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ABSTRACT:

Calculating solar-sensor zenith and azimuth angles for hyperspectral images collected by UAVs are important in terms of conducting
bi-directional reflectance function (BRDF) correction or radiative transfer modeling-based applications in remote sensing. These
applications are even more necessary to perform high-throughput phenotyping and precision agriculture tasks. This study demonstrates
an automated Python framework that can calculate the solar-sensor zenith and azimuth angles for a push-broom hyperspectral camera
equipped in a UAV. First, the hyperspectral images were radiometrically and geometrically corrected. Second, the high-precision
Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) data for the flight path was extracted and
corresponding UAV points for each pixel were identified. Finally, the angles were calculated using spherical trigonometry and linear
algebra. The results show that the solar zenith angle (SZA) and solar azimuth angle (SAA) calculated by our method provided higher
precision angular values compared to other available tools. The viewing zenith angle (VZA) was lower near the flight path and higher
near the edge of the images. The viewing azimuth angle (VAA) pattern showed higher values to the left and lower values to the right

side of the flight line. The methods described in this study is easily reproducible to other study areas and applications.

1. INTRODUCTION

Remote sensing has proved to be highly effective and efficient in
studying a diverse variety of natural and ecological resources.
Other than satellite and aerial remote sensing, recent advances in
Unmanned Aerial Vehicles (UAV) and sensor technology has
opened more opportunities to study vegetation dynamics,
specifically in agricultural applications (Maddikunta et al.,
2021). Since UAVs can be flown at lower altitudes than satellites
or aircrafts, the resulting products offer higher spatial resolution
and with more accurate canopy spectra (Tao et al., 2020). The
canopy spectra can be used to model or represent different plant
traits. For instance, different vegetation indices (e.g., normalized
difference vegetation index, NDVI) can indicate overall crop
health that improves precision agriculture practices (Radoglou-
Grammatikis et al., 2020). Additionally, UAV sensors offer high-
throughput plant phenotyping that accelerates current crop
breeding operations (Song et al., 2021). Moreover, UAV-based
imageries can be used to train advanced machine learning
models, which predict various crop traits, disease, yield, and seed
quality at plot-level (Bhadra et al., 2020; Maimaitijiang et al.,
2020; Nguyen et al., 2021).

Hyperspectral sensors can collect reflected spectra from crop
canopies with higher spectral resolution. A typical hyperspectral
image (HSI) often contains hundreds or even thousands of bands
for a wide range of wavelengths. Generally, the wavelengths can
vary from Very Near Infrared (VNIR, 400-1000 nm) to Short-
wave Infrared (SWIR, 900-2500 nm) with different spectral
resolution (1 to 10 nm). Plants reflect electromagnetic radiation,
which contains information about their biophysical composition
and physiological status (Segarra et al., 2020). Numerous studies
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have utilized the broader range of HSI products to study different
characteristics of plants and vegetation (Mariotto et al., 2013;
Fernandes et al., 2015; Banerjee et al., 2020; Wang et al., 2021).

The quality of HSI-based inference heavily depends on the
accuracy of HSI post-processing techniques. Generally, the HSI
sensor provides the raw Digital Number (DN) or radiance (in
W-st2-m?), which is then converted to unitless top-of-
atmosphere (TOA) reflectance and surface reflectance (SR).
Empirical Line Method (ELM) is the widely used calibration
technique to convert radiance into SR using different calibration
targets on the ground (Markelin et al., 2008; Wang and Myint
2015; Ortiz et al., 2017). The principal assumption behind this
technique is that the objects on the ground represent a Lambertian
surface, which appears uniformly bright from all directions of
view and reflects the entire incident light (Mao et al., 2020).
However, the crop canopy architecture is far from being a
Lambertian surface and exhibits anisotropic effects (Jiao et al.,
2014). Therefore, several studies have identified that multiple
viewing angles or viewing geometry of sensors play an important
role in the pixel-level SR (Vermote et al., 2009; Zhang et al.,
2014). For example, Galvao et al.,, (2009) retrieved highly
accurate Vegetation Indices (VIs) from Hyperion and MODIS
satellite data when using backward observations. Similarly, Gu
et al., (2015) found improved Leaf Area Index (LAI) estimation
accuracy from backward observations compared to forward
observations in CHRIS/PROBA data. Huang et al., (2011)
demonstrated that multi-angular hyperspectral observations
could retrieve the vertical distribution of chlorophyll content in
winter wheat.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-3-2022-131-2022 | © Author(s) 2022. CC BY 4.0 License. 131



