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Abstract. Geodynamical simulations over the past decades

have widely been built on quadrilateral and hexahedral fi-

nite elements. For the discretization of the key Stokes equa-

tion describing slow, viscous flow, most codes use either the

unstable Q1 × P0 element, a stabilized version of the equal-

order Q1 × Q1 element, or more recently the stable Taylor–

Hood element with continuous (Q2 × Q1) or discontinuous

(Q2 × P−1) pressure. However, it is not clear which of these

choices is actually the best at accurately simulating “typical”

geodynamic situations.

Herein, we provide a systematic comparison of all of these

elements for the first time. We use a series of benchmarks

that illuminate different aspects of the features we consider

typical of mantle convection and geodynamical simulations.

We will show in particular that the stabilized Q1 × Q1 el-

ement has great difficulty producing accurate solutions for

buoyancy-driven flows – the dominant forcing for mantle

convection flow – and that the Q1 ×P0 element is too unsta-

ble and inaccurate in practice. As a consequence, we believe

that the Q2 × Q1 and Q2 × P−1 elements provide the most

robust and reliable choice for geodynamical simulations, de-

spite the greater complexity in their implementation and the

substantially higher computational cost when solving linear

systems.

1 Introduction

For the past several decades, the geodynamics community’s

workhorse for numerical simulations of the incompressible

Stokes equations has been the use of (continuous) piecewise

bilinear and/or trilinear velocity and piecewise constant (dis-

continuous) pressure finite elements, often in combination

with the penalty method for the solution of the resulting lin-

ear systems (e.g., Donea and Huerta, 2003). This velocity–

pressure pair is often referred to as the Q1 × P0 Stokes el-

ement and sometimes as the Q1 × Q0 element (Gresho and

Sani, 2000). It is used, for example, in the ConMan (King

et al., 1990), SOPALE (Fullsack, 1995), SLIM3D (Popov

and Sobolev, 2008), CitcomCU (Moresi and Gurnis, 1996;

Zhong, 2006), CitcomS (Zhong et al., 2000; McNamara and

Zhong, 2004; Zhong et al., 2008), Ellipsis (Moresi et al.,

2003; O’Neill et al., 2006), UnderWorld (Moresi et al.,

2003), DOUAR (Braun et al., 2008), and FANTOM (Thieu-

lot, 2011) codes and has therefore been used in hundreds of

publications.

The popularity of this element can be explained by its very

small memory footprint and ease of implementation and use.

On the other hand, it has a rather low convergence order that

makes it difficult to achieve high accuracy; maybe more im-

portantly, the element is known not to satisfy the so-called

Ladyzhenskaya–Babuška–Brezzi (LBB) condition condition

(e.g., Donea and Huerta, 2003) and is therefore unstable.

This instability noticeably manifests itself through oscilla-

tory pressure modes (e.g., Fig. 18 of Thieulot et al., 2008

or Fig. 36 of Thieulot, 2014) and makes it not suited for

large-scale three-dimensional simulations coupled to itera-

tive solvers (May and Moresi, 2008). The unreliability of the

pressure also makes this element a dubious choice for mod-

els in which some of the parameters – e.g., the density or the

viscosity – depend on the pressure.

The more modern alternative to this choice is the Taylor–

Hood element that uses (continuous) polynomials of degree

k for the velocity and of degree k − 1 for the pressure, where

k ≥ 2.1 This element is not only LBB-stable, but owing to its

1Strictly speaking, Taylor and Hood (1973) only introduced the

Q2 ×Q1 element on quadrilaterals. However, finite-element practi-

tioners use the term “Taylor–Hood” for both the 2D and 3D cases,
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higher polynomial degree is also convergent of higher order.

It is therefore widely used in commercial flow solvers and

is also the default element for the ASPECT code in geody-

namics (Kronbichler et al., 2012; Heister et al., 2017). This

element is obviously more difficult to implement, and build-

ing efficient solvers and preconditioners is also more com-

plicated (Kronbichler et al., 2012; Clevenger et al., 2020).

However, these drawbacks can be mitigated by building on

one of the widely available finite-element libraries that have

appeared over the past 20 years; for example, ASPECT in-

herits all of its finite-element functionality from the deal.II

library (see Bangerth et al., 2007; Arndt et al., 2020). We

will note that one can also use a number of variations of the

underlying idea of the Taylor–Hood element, for example on

quadrilaterals and hexahedra by using Qk ×P−(k−1) (see, for

instance, May et al., 2015, Lechmann et al., 2011, and Thiel-

mann and Kaus, 2012) in which the pressure is discontinuous

and of (total) polynomial degree k − 1, but missing the part

of the finite-element space on every cell that distinguishes the

space Qk on quadrilaterals and hexahedra from the space Pk

that is typically used on triangles and tetrahedra.2 Another

variation is to enrich the pressure space by a constant shape

function on each cell (see, for example, Boffi et al., 2011,

and the references therein). All of these alternatives are sta-

ble for k ≥ 2, and in keeping with common usage of the term,

we will also refer to all of these variations as Taylor–Hood

or Taylor–Hood-like elements even though they are strictly

speaking not what Taylor and Hood proposed in Taylor and

Hood (1973).

A third option is the use of Q1 × Q1 elements with both

velocity and pressure using bilinear or trilinear shape func-

tions. This combination of elements is not LBB-stable by

default, but numerous stabilization techniques – typically

adding a pressure-dependent term to the mass conservation

equation – have been proposed in the literature (see, e.g.,

Norburn and Silvester, 2001; Elman et al., 2014; Gresho

et al., 1995). Herein, we will discuss in particular the vari-

ation by Dohrmann and Bochev (2004) that is simple to im-

plement and does not involve any tunable parameter. This ap-

proach is used in the Rhea code (Burstedde et al., 2009, 2013)

in conjunction with adaptive mesh refinement (AMR), al-

for the case of both simplex and quadrilateral–hexahedral meshes,

and for all cases with k ≥ 2. See also John (2016, p. 98).
2The discontinuous space P−(k−1) for the pressure can be inter-

preted in two incompatible ways: first, one can map the correspond-

ing space from the reference cell to each of the cells of the mesh,

as one also does for the velocity; or, one can define shape functions

directly in the global coordinate system, without mapping from the

reference cell. The two agree on cells that are parallelograms but not

on more general meshes. Since our experiments are all on meshes

where all cells are rectangles, the distinction does not matter for the

current paper, but we point out that the error estimates (Eq. 4) stated

in Sect. 3.1 only hold for the latter definition. See Boffi and Gastaldi

(2002), Matthies and Tobiska (2002), and John (2016, Sect. 3.6.4)

for more information.

lowing for the numerical solution of whole Earth models at

high resolutions (Stadler et al., 2010; Alisic et al., 2012).

Another example of the use of this method is the work of

Leng and Zhong (2011), also using AMR, to study thermo-

chemical mantle convection. Both the ELEFANT code with

an application to the 3D thermal state of curved subduction

zones (Plunder et al., 2018) and the GALE code (Moresi

et al., 2012), with application to the 3D shapes of metamor-

phic core complexes (Le Pourhiet et al., 2012) or oceanic

plateau subduction (Arrial and Billen, 2013), use the stabi-

lized Q1 × Q1 method. Finally the ADELI code was cou-

pled to a stabilized Q1 × Q1 flow solver in the context of

lithosphere–asthenosphere interaction studies (Cerpa et al.,

2014, 2015, 2018).

The availability of all of these options leads us to the main

question of this paper: which element should one use in geo-

dynamics computations based on the Stokes equations? Or,

in the absence of clear-cut conclusions, which ones should

not be used? On the face of it, this seems like a simple

question: the consensus in the computational science com-

munity is that using moderately high-degree elements (say,

k = 3 or k = 4) yields the best accuracy for a given compu-

tational effort (measured in CPU cycles) unless one wants

to change the solver technology to use matrix-free methods

whereby even higher polynomial degrees become more ef-

ficient. This conclusion is based on the higher convergence

order of higher-degree methods but balanced by the rapidly

growing cost of matrix assembly and linear solver effort for

higher-degree methods. On the other hand, the recommen-

dation to use higher-degree methods is predicated on the as-

sumption that the solution is smooth enough – say, the ve-

locity is in the Sobolev space H k+1 of functions that have,

loosely speaking, at least k + 1 derivatives – that one can

actually achieve a convergence rate of O(hk) in the energy

norm and O(hk+1) in the L2 norm, where h is the mesh size.

