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This work explored how users’ sensitivity to offsets in their avatars’ virtual hands changes as they gain exposure to virtual
reality. We conducted an experiment using a two-alternative forced choice (2-AFC) design over the course of four weeks, split
into four sessions. The trials in each session had a variety of eight offset distances paired with eight offset directions (across a
2D plane). While we did not find evidence that users became more sensitive to the offsets over time, we did find evidence
of behavioral changes. Specifically, participants’ head-hand coordination and completion time varied significantly as the
sessions went on. We discuss the implications of both results and how they could influence our understanding of long-term
calibration for perception-action coordination in virtual environments.
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1 INTRODUCTION

There has been a growing number of studies on body awareness within the virtual reality (VR) community in recent
years. This work ranges from exploring how body awareness influences embodiment of virtual avatars (i.e. [11])
to techniques that redirect whole body movement in VR. The application of this redirection includes redirected
walking (i.e. [1]) and even redirected jumping (i.e. [21, 28]). Another growing area of this redirection research
relates to offsetting the user’s virtual hand from their real hand. Like redirected walking, which manipulates
head rotation and translation to decouple a user’s virtual position from their physical position, hand offsets use
translations to decouple the position of the user’s virtual hand from their real hand’s position. Studying how
users respond to this decoupling can give us a broader understanding of perception-action coordination in VR. It
can also lead to recommendations for implementing these offsets in VR applications.

Several studies have looked at the practical implications of research on proprioception in virtual environments.
One such use is to help reduce strain on the VR user’s hand [17]. A publication released in 2005 by Burns et.
al looked at users’ sensitivity to visual-proprioceptive conflict compared to visual interpenetration [9]. They
recommended that users were much less sensitive to visual-proprioceptive conflict, making that a better choice
between the two to design with. These offset techniques are readily available to developers. Work by Zenner
et. al introduced a toolkit which implemented several of the hand redirection techniques such as body warping
and world warping [57] for Unity !. Through the use of offsets, reaching in VR applications could require less
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movement and therefore be easier. The offsets could also change the user’s action capabilities, making previously
unavailable actions like reaching over extended distances possible.

Perceptual work regarding body awareness has largely focus on measuring the perceptual thresholds where the
offset between a user’s real and virtual hand becomes noticeable. This awareness of the spatial and mechanical
status of the musculoskeletal framework is known as proprioception [48]. Proprioception can be sensed indepen-
dently of the visual system which is important for virtual reality (specifically HMD’s). When in an HMD, users
have little to no visual information about the outside world, including the position of their own body. Therefore,
it is up to these internal mechanisms and visual information in the headset of tracked body movement to give
them the location and orientation of things like their limbs.

As a theoretical framework to our study we use the ecological approach to perception, where invariants in
the environment lawfully generate information for the organism (or VR user) about their surroundings [7]. The
ecological approach, compared to the traditional approach, includes the concept of calibration. The user can
calibrate their movements to the invariants, even when the environment is manipulated. As mentioned above,
organisms have certain action capabilities available to them which are referred to as affordances [19]. These
affordances let the user known how they can interact with their environment and thus drive their perception-
action coordination. We expect the user to calibrate over time even when their affordances have been altered.
For this study, we manipulate the affordances of their own body by extending or compressing their reaching
capability.

Bingham and Romack investigated the effects of calibration on participants’ ability to adapt to displacement
prisms which skewed their vision while completing a task requiring reaches across several sessions and days [6].
They found that there was no rate of change in calibration during the blocks but that later trials required less
calibration because participants were more accurate at the start of subsequent blocks. In other words, participants
were able to calibrate despite the visual displacement. In real applications that use body offsets, users would
have time to calibrate when an offset is present. The ecological approach posits that calibration does not just
occur with explicit feedback about performance but instead happens constantly. Since users are always receiving
information about the interactions in their environment (or virtual environment) they can always be calibrating
to it. Thus, we expect that their performance and behavior would change over time with this calibration.

The ecological approach also includes the concept of control laws. Control laws relate information to the
action system so that organisms can adapt their behavior based on the situation [54]. By using these control laws,
organisms (or VR users) can correct for alterations in their actions online (during the task).

To the best of our knowledge, no prior work has considered how user’s sensitivity to body offsets might change
with experience over time, or how their behavioral responses to such offsets might change. This is important
information for researchers and developers as many applications that employ these techniques are likely to see
repeated use by the same users. As such, if perceptions and behaviors do evolve over time these applications
should adjust with the user or base the design on users with greater experience.

