPT, i.e., a semantic object. As we
shall see in §4.3, the semantics of Id is defined as Skip.

Definition 9 (Fail). Fail is defined to be the MPT such that for all g, Fail(q) = L.

Recall that L is the predicate that returns false for any input. Thus, viewed as a set, | is the empty set.
Consequently, Fail can be seen to model a system which rejects all inputs, i.e., a system such that for any
output property ¢, there are no input traces that can produce an output trace in gq.

Definition 10 (Assert). Let p € 3% — B be a property. The assert property transformer {p} : (X¥ — B) —
(X% — B) is defined by
{p}@) =pAg

The assert transformer {p} can be seen as modeling a system which accepts all input traces that satisfy
p, and rejects all others. For all the traces that it accepts, the system simply transfers them, i.e., it behaves
as the identity function.

To express MPTs such as assert transformers syntactically, let us introduce some notation. First, we can
use lambda notation for predicates, as in A(o,0’) : (6 = o’) for some predicate p : 3¢ — X“ — B which
returns true whenever it receives two equal traces. Then, instead of writing {\(o,0’) : (o = ¢’)} for the
corresponding assert transformer {p}, we will use the slightly lighter notation {o,0’ | 0 = ¢'}.

Definition 11 (Demonic update). Let r : X% — X% — B be a relation. The demonic update property
transformer [r] : (33 — B) — (X5 — B) is defined by

[rl(q) = {o | Vo' : r(0)(0”) = o’ € ¢}.

That is, [r](g) contains all input traces ¢ which are guaranteed to result into an output trace in ¢ when
fed into the (generally non-deterministic) input-output relation r. The term “demonic update” comes from
the refinement calculus literature [12].

For a demonic update [r], if for some input trace o there is no trace o’ such that r(o)(o’), then for all
properties ¢ (including g = (}) we have o € [r](q), meaning that the property transformer [r| establishes any
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post-property when fed with input trace o. This behavior cannot be implemented and we call it magical. A
more detailed discussion about this case is given in Section 4.2.2.

Similarly to assert, we introduce a lightweight notation for the demonic update. If r is an expression in o
and o', then [0 ~ o' | 7] = [A(0,0") : 7]. For example, [0,,0, ~> 0, | Vi:0,(i) = 0,(2) + 0y (3)] is the system
which produces as output the sequence o, = (\i : 0,(i) + 0,(4)), where o, and o, are the input sequences.
If e is an expression in o, then [0 ~ €] is defined to be [0 ~ ¢’ | 0/ = €], where ¢’ is a new variable different
from ¢ and which does not occur free in e. For example, [0 ~ (Ai: o(i)+1)] =[c~ o' | o' = (Ni:0o(i)+1)].

The following lemma states that Skip can be defined as an assert transformer, or as a demonic update
transformer.

Lemma 3. Skip=[c~ ¢’ | 0 =0'| ={T} ={o | true}.

In general Skip, Fail, and other property transformers are polymorphic with respect to their input and
output types. In Skip the input and output types must be the same. Fail, on the other hand, may have an
input type and a different output type.

Definition 12 (Angelic update). Let r : £¥ — ¥y — B be a relation. The angelic update property

transformer {r} : (X% — B) — (X% — B) is defined by

{r}a) ={o | Fo' : r(0)(0") N o’ € ¢}

An input sequence o is in {r}(q) if there exists an output sequence ¢’ such that r(c)(c’) and ¢’ € q.
Notice the duality between the angelic and demonic update transformers. Consider, for example, a relation
r = {(0.0"), (0,0")}. 1 ¢ = {0",0"}, then {r}(q) = [r](a) = {o}. 1f ¢ = {0'} then {r}(q) = {0}, while
[r](q) =0

We use a lightweight notation for the angelic update transformer, similar to the one for demonic update.
If r is an expression in o and o', then {o ~ o' | r} = {\(0,0’) : r}.

Note that although the notations for the assert property transformer {p} and the angelic update property
transformer {r} are similar, the two types of transformers differ because r is a relation whereas p is a property.
The following lemma states that assert is a special case of angelic update.

Lemma 4. Assert is a particular case of angelic update: {p} = {o ~ o' | p(c) Ao’ =c}.

4.1.2 Relational MPTs

Monotonic property transformers are a very rich and powerful class of semantic objects. In practice, the
systems that we deal with often fall into restricted subclasses of MPTs, which are easier to represent syntac-
tically and manipulate symbolically. We introduce one of these subclasses here. MPT subclasses are further
discussed in Section 4.2.

Definition 13 (Relational property transformers). A relational property transformer (RPT) S is an MPT
of the form {p} o [r]. We call p the precondition of S and r the input-output relation of S.

Intuitively, the assert part {p} of the RPT imposes restrictions on the legal inputs, whereas the update
[r] specifies the generally non-deterministic set of possible outputs for each input. Relational property
transformers correspond to conjunctive transformers [12]. A transformer S is conjunctive if it satisfies
S(Nier @) = Nier S(ai) for all (g;)icr and I # 0.

Fail, Skip, any assert transformer {p}, and any demonic update transformer [r], are RPTs. Indeed, Fail
can be written as {o | false} o [0 ~ ¢’ | true]. Skip can be written as {o | true} o [0 ~ o]. The assert
transformer {p} can be written as the RPT {p} o [c ~ o]. Finally, the demonic update transformer [r] can
be written as the RPT {o | true} o [r]. Angelic update transformers are generally not RPTs: the angelic
update transformer {o ~ ¢’ | true} is not an RPT, as it is not conjunctive.
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Example 13. Suppose we wish to specify a system that performs division. Here are three possible ways to
represent this system with RPTs:

S1 = {T} o000y~ 0 | Vi:oy(i) #0A0.(i) = iw@]

Sy ={T}olog, oy~ 0. | (Vi:oy(i) #0=0.(1) = Z;EZ;)]
Sy = {020y | ¥i: 0y(0) £ 0} 0 [0, 0y ~ 02 | 02(i) = jzgji]

Although S7, S5, and S3 are all relational, they are not equivalent transformers. S; and Sy are input-
receptive: they accept all input traces. Sy behaves miraculously if the input o, () is 0 at some step 4. If at
some step 4 the input o, (7) is 0, then the output o,(7) of transformer Sy is arbitrary (non-deterministic). In
contrast, S3 is non-input-receptive as it accepts only those traces o, that are guaranteed to be non-zero at
every step, i.e., those that satisfy the condition Vi : o, (7) # 0.

4.1.3 Operators on MPTs: Function Composition, Product, and Fusion

As we shall see in §4.3, the semantics of composition operators in the language of components will be defined
by the corresponding composition operators on MPTs. We now introduce the latter operators on MPTs.
First, we begin by the operators that have been known in the literature, and are recalled here. In §4.1.4 we
introduce some novel operators explicitly designed in order to handle feedback composition.

Serial composition of MPTs (and property transformers in general) is simply function composition:

Definition 14. Let S : (3 — B) — (XY — B) and T : (¢ — B) — (3§ — B) be two property
transformers. Then SoT : (3¢ — B) — (X¢ — B), is the function composition of S and T, i.e., Vq :
(SoT)(q) =5S(T(q))-

Note that serial composition preserves monotonicity, so that if S and 7" are MPTs, then S o T is also an
MPT. Also note that Skip is the neutral element for serial composition, i.e., S o Skip = Skipo S = S.
The following lemma shows how the serial composition of two demonic updates is also a demonic update.

Lemma 5. [r]o[r] = [ro7’]

To express parallel composition of components, we need a product operation on property transformers.
We define such an operation below. Similar operations for predicate transformers have been proposed in [11].

Definition 15 (Product). Let S: (¥y — B) — (35 — B) and T': (X — B) — (X} — B). The product of
S and T, denoted S@ T : (X x ¥y — B) — (3% x X — B), is given by

(S®@T)(q)={(0,0") | Ip:%y = B,p %) = B:pxp CgnoeSp) Ao’ eT(p')}

where (p x p')(oy,04) = p(oy) A p'(ow).

The product S ® T' models the simultaneous execution of S and 7. This will become more clear later in
Theorem 2, as the product of MPTs based on predicates and relations (i.e., RPTs) can be expressed based
on the products of the predicates and the product of the relations:

{ptolrh @ ({p'} o) ={pxp}olrxr]
where the product of relations r x 7’ is defined similarly to the product on predicates.

Lemma 6. For arbitrary S and T, S ® T is monotonic.
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The neutral element for the product composition is the Skip MPT that has Unit as input and output
type.

In order to define a feedback operation on MPTs, we first define two auxiliary operations: Fusion and
TterateOmega. Fusion is an extension of a similar operator introduced previously for predicate transformers
n [11]. IterateOmega is a novel operator introduced in the sequel.

Intuitively, the fusion operator, when applied to two MPTs S and T, rejects all inputs that are rejected
by either S or T, and for a legal input of S and T it nondeterministically chooses an output that could be
chosen by both S and T'. If for some legal input ¢ of S and T there is no common output of .S and T, then
the fusion of S and T behaves magically when executed with input . Below we define the fusion operator
not for just two MPTs but more generally for an arbitrary family of MPTs, S;, i € I.

Definition 16 (Fusion). If S = {Si}icr, Si : (X; — B) — (X% — B) is a collection of MPTs, then the
fusion of S is the MPT Fusion;e;(S;) : (X5 — B) — (X5 — B) defined by

(Fusionicr(Si))(q) ={o [ Fw: I =3 = B: ﬂ w(i) CgNho e ﬂ Si(w(i))}

il il
In particular, the fusion of two MPTs S and T is the MPT:
Fusion(S,T)(q) = {0 | Fwi,wz : 3 = B:wiNwe CgAo € S(wr) NT(wa)}.

Similarly to the product operator, the fusion operator of two MPTs S and T models the simultaneous
execution of S and T, but on the same state. If S and T" perform choices from a starting sequence o, then
Fusion(S,T) will output only sequences that can be chosen by both S and T starting from o. The set of
legal input traces of Fusion(S,T) is the intersection of the legal traces of S and legal traces of T'. These facts
can be derived from Lemma 7 which describes the effect of Fusion on RPTs:

Lemma 7. For I # 0 we have

Fusion;c({pi} o [ri]) = {(\pi} o [[) 7.

iel iel
4.1.4 Operators on MPTs: Iteration and Feedback

In this section we introduce some novel operators, including the lterateOmega operator, used in the semantical
definition of feedback. In order to explain the intuition behind lterateOmega we first illustrate it on an
example. Consider the IncDelay system shown in Figure 5. Assuming 0 is the initial value of the Unit Delay
block, IncDelay maps input sequence g, z1,... into output sequence 0,zg + 1,27 + 1,.... Also consider the
system fdbk(IncDelay) where the output y is connected to the input z. Intuitively, fdbk(IncDelay) should
output the sequence 0,1,2,---.

1
r—z+1 - —Y
z

Figure 5: IncDelay.