This assumption generally requires that all coefficients, such

as density and viscosity, are sufficiently smooth on length

scales resolvable by the mesh. This may not be the case in

realistic geodynamics problems given that density and vis-

cosity often depend discontinuously on the solution variables

(velocity or strain rate, pressure, temperature, and composi-

tional variables); indeed, in many models, the viscosity may

vary by orders of magnitude on short length scales.

Such considerations put into question whether higher-

order methods are really worth the effort for actual geo-

dynamics simulations. Given these divergent theoretical

thoughts, the only way to resolve the question is by way of

numerical comparisons. We have consequently extended AS-

PECT so that it can use all of the element combinations above,

and we will use these implementations in the comparisons in

this paper.

Goals of this paper. Having outlined the conflict between

the expected superiority of higher-degree elements for the

Stokes equation on the one hand and the expected lack of

Solid Earth, 13, 229–249, 2022 https://doi.org/10.5194/se-13-229-2022



C. Thieulot and W. Bangerth: Q1 × Q1-stab in geodynamics 231

smoothness of solutions in realistic geodynamic cases, our

goals in the paper are as follows.

1. Quantitatively compare the solution accuracy of the var-

ious options (Q1 × P0, Qk × Qk−1, Qk × P−(k−1) and

stabilized Q1 ×Q1) using a variety of analytical bench-

marks for which the exact solution is known. As we

will see below, there is little point working with k > 2

in geodynamics applications, and so the only cases we

consider for Taylor–Hood-like elements are Q2 × Q1

and Q2 × P−1.

2. Extend these numerical comparisons to cases in which it

is known that the stabilized Q1×Q1 demonstrates prob-

lematic behavior that may make it unusable in many

practical situations. In particular, we will consider the

case of buoyancy-driven flows.

3. Conclude our considerations by comparing the available

options using a realistic geodynamical application. This

will allow us to draw conclusions as to what element

one might want to recommend for geodynamics appli-

cations.

While we have approached this study with an open mind

and without a strong prior idea of which element might be

the best, let us end this Introduction by noting that mem-

bers of the crustal dynamics and mantle convection commu-

nities have occasionally expressed a dislike of the stabilized

Q1×Q1 element for its inability to deal with large lithostatic

pressures and free surfaces absent special modifications of

the formulation. For example, Arrial and Billen (2013) com-

ment on the need to modify the physical description of the

problem due to the stabilization (with references replaced by

ones listed at the end of this paper).

All the models were run with the open source code

Gale. [. . . ] Gale uses Q1–Q1 elements to describe

the pressure and the velocity. However, this formu-

lation is unstable and a slight compressible term

is added in the divergence equation to stabilize it

(Dohrmann and Bochev, 2004). Ideally, this term

should be applied on the dynamic pressure and not

on the full pressure. To fix this, a hydrostatic term

corresponding to the reference density and temper-

ature profile, is subtracted from the full pressure

and the body force vector.

Few other negative comments concerning the Q1 ×Q1 el-

ement appear on record in the published literature, although

one can find the following quote in Lehmann et al. (2015).

We do not consider the Q1 × Q1/stab element

(Dohrmann and Bochev, 2004; Bochev et al.,

2006; Burstedde et al., 2009), as stabilization of

this element is achieved by introducing an artificial

compressibility that dominates for flows mainly

driven by buoyancy variations (May et al., 2015).

In geophysical flow models this yields unphysical

pressure artifacts for cases where both the free sur-

face of the Earth and mantle flow are considered,

because the driving density contrast between cold

sinking plates and the warmer surrounding Earth’s

mantle is much smaller than the density difference

between rocks and air (Kaus et al., 2010; Popov

and Sobolev, 2008; Mishin, 2011). In our experi-

ence, this results in artificial “compaction” of the

Earth’s mantle if Q1 × Q1/stab element is used,

which makes them unsuitable for these purposes.

Indeed, our numerical experiments will encounter a simi-

lar issue; see Sect. 6.

We are not aware of any other significant publications in

the geodynamics literature that specifically discuss the rel-

ative trade-offs between the elements we consider herein,

specifically between the Q1×P0 and Taylor–Hood elements,

and consequently believe that our discussions here are useful

for the community.

2 The governing equations

For the purpose of this paper, we are concerned with the ac-

curate numerical solution of the incompressible Stokes equa-

tions:

−∇ · [2ηε(u)] + ∇p = ρg in �, (1)

−∇ ·u = 0 in �, (2)

where η is the viscosity, ρ the density, g the gravity vec-

tor, ε(·) denotes the symmetric gradient operator defined by

ε(u) = 1
2
(∇u+∇uT ), and � ⊂ R

d ,d = 2 or 3 is the domain

of interest. Both the viscosity η and the density ρ will, in

general, be spatially variable; in applications, this is often

through nonlinear dependencies on the strain rate ε(u) or the

pressure, but the exact reasons for the spatial variability are

not of importance to us here: what matters is that these coef-

ficients may vary strongly and on short length scales.

In applications, the equations above will be augmented by

appropriate boundary conditions and will be coupled to addi-

tional and often time-dependent equations, such as ones that

describe the evolution of the temperature field or of the com-

position of rocks (see, for example, Schubert et al., 2001;

Turcotte and Schubert, 2012). This coupling is also not of

interest to us here.

3 Discretization using finite-element methods

3.1 Formulation and basic error estimates

For the comparisons we intend to make in this paper,

Eqs. (1)–(2) are discretized using the finite-element method.

A straightforward application of the Galerkin method yields

https://doi.org/10.5194/se-13-229-2022 Solid Earth, 13, 229–249, 2022



232 C. Thieulot and W. Bangerth: Q1 × Q1-stab in geodynamics

the following finite-dimensional variational problem: find

uh ∈ Uh,ph ∈ Ph so that

(ε(vh),2ηε(uh)) − (∇ · vh,ph) = (vh,ρg),

−(qh,∇ ·uh) = 0, (3)

for all test functions vh ∈ Uh,qh ∈ Ph. Here, (a,b) =
∫

�
a(x)b(x)dx. For simplicity, we have omitted terms in-

troduced through the treatment of boundary conditions. The

finite-dimensional, piecewise polynomial spaces Uh and Ph

can be chosen in a variety of ways, as discussed in the In-

troduction. In particular, if they are chosen as Uh = Qk and

Ph = Qk−1 – i.e., the Taylor–Hood element – then the dis-

crete problem is known to satisfy the LBB condition and the

solution is stable (Elman et al., 2014). Here, Qs is the space

of continuous functions that are obtained on each cell K of

a mesh T by mapping polynomials of degree at most s in

each variable from the reference cell [0,1]d . Likewise, the

problem is stable if one chooses Uh = Qk and Ph = P−(k−1),

where now P−s is the space of discontinuous functions ob-

tained by mapping polynomials of total degree at most s from

the reference cell. In both of these cases, we expect from

fundamental theorems of the finite-element method (see, for

example, Elman et al., 2014) that the convergence rates are

optimal, i.e., that the errors satisfy the relationships

‖∇(u − uh)‖L2
= O(hk),

‖u − uh‖L2
= O(hk+1),

‖p − ph‖L2
= O(hk), (4)

where h is the maximal diameter over all cells in the mesh T.

On the other hand, if one chooses Uh = Q1 and Ph = P0,

i.e., the unstable Q1 ×P0 element with piecewise linear con-

tinuous velocities and piecewise constant discontinuous pres-

sure, then the best convergence rates one can hope for would

satisfy the following relationships based solely on interpola-

tion error estimates:

‖∇(u − uh)‖L2
= O(h),

‖u − uh‖L2
= O(h2),

‖p − ph‖L2
= O(h). (5)

In practice, if the numerical solution shows pressure oscil-

lations (see for instance Sani et al., 1981a, b), one will not

even observe the rates shown above but might in fact obtain a

worse pressure convergence rate, for example ‖p −ph‖L2
=

O(h1/2).

