Electric Power Systems Research 211 (2022) 108609

Contents lists available at ScienceDirect

ELECTRIC
POWER
« SYSTEMS

Electric Power Systems Research

RESEARCH

journal homepage: www.elsevier.com/locate/epsr

Check for

Decentralized safe reinforcement learning for inverter-based voltage | e
control™
Wengi Cui *, Jiayi Li, Baosen Zhang

Electrical and Computer Engineering, University of Washington, Seattle, WA, United States of America

ARTICLE INFO ABSTRACT

Keywords: Inverter-based distributed energy resources provide the possibility for fast time-scale voltage control by quickly
Safe RL adjusting their reactive power. The power-electronic interfaces allow these resources to realize almost arbitrary
V"llzalge control control law, but designing these decentralized controllers is nontrivial. Reinforcement learning (RL) approaches
Stability

are becoming increasingly popular to search for policy parameterized by neural networks. It is difficult,
however, to enforce that the learned controllers are safe, in the sense that they may introduce instabilities
into the system.

This paper proposes a safe learning approach for voltage control. We prove that the system is guaranteed
to be exponentially stable if each controller satisfies certain Lipschitz constraints. The set of Lipschitz bound
is optimized to enlarge the search space for neural network controllers. We explicitly engineer the structure
of neural network controllers such that they satisfy the Lipschitz constraints by design. A decentralized RL

Decentralized learning

framework is constructed to train local neural network controller at each bus in a model-free setting.

1. Introduction

Distributed energy resources (DERs) such as rooftop solar PV, elec-
tric vehicles and battery storage are growing at an increasing pace. For
example, solar capacity had almost 50% yearly growth in 2021 [1],
which is by far the fastest among all renewable resources. Most of
these growth are occurring in the distribution network, the low voltage
network that connects customers to substations.

High variability of solar PV and sudden change in load due to elec-
tric vehicles and storage can lead to large voltage fluctuations. These
fluctuations occur at timescales much faster than the conventional
mechanical control devices such as tap-changing transformers. Instead,
power electronic devices allow flexible and frequent control actions
without degrading lifetime. Consequently, there have been growing
interests to use the power electronic inverters on the DERs themselves
to provide voltage control [2-6].

Since most distribution networks are not yet equipped with real-
time communication infrastructure, voltage control strategies should
use local measurements available at each bus. More specifically, con-
trollers need to operate at an iterative fashion [7,8], successively
updating their control actions based on each measurement. Designing
such decentralized controller is a nontrivial problem. Linear controllers
can be far from optimal, even for quadratic costs. Therefore, neural

networks have been used to parametrise the controllers to fully utilize
the capabilities of the inverters [9-11].

Reinforcement learning algorithms are proposed to train the neu-
ral network controllers with trajectory measurements. This provides
the advantages of updating neural networks in a model-free setting,
i.e., eliminating the requirement on system parameters and communi-
cations [12]. Many algorithms, such as deep Q learning [13], actor—
critic [14], DDPG [15], have been applied to the control of tap-
changing transformers or inverter based resources. Since the control
actions are taken in an iterative fashion, it creates a dynamical system,
whose transition depends on the actions and the underlying physical
distribution network. The key constraint on the controllers is that
they do not destabilize the system. However, most works neglect the
stability requirement and currently this stability condition is checked
through simulations [13,14]. Considering that voltage control is imple-
mented locally without real-time communication, formal guarantees on
stability are required in practice.

This paper presents a decentralized safe learning method, which
guarantees the learned neural network would maintain the stability
of iterative voltage control dynamics. We prove that the system is
guaranteed to be exponentially stable if each controller satisfies certain
Lipschitz constraints. We optimize the set of Lipschitz bounds to enlarge
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Fig. 1. Proposed decentralized safe RL approach for optimal voltage control. We prove
that the system is guaranteed to be exponentially stable if each controller satisfies
certain Lipschitz constraints. The neural network controllers are engineered to satisfy
these Lipschitz constraints by design, and is updated from local trajectories with a
decentralized RL framework.

the search space of controllers. On this basis, we propose to engineer
the structure of neural network controllers such that they can satisfy
the Lipschitz constraints by design. A decentralized RL framework is
constructed to train neural network controller locally at each bus with
policy gradient algorithm. The structure of the proposed approach is
illustrated in Fig. 1.

