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ABSTRACT
Recent breakthroughs in deep-learning (DL) approaches have re-
sulted in the dynamic generation of trace links that are far more
accurate than was previously possible. However, DL-generated
links lack clear explanations, and therefore non-experts in the do-
main can find it difficult to understand the underlying semantics of
the link, making it hard for them to evaluate the link’s correctness
or suitability for a specific software engineering task. In this paper
we present a novel NLP pipeline for generating and visualizing
trace link explanations. Our approach identifies domain-specific
concepts, retrieves a corpus of concept-related sentences, mines
concept definitions and usage examples, and identifies relations be-
tween cross-artifact concepts in order to explain the links. It applies
a post-processing step to prioritize the most likely acronyms and
definitions and to eliminate non-relevant ones. We evaluate our
approach using project artifacts from three different domains of
interstellar telescopes, positive train control, and electronic health-
care systems, and then report coverage, correctness, and potential
utility of the generated definitions. We design and utilize an expla-
nation interface which leverages concept definitions and relations
to visualize and explain trace link rationales, and we report results
from a user study that was conducted to evaluate the effectiveness
of the explanation interface. Results show that the explanations
presented in the interface helped non-experts to understand the
underlying semantics of a trace link and improved their ability to
vet the correctness of the link.
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1 INTRODUCTION
Software traceability establishes connections between related arti-
facts, and then utilizes those links to support numerous software
engineering tasks such as safety assurance, impact analysis, and
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compliance verification [12]. However, given the non-trivial cost
and effort of manually creating trace links, researchers have vested
significant effort into automating the process using information
retrieval (IR) [7, 29, 39], machine learning (ML) [11], and more re-
cently, deep-learning techniques (DL) [22, 34]. In general, a project
stakeholder will issue a trace query, generate a set of links, and
inspect the resulting links to accept or reject individual results
either as a standalone vetting activity [28, 43] or at point-of-use.
Trace links generated using IR and ML approaches are often easy
to analyze, but tend to deliver relatively low accuracy on large
industrial datasets [37, 39]. However, recent advances in DL tracing
techniques have returned far higher-degrees of accuracy. For exam-
ple, in tracing from requirements to code, Lin et al., showed that
their TraceBERT approach, which leveraged pretrained BERT mod-
els and applied multi-staged fine-tuning, delivered highly accurate
trace results for three large, open-source systems achieving Mean
Average Precision (MAP) scores greater than 0.86 across several
large datasets [34]. Unfortunately, DL-generated trace links can
be difficult to interpret without supporting explanations of their
underlying semantics.

For example consider a requirement stating that ‘The robot shall
move to the next position in the order specified by the task plan’,
and a corresponding design definition that ‘The RCU shall publish
an AckermannDriveStamped message to the robot’s control topic’.
Despite having no meaningful common terms the artifacts are
linked because the design solution contributes towards satisfying
the requirement. An analysis of the concepts shows that Ackerman-
nDriveStamped messages are closely associated with movements
(i.e., carry velocity, angles, and timestamps) and that task plans
often involve movement. A domain expert, in this case, someone
familiar with the Robotic Operating System (ROS), could likely in-
spect the two artifacts, apply their innate knowledge of the domain,
and intuitively understand the connection between the Ackerman-
nDriveStamped messages and the robot’s movement. However,
someone lacking domain expertise or knowledge of the specific
project may have difficulty understanding the underlying concepts
and connecting the two artifacts. We therefore believe that expla-
nations are useful across a range of expertise levels including non-
experts (e.g., students) and those with partial domain knowledge
(e.g., onboarding team members).

This paper therefore addresses the challenge of trace link ex-
plainability, defined as the ability to explain why two artifacts are
related to each other. Trace explanations can include both textual
information as well as visualizations, and are designed to facilitate
reasoning and understanding of semantic relations. They are par-
ticularly important when analysts or trace link users lack domain
expertise to independently understand the underlying semantics of
a trace link, especially as it has been shown that non-experts often
mistakingly discard correct links during the link vetting process
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Figure 1: Workflow of our method for extracting the explanation elements from scratch.

[28]. Our work addresses a current gap in the literature, as previous
studies have focused on trace link accuracy [39, 54], maintainabil-
ity [41] and efficiency[33], while overlooking the importance of
explainability. In prior work, Dick [30], proposed the use of trace
rationales in which link creators or vetters would document the
rationales behind a link. However, manually annotating links with
rationales requires nontrivial effort, thereby increasing the overall
cost and effort of creating links. Second, as previously stated, DL
approaches often produce links with underlying rationales that are
obscure to non-experts. We therefore propose an approach for ex-
plaining trace links that aim to automatically generate explanations
through mining, extracting, and learning rationales from external
knowledge sources.

Our NLP pipeline executes the following automated steps to
generate a link explanation. First, it extracts domain-specific con-
cepts from the artifacts, and then uses these concepts within search
queries to retrieve the broader context of each concept from di-
verse knowledge sources. The resulting dataset constitutes a con-
text corpus for the target project. Next, it applies Natural Language
Processing (NLP) techniques to extract various forms of structured
knowledge from the context corpus, and finally, incorporates this
structured knowledge into a trace link explanation that includes
both textual descriptions and visualization techniques. We evaluate
our approach against three industrial datasets, reporting accuracy
and coverage metrics. Further, we conduct a controlled user study
and report results showing that utilizing the generated descriptions
as rationales within a trace link explanation interface helps non-
experts to understand artifact and link semantics and to perform
the trace link vetting task more effectively.