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

In terms of UAV-based observations, several studies have
utilized snapshot (or frame) hyperspectral cameras to derive
multi-angular spectral information. For instance, Roosjen et al.,
(2018) achieved improved results in estimating LAI and
chlorophyll content of potato by using multi-angular data. They
introduced a goniometer-based simulation method for HSI
footprints with high overlaps. The multiple viewing angles were
converted to zenith and azimuth angles, which were used to
simulate PROSAIL spectra and derive better LAI and chlorophyll
retrieval accuracy. Similarly, Mao et al., (2020) found that the
effect of multi-angular observations was significant in deriving
VIs for soybean and maize. They also extrapolated different
viewing angles from a snapshot hyperspectral camera mounted
with a UAV and corrected for the Bi-directional Reflectance
Function (BRDF) effect. Therefore, the availability of multiple
solar-sensor zenith and azimuth angles is highly important to
accurately study different plan characteristics.

Alternative to snapshot cameras, push-broom hyperspectral
sensors (or line-scanner sensors) are now widely used with
UAVs. The push-broom sensor captures one line per exposure
that forms one image line after the other (Barreto et al., 2019).
Therefore, push-broom sensors can outperform snapshot
cameras, as the latter systems require a compromise between
spatial coverage, spatial resolution, and spectral resolution
(Aasen et al., 2015; Yi et al., 2021). However, extracting the
solar-sensor zenith and azimuth angles from a push-broom sensor
is not as straightforward as snapshot cameras. While the snapshot
camera provides 2D scenes captured across overlapping flight
lines in relatively higher time interval, the push-broom sensor
captures line by line 1D spectra across its flight path. Due to the
line-by-line scanning mechanism, push-broom sensors suffer
from wind-related motions during data acquisition (Jaud et al.,
2018). As a result, push-broom sensors require high accuracy
Global Navigation Satellite System (GNSS) and Inertial
Measurement Unit (IMU) onboard the UAV to ortho-rectify the
lines and generate a geometrically accurate hyperspectral cube
(Yuan and Zhang 2008). Due to the availability of GNSS/IMU
system onboard the platform, the solar-sensor geometry can be
directly calculated using linear algebra and spherical
trigonometry. Therefore, the objective of this study is to develop
an automated framework that can calculate the solar-sensor
zenith and azimuth angles for each pixel in a hyperspectral cube
collected by a push-broom UAV scanner with cross-grid flight
pattern.

2. STUDY AREA AND DATASETS
2.1 Experimental Setup

The experiment was setup in the Planthaven Farms at OFallon,
Missouri, United States (Figure 1). The site was located slightly
northeast from Saint Louis city close to the Mississippi River to
the north. The field was planted with 220 rows of maize on May
25, 2021, where 2 rows were marked as one plot. Total 55
different genotypes or cultivars of maize were planted with 2
replicas. The field was approximately 75 m long and 20 m wide.
During the growing season, average temperature was between
23-24°C and average annual precipitation was 1092.2 mm for the
study area.

2.2 UAV Flight

A DJIM600 Pro UAV was used to collect the hyperspectral data
for the study area (Figure 1c). The UAV was equipped with a
Headwall Nano-Hyperspec VNIR push broom camera (Headwall
Photonics, Massachusetts, United States), a FLIR Vue Pro

thermal camera (FLIR Systems, Oregon, United States), and an
APX-15 GNSS/IMU (Applanix Corporation, Ontario, Canada)
unit all attached to a DJI Gimbal (Figure 1d). The APX-15 UAV
GNSS/IMU records the precise time, position, and orientation of
the sensor at 200 Hz interval. Full specifications of the sensor and
the GNSS/IMU unit is provided in Table 1. Two UAV flights
were conducted on July 20th and August 4th of 2021. Each flight
was planned in a cross-grid pattern (Figure 1f) in UgCS mission
planning software (v4.0.187, SPH Engineering, Latvia) with 4
length wise and 9 width wise lines, resulting in total 13
hyperspectral cubes. The altitude and velocity for both flights
were 50 m and 3 m/s. The ground sampling distance (GSD) was
found 3.01 cm from both flights.
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Figure 1. Study area and data collection instruments, (a) a RGB
image of the maize field, (b) a close-up view of the field marked
with a yellow box in (a), (c) the DJI M600 Pro UAV equipped
with sensors, (d) a close up view of the sensor package which
includes a Headwall Nano-Hyperspec VNIR camera, A FLIR
Vue Pro thermal camera and APX-15 GNSS/IMU unit all
attached in a DJI Gimbal, (e) the location of the study area, and
(f) the cross-grid flight pattern created in UGCS flight planning
software (v4.0.187) which was used for data collection.