Head-hand coordination is one behavior that may change with calibration to the offsets over time. Eye-head
coordination is needed for gaze fixation [15], but head-hand coordination is also needed for some fine motor tasks.
Pelz et al. studied eye, head, and hand coordination during a task that required participants to pick up and move
blocks [37]. They found that changes in head gaze were often linked to hand movement through short synergies.
In ecological perception, synergies reduce the complexity to carry out an action by reducing the degrees of
freedom the individual can control [7]. As users become familiar with the virtual environment, it is possible that
these synergies will change. This would change their behavior related to the head-hand coordination.

In this work we explored how offsets applied to participants’ hands during a block manipulation task impacted
their sensitivity to these offsets and behavior during the task. We expected these changes would occur as a result
of calibration. However, given there is little related work on perception-action coordination over time we were
unsure how their sensitivity or behaviors might change.
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Our hypotheses included:

H1: Participants’ sensitivity to the hand offsets will change over time.

H2: Participants’ control of their virtual hand will rely less on visual perception and more on proprioception
over time.

H3: Participants’ performance, despite the offsets, will improve over time.

2 RELATED WORKS
2.1 Hand Offsets

Proprioception plays an important role in VR systems, specifically for HMD’s when the user’s view of the outside
world (and their own body) is obscured. A study by Rohde et. al measured the effect of this drift in a non-virtual
environment through the use of the Rubber Hand Illusion [43]. This showed how proprioception is conveyed
outside of virtual reality and how proprioception is subject to multiple sensory inputs. In VR, these offsets are
usually applied to a virtual avatar’s orientation. In many of the studies discussed below, these offsets were applied
to the virtual position of the user’s hand.

There are multiple ways to apply offsets for hand redirection in virtual environments. These offsets can be
applied uniformly or non-uniformly. Work by Benda et. al provides estimation thresholds for fixed (uniform)
hand offsets in six directions and found that thresholds vary significantly based on the direction of the offset
[5]. Specifically, they found that the negative Z (“close”) offset direction had the smallest threshold range of 7.83
cm and the negative Y (“down”) offset direction had the largest threshold range of 13.37 cm. This implies that
magnitude as well as direction can vary offset detection threshold. Like this work, we utilized a 2-AFC method
and fixed positional offsets to a virtual hand to measure human perception of offset hand placement. However,
our experiment applied offsets in a 2-D plane rather than a 3-D axis. Studies that utilize non-uniform offsets are
usually referred to as gain-based interactions. These gain-based interactions are an alternative way of seamlessly
redirecting a user’s hand in VR (e.g. [14], [58]). Instead of the offset remaining at a set distance from the user’s
hand it tends to increase as their hand moves further from their body.

Ogawa et. al found that influences other than offset amounts, such as virtual avatar realism, can have significant
impacts on the perception of proprioceptive offsets (in the case of this study, the shifts were applied horizontally)
[36]. It is interesting that just by changing self-representation in a virtual environment could change a user’s
affordances. The “avatar” presented in our study is just the participants’ virtual hand to avoid any external
influences of body awareness.

Azmandian et. al introduced haptic retargeting as a technique that maps an object in the non-virtual world to
multiple objects in the virtual world [2]. Their work shows several techniques for aligning physical and virtual
objects which included world manipulation, body manipulation, and a hybrid technique. The body warping
technique presented in their paper applies a translation offset to reach movements so that the users hand reaches
the desired destination. To achieve the desired result of hand redirection, hand offsets are often combined with a
variety of other techniques (e.g. [49], [31], [20]).

These studies show how a VR user’s action capabilities for reaching can be altered. These alterations can
be fixed (as with our study) or be non-uniform depending on how the user interacts with their surroundings.
Though these methods differ, participants’ sensitivity and behavior have been shown to change when the offsets
are presented.

2.2 Long-Term Exposure VR Studies

There are several different kinds of studies related to long-term exposure in VR that have been conducted over
several different time frames. Steinicke and Bruder exposed a participant to an IVE for 24 hours straight (with
short breaks allowed during the session) [47]. They reported that the participant experienced varying levels of
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Fig. 1. This image shows the testing environment for the hand offsets. The virtual hand was controlled via the participants’
physically tracked hand. The red blocks were picked up through a pinching motion and placed inside of the bounding box.

sickness throughout the course of the experiment based on the SSQ that was not mitigated by time. A similar
study by Nordahl et al. exposed two participants to prolonged exposure in HMD’s for 12 hours [35]. They found
that participants’ reported sickness went up and down inconsistently throughout the study.