Our work makes three primary contributions. First, we propose,
implement, and evaluate an NLP pipeline for automatically identi-
fying domain specific concepts and mining acronym expansions,
definitions, and contextualized usage examples. Second, we address

the challenging problem of data sparsity for specific project do-
mains by integrating both top-down and bottom-up data mining
techniques so that we can adapt our approach to different domains
with different data sources. Finally, we evaluate the effectiveness
of our approach through designing and evaluating an explanation
interface with non-expert users. The remainder of this paper is
organized as follows. Section 2 provides additional background
information. Sections 3 and 4 describe the three datasets used in
our study and present the NLP pipeline used to generate each part
of our trace link explanation. Section 5 takes a quantitative look at
each technique and its utility across three datasets, while Section 6
describes our design of the explanation interface and describes the
controlled user-study that was conducted to evaluate its effective-
ness. Finally Sections 7 to 9 discuss threats to validity, related work
and present conclusions.

2 TRACE LINK EXPLANATIONS
As previously explained, we seek to generate explanations that
explain the rationale for trace links in a way that is useful for non-
experts, as they are the users who experience the greatest difficulty
in evaluating the correctness of a link.

2.1 The Semantic Gap
Various types of artifacts, such as requirements and design, are
often written using different and potentially mismatched terminol-
ogy. This mismatch can make it challenging for non-experts in the
domain to understand why two artifacts are connected by a trace
link. A few researchers have explored ways to bridge this gap. Guo
et al. proposed a technique for generating trace link rationales [25];
however, their explanations were deeply coupled with heuristics
embedded in their underlying trace-link generation algorithms [26].
Liu et al. [36] used the generalized vector space model to improve
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Table 1: Software project datasets used for explanatory and evaluation purposes are drawn from three distinct domains

Name Domain Source Target Trace AvailableCount Artifact Description Count Artifact Description Links
CCHIT Electronic Health Records 117 World Vista Requirements 588 CCHIT Regulations 1065 http://coest.org
CM1 NASA - Telescope 54 Low-level requirements 23 High-level requirements 46 http://coest.org
PTC Positive Train Control 263 Subsystem requirements 964 System requirements 583 Proprietary

the quality of generated trace links, and used the HiGrowth al-
gorithm [59] to construct a hierarchical model in which concepts
were linked through synonyms, acronyms, ancestors, and siblings;
however, they did not consider generating trace link explanations.
In this paper, we explore these, and additional techniques, with a
focus on explaining the semantics of each individual artifact and
the conceptual relationships across pairs of linked artifacts.

2.2 Artifact Semantics
Trace link explanations should first provide descriptions of concepts
within individual artifacts. We identified three important aspects
of artifact explanations for enhancing the understandability of tech-
nical artifacts. These included (1) acronym expansions, (2) concept
definitions, and (3) contextualized usage examples. Building upon
our previous example we could expand the internal project acronym
RCU to “Robotic Control Unit", provide a definition for an Acker-
mannDriveStamped message as ‘Time stamped drive command for
robots with Ackermann steering’, and provide an example context
for the use of the term AckermannDriveStamped message.

2.3 Link Semantics
The explanation also needs to describe the semantic relationship
between two linked artifacts by identifying related concepts across
source and target artifacts. We explore two primary ways in which
concept-to-concept associations could be explained. First, as a
triplet written as < 𝑐𝑖 , 𝑣, 𝑐 𝑗 >, where the concepts 𝑐𝑖 and 𝑐 𝑗 are con-
nected with a descriptive phrase 𝑣 to indicate their correlation [38].
As Liu et al. [36] demonstrated, there are multiple ways in which
two semantically related concepts can be connected over a rela-
tion path. Examples might include (‘AckermannDriveStamped msg’,
‘published to’, ‘teleop topic’) or (‘teleop’, ‘controls’,‘robot movement’).
While we would ideally use natural language [56] to generate ex-
planations, dynamically constructing clear and concise sentences is
a difficult challenge, and therefore we focus this paper on the initial
challenge of discovering meaningful triplets that explain trace link
relations.

2.4 Proposed Solution
Fig. 1 provides a high-level overview of our approach. In Step 1,
we analyze project-level artifacts to extract domain-specific con-
cepts – focusing on noun phrases. This step produces thousands of
candidate phrases, including both domain-specific and commonly
used phrases. Step 2 then filters the list of concepts identified in
the project artifacts to remove general concepts (e.g., data struc-
ture, user interface). The remaining concepts become the targets
of our explanations – first for individual artifacts, and second as
part of the trace link explanations. In step 3, we retrieve a domain
corpus of sentences containing these concepts, exploring two tech-
niques based on top-down filtering of a large domain corpus, and

bottom-up search, driven by the project-specific concepts. This pro-
duces a large corpus of sentences – each of which includes at least
one targeted domain-specific concept. Step 4 applies a variety of
NLP techniques to expand acronyms, generate definitions, discover
context, and to build relation triplets – all of which are needed
in the explanation. In Step 5, we build a machine learning quality
control model which automatically filters non-relevant sentences
to improve the accuracy of our explanations. Finally, in Step 6,
these explanatory elements are visualized and presented to the user
within the explanation interface.

3 PROJECT DOMAINS: DATASETS
Throughout the remainder of this paper we focus explanations
and experimental analysis on three target software engineering
domains of electronic health-care, a space telescope, and positive
train control (cf. Table 1). The domains were selected for their
diversity, availability of project artifacts, and because each one rep-
resented a technical domain with specific terminology and jargon.
Two datasets are publicly available, whilst one is proprietary and
provided by our industrial collaborators.

