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ABSTRACT: One of the long-standing problems in materials science is
how to predict a material’s structure and then its properties given only its
composition. Experimental characterization of crystal structures has been
widely used for structure determination, which is, however, too expensive
for high-throughput screening. At the same time, directly predicting crystal
structures from compositions remains a challenging unsolved problem.
Herein we propose a deep learning algorithm for predicting the XRD
spectrum given only the composition of a material, which can then be used
to infer key structural features for downstream structural analysis such as
crystal system or space group classification or crystal lattice parameter
determination or materials property prediction. Benchmark studies on two
data sets show that our DeepXRD algorithm can achieve good
performance for XRD prediction as evaluated over our test sets. It can
thus be used in high-throughput screening in the huge materials composition space for materials discovery.

KEYWORDS: inorganic materials, XRD spectrum, crystal structure prediction, deep learning, residual connection, materials screening

1. INTRODUCTION

One of the major goals of materials science is to elucidate the
composition−processing−structure−property−performance
relationships so that materials with desired functions can be
designed and synthesized.1 Traditionally, the problem is
studied as a forward problem in which the cause-and-effect
relationships are uncovered from composition to processing
and structure and then to performance.2 One starts with a
tentative composition/recipe and then utilizes some known
processing processes with adjustments to synthesize the
material sample, whose structure is then derived using the
structural characterization data, which are typically generated
via scanning X-ray diffraction (XRD) or Raman spectroscopy
experiments. By analyzing the structural characteristics, one
can estimate its potential properties and performance. On the
other hand, the materials discovery can be formulated as an
inverse design problem, in which one starts from a perform-
ance target and tries to find/search for the best composition
and processing to achieve the desired performance. In both
processes, one of the major bottlenecks is how to get the
structure for a given composition. As shown in Figure 1,
currently the experimental approaches are infeasible for large-
scale screening of the vast chemical design space in which
millions of possible compositions may be generated by modern
generative models.3 On the other hand, computational crystal
structure prediction algorithms such as USPEX and CALYP-

SO4,5 can only be applied to relatively small systems. The
template-based crystal structure prediction methods such as
those in refs 6 and 7 are limited to predicting structures with
known structure prototypes. In this paper, we aim to explore
whether we can develop a deep learning algorithm to predict
the XRD spectrum from the composition alone, which can
then be used for fast large-scale structure-oriented screening in
modern computational generative materials design. Since our
predicted XRDs can be fed to downstream algorithms to
predict their structural dimensionality,8 crystal systems,9 and
space groups,10 our XRD prediction algorithm can be very
useful for screening potential new materials with only their
composition information, which can significantly narrow down
the crystal structure prediction and Density Functional Theory
(DFT) calculations effort. Our XRD prediction algorithm can
also be potentially used for the unsupervised discovery of new
materials with similar properties to known materials.11 The
third major application is to use our predicted XRD as
reference XRDs for traditional XRD-based phase mapping
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analysis12 with uncharacterized component phases. Our
predicted XRDs can greatly expand the range of mixed
materials phase mapping techniques. A high-quality predicted
XRD spectrum may also be used to reconstruct crystal
structures using well-established methods in the crystallog-
raphy community.13

First-principles calculations such as DFT have been widely
used for crystal structure prediction to study the crystal
structures of inorganic materials.14,15 Although the first-
principles calculations are powerful, they are susceptible to
the constraints of their excessive calculation cost, which limits
the size of the material design space or the number of materials
they can screen. To address this problem, machine learning
(ML) has been increasingly applied to materials science fields,
leading to the emergence of “materials informatics”,16 in which
materials learning methods are developed to obtain prior
knowledge and predictive models from known material data
sets, and then predict complex material properties based on
these models. In the past few years, ML has succeeded in
predicting new features,17 guiding chemical synthesis, and
discovering suitable compounds with target properties.18−21

Several composition-based machine learning models have
been proposed to predict structural properties such as crystal
systems,22 space groups,23 lattice constants,24 or Vickers
hardness,25,26 with varying performances. Composition-based
ML models have also been extensively used for material
property prediction. Well-known composition descriptors such
as Magpie,27 Matminer,28 and composition-graph-based
embeddings29 have all been proposed for structure or property
prediction. While these composition-based ML models for
such tasks have been criticized for lack of high performance
compared to structural descriptors-based materials property
prediction models, they have a unique advantage for de novo
discovery of new materials of which the crystal structures are
usually not available and then only composition-based ML
models can be used.3 In addition, such models can be used as
the first level coarse screening of millions of generated
hypothetical materials from generative machine learning
models.3

