"" frontiers ‘ Frontiers in Psychiatry

PERSPECTIVE
published: 02 June 2022
doi: 10.3389/fpsyt.2022.912600

OPEN ACCESS

Edited by:
Enrico D’Ambrosio,
University of Bari Aldo Moro, ltaly

Reviewed by:

Georgia Koppe,

University of Heidelberg, Germany
Guang Yang,

Imperial College London,

United Kingdom

Matthew B. Wall,

Imanova, United Kingdom

*Correspondence:
Jason Smucny
jsmucny@ucdavis.edu

Specialty section:

This article was submitted to
Computational Psychiatry,

a section of the journal
Frontiers in Psychiatry

Received: 04 April 2022
Accepted: 06 May 2022
Published: 02 June 2022

Citation:

Smucny J, Shi G and Davidson |
(2022) Deep Learning

in Neuroimaging: Overcoming
Challenges With Emerging
Approaches.

Front. Psychiatry 13:912600.
doi: 10.3389/fpsyt.2022.912600

Check for
updates

Deep Learning in Neuroimaging:
Overcoming Challenges With
Emerging Approaches

Jason Smucny™, Ge Shi? and lan Davidson?

" Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA, United States, ? Department
of Computer Sciences, University of California, Davis, Davis, CA, United States

Deep learning (DL) is of great interest in psychiatry due its potential yet largely
untapped ability to utilize multidimensional datasets (such as fMRI data) to predict
clinical outcomes. Typical DL methods, however, have strong assumptions, such as
large datasets and underlying model opaqueness, that are suitable for natural image
prediction problems but not medical imaging. Here we describe three relatively novel
DL approaches that may help accelerate its incorporation into mainstream psychiatry
research and ultimately bring it into the clinic as a prognostic tool. We first introduce
two methods that can reduce the amount of training data required to develop accurate
models. These may prove invaluable for fMRI-based DL given the time and monetary
expense required to acquire neuroimaging data. These methods are (1) transfer
learning — the ability of deep learners to incorporate knowledge learned from one data
source (e.g., fMRI data from one site) and apply it toward learning from a second data
source (e.g., data from another site), and (2) data augmentation (via Mixup) — a self-
supervised learning technique in which “virtual” instances are created. We then discuss
explainable artificial intelligence (XAl), i.e., tools that reveal what features (and in what
combinations) deep learners use to make decisions. XAl can be used to solve the
“black box” criticism common in DL and reveal mechanisms that ultimately produce
clinical outcomes. We expect these techniques to greatly enhance the applicability of
DL in psychiatric research and help reveal novel mechanisms and potential pathways
for therapeutic intervention in mental iliness.
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INTRODUCTION: DEEP LEARNING AND FUNCTIONAL
MAGNETIC RESONANCE IMAGING

The past several years has seen an explosion of interest in machine learning (ML) applications
for functional magnetic resonance imaging (fMRI). To illustrate, a PubMed search for “fMRI
machine learning” yields a roughly exponential increase in results from 2010 to 2020, with 39
hits in 2010, 300 in 2015, and 1,165 in 2020. Of particular significance is in developing fMRI-
compatible ML tools for clinical mental health applications, such as predicting clinical response
to treatment. Such forecasting remains a critically unmet challenge as clinical data alone is typically
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insufficient to predict response. As a result, the process of
prescribing ideal treatment regimens often requires clinician
adjustment over a substantial period (months to years).
Patients with psychosis, for example, may be prescribed various
medications until a suitable one is found, increasing the cost and
potential risks of treatment (1).

Despite this surge of interest, fMRI-based ML has not yet
become a component of standard clinical diagnoses. Indeed,
shallow ML algorithms, such as support vector machines and
random forests, have not yet consistently demonstrated they
can predict treatment outcomes with sufficient accuracy to be
useful clinical tools. A limitation of these algorithms is that the
data features used for prediction must be selected beforehand.
Although this may be done with some degree of success using
a priori hypotheses or data-driven regularization methods such
as LASSO regression (2), ideally a ML algorithm would be able
to teach itself how to select features as well as combine them in
meaningful ways to maximize performance.

