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ABSTRACT: 
 
Calculating solar-sensor zenith and azimuth angles for hyperspectral images collected by UAVs are important in terms of conducting 
bi-directional reflectance function (BRDF) correction or radiative transfer modeling-based applications in remote sensing. These 
applications are even more necessary to perform high-throughput phenotyping and precision agriculture tasks. This study demonstrates 
an automated Python framework that can calculate the solar-sensor zenith and azimuth angles for a push-broom hyperspectral camera 
equipped in a UAV. First, the hyperspectral images were radiometrically and geometrically corrected. Second, the high-precision 
Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) data for the flight path was extracted and 
corresponding UAV points for each pixel were identified. Finally, the angles were calculated using spherical trigonometry and linear 
algebra. The results show that the solar zenith angle (SZA) and solar azimuth angle (SAA) calculated by our method provided higher 
precision angular values compared to other available tools. The viewing zenith angle (VZA) was lower near the flight path and higher 
near the edge of the images. The viewing azimuth angle (VAA) pattern showed higher values to the left and lower values to the right 
side of the flight line. The methods described in this study is easily reproducible to other study areas and applications. 
 
 

1. INTRODUCTION 

Remote sensing has proved to be highly effective and efficient in 
studying a diverse variety of natural and ecological resources.  
Other than satellite and aerial remote sensing, recent advances in 
Unmanned Aerial Vehicles (UAV) and sensor technology has 
opened more opportunities to study vegetation dynamics, 
specifically in agricultural applications (Maddikunta et al., 
2021). Since UAVs can be flown at lower altitudes than satellites 
or aircrafts, the resulting products offer higher spatial resolution 
and with more accurate canopy spectra (Tao et al., 2020). The 
canopy spectra can be used to model or represent different plant 
traits. For instance, different vegetation indices (e.g., normalized 
difference vegetation index, NDVI) can indicate overall crop 
health that improves precision agriculture practices (Radoglou-
Grammatikis et al., 2020). Additionally, UAV sensors offer high-
throughput plant phenotyping that accelerates current crop 
breeding operations (Song et al., 2021). Moreover, UAV-based 
imageries can be used to train advanced machine learning 
models, which predict various crop traits, disease, yield, and seed 
quality at plot-level (Bhadra et al., 2020; Maimaitijiang et al., 
2020; Nguyen et al., 2021). 
 
Hyperspectral sensors can collect reflected spectra from crop 
canopies with higher spectral resolution. A typical hyperspectral 
image (HSI) often contains hundreds or even thousands of bands 
for a wide range of wavelengths. Generally, the wavelengths can 
vary from Very Near Infrared (VNIR, 400-1000 nm) to Short-
wave Infrared (SWIR, 900-2500 nm) with different spectral 
resolution (1 to 10 nm). Plants reflect electromagnetic radiation, 
which contains information about their biophysical composition 
and physiological status (Segarra et al., 2020). Numerous studies 
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have utilized the broader range of HSI products to study different 
characteristics of plants and vegetation (Mariotto et al., 2013; 
Fernandes et al., 2015; Banerjee et al., 2020; Wang et al., 2021). 
 