Zielasko also self-reported sensitivity to simulator sickness, but instead of prolonged exposure to VR in
one session they discussed their seven year exposure to VR systems [59]. This work highlights the need for
longitudinal studies, specifically for simulator sickness, to examine the complexity of the problem. A survey of
studies related to simulator sickness by Duzmanska et al. found that duration of sickness and a threshold time
for maximum sickness varies greatly between studies [13]. Porter and Robb found evidence that suggested the
way consumers talk about simulator sickness and other factors in VR in online forums may change as they gain
experience over prolonged periods of exposure [39]. Baileson and Yee studied users in a collaborative virtual
environment across 10 weeks in 15, 45 minute sessions [3]. They found that users reported less sickness as the
participants gained experience in the virtual environment, but also that participants looked at each other less
over time. Porter et al. also found a small effect related to simulator sickness over time through a study comparing
immersive and non-immersive virtual environments in 6, 45 minute sessions over 3 weeks [38].

Many longitudinal studies in VR are system usability studies where the researchers study participants’ behavior
in the context of particular VR systems over time. This work spans studies related to training (e.g. [42, 46, 56]),
therapeutic applications (e.g. [12, 16, 18, 23, 25, 51]), education (e.g. [22, 50]), and computer-supported collaboration
(e.g. [24, 33, 52]). The primary focus of these studies is usually on specific experiences in VR and not general
changes in interactions as they gain experience.

3 METHODS

3.1 Participants

We recruited 20 participants via an email sent to students enrolled at Clemson University. Participants were
required to have normal or corrected-to-normal vision and to have had less than one hour of prior experience
using VR. We had a mix of undergraduate and graduate level students participate whose ages ranged from 18-33
years old with a median age of 20 years old. 14 participants identified as male, five participants identified as
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female, and one participant identified as non-conforming/non-binary. 17 of the participants were in a Computer
Science related field and three were in a variety of other fields. 14 of the participants identified as white, three
participants identified as Asian, two participants identified as Hispanic, one participant identified as Black or
African American, and one participant identified as Native American or Alaska Native. Two participants were
left-handed. Participants received a $50 gift card upon enrolling in the study and a $75 gift card at the end of the
study. This study was approved by the IRB office at Clemson University.

3.2 Participants’ Usage Patterns

Based on the usage data recorded, participants spent an average of 17.13 hours (sd = 10.58, min = 7.12, max =
45.24) using the headset during the study. 119 unique applications were launched by participants, though the
majority of these were used for less than one hour across all participants. 33 were used for more than one hour,
with eleven of these being used for more than five hours. These applications were our experimental application,
the Oculus home application, YouTube VR, Virtual Desktop, Oculus Link, Beat Saber, VRChat, Bait!, SUPERHOT
VR, Sports Scramble, and SculptrVR. Discounting the experimental application, participants spent an average of
12.81 hours (sd = 8.56, min = 3.21, max = 35.46) in VR over the course of the four weeks.
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Fig. 2. Though there are significant differences between some of the PSE values, there is no pattern of change that would
suggest participants became more or less sensitive to positive offsets over time. The probability on the vertical axis of the
figure on the left indicates how likely participants are to detect a positive offset based on the offset along the horizontal axis.
Similarly, the slopes of the psychometric curves do not follow a pattern that would indicate sensitivity to offsets changed
significantly across sessions.

3.3 Procedure

Each participant was provided an Oculus Quest headset to use for the duration of the four week study. Participants
were asked to spend at least 10 hours per week using the headset including time spent completing the study
activities and any applications of interest to participants (e.g. games, movies, social applications). This time limit
was impractical for most participants as shown by their usage patterns above. In addition to the body awareness
activity, participants were also asked to complete two other experimental activities, one dealing with sensitivity
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to rotational gains and another with navigation through a virtual environment. While the focus of this paper is
on the results of the body awareness experiment, we briefly explain the other activities to provide context for
everything participants did during the four week study.

Participants completed each of the three activities before repeating them again. The order in which activities
were completed was randomly assigned to each participant, but was held constant across the weeks for a given
participant. Participants accessed these activities through a custom VR application we developed for the Quest
which enforced the order in which activities were completed and reminded participants when each of the
activities should be completed each week. Participants also completed two semi-structured interviews during
the experiment. The first interview took place after the first or the second week (for logistic reasons half of the
participant interviews were scheduled for the first week); the second interview was completed two weeks after
the first interview. Participants were given detailed instructions on how to set up the Quest and how to install
our custom application using the Sidequest? application. They were also instructed how to access data about
their activities stored on the headset about their activities.

