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Abstract

NURBS-based discretizations of the Galerkin method suffer from membrane locking
when applied to primal formulations of curved thin-walled structures. We consider lin-
ear plane curved Kirchhoff rods as a model problem to study how to remove membrane
locking from NURBS-based discretizations. In this work, we propose continuous-assumed-
strain (CAS) elements, an assumed strain treatment that removes membrane locking from
quadratic NURBS for an ample range of slenderness ratios. CAS elements take advantage
of the C1 inter-element continuity of the displacement vector given by quadratic NURBS
to interpolate the membrane strain using linear Lagrange polynomials while preserving
the C0 inter-element continuity of the membrane strain. To the authors’ knowledge, CAS
elements are the first NURBS-based element type able to remove membrane locking for
a broad range of slenderness ratios that combines the following distinctive characteristics:
(1) No additional degrees of freedom are added, (2) No additional systems of algebraic
equations need to be solved, and (3) The nonzero pattern of the stiffness matrix is pre-
served. Since the only additional computations required by the proposed element type are
to evaluate the derivatives of the basis functions and the unit tangent vector at the knots,
the proposed scheme barely increases the computational cost with respect to the locking-
prone NURBS-based discretization of the primal formulation. The benchmark problems
show that the convergence of CAS elements is independent of the slenderness ratio up to
104 while the convergence of quadratic NURBS elements with full and reduced integration,
local B̄ elements, and local ANS elements depends heavily on the slenderness ratio and the
error can even increase as the mesh is refined. The numerical examples also show how CAS
elements remove the spurious oscillations in stress resultants caused by membrane locking
while quadratic NURBS elements with full and reduced integration, local B̄ elements, and
local ANS elements suffer from large-amplitude spurious oscillations in stress resultants.
In short, CAS elements are an accurate, robust, and computationally efficient numerical
scheme to overcome membrane locking in quadratic NURBS-based discretizations.
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1. Introduction

Isogeometric analysis (IGA) [1, 2] enables a seamless integration between computer-
aided design (CAD) and finite element analysis (FEA) of thin-walled structures [3, 4, 5,
6, 7]. Furthermore, the higher inter-element continuity of splines enables the application
of the Galerkin method to discretize the primal formulation of higher order displacements
theories based on Kirchhoff assumptions. Spline discretizations of structural theories based
on Kirchhoff assumptions have been developed for rods [8, 9, 10] and shells [11, 12, 13].
These theories neglect transverse shear deformation, which is considered to be negligible
as long as R/t ≥ 20 [14], where R is the radius of curvature, t is the thickness, and R/t
is the slenderness ratio. Most structures used in engineering are slender enough to satisfy
the above inequality. In addition to resulting in fewer degrees of freedom than the theories
that take into account transverse shear deformation, Kirchhoff theories avoid shear locking.
However, structural theories based on Kirchhoff assumptions with coupled membrane and
bending responses still suffer from membrane locking [15, 16, 17, 18, 19, 20] as it is also the
case for theories that take into account transverse shear deformation [21, 22, 23, 24, 25, 26].

In commercial FEA software [27, 28], the schemes that are more frequently used to treat
shear locking and membrane locking when using Lagrange polynomials as basis functions
are reduced [29, 30, 31, 32] and selective-reduced [33, 34, 35] integration rules and assumed
natural strains (ANS) [36, 37, 38, 39]. Reduced/selective-reduced integration rules and ANS
are equivalent to mixed formulations under certain conditions [40, 41]. Directly applying
these schemes to NURBS basis functions, that is, using reduced/selective-reduced integra-
tion rules at the element level or using ANS treatments that result in discontinuous assumed
strains across elements is not an effective strategy to overcome locking [15, 20, 42, 43].
Therefore, the development of locking treatments that take into account the higher inter-
element continuity of NURBS is needed. Reduced/selective-reduced integration rules at
the patch level were developed in [44, 45, 46, 47]. Reduced/selective-reduced integration
rules at the patch level were used to alleviate locking in solid shells [48] and Kirchhoff-Love
shells [49]. Global versions of the B̄ method [41] were proposed for nearly incompressible
solids [50], Timoshenko rods [22, 51], Kirchhoff rods [15], Kirchhoff-Love shells [20], and
solid shells [42]. Global versions of the discrete strain gap (DSG) method [52, 53] were pro-
posed for Timoshenko rods [54, 22] and Kirchhoff-Love, Reissner-Mindlin, and 7-parameter
shells [55]. The global versions of the B̄ method and the DSG method avoid having discon-
tinuous assumed strains across elements and remove locking effectively for NURBS basis
functions. However, as acknowledged by the authors in [15, 20, 22, 42], these solutions are
not computationally efficient since (a) a global mass matrix needs to be inverted and (b)
the resulting global stiffness matrix is not a spare matrix anymore, but a completely full
matrix instead. Because of this, avoiding condensation of the strain variables and solving
the full mixed problem directly is suggested in [54], but this heavily increases the size of
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the system of algebraic equations that needs to be solved. Another alternative is to recon-
struct assumed strains at the global NURBS patch level from local B̄ projections at the
element level [42, 56, 15, 20]. Least-square-type procedures [57, 58, 59], Bézier projection
[60], and L2 projection are used for the local projection at the element level in [42], [56],
and [15, 20], respectively. In [42, 56, 15, 20], solving additional systems of algebraic equa-
tions at the local level is needed. In addition, even though the global stiffness matrix is
no longer completely full, its bandwidth is significantly larger than the bandwidth of the
global stiffness matrix obtained by applying the locking-prone NURBS-based discretization
of the primal formulation. A special mention is deserved for the locking treatment proposed
in [61]. In [61], the starting point is a mixed formulation with independent displacements
and strains as unknowns. The strain unknowns are condensed out at the element level by
leveraging Bézier dual basis functions [62, 63]. However, the resulting bandwidth of the
stiffness matrix increases with respect to the standard NURBS-based discretization of the
primal formulation (namely, the number of nonzero entries increases by a factor of three
when solving Reissner-Mindlin shell problems with this locking treatment).