Sensor Specifications

Headwall Wavelength (nm) 400 - 1000

Nano Spatial bands 640

Hyperspec | Spectral bands 269

VNIR Field of View (°) 50.684
Focal length (mm) 12
Dimension (mm) 76(L)x76(W)x119(H)
Weight (g) 680

APX-15 Channels 336

GNSS/IMU | Dimension (mm) 67(L)x60(W)x15(H)
Weight (g) 60

Table 1. Sensor specifications

3. METHODS

The extraction of solar-sensor geomtery contain three major parts
(Figure 2): 1) hyperspectral cube processing, 2) locating viewing
point for each pixel, and 3) calculating solar-sensor geometry.
The process was automated using Python libraries which are
available in a public repository with test datasets
(https://github.com/remotesensinglab/uav-solar-sensor-angle).
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Figure 2. Overview of methods for the extraction of solar-sensor zenith and azimuth angles, i.e., (a) hyperspectral cube processing
involves converting digital number (DN) to radiance, reflectance, and ortho-rectified images, (b) locating corresponding sensor
location for each pixel in a hyperspectral cube, and (c) calculating three solar-sensor zenith and azimuth angles.

3.1 Hyperspectral Cube Processing

The raw hyperspectral data cubes (HSI cubes) contain all the data
as digital number (DN) in the raw images. The DN values does
not provide any meaningful information about the scene, rather
provides 12-bit numeric values collected by the sensor. Each
flight lines resulted in a separate HSI cube. Before the flight, a
dark reference data cube was collected and stored within the
sensor. The DN values were converted to radiance (W-st''-m2)
values using the dark reference and the vendor provided software
named Headwall SpectralView software (v3.1.4, Headwall
Photonics, Massachusetts, United States). The next step was to
convert the radiance to reflectance values (%) by using a 56%
reflectance tarp used in the field during the data collection.
Finally, the cubes were ortho-rectified using the same software
suit and APX-15 high-resolution GNSS/IMU dataset. The
GNSS/IMU dataset was corrected using a nearby Continuously
Operating Reference Stations (CORS) base station located in
OFallon, Missouri and the vendor provided POSPAC UAV
software suit (v8.7, Applanix Corporation, Ontario, Canada). The
overall procedure is illustrated in Figure 2a.

3.2 Locating Viewing Point for Each Pixel

The viewing point in terms of each pixel was required to calculate
both sensor zenith and azimuth angles (Figure 2b). First, the
GNSS data was extracted from APX-15 device and converted to
an ASCII text file which contained latitude, longitude, and
timestamp information. Additionally, the coordinates of each
pixel was calculated by converting the raster data into a
geospatial text file using GDAL v3.3.1 (GDAL/OGR 2020). The
raster image also had longitude, latitude, and timestamp
information. Therefore, only the corresponding GNSS
observations for a HSI cube were filtered by matching the
timestamp from the cube and GNSS points. Finally, the GNSS
points which had the shortest distance from each pixel location
were identified by representing the point pairs in a matrix form.
It was done by calculating Euclidean distance from each pair of
pixels and GNSS coordinates. The information was preserved in
a text file as comma-separated value (CSV) format, which
contained the unique ID of the closest GNSS point for every pixel
in the HSI cube.
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3.3 Solar-Sensor Angle Calculation

Overview of solar zenith angle or viewing zenith angle (VZA,
0y), solar zenith angle (SZA, 65), sensor or viewing azimuth
angle (VAA, ¢,,), and solar azimuth angle (SAA, ¢,) calculations
in terms of cross-grid UAV with push-broom hyperspectral
sensor are illustrated in Figure 2c.

3.3.1 Solar Zenith Angle (SZA): The solar zenith angle
(SZA) is similar to the VZA, but instead of the sensor as the
moving vector, the position of the sun becomes the point of
interest. SZA is a function of the raster location coordinates
(longitude and latitude) and time of the day. SZA (0g) can be
calculated from Solar Elevation Angle (og) using Equation 3.

0s = 90° — ag 3)
sinag = sin ¢ sind + cos ¢ cosd cos h “)

where, ¢ is the latitude of the location, § is the solar declination
angle and h is hour angle. Declination angle () is the angle
between the line joining the centers of the Sun and the Earth and
its projection on the equatorial plane. The value of & can range
from -23.44° to 23.44° and calculated using Equation 5, where d
is the number of days since the beginning of the year. Hour angle
(h) is the position of the sun relative to solar noon and can be
calculated using Equation 6, where LST is the local solar time.
Solar hour angle is 0° at solar noon and it increases by 15° after
each hour.