Case studies show that the controllers learned with stability con-
straints outperform those with linear controllers and unconstrained
neural network controllers. Interestingly, we also observe good learning
convergence of the controllers in a model-free setting, even though they
interact through the underlying distribution network. Code and data
are available at https://github.com/Safe-RL-Power-Systems-Control/
Voltage-Control.

The paper is organized as follows. Section 2 introduces the model
and the optimal voltage control problem. Section 3 gives the main
theorems governing the structure of a stabilizing controller and derives
the optimal Lipschitz bounds. Section 4 illustrates the decentralized
safe RL framework for training a stabilizing neural network controller
locally at each bus. Section 5 shows the simulation results and Section 6
concludes the paper.

2. Model

A standard requirement for distribution network is that voltages
should deviate no more than 5% from their rated values at all buses
[16]. For example, if the rated voltage is 110 V, then the actual voltages
should be in the interval from 104.5 V to 115.5 V. For simplicity, we
normalize the units such that the reference value for voltage is 1 p.u.
For a power network with N buses, let v be the voltage vector where v;
is the voltage at bus i. Let p be active power and g be reactive power.
The voltage of the system follows the LinDistFlow model:

v=Rp+Xq+1 (€8]

where 1 is the all one’s vector and R and X are positive definite
matrices describing the network [7]. The active power depends on
external environment and is uncertain and variable. The reactive power
comes from phase offsets and is controllable, subject to some actuation
constraints [2].
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This work focuses on optimizing the control of g through inverter-
based resources. The aim of voltage regulation is to control g such that
v is close to its reference value. Due to the lack of communication in
many distribution systems, q needs to be successively updated based
on the local voltage measurements. Denote u;(v;) as the control law for
each bus i = 1,..., N, which is a mapping from the voltage to reactive
power. Let v;, be the local voltage at the bus i at the rth iteration step,

and denote u, = (u;(vy ), ..., uy(vy ). We update g and v iteratively as
Q41 = 4; — Uy (2a)
U1 =Rp+X(q, _ut) +1, (2b)

2.1. Optimal voltage control

Our objective is to optimize the u, to minimize cost in v and gq
defined as C(u), subject to the iterative update rule and the saturation
limit on u,. The optimization problem is

min  C(u) (3a)
st g =q —u (3b)
v =Rp+X(q—u)+1 (30)
u, <u < u, (3d)
u, is stabilizing (3e)

where constraints (3b)-(3e) hold for the iteration step 7 from 0 to T.
The cost typically trades off between driving voltage to the reference
value and the control effort. The deviation of voltage can typically
be quantified as two-norm, one-norm or infinity-norm of the sequence
of v, [4,17,18]. The control effort depends on the type of resources
and can be both quadratic [19,20] and non quadratic ones [17,18,21].
For example, control effort from batteries is commonly defined as one-
norm of actions since charging/discharging power affects cycle-depth
linearly [18,21]. The proposed safe RL approach works for all types of
cost functions listed above. The lower and upper bound for the control
action at bus i are u,; and u,;, respectively. The subscript 7 signifies that
these bounds can be time-varying as active power changes.

The controllers u are conventionally designed to be linear (up
to a thresholding by (3d)), which does not leverage the capability
of inverter-based resources in implementing almost arbitrary control
laws [22]. To design a flexible non-linear control law for inverter-based
resources, we parametrise each controller u;(v;) as a neural network
with weight 6;, sometimes written as uy, (v;).

However, there remain two challenges. First, due to the lack of
communication, neural network controller needs to be trained decen-
tralizely in each bus with local observations of voltages. Second, even
if the controller is optimized and implemented locally, they need to
be “safe” in the sense that the controller stabilizes the entire system,
as defined by (3b) and (3c). In the next sections, we show how to
design the local neural network controllers that guarantee the stability
of this system, and how to train the controllers through decentralized
reinforcement learning.

In this paper, we assume that the topology and parameter in-
formation of the distribution system is available. That is, we know
X, but there is no real-time communication between the buses. This
assumption comes from the fact that X (and R) can be estimated using
smart meter data collected over a period of time [23-25], where the
communication rate can be quite slow (e.g., once per day [26]). There-
fore, design of the controllers can depend on X, but the dependence
must be determined offline. The system parameters are not required
for real-time training and implementation.