The software saved the data from each experiment as files on the Quest. Accessing the data for the amount of
time participants used the headset required the installation of a second application: Activity Watch 3. Activity
Watch is an open-source time tracking application with clients for several operating systems; including Android
(the OS used on the Oculus Quest). Activity Watch allowed us to access information about which applications
participants were using, and for how long they were used. Each week, participants were asked to upload logs
from our activities and from Activity Watch to a unique Google Drive folder. This allowed us to keep track of
their progress and send reminders to participants who fell behind on completing activities.

The “rotation sensitivity and “navigation” activities are outside of the scope of this paper, however we provide
a short description of each activity here. In the “rotation sensitivity” activity, participants stood in the center of
a virtual garage and performed a series of rotations to the left and the right, with a positive or negative gain
applied to one of the rotations. After turning to the left and the right, participants were asked to indicate whether
they believed a gain had been applied to the first or the second rotation. In the “navigation” activity, participants
used either teleportation or joystick locomotion to explore twenty maze-like levels. In order to reach the end of
the level, they had to first find a keycard located in one of the rooms. After finding the keycard, they could use it
to open a locked door leading to the exit. Once arriving at the exit, participants were asked to point back in the
direction of where they had started and where they had found the keycard.

Figure 1 shows an example of what participants saw during the body awareness activity. A TV was used to give
participants instructions at the start of each session and after each trial. A table in front of the participants held
the blocks and had a small square on it with text indicating where the participants should place them. There were
also buttons that floated slightly below the TV. Participants interacted with these buttons using a gaze pointer.
The selection of the target was seen with a raycast line that started in the HMD and followed in the direction of
the participants’ gaze. The buttons were used to advance though the instructions and to collect responses after
each trial. A button was also visible above the TV to recenter the virtual avatar’s position in the room.

Participants were asked to be seated throughout the experiment. Prior to starting, participants were also
asked to enable hand tracking on their Quests. They could see their tracked hands during the experiment as
translucent blue hands floating in front of them. To pick up and drop the virtual blocks they used a pinching
motion. Participants completed a total of 64 trials in each session.

2https://sidequestvr.com/
Shttps://github.com/ActivityWatch/aw-android
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3.4 Apparatus

The body awareness experiment employed a 2-AFC design. For each trial, participants completed two block
placing tasks. They used their dominant hand to put three blocks which had been semi-randomly placed on
the table into the marked square on the table. Only a virtual copy of their dominant hand was present in the
environment. One of these tasks had an offset in one of eight directions applied to it. The eight offset amounts
ranged from 0.0 m to 0.14 m in increments of 0.02 m. The eight directions were North, Northeast, East, Southeast,
South, Southwest, West, and Northwest. These directions were applied along a 2D plane parallel to the table.
Right and left (i.e. East and West) were along the x-axis and forward and backwards (i.e. North and South) were
along the z-axis.

After both tasks were completed, participants were asked which of the two tasks they believed had an offset
applied to their virtual hand. A different hand offset amount was used in each of the 64 trials within a session.
The order that the offsets were given was randomized within each session along with the direction of the offset.

3.5 Analyses

We used the quickpsy [29] package in R [41] to fit a logistic function to the 2-AFC data. We assumed a lapse rate
of 0% with the point of subjective equality (PSE) and slope as free parameters. The lapse rate was assumed to be
0% since we had no prior work that suggested a higher rate. We also used a non-parametric bootstrap procedure
with 1000 trials to estimate the 95% confidence intervals on the parameters. The fitted functions are shown in
Figure 2a and the function parameters are shown in Table 1. Each of the functions fitted the data well as indicated
by the non-significant p-values for the goodness-of-fit [40].

We considered all directions towards the participant’s body as negative offset and all of the directions away
from the participant’s body as positive offsets for analysis. Specifically, moving closer towards the center of
the participant’s body for the x-axis was the negative direction. This was important based on the participant’s
dominant hand. For all participants, moving closer to their body along the z-axis was considered a negative
offset. For the 18 right-handed participants this meant that West, Southwest, South, and Southeast were treated
as negative offsets. For the two left-handed participants East, Southeast, South, and Southwest were treated
as negative offsets. The direction along the x-axis was switched based on handedness because we considered
movement towards the center of the participants’ bodies as closer to them. Typically psychometric functions are
fit to offsets in positive and negative directions so we transformed the data in this way to get a better fit [40].