§ = 2345 sin (2= (d + 284)) (5)
h = 15°x(LST — 12) 6)

The pixel coordinates were attached with corresponding sensor
points and each sensor point included the time information in
UTC format. Also, the coordinates were converted from UTM to
a geographic coordinate system (World Geographic System
1984), so the values were available as latitude and longitude. A
python package called PVLIB (v0.9.0) was used to calculate J, h
and eventually Og for all pixel coordinates.

3.3.2 Solar Azimuth Angle (SAA): Solar azimuth angle
(SAA) is a function of time and coordinate for each pixel location
and can be calculated using Equation 8.

¢S — cos-1 [sin(é’) cos(¢p)—cos(8) sin(¢) cos(h)] (8)

cos(as)

where ¢, 9, h and og are the latitude, solar declination angle, hour
angle and solar elevation angle, respectively.

3.3.3 Viewing Zenith Angle (VZA): The viewing zenith
angle (VZA) is the angle between the vector from sensor and

raster point (V_R)), and the surface normal (Z) from the raster point
(also known as zenith), which can be defined as 6y. The UAV
was flown at a 50 m altitude for the whole mission. Therefore, a
perpendicular vector from the sensor point to the XY surface can

be drawn as W, where V—\; is 50 m. The angle between VR and

ﬁl) is known as Viewing Elevation Angle (ay) and can be
calculated using Equation 1.

Vv 50
ay =tan"'= = tan"! ———-— 1
v RV V=212 +(p=yr)? ( )

where the coordinates of R and V are (x.,y,) and (Xy,y, ),
respectively, calculated in a Universal Transverse Mercator

(UTM) projection system. Therefore, RV can be calculated as
the Euclidean distance between R and V. If oy is known, then
Oy can be calculated using Equation 2.

GV =90°% — ay (2)

For every pixel coordinate, corresponding 0y values were
calculated and converted to degrees.

3.34 Viewing Azimuth Angle (VAA): Azimuth angle can be
calculated in the XY plane, where it is the clockwise angle

between a point of interest and the true north (?). For calculating
the sensor or viewing azimuth angle (VAA, ¢,,), an arbitrary
north vector for any pixel coordinate (x;,y,) was created by
adding 100 m to y_ (Figure 2c2). The VAA can be calculated
using Equation 7.

ab

by = cos™ [ 1o ™

where  is the true north vector and b is the vector between the
raster point and corresponding sensor point.

4. RESULTS AND DISCUSSIONS

The SZA (05), SAA (¢g), VZA (Oy), and VAA (¢,) were
calculated for all 13 HSI cubes, but we will discuss only the 1%
HSI cube (Figure 3). Additionally, the descriptive statistics of the
angles are provided in Table 2.
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(c) SAA

(e) VAA
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Figure 3. Resulting angles for the 1% HSI cube, where (a) RGB
true color composite, (b) solar zenith angle (65), (c) solar
azimuth angle (¢4), (d) viewing zenith angle (8y), and (¢)

viewing azimuth angle (¢,,). The black dots (in b and c) are test

points that were verified with alternative source. The inset map
in the VAA (e) shows a small zoomed-up portion, which
indicates the changing angular pattern in VAA.
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Statistics SZA SAA VZA VAA
(in °) (05) (dg) (6y) (9y)
Minimum 29.376 120.312 0.006 11.723
Maximum 29.495 120.549 12.185 177.034
Mean 29.435 120.431 5.436 83.655
Std. Dev. 0.033 0.065 3.196 60.484

Table 2. Descriptive statistics of the angles for the 1% HSI cube.

4.1 Solar Angles

The SZA and SAA shows different angular pattern in the
resulting rasters (Figure 3b and 3c). The SZA started decreasing
along with the flight direction, whereas the SAA started to
increase along with the flight direction. The total duration for
capturing this HSI cube was 42.32 seconds, which resulted in low
standard deviation for the angular values of SZA and SAA (Table
2).

The verification of our calculation of solar angles was done by
calculating the solar position based on National Oceanic and
Atmospheric Administration (NOAA) Solar Calculator (NOAA
2021), which is an online tool to calculate approximate solar
position in terms of coordinates and local time. To verify our
result with the NOAA Solar Calculator, 5 randomly selected
points were selected, and corresponding solar angles were
extracted. Table 3 shows the SZA and SAA calculated based on
NOAA Solar Calculator and our method, and the absolute
differences observed.