In this work, we develop an ANS treatment that successfully overcomes the membrane
locking existent in quadratic NURBS-based discretizations of linear plane curved Kirchhoff
rods while being almost as computationally efficient as the locking-prone NURBS-based
discretization of the primal formulation since

� no additional degrees of freedom are added with respect to the standard NURBS-
based discretization of the primal formulation,

� no additional systems of algebraic equations need to be solved (neither at the global
level nor at the element level), and

� the nonzero pattern of the stiffness matrix obtained using the standard NURBS-based
discretization of the primal formulation is preserved.

The proposed ANS treatment leverages the C1 inter-element continuity of the displace-
ment vector given by quadratic NURBS to preserve the C0 continuity of the compatible
strains by directly interpolating at the element level the compatible strains at the knots
using linear Lagrange polynomials. Heretofore, the proposed element type to treat locking
is referred to as continuous-assumed-strain (CAS) elements. Membrane locking causes not
only smaller displacements and bending moments than expected, but also large-amplitude
spurious oscillations of membrane forces. Thus, we study the convergence and plot the dis-
tributions of both displacements and stress resultants to show that CAS elements eliminate
the spurious oscillations of membrane forces.

The paper is outlined as follows. Section 2 sets forth the mathematical theory of linear
plane curved Kirchhoff rods. Section 3 describes how to solve the problem using a NURBS-
based discretization of the Galerkin method. Section 4 develops CAS elements, the new
element type proposed in this work to remove membrane locking while barely increasing the
computational cost for a given mesh in comparison with the locking-prone NURBS-based
discretization of the Galerkin method. The performance evaluation of CAS elements and
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comparisons with the global B̄ method, quadratic NURBS elements with full and reduced
integration, local B̄ elements, and local ANS elements are included in Section 5. Sections
5.1, 5.2, and 5.3 consider a pinched circular ring, a clamped-clamped semi-circular arch
under a distributed load, and a clamped elliptical arch under a point load at the free end,
respectively. Concluding remarks and directions of future work are drawn in Section 6.

2. Linear plane curved Kirchhoff rod model

In this section, we consider Kirchhoff rods with infinitesimal deformations and small
strains, that is, we do not consider either geometric nonlinearities or material nonlinearities.
The geometry of the rod is defined by its axis and its cross section. We state the Kirchhoff
rod formulation using the Lagrangian description and a curvilinear coordinate. For a full
mathematical derivation of the model the reader is referred to [64, 65, 66, 67, 68, 16].

2.1. Kinematics in infinitesimal deformations

The geometry of the axis is defined by the parametric curve r(ξ) : [0, 1] 7→ R2, where ξ
is a parametric coordinate and r(ξ) is the position vector of a material point on the axis
of the rod. The displacement vector of a material point in the axis of the rod is defined
as u(ξ) : [0, 1] 7→ R2. Both r(ξ) and u(ξ) are defined using a global system of Cartesian
coordinates. We reparametrize the axis of the rod in terms of its arc length s, which is
done taking into account that

ds =

∣∣∣∣∣
∣∣∣∣∣drdξ

∣∣∣∣∣
∣∣∣∣∣dξ, (1)

where ||·|| denotes the length of a vector. Using the arc length as the parametric coordinate,
the unit tangent vector to the axis of the rod is obtained by

a1 =
dr

ds
. (2)

The unit normal vector to the axis of the rod is obtained by

a2 =

(
0 −1
1 0

)
a1. (3)

a1 and a2 form a counterclockwise pair. The membrane strain* is defined as

ϵ = a1 ·
du

ds
. (4)

The bending strain is defined as

κ = a2 ·
d2u

ds2
+

da2

ds
· du
ds

. (5)

*To be precise, ϵ is the axial strain of the rod. Nevertheless, since ϵ has an analogous mathematical
expression to the membrane strains of a linear Kirchhoff-Love shell formulation and since Kirchhoff rods
are used in this work as a model problem to study membrane locking, ϵ is referred to as membrane strain
throughout this manuscript.
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Figure 1: Positive signs for the membrane force and the bending moment.