The quality of HSI-based inference heavily depends on the 
accuracy of HSI post-processing techniques. Generally, the HSI 
sensor provides the raw Digital Number (DN) or radiance (in 
W∙sr-2∙m-2), which is then converted to unitless top-of-
atmosphere (TOA) reflectance and surface reflectance (SR). 
Empirical Line Method (ELM) is the widely used calibration 
technique to convert radiance into SR using different calibration 
targets on the ground (Markelin et al., 2008; Wang and Myint 
2015; Ortiz et al., 2017). The principal assumption behind this 
technique is that the objects on the ground represent a Lambertian 
surface, which appears uniformly bright from all directions of 
view and reflects the entire incident light (Mao et al., 2020).  
However, the crop canopy architecture is far from being a 
Lambertian surface and exhibits anisotropic effects (Jiao et al., 
2014). Therefore, several studies have identified that multiple 
viewing angles or viewing geometry of sensors play an important 
role in the pixel-level SR (Vermote et al., 2009; Zhang et al., 
2014). For example, Galvao et al., (2009) retrieved highly 
accurate Vegetation Indices (VIs) from Hyperion and MODIS 
satellite data when using backward observations. Similarly, Gu 
et al., (2015) found improved Leaf Area Index (LAI) estimation 
accuracy from backward observations compared to forward 
observations in CHRIS/PROBA data. Huang et al., (2011) 
demonstrated that multi-angular hyperspectral observations 
could retrieve the vertical distribution of chlorophyll content in 
winter wheat.  
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In terms of UAV-based observations, several studies have 
utilized snapshot (or frame) hyperspectral cameras to derive 
multi-angular spectral information. For instance, Roosjen et al., 
(2018) achieved improved results in estimating LAI and 
chlorophyll content of potato by using multi-angular data. They 
introduced a goniometer-based simulation method for HSI 
footprints with high overlaps. The multiple viewing angles were 
converted to zenith and azimuth angles, which were used to 
simulate PROSAIL spectra and derive better LAI and chlorophyll 
retrieval accuracy.  Similarly, Mao et al., (2020) found that the 
effect of multi-angular observations was significant in deriving 
VIs for soybean and maize. They also extrapolated different 
viewing angles from a snapshot hyperspectral camera mounted 
with a UAV and corrected for the Bi-directional Reflectance 
Function (BRDF) effect. Therefore, the availability of multiple 
solar-sensor zenith and azimuth angles is highly important to 
accurately study different plan characteristics. 
 
Alternative to snapshot cameras, push-broom hyperspectral 
sensors (or line-scanner sensors) are now widely used with 
UAVs. The push-broom sensor captures one line per exposure 
that forms one image line after the other (Barreto et al., 2019). 
Therefore, push-broom sensors can outperform snapshot 
cameras, as the latter systems require a compromise between 
spatial coverage, spatial resolution, and spectral resolution 
(Aasen et al., 2015; Yi et al., 2021). However, extracting the 
solar-sensor zenith and azimuth angles from a push-broom sensor 
is not as straightforward as snapshot cameras. While the snapshot 
camera provides 2D scenes captured across overlapping flight 
lines in relatively higher time interval, the push-broom sensor 
captures line by line 1D spectra across its flight path. Due to the 
line-by-line scanning mechanism, push-broom sensors suffer 
from wind-related motions during data acquisition (Jaud et al., 
2018). As a result, push-broom sensors require high accuracy 
Global Navigation Satellite System (GNSS) and Inertial 
Measurement Unit (IMU) onboard the UAV to ortho-rectify the 
lines and generate a geometrically accurate hyperspectral cube 
(Yuan and Zhang 2008). Due to the availability of GNSS/IMU 
system onboard the platform, the solar-sensor geometry can be 
directly calculated using linear algebra and spherical 
trigonometry. Therefore, the objective of this study is to develop 
an automated framework that can calculate the solar-sensor 
zenith and azimuth angles for each pixel in a hyperspectral cube 
collected by a push-broom UAV scanner with cross-grid flight 
pattern.  
 

2. STUDY AREA AND DATASETS 

2.1 Experimental Setup 

The experiment was setup in the Planthaven Farms at OFallon, 
Missouri, United States (Figure 1). The site was located slightly 
northeast from Saint Louis city close to the Mississippi River to 
the north. The field was planted with 220 rows of maize on May 
25, 2021, where 2 rows were marked as one plot. Total 55 
different genotypes or cultivars of maize were planted with 2 
replicas. The field was approximately 75 m long and 20 m wide. 
During the growing season, average temperature was between 
23-24°C and average annual precipitation was 1092.2 mm for the 
study area.  
  