SZA (65) SAA (99)

T Our Abs. Our Abs.

NOAA Method Diff. NOAA Method Diff.
1 29.48 29.388 0.092 120.64 120.525 0.115
2 29.51 29.416 0.094 120.58 120.468 0.112
3 29.52 29.434 0.086 120.55 120.433 0.117
41 29.54 29.449 0.091 120.52 120.403 0.117
5 29.56 29.473 0.087 120.47 120.356 0.114

Table 3. Comparison of solar angles between NOAA Solar

Calculator and our method. Abs. Diff. indicates the absolute

differences between two methods and T is the order of points
mentioned in Figure 3.

The SZA and SAA values calculated by NOAA Solar Calculator
and our method showed slight differences at the decimal level.
Since we used highly accurate PVLIB Python library to calculate
the solar angles, we could provide coordinates and time
information up to any decimal level possible. For instance, the
time information in our method had 6 decimal places for second
values. On the other hand, the NOAA calculator could only take
the second values as integer. Moreover, NOAA (2021) indicates
that due to the variations in the atmospheric conditions and
uncertainty in the algorithms, there could be slight differences in
the solar position calculations. These could be attributed to the
slight differences in the solar angle values. However, having
precise coordinate and time information in the angle calculation
is highly preferable for remote sensing applications, specifically
in HSI-based processing.

4.2 Sensor Angles

The pattern of VZA (Figure 3d) can be explainable in terms of
the flight path. Since the flight path runs through the middle of
the cube, the VZA values are close to zero near the flight path
and starts increasing at the edge of the image. Since this is zenith
angle from the sensor, there should be higher angles at the edge
rather than the middle.

The VAA shows comparatively larger range of angular values
(Figure 3e). Since azimuth angle is calculated as the clockwise
angle from the north vector of each raster pixel, the right side of
the cube resulted with smaller angular values, whereas the left
side comprised of higher values. However, the pattern in the
VAA raster may seem binary, but the inset map on Figure 3e
shows an enlarged portion of the right side. The inset map shows
that there exists angular variation along the flight path and the
variation can be seen perpendicular to the flight line. Therefore,
the standard deviation is the highest for VAA with larger range
of angular values (Table 2).

4.3 Limitations

The major issue encountered in this study was the lack of camera
calibration. We used the vendor provided software (Headwall
Spectral View v3.1.4) to ortho-rectify the HSI cubes. However,
when the cubes were plotted in a GIS environment, it was noted
that the overlapping regions from two consecutive HSI cubes did
not exactly match. Therefore, the HSI cubes were georeferenced
with a Light Detection and Ranging (LiDAR)-derived RGB point
cloud using 6 control points. The LIDAR mission was also flown
on the same days the HSI missions were performed. The LiDAR
UAV point cloud was corrected using a GNSS base station
established during the data collection time and the vendor
provided software named, Phoenix LiDARMIill (v2.0, Phonix
LiDAR Systems, Texas, United States). After correction, the
position accuracy was around £0.1 cm. When the HSI cubes were
georeferenced with the RGB point cloud, corresponding cubes
matched properly with each other.

However, the problem can be solved by performing a camera
calibration. Probably the internal operating parameters (IOPs),
boresight angles or the lever-arm offsets were changed from the
initially approximated values by the vendor. LaForest et al.,
(2019) performed similar camera calibration technique to
perform time-delay adjustment to similar type of HSI UAV
platform that had accurate GNSS/IMU information. The same
methodology can be applied to our study to improve upon the
ortho-rectification of the HSI cubes as well. Therefore, careful
considerations should be made when working with push-broom
sensors and calibration flights should be conducted using
randomly placed ground control points (GCPs) on the ground.

5. CONCLUSIONS

The study demonstrates a simple methodology for calculating
solar-sensor zenith and azimuth angles for a push-broom
hyperspectral sensor equipped in a UAV. The results show that
the method can deliver all the angles in raster format, which can
be very helpful to perform BRDF corrections or radiative transfer
model-based applications in remote sensing of vegetation. If this
work is needed to be reproduced for other study areas using
similar sensor and platform, then it will be easy to do so by
utilizing the automatic Python workflow developed from this
work. In future, we will improve the camera calibration issue
incurred in this study and apply these angle rasters to perform
radiative transfer modeling-based applications for plant
phenotyping.
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