2.2. Linear material

The membrane force and the bending moment are the stress resultants of plane curved
Kirchhoff rods that are obtained from constitutive equations. As in [16, 15], we use the
Kirchhoff-Clebsch theory for linear elastic materials [64, 65, 67]. For this material theory,
the membrane force is defined as

N = EAϵ. (6)

where E is the Young modulus of the material and A is the area of the cross section. The
bending moment is defined as

M = EIκ. (7)

where I is the cross section’s moment of inertia. The positive signs for the membrane force
and the bending moment are indicated in Fig. 1.

2.3. Variational form

The variational form can be obtained from the principle of virtual work which states
that the internal virtual work (δW int) must be equal to the external virtual work (δW ext)
for any virtual displacement (δu), i.e.,

δW int = δW ext ∀δu, (8)

with

δW int =

∫ L

0

(N δϵ+Mδκ) ds, (9)

δW ext =

∫ L

0

f · δu ds+ P 0 · δu(s = 0) + P L · δu(s = L), (10)

where L is the length of the rod axis, δϵ and δκ are the virtual membrane strain and the
virtual bending strain, respectively, f is a distributed load acting along the rod axis, P 0

and P L are point loads acting on the ends of the rod axis.
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3. NURBS elements

NURBS basis functions are built from a knot vector. A knot vector is a non-decreasing
set of coordinates in the parametric space, written Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξi is the
i-th knot, p is the polynomial degree, and n is the number of NURBS basis functions. Knot
values may be repeated. The continuity of the NURBS basis functions at a knot is Cp−m,
where m is the multiplicity of the knot. A knot vector is said to be open if its first and
last knot values are repeated p + 1 times. A knot span ∆ξi is the difference between two
consecutive knots, i.e., ∆ξi = ξi+1 − ξi. Nonzero knot spans play the role of elements, i.e.,
nonzero knot spans are the regions where numerical integration is performed.

Once the knot vector is defined, the B-spline basis functions are defined recursively
starting with piecewise constants (p = 0)

MB,0(ξ) =

{
1 if ξB ≤ ξ < ξB+1,

0 otherwise.
(11)

For p = 1, 2, 3, ..., the B-spline basis functions are defined by

MB,p(ξ) =
ξ − ξB

ξB+p − ξB
MB,p−1(ξ) +

ξB+p+1 − ξ

ξB+p+1 − ξB+1

MB+1,p−1(ξ), (12)

This is referred to as the Cox–de Boor recursion formula [69, 2]. For evaluating this formula,
whenever 0/0 is obtained, 0/0 is supposed to be substituted with 0. NURBS basis functions
are defined as follows

NB(ξ) =
wBMB,p(ξ)∑n
C=1wCMC,p(ξ)

, (13)

where wB are the weights. The weights are introduced to represent exactly conic curves.
For further information about the properties of NURBS basis functions and how to perform
h-refinement using the knot insertion algorithm, the reader is referred to [2]. In this work,
we use open knot vectors with no repeated interior knots and basis functions of degree
p = 2.

The axis of the rod is constructed by taking a linear combination of the NURBS basis
functions. Thus,

r(ξ) =
n∑

B=1

NB(ξ)QB, (14)

where QB is the B-th control point. Fig. 2 shows the values of the control points and
weights needed to exactly represent a quarter of an ellipse using only one quadratic NURBS
element. Invoking the isoparametric concept, the displacement vector is discretized as
follows

uh(ξ) =
n∑

B=1

NB(ξ)UB, (15)

where UB is the B-th control variable of the displacement vector. In order to discretize the
virtual displacements, the Bubnov-Galerkin method is used, i.e., δuh(ξ) ∈ span{NB(ξ)}nB=1.
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Figure 2: A quarter of an ellipse exactly represented using one quadratic NURBS element. The values
of the control points are Q1 = (−l1, 0), Q2 = (−l1, l2), and Q3 = (0, l2). The values of the weights are
w1 = 1, w2 =

√
2/2, and w3 = 1.

As a result of the discretization explained above, the element stiffness matrix using
NURBS elements is obtained as follows

k = kϵ + kκ, (16)

kϵ =
[
kij
ϵ,bc

]
, kκ =

[
kij
κ,bc

]
, (17)

kij
ϵ,bc =

∫ se2

se1

(
a1 ·

dNb

ds
ei

)
EA

(
a1 ·

dNc

ds
ej

)
ds, (18)

kij
κ,bc =

∫ se2

se1

(
a2 ·

d2Nb

ds2
ei +

da2

ds
· dNb

ds
ei

)
EI

(
a2 ·

d2Nc

ds2
ej +

da2

ds
· dNc

ds
ej

)
ds, (19)

where se1 and se2 are the arc-length coordinates in which element e starts and ends, re-
spectively, el is the l-th versor of the global Cartesian coordinate system, k is the element
stiffness matrix, kϵ is the element membrane stiffness matrix, and kκ is the element bending
stiffness matrix. Following standard FEA paraphernalia, the integrals above are computed
performing change of variables twice. First, from the arc length coordinate s to the para-
metric coordinate ξ and then from the parametric coordinate ξ to the parent element with
coordinate ξ̂ ∈ [−1, 1]. The assembly of the element stiffness matrices into the global
stiffness matrix is performed using conventional connectivity arrays [70, 2].