Let us now calculate IncDelay? = IncDelay o IncDelay, IncDelay® = IncDelay o IncDelay o IncDelay, etc.
IncDeIay2 maps g, 21, - into 0,1, zg+2,21+2,---. IncDeIay3 maps g, x1, -+ into 0,1,2, xog+3,21+3,---.
From this we observe that the first n elements of the output of IncDelay™ are the same as the first n elements
of the output of £dbk(IncDelay). That is, the output of IncDelay™ converges to the output of £dbk(IncDelay)
as n — w. This mechanism is captured in the formal definition of IterateOmega. In general, IterateOmega
calculates the feedback of a system with no additional inputs and outputs: the entire output of S is connected
in feedback to the entire input of S.
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Definition 17 (TterateOmega).
lterateOmega(S) = Fusion,en(S™ oo~ o' |Viii+1<n= 0, =0l])
The lterateOmega(S) is the fusion of the following transformers:
Ty = [0~ o' | true]
Ty =Sofo~ o |true
Ty =S%0[0~ o' | 09 = 0}

T3 =S%0[oc~ o' |og =0y Aoy = 0]

The operator lterateOmega applies to an MPT S with the same type X for the input and output and its
result is a MPT that has again the same input and output types. The idea of IterateOmega is that it applies
the serial compositions of S to itself iteratively. The composition S? when started on a sequence o will
result into a sequence with the first component of. The assumption is that, for the feedback to work, the
first component stabilizes in subsequent serial compositions. For example the first component of S3 will also
be (), and the second element of the result of S also stabilizes in subsequent compositions. In general we
expect that S™, when started from a trace o, produces a trace o’ where o{,...0),_; are the correct outputs
of the IterateOmega(S). To be able to construct the final trace of lterateOmega(.S), we use the composition
T,=8"0[c~ o |Vi:i+1<n= o; =0} which sets all components i of the output with i +1 > n to

arbitrary values. For input trace o we assume that possible resulting traces for Ty, 77,... are
TO M ~ ~ ~ ~ ~
Tl M ~ ~ ~ ~ ~

Ty : 0'6 ~ ~ ~ o~
T3: of 0] ~ =~ ~
Ty: o)y o] 0h ~ ~

where ~ expresses any possible value. In this situation, the trace o’ = o{0} ... is a possible output trace of
the fusion of all T}, i.e. a possible output trace of IterateOmega(.5).

The feedback operator consists of connecting the first output of an MPT S with its first input. Formally,
feedback is defined as follows.

Definition 18 (Feedback). Let S: (X x X¢ — B) — (3¢ x X5 — B) be an MPT. The feedback operator
on S, denoted Feedback(S), is given by the MPT

Feedback(S) = {0z~ ou,0y,05}
o lterateOmega([oy,, 0y, 0y ~ Oy, 0y, 05] © (S & Skip))
o [0, 0y, 05 ~ 0y

The idea of the feedback operator is similar to the lterateOmega operator, but from one iteration to the
next we reuse the input x and we expect the output u to stabilize. While iterating we ignore the y component
of the output. To achieve this we apply IterateOmega to T' = [0y, 0y, 0y ~> Oy, 0y, 05] © (S @ Skip). T is
represented graphically in Figure 6. For the calculation of the feedback we need a mechanism of starting
the computation, i.e. we need a way of assigning a suitable value to the feedback variable u. One obvious
choice would be to assign to u some arbitrary value, using demonic nondeterminism. However this does
not work because if S fails for some values of u, then the entire feedback will fail, even if v would stabilize
to some value that is legal for S. To solve this problem we assign an arbitrary value to w using angelic
nondeterminism. The consequence of this is that w will be chosen such that further failures are avoided.
This approach results in meaningful computations when successive computations of S overwrite the previous
values of u with values depending on the x input only. The last part of the definition of the feedback selects
only the y output component as the output of the feedback.
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U U
Yy —e FE—» y

T > T

Figure 6: Padding of S for applying IterateOmega. The figure depicts the component [oy,0,,0, ~
Ouy 0z, 0] 0 (S @ Skip).

Example 14. As an example we show how to derive Feedback(S) for S = [0y, 0, ~ 0-0,+0-04,0-0,+0-0,],
where o +0’ = (Mi: 0(i)+0'(i)), and 0-0 is 0 concatenated with o. For now, we note that S is the semantics
of the composite component Add ;UnitDelay ;Split, which corresponds to the inner part of the diagram of
Fig. 2, before applying feedback. We will complete the formal definition of the semantics of this diagram in
§4.3 (see Example 15). For now, we focus on deriving Feedback(S), in order to illustrate how the Feedback
operator works.

Let

T = [0y, 04,04 ~ Oy, 0g, 0] 0 (S ® Skip) = [04,0y,05 ~ 005 +0-0,,0-0,+0-0y,0;]
Then, we have
ToT = [04,04,05~0-0,4+0:-0-0,+0-0-04,0:0,+0-0-0,+0-0-0,,0,]
T" = [ou,04,00~0-0,+...40" - 0,+0"-0,,0-0,+...+0" -0, +0" - 0y, 0]
where 0™ is a finite sequence of n 0s. We also have
Trolo~ o |Viii+l<n= o0, =0
(0w, 0,00~ 0 | Vizi+1<n=0(i) = (5<i02()), Xj<ioa()), 02(i))]
Then

Feedback(.S)
= {Definition of Feedback}
{0z ~ 0y,0y,0,} o IterateOmega(T') o [0y, 0y, 05 ~ 0y
= {Definition of IterateOmega}
{04 ~> 04, 04,05} o Fusion,en(T" 0 [0~ ¢’ |Vi:i+1<n=0,=0}])0 [04,0y, 0z~ 0y
= {Calculation (3)}
{04 ~ 0y, 04,04} o Fusion,en([oy, 0y, 0, ~ 0 | Viii+1l<n=
o(i) = (£j<i02()), Xj<ioa(4), 02 (i)]) © [ow, 04,00 ~ 0y
= {Lemma 7}
{02~ 0w, 0,00} 0 [ow, 04,00~ 0 | Vi o(i) = (8<i02()), Xj<iow(f), 02(i))] © 0w, 0y, 00 ~ 0]
= {Lemma 5}
00 ~ oy | Vi: 0y(i) = Ej<ioa(])]
Finally we obtain
Feedback(S) = [0z ~ 0y | Vi : 0y(i) = Lj<ioz(4)] 4)
This is the system that outputs the trace (i : £;<;0,(j)) for input trace o,.
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4.1.5 Refinement

A key element of RCRS, as of other compositional frameworks, is the notion of refinement, which enables
substitutability and other important concepts of compositionality. Semantically, refinement is defined as
follows:

Definition 19 (Refinement). Let S,T : (3 — B) — (35 — B) be two MPTs. We say that T refines S (or
that S is refined by T'), written S C T, if and only if Vq : S(q) C T(q).

We note that in some other frameworks and in particular the one of relational interfaces [86], notation
S C T is used to mean that S refines T'. In contrast, in RCRS we follow the notation of standard refinement
calculus [12] and use S C T to mean that T refines S.

All operations introduced on MPTs preserve the refinement relation:

Theorem 1. If S, T,5, T are MPTs of appropriate types such that S TS’ and T C T, then
1. SoTC S oT and S®T C S"®@T' and Fusion(S,T) C Fusion(S’,T") ([11, 12])
2. lterateOmega(S) C IterateOmega(S’)

3. Feedback(S) C Feedback(S")

4.2 Other Subclasses of MPTs and Closure Properties

As mentioned in Section 4.1.2, in practice we often deal with subclasses of MPTs. The subclass of RPTs
has already been introduced in Section 4.1.2. Here, we introduce additional subclasses of MPTs and also
discuss closure properties with respect to the various operators introduced earlier. As we mentioned in
the introduction to this section, similar closure results are known in the literature in other contexts, e.g.,
see [12, 90, 86].

4.2.1 Closure properties of RPTs

Theorem 2 (RPTs are closed under serial, parallel and fusion compositions). Let S = {p} o [r] and S’ =
{p'} o [r'] be two RPTs, with p, p’, v and v’ of appropriate types. Then

SoS8' ={o | p(o) A (Vo' :r(a)(0") = p'(c")} o [ror]

and
S®S" ={ox,0y | p(o2) ND'(0y)} 0 00,0y ~ 0%, 0, | T(02)(0,) A1’ (0y)(0y,)]

and
Fusion(S,S") = {pAp'} o [r A7]

Theorem 2 states that RPTs are closed under serial composition, product and fusion. In the case of
serial composition, the update part [r o r’] of the composite RPT S o S’ is formed by the composition of the
corresponding relations 7 and 7’ of the update parts of S and S’, respectively. The assert part of S o S’ is
formed by considering as legal inputs only those inputs o which: (1) satisfy the input condition p of S, and
(2) are such that for any output ¢’ that may be produced by S from input o, ¢’ is guaranteed to satisfy
the input condition p’ of §’. This is similar to the way composition by connection is defined in the theory
of relational interfaces [86]. Note however that in the case of RCRS this property is not a definition, but a
theorem that follows from the semantical definition of serial/function composition of MPTs. In the case of
product, a pair of inputs o, and o, is legal for the composite RPT S ® S’ when o, is a legal input of S and
oy is legal for S’. An output pair is formed by an output o}, of S and an output o, of S’. In the case of
fusion, both the assert and update parts of the composite Fusion(S,S’) are formed by taking the conjunction
of the corresponding parts of S and 5’.
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RPTs are not closed under Feedback. For example, we have
Feedback([oy, 0, ~ 04,0,]) = {0 ~ o' | true}

which is a non-relational, angelic update transformer as we said above.
The next theorem shows that the refinement of RPTs can be reduced to proving a first order property.

Theorem 3. For p,p’,r,r’ of appropriate types we have:
{pto[rE{p'}olr] <= (p P A (Voo :p(oz) = 1'(02) C7(03)))

That is, an RPT S’ = {p} o ['] refines another RPT S = {p} o [r] iff (1) the input condition p of S is
stronger than the input condition p’ of S’ (in other words, every input which is legal in S is also legal in
S"), and (2) for every legal input o, of S, the set of outputs that can be produced by S’ is a subset of the
set of outputs that can be produced by S. This property matches the definition of refinement in the theory
of relational interfaces [86] but again we note that in the case of relational interfaces this is a definition,

whereas in RCRS it is a theorem which follows from the semantical definition of refinement in terms of MPT's
(Definition 19).

4.2.2 Guarded MPTs

Relational property transformers correspond to systems that have natural syntactic representations, as the
composition {p} o [r], where the predicate p and the relation r can be represented syntactically in some
logic. Unfortunately, RPTs are still too powerful. In particular, they allow system semantics that cannot
be implemented. For example, consider the RPT Magic = [0 ~ ¢’ | false]. It can be shown that for any
output property ¢ (including 1), we have Magic(qg) = T. Recall that, viewed as a set, T is the set of all
traces. This means that, no matter what the post-condition ¢ is, Magic somehow manages to produce output
traces satisfying ¢ no matter what the input trace is (hence the name “magic”). In general, an MPT S is
said to be non-miraculous (or to satisfy the law of excluded miracle) if S(L) = L. We note that in [31],
sequential programs are modeled using predicate transformers that are conjunctive and satisfy the law of
excluded miracle.

We want to further restrict RPTs so that miraculous behavior does not arise. Specifically, for an RPT
S = {p} o [r] and an input sequence o, if there is no ¢’ such that r(o)(c”’) is satisfied, then we want o to be
illegal, i.e., we want p(c) = false. We can achieve this by taking p to be in(r). Recall that if r: X - Y — B,
then in(r)(z) = (Jy : r(z)(y)). Taking p to be in(r) effectively means that p and r are combined into a
single specification r which can also restrict the inputs. This is also the approach followed in the theory of
relational interfaces [86].

Definition 20 (Guarded property transformers). The guarded property transformer (GPT) of a relation r
is an RPT, denoted {r], defined by {r] = {in(r)} o [r].

It can be shown that an MPT S is a GPT if and only if S is conjunctive and non-miraculous [12]. Fail,
Skip, and any assert property transformer are GPTs. Indeed, Fail = {1] and Skip = {o ~ o | T]. The
assert transformer can be written as {p} = {0 ~ o | p(0)]. The angelic and demonic update property
transformers are generally not GPTs. The angelic update property transformer is not always conjunctive in
order to be a GPT. The demonic update property transformer is not in general a GPT because is not always
non-miraculous (Magic(L) = T # L). The demonic update transformer [r] is a GPT if and only if in(r) =T
and in this case we have [r] = {r].