3. Stabilizing controller

In this section, we derive the properties of a stabilizing local con-
troller from the Lyapunov stability theory and standard nonlinear
system theory. We engineer the structure of neural network to satisfy
these structure properties and thus guarantee the stability of the system.
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3.1. Reduced-order system

We can simplify the dynamics in (2) by shifting the origin of the
system. Denote d, as the difference between voltage and its reference
value 1 at time . We assume that the active power p remains constant
during one iteration period. Then we have

v, =v,-1
= Rp+Xq,
=Rp+X(q,_, —u,_,) G
=Rp+Xq,_;)—Xu,_;
=0,_; — Xu,_,

Therefore, instead of the iteration with both g, and v, being the state
variables, it suffices to study the dynamics in #,.

3.2. Structure property of a stabilizing controller

The structure property of a stabilizing controller is obtained from

Theorem 1. It shows that as long as each controller u; satisfies the Lip-
schitz constraints, the system is guaranteed to be locally exponentially
stable.
Theorem 1. Suppose a vector k = (ky, ..., ky) satisfies 0 < diag(k) <
2X~!. Then if the derivative of controller satisfies u;(0) = 0 and 0 < %4 Z” <
k; foralli = 1,..., N, the equilibrium point ¥ = 0 of the dynamic system
in (4) is locally exponennally stable.

Proof. The Jacobian of the state transition dynamics in (4) is
J(@) =1-XV,u 5)

where V,u is the gradient of control action u with respect to & defined
as
duy @)
o,
V,»,u = N . (6)
dupn (Dn)
doy

To guarantee an exponentially stable system around the equilib-
rium, the goal is to show that all the eigenvalues of J(©) have magnitude
less than 1. To this end, we f1rst show that the eigenvalues of J(9) are
the same as that of I — (V,, u)2X(V u)z

Let (4, w) be an eigenpair for I-X(V u). That is, I-X(V,u)w = Aw.
Then, we have

- (Vﬁu)%X(Vi,u)% )(Vf,u)% w

1 1
=(Vu)? w — (Vyu) 2 X(Vg0)
u ] w u u)w (7)
=(Vou)2 (I — X(Vyu))w

1
=AVyw)2w

Therefore, (4, (V,»,u)% w) is an eigenpair for I—(Vﬁu)%X(Vi,u)%. To prove
that the eigenvalue of J(#) to be strictly smaller than 1, it suffices to
show that -I <1-— (V,;u)%X(V,;u)% <L

By picking the controller u such that 0 < < k; for all
i=1,.. Nand0 < diagk) < 2X~', we have 0 < V,u < 2X~!
and thus (Vyuw)™!' > %X. Since Vyu > 0 is diagonal, we then have
(Vi,u)%X(Vﬁu)% < 2I and thus -I < I— (Vﬁu)%X(Vi,u)% < L The right
side inequality holds because X > 0. []

du; (D)

3.3. Optimizing search space for neural network controllers

Note that all the feasible stabilizing u are in a convex set described
by S = {V,ul0<V,u<2X"'}. Since there is no communication
between buses during training, each % needs to be bounded by a
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2.01 0<Vu<2X?!
proposed search region
0 <Vou <o
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dv,
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Fig. 2. Feasible search space comparisons for controllers. The blue area is the set of
all feasible u in S = {V,ul0 < V,u <2X"'}. The orange area is the search space with

uniform Lipschitz bounds defined as D = {V,«,ulO < Vyu < I}, which is the largest

2
A (X)
square within blue region but is only a very small subset of S. With each controller

being trained independently, it is natural to consider some larger non-uniform search
space such as the green area.

separate k; for bus i = 1,..., N. Therefore, the search space for neural
network controllers is constrained by the selection of k. A uniform
bound k; = m can be found in literatures [7], but it might be too
conservative since S may be much larger than the region described by
D={Vyul0<Vou< 1.

Here we show an illustration on a three-bus system (with the first

0.20 -0.16
bus as the feeder) where X = ~016 097

bounds on controllers, feasible regions for V,u are shown in Fig. 2.