2.2 UAV Flight 

A DJI M600 Pro UAV was used to collect the hyperspectral data 
for the study area (Figure 1c). The UAV was equipped with a 
Headwall Nano-Hyperspec VNIR push broom camera (Headwall 
Photonics, Massachusetts, United States), a FLIR Vue Pro 

thermal camera (FLIR Systems, Oregon, United States), and an 
APX-15 GNSS/IMU (Applanix Corporation, Ontario, Canada) 
unit all attached to a DJI Gimbal (Figure 1d). The APX-15 UAV 
GNSS/IMU records the precise time, position, and orientation of 
the sensor at 200 Hz interval. Full specifications of the sensor and 
the GNSS/IMU unit is provided in Table 1. Two UAV flights 
were conducted on July 20th and August 4th of 2021. Each flight 
was planned in a cross-grid pattern (Figure 1f) in UgCS mission 
planning software (v4.0.187, SPH Engineering, Latvia) with 4 
length wise and 9 width wise lines, resulting in total 13 
hyperspectral cubes. The altitude and velocity for both flights 
were 50 m and 3 m/s. The ground sampling distance (GSD) was 
found 3.01 cm from both flights. 
 

 
Figure 1. Study area and data collection instruments, (a) a RGB 
image of the maize field, (b) a close-up view of the field marked 
with a yellow box in (a), (c) the DJI M600 Pro UAV equipped 
with sensors, (d) a close up view of the sensor package which 
includes a Headwall Nano-Hyperspec VNIR camera, A FLIR 

Vue Pro thermal camera and APX-15 GNSS/IMU unit all 
attached in a DJI Gimbal, (e) the location of the study area, and 
(f) the cross-grid flight pattern created in UGCS flight planning 

software (v4.0.187) which was used for data collection. 

 
Sensor Specifications 

Headwall 
Nano 
Hyperspec 
VNIR 

Wavelength (nm) 400 - 1000 
Spatial bands 640 
Spectral bands  269 
Field of View (°) 50.684 
Focal length (mm) 12 
Dimension (mm) 76(L)×76(W)×119(H) 
Weight (g) 680 

APX-15 
GNSS/IMU 

Channels 336 
Dimension (mm) 67(L)×60(W)×15(H) 
Weight (g) 60 
Table 1. Sensor specifications 

 
3. METHODS 

The extraction of solar-sensor geomtery contain three major parts 
(Figure 2): 1) hyperspectral cube processing, 2) locating viewing 
point for each pixel, and 3) calculating solar-sensor geometry. 
The process was automated using Python libraries which are 
available in a public repository with test datasets 
(https://github.com/remotesensinglab/uav-solar-sensor-angle). 
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Figure 2. Overview of methods for the extraction of solar-sensor zenith and azimuth angles, i.e., (a) hyperspectral cube processing 
involves converting digital number (DN) to radiance, reflectance, and ortho-rectified images, (b) locating corresponding sensor 

location for each pixel in a hyperspectral cube, and (c) calculating three solar-sensor zenith and azimuth angles. 

 
3.1 Hyperspectral Cube Processing 

The raw hyperspectral data cubes (HSI cubes) contain all the data 
as digital number (DN) in the raw images. The DN values does 
not provide any meaningful information about the scene, rather 
provides 12-bit numeric values collected by the sensor. Each 
flight lines resulted in a separate HSI cube. Before the flight, a 
dark reference data cube was collected and stored within the 
sensor. The DN values were converted to radiance (W∙sr-1∙m-2) 
values using the dark reference and the vendor provided software 
named Headwall SpectralView software (v3.1.4, Headwall 
Photonics, Massachusetts, United States). The next step was to 
convert the radiance to reflectance values (%) by using a 56% 
reflectance tarp used in the field during the data collection. 
Finally, the cubes were ortho-rectified using the same software 
suit and APX-15 high-resolution GNSS/IMU dataset. The 
GNSS/IMU dataset was corrected using a nearby Continuously 
Operating Reference Stations (CORS) base station located in 
OFallon, Missouri and the vendor provided POSPAC UAV 
software suit (v8.7, Applanix Corporation, Ontario, Canada). The 
overall procedure is illustrated in Figure 2a. 