Theorem 4 (GPTs are closed under serial and parallel compositions). Let S = {r] and S" = {r'] be two
GPTs with r and v’ of appropriate types. Then

SoS" ={o,~ o, |in(r)(o.) A (Vay :r(og)(oy) = in(r’)(ay)) A(ror')(og,0,)]

and

S®S" ={os,0,~ U;aag// | r(02)(0) /\T/(Uy)(ag/)]
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GPTs are not closed under Fusion neither Feedback. Indeed, we have already seen in the previous section
that Feedback applied to the GPT [0, 0, ~ 04,0;] is not an RPT, and therefore not a GPT either. For the
fusion operator, we have Fusion([z ~ 0], [z ~ 1]) = [.L], which is not a GPT.

A corollary of Theorem 3 is that refinement of GPTs can be checked as follows:

Corollary 1.
{r]C{r'] < (in(r) Cin("') A (Vo :in(r)(oy) = 1" (0z) Cr(0s)))

4.2.3 Other subclasses and overview

The containment relationships among the various subclasses of MPTs are illustrated in Fig. 7. In addition
to the subclasses discussed above, we introduce several more subclasses of MPTs in the sections that follow,
when we assign semantics (in terms of MPTSs) to the various atomic components in our component language.
For instance, QLTL components give rise to QLTL property transformers. Similarly, STS components,
stateless ST'S components, etc., give rise to corresponding subclasses of MPTs. The containment relationships
between these classes will be proven in the sections that follow. For ease of reference, we provide some forward
links to these results also here. The fact that QLTL property transformers are GPTs follows by definition
of the semantics of QLTL components: see §4.3, equation (5). The fact that STS property transformers are
a special case of QLTL property transformers follows from the transformation of an STS component into a
semantically equivalent QLTL component: see §5.1 and Theorem 7. The inclusions for subclasses of STS
property transformers follow by definition of the corresponding components (see also Fig. 8).

s Y

Monotonic Property Transformers

s Y
Relational Property Transformers

s 7
Guarded Property Transformers

s Y

QLTL Property Transformers

s Y

STS Property Transformers

( Stateless STS Property Transformers

[ Deterministic STS Property Transformers
L

. J

. J
. J

Figure 7: Overview of the property transformer classes and their containment relations.

4.3 Semantics of Components as MPTs

We are now ready to define the semantics of our language of components in terms of MPTs. Let C be a well
formed component. The semantics of C', denoted [C], is a property transformer of the form:

[C]: (Bout(C))* = B) = ((Bin(C))* — B).

We define [C] by induction on the structure of C. First we give the semantics of QLTL components and
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composite components:

[arti(z,y,0)] = {ow~ o0y (00,09) = ¢l (5)
[C;CT = [ClolC] (6)
[Clct = [Cl1e[C] (7)
[£fdbk(C)] = Feedback([C]) (8)

To define the semantics of STS components, we first introduce some auxiliary notation.
Consider an STS component C' = sts(z,y, s, init_ezp, trs_exp). We define the predicate rung : ¥¢ x £ x
Xy — Bas
runc (os, 0q,0y) = (Vi : trs_exp(os(i), 0,(2))(os(i + 1), 04(2))).

Intuitively, if o, € X5 is the input sequence, o, € ¥ is the output sequence, and oy € X7 is the sequence
of values of state Varlables then rung(os, 04, 0y) holds if at each step of the execution, the current state,
current input, next state, and current output, satisfy the trs_exp predicate.

We also formalize the illegal input traces of STS component C' as follows:

llegal:(02) = (30, 0, ke + imitcap(a,(0)) A (Vi < ki trs_exp(a, (1), 0 (1) (0, (i + 1), 7, (0))) A
sin(trs_exp)(os(k), o4 (k)))

Essentially, illegal~(0,) states that there exists some point in the execution where the current state and
current input violate the precondition in(trs_ezp) of predicate ¢rs_exp, i.e., there exist no output and next
state to satisfy trs_exp for that given current state and input.

Then, the semantics of an STS component C is given by:

[C] = {~illegal} o[04 ~ 0y | (Fos : init_exp(os(0)) A runc(os, 04, 0y))] (9)

We give semantics to stateless and/or deterministic STS components using the corresponding mappings
from general STS components. If C is a stateless STS, C’ is a deterministic STS, and C” is a stateless
deterministic STS, then:

[C] = [stateless2sts(C)] (10)
[C'] = [det2sts(C)] (11)
[C"] = [stateless det2det(C")] (12)

Note that the semantics of a stateless deterministic STS component C” is defined by converting C” into
a deterministic STS component, by Equation (12) above. Alternatively, we could have defined the semantics
of C" by converting it into a stateless STS component, using the mapping stateless_det2stateless. In
order for our semantics to be well-defined, we need to show that regardless of which conversion we choose,
we obtain the same result. Indeed, this is shown by the lemma that follows:

Lemma 8. For a stateless deterministic STS C" we have:
[stateless_det2det(C”)] = [stateless_det2stateless(C”)] (13)

Observe that, by definition, the semantics of QLTL components are GPTs. The semantics of STS
components are defined as RPTs. However, they will be shown to be GPTs in §5.1. Therefore, the semantics
of all atomic RCRS components are GPTs. This fact, and the closure of GPTs w.r.t. parallel and serial
composition (Theorem 4), ensure that we stay within the GPT realm as long as no feedback operations are
used. In addition, as we shall prove in Corollary 2, components with feedback are also GPTs, as long as
they are deterministic and do not contain algebraic loops. An example of a component whose semantics is
not a GPT is:

C = fdbk(stateless((z,2), (y1,¥2), 41 =  Ay2 = x))
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Then, we have [C] = Feedback([o, 0, ~ 04,0,]). As stated earlier, Feedback([o, 0, ~ 04, 0,]) is equal to
{0 ~ ¢’ | true}, which is not a GPT neither an RPT. The problem with C is that it contains an algebraic
loop: the first output y; of the internal stateless component where feedback is applied directly depends on
its first input x. Dealing with such components is beyond the scope of this paper, and we refer the reader
to [73].

4.3.1 Example: Two Alternative Derivations of the Semantics of Sum

To illustrate our semantics, we provide two alternative derivations of the semantics of the Sum system of
Fig. 2, Example 1.

Example 15. First, let us consider Sum as a composite component, as in Example 1:

Sum = fdbk(Add ; UnitDelay;Split)

where
Add = stateless_det((u,z),true,u + )
UnitDelay = det(z,s,0,true,x,s)
Split = stateless_det(z,true, (x,2))

We have

[Sum] = [fdbk(Add;UnitDelay;Split)]
= Feedback([Add] o [UnitDelay] o [Split])
For Add, UnitDelay and Split, all inputs are legal, so illegal, = L for all C' € {Add,UnitDelay, Split}.
After simplifications, we get:

[[Add]] = [UU7 Ogp ™~ Oy + O'w]
[UnitDelay] = [0~ 0-0,]
[Split] = |oz~ 0z,04]

The semantics of Sum is given by

[Sum]
Feedback([Add] o [UnitDelay] o [Split]
Feedback([oy, 05 ~ 0y + 04 0 [0 ~ 0-04] 0 [0 ~ 04, 04])

Feedback([oy, 00 ~ 0 -0, + 004,00, +0-0y])
= {Using (4)}
(02~ 0y | Vit oy(i) = Zjcioz())]

We obtain:
[Sum] = [0 ~ oy | Vi:0y(i) = Ej<ion(j)]- (14)

Next, let us assume that the system has been characterized already as an atomic component:

SumAtomic = sts(z,y,5,s =0,y =sAs =s+x).
The semantics of SumAtomic is given by
[SumAtomic] = {—illegalgypatonic } © [0z ~ 0y | o5 : 05(0) = 0 A rungumatomic(0s, 0z, 0y)]

where illegal = | because there are no restrictions on the inputs of SumAtomic, and

SumAtomic
FUNgumatomic (Ts, Oz, Oy) = (Vi toy(t) = 05(i) Nos(i + 1) = o4(i) + O’x(i))
We have
[SumAtomic] = [0y ~ 0y | Jos : 05(0) =0 A (Vi toy(t) = 05(1) Nos(t + 1) = o5(i) + Uﬁ(z))]

which is equivalent to (14).
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4.3.2 Characterization of Legal Input Traces
The following lemma characterizes the legal input traces for various types of MPTs:

Lemma 9. The set of legal input traces of an RPT {p} o [r] is p:

legal({p} o [r]) = p.

The set of legal input traces of a GPT {r] is in(r):

legal({r]) = in(r).

The set of legal input traces of an STS component C = sts(z,y, s, init,r) is equal to —illegal -

legal([C]) = —illegal .

The set of legal input traces of a QLTL component C = qltl(z,y, @) is:

legal([C]) = {02 | 0= 3y : ¢}
The first two properties of Lemma 9 give the semantic characterization of legal inputs for RPTs and
GPTs. The last two properties link the semantic definition of legal inputs to the operational definition of
legal inputs for STS and QLTL components. Lemma 9 is important for the results of Section 5.9.

4.3.3 Semantic Equivalence and Refinement for Components

Definition 21. Two components C and C' are (semantically) equivalent, denoted C = C”, if [C] = [C'].
Component C' is refined by component C’, denoted C < C", if [C] C [C].

The relation = is an equivalence relation, and < is a preorder relation (i.e., reflexive and transitive). We
also have
(C=XC'NC'"=0) = (C=C)

The notions of semantic equivalence and refinement for components are needed in order to express the
compositionality properties in Section 4.3.4 that follows. Semantic equivalence is also necessary in order to
establish the correctness of the symbolic transformations proposed in Section 5.

4.3.4 Compositionality Properties

Several desirable compositionality properties follow from our semantics:

Theorem 5. Let Cy, Cy, Cs, and Cy be four (possibly composite) components. Then:
1. (Serial composition is associative:) (Cy;C3);C5 = Cq;(Cy;Cs).
2. (Parallel composition is associative:) (Cy || C2) || C3 = Cy || (Cs || Cs).

3. (Parallel composition distributes over serial composition:) If [C1] and [C3] are GPTs and [Cs] and
[C4] are RPTs, then (Ch || C2);(Cs || Cs) = (C1;C5) || (Co; Cl).

4. (Refinement is preserved by composition:) If C1 < Cy and C3 =< Cy, then:

(a) C1;C3 2 Co;Cy
(b) C1 || Cs 2 Cy || Cy
(¢) £dbk(Cy) < £abk(Ch)
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In addition to the above, the requirements a component satisfies are preserved by refinement. Informally,
if C satisfies some requirement ¢ and C' < C’ then C’ also satisfies ¢. Although we have not formally
defined what requirements are and what it means for a component to satisfy a requirement, these concepts
are naturally captured in the RCRS framework via the semantics of components as MPTs. In particular,
since our components are generally open systems (i.e., they have inputs), we can express requirements using
Hoare triples of the form p{Cl}q, where C is a component, p is an input property, and ¢ is an output
property. Then, p{C'}q holds iff the outputs of C are guaranteed to satisfy ¢ provided the inputs of C' satisfy
p. Formally: p{C}q <= p C [C](q). This definition is the same as the one for predicate transformers from
[12] and has been also explored in other contexts, e.g. [8].

Theorem 6. C < C’ iff Vp,q: p{C}q = p{C'}q.

Theorem 6 shows that refinement is equivalent to substitutability. Substitutability states that a component
(' can replace another component C' in any context, i.e., Vp, ¢ : p{C}q = p{C'}q.