Accordingly, end-to-end learning is a prominent feature
of more recently developed, deep learning (DL) algorithms.
DL algorithms perform feature selection by combining raw
data into successively more complex and useful composite
representations [(3); see Koppe et al. (4) for a review of
DL as applied to neuroimaging data in mental health]. By
creating these representations, the deep learner can increase
its computational capacity to discover predictive functions
with optimum efliciency. In this manner, it may maximize
the predictive power provided by its input data, resulting in
better performance compared to shallow architectures. Indeed,
some evidence suggests that deep learners outperform shallow
ML classifiers when using fMRI data (5-7), including recent
studies using task fMRI data to predict clinical improvement
in recent onset schizophrenia [logistic regression in Smucny
et al. (8); shallow ML and DL architectures in Smucny et al.
(7)]. Furthermore, a recent meta-analysis comparing DL to
shallow ML when using neuroimaging to classify psychiatric
disorders (autism, attention deficit hyperactivity disorder, and
schizophrenia) found overall qualitatively higher odds ratios
when using DL, although the difference was only statistically
significant for autism (9).

A classic example of the power of DL is in image
prediction and classification, in which specialized DNNs called
convolutional neural networks (CNNs) combine line features
to form more and more complex shapes and ultimately objects
(10). CNNs are particularly effective at preventing overfitting
as, due to weight sharing, the number of weights available
for training is reduced. CNNs can thus extract local patterns
independent of precise locations and find progressively complex
patterns with layer depth. In functional neuroimaging contexts
such patterns may be represented by increasingly complex
patterns of spatial activation (11), blood oxygen-dependent
response functions (if time series are used) (11, 12), or
network connectivity (13). Feature selection and convolution are
ascertained as part of the DL process. Although they are feed-
forward in nature, CNNs also incorporate a backpropagation
algorithm during training to perform adjustments to internal
parameters that are used to compute the representation in

TABLE 1 | Challenges for deep learning on fMRI data and proposed,
emerging solutions.

High Small sample Opaque
dimensional sizes interpretability
data
Transfer learning X X
Data augmentation: X
mixup
Explainable artificial X
intelligence

each layer from the representation in the previous layer
(14, 15).

A second class of DNNs called recurrent neural networks
(RNNs) may be particularly applicable in functional
neuroimaging as these networks were developed for use in
time series data. Akin to autoregressive models in linear
regression, RNNs employ previous knowledge of function
outputs toward future prediction. These networks may also move
back and forth (hence the term “recurrent”), similar to how
the brain uses stored knowledge to influence perception while
also using perception to update stored knowledge [reviewed by
Koppe et al. (4) and Durstewitz et al. (16)].

Despite the advantage of DL over shallow ML architectures,
several issues remain in DL (as well as ML in general) which
have been problematic when using these architectures to perform
neuroimaging data-based classification (17). First, performing
feature selection in the face of high dimensional data such as
fMRI is a challenge, even for many DL architectures. Second,
many deep learners require very large sample sizes to both
perform well in a single dataset and generalize to independent
datasets. Given the time and monetary expense required to
perform neuroimaging studies, such sample sizes may be too
large to be feasibly collected without enlisting large consortia.
Third, DL has been described as a “black box,” providing
predictions without any corresponding output as to what
features or feature combinations were used to make decisions.
Black-box approaches thus are unable to discern the neuronal
mechanisms that underlie the pathology of the disorder to
develop targetable biomarkers.

To that end, the purpose of this review is to introduce
several extensions of standard DL pipelines that may be used
to overcome these challenges. Specifically, we introduce transfer
learning as a method to overcome the high dimensionality
challenge and small sample size challenge, data augmentation
(via Mixup) to overcome the small sample size challenge,
and explainable artificial intelligence (XAI) to overcome the
opaqueness (“black box”) challenge (Table 1). As they are
relatively novel, these DL extensions have yet to be widely utilized
in neuroimaging-based psychiatry research, and we hope they
may eventually help bring fMRI into the clinic as part of a
diagnostic, predictive battery.