Finally, if one uses Uh = Q1 and Ph = Q1, then this unsta-

ble element combination can be made stable if one replaces

the discrete formulation (3) by the following stabilized ver-

sion due to Dohrmann and Bochev (2004):

(ε(vh),2ηε(uh)) − (∇ · vh,ph) = (vh,ρg),

(qh,∇ ·uh) −

(

(I − π0)qh,
1

η
(I − π0)ph

)

= 0. (6)

Here, I is the identity operator and π0 is the projection onto

piecewise constant functions – i.e., π0f is the function that

on each cell is equal to the mean value of f on that cell. For

this element, the rates one might hope for are as follows (see

again Dohrmann and Bochev, 2004):

‖∇(u − uh)‖L2
= O(h),

‖u − uh‖L2
= O(h2),

‖p − ph‖L2
= O(h). (7)

Dohrmann and Bochev (2004) report that for some test cases,

one might in fact obtain ‖p − ph‖L2
= O(ht ) with t ≈ 1.5,

though it is not clear whether this rate can be obtained for all

possible applications. We also observe this improved rate in

one of our benchmarks in Sect. 5.

We end this section by noting that in many of the setups

we use in Sect. 5, the boundary conditions we impose lead

to a problem in which the pressure is only determined up

to an additive constant. The same is then true for the lin-

ear system one has to solve after discretization. As a conse-

quence, we can only meaningfully compute quantities such

as ‖p − ph‖L2
if both the exact and the numerical solution

are normalized; a typical normalization is to ensure that their

mean values are zero. ASPECT enforces this normalization

after solving the linear system.

3.2 A closer look at the error estimates

A comparison of Eq. (4) with Eqs. (5) and (7) would suggest

that the Taylor–Hood element can obtain substantially bet-

ter rates of convergence if one only chooses the polynomial

degree k large enough.

However, this is an incomplete understanding because the

O(hm) notation hides the fact that the constants in this be-

havior depend on the solution. More specifically, a complete

description of the error behavior would replace Eq. (4) by the

following statement: there are constants C1,C2,C3 < ∞ so

that

‖∇(u − uh)‖L2
≤ C1 hk ‖∇k+1u‖L2

,

‖u − uh‖L2
≤ C2 hk+1 ‖∇k+1u‖L2

,

‖p − ph‖L2
≤ C3 hk ‖∇kp‖L2

. (8)

The validity of these statements clearly depends on the so-

lution being regular enough so that ∇k+1u and ∇kp actu-

ally exist and are square-integrable – in other words, that u ∈

H k+1 and p ∈ H k , where H k represents the usual Sobolev

function spaces. 3 On the other hand, all that is guaranteed by

3For a concise definition of the Lebesgue space L2 and the

Sobolev spaces of functions H k , see Elman et al. (2014). Loosely

speaking, L2 is the set of all functions f for which the integral

of the square over the domain,
∫

�|f (x)|2 dx, is finite. We say that

such functions are “square-integrable”. H k is the set of all functions

whose kth (weak) derivatives are square-integrable.
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the existence theory for partial differential equations is that

u ∈ H 1 and p ∈ L2 = H 0; any further smoothness should

only be expected if, for example, the domain � is convex

and if viscosity η and right-hand side ρg are also smooth.

Indeed, this is the case for many artificial benchmarks for

which these functions are chosen a priori; on the other hand,

in “realistic” geodynamics applications, one might expect η

and ρ to be discontinuous at phase boundaries and poten-

tially vary widely. In such cases, one needs to accept that the

solutions only satisfy u ∈ H q and p ∈ H q−1 with q ≥ 1 but

possibly q < k + 1. Numerical analysis predicts that in such

cases, the best-case rates in Eq. (8) will be replaced by the

following:

‖∇(u − uh)‖L2
≤ C1 hmin{q−1,k} ‖∇min{q,k+1}u‖L2

,

‖u − uh‖L2
≤ C2 hmin{q,k+1} ‖∇min{q,k+1}u‖L2

,

‖p − ph‖L2
≤ C3 hmin{q−1,k} ‖∇min{q−1,k}p‖L2

. (9)

Similar considerations apply for the Q1 × P0 and the sta-

bilized Q1 × Q1 combinations; a closer examination yields

the following rates that would replace Eqs. (5) and (7):

‖∇(u − uh)‖L2
≤ C1 hmin{q−1,1} ‖∇min{q,2}u‖L2

,

‖u − uh‖L2
≤ C2 hmin{q,2} ‖∇min{q,2}u‖L2

,

‖p − ph‖L2
≤ C3 hmin{q−1,1} ‖∇min{q−1,1}p‖L2

. (10)

In other words, we will only benefit from the added ex-

pense of the Taylor–Hood element with k ≥ 2 if the solution

is sufficiently smooth, namely if at least q > k ≥ 2. The ques-

tion of whether q > 2 indeed for a given situation is one of

partial differential equation (PDE) theory and difficult to an-

swer in general without using particular knowledge of η, ρg,

and �. On the other hand, one can observe convergence rates

experimentally for a number of cases of interest, so in some

sense, it would be legitimate to ask the following question:

what is the regularity index q of typical solutions in geody-

namics applications? At the same time, this requires careful

convergence studies on problems that are already typically

quite challenging to solve on any reasonable mesh, let alone

several further refined ones. As a consequence, we cannot

answer this question in the generality stated above. Instead,

we will approach it below by considering a number of bench-

marks that illustrate typical features of geodynamic settings

in an abstracted way (in Sect. 5), followed by a model ap-

plication (in Sect. 6). In particular, the examples in Sect. 5.2

and 5.3 will illustrate cases in which the exact solution is not

smooth enough to achieve the optimal convergence rate.

We end this section by noting that all of the estimates

shown above guarantee that the error on the left of an in-

equality decreases at least at the rate shown on the right side,

but they do not state that on a given sequence of meshes,

the rate might not in fact be better. Indeed, this often hap-

pens: for example, if one aligns meshes with a discontinu-

ity in coefficients (as we do for the SolCx benchmark dis-

cussed in Sect. 5.2), one often observes optimal rates – or

convergence rates between the minimal theoretically guar-

anteed and the optimal ones – for some elements even if the

solution lacks regularity. Actually observing the minimal the-

oretically guaranteed convergence rate for solutions lacking

regularity often requires choosing randomly arranged meshes

– a case we will not consider herein.

4 Comments about the use of the Q1 × Q1 element in

geodynamics computations

Before delving into the details of numerical experiments,

let us consider one other theoretical aspect. An interesting

complication of geodynamics simulations compared to many

other applications of the Stokes equations is that the hydro-

static component of the pressure is often vastly larger than

the dynamic pressure, even though only the dynamic com-

ponent is responsible for driving the flow. As we will dis-

cuss in the following, this has no importance when using the

Q1 × P0 or the Taylor–Hood elements, but it turns out to be

rather inconvenient when using a stabilized formulation that

contains an artificial compressibility term. This issue is also

mentioned in the quote from Arrial and Billen (2013) repro-

duced in the Introduction and in May et al. (2015).

To illustrate the issue, consider the force balance equation

(Eq. 1). We can split the pressure into hydrostatic and dy-

namic components, p = ps +pd , where we define the hydro-

static pressure via the relationship

∂

∂z
ps = ρref(z)gz(z), (11)

coupled with the normalization that ps = 0 at the top of

the domain. In defining ps this way, we have made the as-

sumption that the vertical component gz of the gravity vector

dominates its other components. Furthermore, we have intro-

duced a reference density ρref that somehow reflects a depth-

dependent profile. As we will discuss below, there is really

no unique or accepted way to define this profile, though one

should generally think of it as capturing the bulk of the three-

dimensional variation in the density via a one-dimensional

function.

By splitting the pressure in this way, Eq. (1) can then be

rewritten as follows:

−∇ · [2ηǫ(u)] + ∇pd = ρg − ρrefgzez in �.