5 Symbolic Reasoning

So far we have defined the syntax and semantics of RCRS. These already allow us to specify and reason about
systems in a compositional manner. However, such reasoning is difficult to do “by hand”. For example, if
we want to check whether a component C' is refined by another component C’, we must resort to proving
the refinement relation [C] C [C'] of their corresponding MPTs, [C] and [C’]. This is not an easy task,
as MPTs are complex mathematical objects. Instead, we would like to have computer-aided, and ideally
fully automatic techniques. In the above example of checking refinement, for instance, we would like ideally
to have an algorithm that takes as input the syntactic descriptions of C' and C’ and replies yes/no based
on whether [C] C [C'] holds. We say “ideally” because we know that in general such an algorithm cannot
exist. This is because we are not making a-priori any restrictions on the logics used to describe C' and
C’, which means that the existence of an algorithm will depend on the decidability of these logics. In this
section, we describe how reasoning in RCRS can be done symbolically, by automatically manipulating the
formulas used to specify the components involved. As we shall show, most of the transformations are purely
syntactic, and the remaining problems can be reduced to checking satisfiability of first-order formulas formed
by combinations of the formulas of the original components. This means that these problems are decidable
whenever the corresponding first-order logics are decidable.

5.1 Syntactic Transformation of STS Components to QLTL Components

Our framework allows the specification of several types of atomic components, some of which are special
cases of others, as summarized in Fig. 8. In §3, we have already shown how the different types of STS
components are related, from the most specialized deterministic stateless STS components, to the general
STS components. By definition, the semantics of the special types of STS components is defined via the
semantics of general STS components (see §4). In this subsection, we show that STS components can be
viewed as special cases of QLTL components.

qltl

sts

7N

stateless det

~

stateless_det

Figure 8: Lattice of atomic components: lower types are special cases of higher types.
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Specifically, we show how an STS component can be syntactically transformed into a semantically equiv-
alent QLTL component. This transformation also shows that STS property transformers are a special case of
QLTL property transformers, as already claimed in Fig. 7. Note that this containment is not obvious simply
by looking at the definitions of these MPT subclasses (c.f. §4.3), as QLTL property transformers are defined
as GPTs (equation 5), whereas STS property transformers are defined as RPTs (equation 9). Although
RPTs are generally a superclass, not a subclass, of GPTs, the transformation proposed below shows that
the RPTs obtained from STS components can indeed be captured as GPTs. The transformation of STS into
QLTL components also enables us to apply several algorithms which are available for QLTL components to
STS components as well.

We can transform an STS component C' = sts(z, y, s, init, trs) into a QLTL component using the syn-
tactic transformation operator sts2qltl:

sts2qltl(sts(z,y, s, init, trs)) = qltl(z,y, (Vs,y : init = (0 L") A (s : init A G @) (15)

where: ¢ = trs[s’ := O s]; e[z := €’] denotes the substitution of all free occurrences of variable z by expression
e’ in expression e; and ¢’ = (3s',y : trs). Here we use the L operator to express the fact that however the
computation proceeds, starting with an initial state, and an input sequence x, if we reach the computation
stepn (V0<i<n:o' @) e (VO<i<n:trs(s;,sit1,vi))), then ¢ must hold at n, i.e. we must be
able to continue the computation (3,41, Yn : t78(Sn, Tny Snt1, Yn))-

The theorem that follows demonstrates the correctness of the above transformation, that is, that the
resulting QLTL component is semantically equivalent to the original STS component:

Theorem 7. For any STS component C = sts(z,y, s, init, trs) s.t. init is satisfiable, C = sts2qltl(C).

Example 16. It is instructive to see how the above transformation specializes to some special types of STS
components. In particular, we will show how it specializes to stateless ST'S components.

Let C' = stateless(z,y,trs) and let C’ = stateless2sts(C) = sts(z,v, (), true,trs). Applying the
sts2qltl transformation to C’, for which s = () and init = true, we obtain:

sts2q1t1(C’) = qltl(z,y, (Vy: (L") AGy))

where ¢ = trs[() := O()] = trs and ¢’ = (3y : trs). Using the properties of Lemma 2, and the fact that
semantically equivalent LTL formulas result in semantically equivalent QLTL components, we can simplify
sts2qlt1(C’) further:
sts2qltl(C’)
= {Definition of sts2qltl}
qltl(z,y, (Vy: (trs L (3y:trs))) A G trs)

{Lemma 2, trs does not contain temporal operators, and y is not free in (Jy : trs)}
qltl(z,y, (Fy : trs) L Jy:trs)) AG trs)

{Lemma 2}

qltl(z,y, G (Jy : trs) A G trs)

{Lemma 2 and trs does not contain temporal operators}

qltl(z,y, (Jy : G trs) A G trs)

{3y : G trs) A G trs equivalent to G trs}

qltl(x, y, G trs)

Note that in the above derivation we use the equivalence symbol =, in addition to the equality symbol =.
Recall that = stands for semantical equivalence of two components (c.f. §4.3.3). On the other hand, = for
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components means syntactic equality. By definition of the semantics, if two QLTL formulas are equivalent,
then the corresponding QLTL components are equivalent.

Based on the above, we define the transformation stateless2qltl of a stateless component C' =
stateless(z,y,trs), into a QLTL component as follows:

stateless2qltl(C) = qltl(z,y, G trs) (16)

5.2 Syntactic and Symbolic Transformations of Special Atomic Components to
More General Atomic Components

Based on the lattice in Fig. 8, we define all remaining mappings from more special atomic components to more
general atomic components, by composing the previously defined mappings sts2qltl, stateless2qltl,
stateless2sts, det2sts, stateless_det2stateless and stateless_det2det, as appropriately.

We note that all these mappings are purely syntactic. However, in order to obtain a final simplified
result, more semantic manipulations may be needed, such as checking formula validity or satisfiability, as
mentioned in the introduction to this section. This is illustrated in the case of det2qltl(UnitDelay) in
Example 17 that follows. Because of this, we may use the term symbolic rather than syntactic to describe
these transformations.

For mapping stateless deterministic STS components to QLTL components, we have two possibilities:
stateless_det — det — sts — qltl and stateless_det — stateless — qltl. We choose the transfor-
mation stateless_det — stateless — qltl because it results in a simpler formula:

stateless_det2qltl(C) = stateless2qltl(stateless_det2stateless(C)) (17)
Example 17. Consider the following STS components:
Cq

Cy
UnitDelay = det (x, s,0,true, x, 8)

stateless(a:, Y,y > x)

stateless(z,(),z > 0)
Then:

stateless2qltl(Cy) = qltl(ac,y, Gy> x)
stateless2qltl(Cy) = qltl(z,(), G = >0)
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and
det2qltl(UnitDelay)
= {Definitions}

qltl(x,y,(Vs,y:SZOé(true/\Os:x/\y:s) L(3s,y:truens =zAy=3s)) A
(3s:s=0AG (trueAOs =z Ay =5s)))

{(3s¢,y:true A s’ =z Ay =) is true and Lemma 2 }
qltl(z,y,(Is: s =0AG (Os=z Ay =53)))

{Lemma 2}

qltl(z,y, (3s:y=0AG (y=s) AG (Os =1)))

{ G (y = s) is true so we can replace s by y }
qltl(z,y, (Is:y=0AG (y=s)AG (Oy =1x)))
{ Logical properties }

qltl(z,y, (3s: G (y=s))Ay=0AG (Oy =1x))
{ Lemma 2 }

qltl(z,y, (G (Fs:y=35)Ay=0AG (Oy=1))
{ Logical properties }

qltl(z,y, y =0AG (Oy = x))

5.3 Syntactic Computation of Serial Composition

Given a composite component C' formed as the serial composition of two atomic components A and B, i.e.,
C = A; B, we would like to compute a new, atomic component C,, such that C, is semantically equivalent
to C. Because atomic components are by definition represented syntactically (and symbolically), being able
to reduce composite components into atomic components means that we are able to symbolically compute
composition operators.

In order to compute serial composition, we introduce the syntactic transformation operator serial, which
computes C, := serial(A, B). We start by defining how serial works on two atomic components of the same
type. Then we generalize serial to any two atomic components.

5.3.1 Syntactic Serial Composition of Two QLTL Components

Let C = qltl(xz,y,¢) and C' = qltl(y, z,¢’) such that C';C’ is well formed. Then their syntactic serial
composition, denoted serial(C, C"), is the QLTL component defined by

serial(C,C") = qltl(z, 2, (Vy 1o = (32 : ) A Gy : o A ') (18)

Note that in the above definition (as well as the ones that follow) we assume that the output variable
of C' and the input variable of C’ have the same name (y) and that the names z, y and z are distinct. In
general, this may not be the case. This is not a problem, as we can always rename variables such that this
condition is met. Note that variable renaming does not change the semantics of components (c.f. §3.2.2).

The intuition behind the formula in (18) is as follows. The second conjunct Jy : ¢ A ¢’ ensures that
the both contracts ¢ and ¢’ of the two components are enforced in the composite contract. The reason
we use Jy : ¢ A ¢ instead of just the conjunction ¢ A ¢’ is that we want to eliminate (“hide”) internal
variable y. (Alternatively, we could also have chosen to output y as an additional output, but would then
need an additional hiding operator to remove y.) The first conjunct Yy : ¢ = (3z : ¢’) is a formula on
the input variable z of the composite component (since all other variables y and z are quantified). This
formula restricts the legal inputs of C' to those inputs for which, no matter which output C' produces, this
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output is guaranteed to be a legal input for the downstream component C’. For an extensive discussion of
the intuition and justification behind this definition, see [86]. Also note the similarities between (18) and
the RPT corresponding to S o S’ in Theorem 2.

Sections 5.3.2 to 5.3.5 that follow provide similar syntactic transformations for the syntactic serial com-
position of pairs of various types of atomic STS components, from general STS components, to stateless
deterministic STS components. All transformations follow the same spirit as (18) and the RPT correspond-
ing to S o S’ in Theorem 2 mentioned above. However, the more specialized the STSs are, the simpler
the resulting formula becomes, which justifies the interest in examining each case separately. Section 5.3.6
defines the syntactic serial composition of two atomic components which are not of the same type, e.g., a
stateful component and a stateless component.

5.3.2 Syntactic Serial Composition of Two General STS Components

Let C = sts(z,y, s, init,trs) and C' = sts(y, z,t,init’, trs’) be two general STS components such that
C;C" is well formed. Then:

serial(C, C') = sts(z, 2, (s, 1), init Ainit’, (3s',y : trs) A(Vs',y s trs = (3t', 2 1 trs')) A (Ty : trsntrs’)) (19)

5.3.3 Syntactic Serial Composition of Two Stateless STS Components

Let C' = stateless(x,y,trs) and C' = stateless(y, z,trs’) be two stateless STS components such that
C ;" is well formed. Then

serial(C, (") = stateless(z, 2, (Vy : trs = (3z : trs')) A (Jy : trs Atrs')) (20)

5.3.4 Syntactic Serial Composition of Two Deterministic STS Components

Let C = det(z, s, a,p,next,out) and C' = det(y,t,b,p’, next’, out’) be two deterministic STS components
such that their serial composition C ;C’ is well formed. Then:

serial(C,C") = det(z, (s,1), (a,b),p A p'ly := out], (next, next'[y := out]), out'[y := out]) (21)

5.3.5 Syntactic Serial Composition of Two Stateless Deterministic STS Components

Finally, let C' = stateless_det(x,p,out) and C’ = stateless_det(y,p’, out’) be two stateless deterministic
STS components such that their serial composition C'; C’ is well formed. Then:

serial(C, C') = stateless_det(z,p A p'[y := out], out'[y := out]) (22)

5.3.6 Syntactic Serial Composition of Two Arbitrary Atomic Components

In general, we define the syntactic serial composition of two atomic components C' and C’ by using the
mappings of less general components to more general components (Fig. 8), as appropriate. For exam-
ple, if C is a deterministic STS component and C’ is a stateless STS component, then serial(C,C’) =
serial(det2sts(C), stateless2sts(C’)). Similarly, if C' is a QLTL component and C’ is a determinis-
tic STS component, then serial(C,C’") = serial(C,det2q1t1(C’)). Formally, assume that atm, atm’ €
{qltl, sts,stateless,det,stateless det} are the types of the components C and C’, and common =
atm V atm’ is the least general component type that is more general than atm and atm’ as defined in Fig. 8.
Then

serial(C, C") = serial(atm2common(C), atm’2common(C")) (23)
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5.3.7 Correctness of Syntactic Serial Composition

The following theorem demonstrates that our syntactic computations of serial composition are correct,
i.e., that the resulting atomic component serial(C,C") is semantically equivalent to the original composite
component C'; C":

Theorem 8. If C and C' are two atomic components, then
C; 0’ = serial(C,C").