Several recent works have applied machine learning to XRD
data. Suzuki et al.30 used Random forest models to predict
crystal systems and 230 space groups from XRD. A deep
learning approach has also been proposed for space group

classification from XRD.31 Oviedo et al.8 proposed a physics-
informed data augmentation method that extends small,
targeted experimental and simulated data sets and developed
a convolutional neural network for classifying seven space
groups. Convolutional neural networks have also been used to
map the XRD patterns to materials with one-to-one
mapping.32 More recently, a deep neural network model33

has been reported in Science to autonomously identify the
crystal symmetry (systems) from electron backscatter
diffraction and achieved high accuracy. Lee et al. proposed a
deep learning algorithm to identify phases for multiphase
inorganic compounds using simulated XRD data sets.34 A
similar effort but using nonnegative matrix factorization has
also been developed for the phase identification problem.12

Considering the limited data availability, Wang et al. proposed
a data augmentation technique and used a convolution neural
network for one-to-one phase identification.32 Another related
work is the XRD-based phase attribution or phase diagram
reconstruction.35,36 In a typical XRD spectrum, the most
critical information on the structure is encoded in the peak
positions and corresponding intensities. In many cases, small
peak shifts may also happen. In addition, the XRD spectrum
has been shown to be used to predict the space group of the
sample with high accuracy. The XRD spectrum has also been
used as a feature for unsupervised clustering to find new
lithium superionic materials.11

Instead of trying to reconstruct the 3D coordinates of the
crystal structure using DFT-based evolutionary search
algorithms that are feasible only for small systems, in this
work, we aim to emulate the traditional XRD-based structure
characterizing approach: building a deep learning-based
prediction model to predict the XRD given its composition.
Experimentalists have been using XRD to analyze materials’
properties for a long time. XRD predicted by our models can
then be used by them for quick downstream analysis such as
structure determination or property prediction. Similar to the
experimental crystallography community practice, given an
XRD from our model, there is a large set of algorithms such as
the Rietveld refinement or the Rietveld method37 that can be
used to determine crystal structures. XRD diffraction patterns
have been used to achieve over 90% accuracy for crystal system
classification, except for triclinic cases, and with 88% accuracy
for space group classification with five candidates.10 In ref 38,

Figure 1. Composition−processing−structure−property relationships in materials science research. Experimental methods use synthesis and XRD
characterization to obtain the crystal structures, while crystal structure prediction algorithms aim to directly predict the structures from
compositions. This work tries the third approach: predicting the XRD spectrum from compositions.
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neural networks were used for space group classification with
an accuracy of around 54% on experimental data, which can be
improved to 82% at the cost of having half of the experimental
data unclassified.
In this paper, we aim to develop deep learning-based models

to simulate the relationship between materials composition
and XRD spectrum with the understanding that many
chemically and structurally similar materials share close XRD
spectra.
Our contributions can be summarized as follows:

• We develop two benchmark data sets for the
composition-based XRD prediction problems: ABC3-
XRD with 4270 samples and the Ternary-XRD data set
with 43,223 samples.

• We propose a deep learning-based neural network model
for predicting XRD spectra from material compositions.

• We evaluate four different loss functions based on
different distance measures for calculating XRD
similarities and find that the Pearson loss function
achieves the best result. We find mean square error
(MSE) is not a good choice for training deep learning
models for XRD prediction due to their sensitivity to the
peak intensities.

• We conduct extensive experiments over the two data
sets and show that our proposed framework is capable to
achieve good performance for test sets.

The remainder of this paper is organized as follows. Section
2 focuses on the research framework, materials representation,
and evaluation indicators. Section 3 describes our experiments
and highlights our prediction performance. The last section
concludes the paper.

2. MATERIALS AND METHODS
2.1. XRD Spectrum Prediction Problem. In our composition-

to-XRD mapping problem, the goal is to design a model that could

learn from inorganic materials’ compositions and then predict their
probable XRD spectra. We prepare two data sets for training our
models. The smaller data set has 4270 different inorganic materials
with the prototype of ABC3, where A, B, and C are three different
elements. The larger data set has 43 223 samples of ternary materials.
Each independent material has a corresponding XRD spectrum. In the
case of polymorphism, where one composition corresponds to
multiple phases, we pick the structure with the lowest formation
energy. According to the composition of a material, we need to
predict what the XRD spectrum is. To evaluate our model
performance, for each data set, we randomly select 20% as the test
set from all samples 70% as the training set, and 10% as the validation
set. The training set is used to train our prediction model and use the
validation set to tune the hyper-parameters. Finally, for a given target
formula, we use our model to predict its XRD and compare it with the
true XRD.