Since this is the only equation in which the pressure ap-

pears, it is obvious that the velocity field so computed is

the same whether or not one uses the original formulation

solving for u and p or the one solving for u and pd . More

concisely, the observation shows that the velocity field so

computed does not depend on how one chooses the refer-

ence density ρref. The original formulation is recovered by

using the simplest choice, ρref = 0. As a consequence, many

geodynamics codes use formulations that only compute the
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dynamic pressure pd using a reference density ρref(z). Im-

portantly, however, there is no canonical way for this defini-

tion: one might choose a constant reference density, a depth-

dependent adiabatic profile, or one computed at each time

step by laterally averaging the current three-dimensional den-

sity field ρ(x,y,z, t); each of these options – and likely more

– have been used in numerical simulations one can find in

the literature. In any case, pressure-dependent coefficients

such as the density or viscosity are then evaluated by using

ps + pd , where pd is computed as part of the solution of the

Stokes problem and ps is the hydrostatic pressure defined

by Eq. (11) using the particular choice of reference density

used by a code. On the other hand, the ASPECT code no-

tably always computes the full pressure instead of splitting it

in hydrostatic and dynamic components (see the discussion

in Kronbichler et al., 2012) corresponding to the particular

choice ρref = 0.

The problem with the stabilized Q1 × Q1 formulation –

different from the use of the other element choices – is that

the velocity field computed from the Stokes solution is not

independent of the choice of the reference density. This is

because the mass conservation equation is modified by the

stabilization term and – in the simple case of a constant vis-

cosity – reads

−∇ ·u −
1

η
5pd = 0. (12)

Here, 5 = (I − π0) is the operator that corresponds to the

stabilization term in Eq. (6). 4

The point of these considerations is that different choices

of ρref (including the choice ρref = 0 that leads to the orig-

inal formulation) do have an effect here because they lead

to different pd = p − ps for which 5pd is different: that

is, the amount of artificial compressibility depends on the

splitting of the pressure into static and dynamic pressures.

In other words, the discretization errors ‖u − uh‖L2
and

‖∇(u−uh)‖L2
discussed in the previous section will in gen-

eral depend on the choice of the reference density profile, and

the latter will need to be carefully defined in order to lead to

acceptable error levels. As we will show in the benchmarking

section, the specific choice of ρref in fact has a rather large ef-

fect. This is in line with the previously quoted comments in

Arrial and Billen (2013).

Let us end this section by commenting on two aspects of

why this issue may not be as relevant in other contexts in

which stabilized formulations have been used. First, in many

important applications of the Stokes equations, the flow is not

4To arrive at this form for the operator, one needs

to rewrite Eq. (6) using
(

(I − π0)qh, 1
η (I − π0)ph

)

=
(

qh, 1
η (I − π0)∗(I − π0)ph

)

, where the asterisk denotes the

adjoint operator. One then shows (I − π0)∗ = (I − π0) and finally

that 5 = (I − π0)2 = I − π0, which follows by recalling that

projection operators are idempotent.

driven by buoyancy effects but by inflow and outflow bound-

ary conditions (e.g., Turek, 1999; Zienkiewicz and Taylor,

2002). Indeed, in those conditions both the density and the

gravity vector are generally considered spatially constant,

and the choice of reference density and hydrostatic pressure

is then obvious and unambiguous. In these cases, computa-

tions are always performed with only the dynamic pressure

because the hydrostatic pressure does not enter the prob-

lem at all except in the rare cases of fluids with pressure-

dependent viscosities.

Second, while we have here considered the stabilization

first introduced in Dohrmann and Bochev (2004), earlier sta-

bilized formulations used a pressure Laplacian in place of the

operator 5 above. (See, for example, Brezzi and Pitkäranta,

1984, or the variation in Silvester and Kechkar, 1990, as well

as the analysis in Bochev et al., 2006.) That is, instead of

Eq. (12) they used a formulation of the form

−∇ ·u − ch21p = 0, (13)

where c is a tuning parameter that also incorporates the vis-

cosity. If one uses this formulation for cases in which the ref-

erence density is chosen as a function that is constant in depth

– as was often done in earlier mantle convection codes con-

sidering the Boussinesq approximation – and if one computes

in a Cartesian box with a constant gravity vector g = gez,

then ps is a linear function, and consequently 1ps = 0. In

other words, 1p = 1(p−ps) = 1pd , which implies that the

computed velocity field again did not depend on the exact

choice of ρref as long as it was chosen constant. This property

does not hold for the formulation of Dohrmann and Bochev

because 5p 6= 5(p −ps) = 5pd for linear pressures ps be-

cause 5ps 6= 0: 5 subtracts from ps the average value on

each cell, leaving a piecewise linear discontinuous function.

Of course, whether one uses the Dohrmann–Bochev for-

mulation (Eq. 12) or the addition of a pressure Laplace as in

Eq. (13), the formulation is consistent. That is, as the mesh

size h goes to zero, the added stabilization term also goes to

zero. In the limit, the numerical solution therefore satisfies

the original mass conservation equation. In other words, the

limit is independent of the choice of ρref, even though the

solutions on a finite mesh are not.

5 Numerical results for artificial benchmarks

In this section, let us present computational results for three

analytical problems and a buoyancy-driven flow community

benchmark. While the first of these (Sect. 5.1) is simply used

to establish the best convergence rates one can hope for in

the case of smooth solutions, the remaining test cases were

chosen because they illustrate aspects of what we think “typ-

ical” solutions of geodynamic applications look like in an

abstracted, controlled way. In particular, the “SolCx” bench-

mark in Sect. 5.2 demonstrates features of solutions in which

the mesh can be aligned with sharp features in the viscos-
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ity, and the “SolVi” benchmark in Sect. 5.3 does so in the

more common case in which the mesh cannot be aligned. Fi-

nally, the “sinking block” case in Sect. 5.4 shows a buoyancy-

driven situation in which all of the discussions of the previ-

ous section on the choice of a reference density will come

into play. All of these cases are simple enough that we know

(quantitative or qualitative features of) the solution to suffi-

cient accuracy to investigate convergence rigorously.

While these benchmarks provide us with insight that al-

lows us to conjecture which elements may or may not work in

practical application, they still are just abstract benchmarks.

As a consequence, we will consider an actual geodynamic

application in Sect. 6.

All models are run with the ASPECT code. We have lim-

ited ourselves to two-dimensional cases as we do not expect

that three-dimensional models would shed any more light on

the conclusions reached. Although ASPECT is built for adap-

tive mesh refinement (AMR), we have chosen not to use this

feature in order to reflect the fact that the majority of existing

codes use structured meshes.

5.1 The Donea and Huerta benchmark

Let us start our numerical experiments with the simple 2D

benchmark presented in Donea and Huerta (2003). The ex-

act definition involves lengthy formulas not worth repeat-

ing here, but in short it consists of the following ingredients:

(i) the domain is a unit square, (ii) the viscosity and density

are set to 1, and (iii) velocity and pressure fields are cho-

sen to correspond to smooth polynomials describing circular

flow with no-slip boundary conditions. We then choose an

(unphysical) gravity vector field that produces these velocity

and pressure fields. This setup produces the smooth solution

shown in Fig. 1 for which we would expect that the higher-

order Taylor–Hood element is highly accurate.

We verify this in Fig. 2 for the four element choices of

interest in this work: Q1 ×P0, stabilized Q1 ×Q1, Q2 ×Q1,

and Q2 × P−1. Looking at the velocity error, we recover a

cubic convergence rate (q = 3) for the Q2×Q1 and Q2×P−1

elements and a quadratic convergence rate (q = 2) for those

choices using the Q1 elements for the velocity. The pressure

error is of linear rate for the Q1×P0 element and of quadratic

rate for the Q2 ×Q1 and Q2 ×P−1 elements. All of these are

as expected. For the stabilized Q1×Q1, we obtain the better-

than-expected rate of 1.5 already mentioned in Dohrmann

and Bochev (2004); see also Sect. 3.

Figure 3 shows the root mean square velocity as a function

of the mesh size as obtained with the four elements in ques-

tion. Again, the second-order elements are more accurate.