4. CAS elements

The membrane strain of a quadratic NURBS element has the following expression

ϵh(s) = a1(s) ·
duh

ds
(s). (20)

Taking advantage of the C1 inter-element continuity of the geometry and the displacement
vector given by quadratic NURBS, CAS elements interpolate the membrane strain at the
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knots using linear Lagrange polynomials resulting in a piecewise linear mathematical ex-
pression for the membrane strain with C0 inter-element continuity. Thus, the membrane
strain of a CAS element is defined as follows

ϵCAS,h(s) = L1(s)ϵ
h(se1) + L2(s)ϵ

h(se2), (21)

with

L1(s) =
se2 − s

se2 − se1
, (22)

L2(s) =
s− se1
se2 − se1

, (23)

where se1 and se2 are the arc-length coordinates in which element e starts and ends, respec-
tively, L1 and L2 are linear Lagrange polynomials.

Using the assumed natural strain proposed in Eq. (21), the element stiffness matrix of
CAS elements is obtained as follows

kCAS = kCAS
ϵ + kκ, (24)

kCAS
ϵ =

[
kCAS,ij
ϵ,bc

]
, kκ =

[
kij
κ,bc

]
, (25)

kCAS,ij
ϵ,bc =

2∑
l=1

2∑
m=1

∫ se2

se1

Ll(s)

(
a1(s

e
l ) ·

dNb

ds
(sel )ei

)
EALm(s)

(
a1(s

e
m) ·

dNc

ds
(sem)ej

)
ds,

(26)

kij
κ,bc =

∫ se2

se1

(
a2 ·

d2Nb

ds2
ei +

da2

ds
· dNb

ds
ei

)
EI

(
a2 ·

d2Nc

ds2
ej +

da2

ds
· dNc

ds
ej

)
ds, (27)

where kCAS is the element stiffness matrix of CAS elements and kCAS
ϵ is the element

membrane stiffness matrix of CAS elements. As in Section 3, the integrals above are
computed performing change of variables twice (s → ξ → ξ̂ ). In the parent element,

Lk(ξ̂ ) = (1 + (−1)kξ̂ )/2. The assembly of the element stiffness matrices into the global
stiffness matrix is performed using conventional connectivity arrays [70, 2].

When computing stress resultants using CAS elements, the membrane force is obtained
as

NCAS,h = EAϵCAS,h. (28)

The numerical experiments included in the next section will show that the assumed strain
treatment proposed in this section removes the spurious oscillations of the membrane force
and results in a numerical scheme whose accuracy is independent of the slenderness ratio
for a wide range of values.
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(a) Pinched circular ring (b) A quarter of the ring

Figure 3: Geometry, boundary conditions, and applied load for the pinched circular ring. a) Before applying
symmetry. b) After applying symmetry.

5. Numerical experiments

In this section we perform numerical investigations using the discretizations introduced
in Sections 3 and 4 as well as the global B̄ method [50, 22, 15, 51], local B̄ elements
[15, 71, 72], and local ANS elements [73, 74, 15]. Unless mentioned otherwise, a Gauss-
Legendre quadrature rule with p+1 integration points is used to compute all the integrals.
The code used to perform these simulations has been developed on top of the PetIGA
framework [75], which adds NURBS discretization capabilities and integration of forms to
the scientific library PETSc [76].

In this section, we use analytical solutions to study the convergence in L2 norm of the
displacement vector, the membrane force, and the bending moment. In order to do so, we
define the relative errors in L2 norm of the displacement vector, the membrane force, and
the bending moment as

eL2(uh) =

√∫ L

0
(uh

x − ux)
2 ds+

∫ L

0

(
uh
y − uy

)2
ds√∫ L

0
u2
x ds+

∫ L

0
u2
y ds

, (29)

eL2(N h) =

√∫ L

0
(N h −N )2 ds√∫ L

0
N 2 ds

, (30)

eL2(Mh) =

√∫ L

0
(Mh −M)2 ds√∫ L

0
M2 ds

, (31)
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respectively. Since we are solving a fourth-order differential equation with basis functions
of degree 2, the optimal convergence rates for eL2(uh), eL2(N h), and eL2(Mh) are 2, 2, and
1, respectively [70]. In engineering applications, discretization errors are acceptable in case
they are smaller than the model errors (errors between reality and the mathematical model).
Since eL2(uh), eL2(N h), and eL2(Mh) are relative errors, values of eL2(uh), eL2(N h), and
eL2(Mh) equal to 10−2 (1% errors) are accurate enough for most engineering applications.
However, values of eL2(uh), eL2(N h), and eL2(Mh) greater than 1 (100% errors) are unlikely
to be acceptable in engineering applications.