The blue area demonstrates the space of controllers constrained by
S = {V,ul0 < Vyu <2X~!}. The orange area is the space defined by
D= {Vﬁu|() < Vyu < ﬁl}, which is the largest square within blue
region but is only a very small subset of blue area for S. Note that
the axes are scaled so the orange one does not look like a square.
With each controller being trained independently, it is natural to con-
sider some larger non-uniform search space such as the green area by
choosing different k. We may choose a k* such that the search space
{V,»,ulO < Vyu < k*} is the largest rectangular volume inside blue space,
denoted as HZ Lk

The volume is not a convex function in k, but we can apply a simple
log trick and solve the following optimization problem:

. For different Lipschitz

N
i log(k; 8
mlgxi;ﬂ‘ og(k;) (8a)
ky
s.t.0< <2x! (8b)
ky
where f,, ...,y are the coefficients to represent the relative impor-

tance of buses. For example, if bus j has none or very limited capacity
for voltage regulation, f; is set to be small. If bus j is the source node
of a branch, f§; can be set to be larger to speed up the convergence of
voltage at the source node and thus help the convergence of following
branches.

In practice, this set of coefficients can be adjusted according to the
solutions of the optimization problem and the training of controllers.
For the controller u; whose derivative d“é(f‘) is far from being bounded
by k;, its coefficient §; can be adjusted to be smaller to encourage larger
control action at the other buses. We envision that the system operator
has the capability to communicate with each bus at a slower timescale
(e.g., once a day) and collect the above information. Accordingly, the
operator adjusts coefficients f;, solves (8) and issues the bounds k; to
each bus at this the slower timescale.

3.4. Design of stabilizing neural network controllers

From Theorem 1, the structural property of locally exponentially
stabilizing controllers is derived in Corollary 1. We aim to engineer the
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Fig. 3. Stacked ReLU neural network to formulate a controller satisfying the stabilizing
constraint.

neural networks to satisfy these structural property in Corollary 1 by
design.

Corollary 1. The condition for a locally exponentially stabilizing con-
troller in Theorems 1 is equivalent to:

(¢}) u, (0;) has the same sign as 0;
2 ug (0;) is monotonically increasing
@) Lol

a0, i

The first two requirements are equivalent to designing a mono-
tonically increasing function through the origin. This is constructed
by decomposing the function into a positive and a negative part as
fi@®) = fF@®) + f7(8), where f}(0,) is monotonically increasing for
0; > 0 and zero when 9; < 0; f;7(9;) is monotonically increasing for
0; < 0 and zero when &; > 0. To this end, we formulate the controller
with a stacked-ReLU structure shown in Fig. 3, which is developed
in [27]. This design is a piecewise linear function where the slope of
each piece is equal to the summation of weights in activated neurons.
Then the requirement (3) can be satisfied by directly thresholding the
slope. The neural network controller is constructed as (9)

u;(0;) = s;ReLU(L0; + b;) + z;ReLU(~10, + d,) (92)

1 N
where 0< Y s/ <k, VI=12,...m (9b)

j=1
! N

k<Y <0, VI=12...m (90)

j=1
bl=0,6l <b'", VI=23...m (9d)
dl=0,d' <d"™", wi=23...m (%)

where m is the number of neurons and 1 € R™ is the all 1’s column
vector. Variables s; = [s! s s"land z; = [z} 22 . zM]
are the weight vector of bus i; b, = [b! b7 b"]" and d; =
[d,.1 d‘.2 d"]" are the corresponding bias vector. The variables to
be trained are weights 6 = {s, b, z,d} in (9). The saturation limits can
be satisfied by hard thresholding the output of the neural network. Note
that (9) is a single-layer neuron network and m determines the number
of pieces for the piece-wise linear function. We tune m according to
the testing performances of the controllers and we find that m = 20 is
generally enough in most settings.

After one iteration, the Lipschitz constraints guarantee that ||9,|| <
[[#,_; |l and thus the magnitude of voltage deviation will not be worse
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after a control action. If there is an abrupt change in active power, the
voltage will experience an abrupt change and its magnitude may be
larger than before. Therefore, the “safety” in our proposed method is in
the sense of stability, where the voltage deviations would go to zero if
active power changes relatively slowly. In addition, this guarantees the
neural network controller does not degrade the voltage performance
compared to an uncontrolled system.

4. Decentralized safe reinforcement learning

In this section, we construct a decentralized reinforcement learning
framework to optimize neural network controller in each bus locally
with observation of trajectories. By having the constraints in (9), the
neural network controller is guaranteed to stabilize the system.