These results are not surprising: the solution is smooth,

and consequently one would expect to obtain optimal order

convergence in all cases. One can carry out similar experi-

ments for the SolKz benchmark (Zhong, 1996), which also

has a smooth solution; we have obtained identical error con-

vergence rates.

Finally, we also investigate the cost associated with solv-

ing this problem using the various elements. Fig. 3 shows

the number of outer FGMRES iterations (Kronbichler et al.,

2012) iterations of the Stokes solver as a function of the mesh

size.5 This number is nearly constant with increasing reso-

lution for the stable or stabilized elements, while it becomes

exceedingly large for the unstable Q1×P0 element, reflecting

the fact that lack of LBB stability corresponds to the smallest

eigenvalue of the system matrix tending to zero – and thereby

driving the condition number to infinity. Indeed, our linear

solver does not converge in the 1000 iterations we chose as a

limit for the smallest mesh sizes.

5.2 The SolCx benchmark

The SolCx benchmark is a common benchmark found in

many geodynamical papers (e.g., Zhong, 1996; Duretz et al.,

2011; Kronbichler et al., 2012; Thielmann et al., 2014). It

uses a discontinuous viscosity profile with a large jump in

the viscosity value along the middle of the domain, result-

ing in a discontinuous pressure field. The domain is a unit

square, boundary conditions are free-slip on all edges, and

the gravity vector points downwards with |g| = 1. The den-

sity for SolCx is given by ρ(x,y) = sin(πy)cos(πx) and the

viscosity field is such that

η(x,y) =

{

1, if 0 ≤ x ≤ 0.5

106 if 0.5 < x ≤ 1.

We show the velocity and pressure fields in Fig. 4. The

discontinuous jump of the viscosity field by a factor of 106

results in separate convective cells on the left and right sides

of the domain, though with vastly different strengths. The

pressure also reflects this disjoint behavior.

As in the Donea and Huerta benchmark, we compute the

velocity and pressure error convergence for all four elements.

Those are shown in Fig. 5. As documented in Kronbich-

ler et al. (2012), the second-order element with discontinu-

ous pressure Q2 × P−1 performs better (pressure error con-

vergence is O(h2)) than its continuous pressure counterpart

Q2 × Q1 (convergence is only O(h1/2), but the better con-

vergence order with the discontinuous pressure can only be

obtained if the discontinuity in the viscosity is aligned with

cell boundaries – which is the case here. Also of interest here

is the fact that the Q1 × P0 outperforms the Q1 × Q1 ele-

ment for both velocity and pressure. All of these observa-

tions are readily explained by the fact that a discontinuous

pressure can only be approximated well when using discon-

tinuous pressure elements with cell interfaces aligned with

the discontinuity in the viscosity.

Figure 6 shows the number of outer FGMRES iterations of

the Stokes solver as a function of the mesh size. We find this

5The concrete number of iterations of course depends on the

preconditioner used – here the one described in Kronbichler et al.

(2012). The important point of the figure, however, is how the num-

ber of iterations changes (or does not) with the mesh size h.
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Figure 1. Donea and Huerta benchmark. Velocity (a) and pressure (b) fields obtained on a 32 × 32 mesh with Q2 × Q1 elements.

Figure 2. Donea and Huerta benchmark. Error convergence as a function of the mesh size h. (a) Velocity error ||u − uh||L2
. (b) Pressure

error ||p − ph||L2
. The two leftmost points are missing for Q1 × P0 since the solver failed to converge; the data points for Q2 × Q1 and

Q2 × P−1 are on top of each other.

time that this number is nearly constant with increasing res-

olution for all four elements. Unsurprisingly the Q1 ×P0 el-

ement requires more iterations than all the others but by less

than a factor of 2. The quadratic elements require the same

number of iterations, while the stabilized Q1 × Q1 requires

only half their number: this is surprising, but the conclusions

from the previous paragraph remain about it being the least

accurate of all four elements here.

5.3 The SolVi (circular inclusion) benchmark

The SolCx benchmark in the previous section allows for

aligning mesh interfaces with the discontinuity in the vis-

cosity. This is an artificial situation that will, in general, not

happen in actual large-scale geodynamics applications for

which the interfaces between materials may be at arbitrary

locations and orientations in the domain and may also move

with time. An example is the simulation of a cold subducting

slab (with correspondingly large viscosity) surrounded by

hot low-viscosity mantle material. Consequently, it is worth

considering a situation in which it is impractical to align

mesh and viscosity interfaces. This is done by the SolVi in-

clusion benchmark, which solves a problem with a viscosity

that is discontinuous along a circle. This in turns leads to

a discontinuous pressure along the interface, which is diffi-

cult to represent accurately. Using the regular meshes used

by a majority of codes, the discontinuity in the viscosity and

pressure then never aligns with cell boundaries. Even though

ASPECT can use arbitrary unstructured meshes (and can also

use curved cell edges), we will honor the setup of this bench-

mark by only considering regular meshes.

Schmid and Podlachikov (2003) derived a simple analyti-

cal solution for the pressure and velocity fields for such a cir-

cular inclusion under pure shear, and this benchmark is show-

cased in many publications (Deubelbeiss and Kaus, 2008;

Suckale et al., 2010; Duretz et al., 2011; Kronbichler et al.,

2012; Gerya et al., 2013; Thielmann et al., 2014). The veloc-

ity and pressure fields are shown in Fig. 7.

A characteristic of the analytic solution is that the pres-

sure is zero inside the inclusion, while outside it follows the

relation

p = 4ǫ̇
ηm(ηi − ηm)

ηi + ηm

r2
i

r2
cos(2θ), (14)

where ηi = 103 is the viscosity of the inclusion, ηm = 1 is

the viscosity of the background medium, r =
√

x2 + y2, θ =

arctan(y/x), and ǫ̇ = 1 is the applied strain rate if one were

to extend the domain to infinity. The formula above makes it

clear that the pressure is discontinuous along the perimeter

of the disk, with the jump largest at θ = 0,±π
2
,π .
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Figure 3. Donea and Huerta benchmark. (a) Root mean square velocity as a function of the mesh size h. The dotted line is the analytical

value. (b) Number of FGMRES solver iterations as a function of the mesh size h.

Figure 4. SolCx benchmark. Velocity (a) and pressure (b) fields obtained on a mesh with a resolution of 32 × 32 grid with the Q2 × Q1

element.

Deubelbeiss and Kaus (2008) thoroughly investigated this

problem with various numerical methods (FEM, FDM), with

and without tracers, and conclusively showed how various

schemes of averaging the density and viscosity lead to differ-

ent results. Heister et al. (2017) also come to this conclusion

and also considered how averaging the coefficient on each

cell affects the number of iterations necessary to solve the

linear systems. We repeat these experiments here but with our

larger set of different elements. Specifically, results obtained

with no averaging inside the element (“No”), arithmetic av-

eraging (“Arith”), geometric averaging (“Geom”), and har-

monic averaging (“Harm”) are shown in Fig. 8. We see that

(i) all four elements show the same rate of convergence: O(h)

for velocity errors and O(h0.5) for pressure errors; (ii) har-

monic averaging always yields lower errors, validating the

findings of Heister et al. (2017); (iii) the number of iterations

in the Stokes solver is the lowest for the stabilized Q1 × Q1

element; and (iv) this number is not strongly affected by the

method of averaging (with the exception of the Q2 ×P−1 el-

ement). The observation that none of the elements reach their

optimal convergence rate also supports our decision, briefly

mentioned in the “Goals of this paper” part of the Introduc-

tion, to not further investigate higher-order Taylor–Hood ele-

ments Qk×Qk−1 or Qk×P−(k−1) with k > 2: we know from

experiments such as the current one that these elements will

not yield better convergence orders despite their additional

cost.

Since harmonic averaging yields the lowest errors we se-

lect this averaging and now turn to the pressure field for all

elements as shown in Fig. 9. We find that the recovered pres-

sures on the line y = 1 follow the analytical solution outside

the inclusion but are less accurate inside the inclusion where

it should be identically zero (Fig. 10).