Example 18. Consider the following STS components:

C3 = stateless(u,(x,y),true)
Cy = stateless._det((x,y),y #0, E)
Y
Then:
serial(Cs,Cy) = serial(C3,stateless_det2stateless(Cy))

= serial(stateless(u, (x,y),true), stateless((x,y), 2,y Z0A 2z = E))
Y
= stateless(u,z,(Vz,y:true= (3z:y #0Az = E))
Y

A (Bz,y:true Ay £0Az = E)))
Y
= stateless(u,z, false)

As we can see, the composition results in a stateless STS component with input-output formula false. The
semantics of such a component is Fail, indicating that C'5 and Cy4 are incompatible. Indeed, in the case of
Cs; Cy, the issue is that C4 requires its second input, y, to be non-zero, but Cs cannot guarantee that. The
reason is that the input-output formula of Cj3 is true, meaning that, no matter what its input u is, C3 may
output any value for z and y, non-deterministically. This violates the input requirements of Cj, causing
an incompatibility. We will return to this point in §5.8. We also note that this type of incompatibility is
impossible to prevent, by controlling the input u. In the example that follows, we see a case where the two
components are not incompatible, because the input requirements of the downstream component can be met
by strengthening the input assumptions of the upstream component:

Example 19. Consider the following QLTL components:

Cs = qltl(z,y,G(x=Fy))
Cs = qltl(y,(),GFy)
Then:
serial(Cs,Cs) = serial(qltl(z,y,G (z = Fy)),qltl(y, (), GFy))

qltl(z,(),Vy: (G(x = Fy)) = GFy) A(Jy: G(x=Fy) AGFy))
qltl(z,(),GF z)

In this example, the downstream component Cg requires its input y to be infinitely often true (GFy).
This can be achieved only if the input x of the upstream component is infinitely often true, which is the
condition derived by the serial composition of C5 and Cs (G F z). Notice that C5 does not impose any a-
priori requirements on its input. However, its input-output relation is the so-called request-response property
which can be expressed as: whenever the input x is true, the output y will eventually become true afterwards
(G (x = Fy)). This request-response property implies that in order for y to be infinitely-often true,  must
be infinitely-often true. Moreover, this is the weakest possible condition that can be enforced on z in order
to guarantee that the condition on y holds.
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5.4 Syntactic Computation of Parallel Composition

Given a composite component C formed as the parallel composition of two atomic components A and B,
ie, C = A || B, we would like to compute a new atomic component C,, such that C, is semantically
equivalent to C. To compute C,, we introduce the syntactic transformation operator parallel, so that
C,, := parallel(A, B). The definition of parallel follows the same pattern as the one for serial (§5.3).

5.4.1 Syntactic Parallel Composition of Two QLTL Components

Let C = qltl(z,y,¢) and C' = qltl(u,v,¢’). Then their syntactic parallel composition, denoted
parallel(C, C’), is the QLTL component defined by

parallel(C, C') = q1t1((z, u), (y,v), ¢ A ¢') (24)

In the above definition we assume that variable names z,y, u,v are all distinct. If this is not the case,
then we rename variables as appropriately.

5.4.2 Syntactic Parallel Composition of Two General STS Components
Let C = sts(z,y, s, init, trs) and C' = sts(u, v, t,init’,trs’). Then:
parallel(C,C") = sts((z,u), (y,v), (s,t), init A init’, trs Atrs’) (25)

5.4.3 Syntactic Parallel Composition of Two Stateless STS Components
Let C = stateless(z,y,trs) and C’ = stateless(u,v,trs’). Then

parallel(C, C") = stateless((z,u), (y,v),trs A trs') (26)

5.4.4 Syntactic Parallel Composition of Two Deterministic STS Components
Let C = det(x, s, a, p, next, out) and C' = det(u,t,b,p’, next’, out’). Then:
parallel(C, C') = det((z,u), (s,t), (a,b),p A p', (next, next’), (out, out’)) (27)

5.4.5 Syntactic Parallel Composition of Two Stateless Deterministic STS Components
Let C = stateless_det(x,p,out) and C’ = stateless_det(u,p’, out’). Then:
parallel(C, C') = stateless_det((z,u),p A p/, (out, out)) (28)

5.4.6 Syntactic Parallel Composition of Two Arbitrary Atomic Components

Similar to the syntactic serial composition, we define the syntactic parallel composition of two atomic com-
ponents C' and C’ by using the mappings of less general components to more general components (Fig. 8), as
appropriate. Formally, assume that atm, atm’ € {qltl, sts,stateless,det,stateless_det} are the types
of the components C and C’, and common = atm V atm’ is the least general component type that is more
general than atm and atm’ as defined in Fig. 8. Then

parallel(C, C") = parallel(atm2common(C), atm’2common(C")) (29)

5.4.7 Correctness of Syntactic Parallel Composition

The following theorem demonstrates that our syntactic computations of parallel composition are also correct,
i.e., that the resulting atomic component parallel(C, C") is semantically equivalent to the original composite
component C || C”:

Theorem 9. If C and C' are two atomic components, then

C || C'" = parallel(C,C").
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5.5 Syntactic Computation of Feedback Composition for Decomposable Deter-
ministic STS Components

5.5.1 Decomposable Components

We provide a syntactic closed-form expression for the feedback composition of a deterministic STS compo-
nent, provided such a component is decomposable. Intuitively, decomposability captures the fact that the
first output of the component, y;, does not depend on its first input, ;. This ensures that the feedback
composition (which connects y; to 1) does not introduce any circular dependencies.

Definition 22 (Decomposability).  Let C be a deterministic STS component

det ((a:l, c s Ty), S, a,p,next, (€1, ..., em)) or a stateless deterministic STS component
stateless,det((a;l7 ey ), D, (€1, .,em)). C is called decomposable if x1 is not free in e;.
€1
Z1
€1 €2 l-» el €2
T2y.ooy Xy em [0 T %Y . em

(a) (b)

Figure 9: (a) Decomposable deterministic component; (b) the same component after applying feedback,
connecting its first output to x;.

Decomposability is illustrated in Fig. 9a. The figure shows that expression e; depends only on inputs
Io,...,Tn.

5.5.2 Syntactic Feedback of a Decomposable Deterministic STS Component

For a decomposable deterministic STS component C' = det((x1,...,2n), s, a, p,next, (e1,...,en)), its syn-
tactic feedback composition, denoted feedback(C), is the deterministic STS component defined by

feedback(C) = det((z2,...,%y), s, a, plw1 = e1],neat[ry := e1], (e2[z1 :=€1],...,en[z1 :=€1]))  (30)

Thus, computing feedback syntactically consists in removing the first input of the component and replacing
the corresponding variable x; by the expression of the first output, ey, everywhere where x; appears. The
feedback operator is illustrated in Fig. 9b.

5.5.3 Syntactic Feedback of a Decomposable Stateless Deterministic STS Component

For a decomposable stateless deterministic ST'S component C' = stateless.det((z1,...,Zn), D, (€1,-..,€m)),
feedback(C) is the stateless deterministic STS component defined by

feedback(C) = stateless_det((z2,...,2,),plr1 = €1, (e2[z1 = €1, ..., em[z1 = €1])) (31)

5.5.4 Correctness of Syntactic Feedback Composition

Theorem 10. If C is a decomposable deterministic STS component, then

fdbk(C) = feedback(C).
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Providing closed-form syntactic computations of feedback composition for general components, including
possibly non-deterministic STS and QLTL components, is an open problem, beyond the scope of the current
paper. We remark that the straightforward idea of adding to the contract the equality constraint =z = y
where y is the output connected in feedback to input z, does not work.3

In fact, even obtaining a semantically consistent compositional definition of feedback for non-deterministic
and non-input-receptive systems is a challenging problem [73]. Nevertheless, the results that we provide here
are sufficient to cover the majority of cases in practice. In particular, the operator feedback can be used
to handle Simulink diagrams, provided these diagrams do not contain algebraic loops, i.e., circular and
instantaneous dependencies (see §5.7).

5.6 Closure Properties of MPT Subclasses w.r.t. Composition Operators

In addition to providing symbolic computation procedures, the results of the above subsections also prove
closure properties of the various MPT subclasses of RCRS with respect to the three composition operators.
These closure properties are summarized in Tables 1 and 2.

In a nutshell, both serial and parallel composition preserve the most general type of the composed
components, according to the lattice in Fig. 8. For instance, the serial (or parallel) composition of two
stateless STS components is a stateless STS component; the serial (or parallel) composition of a stateless
STS component and a general STS component is a general STS component; and so on. Feedback preserves
the type of its component (deterministic or stateless deterministic).

; and || qltl | sts | stateless | det | stateless._det
qltl qltl | qltl qltl qltl qltl
sts qltl | sts sts sts sts
stateless qltl | sts | stateless | sts stateless
det qltl | sts sts det det
stateless_det | qltl | sts | stateless | det | stateless_det

Table 1: Closure properties of serial and parallel compositions. The table is to be read as follows: given
atomic components Cq,Cs of types as specified in a row/column pair, the serial or parallel composition of
C1 and C5 is an atomic component of type as specified in the corresponding table entry.

fdbk ‘ det and decomposable ‘ stateless_det and decomposable
‘ det ‘ stateless_det

Table 2: Closure properties of feedback composition.

5.7 Syntactic Simplification of Arbitrary Composite Components

The results of the previous subsections show how to simplify into an atomic component the serial or parallel
composition of two atomic components, or the feedback composition of an atomic decomposable component.
We can combine these techniques in order to provide a general syntactic simplification algorithm: the
algorithm takes as input an arbitrarily complex composite component, and returns an equivalent atomic
component. The algorithm is shown in Fig. 10.

The algorithm fails only in case it encounters the feedback of a non-decomposable component. Recall
that decomposability implies determinism (c.f. §5.5.1), which means that the test C" is decomposable means

30ne of several problems of this definition is that it does not preserve refinement. For example, the stateless component
with contract x # y refines the stateless component with contract true. Adding the constraint £ = y to both contracts yields
the components with contracts © = y and false, respectively, where the latter no longer refines the former. For a more detailed
discussion, see [73].
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atomic(C) :

if C is atomic then

return C
else if C is C";C" then

return serial(atomic(C’), atomic(C"))
else if C'is C' || C” then

return parallel(atomic(C’), atomic(C"))
else if C' is £dbk(C") then

C" := atomic(C")

if C” is decomposable then

return feedback(C")

else
fail
else /* impossible by definition of syntax */
fail

Figure 10: Simplification algorithm for arbitrary composite components.

that C” is of the form det((z1,...),s,a,p,next, (e1,...)) or stateless_det((z1,...),p,(e1,...)) and x; is
not free in ey.

We note that in practice, our RCRS implementation on top of Isabelle performs more simplifications in
addition to those performed by the procedure atomic. For instance, our implementation may be able to
simplify a logical formula ¢ into an equivalent but simpler formula ¢’ (e.g., by eliminating quantifiers from
¢), and consequently also simplify a component, say, q1tl(z,y, @) into an equivalent but simpler component
qltl(z,y,¢'). These simplifications very much depend on the logic used in the components. Describing the
simplifications that our implementation performs is outside the scope of the current paper, as it belongs in
the realm of computational logic. It suffices to say that our tool is not optimized for this purpose, and could
leverage specialized tools and relevant advances in the field of computational logic.