Most reinforcement learning algorithms, including Q-learning,
actor—critic and DDPG, rely on learning a value function (Q-function)
satisfying the Bellman equations. Q-function assumes an infinite-
horizon formulation where the states follow a stationary probability
distribution, which is generally not true for the voltage control problem
in this paper. Instead, REINFORCE policy gradient algorithm adopts the
log probability trick and avoids learning the value function [12]. There-
fore, we use REINFORCE policy gradient algorithm to obtain sampled
gradient for updating the weights of neural network controllers.

Notably, there are natural noises in the system coming from the
changes in active power p, which enable us to implement REINFORCE
policy gradient with equivalent stochastic policy. Specifically, we as-
sume that the distribution of noise on the system can be estimated. By
incorporating noise term into control action, each action u;, comes from
an equivalent stochastic policy with probability distribution 7, (y; |9; ).
The gradient for updating weights of neural network controller at bus
i is obtained by [12]

T T

VI©) = ELY, Vologmy(u;,10,) Y, Ciluy )] (10)
=1 t=1

The pseudo-code for the decentralized RL framework is given in

Algorithm 1. Each bus i has its local RL agent for training in a batch-

updating style. Let H be the number of batches. At each episode, each

~h

agent collects trajectory {ﬁf‘l,u" s "T} and the corresponding

il i Y
cost ¢ = ZLI C,.(ufft) for h = 1,..., H. Adam algorithm is adopted to
update weights of neural network controllers with gradient computed
through batch average of (10). We would also like to emphasize that
any model-free RL algorithms can be readily utilized in our frame-
work by replacing the REINFORCE algorithm. We use the standard
REINFORCE algorithm in this paper to illustrate our contributions: the
design of stabilizing neural network controllers and training them in a
decentralized manner.

Algorithm 1 Decentralized Reinforcement Learning algorithm with
Policy Gradient

Require: Learning rate a, batch size H, trajectory length T, number of
episodes E
Input: Initial weights 6 for control network
1: for episode =1 to E do
2: for agenti=1to N do

3: Collect trajectories {ﬁf‘ Jult e oty } and the corre-
1”70, i,T° 7T
sponding cost ¢/ = Z,T:lci(ujf,) for h = 1,-,H
4: Compute the gradient VJ,(6;) =
| vH T N
& Dnet Zet Vo log mp@l |07 )e!
5: Update weights in the neural network by passing J;(6;) to

Adam optimizer: 0, < 0, — a;VJ;(0,)
6: end for
7: end for
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(a) safe RL approach (b) without safe RL approach

Fig. 4. Dynamics of voltage deviation for safe RL approach(left) and without safe RL
approach(right). The controller designed without the safe RL approach leads to unstable
trajectories.

5. Numerical results

We verify the performance of the proposed safe RL approach on
IEEE 33-bus test feeders [28]. We first show that unconstrained neural
network controllers learned by RL might lead to an unstable system,
while the controllers trained by safe RL approach are guaranteed to
stabilize the system. Then, we show that the proposed decentralized RL
framework can learn flexible non-linear controllers for different buses
that outperform conventional linear control law.

5.1. Simulation setup

The cost function that each controller collectively optimizes is
Cu) = ZL (||iz,||1 + 7wl ), where y acts as a trade-off parameter and
is set to be 0.01. The base unit for power and voltage is 100 kVA and
12.66 kV, respectively. The bound on action & is generated to be uni-
formly distributed in [0.01,0.05]. We assume other voltage regulation
equipment, such as tap-changing transformers and discrete switching
capacitor backs, operate at much slower timescales than the inverters.
Therefore, in the simulations, we only consider the operation of the
inverters, as learned by an agent running RL algorithms [4,29]. We
use TensorFlow 2.0 framework to build the reinforcement learning
environment. The episode number, batch size and the number of
neurons are 500, 500, 20, respectively. Parameters of neural network
controllers are updated using Adam with learning rate initialized to be
0.003 and decayed every 100 steps with a base of 0.6. We compare the
performance of neural network controller designed with and without
the safe RL approach, as well as conventional linear controller. All of
them are trained using the decentralized RL framework.

5.2. Necessity of the stabilizing requirement

Intuitively speaking, if a controller achieves a low loss function
after training converges, one might hope that it naturally leads to a
stabilizing controller since the trajectory does not blow up to a high
cost. Fig. 4 shows the dynamics of voltage deviation under the neural
network controllers trained with and without the safe RL approach. The
one without safe RL approach is unstable and leads to very large state
oscillations (Fig. 4(b)). In contrast, the controller with safe RL approach
shows good performance in Fig. 4(a). Therefore, explicitly constraining
the controller structure is necessary.