• CCHIT is from the domain of electronic health-care records
(EHR) and includes trace links between 117 requirements from
the US Veteran’s WorldVista healthcare system (e.g., ‘The system
shall allow event-delay capability for pre-admission, discharge,
and transfer orders’), and 588 regulatory requirements specified
by the USA Certification Commission for Health Information
Technology (CCHIT) (e.g., ‘The system shall provide the ability
to send a query for medication history to PBM or pharmacy to
capture and display medication list from the EHR’).

• CM1 includes 54 low-level requirements for a NASA spacecraft
telescope (e.g., ‘The TMALI CSC serves as an intermediate man-
ager of EVENT data supplied by the DCI Driver...’), traced to
23 higher level ones (e.g., ‘The DPU-TMALI shall be capable of
making data available from the DCI to DPU-DPA. DPU-TMALI
will populate a ring buffer...’). This dataset is quite small and the
project contains obscure technical jargon with limited online
documentation.

• PTC is from the domain of Positive Train Control and is provided
by our industry collaborator. It traces 263 subsystem require-
ments to 964 system requirements. We cannot provide examples
due to the proprietary nature of this dataset.

4 MINING EXPLANATION ELEMENTS
The concept detection step is designed to extract high-quality
phrases, representing key domain concepts, from a text corpus.
Several researchers have shown the benefits of a phrase-based ap-
proach based on information retrieval, taxonomy construction and
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topic modeling [16, 20, 21, 52]. For example, Liu et al. [35] pro-
posed a technique that integrates phrase mining techniques with
phrasal segmentation, and argued that their approach outperforms
many other approaches. It starts by identifying the most common
n-grams and then applies quality criteria to remove low-quality, less
common concepts; but in doing so it removes potentially obscure
technical phrases that are of particular relevance for explaining
hard-to-understand trace links. For example, the previously dis-
cussed ‘AckermannDriveStamped message’ would be unlikely to
survive the filtering process. The approach requires users to provide
a small set of example phrases for training purposes.

Shang [52] proposed Autophrase which used phrases from sec-
tion titles in repositories such as wikipedia, to train their model to
extract concept phrases composed of nouns, adjectives, and adverbs.
As a precursor to theworkwe present in this paper, we conducted an
initial series of experiments using Autophrase trained onWikipedia
to produce a huge concept list covering a wide range of domains.
However, we found that Autophrase did not perform well in our tar-
geted software engineering domains, primarily because Wikipedia
lacked sufficient training data for our domains. Autophrase not only
overlooked important concepts but also extracted phrases with in-
correct grammar and/or redundant adjectives. We concluded that a
key obstacle in using ML based models to identify core concepts
for trace link explanations is the lack of sufficient training data for
specific software engineering project domains.

4.1 Adopting a Dependency Analysis Approach
Previous research has noted the importance of noun-phrases in
the creation and comprehension of trace links [42, 60, 61]. Given
the issues we encountered in extracting meaningful domain con-
cepts using ML techniques, coupled with the importance of noun
phrases, we opted to leverage Stanford Dependencies (SD) analysis
[13, 14] and focused upon detecting meaningful noun phrases as
domain concepts. Stanford Dependency analysis identifies direct
relations between tokens within a sentence by categorizing their
relationships into pre-defined types. This technique is a rule-based
approach built using a pre-trained phrase structure grammar parser.
The “compound” relations in SD refer to a noun compound modifier
of an NP POS-tag that is used to annotate the head noun in a noun
phrase [15]. As illustrated in Fig. 2, we use this type of dependency
to determine the boundary of a noun phrase – in this example,
applied to a sentence from the EHR domain.

4.2 Filtering out General Concepts
Analyzing project artifacts in this way tends to produce a large
number of concept phrases – some of which are domain specific
phrases, worthy of explanation, while others are commonly occur-
ring phrases with well-understood meaning. As we do not wish to
clutter our explanations with superfluous information, we reduce
the concept list to include only domain-specific ones. We achieve
this through generating a black list of general concepts. This is
achieved by applying the Stanford Dependency analysis to a mas-
sive domain-independent corpus, identifying the most commonly
occurring concepts, and storing them as the black list. For purposes
of this study, we used the UMBC webBase corpus [27], which was
built using web-scraping in 2007 by the Stanford WebBase project.

The dataset contains English paragraphs with over three billion
words. It is 13GB in compressed tar file format and is 48G when
uncompressed. After applying the concept detection on this corpus
we obtained 2,614,601 noun concepts. We ranked concepts by their
frequency, included concepts that appeared more than 1,000 times
in our black list. The black list represented the top 39,504 ( 1.5%) of
the detected concepts. For each of our three datasets, we removed
any concept found in the black list. Examples of project-specific
concepts as well as blacklisted ones are listed in Table 2.

4.3 Constructing a Concept Domain Corpus
The next step in our pipeline focuses on building a domain cor-
pus in which each sentence includes at least one project-relevant
domain concept. Sentences are mined from either an existing gen-
eral corpus or through searching the internet for relevant text.
However, we observed a huge discrepancy in the amount of text
available for different domains, and this likely accounts for the dif-
ferent outcomes we report later in this paper for each of our three
projects. Popular domains, such as biomedical and finance, have
numerous related white papers and websites describing the domain,
and sometimes even a textually rich, well-organized corpus (e.g.
NCBI disease corpus [19], Reuters Corpora[31]), collated by domain
experts. However, many software projects have no previously col-
lated text corpus, and furthermore, some relatively obscure domains
have very limited web presence. To address these dual problems,
we apply automated corpus collection techniques to build a domain
corpus for each targeted project whilst ensuring that retrieved docu-
ments have sufficient affinity to the targeted project. Our objective
is to mine a focused corpus covering all concepts in the target
project, and we explored both “top-down” and “bottom-up” corpus
collection strategies.