5.7.1 Deterministic and Algebraic Loop Free Composite Components

In order to state and prove correctness of the algorithm, we extend the notion of determinism to a composite
component. We also introduce the notion of algebraic loop free components, which capture systems with no
circular and instantaneous input-output dependencies.

A (possibly composite) component C'is said to be deterministic if every atomic component of C' is either
a deterministic STS component or a stateless deterministic STS component. Formally, C' is deterministic iff
determ(C) is true, where determ(C) is defined inductively on the structure of C:

determ(det(z, s,a,p,n,e)) = true

determ(stateless det(z,p,e)) = true

determ(sts(z,y, s,init, trs)) = false
determ(stateless(z,y,trs)) = false

determ(C;C") = determ(C) A determ(C”)
determ(C || C") = determ(C) A determ(C")
determ(£dbk(C)) = determ(C)

Notice that this notion of determinism applies to a generally composite component C, i.e., a syntactic term
in our algebra of components, involving atomic components possibly composed via the three composition op-
erators. This notion of determinism is the generalization of the syntactically deterministic ST'S components,
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which are atomic. This notion of determinism is also distinct from any semantic notion of determinism
(which we have not introduced at all in this paper, as it is not needed).

For a deterministic component we define its output input dependency relation. Let C' be deterministic,
and let X, (C) = Xy x...x X,, and £,,4(C) = Y7 x ... xY,,. The relation OI(C) C {1,...,m} x{1,...,n}
is defined inductively on the structure of C":

OI(det((z1,...,2n),s,a,p,next, (e1,...,6y))) = {(4,7) | z; is free in e;}
(stateless det((xl,...,mn),p, (e1,...,em))) = {(i,) | z; is free in e;}
o1(C;C") = OI(C") o OI(C)
o1(C || C") = OI(C)U{(i4+m,j+n)](i,j) € OL(C")}

where E”,(C) = X1 X ... X Xn
and ¥, (C) =Y1 x ... x Y,
OI(£dbk(C)) = {(i,j) | i>0A>0A((i+1,j+1) € OL(C)
V((i4+1,1) e OI(C)A (1,5 + 1) € OI(C)))}

The intuition is that (¢,j) € OI(C) iff the i-th output of C depends on its j-th input.
The OI relation is preserved by the syntactic operations, as shown by the following lemma:

Lemma 10. If C and C’' are deterministic STS components, then

OI(C:C") = Ol(serial(C,C"))
OI(C || C") = OI(parallel(C,C")).

If C is also decomposable, then
OI(fdbk(C)) = OI(feedback(C)).

We introduce now the the notion of algebraic loop free component. Intuitively, a (possibly composite)
deterministic component C' is algebraic loop free if, whenever C' contains a subterm of the form £dbk(C’),
the first output of C’ does not depend on its first input. This implies that whenever a feedback connection
is formed, no circular dependency is introduced. It also ensures that the simplification algorithm will never
fail. Formally, for a component C such that determ(C) is true, loop-free(C) is defined inductively on the
structure of C:

loop-free(C) = true if C = det(z, s, a,p, next, out)
loop-free(C) = true if C' = stateless_det(x, p, out)
loop-free(C'; C”) = loop-free(C) A loop-free(C")
loop-free(C || C') = loop-free(C) A loop-free(C”)

loop-free(£dbk(C'))

loop-free(C) A (1,1) ¢ OI(C)

That is, deterministic atomic components are by definition algebraic loop free. A serial composite component
C; C’ is algebraic loop free if both C' and C’ are algebraic loop free, and similarly for a parallel composite
component C || C'. A feedback composite component £dbk(C') is algebraic loop free if C' is algebraic loop
free and the first output of C' does not depend on its first input.

5.7.2 Correctness of the Simplification Algorithm

Theorem 11. Let C be a (possibly composite) component.

1. If C does not contain any £dbk operators then atomic(C) does not fail and returns an atomic compo-
nent such that atomic(C) = C.

2. If determ(C) Aloop-free(C) is true then atomic(C') does not fail and returns an atomic component
such that atomic(C) = C. Moreover, atomic(C) is a deterministic STS component and

OI(C) = OI(atomic(C)).
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Proof. The first part of the theorem is a consequence of the fact that the syntactic serial and parallel
compositions are defined for all atomic components and return equivalent atomic components, by Theorems 8
and 9.

For the second part, since we have a recursive procedure, we prove its correctness by assuming the
correctness of the recursive calls. Additionally, the termination of this procedure is ensured by the fact
that all recursive calls are made on “smaller” components. Specifically: we assume that both determ(C')
and loop-free(C) hold; and we prove that atomic(C) does not fail, atomic(C') is a deterministic STS
component, atomic(C) = C, and OI(C) = OI(atomic(C)).

We only consider the case C' = £dbk(C’). All other cases are similar, but simpler. Because determ(C')
and loop-free(C) hold, we have that determ(C’) and loop-free(C’) also hold, and in addition (1,1) ¢
OI(C"). Using the correctness assumption for the recursive call we have that atomic(C’) does not fail,
C" = atomic(C’) is a deterministic STS component, C” = C’, and OI(C”) = OI(C").

Because C” is a deterministic ST'S component and (1,1) ¢ OI(C") = OI(C"), C" is decomposable. From
this we have that D := feedback(C”) is defined. Therefore, atomic(C) returns D and does not fail. It
remains to show that D has the desired properties. By the definition of feedback(C") and the fact that C”
is a decomposable deterministic ST'S component, D is also a deterministic STS component. We also have:

D = feedback(C") = £dbk(C”) = £fdbk(C') = C

where feedback(C") = £dbk(C") follows from Theorem 10 and £dbk(C") = £dbk(C") follows from C” = C’
and the semantics of £dbk.
Finally, using Lemma 10 and OI(C") = OI(C"), we have

OI(D) = OI(feedback(C"”)) = OI(£fdbk(C")) = OI(£dbk(C’)) = OI(C)

O

Corollary 2. If a component C does not contain any £dbk operators or if determ(C) A loop-free(C) is
true, then [C] is a GPT.

Note that condition determ(C') A loop-free(C) is sufficient, but not necessary, for [C] to be a GPT.
For example:

Example 20. Consider the following components:

Constsaise = sStateless_det (x, true, false)
And = stateless_det((z,y),true, (z Ay,z Ay))
C = Constsase ; Tdbk(And)

Constsaise Outputs the constant false. And is a version of logical and with two identical outputs (we need two
copies of the output, because one will be eliminated once we apply feedback). C' is a composite component,
formed by first connecting the first output of And in feedback to its first input, and then connecting the
output of Constsase to the second input of And (in reality, to the only remaining input of f£dbk(And)).
Observe that C' has algebraic loops, that is, loop-free(C') does not hold. Yet it can be shown that [C] is a
GPT (in particular, we can show that C' = Constsaise). Handling cases like this is beyond the scope of this
paper and part of future work.

Example 21. The simplification algorithm applied to the component from Fig. 2 results in

atomic(Sum) = atomic(fdbk(Add ; UnitDelay ;Split)) = det(y, s,0,s + v, s).
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To see how the above is derived, let us first calculate atomic(Add ; UnitDelay;Split):

atomic(Add ;UnitDelay;Split)

= {Definition of atomic}
serial(atomic(Add ;UnitDelay), Split)

= {Definition of atomic}
serial(serial(Add, UnitDelay), Split)

= {Expanding Add and UnitDelay and choosing suitable variable names}
serial(serial(stateless_det((z,y), true,z +y), det(z,s,0,true, z,5)), Split)

= {Replacing stateless_det((z,y),true,z + y) by det((x,y), (), (), true, (),z + y) according to (1)}
serial(serial(det((z,y), (), (), true, (),z +y), det(z,s,0,true, z,s)), Split)

= {Syntactic computation of inner serial according to (21)}
serial(det((z,y), s,0,true,x + y,s), Split)

= {Expanding Split and choosing suitable variable names}
serial(det((z,y), s,0,true,x + v, s), stateless_det(z, true,(z, 2)))

= {Replacing stateless_det(z,true, (z,2)) by det(z, (), (), true, (), (2, 2))) according to (1)}
serial(det((z,y), s,0,true,x + v, s), det(z,(), (), true, (), (2, 2)))

= {Syntactic computation of remaining serial according to (21)}
det((z,y),s,0,true,z + v, (s,s))

The result det((z,y), s,0, true,z + y, (s,s)) is a deterministic and input-receptive component with two
input variables x, y, one state variable s, initial state s = 0, next state s’ = x +y, and two outputs which are
both equal to s. This component corresponds precisely to the one illustrated in Figure 3. This component
is decomposable according to Definition 22, because its first input variable z is not free (in fact, it does not
appear at all) in its first output expression s. Because det((z,y), s,0, true,z+y, (s, s)) is decomposable, we

can now calculate atomic(fdbk(det((z,y), s,0,true,z + ¥, (s,s)))) by expanding the definition of atomic
as follows:

atomic(fdbk(det((z,y), s,0, true,x + y, (s, 5))))

= {Definition of atomic, det((z,y), s,0, true,x + y, (s, s)) is decomposable}
feedback(det((z,y), s, 0, true,z + v, (s,5)))

= {Syntactic computation of feedback according to (30)}
det(y, s,0,true,s + vy, s)

This example is available in the public distribution of RCRS in the theory file RCRS_Demo . thy, which can
also be accessed at http://rcrs.gitlab.io/theories/RCRS/RCRS-A11/RCRS_Demo.html.

5.8 Checking Validity and Compatibility

Recall Example 18 given in §5.3.7, of the serial composition of components C3 and Cjy, resulting in a
component with input-output relation false, implying that [C3; Cy] = Fail. When this occurs, we say that
Cs and Cy are incompatible. We would like to catch such incompatibilities. This amounts to first simplifying
the serial composition Cs5;Cy into an atomic component C, and then checking whether [C] = Fail.

In general, we say that a component C is walid if [C] # Fail. Given a component C, we can check
whether it is valid, as follows. First, we simplify C to obtain an atomic component C’ = atomic(C). If C’
is a QLTL component of the form qltl(x,y, ) then C’ is valid iff ¢ is satisfiable. The same is true if C’ is
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a stateless STS component of the form stateless(z,y,p). If C' is a general STS component then we can
first transform it into a QLTL component and check satisfiability of the resulting QLTL formula.

Theorem 12. If C is an atomic component of the form qltl(x,y,y) or stateless(z,y, @), then [C] # Fail
iff ¢ is satisfiable.

As mentioned in the introduction, one of the goals of RCRS is to function as a behavioral type system
for reactive system modeling frameworks such as Simulink. In the RCRS setting, type checking consists
in checking properties such as compatibility of components, as in C3;C4 of Example 18 given in §5.3.7.
When components are compatible, computing new (stronger) input preconditions like those for Cj;Cg of
Example 19 given in §5.3.7 can be seen as behavioral type inference. Indeed, the new derived condition
G F z in the above example can be seen as an inferred type of the composite component Cj ; Cg.

We note that the decidability of the satisfiability question for ¢ depends on the logic used and the domains
of the variables in the formula. For instance, although ¢ can be a QLTL formula, if it restricts the set of
constants to true, has no functional symbols, and only equality as predicate symbol, then it is equivalent to
a QPTL formula,* for which we can use available techniques [82].

5.9 Checking Input-Receptiveness and Computing Legal Inputs Symbolically

Given a component C, we often want to check whether it is input-receptive, i.e., whether legal([C]) = T,
or equivalently, [C](T) = T. More generally, we may want to compute the legal input values for C, which
is akin to type inference as discussed above. To do this, we will provide a symbolic method to compute
legal([C]) as a formula legal(C'). Then, checking that C is input-receptive amounts to checking that the
formula legal(C) is valid, or equivalently, checking that —legal(C') is unsatisfiable. Note that this is also
showing how to automate domain/precondition calculations. We assume that C' is atomic (otherwise, we
first simplify C' using the algorithm of §5.7).