Transfer Learning
Formally defined by Bozinovski and Fulgosi (18) and first carried
out in machine learning by Pratt (19), transfer learning focuses
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FIGURE 1 | Cartoon illustration of transfer learning, where information learned from a source domain is transferred to learning in a target domain. For example,
information learned from fMRI data collected during a particular cognitive task or scanning procedure can be transferred to improve learning on data gathered from a

different cognitive task or scanning procedure.

on applying the knowledge gained while solving one problem to a
different but related problem. The definition of transfer learning
is illustrated in terms of domains and tasks. Specifically, where
the knowledge is transferred from is called the source domain
and where the knowledge is transferred to is called the target
domain (Figure 1) (20). Transfer learning aims to help improve
the learning of the target predictive function of the target task
in the target domain using the knowledge in the source domain
and source task, especially when there is scarce data in the target
domain and ample data in the source domain. Transfer learning
may either use a pre-trained network as a feature extractor or
fine-tune a pretrained network on target domain data.

One variant of transfer learning, called domain adaptation
(20), may be particularly well suited for brain imaging. Domain
adaptation occurs when the source and target domains have
different distributions (although they must share the same feature
space) but the underlying prediction task is the same. In the
case of MRI/fMRI data, this may occur when knowledge gained
from imaging data collected at one imaging site is transferred to
another site, or when knowledge from data collected using one
scanning protocol is transferred to data from a different scanning
protocol. Domain adaptation may be particularly applicable to
fMRI data, as fMRI datasets from individual sites are typically
small due to the high cost and resources required. Learning across
multiple fMRI sites, however, may also be hampered by “batch”
effects in which data from different sites may have different
probability distributions, e.g., multivoxel mappings of a disease
and control group may be different according to site and/or
scanning procedure.

Accordingly, researchers have begun developing domain
adaptation algorithms for use in ML across multiple MRI
datasets. Although the algorithms used in these studies are
different, in general the goal is to find a common feature
space over which to transfer knowledge learned from a source

domain (e.g., scanning site) to the target domain (another
site). An early example is a structural MRI (white matter
hyperintensity) study by Ghafoorian et al. (21), who found that
adapting knowledge from source domain MRI data with voxel
size 1.0 x 1.2 x 5.0 mm toward target domain data with
voxel size 1.0 x 1.2 x 3.0 mm improved Dice scores (voxel
proportion of true positives) by up to ~50%. Promotion effects
(the discrepancy between the Dice scores on the target domain
with vs. without transfer learning) grew as the target set size
decreased, illustrating the power of adaptation on small samples.
Regarding fMRI, using low rank domain adaptation on a 17-site
resting state fMRI dataset, Wang et al. (22) achieved 64-75%
accuracy (depending on target site) when identifying children
with autism spectrum disorder. Notably, their low rank method,
which mapped the high-dimensional, multi (seventeen)-site data
to a common, low-rank space, performed ~5-15% better on
average compared with four other classification strategies. Other
domain adaptation strategies have also been developed, e.g., a
shared space algorithm by Yousefnezhad et al. (23) that classified
multisite fMRI task data according to the task being performed
with > 90% accuracy, and a Side Information Dependence
Regularization framework by Zhou et al. (24) that classified
multisite fMRI data by task condition with 79% accuracy.
Domain adaptation may also be enriched by data harmonization
(e.g., outlier removal, data normalization, data standardization
(25). Domain adaptation can also still be effective when the
modality of source and target domains use different scanning
technologies (26); For example, Chen et al. (27) used domain
adaptation to improve heart segmentation in which the source
domain consisted of MRI images and the target domain of
computerized tomography images.