3.2 Locating Viewing Point for Each Pixel 

The viewing point in terms of each pixel was required to calculate 
both sensor zenith and azimuth angles (Figure 2b). First, the 
GNSS data was extracted from APX-15 device and converted to 
an ASCII text file which contained latitude, longitude, and 
timestamp information. Additionally, the coordinates of each 
pixel was calculated by converting the raster data into a 
geospatial text file using GDAL v3.3.1 (GDAL/OGR 2020). The 
raster image also had longitude, latitude, and timestamp 
information. Therefore, only the corresponding GNSS 
observations for a HSI cube were filtered by matching the 
timestamp from the cube and GNSS points. Finally, the GNSS 
points which had the shortest distance from each pixel location 
were identified by representing the point pairs in a matrix form. 
It was done by calculating Euclidean distance from each pair of 
pixels and GNSS coordinates. The information was preserved in 
a text file as comma-separated value (CSV) format, which 
contained the unique ID of the closest GNSS point for every pixel 
in the HSI cube. 
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3.3 Solar-Sensor Angle Calculation 

Overview of solar zenith angle or viewing zenith angle (VZA, 
θV), solar zenith angle (SZA, 𝜃𝑆), sensor or viewing azimuth 
angle (VAA, ϕV), and solar azimuth angle (SAA, ϕ

S
) calculations 

in terms of cross-grid UAV with push-broom hyperspectral 
sensor are illustrated in Figure 2c. 
 
3.3.1 Solar Zenith Angle (SZA): The solar zenith angle 
(SZA) is similar to the VZA, but instead of the sensor as the 
moving vector, the position of the sun becomes the point of 
interest. SZA is a function of the raster location coordinates 
(longitude and latitude) and time of the day. SZA (θS) can be 
calculated from Solar Elevation Angle (αS) using Equation 3. 
 
 𝜃𝑆 = 90𝑜 − 𝛼𝑆                                                                 (3) 
 sin 𝛼𝑆 = sin 𝜙 sin 𝛿 + cos𝜙 cos 𝛿 cos ℎ                  (4) 
 
where, ϕ is the latitude of the location, δ is the solar declination 
angle and h is hour angle. Declination angle (δ) is the angle 
between the line joining the centers of the Sun and the Earth and 
its projection on the equatorial plane. The value of δ can range 
from -23.44° to 23.44° and calculated using Equation 5, where d 
is the number of days since the beginning of the year. Hour angle 
(h) is the position of the sun relative to solar noon and can be 
calculated using Equation 6, where LST is the local solar time. 
Solar hour angle is 0° at solar noon and it increases by 15° after 
each hour. 
 
 𝛿 = 23.45 sin (

2𝜋

365
(𝑑 + 284))                                 (5) 

 ℎ = 15°×(𝐿𝑆𝑇 − 12)                                              (6) 
 
The pixel coordinates were attached with corresponding sensor 
points and each sensor point included the time information in 
UTC format. Also, the coordinates were converted from UTM to 
a geographic coordinate system (World Geographic System 
1984), so the values were available as latitude and longitude. A 
python package called PVLIB (v0.9.0) was used to calculate δ, h 
and eventually θS for all pixel coordinates. 
 
3.3.2 Solar Azimuth Angle (SAA): Solar azimuth angle 
(SAA) is a function of time and coordinate for each pixel location 
and can be calculated using Equation 8.  
 
 𝜙𝑆 = cos−1 [

sin(𝛿) cos(𝜙)−cos(𝛿) sin(𝜙) cos(ℎ)

cos(𝛼𝑆)
]             (8) 

 
where ϕ, δ, h and αS are the latitude, solar declination angle, hour 
angle and solar elevation angle, respectively. 
 
3.3.3 Viewing Zenith Angle (VZA): The viewing zenith 
angle (VZA) is the angle between the vector from sensor and 
raster point (VR⃗⃗⃗⃗⃗⃗  ), and the surface normal (Z⃗⃗ ) from the raster point 
(also known as zenith), which can be defined as θV. The UAV 
was flown at a 50 m altitude for the whole mission. Therefore, a 
perpendicular vector from the sensor point to the XY surface can 
be drawn as VV́⃗⃗ ⃗⃗ ⃗⃗  , where VV́⃗⃗ ⃗⃗ ⃗⃗   is 50 m. The angle between VR⃗⃗⃗⃗⃗⃗   and 
RV́⃗⃗⃗⃗⃗⃗   is known as Viewing Elevation Angle (αV) and can be 
calculated using Equation 1. 
 