Definition 23. Given an atomic component C, we define legal(C), a formula characterizing the legal inputs
of C. legal(C) is defined based on the type of C:

legal(qltl(z,y,¢)) = (Jy:¢) (32)
legal(sts(z,y, s, init, trs)) = (Vs,y:init = (riLry)) (33)
legal(stateless(z,y,trs)) = G (3y:trs) (34)

legal(det(z, s,a, p,next,out)) = (Vs,y:s=a= (rsLp)) (35)
legal(stateless_det(z,p,out)) = Gp (36)

where 1y = trs[s’ == Os], ro = (3, y : trs), and r3 = (O s = next Ay = out).

(32) states that the legal input traces of a QLTL component qlt1(z,y,¢) are characterized by the QLTL
formula Jy : ¢. The latter formula is satisfied by all input traces o, over x for which there exists output
trace o, over y such that (o4, 0y) |= ¢. This characterization follows directly from Lemma 9.

Similarly, (33) provides the QLTL formula Vs,y : init = (r; Lry) characterizing the legal input traces
of an STS component sts(x,y, s,init, trs). This formula is satisfied by an input trace o, over z iff for any
state trace o5 over s and output trace o, over y, if init is satisfied (i.e., if the system starts in a legal initial
state) then r1 Lrg is satisfied. r; expands into ¢rs[s’ := O s] and characterizes the transition relation trs
written in QLTL syntax (we have to replace the next-state variable notation s’ in ¢rs with O s which denotes
the same thing in QLTL). 7o expands into 3s’,y : trs and characterizes all the (z,s) (input, current state)
pairs for which there exist next state s’ and output y such that the transition relation trs is satisfied. In
other words, input trace o, is legal if regardless of the nondeterministic choices that the system makes, it
does not get stuck (i.e., it can always continue by making one more step).

The next theorem shows that legal correctly characterizes the semantic predicate legal:

4For example, the atomic QLTL formula O O = Oy can be translated into the LTL formula X X z < Xy, and the formula
O O Oz = true into XX X z.
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Theorem 13. If C is an atomic component , then
legal([C]) = {02 | 0z = legal(C)}.

It follows from Theorem 13 that a component C is input-receptive iff the formula legal(C') is valid.

5.10 Checking Refinement Symbolically

We end this section by showing how to check whether a component refines another component. Again, we
will assume that the components in question are atomic (if not, they can be simplified using the atomic
procedure).

Theorem 14. Let C; = sts(x,y, s,init,r), C; = sts(x,y,s,init’,r}), Co = stateless(z,y,12), C =
stateless(z,y,75), C3 = qltl(z,y, ¢), and C = qltl(z,y,¢’). Then:

1. C} is refined by C] if the formula

(init’ = init) A ((3s',y :m1) = 3,y :r)) A (3 y i) ATy =) (37)
1s valid.
2. Cy is refined by C if and only if the formula
(By:r2) = By ) A ((Fy:re) Arh = 72) (38)
1s valid.
3. Cs is refined by C} if and only if the formula
(Fy:o) =y ) Ay ng) = o) (39)
is valid.

As the above theorem shows, checking refinement amounts to checking validity (or equivalently, satisfia-
bility of the negation) of first-order formulas formed by the various symbolic expressions in the component
specifications. The exact logic of these formulas depends on the logics used by the components. For example,
if C5 and CY both use quantifier-free LTL for ¢ and ¢’, then in order to check refinement we need to check
satisfiability of a first-order QLTL formula.

Specifically, Theorem 14 states that checking that a stateless component C) refines another stateless
component Cs is equivalent to checking that the input condition of Cs is stronger than that of C%, and
that the input-output relation of C}, restricted to the legal inputs of Cs, is stronger than the input-output
relation of Cs. This result follows from Corollary 1 and the fact that stateless components are GPTs. The
same is true for QLTL components C3 and C%. For STS components C; and C} a similar property holds,
with the additional condition that the initial state predicate of C'{ must be stronger than that of C;. We
also remark that for STS components the validity of formula (37) is a sufficient but not necessary condition
for refinement. We return to this point towards the end of this section.

Example 22. Recall the QLTL component C' = q1t1((),t, oven), introduced in Example 10:

oven = (t=20A((t <OtAt<180) U thermostat))
thermostat = G (180 <t At < 220)
Let us introduce a refined version C” of C:
c’ = sts((), t, (s,sw), init, trs) where
init = s=20Asw=on

trs = (t=9)A
(if sw=onthen s < s < s+ 5 else (if s > 10then s —5 < s < selse s =s)) A
(if sw =on A s > 210 then sw’ = off else

(if sw = off A s < 190 then sw’ = on else sw’ = sw))
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C" is an STS component with no input variables, output variable ¢, and state variables s and sw, recording
the current temperature of the oven, and the on/off status of the switch, respectively. When sw is on, the
temperature increases nondeterministically by up to 5 units, otherwise the temperature decreases nonde-
terministically by up to 5 units. When the temperature exceeds 210, the switch is turned off; when the
temperature is below 190, the switch is turned on; otherwise sw remains unchanged. The output ¢ is always
equal to the current state s. Initially the temperature is 20, and sw is on.

Using Theorem 14, and the properties of sts2qltl we have:

c=cC

!

C = sts2qltl(C)

!

qltl((), ¢, oven) < qltl((),¢, (Vs, sw,t: init = (L ¢')) A (3s,sw : init A G ¢))
where ¢ = trs[s’, sw’ := Os,0sw| and ¢’ = (Is', sw', ¢t : trs)

<= {Using Lemma 2, because ¢/ <= true}

qltl((),t,oven) = qlt1l((),t, (Is,sw : init A G ¢))
<= {Using Theorem 14}

(3t : oven) = (I, s, sw : init A G¢)) A (((3t : oven) A (s, sw : init A G ¢)) = oven) is valid
<= {Because (3¢ : oven) <= true and (3¢, s,sw : init A Gp) < true}

((3s, sw : init A G ) = oven) is valid

Thus, checking whether C’ refines C amounts to checking whether the QLTL formula ((35, sw: initAG @) =
oven) is valid. This indeed holds for this example and can be shown using logical reasoning.

The above example is relatively simple in the sense that in the end refinement reduces to checking
implication between the corresponding contracts. Indeed, this is always the case for input-receptive systems,
as in the example above. However, refinement is not equivalent to implication in the general case of non-
input-receptive systems. For example:

Example 23. Consider the components:

Cy
Cs

stateless(z,y,2 > 0Ny > x)
stateless(z,y,z <y <z + 10)

Using Theorem 14, we have:

C7 X Cy
<= {Theorem 14}
(Fy:2>20Ay>z)= Fy:z<y<x+10)) A
(Fy:z>0Ny>2)he<y<z+10=x>0Ay>x)is valid
<= {Arithmetic and logical reasoning}
true
Note that the second and third parts of Theorem 14 provide necessary and sufficient conditions, while
the first part only provides a sufficient, but generally not necessary condition. Indeed, the condition is
generally not necessary in the case of STS components with state, as state space computation is ignored by
the condition. This can be remedied by transforming STS components into equivalent QLTL components
and then applying the third part of the theorem. An alternative which may be more tractable, particularly

in the case of finite-state systems, is to use techniques akin to strategy synthesis in games, such as those
proposed in [86] for finite-state relational interfaces.
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Another limitation of the first part of Theorem 14 is that it requires the two STS components to have
the same state space, i.e., the same state variable s. This restriction can be lifted using the well-known idea
of data refinement [48, 10].

Theorem 15. Let Cy = sts(x,y, s,init,r), O] = sts(x,y,t,init’,r") be two STS components, and D a
(data refinement) expression on variables s and t. Let p= (3s',y:r) and p' = (3t',y : 1'). If the formulas

(Vt :init’ = (Is : D Ainit)) (40)
(Vt,z,s: DAp=1p) (41)
(Vt,x,s,t',y: DApAr = (38" : D[t,s:=t',s'| A 1)) (42)

are valid, then Cy is refined by Cj.

Theorem 15 is a generalization of the first part of Theorem 14 to two STS components C; and C] with
distinct state variables s and ¢, respectively. Specifically, the first part of Theorem 14 can be seen as a special
case of Theorem 15 where D is the relation s = ¢t. In general, D may be a different relation linking the state
variables of C; to those of C]. For example, C| maybe a more abstract version of Cf, so that in C; state
variable s represents a set, whereas in C that set is implemented as a list represented by state variable t.
In that case, D may be the relation representing what it means for ¢ to be the correct implementation of s.

6 Toolset and Case Studies

The RCRS framework comes with a toolset, illustrated in Fig. 11. The toolset is publicly available under
the MIT license and can be downloaded from http://rcrs.gitlab.io/. The toolset is described in detail
in papers [35, 36, 37]. In summary, the toolset consists of:

e A full implementation of the RCRS theory in Isabelle [65]. The implementation consists of 22 theory
files and a total of 27588 lines of Isabelle code. A detailed description of the implementation can be
found in the file document .pdf available in the public distribution of RCRS.

e A formal Analyzer, which is a set of procedures implemented on top of Isabelle and the functional
programming language SML. The Analyzer performs compatibility checking, automatic contract sim-
plification, and other functions.

e A formalization of Simulink characterizing basic Simulink blocks as RCRS components and implement-
ing those as a library of RCRS/Isabelle. At the time of writing this paper, 48 of Simulink’s blocks can
be handled.

e A Translator: a Python program translating Simulink hierarchical block diagrams into RCRS code.

We implemented in Isabelle a shallow embedding [17] of the language introduced in §3. The advantage of
a shallow embedding is that all datatypes of Isabelle are available for specification of components, and we
can use the existing Isabelle mechanism for renaming bound variables in compositions. The disadvantage of
this shallow embedding is that we cannot express Algorithm 10 within Isabelle (hence the “manual” proof
that we provide for Theorem 11). A deep embedding, in which the syntax of components is defined as a
datatype of Isabelle, is possible, and is left as an open future work direction.

We implemented Algorithm 10 in SML, the meta-language of Isabelle. The SML program takes as input
a component C and returns not only a simplified atomic component atomic(C), but also a proved Isabelle
theorem of the fact C' = atomic(C). The simplification program, as well as a number of other procedures
to perform compatibility checking, validity checking, etc., form what we call the Analyzer in Fig. 11.

The Translator takes as input a Simulink model and produces an RCRS/Isabelle theory file containing: (1)
the definition of all atomic and composite components representing the Simulink diagram; and (2) embedded
bottom-up simplification procedures and the corresponding correctness theorems. By running this theory
file in Isabelle, we obtain an atomic component corresponding to the top-level Simulink model, equivalent to
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RCRS theory and component library

Options (Isabelle theory files)
(translation strategy, etc.)
l ——> incompatiblity detection
Analyzer internal variable elimination
Translator (built on top of —> auto generated top-level contract
Simulink RCRS model Isabelle —— refinement checking
of the diagram theorem prover)

Figure 11: The RCRS toolset.

the original composite component. As a special case, if the Simulink diagram contains inconsistencies (e.g.,
division by zero), these are detected by obtaining Fail as the top-level atomic component. The error can be
localized by finding earlier points in the Simulink hierarchy (subsystems) which already resulted in Fail.

As mentioned earlier, how to obtain a composite component from a graphical block diagram is an inter-
esting problem. This problem is studied in depth in [34], where several translation strategies are proposed.
These various strategies all yield semantically equivalent components, but with different trade-offs in terms
of size, readability, effectiveness of the simplification procedures, and so on. The Translator implements all
these translation strategies, allowing the user to explore these trade-offs. Further details on the translation
problem are provided in [34, 69]. A proof that the translation strategies yield semantically equivalent com-
ponents is provided in [70]. This proof, which has been formalized in Isabelle, is a non-trivial result: the
entire formalization of the translation algorithms and the proof is 13579 lines of Isabelle code.