5.4 The sinking block

As discussed in Sect. 4, the stabilized Q1 × Q1 element is

sensitive to the choice of a reference density profile as not

only the computed pressure, but also the computed veloc-

ity field, depends on this choice. This is only relevant for

buoyancy-driven flows, but because none of the benchmarks

shown previously are driven by buoyancy effects in the pres-

ence of a background lithostatic pressure to any significant

degree, let us next consider a setup in which this is the dom-

inant effect. To this end, we perform an experiment based

on a benchmark similar or identical to the ones presented in

May and Moresi (2008), Gerya (2019), Thieulot (2011), and

Schuh-Senlis et al. (2020).
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Figure 5. SolCx benchmark. Error convergence as a function of the mesh size h. (a) Velocity error; (b) pressure error.

Figure 6. SolCx benchmark. Number of FGMRES solver iterations

as a function of the mesh size h.

It consists of a two-dimensional 512 × 512 km do-

main filled with a fluid (the “mantle”) of density ρ1 =

3200 kg m−3 and viscosity η1 = 1021 Pa s. A square block of

size 128 × 128 km is placed in the domain and is centered at

location (xc, yc) = (256, 384 km) so as to ensure that its sides

align with cell boundaries at all resolutions, avoiding cases

in which the quadrature within one element corresponds to

different density or viscosity values. It is filled with a fluid

of density ρ2 = ρ1 + δρ and viscosity η2. The gravity vector

points downwards with |g| = 10 m s−2. Boundary conditions

are free-slip on all sides. The pressure null space is removed

by enforcing
∫

�
p dV = 0, and only one time step is carried

out. The benchmark then solves for the instantaneous pres-

sure and velocity field for this setup.

In a geodynamical context, the block could be interpreted

as a detached slab (δρ > 0) or a plume head (δρ < 0). As

such its viscosity and density can vary (a cold slab has a

higher effective viscosity than the surrounding mantle, while

it is the other way around for a plume head). The block den-

sity difference δρ can then vary from a few to several hun-

dred kilograms per cubic meter (kg m−3) to represent a wide

array of scenarios. As shown in Appendix A.2 of Thieulot

(2011), one can independently vary η1, ρ2, and η2 and mea-

sure |vz| for each combination: the quantity ν = |vz|η1/δρ is

then found to be a simple function of the ratio η⋆ = η2/η1.

At high enough mesh resolution all data points collapse onto

a single line.

In the following, we will denote as Method 1 the approach

whereby we do calculations with the density field as specified

above. Method 2 consists of a “reduced” density field from

which the quantity ρ1 has been uniformly removed so that

the block has a density δρ, while the surrounding fluid has

zero density. As discussed above, the two choices will result

in different pressure but the same velocity fields.

We have carried out measurements for all four elements

with η⋆ ∈ [10−4 : 106] and δρ/ρ1 ∈ {0.25%,1%,4%} cor-

responding to δρ ∈ {8,32,128} kg m−3. Results for ν =

f (η⋆) for all elements, the three block density values, and

five different mesh resolutions are shown in Fig. 11 for the

two methods.

When using the full density, we see that all elements, with

the exception of the stabilized Q1×Q1 element, yield results

which align on a single curve on the plots once sufficient res-

olution is reached. We find that measurements pertaining to a

given resolution but different δρ are always collapsed onto a

single line. It is worth noticing that the Q2 ×P−1 element re-

sults seem to be the least resolution-dependent. On the other

hand, the stabilized Q1 ×Q1 element yields very anomalous

results which are orders of magnitude off at all resolutions,

especially for η1/η2 ≫ 1. In addition, we find that for this

element, the value of δρ strongly affects the measurements,

as expected based on the discussions in Sect. 4; as a result,

the curves for the same mesh resolution but different δρ2 no

longer coincide (see Fig. 11b).

When reduced densities are used results are unchanged

for the stable elements (only Q2 × Q1 results are shown in

Fig. 11e), and the results for the stabilized Q1 × Q1 results

are substantially improved. For values η1/η2 < 1 we see that

all results align on the expected curve, but this is far from

true for η1/η2 ≫ 1 even at high resolution.

In Fig. 12 we show the velocity field in the case η⋆ =

10−4 (i.e., the viscosity of the block is 10 000 times smaller

than the surrounding mantle) and δρ = 8 kg m−3. When the

Q2 × Q1 element is employed in conjunction with Method

1 we see in Fig. 12a that the velocity field is strongest in-

side the block with a maximum value of about 5 mm yr−1 in

its center. We see that the Q2 × Q1 and Q2 × P−1 elements

yield nearly identical results (Fig. 12b), so we consider this to
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Figure 7. SolVi benchmark with inclusion of radius 0.2. Velocity (a) and pressure (b) fields obtained on a 256 × 256 mesh using Q2 × Q1

elements.

Figure 8. SolVi benchmark. Left to right: Q1 × P0, stabilized Q1 × Q1, Q2 × Q1, and Q2 × P−1. Top to bottom: velocity error, pressure

error, and number of FGMRES iterations for the Stokes solve. The individual lines in each graph correspond to different ways of averaging

coefficients on each cell: dotted lines use the correct unaveraged values of coefficients at each quadrature point; dash-dotted lines compute

the arithmetic average of the values at the quadrature points on a cell and use the average for all quadrature points; dashed lines use the

geometric average; solid lines use the harmonic average. The gray dotted line in the first two rows indicates O(h) convergence for velocity

and O(h0.5) for pressure.

be the correct solution of the physical experiment. The same

setup with the stabilized Q1×Q1 (left half of Fig. 12c) yields

a velocity field that is also maximal in the middle of the block

but nearly 1000 times larger in amplitude. If we now switch

to Method 2 (right half of Fig. 12c) the amplitude of the ve-

locity is reduced by 2 orders of magnitude, but it is still much

too large compared to the true solution.

These observations illustrate the unreliable nature of the

results obtained with stabilized Q1×Q1 elements in the con-

text of buoyancy-driven flows. Looking at Fig. 11f we see

that increasing the resolution to 512 × 512 or 1024 × 1024

would probably yield the expected curve, but such resolu-

tions are intractable in three dimensions and better results can

be obtained at much lower resolutions with other elements.

Finally, in Fig. 13 we plot the normalized pressure p⋆ =

p/(δρ gLb) at the center of the block (where Lb is the size

of the block) as a function of the viscosity ratio η⋆ in the case

in which a reduced density field is used. For the Q2×Q1 and

the stabilized Q1 ×Q1 elements, the pressure at this point is

uniquely defined since the elements have continuous pres-

sures. For the other two elements the pressure is discontinu-

ous across element edges, and it is therefore not uniquely de-
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Figure 9. SolVi benchmark. Pressure field for the Q1 × P0, stabilized Q1 × Q1, Q2 × Q1, and Q2 × P−1 elements from left to right and

top to bottom at resolution 128 × 128 with no averaging. Note the different color scales, illustrating the differing size of overshoots and

undershoots for the different discretizations.

Figure 10. SolVi benchmark. Pressure on the horizontal ray starting

from the center of the inclusion at x = 1.

fined at our measurement point. We have then chosen to mea-

sure it at four locations corresponding to (xc ± δx,yc ± δy),

where δx = δy = 0.1 m, and show the normalized pressures

at all four of these locations in the figure. For the Q2 × P−1

element, the difference between these values is negligible but

not so for the Q1 × P0 for which the pressure is a stairstep

function with very different values depending on which step

an evaluation point is on. The distance between the two lines

for the Q1 ×P0 element decreases with mesh refinement (in-

dicating convergence of the pressure to the true value), but

only slowly and, matching the observation in Sect. 5.1, at the

cost of not only a fine mesh but also very large numbers of

linear solver iterations.

In addition to the slow convergence of the Q1 × P0 el-

ement, the most striking conclusion of this benchmark is

that for buoyancy-driven flows, the solution obtained using

the stabilized Q1 × Q1 element on typical meshes not only

strongly depends on the choice of the otherwise arbitrary ref-

erence density, but is also almost entirely unreliable even on

meshes that are already quite fine.