Throughout the experiment we recorded the location of participants” head and virtual hands. These locations
were based on world space within the environment and recorded in object log files. We used this data to calculate
the angle between their virtually offset hand and the forward vector on their HMD. Without access to data about
their eye movements, this forward vector can be used to roughly approximate their gaze direction in the virtual
scene. This head-hand angle could estimate how much participants were looking at their virtual hand when
completing the block stacking task.

The object log files also included time stamps based on in-game time. We annotated the angles with information
regarding how the participants were handling the blocks at specific moments in time. For each angle we noted
whether they had grasped, held, or ungrasped the block. The grasped and ungrasped events were recorded in the
object log files the instant participants picked up or put down a block. The held angles were the average angle
between a grasped/ungrasped pair. This approximated the head-hand angle while the participant was holding
the block. We also recorded how long it took participants to complete each of the two tasks in each trial across
the sessions.

We used linear-mixed models (LMMs) to analyze the head-hand angle and completion time data. The models
were created in R first using the ’buildmer’ [53] and 'Ime4’ [4] R packages. Buildmer automatically tests different
possible models based on a set of independent variables and uses the likelihood-ratio test and minimum Bayesian
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information criterion to select the model that best fits the observed data [45]. The models suggested by buildmer
was then considered from a theoretical perspective; in our case, all suggested models were theoretically sound.
We then checked for violations of assumptions and made any necessary modifications to the suggested model
formula based on the results. Once the final model was specified, we fit it to the data using the Imer command
provided by lme4. The ImerTest package [27] was used to estimate p-values using the Satterthwhaite degrees of
freedom method [44] for the models generated by lmer.

Each of the models was checked for normality of residuals, normality of random effects, a linear relationship,
homogeneity of variance, and collinearity (see the ’check_model’ function in the ’performance’ R package [30]).
Regarding collinearity, no predictors in any of the head-hand angle models had a variance inflation factor (VIF)
greater than five. In the completion time model only the interaction effect between session and trial had a VIF
greater than five. The VIF for this interaction was roughly six suggesting a moderate level of collinearity. Since
the VIF for both session and trial individually were low we decided the interaction effect was not problematic
and therefore we did not remove it from the completion time model.

All of the participants completed at least three sessions of this activity (two participants were missing one
session each), so we did not remove any of the participants’ data from the analysis. The 'check_outliers’ function
of the ’performance’ R package [30], with the outlier threshold set to a z-score of three, was used to identify and
exclude data points. For the head-hand angle data 730 out of 114,291 data points were removed. For the completion
time data 1,044 out of 9,984 data points were removed. Outliers were excluded prior to the construction of the
LMMs. Figures for all three sets of data were generated in R using ggplot2 [55].

3.6 Interpreting Linear Mixed Models

We discuss the advantages and disadvantages of LMMs below since they are often not used in VR research.
However, there is a precedence for their used in related work such as psychological research [32].

LMMs are useful at analyzing data where conditions or measurements are repeated multiple times [26]. LMMs
are also more robust than ANOVAs for assumption violations and missing or imbalanced data. This is particularly
important for our study where participants completed the experiments at home. This meant that we had less
control over how the data was collected and could end up with missing data. Further, we had less control over
when data was collected. LMMs can handle data that is captured on an irregular schedule which was useful for
that reason. Given these two variable factors, LMMs are especially appropriate for analyzing longitudinal data
[10].

LMMs model both fixed and random effects [32]. Fixed effects model the influence of predictors on the measured
quantities, while random effects model the unexplained variability associated with individual differences between
participants. LMMs independently model each participants’ response to the data. Random effects can be modeled
as random intercepts, where the intercept of each participant’s individual model is allowed to vary based on
the best fit to that participant’s data. Random effects can also be modeled as random slopes, where the slope
of each participant’s individual model is also allowed to vary based on the best fit to their particular data.
Including random effects in the model improves LMMs’ abilities to precisely model the response of fixed effects
independently of variability between participants.