Transfer learning can also be used to transfer information
learned by a machine across tasks via task transfer. Using task
transfer, a machine can use what it has learned from features
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in one task (e.g., classifying schizophrenia patients from healthy
individuals using imaging data) toward improving classification
in another task (e.g., classifying people with bipolar disorder
from unaffected people from imaging data). This technique can
also enable the machine to learn from imaging data collected
from one cognitive task to enhance classification using data
from another cognitive task. Perhaps the earliest example of
task transfer applied to fMRI data was by Mensch et al. (28)
who demonstrated that transferring knowledge from Human
Connectome Project (HCP) task data improved accuracy by
1.1-1.6% when predicting cognitive state (e.g., watching faces
vs. houses) from fMRI data from other datasets that examined
related cognitive tasks. Mirroring the domain adaptation study
by Ghafoorian et al. (21) (see previous paragraph), this effect
was magnified substantially when target domain sample sizes
were small. Thomas et al. (29) also demonstrated the utility of
task transfer in a study incorporating a unique DL framework
called DeepLight. Specifically, Thomas et al. (29) transferred
information used to decode cognitive states from 6 cognitive
tasks from the HCP toward deciphering the cognitive state
from a 7th task (working memory). The authors demonstrated
enhanced performance of the trained learner vs. the naive
learner, as the trained, transferred learner only required 40%
of the training data sample from the working memory task to
achieve significantly higher accuracy on test data vs. a naive
learner that used 100% of the training data. Task transfer
may also have applicability to fMRI datasets as individuals
are frequently asked to perform multiple tasks during a
scanning session.

Data Augmentation by Mixup: An

Example of Self-Supervised Learning
Although transfer learning is a powerful technique, it is limited
in that while it can transfer the convolutional filters used to
identify features, it cannot easily transfer feed forward layers that
perform the logical operations to reason about them. A potential
issue with transfer learning as applied to neuroimaging data
between different sites, furthermore, is that different scanners
have different signal/noise ratios and measurement artifacts. In
addition to transfer learning, another set of DL methods that
can help solve the small data problem typical of neuroimaging
analysis are data augmentation methods (which are often
considered a form of self-supervised learning). Although there
are many of these methods (e.g., affine transformations, padding,
and random cropping) (30), due to its potential in neuroimaging
analysis we focus here on a relatively recently developed method
called data Mixup. Mixup is a type of self-supervised learning
where the learner self-generates virtually labeled instances as a
combination of individual data points (e.g., fMRI activation maps
from two individuals) (31). Importantly, these instances help
smooth decision boundaries and thereby help prevent overfitting,
i.e., the poor generalization of trained models. Indeed, overfitting
is a major concern in fMRI analysis as brain signals of interest
may be highly influenced by noise [e.g., participant motion (32)].
This overfitting may be especially problematic when sample
sizes are small.

Mixup creates new virtual instances in a simple yet powerful
method by randomly choosing two instances to produce a third
that is the weighted average of the two training samples and their
labels (31):

newdata = \ x data 1 + (1 — \) data 2,

where N is a % fraction taken randomly from a beta
distribution

newlabel = '\ x label 1 4+ (1 — \) label 2,

where )\ is a % fraction taken randomly from a beta
distribution

In these equations, datal and data2 as well as corresponding
labell and label2 are two examples drawn at random
from training data.

In the context of fMRI data, Mixup may involve combining
single-subject imaging data from a person with a particular
outcome with data from a person with a different outcome
to create a virtual instance (Figure 2). Ratios of additional
virtual instances are typically added from a beta distribution
(31). By adding these virtual instances into the training samples,
the model is given many more variations of existing data. As
Mixup smooths out the underlying distribution, it has been
shown to aid in regularization, thereby reducing the influence
of outliers and consequent overfitting or sensitivity to label
corruption/adversarial attacks (33, 34). Notably, although a linear
combination of input features and annotated labels is presented,
it doesn’t impose a requirement that the learned model’s decision
boundary on the input space between classes must be a linear
combination of the mixed examples.