The main components of our deep learning framework are shown
in Figure 2. We use a deep residual network (ResNet)39 model
trained with one-hot composition encoding features to learn the
relationship between material composition and the XRD spectrum.
For a given material formula, we use its one-hot matrix as the
DeepXRD model’s input. Due to the one-hot matrix being sparse, as
shown in the first row of Figure 2, after the first convolution layer, we
use several ResNet blocks with different filters, a flattened layer, and a
dense layer as the encoding part to abstract the key information on
input matrix. To reconstruct the XRD spectrum, we use several
upsampling layers to magnify the key information to a 32 × 32 matrix
as our output, and this progress is shown in the second row of Figure
2. The last row shows two different ResNet block structures. For skip
connection, the two inputs must have the same shape, if the two layers
have different filter numbers, we must add a convolution step to make
the two inputs keep with the same shape, as Res block1 shown in the
left bottom of Figure 2, and if the two layers have the same filter
number, we can just use skip connection as Res block2 at the middle
bottom. We introduced all operations used in our model in the right
bottom; we have a 3 × 2 convolution layer, a 1 × 1 convolution layer,
a flattened layer, a dense layer, a reshaping layer, and an upsampling
layer. The activation function we used in our model is PReLu. The
operations used in each layer are indicated by arrows of different
colors.

Figure 2. XRD spectrum prediction framework. The input is the one-hot encoding of a given formula through the first row’s encoder to extract the
key information and then follow the steps shown in the second row to decode and reconstruct the given material’s probable XRD spectrum, which
is our output. To apply skip connections on layers with filters of different sizes and the same sizes, we use two different kinds of residual blocks with
their structures shown in the left and middle bottom. To connect layers with different filters, we add convolution operations when using skip
connections to make sure the two layers keep the same shape so that they can be added together, as shown in Res block1. For layers with the same
filters, we can just skip connections and add them together as shown in Res block2. We use colorful arrows to represent different operations in our
prediction model as shown in the bottom right.
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2.2. Materials Representation. We use the one-hot representa-
tion of the formula for XRD prediction, which has been used in ref 3.
The advantage of one-hot encoding is that it can encode a discrete
material’s elemental composition with a discrete 2D matrix of binary
values 0 and 1, which are extremely suitable for the convolution neural
network layers to extract hierarchical patterns from it. This coding
method is also suitable for the characterization of the elements in the
molecular formula of the material. As shown in Figure 3, each formula
can be encoded as a 2D matrix of dimension N × M, where N is the
maximum number of atoms for an element in the formula and M is
the number of elements considered in our data sets. All elements not
included in the material formula are set to 0, and the column
corresponding to each element in the formula has a nonzero value of
1, which is assigned to the column cell in the row j+1 where j is the
number of atoms with this element in the material formula. For
example, for AcBO3, the one-hot code corresponding to this formula
is a two-dimensional matrix with 10 rows and 84 columns (the
samples in our data sets are composed of 84 different elements), in
which the column Fe, B, and O have values 1 on row 4, 2, and 2,
respectively, and the remaining values of the matrix are all set to 0.
2.3. ResNet Model for XRD Prediction from Composition.

Figure 2 shows the whole neural network architecture of our
DeepXRD model, which contains an input part, an encoding module,
and a decoding module. The input data of our model is the one-hot
representation of a given material formula with the dimension of 10 ×
84, and the output is a matrix that represents the corresponding XRD
spectrum with a dimension of 32 × 32. Since the one-hot encoding
matrix is very sparse, we use the encoding module to extract the key
information on materials and then use the decoding part to
reconstruct the XRD spectrum. Our network is mainly composed of
two types of residual blocks. Our Res blocks are shown at the bottom
of Figure 2. Figure 4 shows the basic residual block with the shortcut
connections. In convolutional neural networks, the output from the
layer and the identity input may have different dimensions, so we add

convolution operations in the shortcut connection such that the input
is converted to the same dimensions. The Res block1 is used to
connect layers with different numbers of filters so we add convolution
operations when making skip connections to make sure the two parts
we add together have the same dimension. Res block2 is used for
layers with the same number of filters, so we can just add them
together. The use of residual blocks aims to address the vanishing
gradient problem in training deep convolutional neural networks.39