 𝛼𝑉 = 𝑡𝑎𝑛−1 𝑉𝑉́⃗⃗ ⃗⃗  ⃗

𝑅𝑉́⃗⃗ ⃗⃗  ⃗
= 𝑡𝑎𝑛−1 50

√(𝑥𝑣−𝑥𝑟)
2+(𝑦𝑣−𝑦𝑟)

2
              (1) 

 
where the coordinates of R and V are (xr,yr) and (xv,yv), 
respectively, calculated in a Universal Transverse Mercator 

(UTM) projection system. Therefore, RV́⃗⃗⃗⃗⃗⃗   can be calculated as 
the Euclidean distance between R and V́. If αV is known, then 
θV can be calculated using Equation 2. 
 
 𝜃𝑉 = 90𝑜 − 𝛼𝑉                                                                 (2) 
 
For every pixel coordinate, corresponding θV values were 
calculated and converted to degrees. 
 
3.3.4 Viewing Azimuth Angle (VAA): Azimuth angle can be 
calculated in the XY plane, where it is the clockwise angle 
between a point of interest and the true north (Y⃗⃗ ). For calculating 
the sensor or viewing azimuth angle (VAA, ϕV), an arbitrary 
north vector for any pixel coordinate (xr,yr) was created by 
adding 100 m to yr (Figure 2c2). The VAA can be calculated 
using Equation 7. 
 

 𝜙𝑉 = cos−1 [
𝑎⃗ ∙𝑏⃗ 

|𝑎⃗ ||𝑏⃗ |
]                                                     (7) 

 
where a  is the true north vector and b⃗  is the vector between the 
raster point and corresponding sensor point. 
 

4. RESULTS AND DISCUSSIONS 

The SZA (θS), SAA (ϕS), VZA (θV), and VAA (ϕV) were 
calculated for all 13 HSI cubes, but we will discuss only the 1st 
HSI cube (Figure 3). Additionally, the descriptive statistics of the 
angles are provided in Table 2. 
 

 
Figure 3. Resulting angles for the 1st HSI cube, where (a) RGB 

true color composite, (b) solar zenith angle (θS), (c) solar 
azimuth angle (ϕS), (d) viewing zenith angle (θV), and (e) 

viewing azimuth angle (ϕV). The black dots (in b and c) are test 
points that were verified with alternative source. The inset map 

in the VAA (e) shows a small zoomed-up portion, which 
indicates the changing angular pattern in VAA. 
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Statistics 
(in °) 

SZA 
(θS) 

SAA 
(ϕS) 

VZA 
(θV) 

VAA 
(ϕV) 

Minimum 29.376 120.312 0.006 11.723 
Maximum 29.495 120.549 12.185 177.034 
Mean 29.435 120.431 5.436 83.655 
Std. Dev. 0.033 0.065 3.196 60.484 

Table 2. Descriptive statistics of the angles for the 1st HSI cube. 
 
4.1 Solar Angles 

The SZA and SAA shows different angular pattern in the 
resulting rasters (Figure 3b and 3c). The SZA started decreasing 
along with the flight direction, whereas the SAA started to 
increase along with the flight direction. The total duration for 
capturing this HSI cube was 42.32 seconds, which resulted in low 
standard deviation for the angular values of SZA and SAA (Table 
2). 
 
The verification of our calculation of solar angles was done by 
calculating the solar position based on National Oceanic and 
Atmospheric Administration (NOAA) Solar Calculator (NOAA 
2021), which is an online tool to calculate approximate solar 
position in terms of coordinates and local time. To verify our 
result with the NOAA Solar Calculator, 5 randomly selected 
points were selected, and corresponding solar angles were 
extracted. Table 3 shows the SZA and SAA calculated based on 
NOAA Solar Calculator and our method, and the absolute 
differences observed.  
 

T 
SZA (θS) SAA (ϕS) 

NOAA Our 
Method 

Abs. 
Diff. NOAA Our 

Method 
Abs. 
Diff. 

1 29.48 29.388 0.092 120.64 120.525 0.115 
2 29.51 29.416 0.094 120.58 120.468 0.112 
3 29.52 29.434 0.086 120.55 120.433 0.117 
4 29.54 29.449 0.091 120.52 120.403 0.117 
5 29.56 29.473 0.087 120.47 120.356 0.114 

Table 3. Comparison of solar angles between NOAA Solar 
Calculator and our method. Abs. Diff. indicates the absolute 
differences between two methods and T is the order of points 

mentioned in Figure 3. 
 