The fitted model includes an intercept, which describes the predicted value of the modeled variable when all
predictors are set to zero. The model also includes fitted beta values for each fixed effect, which describe how
much the modeled variable is predicted to change when the fixed effect unit increases by one. Beta values can
vary greatly based on the dependent variables in a model. If the range of the variables are small then the beta will
be small and vice versa. Thus, to determine the importance of a beta value we provide standardized beta values
(abbreviated std. beta in our tables). These values are scaled based on the distribution of each dependent variable.
After scaling, we can more accurately predict the relative contribution each fixed effect has on the independent
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variable. The standardized beta values tell us the standard deviation change in the dependent variable when the
independent variable changes by one standard deviation [8].

We also provide both marginal and conditional r? values. Marginal r? values (abbreviated m. r? in our tables)
report the amount of variance explained by the fixed effects alone and conditional r? values report the amount
of variance explained by both the fixed and random effects [34]. Thus, the conditional r? values tell us the
explanatory power for the entire model.

4 RESULTS
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Fig. 3. Head-hand coordination angle increased consistently with session, however an interaction between session and offset
amount was only observed for the held and ungrasped events.

4.1 Psychometric Model

To evaluate H1, we explored properties of the psychometric curves fitted to the 2-AFC data. The properties of
these curves are presented below.

Table 1. Psychometric Parameters

Session Goodness of Fit PSE Slope
p-value Estimate 95% CI Estimate 95% CI
1 0.829 -0.007 [-0.015, 0.002] 14.614  [13.001, 16.587]
2 0.838 -0.021 [-0.030, -0.012] 14.024 [12.370, 15.842]
3 0.973 0.005 [-0.004, 0.013] 13.849 [12.158, 15.742]
4 0.887 -0.008  [-0.017,-0.001]  16.271  [14.554, 18.346]

4.1.1 Point of Subjective Equality. While significant differences were observed between sessions for the PSE, a
consistent pattern of change did not emerge (see Figure 2b). Two of the observations did not differ significantly
from zero, as indicated by the 95% confidence intervals crossing zero, and a third barely demonstrated a significant
difference from zero. The final observation suggested that the PSE was roughly 2 cm away from zero offset. Taken
as a whole, these results do not suggest that a consistent change in PSE was present over time. Futher, little
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evidence suggests that the PSE was distinguishable from zero, suggesting participants were equally sensitive to
positive and negative offsets.

4.1.2  Slope. No significant differences were observed between sessions for the slope of the psychometric model
(see Figure 2c). As such, no evidence was found that participants became more or less sensitive to proprioceptive
offsets over time.

4.2 Head-Hand Coordination

To explore H2, we modeled hand-head coordination in three events: when participants began grasping a block, the
duration when participants held a block (and were typically moving it to its destination), and when participants
placed a block. Figure 3 shows the aggregate data for all participants across all sessions and for each of the events.
The fitted models for these three events are presented below.

4.2.1 Head-hand Coordination When a Block was Grasped. This model predicts the head-hand coordination angle
at the moment when participants grasped a block. The model included session as a fixed effect and participant ID
as a random effect. The model’s total explanatory power (conditional r?) is 0.16 and the explanatory power of the
fixed effect alone (marginal r?) is 0.0046. The parameter values for the model are shown in Table 2.

Based on the model’s intercept (when session was zero), participants™ head-hand angle was 62.45 degrees
when they grasped the blocks. For each unit of session this angle increased by 1.17 degrees. This suggests
that participants’ head gaze was less focused on the block being grasped over time, which may indicate that
participants became more confident acting when an offset was present over time as they felt less of a need to
orient their heads towards the position of the visual hand. Notably, offset did not factor into this model. This
suggests that participants gazed at the blocks when grasping the same amount regardless of the offset of their
hands. This could imply that visuo-motor control was more important for grasping blocks than proprioception.

Table 2. Grasped Head-Hand Angle Parameters

Fixed Effect beta [95% CI] Std. beta [95% CI] t(32283) p m. r?
(Intercept) 62.45 [59.14, 65.76] - 36.98 <0.001 -
Session 1.17 [1.00, 1.34] 0.07 [0.06, 0.08] 13.14 <0.001 0.0046

4.2.2 Head-hand Coordination While a Block was Held. This model predicts the the head-hand coordination
angle while participants held a block. The model included session and offset as fixed effects, and participant ID as
a random effect. The model’s total explanatory power (conditional r?) is 0.20 and the explanatory power of the
fixed effects alone (marginal r?) is 0.03. The parameter values for the model are shown in Table 3.