4.3.1 Top-down approach: The top-down approach starts from a
relatively large corpus and operates downwards to identify and
retain relevant text, whilst eliminated all other parts. The corpus
documents are first tokenized into sentences, and then the Knuth-
Morris-Pratt (KMP) [48] string matching algorithm is used to effi-
ciently examine whether the sentence contains at least one of the
identified project concepts. Matching sentences are then mapped
to their associated concepts. We utilized the ArXiv repository [2]

Table 2: Examples of Project and Blacklisted Concepts

CCHIT CM1

Patient Health Information EEPROM filesystem
HL7 / ASTM Continuity X-ray sensitive CCD imager
HIPAA Risk Assessment DPU Task Monitoring
Cardiovascular Tests FSW Tasks
NCPDP Script DCI Error Interrupt

PTC BlackList

Wayside Data User Interface
EMP Protocol Team Manager
OBU Transitions Family Health
Class C Protocol Network Operator
Train Control Functions Useful Results
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(a) Three criteria for a concept definition.

(b) Handle the transformed sentence with a clause

Figure 2: An example of using using Stanford Dependency based rules for concept definition and context extraction. This
approach is more robust than pattern matching on complex sentences

which includes abstracts and the full-text of academic papers across
physics, computer science, biology and four other large domains
[1], and then downloaded 248GB of plain text data through an API
provided by ArXiv for this purpose.

4.3.2 Bottom-up approach: The bottom-up approach starts with
an empty domain corpus and then gradually adds data by search-
ing external resources using a public search engine (i.e., Bing for
this study). Search queries are formulated from the previously ex-
tracted project concepts, and retrieved websites are scraped to find
sentences containing the targeted concept. We informally experi-
mented with several query templates and found that the template
“what is inbody:< 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 > in < 𝑑𝑜𝑚𝑎𝑖𝑛 𝑛𝑎𝑚𝑒 >” returned the
most consistently relevant results using the Bing search engine,
where < 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 > refers to a project concept that has been auto-
matically detected and < 𝑑𝑜𝑚𝑎𝑖𝑛 𝑛𝑎𝑚𝑒 > (i.e., Electronic Health
Record, Positive Train Control, and NASA) helps the search en-
gine to narrow the scope of the search and to disambiguate similar
concepts across different domains. Once results were returned, we
apply the same technique as the top-down approach to remove
sentences that do not contain at least one project concept.

4.4 Extracting Explanation Elements
We then apply a series of NLP techniques to extract the following
descriptions and definitions from the constructed corpus.

4.4.1 Acronym descriptions: We define a concept as an acronym if
all the alphabetic characters in the concept are upper-case. We then
utilize the Schwartz-Hearst algorithm [50] to mine the acronyms
from the collected corpus. This algorithm leverages pattern match-
ing and heuristic rules (e.g. phrase length) to detect the long and
short forms of the acronyms and returns them as mapped pairs. As
reported by the authors, the Schwartz-Hearst algorithm achieved

82% recall at precision of 96% when applied to the biomedical do-
main, outperforming methods previously proposed by Chang et al.
[10] and Pustejovsky et al. [47].

4.4.2 Definitions and Context. Given the corpus of concept-specific
sentences, we utilize Stanford Dependencies heuristic rules to ex-
tract definitions and context descriptions. For context extraction,
we first check whether a concept is the nominal subject of a sen-
tence and is connected to another word via a “nsubj” dependency.
A nominal subject is a noun phrase which is the syntactic subject
of a clause [14], and therefore applying this rule ensures that the
sentence focuses on the target concept. To identify definitions, we
also check the verb connected to the target concept. As the depen-
dencies form a directed relation graph we locate the associated verb
by simply searching for verbs that are at most two-hops away from
the the target concepts, while simultaneously constraining paths to
contain only “nsubj‘’ and “cop” (copula) dependencies, where the
“cop” dependency refers to a relation between a copular verb and its
complements. As definitions usually follow a set of known patterns,
such as "<concept> is/are/do something", we only select the sen-
tences whose verbs are either “is”, “are”, or with pos tags of “VBZ”
(referring to present tense verbs). We observed the dependencies-
based approach to be more robust for handling complex sentences
than a simple pattern matching approach, as illustrated in Fig. 2
which shows how rules can be used to extract a definition for “CCD”
from sentences with different levels of complexity.

4.4.3 Filtering non-domain acronyms, definitions, and descriptions:
The automated extraction methods inevitably introduce imprecise
results by including sentences and acronyms outside the scope of
the target project domains. To address this issue, we developed a
deep learning topic model and leveraged it as a binary classifier to
identify whether an acronym’s long name, a definition, or a context
sentence belongs to the target project or not. We trained the model
in a weakly supervised manner by utilizing actual artifacts (i.e.,
requirements, design definitions) from the target project as positive
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examples and sentences from other sources ( e.g. artifacts from other
projects),as negative examples. We used these example to train the
model to identify sentences belonging to each target project.

The trained model accepts a tokenized candidate sentence as
input, and leverages a BERT-based Language Model (LM) to analyze
the semantic meaning of the tokenized sentence. It uses a small
Multi-layer Perceptron (MLP) to predict a likelihood score between
0 and 1, representing the affinity between each sentence and the
targeted project domain. In this study, we used SciBERT[9] as our
language model, which has been pre-trained with massive papers
in difference science domains. Based on initial observations of the
results, we filtered out all sentences scoring less than 0.5. Further,
we ranked all remaining definitions, contextual information, and
acronym explanations according to their scores, and in each case,
selected the one with the highest score. We evaluated the accuracy
achieved with and without this filtering step to test its utility on the
entire corpus of retrieved sentences for all three projects and found
that accuracy improved from 63.33% to 86.7% for the bottom-up
approach and from 50.94% to 66.04% for the top-down approach
thereby demonstrating the importance of this part of the pipeline.