5.1. Pinched circular ring

The first numerical investigation considers a circular ring with two opposite point loads
as shown in Fig. 3 a). Given the double symmetry of this problem, we solve a quarter of
the ring with the appropriate symmetry boundary conditions and load shown in Fig. 3 b).
The next values are used in this example

P = 1.0, R = 1.0, EI = 1.0. (32)

In order to consider different values of the slenderness ratio, the values EA = 104, EA =
106, and EA = 108 are used. As in [16], the cross section thickness is estimated as t =√

EI/EA in this example. Note that this thickness estimation scales down the value of

the thickness by a factor of 2
√
3 in comparison with defining a rectangular cross section as

it is done in Sections 5.2 and 5.3 of this manuscript.
In [16], the exact values of the horizontal displacement of point A and the vertical

displacement of point B are given as

uxA = −PR3

EI

[
π2 − 8

8π
+

π

8

(
t

R

)2
]
, (33)

uyB = −PR3

EI

[
4− π

4π
− 1

4

(
t

R

)2
]
, (34)

respectively. Points A and B are shown in Fig. 3. In [16], the exact distribution of the
membrane force and the bending moment are given as

N = −P

2
cos(φ), (35)

M =
PR

2

[
2

π
− cos(φ)

]
, (36)

respectively, where the angle φ is shown in Fig. 3 b).
We initiate our convergence study with a uniform mesh composed of two quadratic

elements. The axis of the rod is represented exactly since we are using quadratic NURBS.
After that, we perform uniform h-refinement seven times. Using the global B̄ method
[50, 22, 15, 51], NURBS elements, and CAS elements, Fig. 4 plots the convergence of the
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Figure 4: (Color online) Pinched circular ring. Convergence of the deflections at points A and B using the
global B̄ method, NURBS elements, and CAS elements. For the ample range considered, the convergence
of the global B̄ method and CAS elements are independent of the slenderness ratio.

horizontal displacement of point A and the vertical displacement of point B while Fig. 5
plot the convergence in L2 norm of the membrane force and the bending moment. When
applied to linear plane Kirchhoff rods discretized using quadratic NURBS, the global B̄
method performs a L2 projection of the membrane strain at the patch level into the space
of linear Lagrange polynomials [50, 22, 15, 51]. In [22], the global B̄ method was applied
to curved plane Timoshenko rods and shown to be at least one order of magnitude more
accurate than selective-reduced integration and the global DSG method for coarse meshes.
These results motivated our choice of comparing the accuracy of CAS elements with the
global B̄ method. As shown in Figs. 4 and 5, the convergence of CAS elements and
the global B̄ method are independent of the slenderness ratio for the broad range of R/t
values considered while the convergence of NURBS elements heavily deteriorates as the
slenderness ratio increases. Note that for coarse meshes, the displacement values obtained
with CAS elements are more accurate than the displacement values obtained with the
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Figure 5: (Color online) Pinched circular ring. Convergence of the membrane force and bending moment
using the global B̄ method, NURBS elements, and CAS elements. The numerical solutions using CAS
elements and the global B̄ method overlap.

global B̄ method. The convergence rate of the membrane force in L2 norm using either
CAS elements or the global B̄ method is 1.5 instead of 2. In [15], both the global B̄ method
and the locally reconstructed version of the B̄ method that preserves the continuity of the
strains also resulted in the convergence rate of the membrane force in L2 norm being 1.5
when applied to linear plane curved Kirchhoff rods. Regarding computational efficiency, the
global B̄ method requires to compute the inverse of a mass matrix at the patch level and the
resulting stiffness matrix is not sparse anymore, but completely full instead. In contrast,
the only additional cost of CAS elements in comparison with the locking-prone NURBS
elements is having to compute the derivatives of the basis functions and the unit tangent
vector at the knots. To measure average computational times with each numerical scheme,
we solved a hundred times on a loop this problem using 128 elements with NURBS elements,
CAS elements, and the global B̄ method. The average computational time of CAS elements
only increased 4% with respect to NURBS elements while the average computational time
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Figure 6: (Color online) Membrane force of the pinched circular ring for different mesh resolutions using
the global B̄ method, NURBS elements, and CAS elements. The numerical solutions using either CAS
elements or the global B̄ method overlap. The numerical solutions using NURBS lock resulting in spurious
oscillations whose amplitude is orders of magnitude greater than the maximum exact membrane force of
this problem. Note the different vertical scale used in each plot.
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Figure 7: (Color online) Bending moment of the pinched circular ring for different mesh resolutions using
the global B̄ method, NURBS elements, and CAS elements. The numerical solutions using either CAS
elements or the global B̄ method overlap for the different R/t ratios considered. The numerical solutions
using NURBS elements lock as the R/t ratio increases resulting in zero bending moment.
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of the global B̄ method increased more than an order of magnitude with respect to NURBS
elements. Even though computational times should always be taken with a grain of salt
since they depend on the specific implementation of each numerical scheme, the general
conclusion is that CAS elements barely increase the computational cost with respect to
NURBS elements and are significantly faster than the global B̄ method.