Based on the model’s intercept (when session was zero), participants’ head-hand angle was 58.38 degrees when
they were holding the blocks. For each unit of session this angle increased by 2.31 degrees. As with the grasped
model, this suggests that participants’ head gaze was less focused on the block being grasped over time which
may indicate that participants became more confident acting when an offset was present over time. Unlike the
grasped model, offset was observed to also influence the head-hand coordination angle, such that the head-hand
angle increased slightly as the absolute offset amount increased. This effect is small in comparison to the effect of
session, corresponding to an increase of 1.37° at the largest offset of 0.14 m. This may result from an increased
reliance on proprioception. Since participants were already holding the block, they did not need to visually orient
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towards it to continue holding it. As such, the coordination between their head and hand may have been more
strongly influenced by proprioception.

Table 3. Held Head-Hand Angle Parameters

Fixed Effect beta [95% CI] Std. beta [95% CI] t(48810) p m. r?
(Intercept) 58.38 [55.57, 61.19] - 4068  <0.001 -
Session 2.31 [2.20, 2.42] 0.17 [0.16, 0.18] 41.07 <0.001 0.0284
Offset Amount (m) 9.77 [7.23,12.31]  0.03 [0.02,0.04]  7.54 <0.001 0.0009

4.2.3 Head-hand Coordination When a Block was Ungrasped. This model predicts the head-hand coordination
angle at the moment when participants ungrasped a block. The model included session and offset as fixed effects,
and participant ID as a random effect. The model’s total explanatory power (conditional #2) is 0.14 and the
explanatory power of the fixed effects alone (marginal r?) is 0.02. The parameter values for the model are shown
in Table 4.

Based on the model’s intercept (when all predictors were zero), participants’ head-hand angle was 58.87
degrees when they ungrasped the blocks. For each unit of session this angle increased by 2.59 degrees. As with
both previous models, this may indicate that participants became more confident acting when an offset was
present over time. Unlike the grasped model, but similar to the held model, offset also influenced the head-hand
coordination angle when ungrasping a block. The head-hand coordination angle increased slightly as the absolute
offset amount increased, corresponding to an increase of 1.06° at the largest offset of 0.14 m. This is surprising as
placing a block seems more similar to grasping a block than holding a block, as blocks must be placed at specific
locations which increases the need for visual orientation. However, this task required less precision when placing
a block than when grasping a block, as the blocks could be placed anywhere within a 0.2x0.2 m zone.

Table 4. Ungrasped Head-Hand Angle Parameters

Fixed Effect beta [95% CI] Std. beta [95% CI]  t(32454) p m. r?
(Intercept) 58.87 [55.92, 61.81] - 39.18 <0.001 -
Session 2.59 [2.41, 2.76] 0.15 [0.14, 0.16] 28.60  <0.001 0.0223
Offset Amount (m) 7.595 [3.53, 11.66]  0.02 [0.00874, 0.03] 3.66 <0.001  0.0003

4.3 Completion Time of Trials

To explore H3, we modeled completion time of each task in each trial. The model included session, trial, offset
amount, and the interaction between session and trial as fixed effects, and participant ID as a random effect. The
model’s total explanatory power (conditional r?) is 0.34 and the explanatory power of the fixed effects alone
(marginal r?) is 0.16. The parameters for the model are shown in Table 5.

Based on the model’s intercept (when all predictors were zero), participants’ completion time of each task was
5.26 seconds. For each unit of session this time decreased by 0.53 seconds. Each trial decreased the completion
time by 0.02 seconds which would be equivalent to 1.28 seconds by the end of 64 trials. Session also moderated
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the effect of trial as shown by increasing the completion time by 0.004 seconds. Increasing the offset amount
made the tasks more difficult and therefore increased the completion time. This increase was 3.815 seconds for
every meter of offset amount. For every 0.02 meter change this would be equivalent to a 0.076 second increase. A
graph of the completion time data across trials can be found in Figure 4.

Table 5. Completion Time Parameters

Fixed Effect beta [95% CI] Std. beta [95% CI]  t(8933) p m. r?
(Intercept) 5.261 [4.99, 5.53] - 39.18  <0.001 -
Session -0.53 [-0.57, -0.49] -0.34 [-0.36, -0.32] -24.85 <0.001 0.046
Trial -0.0236 [-0.03, -0.02] -0.19 [-0.20, -0.17] -15.05 <0.001 0.0164
Offset Amount (m) 3.815 [3.35, 4.28] 0.14 [0.12, 0.16] 16.19 <0.001 0.0193
Session:Trial 0.004 [0.00294, 0.00512]  0.06 [0.05, 0.08] 7.25 <0.001 0.0038

g \ Session

% i

é P

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Trial

Fig. 4. This figure shows how completion time of tasks within trials changed based on the trial. The data is separated by
session which also had a main effect. There was a small interaction effect between session and trial.