4.4.4 Relation Discovery: The previous steps have focused on de-
scribing concepts found in each individual artifact. In this step we
redirect our attention to describing the link itself by applying three
techniques for identifying relations between concepts. First, we
extract and formulate relations between concepts by exploring the
simple <Subject, Verb, Object> grammar in the corpus we have col-
lected, by leveraging Stanford dependencies that incorporate verb
tokens. More precisely, we use the “nsubj” and “xsubj” tags to find
the subject of the verb and “obj” dependencies to identify the object
of the verb, and only accept triplets for which the verb represents
a hierarchical or equivalency relationship (e.g., includes), as this
implies a parent-child relation which can be used to build meaning-
ful cross-artifact relations. For example, the triplet <navigational
information, includes, operational hazards> could help us to un-
derstand why a requirement stating that “The OBU shall transmit
navigational information to the back office” is linked to the derived
requirement that ”The WIU shall detect operational hazards.” We
created a set of eight seed verbs representing hierarchical relations,
and then expanded this set by retrieving four additional synonyms
from WordNet [44]. We then combine all of the retrieved triplets
into a knowledge graph, in which the subjects and objects of the
triplet relations are used as vertices, and their inter-connecting
verbs are used as edges. Given two concepts distributed across a
pair of linked source and target artifacts, we use Dijkstra’s Algo-
rithm [18] to find the shortest path between each candidate concept
pair. The path, including its nodes and edges, constitutes a potential
explanation for an underlying trace link.

In addition, we consider two concepts as equivalent when their
lemmatized forms are identical or when one concept is a sub-
sequence of another (e.g. ‘TMALI’ versus ‘TMALI event queue’),
in which case we consider the shorter concept to be a semantic
abstraction of the longer one.

5 QUANTITATIVE ANALYSIS
In our first set of experiments, we investigate the potential use-
fulness of artifact and trace link explanations by evaluating the

Table 3: Number of acronyms exist in projects, and the pre-
cision and recall score for explaining these acronyms

Top-down Bottom-up
Acronym Precision Recall Precision Recall

CCHIT 109 51.79% 26.61% 100.00% 11.01%
CM1 46 0.00% 0.00% 0.00% 0.00%
PTC 318 27.54% 8.72% 70.00% 2.20%

correctness of the generated explanation elements and the percent-
age of artifacts and trace links for which associated elements were
mined. For each explanation element and each of the three projects
we addressed the following research questions:
RQ1: What percentage of the generated explanation elements are
correct with respect to the project domain?
RQ2: What percentage of the identified elements (i.e, acronyms or
domain concepts in artifacts) have corresponding correct explana-
tory elements for use in trace link explanations?

To answer these questions, three researchers evaluated the cor-
rectness of the generated acronyms, definitions, and context de-
scriptions. In some cases, our domain knowledge was sufficient
to directly determine whether a concept was correct; however, in
other cases, we reviewed documentation manuals and white papers
to discover or confirm the correct meaning of the concept.

5.1 Acronym Evaluation
Table 3 reports results for retrieving acronym descriptions for all
three projects. The top-down approach generated descriptions for
57, 1, and 69 acronyms at precisions of ~52%, 0%, and ~28% for for
CCHIT, CM1, and PTC respectively. This compares to only 15 and
11 acronym descriptions at 100% and ~64% precision for CCHIT
and PTC, and no acronyms found for CM1. There are two particu-
larly notable observations. First, the bottom-up approach returned
fewer, but more accurate results. This approach likely performed
better because search queries included more domain-specific con-
text than the top-down approach. Second, the pipeline completely
failed to retrieve any correct acronym descriptions for the CM1
project. While early phases of the pipeline produced 14 acronyms
the quality filter correctly eliminated 13 of these as the definitions
came from different domains. There are several primary reasons
for this failure. First, the acronyms in CM1’s design specification
refer to very low-level architectural components; second, the CM1
domain contains more technical jargon than either CCHIT or PTC;
and third, the domain of interstellar satellites has far fewer online
descriptions within white papers, websites, or other documents.
For all of these reasons, the acronym expansion failed in the CM1
project but produced useful results for CCHIT and PTC. These
results contrast clearly with prior claims that the Schwartz-Hearst
[50] algorithm returned 96% accuracy; however those prior results
focused on the mechanisms for extracting acronym descriptions
from a document in which correct descriptions were available.

5.2 Definition and Context Evaluation
Tables 4a and 4b report results from performing the manual evalu-
ation for top ranked definitions and contexts for each concept. The
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Table 4: Coverage and accuracy of the extracted sentences as
concept definition and context

Top-down Bottom-up
Extr. Correct Acc. Extr. Correct Acc.

CCHIT 15 12 80.00% 12 11 91.67%
CM1 1 1 100.00% 3 3 100.00%
PTC 16 7 43.75% 1 1 100.00%
Total 32 20 16 15

(a) Number and accuracy of project concepts which have defini-
tions extracted from corpus

Top-down Bottom-up
Extr. Correct Acc. Extr. Correct Acc.