Fig. 5 a) reveals an anomalous behavior in the convergence of the membrane force using
NURBS elements, namely, the relative error in L2 norm of the membrane force increases
as uniform h-refinement is performed multiple times (note that for most mesh resolutions
and slenderness ratios the relative error of the membrane force is greater than 100%). This
anomalous behavior caused by membrane locking has been reported using B-splines in [8].
For both coarse and fine meshes, the relative error in L2 norm of the membrane force
obtained with CAS elements is several orders of magnitude smaller than the relative error
in L2 norm of the membrane force obtained with NURBS elements.

For R/t = 102, 103, and 104 and using 8, 16, and 32 elements, the distribution of the
membrane force is plotted in Fig. 6. As shown in Fig. 6, NURBS elements undergo large-
amplitude spurious oscillations of the membrane force which get worse as the slenderness
ratio increases (the amplitude of the spurious oscillations can be up to three orders of
magnitude greater than the maximum exact membrane force of this problem). In contrast,
the distribution of the membrane force obtained using either CAS elements or the global B̄
method is completely free of spurious oscillations. In addition, the curves obtained using
CAS elements and the global B̄ method overlap for R/t = 102, 103, and 104.

For R/t = 102, 103, and 104 and using 8, 16, and 32 elements, the distribution of the
bending moment is plotted in Fig. 7. As shown in Fig. 7, NURBS elements may lock
and result in flat distributions of the bending moment. This phenomenon is analogous to
the essentially zero displacements obtained for those meshes in Fig. 4. In contrast, the
distribution of the bending moment obtained using either CAS elements or the global B̄
method is insensitive to the slenderness ratio for the wide interval of R/t values considered.
When using C1-continuous quadratic NURBS for the discretization of the displacement
vector, the bending moment is discontinuous across element boundaries. Thus, the small-
amplitude zigzagging shown in Fig. 7 is expected. Note that the mean value of the
bending moment in any element obtained using either CAS elements or the global B̄ method
approximates very accurately the mean exact value of the bending moment in that element.

5.2. Clamped-clamped semi-circular arch under a distributed load

The second numerical investigation considers a clamped-clamped semi-circular arch
under a distributed load as shown in Fig. 8 a). Given the symmetry of this problem, we
solve half of the arch with the appropriate symmetry boundary conditions shown in Fig. 8
b). The next values are used in this example:

q = 106t3, R = 10.0, E = 2.1× 1011, d = 0.1. (37)

In order to consider different values of the slenderness ratio, three values are used for the
thickness in this example, namely, t = 0.1, t = 0.01, and t = 0.001. Since the cross section
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Figure 8: Geometry, boundary conditions, and applied load for the clamped-clamped semi-circular arch
under a distributed load. a) Before applying symmetry. b) After applying symmetry.

of the rod is a rectangle, A = td and I = t3d/12. Note that q is a distributed load per unit
of horizontal length while f in Eq. (10) is a distributed load vector per unit length along
the axis of the rod. Therefore, f = (0,−q sin(φ)), where the angle φ is shown in Fig. 8 b).

In [77], the exact solution to this problem is given as

ut = A1 [c1φ sin(φ)− c3R(1− cos(φ))]− A2c3(φ− sin(φ))+

A3 sin(φ)− qR [sin(2φ) (2/3c1 − 1/6c2 − 1/8c3R)− φc3R/2] , (38)

un = A1 [c1(φ cos(φ)− sin(φ)) + c2 sin(φ)− c3R sin(φ)]− A2c3(1− cos(φ))+

A3 cos(φ) + qR [c1 − 1/2c2 + 1/2c3R− cos(2φ) (1/3c1 + 1/6c2 − 1/4c3R)] , (39)

N = A1 sin(φ)− qR cos2(φ), (40)

M = A1R sin(φ) + A2 − qR2/2(1 + 1/2 cos(2φ)), (41)

with

c1 =
1

2

(
R

EA
+

R3

EI

)
, c2 =

R3

EI
, c3 =

R2

EI
, (42)

A1 =
8πq (c1 − c2) + 3πqRc3

6π2 (c1/R)− 24c3
, (43)

A2 =
qR2

2
− 16πqR (c1 − c2) + 6πqR2c3

6π3 (c1/R)− 24πc3
, (44)

A3 = −2qR (c1 − c2)

3
− 3qR2c3

4
, (45)

where ut and un are the tangential and normal displacements to the axis of the rod, re-
spectively. Thus, ux = ut sin(φ) + un cos(φ) and uy = ut cos(φ)− un sin(φ), where ux and
uy are the x and y components of the displacement vector u, respectively.

As in the preceding section, we start our convergence study with a uniform mesh com-
posed of two quadratic elements and then perform uniform h-refinement seven times. Fig.
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Figure 9: (Color online) Clamped-clamped semi-circular arch under a distributed load. Convergence of the
displacement vector, the membrane force, and the bending moment using NURBS elements, CAS elements,
local B̄ elements, and local ANS elements. For any of the slenderness ratios considered, CAS elements are
the only element type that overcomes locking.
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Figure 10: (Color online) Membrane force of the clamped-clamped semi-circular arch under a distributed
load using local B̄ elements, local ANS elements, CAS elements, and the global B̄ method. The mesh has
16 elements and R/t = 102. The numerical solution using local B̄ elements and local ANS elements have
spurious oscillations whose amplitude is more than four times greater than the maximum exact membrane
force of this problem. The numerical solution using CAS elements and the global B̄ method overlap. Note
the different vertical scale used in each plot.