5 DISCUSSION

Our analyses of the data did not provide evidence to support H1. While significant differences were observed
between sessions for the modeled PSEs, a clear pattern of change was not observed in the data. No significant
differences were observed for changes in slope between sessions, indicating that sensitivity of body offsets did
not change across the four sessions. Taken together, we found no evidence that participants’ sensitivity to body
offsets changed with exposure.

Regarding H2, we found evidence that participants’ hands drifted away from the center of their head gaze over
time. This suggests that participants became more confident manipulating objects using proprioception rather
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than just visual perception. This was true when grasping a block, when holding and moving a block, and when
ungrasping a block (which typically corresponded to placing the block at its destination). They also became more
confident in the presence of an offset over time as indicated by the interaction effects between offset and session.
Notably, this interaction effect was present when holding or ungrasping a block and not when grasping a block.

While the effect of offset amount was small, this may indicate an increased reliance on proprioception when
holding and ungrasping blocks compared to when grasping a block. Since the head-hand angle increased with
the offset amount, participants’ visual hands were closer to the center of their head gaze when offsets were lower.
As such, participants did not strongly reorient their head gaze towards the position of their visual hand when an
offset was present. This may indicate the position of their real hand, sensed via proprioception, played a larger
role while holding and ungrasping blocks. The lack of an effect of offset amount on head-hand angle during
the grasping circumstance may be attributed to the precision required when grasping a block, compared to the
other circumstances. Fine motor motions were required to grasp the block which may best be achieved with
visual information. Gross motor motions were sufficient to move and place the block since the target location
was several times the size of the block.

Since trial was not included as a predictor in any of the head-hand models we can conclude that fatigue did not
have a significant effect in each session. If it had, trial would have had a significant effect on each of the angles.
Further, the effect of session in these models can show learning effects over time.

Regarding H3, we observed improved performance indicated by task completion time as session and trial
increased. We expected an increase in task performance from learning effects, but it is noteworthy that we
observed an interaction effect between session offset amount. The interaction between session and offset amount
moderated the effect of offset amount. While the main effect of offset amount increased the time required to
complete a trial, the interaction effect worked to counteract this. This reduced the time penalty associated with
an increased offset amount. This may suggest that participants were able to correct for the hand offset better
over time.

The contrasting results of these three hypotheses suggest that while participants’ sensitivity to hand offsets
may not change their behavior does. Consciously, they did not improve at selecting which task had the offset
applied. Unconsciously, they improved at completing the tasks throughout the sessions. This improvement may
have also led to their change in behavior.

Given that participants were unable to detect changes in hand offsets more accurately over time it seems
unlikely they were able to calibrate to the offsets. This lack of improved accuracy could be explained by the fact
that the offsets were presented in a random order. Thus, participants had little time to calibrate before their offset
changed. Instead, participants probably experienced an improvement in online control using control laws. Since
we found that participants improved at the task and their behaviors change it seems likely that their ability to
correct for hand offsets improved between sessions. Therefore, the improvement in online control could have
contributed to their change in head behavior, not calibration. This idea could be explored further in future work.

5.1 Limitations

Eye gaze could have more accurately measured the trade-off between vision and proprioception in this experiment
better than head gaze. Given the nature of this study eye gaze was not available for use. However, head gaze
still provides useful information about the synergies between head-hand coordination such as in [37]. Further,
some of the participants used applications that support hand-tracking (i.e. YouTube VR). We do not know if
participants used the hand-tracking features. If they did, they could have adjusted to the tasks more quickly
across sessions than they would have using hand-tracking in the experiment alone.
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6 CONCLUSION

This work highlighted how hand offsets influence VR users over time. We did not find evidence that participants’
sensitivity for detecting these offsets changed. We did find evidence that behaviors related to these offsets changed.
The difference in head-hand coordination and completion time suggests that participants improved at correcting
to the offsets as the experiment went on. These differences in behavior were not large effects but they were
present. While we originally expected that participants might have calibrated with repeated exposure to the
offsets over time, the randomized nature of the offsets may have prevented calibration. Instead, participants may
have learned to have better online control. This could be useful for VR training simulations that may want to
specifically prevent calibration from occurring but still improve at the task.
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