6 Numerical results for a model application

While the previous sections have built our intuition for which

element may actually work in the context of geodynamics

applications, they have only done so through abstract and

idealized benchmarks. It is therefore interesting to investi-

gate what one would find in more realistic setups, and conse-

quently we have also investigated convergence for a situation

still sufficiently simple that numerical simulations can reach

reasonably high accuracy but that has more of the complex-

ity one would generally find in “real” simulations. Given that

the previous examples have highlighted the fact that the sta-

bilized Q1 × Q1 element has difficulties with the pressure
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Figure 11. Sinking block benchmark. (a–d) ν = |vz|η1/δρ as a

function of η⋆ = η2/η1 as obtained with the four elements with

full density; (e, f) same with reduced density for only two element

types. Legend: • 16×16 resolution, � 32×32 resolution, � 64×64

resolution, △ 128 × 128 resolution, N 256 × 256 resolution. Colors

represent the element used. For each mesh resolution, we show sep-

arate curves for δρ/ρ1 ∈ {0.25%,1%,4%}; for all but the stabilized

Q1 × Qq element, these curves coincide. Note the different y axis

used for the stabilized Q1 × Q1 element in (b) and (f).

approximation, we are specifically interested in a situation in

which the material behavior is pressure-dependent.

To this end, we consider an example of continental ex-

tension here. The setup is similar to ones that can be found

in Huismans and Beaumont (2002), Jammes and Huismans

(2012), Naliboff and Buiter (2015), and Brune et al. (2017),

and we specifically use the one that can be found in the “con-

tinental extension” cookbook of the manual of the ASPECT

code (Bangerth et al., 2022). The situation we model here

is characterized by the following building blocks: on a do-

main of size 400 km × 100 km, we impose an extensional

horizontal velocity component of ±0.25 cm yr−1 on the sides

and a vertical upward velocity of 0.125 cm yr−1 at the bot-

tom. The tangential components are left free. At the top,

we allow for a free boundary. More interestingly, we use a

pressure- and temperature-dependent viscoplastic rheology

of Drucker–Prager type with parameters for viscous defor-

mation based on dislocation creep flow laws:

ηdisl = A−1/nε̇−1+1/n exp

(

Q + pV

nRT

)

, (15)

where A is a material constant, n is an index typically be-

tween 3 and 4, Q is the activation energy, V is the activation

volume, R the gas constant, T the temperature, and ε̇ is the

effective strain rate (the square root of the second invariant of

the corresponding tensor). Stresses are limited plastically at a

yield stress σy = C cos(φ) + P sin(φ) via a Drucker–Prager

criterion where C is the cohesion and φ the angle of fric-

tion. We use distinct values for some of these parameters in

the initially 20 km thick upper crust (wet quartzite), an ini-

tially 10 km thick lower crust (wet anorthite), and the mantle

(dry olivine), which initially occupies the remaining 70 km

in depth. Deformation is seeded by a weak area within the

mantle lithosphere. We only carry out a single time step as

obtained with a CFL number of 0.5.

A complete and concise description of this setup has more

parameters than are worth spelling out in detail here. For a

detailed description, see Naliboff and Buiter (2015) and the

section of the ASPECT manual along with the corresponding

input files. For the purposes of this paper, the important part

is that both the yield stress and the dislocation creep rheology

depend on the pressure; as a consequence, we can anticipate

that elements that result in poor pressure accuracy may not

yield accurate simulations in general.

This setup produces localized shear zones that accommo-

date the majority of the deformation. Figure 14 illustrates

the structure of the resulting solution. Each panel of the fig-

ure shows in its left half the solution produced by the stabi-

lized Q1 ×Q1 element and its right half that produced by the

Taylor–Hood Q2 ×Q1 element. Because the solution is sym-

metric, the two halves should be mirror images. It is, how-

ever, clear from several of the panels that this is not the case:

the Q1 ×Q1 element produces large artifacts at depth where

the pressure is large and the pressure dependence of the ma-

terial strong.

This effect is also demonstrated in a different way in

Fig. 15 where we show laterally averaged quantities for

the different elements and different mesh resolutions. Even

though it is clear from Fig. 14 that lateral averaging should

result in a better approximation (than pointwise evaluations)

of the correct quantities for a given depth, Fig. 15 shows that

even the average is far from correct. On the other hand, the

figure shows that with increasing mesh resolution, the solu-

tions produced by the Q1 × Q1 seem to converge to the so-

lutions generated by the other elements – albeit very slowly

and at what one might consider an unacceptable cost.

To investigate the origin of these convergence problems of

the Q1×Q1 element, one should recall that the model is non-

linear. As a consequence, the artifacts may be related to the

discretization or to a failure of the nonlinear iteration – and

the two may be connected. All of the solutions we show were

taken after 100 Picard iterations to resolve the nonlinearity
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Figure 12. Sinking block benchmark with δρ/ρ = 0.25 % and η⋆ = 104 on a 256 × 256 element mesh. (a) Viscosity and velocity field.

(b) Velocity field obtained with the Q2 × Q1 element (left of vertical white line) and Q2 × P−1 element (right of vertical line), both using

full density; (c) velocity field obtained with stabilized Q1 ×Q1 with full density (left) and stabilized Q1 ×Q1 with reduced density (right).

Figure 13. Sinking block benchmark. Normalized pressure

p/(δρ gLb) in the center of the block as a function of the viscosity

ratio η⋆. These computations use a 256 × 256 mesh and the reduced

density. For the Q1 ×P0 and Q2 ×P−1 elements with their discon-

tinuous pressure spaces, we show the normalized pressures at sev-

eral slightly displaced points (xc ± δx,yc ± δy). For the Q2 × P−1

element, the difference is not visible, but for the Q1 ×P0 this yields

the two very different red curves; this is due to the fact that the pres-

sure for this element forms a stairstep function for which two of the

evaluation points are on a lower and two on a higher step.

of the model, with nonlinear convergence shown in Fig. 16.

(One could accelerate convergence by using a Newton solver

– Fraters et al., 2019 – but this is not relevant for the work

herein.) Looking at the evolution of the nonlinear residual

during these iterations, we see that it decreases quickly and

for most element choices then plateaus at about 10−5 rel-

ative to the starting residual. In contrast, for the stabilized

Q1×Q1 element, increasing the mesh resolution yields lower

nonlinear residuals – but even on the finest mesh, the nonlin-

ear residuals are still substantially worse than for any of the

other elements, with no apparent progress after about 20 iter-

ations. Of course, we are not the first to observe that conver-

gence is hard to come by for these sorts of problems (see, for

example, Spiegelman et al., 2016), and recent approaches to

regularize visco(–elasto)–plastic deformation by Duretz et al.

(2020) and Jacquey et al. (2021) have been found to improve

the convergence behavior of the nonlinear solvers.

Our interpretation of this experiment is that the inability

of the Q1 × Q1 element to generate accurate pressure fields

leads to values for the pressure-dependent rheology that are

so far away from their correct values – and, indeed, from the

values on nearby cells – that they greatly increase the con-

dition number of the linear systems that have to be solved

in each nonlinear iteration. The resulting difficulty of solv-

ing these Picard steps accurately then affects the speed with

which the nonlinear residual is reduced by the Picard itera-

tion to the point at which the condition number is so large

that convergence can no longer be achieved. Only mesh re-

finement, with the attendant increased accuracy of the pres-

sure solution (and, consequently, a more accurate viscosity),

helps to restore the ability to actually solve this problem to

small nonlinear residuals.

7 Conclusions

In this contribution, we have provided a side-by-side compar-

ison of the most widely used quadrilateral finite elements. As

outlined in the Introduction, most finite-element solvers used

in the geodynamics community rely on one or the other of

these. At the same time, we are not aware of a comprehensive

comparison of their relative strengths – or their weaknesses,

as they may be.

Using the artificial linear benchmarks discussed in Sect. 5,

we can infer that when the solution is smooth, the Taylor–

Hood variations Q2 × Q1 and Q2 × P−1 provide far better

accuracy than the lower-order elements Q1 ×P0 and the sta-

bilized Q1 × Q1. This advantage is largely lost when one

considers problems in which the viscosity is discontinuous.

Since we believe that the real Earth has relatively narrow

phase transition zones where the viscosity may jump by large

factors, benchmarks like the SolVi one in Sect. 5.3 are rele-

vant and illuminate important aspects.