CCHIT 85 55 64.71% 44 39 86.67%
CM1 7 2 28.57% 8 7 87.50%
PTC 88 17 19.32% 21 19 90.48%
Total 180 74 73 65

(b) Number and accuracy of project conceptswhich have context
extracted from corpus

top-down approach retrieved 15, 1 and 16 definitions with accura-
cies of 80%, 100%, and ~44% for CCHIT, CM1, and PTC respectively,
while the bottom-up approach retrieved 12, 3, and 1 definitions at
accuracies of ~92%, 100%, and 100% respectively. In the case of con-
textual descriptions the top-down approach retrieved 85, 7, and 88
definitions at accuracies of approximately 65%, 29%, and 19%, while
the bottom-up approach retrieved 44, 8, and 21 definitions at accu-
racies of approximately 87%, 88%, and 90%. Overall, the bottom-up
approach generally retrieved fewer but more accurate results. Again
we observe low retrieval rates for CM1, with only one definition
in the top-down approach and only three in bottom-up; however,
these were retrieved at 100% accuracy. The bottom-up approach
also underperformed for the PTC dataset, only finding one correct
acronym definition. Despite sending 1,780 unique concept queries
to the search engine, only 4.3% of them returned sentences with
direct concept matches. This compared to 16.2% and 36.2% direct
matches for CCHIT and CM1. This coverage problem has been ob-
served by previous researchers. For example, Zeng et al., reported
that only about half of the 30,000 terms found in the MESH Medi-
cal taxonomy, appeared anywhere in the PubMed database of 30
million paper abstracts [58]. False positives could likely be further
reduced by providing a more diverse set of training examples.

5.3 Concept Relation Evaluation
To evaluate concept relations, we examined the generated paths
for coverage and correctness. Unfortunately, the knowledge graph
suffered from a path sparsity issue and therefore few meaningful
paths were found between concepts in paired artifacts. The spar-
sity was primarily caused by limiting verbs to those representing
hierarchical relationships, thereby significantly reducing the size of
the triplet set. While accepting a broader set of verbs, creates a far
larger set of triplets and many more cross-artifact relations, the ma-
jority of these paths do not produce meaningful explanations. We
therefore opted to favor precision over recall and excluded multi-
hop paths generated from the knowledge graph in our explanation

interface. However, the heuristic rules for equivalencies and sub-
sequences, along with the 1-hop paths retrieved several interesting
explanations such as < 𝐼𝐶𝐷 − 9, 𝑢𝑠𝑒𝑑 𝑓 𝑜𝑟, 𝑏𝑖𝑙𝑙𝑖𝑛𝑔 >, resulting in 9,
26 and 96 concept relation explanations for the three projects.

5.4 Leveraging available Project Glossaries
While our bottom-up approach returned fairly accurate results,
there were a large number of artifacts for which no supporting
definitions were retrieved. We therefore decided to explore the
combination of both the bottom-up and top-down technique along-
side definitions provided by project-specific glossaries, and subse-
quently identified and retrieved a glossary for each project. The
CCHIT project traces the requirements in WordVista EHR system
to the CCHIT regulatory requirements, and we used a glossary
from the WordVista project [5] containing 352 acronyms with their
expanded names, and 451 concepts with associated definitions and
contextual examples. The provided CM1 glossary [3], provides long
names for 64 acronyms used in the project. Finally, we derived the
PTC glossary from the architecture specification document[4] of
Interoperable Train Control Network (ITCnet) released by the Me-
teorcomm company and containing 44 acronyms with long names
and 69 concepts with definitions. We checked for overlap of defini-
tions. Results reported in Fig. 3 bottom-up (green), top-down (red)
approaches, and glossaries (purple), show that different project
concepts were provided by each of the three techniques. Adding
the definitions generated by the bottom-up approach to each of
the existing glossaries increased explanation elements by ~195% for
CCHIT, ~33% for CM1, and 150% for PTC. Of course actual gains are
highly dependent upon the completeness of the baseline glossary.
Given the benefits of combining glossary and generated data, and
the accuracy of the bottom-up approach, we used these two data
sources in the user study described in the next section of this paper.

6 TRACE LINK EXPLANATION INTERFACE
We designed and developed an explanation interface and used it to
address the following two research questions:
RQ4: Does the trace link explanation interface help users to eval-
uate the similarity between two linked artifacts more effectively
than without the explanation?
RQ5: Which aspects of the explanation interface are most helpful
to users?

6.1 Designing the Explanation Interface
Weadopted the explanation design framework introduced byAnuyah
et al. [8] to guide the design and evaluation of our explanation inter-
face, and engaged in a series of three participatory design sessions
that included six members of our team with expertise in UX-Design
and/or Software Engineering. Through these sessions we identified
Software Engineering tasks, such as impact analysis and compliance
verification that would utilize traceability, and identified multiple
types of users. Of these, we focused primarily on people without
domain expertise (e.g., project newcomers) and people perform-
ing tasks across skill boundaries (e.g., a business analyst tracing
from requirements to low-level models or code) where they may
be exposed to terminology they are not familiar with.
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(a) CCHIT (b) CM1 (c) PTC

Figure 3: Number of the project concepts explained by project glossaries as well as our top-down and bottom-up approaches

We then identified a set of tasks that a user would perform
using the interface. These included identifying artifact types, ana-
lyzing artifact content, judging whether two artifacts are related,
and providing feedback on the correctness of the link. We then
brainstormed different ways of presenting the link explanations
in support of these tasks, and created a set of low-fidelity proto-
types. Each prototype was explored to understand its strengths
and weaknesses with respect to supporting the potential user tasks
and leveraging human perceptual capabilities [40, 45]. This activity
informed several design decisions, each of which is reflected in the
UI presented in 5.