We have used the RCRS toolset on several case studies, including a real-life benchmark provided by
the Toyota motor company. The benchmark involves a Fuel Control System (FCS) described in [49, 50].
FCS aims at controlling the air mass and injected fuel in a car engine such that their ratio is always
optimal. This problem has important implications on lowering pollution and costs by improving the engine
performance. Toyota has made several versions of FCS publicly available as Simulink models at https:
//cps-vo.org/group/ARCH/benchmarks.

We have used the RCRS toolset to process two of the three Simulink models in the FCS benchmark suite
(the third model contains blocks that are currently not implemented in the RCRS component library). A
typical model in this set has a 3-layer hierarchy with a total of 104 Simulink block instances (97 basic blocks
and 7 subsystems), and 101 connections out of which 8 are feedbacks. Each basic Simulink block is modeled in
our framework by an atomic STS component (possibly stateless). These atomic STS components are created
once, and form part of the RCRS implementation, which is reused for different Simulink models. The
particular FCS diagram is translated into RCRS using the Translator, and simplified within Isabelle using
our SML simplification procedure. After simplification, we obtain an atomic deterministic STS component
with no inputs, 7 outputs, and 14 state variables. Its contract (which is 8337 characters long) includes a
condition on the state variables, in particular, that a certain state variable must always be non-negative (as
its value is fed into a square-root block). This condition makes it not immediately obvious that the whole
system is valid (i.e., not Fail). However, we can show after applying the transformation sts2qltl that the
resulting formula is satisfiable, which implies that the original model is consistent (i.e., no connections result
in incompatibilities, there are no divisions by zero, etc.). This illustrates the use of RCRS as a powerful
static analysis tool. More details on the FCS case study are provided in [34, 69, 35].

An additional case study is provided in [71], where the RCRS theory and toolset are applied for modeling
systems in languages for Programmable Logic Controllers. As an example [71] models a system written in
ladder logic for turning on and off lights according to a certain pattern.
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7 Related Work

Several formal compositional frameworks exist in the literature. Most closely related to RCRS are the
frameworks of FOCUS [18], input-output automata [58], reactive modules [6], interface automata [25], and
Dill’s trace theory [32]. RCRS shares with these frameworks many key compositionality principles, such as
the notion of refinement. At the same time, RCRS differs and complements these frameworks in important
ways. Specifically, FOCUS, I0-automata, and reactive modules, are limited to input-receptive systems,
while RCRS is explicitly designed to handle non-input-receptive specifications. The benefits of non-input-
receptiveness are discussed extensively in [86] and will not be repeated here (see also [88]). Interface automata
are a low-level formalism whereas RCRS specifications and reasoning are symbolic. For instance, in RCRS
one can naturally express systems with infinite state-spaces, input-spaces, or output-spaces. (Such systems
can even be handled automatically, provided the corresponding logic they are expressed in is decidable.) Both
interface automata and Dill’s trace theory use a single form of asynchronous parallel composition, whereas
RCRS has three primitive composition operators (serial, parallel, feedback) with synchronous semantics.

Our work adapts and extends to the reactive system setting many of the ideas developed previously in a
long line of research on correctness and compositionality for sequential programs. This line of research goes
back to the works of Floyd, Hoare, Dijkstra, and Wirth, on formal program semantics, weakest preconditions,
program development by stepwise refinement, and so on [38, 47, 30, 89]. It also goes back to game-theoretic
semantics of sequential programs as developed in the original refinement calculus [12], as well as to contract-
based design [61]. Many of the concepts used in our work are in spirit similar to those used in the above
works. For instance, an input-output formula ¢ used in an atomic component in our language can be seen
as a contract between the environment of the component and the component itself: the environment must
satisfy the contract by providing to the component legal inputs, and the component must in turn provide
legal outputs (for those inputs). On the other hand, several of the concepts used here come from the world
of reactive systems and as such do not have a direct correspondence in the world of sequential programs.
For instance, this is the case with feedback composition.

RCRS extends refinement calculus from predicate to property transformers. Extensions of refinement
calculus to infinite behaviors have also been proposed in the frameworks of action systems [13], fair action
systems [14], and Event B [3]. These frameworks use predicate (not property) transformers as semantic
foundation; they can handle certain property patterns (e.g., fairness) by providing proof rules for these
properties, but they do not treat liveness and LTL properties in general [14, 91, 46]. The Temporal Logic
of Actions [53] can be used to specify liveness properties, but does not distinguish between inputs and out-
puts, and as such cannot express non-input-receptive components. A thorough comparison of the relational
interfaces precursor of RCRS and contract frameworks for system design [15] is made in [66].

Our specifications can be seen as “rich”, behavioral types [54, 25]. Indeed, our work is closely related
to programming languages and type theory, specifically, refinement types [39], behavioral types [64, 55, 29],
and liquid types [75].

Behavioral type frameworks have also been proposed in reactive system settings. In the SimCheck
framework [76], Simulink blocks are annotated with constraints on input and output variables, much like
stateless components in RCRS. RCRS is more general as it also allows one to specify stateful components.
RCRS is also a more complete compositional framework, with composition operators and refinement, which
are not considered in [76]. Other behavioral type theories for reactive systems have been proposed in [26,
21, 33]. Compared to RCRS, these works are less general. In particular, [26, 33] are limited to specifications
which separate the assumptions on the inputs from the guarantees on the outputs, and as such cannot
capture input-output relations. [21] considers a synchronous model which allows to specify legal values of
inputs and outputs at the next step, given the current state. This model does not allow to capture relations
between inputs and outputs within the same step, which RCRS allows.

Our work is related to formal verification frameworks for hybrid systems [5]. Broadly speaking, these
can be classified into frameworks following a model-checking approach, which typically use automata-based
specification languages and state-space exploration techniques, and those following a theorem-proving ap-
proach, which typically use logic-based specifications. More closely related to RCRS are the latter, among
which, CircusTime [20], KeYmaera [41], and the PVS-based approach in [2]. CircusTime can handle a larger
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class of Simulink diagrams than the current implementation of RCRS. In particular, CircusTime can handle
multi-rate diagrams, where different parts of the model work at different rates (periods). On the other hand,
CircusTime is based on predicate (not property) transformers, and as such cannot handle liveness properties.
KeYmaera is a theorem prover based on differential dynamic logic [67], which is itself based on dynamic
logic [43]. The focus of both KeYmaera and the work in [2] is verification, and not compositionality. For
instance, these works do not distinguish between inputs and outputs and do not investigate considerations
such as input-receptiveness. ClawZ is a translator of Simulink diagrams into Z [9]. The work of [74] dis-
tinguishes inputs and outputs, but provides a system model where the output relation is separated from
the transition relation, and where the output relation is assumed to be total, meaning that there exists an
output for every input and current state combination. This does not allow to specify non-input-receptive
stateless components, such as for example the Div component from §3.

Our component algebra is similar to the algebra of flownomials [83] and to the relational model for non-
deterministic dataflow [45]. In [23], graphs and graph operations which can be viewed as block diagrams
are represented by algebraic expressions and operations, and a complete equational axiomatization of the
equivalence of the graph expressions is given. This is then applied to flow-charts as investigated in [78]. The
translation of block diagrams in general and Simulink in particular has been treated in a large number of
papers, with various goals, including verification and code generation (e.g., see [87, 60, 22, 56, 79, 16, 92, 93,
94, 62]). Although we share several of the ideas of the above works, our main goal here is not to formalize
the language of block diagrams, neither their translation to other formalisms, but to provide a complete
compositional framework for reasoning about reactive systems.

RCRS is naturally related to compositional verification frameworks, such as [42, 1, 59, 80, 44, 27, 28].
In particular, compositional verification frameworks often make use of a refinement relation such as trace
inclusion or simulation [80, 44]. However, the focus of these frameworks is different than that of RCRS.
In compositional verification, the focus is to “break down” a large (and usually computationally expensive)
verification task into smaller (and hopefully easier to calculate) subtasks. For this purpose, compositional
verification frameworks employ several kinds of decomposition rules. An example of such a rule is the so-
called precongruence rule (i.e., preservation of refinement by composition): if P; refines (1, and P refines
Q2, then the composition Py || P refines Q1]|Q2. This, together with preservation of properties by refinement,
allows us to conclude that P || Py satisfies some property ¢, provided we can prove that Q||Q2 satisfies ¢.
The latter might be a simpler verification task, if ()7 and @2 are smaller than P; and P,. The essence of
compositional verification is in finding such abstract versions @1 and @2 of the concrete processes in question,
P, and P», and employing decomposition rules like the one above in the hope of making verification simpler.
RCRS can also be used for compositional verification: indeed, RCRS provides both the precongruence rule,
and preservation of properties by refinement. Note that, in traditional settings, precongruence is not always
powerful enough, and for this reason most compositional verification frameworks employ more complex
decomposition rules (e.g., see [63]). In settings which allow non-input-receptive components, such as ours,
there are indications that the precongruence rule is sufficient for compositional verification purposes [81],
although more work is required to establish this in the specific context of RCRS. Such work is beyond the
scope of the current paper. We also note that, beyond compositional verification with precongruence, RCRS
provides a behavioral type theory which allows to state system properties such as compatibility, which is
typically not available in compositional verification frameworks.

Refinement can be seen as the inverse of abstraction, and as such our framework is related to general
frameworks such as abstract interpretation [24]. Several abstractions have been proposed in reactive system
settings, including relational abstractions for hybrid systems, which are related to Simulink [77]. The focus
of these works is verification, and abstraction is used as a mechanism to remove details from the model
that make verification harder. In RCRS, the simplification procedure that we employ can be seen as an
abstraction process, as it eliminates internal variable information. However, RCRS simplification is an ezact
abstraction, in the sense that it does not lose any information: the final system is equivalent to the original
one, and not an over- or under-approximation, as is usually the case with typical abstractions for verification
purposes.
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8 Conclusion

We presented the Refinement Calculus of Reactive Systems (RCRS), a compositional framework for model-
ing and reasoning about reactive systems. In contrast to other frameworks, in RCRS we are able to model
input-output systems which are both non-deterministic and non-input-receptive, which allows for local com-
patibility checks similar to type checking in programming languages. RCRS contains a rich language which
allows one to describe both atomic and composite systems with synchronous behavior. The semantics of
RCRS is based on the theory of monotonic property transformers, an extension of the theory of monotonic
predicate transformers from classic refinement calculus. Among other methods for symbolic reasoning, we
presented techniques for symbolic composition (reducing a composite system to an atomic system), check-
ing compatibility, and checking refinement. We also briefly presented the RCRS toolset which includes a
full implementation of RCRS in the Isabelle theorem prover (more than 27k lines of Isabelle code) and
a Simulink-to-RCRS translator. This paper focuses on the theory and methodology of RCRS, its formal
semantics, and techniques for symbolic and computer-aided reasoning. For more information about the
toolset we refer the reader to the relevant papers [34, 69, 35, 36, 70, 37], as well as the toolset’s web site
http://rcrs.gitlab.io/ which contains up-to-date information.
RCRS is an ongoing project, and a number of problems remain open. Future work directions include:

e An extension of the framework to systems with algebraic loops, which necessitates handling instan-
taneous feedback. Here, the preliminary ideas of [73] can be helpful in defining the semantics of in-
stantaneous feedback. However, [73] does not provide solutions on how to obtain symbolic closed-form
expression for the feedback of general components.

e Fxtension of the results of §5.5 to general components, possibly non-deterministic or non-decomposable.

e An extension of the framework to acausal systems, i.e., systems without a clear distinction of inputs
and outputs [40].

e An extension of the framework to stochastic systems.

e The development of better symbolic reasoning techniques, such as simplification of logical formulas,
decision procedures, etc.

e Application of the framework to other domains, such as machine learning and Al.
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