From these considerations, one may conclude that the

Taylor–Hood variations are too expensive – in terms of their

number of degrees of freedom and the attendant memory and

CPU time cost. However, we believe that this is not so.
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Figure 14. Application example. (a) Vertical component of the velocity field; (b) pressure field; (c) effective viscosity field; (d) effective

strain rate field. In all panels, the left half (left of the vertical line) shows data obtained with the stabilized Q1 × Q1 element, whereas the

right half shows results obtained with the Q2 × Q1 element. Note the large deviations between the two towards the bottom of the domain.

All results were obtained on an 800 × 200 mesh with a cell size of 0.5 km.

– For buoyancy-driven flows such as the sinking block

benchmark in Sect. 5.4, the stabilized Q1 ×Q1 element

is largely unable to reproduce the correct solution and,

furthermore, depends on using a formulation in which

one subtracts a reference density from the actual den-

sity; this is equivalent to defining a hydrostatic pressure

profile and only attempting to solve for the “dynamic”

component of the pressure. Crucially, however, there are

many ways of defining such a reference density, neither

of which is canonical and “obviously right” in complex

mantle convection simulations. Since the solution ob-

tained with the stabilized Q1 ×Q1 element strongly de-

pends on the specific choice of reference density, we

conclude that the element cannot be made robust for the
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Figure 15. Application example. (a) Laterally averaged effective viscosity; (b) laterally averaged velocity magnitude. The line styles chosen

become increasingly assertive (dotted to solid lines) as mesh resolution is increased.

Figure 16. Application example. Nonlinear residual as a function of nonlinear iteration step for all four elements and for different mesh

resolutions.

kinds of flows we encounter in real mantle convection

situations. We have also verified this assertion using an

application in which we consider continental extension

(Sect. 6) and in which the inability to produce accurate

pressure solutions also greatly affects the convergence

of the nonlinear solver to the point at which the com-

puted solution must be considered unusable. We have

shown that these errors can be reduced when choosing

very fine meshes, but the attendant cost is unacceptable

when compared with that of using other elements on far

coarser meshes.

There are other considerations to believing that the pro-

cedure of trying to subtract a reference density (or a

hydrostatic pressure) cannot be a successful strategy.

For example, simulations of free or deformable surfaces

(at the Earth’s surface as well as at the core–mantle

boundary) require accurate knowledge of the total pres-

sure. This is true for coupled formulations of flow and

surface deformation (Rose et al., 2017) as well as ap-

proaches such as the “sticky air” method (Crameri et al.,

2012). But similar considerations also apply to nonlin-

ear material laws in which the pressure enters the vis-

cosity or, more commonly, phase computations that de-

termine the density and other thermodynamic material

properties from the pressure and the temperature. In-

deed, one could conjecture that the stabilized Q1 × Q1

element would also fail for compressible Stokes simu-

lations, though we have not verified this here.

We conclude from these thoughts that the stabilized

Q1 ×Q1 element is not a viable choice for mantle con-
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vection simulations. It is important to point out that

the cases we consider to be crucial here – buoyancy-

driven flows, large hydrostatic pressures, and pressure-

dependent rheologies – are uncommon in most of the

engineering applications for which the Q1 × Q1 was

originally developed; as a consequence, it is not sur-

prising that what we find here contradicts substantial

parts of the engineering literature wherein the element

remains widely used.

– We believe that the Q1 ×P0 element is also not a viable

choice. As shown by several of the analytical bench-

marks, the errors that result from using this element can

be orders of magnitude larger than the corresponding

errors that result from the Taylor–Hood-type elements.

This is no longer the case once we consider discontin-

uous viscosity profiles (see Sect. 5.3), but this element

is also unable to accurately solve the buoyancy-driven

case discussed in Sect. 5.4. Furthermore, as pointed out

before, this element is not LBB-stable, which, despite

considerable efforts in the past decades, has limited its

use in combination with iterative methods: because of

the corresponding condition number increase, the num-

ber of iterations is found to grow in a somewhat un-

predictable manner with an increase in resolution. This

may explain why, despite the Citcom codes’ success

over 2 decades with studies based on models count-

ing up to ∼ 100 million elements on several hundred

processors (e.g., Jadamec and Billen, 2012), the current

generation of massively parallel codes relies on either

stable (Kronbichler et al., 2012; May et al., 2015) or

stabilized elements (Burstedde et al., 2013), or they use

the finite-difference method (Kaus et al., 2016).

In summary, we think that the Taylor–Hood variations

Q2 × Q1 and Q2 × P−1 present the best compromise for

robust mantle convection and crustal dynamics simulations

based on the finite-element method. This is not because these

elements are “obviously better” than the others but due more

to a “last man standing” argument: the other choices sim-

ply disqualified themselves by failing to provide adequate

accuracy in one situation or another. At the same time, the

lack of regularity one expects of typical scenarios also im-

plies that we should not expect higher-order Taylor–Hood

elements Qk+1 × Qk or Qk+1 × P−k with k > 2 to provide

substantially better accuracy compared to their much higher

computational cost. Although we have only shown results for

two-dimensional simulations, experience – including the ex-

perience with the ASPECT code used here that solves two-

and three-dimensional problems within the same framework

– suggests that all of these considerations would also apply

to the three-dimensional (hexahedral) analogs of the ones we

have used.

The experiments we have shown do not provide clear guid-

ance on whether one should use the Q2 × Q1 or Q2 × P−1

element. But other considerations can provide such guidance.

Most notably, the elements with discontinuous pressure ele-

ments (namely, the Q2 ×P−1 but also the Q1 ×P0 elements)

have the “local conservation” property for which the velocity

satisfies

∫

K

∇ ·uh =

∫

∂K

n · uh = 0

on every cell K of the mesh, a property also satisfied by the

exact solution. Local conservation is useful when consider-

ing that the velocity computed in geodynamics models is of-

ten used in a second step to advect both the temperature field

and chemical compositions (see, for example, Schubert et al.,

2001). A comprehensive investigation of the interplay of lo-

cal conservation and transport can be found in Dawson et al.

(2004).

Of course, the choices we have considered here are not

the only ones. One could, for example, consider “simplicial”

(triangular and tetrahedral) elements instead of the quadrilat-

eral and hexahedral ones we have used here. Indeed, some

existing mantle convection codes use this strategy. One suc-

cessful example is the TERRA-NEO code that uses equal-

order linear tetrahedra (Gmeiner et al., 2015; Weismüller

et al., 2015) stabilized by means of a pressure-stabilization

approach based on the addition of linear least-squares terms

(the “PSPG” approach, see Brezzi and Douglas, 1988; El-

man et al., 2014); other examples include Fluidity (Davies

et al., 2011), MILAMIN (Dabrowski et al., 2008), and La-

CoDe (de Montserrat et al., 2019). While we have not evalu-

ated simplicial elements, one might conjecture that many of

the same conclusions would also hold: the unstable P1 × P0

provides low accuracy and is unstable, the stabilized P1 ×P1

has difficulties with buoyancy-driven flows and large hydro-

static pressures, and the Taylor–Hood element P2 ×P1 is ex-

pensive but robust.

Finally, there are other more exotic elements one could

work with. Examples include the Rannacher–Turek element

(Rannacher and Turek, 1992), the Crouzeix–Raviart element

(Crouzeix and Raviart, 1973; Dabrowski et al., 2008), or the

DSSY element (Douglas et al., 1999). We have not inves-

tigated these kinds of choices for four reasons: (i) the pa-

per at hand is long enough as it stands; (ii) these elements

are not widely used, both within and outside our commu-

nity; (iii) many of these elements are difficult to implement in

one regard or another, including complications with bound-

ary conditions and with dealing with unstructured and possi-

bly curvilinear cells; and finally, (iv) the elements mentioned

above are not as widely available or completely implemented

in common software frameworks, and their use thus requires

substantial additional implementation work.

While we have not investigated these two possible direc-

tions for alternatives to the elements we have considered, we

think that such studies would be interesting. We hope that

our careful choice of test cases might also be useful to such

studies.
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