First, our relation extraction and acronym expansion process
results in semantic relations among linked concepts. Connection
marks use a line to show a pairwise relationship between two items
and thus are appropriate for showing the relationship between two
concepts [45]. Second, concepts themselves are nominal types and
color encodings are particularly effective for nominal data. Addi-
tionally, using the same colors for the same concepts across the two
artifacts creates a perceptual grouping [45]. Finally, every concept
is accompanied by a quantitative “importance value”. Size encod-
ings, while not ideal for showing specific values, are appropriate for
comparison purposes and thus we chose to encode the importance
of a concept using font size [45].

The combined visual elements are intended to provide an overview
of the total related elements between the two artifacts, how they
are connected, and how strong the connections are. We adopt an
overview + detail approach [55] where the user is provided an at-a-
glance overview and can obtain details through mouse-over interac-
tions on the concept nodes or concept words themselves to get defi-
nitions, or on the connection edges to obtain a semantic relationship
description. We iterated through medium-fidelity mockups created
in Figma [17] to explore the effectiveness of the visual encodings
and interaction strategies. Our final prototype was built as a fully
functional web application for use in our evaluation and an inter-
active demo is available at https://trace-exp-study.github.io/pages.

6.2 Study Design
We conducted a controlled user study to evaluate the effectiveness
of our trace link explanation interface. We designed our study to

have two treatment conditions; showing explanations for the links
(TC 1) versus hiding explanations (TC 2). Our goal was to examine
the effect that receiving explanations would have for identifying
correct and incorrect trace links.

6.2.1 Participants. We recruited eight participants with the re-
quirement of having some prior experience working on a software
engineering project. We did not exclude participants according
to the number of years of experience or their specific role in a
project. All of our participants are currently graduate students of a
university in the United States and were recruited through email.
Participants were tasked to perform trace vetting on 30 links–of
which 18 were correct links, while the remaining 12 were incor-
rect. Each participant evaluated 10 links from each of the three
projects. Furthermore, 43% of definitions and acronyms were from
the project glossaries, 51% were generated dynamically using the
bottom-up approach, and 6% were found in both.

Figure 4: Two experiment groups were formed by sampling
an equal number of trace links from each of the three
projects. For each link we created a version with an expla-
nation and one without an explanation, and for a given link,
Group 1 received the explanation, whilst Group 2 did not.
Each group received half the links with explanations and
half without, meaning that the two groups received oppo-
site treatments. We then assigned an equal number of study
participants to each group. The order of links was randomly
shuffled for each participant, who was then asked to evalu-
ate the correctness of each presented link.

https://trace-exp-study.github.io/pages
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Figure 5: Snapshot of the trace link explanation user interface. In part 1, we used a text panel to display concept level expla-
nations including long acronym names, definitions, context and inter concept relationships based upon the current cursor
(roll-over) position. In part 2, we visualize the links by highlighting the concepts as they appear in the source and target arti-
facts. In part 3, we enlarge the concepts based on their importance and underscore the ones that have available explanations.

6.2.2 Procedure. We began the study by briefing participants about
the task that they would perform. Next, we directed participants
to our web-based explanation interface using the URL that we pro-
vided. Participants were asked to vet links as correct, incorrect, or
don’t know (if they were unable to confidently make a determina-
tion). Participants completed all of the vetting tasks in a random
order. In this case, links from the three domains discussed in sec-
tion 3 were presented randomly. During the session, participants
were asked to verbally explain their decision on vetting the links,
enabling us to collect both qualitative and quantitative data. The
study took about 30-45 minutes to complete.

We exposed each participant to the two treatment conditions,
with the aim of understanding the extent to which explanations
can guide them in differentiating between correct and incorrect
links. To address the potential bias of learning effects, we used
a between-subjects experimental design putting each participant
in one of two groups, such that participants in one group were
exposed to the opposite treatment condition for each of the links,
than participants in the second group (see Figure 4). Further, the
order in which links were presented to users was randomized for
each person.

6.3 Results
We examined our data using a combination of quantitative and
qualitative measures to understand the impact of our explanation
design on trace link vetting.

6.3.1 Quantitative result outcomes. Overall, our results show that
there was a significant improvement in accurately vetting links
when participants were provided with explanations (𝜌=.01994, 𝑝

< .05., 𝑑=0.820852). This finding indicates that the explanations
helped to guide our participants for identifying correct and incorrect
trace links. However, when we examined the differences for each
domain independently, we observed that there were no statistical
improvements (𝜌𝑃𝑇𝐶=.551677, 𝜌𝐶𝑀1=.18026, 𝜌𝐶𝐶𝐻𝐼𝑇 =.21684). We
attribute this finding to the fact that the data collected in each
domain was too small to arrive at a statistical conclusion.

6.3.2 Qualitative insights. All participants responded positively to
the explanations and expressed how helpful they were for the vet-
ting tasks. None of the participants were experts in the domains un-
der study and were therefore unfamiliar with many of the domain-
specific technical terms and acronyms in the artifact content. This
resulted in many participants selecting “don’t know” when they
were not given explanations. P4 stated, “I don’t know what this term
means. I want to know what things mean.” P6 noted, “The expla-
nations helped me to not just easily identify keywords, but better
understand what they mean.”

Participants also noted that receiving explanations reduced the
mental effort it took for them to comprehend the content of the arti-
facts, especially when the length was long. Most of the participants
struggled to understand the content meaning when presented with
long artifacts without explanations, often resulting in the “don’t
know” response. P8, for example, when presented with a long arti-
fact description, stated “This artifact requires a lot of thinking. There
is too much text and too much function names and abbreviations
without explanation.”