5.3. Performance comparison

To investigate the convergence of the safe RL approach, Fig. 6(a)
shows the normalized cost on the test set along episodes for training
of neural network controllers and linear controllers. All the losses con-
verge, with the proposed neural network controllers achieving the low-
est cost. Fig. 6(b) shows the cost on selected buses along the episodes
of training. It is interesting to observe that training the controllers in
a decentralized fashion did not impact convergence or performance.
Namely, during training, »; is updated based only on the trajectory of
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Fig. 5. Voltage control law obtained by linear controller with optimal linear

coefficient, neural network controllers designed with safe RL approach and without
safe RL approach. The neural network controllers learn flexible non-linear control laws
for different buses, with the slope of controller obtained by safe RL approach bounded
by Lipschitz constraints.

1.0
09 — linear 0.035
safe RL 0.030
5 0.8 5"
So7 S 0.025
3 °
N o
= 0.6 £ 0.020
g 5
£ E
505 50015
04 0.010
0.3 ——
= e 0.005
[ 100 200 300 400 500 0 100 200 300 400 500
episode episode

(a) Total cost (b) Cost for selected buses

Fig. 6. Normalized cost on test set along the episode of training. (a) Total cost during
training of neural network controller and linear controller. Neural network controller
designed with safe RL approach achieves lower cost than conventional linear controller.
(b) Cost on selected generator buses during the training of neural network controller.
All learning trajectories converge well in the decentralized model-free setting, even
though they interact through the underlying distribution network.
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Fig. 7. Dynamics of the voltage deviation # and the control action u in selected
generator buses corresponding to (a) neural network controller trained with safe RL
approach (b) Linear control obtained by the same decentralized RL algorithm. The
neural network controller generally leads to faster decay of voltage deviation.

0;, even though the control action impacts the voltage at all neighboring
buses.

The control law for neural network controller learned with safe
RL, without safe RL approach and linear controller with optimal linear
coefficient are shown in Fig. 5. The neural network controllers learn
flexible non-linear control law for different generators, with the safe RL
approach guaranteeing a stabilizing controller by bounding the slope
with Lipschitz constraints. Fig. 7 illustrates the dynamics of voltage
deviation # and corresponding control action u under optimal linear
controller and neural network controller trained by safe RL approach.
The neural network controller generally leads to faster decay of voltage
deviation.
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0.035{ Emm safe RL with optimal Lipschitz constraints
mmm safe RL bounded by 2/Amax

0.030{ ™= linear

0.025
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0.015 4
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Fig. 8. Distribution of cost in selected generator buses with random initial states
corresponding to safe RL with proposed optimal Lipschiz constraints, safe RL bounded
by 7 Z(X) and optimal linear control. Compared to uniform bound 7 Z(X] and linear
contrmr;xller, the proposed approach reduces the average cost by apprmm(ﬂixmately 5.26%,

18.18%, respectively.

In the test set with random initial states, the distribution of cost
in selected buses is shown in Fig. 8. The average costs of the linear
controller, the neural network controller bounded by 2 , and the
neural network controller with optimal Lipschiz bound obtained in (8)
are 0.44, 0.38 and 0.36, respectively. Therefore, the proposed approach
can learn a stabilizing controller that reduces the cost by approximately
18.18% compared to conventional linear control law. Moreover, safe RL
with the optimal Lipschiz bound also reduces the cost by approximately
5.26% compared to safe RL with the uniform Lipschiz bound

AmaxX)
6. Conclusions

This paper proposes a safe RL approach for optimal voltage control.
The exponential stability of the system is guaranteed by controllers
constrained by Lipschitz bounds, which are optimized to enlarge the
search space. The neural network controllers are parameterized by
a staked ReLU neural network to satisfy stabilizing constraints im-
plicitly. Each bus updates weights locally with the decentralized RL
framework. Case studies show that RL without stability constraints can
lead to unstable controllers, while the proposed safe learning approach
will lead to a stabilizing controller. The neural network controllers
outperform conventional linear controllers by speeding up the con-
vergence of voltages to reference values with relatively low control
effort. Rigorously analyzing the difference between decentralized and
centralized training, their convergence behaviors and generalizing the
proposed methods to nonlinear power flow models are important future
directions for us.
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