In our DeepXRD model, we choose the Parametric Rectified Linear
Unit (PReLu)40 instead of the Rectified Linear Unit(ReLu) as the
activation function. The basic ReLU has an output of 0 if the input is
less than 0, which could cause the dying ReLU problem41 where some
ReLU neurons essentially remain inactive for all inputs. Due to the
slope of ReLU in the negative part is also 0, once a neuron gets
negative, it is unlikely to recover anymore. Therefore, no gradient
flows and a large part of neural networks may do nothing. Parametric
ReLU (PReLU) has a small slope for negative input values, which
fixes the dying ReLU problem and can also speed up training. PReLU
improves model fitting with nearly zero extra computational cost and
little overfitting risk.40 As shown in Figure 2, after the first convolution
layer, there are 10 residual blocks with different numbers of filters,
which reduce the feature map matrix size to 11 × 2. Flatten, dense,
and reshape layers are then used to convert the feature map matrix to
1 × 1 × 128. The decoding module uses upsampling layers and Res
blocks layers to increase the feature map matrix size to get the final
XRD value matrix. We compare four different loss functions and
finally choose the Pearson product-moment correlation as the loss
function for our DeepXRD model. The parameters of each layer are
shown in Table 1.

2.4. Materials Data Sets. To evaluate the performance of our
DeepXRD algorithm, we prepared two data sets. The first data set,
ABC3-XRD, contains 4270 material compositions of the prototype
ABC3 along with the XRD spectra calculated for their crystal
structures with the lowest formation energy as downloaded from the
Materials Project database.42 Since all the materials share the same
prototype except the elements, we expect that the algorithm will
achieve better performance over this data set. The second data set
Ternary-XRD contains 43 223 compositions of diverse prototypes
along with their computed XRD as downloaded from the Materials
Project database.42 Each XRD data set contains the corresponding
XRD intensity at 2θ(180) degrees. We used an average mapping
method to sample the raw XRD spectrum so that all XRD sample
contains 1024 points ranging from 0 to 180°.

In the crystallography community, it is well-known that
compositions in a given materials families tend to have similar XRD
spectra. It is interesting to check whether XRD data also form clusters.
We thus visualize the distribution of the ABC3-XRD data set using the
t-distributed Stochastic Neighbor Embedding (t-SNE)43 technique to
map high-dimensional XRD spectra into a two-dimensional map, with
each point in Figure 5a corresponding to one XRD spectrum. From
the data distribution figure, we find that there are several loose cluster

Figure 3. One-hot representation of formula FeBO3; blue cells indicate 1 and yellow cells indicate 0.

Figure 4. Building block of ResNet, introduced by ref 39.
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sets with the same crystal system, which means these materials may
also have similar structures or chemical properties. Furthermore, for
cluster sets containing several systems, the corresponding XRD
spectra with different crystal systems may have a similar shape. Figure
5b shows the local zoomed region of Figure 5a, and this cluster is
mainly composed of cubic and orthorhombic. We find that these
materials from both cubic and orthorhombic have similar XRD
shapes. The biggest peak positions are almost the same as each other,
and the other peak’s variation tendencies are also similar.

2.5. Model Evaluation. 2.5.1. Postprocessing. There is always
some noise in XRD caused by instrumental errors. To ignore the
influence of these noises, we set a threshold of XRD magnitude values
to distinguish between the real peaks and the noises. When using
XRD spectra to predict structural information, many scientists only
focus on the main peaks. Inoue focused on five major diffraction peaks
when clarifying the relationship between crystal morphology and
XRD peak intensity of CaSO4·2H2O,

44 and Suzuki’s crystal structure
prediction model10 focused on ten main peaks. Oviedo also used peak
elimination and pattern shifting in their paper when predicting
crystallographic dimensionality and space group.8 As the largest XRD
magnitude value is 100 counts per second (cps), and peaks with
intensities less than 10 cps will never be the main peaks in our data
set, we set 10 cps as the threshold value: if the XRD magnitude values
are less than 10 cps, they are more likely caused by noise rather than
main components. Therefore, we can just ignore them and consider
values greater than 10 cps as true peaks. We also introduce a peak-
alignment operation to consider the allowable peak shifts in
experimental XRD-based structure characterization. In the perform-
ance evaluation stage, we have corresponding ground truth XRD
peaks so we can shift predicted XRD peaks within a threshold distance
to do peak alignment: for a given ground truth peak, we first find all
peaks within 2° of peak position and then consider the largest peak as
the corresponding peak of the true peak for prediction error
calculation. In the testing stage, we do not have ground truth XRD
value, so we can just do peak merging: as all peak positions range from
0 to 2θ (in our data set, 2θ is 180°), we can safely consider that there
is just one peak if the distance between several peaks is less than 2°. In
this case, we assume that the main peak’s position is in the middle of
these peaks. By disregarding noises and applying peak alignment, the
predicted XRD values can be more realistic.