Several participants noted that the explanations helped them
easily find common terms or keywords in the artifact content. For
links without explanations, however, participants often resorted
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to using the find feature on their browser to identify common
terms in the artifact content. Being able to easily identify these
common terms in the explanations made it possible for participants
to more quickly make a decision. P8 noted that, “Because drug
interactions was highlighted, I identified what was specifically not to
be included. Context helped me knowwhat the system is expecting.” P8
also commented about finding keywords in large content artifacts,
“If the text is too huge, highlighting the keywords was helpful. I could
easily jump to the important part.” While we did not collect timing
information for participants tasks, anecdotally, participants made
decisions more quickly when presented with the explanation.

We also observed that the semantic connections between artifact
concepts helped our participants in identifying if artifacts were
linked. While some participants struggled to determine links when
the concept terms did not exactly match, they noted that seeing
the relationship path made it possible for them to not only see that
artifacts were linked, to examine the relationship more directly to
build confidence in their understanding. For example, P3 noted,“I
can easily see that these are not semantically the same.” P7 found it
“...helpful to see overlapping keywords and phrases.”

While the feedback was overwhelmingly positive, participants
also noted some areas for improvement. For instance, they noted
that some concept terms were too ambiguous to understand, even
with definitions. Some of them also mentioned that they needed
context for functions and other artifacts that were referenced in the
artifact content. P7 stated,“I don’t know what certification is being
referred to here. I need some context.”

7 THREATS TO VALIDITY
Our study carries a few threats to validity. With respect to internal
validity, we evaluated our approach on three different systems from
diverse domains for which golden answer sets defining correct and
incorrect links were already provided. We used domain documen-
tation to evaluate the correctness of the generated definitions and
descriptions. With respect to external validity, we observed trends
across the datasets – such as the observation that the bottom-up
approach returned more precise results than the top down one.
However, we cannot draw general conclusions based only on three
datasets. For example, while we have hypothesized that the rea-
son for CM1’s underperformance is that it is a highly scientific
system with jargon-filled project artifacts, and therefore general
domain documents failed to provide relevant concepts, we cannot
categorically support such generalizations at this time.

As with any NLP pipeline, we made numerous design decisions,
and whilst we justified our decisions, it is likely that different com-
binations of techniques would return different results. Finally, with
respect to construct validity, we used metrics to show the degree of
coverage of the mined acronyms, definitions, and contextual expla-
nations; however, coverage does not measure usefulness. To that
end we conducted a small user study, and whilst our participants
were graduate students and not currently working in industry, they
served as reasonable proxies for project newcomers and other non
domain experts working on a project. Nevertheless to more rigor-
ously evaluate whether our approach is useful we need to apply it
with real project stakeholders in an actual project context.

8 RELATEDWORK
In addition to the previously described related work, we briefly sum-
marize other closely related work in concept mining and generating
traceability rationales.
Concept and Relation Mining: Numerous researchers have focused
on techniques for mining concepts and their relations from the web.
Angeli et.al[6] proposed dependency analysis based method for
triplet relation mining in 2015. Our relation extraction approach is
based on the same idea while modify and simplify the heuristic rules
to focus on the given noun phrases we detected in project artifacts.
Taxonomy expansion algorithms [51, 53] focus on expanding an ex-
isting ontology by extracting new concepts from large open corpus
and leverage deep learning models to insert the concept into the
concept hierarchy. The link explanation task can benefit from these
methods when an initial domain concept is available. In the soft-
ware engineering domain, researchers have proposed or evaluated
techniques for ontology building in order to capture key project
concepts [23, 32] however, these approaches were used in the trace
link creation algorithms and not applied for link explanations.
Traceability Rationales: Hull and Dick proposed Rich Traceability
as a means of explicitly capturing satisfaction arguments between
requirements and design, thereby documenting the rationale for
a link [30]; however, performing this task manually is very time
consuming. Other researchers, such as Balasabrumanian et al. [49]
and Zisman et al. [57] proposed specific traceability meta-models
describing link semantics; however, while these techniques create
semantically typed links, they fail to explain the purpose of indi-
vidual links. Guo et al., proposed a technique that utilized domain-
specific knowledge bases to support trace link generation [24, 26],
and then augmented the knowledge base with rationale patterns to
provide an initial explanation for the link. However, their approach
is closely coupled with a heuristic approach to trace link generation,
whereas our approach is not dependent upon a specific tracing tech-
nique. Finally, a few researchers have explored the use of ontologies
to generate semantically meaningful trace links [8, 46].

9 CONCLUSION
In this paper we sought to extract acronym descriptions, defini-
tions, contextual examples, and cross-artifact relations by applying
an NLP pipeline to project artifacts and large general data corpii.
Our goal was to use the generated descriptions within an inter-
face to explain why two artifacts were connected through a trace
link. Generating trace link explanations represents a relatively new
research challenge designed to support recent advances in DL trace-
ability models which have significantly improved the accuracy of
generated trace links, but lack clear explanations.

Our quantitative analysis showed that the generated descriptions
and definitions were quite precise and were able to augment manu-
ally created project glossaries. While we were not able to generate
definitions for all identified project concepts, our user study con-
ducted with non-experts across three different software domains
demonstrated that the explanations mined from glossaries and aug-
mented with dynamically retrieved definitions and descriptions
aided users in evaluating trace links despite lacking expertise in the
domain. In future work we will focus on enhanced techniques for
providing more comprehensive coverage of all domain concepts.
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We share all of the artifacts for CCHIT and CM1 datasets 1 and
the associated code 2 into the public domain to empower other
traceability researchers to take up the challenge of generating com-
plete, correct, and meaningful trace link explanations in order to
make DL-generated trace links more useful for a broader set of
stakeholders.
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