9 plot the convergence in L2 norm of the displacement vector, the membrane force, and
the bending moment using local B̄ elements [15, 71, 72], local ANS elements [73, 74, 15],
NURBS elements, and CAS elements. When applied to linear plane Kirchhoff rods dis-
cretized using quadratic NURBS, local B̄ elements perform a L2 projection of the membrane
strain at the element level into the space of linear Lagrange polynomials [15, 72] and local
ANS elements collocate the membrane strain at the element level into the space of linear
Lagrange polynomials using a Gauss-Legendre quadrature rule with 2 integration points
as collocation points [73, 74, 15]. Both local B̄ elements and local ANS elements result
in discontinuous membrane strains across element boundaries. As shown in Fig. 9, the
convergence curves of CAS elements for R/t = 102, 103, and 104 overlap (with the excep-
tion of the finer meshes for R/t = 104 which slightly deteriorate) while the convergence
of NURBS elements, local B̄ elements, and local ANS elements heavily deteriorates as
R/t increases. Neither local B̄ elements nor local ANS elements overcome locking for any
slenderness ratio, which is consistent with the results included in [15]. Thus, these two
element types are still locking-prone discretizations. This can be easily seen by plotting
the distribution of the membrane force. Even for R/t = 100 (note that structural theories
based on Kirchhoff assumptions are supposed to be used only for R/t ≥ 20 [14]) and using
a moderate mesh resolution (16 elements), local B̄ elements and local ANS elements have
spurious oscillations whose amplitude is more than four times greater than the maximum
exact membrane force of this problem as shown in Fig. 10.

As shown in [49], when using reduced integration rules at the patch level, the continu-
ity of the integration space cannot be greater than the continuity of the strains in order
to exactly reproduce constant stress states which is needed for having accurate results.
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Figure 11: (Color online) Clamped-clamped semi-circular arch under a distributed load. Convergence
comparison of NURBS elements and CAS elements using either 3 Gauss points or 2 Gauss points. For
NURBS elements, the results improve when using 2 Gauss points, but locking is still present for any of
the slenderness ratios considered. For CAS elements, the same level of accuracy is obtained with 2 and 3
Gauss points.
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Figure 12: (Color online) Membrane force of the clamped-clamped semi-circular arch under a distributed
load using NURBS and CAS elements with 2 Gauss points. The mesh has 64 elements and R/t = 103.
The numerical solution using CAS elements overlaps with the exact solution. The numerical solution using
NURBS elements has spurious oscillations whose amplitude is more than an order of magnitude larger
than the maximum exact membrane force of this problem. Note the different vertical scale used in each
plot.

When discretizing fourth-order structural models with C1-continuous quadratic NURBS,
the strains are discontinuous across elements. Thus, the continuity of the integration
space has to be discontinuous across elements in order to exactly reproduce constant stress
states. In this case, the integration is no longer patch-wise but is carried out at the element
level and coincides with the standard Gauss-Legendre quadrature. Therefore, using both
NURBS and CAS elements, we next solve this problem using 2 Gauss points (2GP) instead
of 3 Gauss points (3GP) to compute all integrals. Fig. 11 plots the convergence in L2 norm
of the displacement vector, the membrane force, and the bending moment obtained with
2 and 3 Gauss points. As shown in Fig. 11, CAS elements result in essentially the same
accuracy regardless of whether 2 Gauss points or 3 Gauss points are used. Thus, the use of
2 Gauss points is a potential option to decrease the computational time when using CAS
elements. As Fig. 11 shows, the accuracy of NURBS elements improves when 2 Gauss
points are used instead of 3 Gauss points. However, the convergence of NURBS elements
still heavily deteriorates as R/t increases. In other words, NURBS elements with 2 Gauss
points are still a locking-prone discretization. This can be easily seen by plotting the dis-
tribution of the membrane force. Even using a fine mesh (64 elements) and a moderate
R/t ratio (R/t = 103), NURBS elements with 2 Gauss points result in a membrane force
distribution with spurious oscillations whose amplitude is more than an order of magnitude
larger than the maximum exact membrane force as shown in Fig. 12.