To our knowledge, Mixup has not yet been utilized in
fMRI-based DL architectures, although it has been used to
improve structural MRI image classification [e.g., segment knee
cartilage (35) or classify brain gliomas (36)]. Regarding whole-
brain imaging data, Bron et al. (37) compared performance
between a support vector machine (SVM) and CNN with
Mixup-augmented samples on using structural MRI data to (1)
classify patients with Alzheimer’s Disease (AD) vs. controls,
and (2) classify people with mild cognitive impairment into
future AD converters or non-converters. Bron et al. (37)
also compared performance using minimally preprocessed and

reh Workeh.
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FIGURE 2 | Example of Mixup as applied to fMRI data. In this example, a
50/50 virtual instance was created by combining task (cognitive
control-associated) fMRI data from a recent onset patient with schizophrenia
with a good clinical outcome [> 20% Improvement in Total Brief Psychiatric
Rating score after 1 year of treatment (“Improver”)] with that of a patient with a
poor clinical outcome (“Non-Improver”). Data were taken from a study by
Smucny et al. (7).
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heavily preprocessed T1 maps, as well as between the same vs.
an independent dataset. The investigators found that Mixup-
augmented CNNs performed qualitatively better, with ~3-5%
accuracy improvement, than SVMs on the independent dataset
for these tasks. The SVM, however, was better at predicting
conversion on the dataset from which training samples were
obtained. It should also be noted that Bron et al. (37) used a
static Mixup fraction (0.8/0.2) as opposed to the recommended
range of fractions derived from the beta distribution, potentially
reducing the predictive power of their CNN. Furthermore, given
that they are computationally different algorithms, CNNs may
not be directly comparable to SVMs.

Despite its demonstrated effectiveness, the power of Mixup
as initially formulated may be limited because the synthetic
samples it generates exist on the linear interpolation space of in-
distribution samples (38). Thus, for a pair of random samples in
2D training set, synthetic samples are created on the straight line
between the pair. Manifold intrusion may also occur if a mixed
example collides with a real example in the data manifold, but is
given a soft label that is different from the label of the real example
leading to underfitting (39). To address these issues, a more
complex Mixup method called non-linear Mixup was recently
introduced (38). In non-linear Mixup, synthetic samples are
independently created on each dimension on the input, adding an
additional dimension to the synthetic space. Furthermore, non-
linear Mixup enables labels to be adaptively learned based on the
synthetic input, reducing the likelihood of manifold intrusion.
Other recent methodologic enhancements to “standard” Mixup
include manifold Mixup, in which intermediate layers of neural
networks are mixed to generate more realistic instances (40), and
XMixup (41), in which Mixup is combined with transfer learning
by mixing up examples across different domains.

Explainable Artificial Intelligence

Deep learning models are extremely complex and opaque to
humans and are therefore often criticized for being a “black box.”
To shed this image, it is essential for deep learners to not only
output performance metrics but also the information discovered
to be most essential to prediction as part of the deep learning
process. The Defense Advanced Research Projects Agency has
further delineated the necessity of XAI in DL (42). In general,
XAI is designed to address issues (43) such as: (1) Why did you
predict that? (2) Does your rule make sense? and (3) Can I trust
you?

The goals of XAI are thus not only to enhance transparency,
but also enable a domain expert to examine the learned
features, understand the decision-making process of the model,
find the drawbacks of existing design, improve the design,
and, if necessary, reconstruct the learner. In the context of
neuroimaging, XAI outputs may include brain regions or
connectivity patterns that most influence prediction. One may
thus imagine that such output is required to not only enhance
machine trustworthiness (are the brain regions important for
prediction consistent with those predicted by theory?) but
also biomarker development (can we design interventions
that specifically target those regions to improve outcomes?).
One may further imagine that XAI outputs may be used to

identify biologically defined subgroups of individuals that may
be agnostic to primary psychiatric diagnosis, consistent with
frameworks such as the Research Domain Criteria (44, 45).
Indeed, the NIH has recognized the importance of XAI in
human neuroscience research with an R01 funding opportunity.'
Examples of XAI techniques that may be useful in when
performing DL on fMRI data include the following:

Saliency Mapping Methods

These methods provide individual instance level explanations. In
the context of brain imaging, they output individual heat maps,
similar to statistical parametric maps outputted in voxelwise
fMRI analysis, that illustrate the importance of particular voxels
in their contribution to the decision for that scan (46). The values
are combined to form a map for each unique input example
that corresponds to discriminative features in the input space for
classifications.

Signal Reconstruction Methods

These methods output feature level explanations, such as lines,
shapes, and higher-level features found in intermediate layers
of DL architectures (14). In brain imaging contexts, these may
be patterns of activity during task conditions. These styles of
explanations are useful for a collection of instances such as
correctly predicted instances of a given class.

Rule Discovery Methods

Rule discovery methods are examples of model level explanations
that extract underlying logical statements (logical rules) that
are naturally interpretable by humans. An example of a logical
statement is a conditional statement, e.g., if A then B. An
illustrative example of rule discovery was recently published
by our group in a study using fMRI data to predict clinical
improvement in recent onset psychosis (7). Specifically, we
found that a deep learner could use fMRI data from 4
frontoparietal ROIs during a cognitive control task to predict
clinical improvement after 1 year with 70% accuracy, with
the most predictive rule being a baseline level of cognitive
control-associated activity in the left dorsolateral prefrontal
cortex between the average activation of the patient and
unaffected control groups.

Increasing Explainability

Notably, the 3 methods above make no guarantee that the XAI
output is easily explainable to humans. Indeed, they are post-
processing methods which attempt to explain a model rather
than generating an explainable-by design model. This may be
particularly problematic for rule discovering methods as applied
to high dimensional datasets such as fMRI. An emerging area
of XAI research is the development of algorithms and strategies
that attempt to increase the simplicity of explanations while
maintaining a high level of performance. For fMRI, these may
be as simple as performing data reduction (e.g., via principal
component analysis) prior to performing DL with XAI, although
may also cause the model to miss important subtleties in the data
[reviewed by Yang et al. (47)]. Other methods, such as SINDy

'grants.nih.gov/grants/guide/pa-files/PAR-19-344.html
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regularization (48), impose penalties on model complexity. Rule
interpretability and simplicity can also be increased in other ways.
One is via anchor rules, i.e., if-then rules that predict outcome
regardless of other predictors (49). This strategy has been shown
to increase understanding and trust in XAI outputs in humans
while preserving performance accuracy (49). Other XAI methods
are particularly useful for imaging data in that they provide
voxel-level explanations, such as (1) model-agnostic explanations
(LIME), which test the effects of local perturbations of the data to
find which combinations of features are most influential (50), and
(2) Shapley Additive exPlanations (SHAP), which use a special
weighted linear regression to estimate the importance of each
feature (47, 51, 52).

Increasing Explainability: Human-in-the-Loop

A common criticism of deep learning (and machine learning in
general) is that it is entirely data-driven, ignoring the wisdom and
expertise of decades of hypothesis-driven research. One emerging
approach is to use expert human knowledge in combination with
XAIto develop an interpretable, accuracy model that is consistent
with theory (45, 53). In a DL framework, this may involve
performing XAI on a learner with a complete feature set, have
the DL model generate results consistent with domain expertise,
and have the DL re-perform its calculations excluding the rules
judged by the expert to be superfluous. A theoretical example in
the context of task fMRI would be to focus on rules that involve
brain regions known to be associated with the cognitive process
of interest. This approach is inherently challenging because it
requires a human and machine to speak in a common language
and is therefore a largely unexplored area of research, particularly
in computational psychiatry and neuroimaging.

CONCLUSION

The recent explosion in the application of DL to medical
imaging has yielded many promising results. If machines are
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