The SZA and SAA values calculated by NOAA Solar Calculator 
and our method showed slight differences at the decimal level. 
Since we used highly accurate PVLIB Python library to calculate 
the solar angles, we could provide coordinates and time 
information up to any decimal level possible. For instance, the 
time information in our method had 6 decimal places for second 
values. On the other hand, the NOAA calculator could only take 
the second values as integer. Moreover, NOAA (2021) indicates 
that due to the variations in the atmospheric conditions and 
uncertainty in the algorithms, there could be slight differences in 
the solar position calculations. These could be attributed to the 
slight differences in the solar angle values. However, having 
precise coordinate and time information in the angle calculation 
is highly preferable for remote sensing applications, specifically 
in HSI-based processing. 
 
4.2 Sensor Angles 

The pattern of VZA (Figure 3d) can be explainable in terms of 
the flight path. Since the flight path runs through the middle of 
the cube, the VZA values are close to zero near the flight path 
and starts increasing at the edge of the image. Since this is zenith 
angle from the sensor, there should be higher angles at the edge 
rather than the middle. 

The VAA shows comparatively larger range of angular values 
(Figure 3e). Since azimuth angle is calculated as the clockwise 
angle from the north vector of each raster pixel, the right side of 
the cube resulted with smaller angular values, whereas the left 
side comprised of higher values. However, the pattern in the 
VAA raster may seem binary, but the inset map on Figure 3e 
shows an enlarged portion of the right side. The inset map shows 
that there exists angular variation along the flight path and the 
variation can be seen perpendicular to the flight line. Therefore, 
the standard deviation is the highest for VAA with larger range 
of angular values (Table 2). 
 
4.3 Limitations 

The major issue encountered in this study was the lack of camera 
calibration. We used the vendor provided software (Headwall 
Spectral View v3.1.4) to ortho-rectify the HSI cubes. However, 
when the cubes were plotted in a GIS environment, it was noted 
that the overlapping regions from two consecutive HSI cubes did 
not exactly match. Therefore, the HSI cubes were georeferenced 
with a Light Detection and Ranging (LiDAR)-derived RGB point 
cloud using 6 control points. The LiDAR mission was also flown 
on the same days the HSI missions were performed. The LiDAR 
UAV point cloud was corrected using a GNSS base station 
established during the data collection time and the vendor 
provided software named, Phoenix LiDARMill (v2.0, Phonix 
LiDAR Systems, Texas, United States). After correction, the 
position accuracy was around ±0.1 cm. When the HSI cubes were 
georeferenced with the RGB point cloud, corresponding cubes 
matched properly with each other. 
 
However, the problem can be solved by performing a camera 
calibration. Probably the internal operating parameters (IOPs), 
boresight angles or the lever-arm offsets were changed from the 
initially approximated values by the vendor. LaForest et al., 
(2019) performed similar camera calibration technique to 
perform time-delay adjustment to similar type of HSI UAV 
platform that had accurate GNSS/IMU information. The same 
methodology can be applied to our study to improve upon the 
ortho-rectification of the HSI cubes as well. Therefore, careful 
considerations should be made when working with push-broom 
sensors and calibration flights should be conducted using 
randomly placed ground control points (GCPs) on the ground. 
 

5. CONCLUSIONS 

The study demonstrates a simple methodology for calculating 
solar-sensor zenith and azimuth angles for a push-broom 
hyperspectral sensor equipped in a UAV. The results show that 
the method can deliver all the angles in raster format, which can 
be very helpful to perform BRDF corrections or radiative transfer 
model-based applications in remote sensing of vegetation. If this 
work is needed to be reproduced for other study areas using 
similar sensor and platform, then it will be easy to do so by 
utilizing the automatic Python workflow developed from this 
work. In future, we will improve the camera calibration issue 
incurred in this study and apply these angle rasters to perform 
radiative transfer modeling-based applications for plant 
phenotyping. 
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