5.3. Clamped elliptical arch under a point load at the free end

The third numerical investigation considers a clamped elliptical arch under a point load
at the free end. The geometry, the boundary conditions, and the applied load are shown
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Figure 13: Geometry, boundary conditions, and applied load for the clamped elliptical arch under a point
load at the free end.

in Fig. 13. The next values are used in this example

P = 107t3, a = 2.0, b = 1.0, E = 7.0× 1010, d = 0.1. (46)

The maximum and minimum radii of curvature are Rmax = a2/b = 4 and Rmin = b2/a = 0.5,
respectively. In order to consider different slenderness ratios, five values are used for the
thickness in this example, namely, t = 0.4, t = 0.04, t = 0.004, t = 0.0004, and t = 0.00004.
Note that for the first two thickness values there are some R/t ratios for which R/t ≥ 20 is
not satisfied [14], but we include it here to show that not only thin structures can undergo
membrane locking, but also thick structures. In the figures of this example, we use Rmax/t
as slenderness ratio. Since the cross section of the rod is a rectangle, A = td and I = t3d/12.

In this example, we fix the mesh resolution to 16 elements and investigate the accuracy of
the global B̄ method, NURBS elements, and CAS elements in obtaining the displacements
at the free end and the membrane force and the bending moment at the clamped end.
As reference values, we use the values obtained with 256 NURBS elements with degree
p = 9. For the extreme slenderness ratio of Rmax/t = 105, the value of the membrane
force at the clamped edge with this reference discretization was not accurate anymore.
Thus, we computed this reference value applying static equilibrium instead. As shown in
Fig. 14, NURBS elements suffer from membrane locking for all the slenderness ratios. For
Rmax/t = 10, 102, 103, and 104, both CAS elements and the global B̄ method are locking-
free, but only the global B̄ method stays locking-free for the extreme slenderness ratio of
Rmax/t = 105.

For Rmax/t = 104, the distributions of the horizontal and vertical displacements, the
bending moment, and the membrane force are plotted in Figs. 15, 16, and 17, respectively,
using the global B̄ method, NURBS elements, and CAS elements. As shown in Figs. 15,
16, and 17, the numerical solution obtained using NURBS elements locks resulting in zero
displacements, zero bending moment, and large-amplitude oscillations of the membrane
force. In contrast, the numerical solutions obtained using the global B̄ method and CAS
elements overlap and are locking-free. Note that a small-amplitude zigzag is expected in
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Figure 14: (Color online) Clamped elliptical arch under a point load at the free end. Using the global B̄
method, NURBS elements, and CAS elements, the horizontal and vertical displacements at the free end
and the membrane force and bending moment at the clamped end are plotted for different slenderness
ratios. For Rmax/t ≤ 104, both CAS elements and the global B̄ method are accurate, but only the global
B̄ method is accurate for the extreme slenderness ratio of 105.

the bending moment since it is discontinuous across element boundaries. The mean value
of the bending moment in any element obtained using either CAS elements or the global
B̄ method approximates very accurately the mean reference value of the bending moment
in that element.

6. Conclusions and future work

In this work, linear plane curved Kirchhoff rods are used as a model problem to investi-
gate how to effectively remove membrane locking from quadratic NURBS-based discretiza-
tions. We develop an assumed natural strain treatment, named continuous-assumed-strain
(CAS) elements, that removes membrane locking for an ample range of slenderness ratios
by linearly interpolating the membrane strain with C0 inter-element continuity thanks to
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Figure 15: (Color online) Displacements of the clamped elliptical arch under a point load at the free
end using the global B̄ method, NURBS elements, and CAS elements. The mesh has 16 elements and
Rmax/t = 104. The numerical solutions using CAS elements and the global B̄ method overlap with the
exact solution. The numerical solution using NURBS elements locks resulting in zero displacements.
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Figure 16: (Color online) Bending moment of the clamped elliptical arch under a point load at the free
end using the global B̄ method, NURBS elements, and CAS elements. The mesh has 16 elements and
Rmax/t = 104. The numerical solutions using CAS elements and the global B̄ method overlap. The
numerical solution using NURBS elements locks resulting in zero bending moment.

the C1 inter-element continuity of the displacement vector given by quadratic NURBS.
Membrane locking brings about not only smaller displacements and bending moments
than expected, but also large-amplitude spurious oscillations of membrane forces. CAS
elements eliminate these spurious oscillations while NURBS elements with full and reduced
integration, local B̄ elements, and local ANS elements undergo large-amplitude spurious
oscillations. In addition, the convergence of CAS elements is independent of the slenderness
ratio up to 104 while the convergence of NURBS elements with full and reduced integra-
tion, local B̄ elements, and local ANS elements depends acutely on the slenderness ratio
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Figure 17: (Color online) Membrane force of the clamped elliptical arch under a point load at the free
end using the global B̄ method, NURBS elements, and CAS elements. The mesh has 16 elements and
Rmax/t = 104. The numerical solutions using CAS elements and the global B̄ method overlap. The
numerical solution using NURBS elements locks resulting in oscillations whose amplitude is more than
three orders of magnitude larger than the maximum exact membrane force of this problem. Note the
different vertical scale used in each plot.

and have errors that can even increase as the mesh is refined. Finally, for a given mesh,
CAS elements barely increase the computational cost with respect to the locking-prone
NURBS-based discretization of the Galerkin method.

Future research directions include:

� Treat the shear and membrane locking of Timoshenko rods using CAS elements.

� Extend CAS elements to the nonlinear regime.

� Generalize CAS elements to remove locking from shell formulations.
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