To evaluate the performance of our DeepXRD, we introduce a
series of XRD dissimilarity/distance metrics including Cosine matrix,
Pearson product-moment correlation, Jensen−Shannon divergence
(JSD), and dynamic time warping (DTW), which have been evaluated
in the literature.45 It is found that the Cosine and Pearson similarity
measures can get the best XRD clustering performance when peak
height changes and peak shifting are present in the data (due to lattice
constant changes) and the magnitude of peak shifting is unknown. In
another study,46 49 metrics are evaluated to check their sensitivity
when used for XRD clustering. It is shown that when the prior
knowledge of the maximum peak shifting is available, dynamic time
warping in a normalized constrained mode provides the best

Table 1. Layers and Parameters of the DeepXRD Model

layer input shape filter layer input shape filter

conv1 [batch,
84,10,1]

32 Res block1 [batch,
2,2,128]

128

Res block1 [batch,
84,10,32]

64 Res block2 [batch,
2,2,128]

128

Res block2 [batch,
42,5,64]

64 upsampling [batch,
2,2,128]

128

Res block1 [batch,
42,5,64]

128 Res block2 [batch,
4,4,128]

128

Res block2 [batch,
21,3,128]

128 Res block2 [batch,
4,4,128]

128

Res block2 [batch,
21,3,128]

128 upsampling [batch,
4,4,128]

128

Res block2 [batch,
21,3,128]

128 Res block2 [batch,
8,8,128]

128

Res block2 [batch,
21,3,128]

128 Res block2 [batch,
8,8,128]

128

Res block2 [batch,
21,3,128]

128 upsampling [batch,
8,8,128]

128

Res block2 [batch,
21,3,128]

64 Res block1 [batch,
16,16,64]

64

Res block2 [batch,
11,2,64]

64 Res block2 [batch,
16,16,64]

64

flatten [batch,
11,2,64]

upsampling [batch,
16,16,64]

64

dense [batch,
1408]

Res block1 [batch,
32,32,64]

64

reshape [batch, 128] Res block2 [batch,
32,32,64]

64

upsampling [batch,
1,1,128]

128 conv [batch,
32,32,64]

1

Figure 5. XRD distribution of the ABC3-XRD data set using t-SNE visualization of XRD patterns. Each point corresponds to one XRD pattern.
XRD patterns form loose clusters for each crystal system. (a) Distribution of ABC3 samples, (b) XRD spectra of the zoomed region as marked in
panel a.
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clustering performance. For two diffraction patterns s and t, the
dissimilarity measure is defined as D(s, t). For D(s, t) = 0, the two
diffraction patterns are assumed to be identical, and the correspond-
ing samples are assumed to share the same structure. Larger values of
the dissimilarity measure imply greater dissimilarity between the
samples’ structures.
The evaluation measures used in our work are shown as follows: we

use MSE, mean squared logarithmic error (MSLE), Cosine metric,
Pearson product-moment correlation, JSD, and DTW47 to compute
the XRD dissimilarity.
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3. RESULTS AND DISCUSSION
3.1. Prediction Performance of the Composition

Descriptor-Based XRD Predictor. In XRD-based crystal

structure characterization, the peak positions rather than their
magnitude values mainly reflect the structural or chemical
properties of the materials. Small XRD magnitude values are
usually caused by noise, and therefore independent of the
material properties. Thus, we can mainly focus on the peak
positions of our predicted results. For each formula, after
generating XRD values, we first select its peak position (where

magnitude values are larger than 10 cps) and then use peak
merging to combine peaks if their position’s distance is less
than 2°. To determine the training set size used to train our
DeepXRD model, we compared different train test split ratios.
Figure 6 shows the training error changes versus training set
ratios on both ABC3-XRD and Ternary-XRD data sets. When
we increase the training set ratio, training error reduces, and
after 0.7, both data sets’ reduction trend gradually becomes less
apparent. Thus, we use 70% samples from two data sets as the
training set. Table 2 uses Cosine, Pearson, JSD, and DTW
algorithms to evaluate mean distance errors of testing samples
to show the predicted performance of the DeepXRD model.
We use Pearson as the module’s loss function. The first row is
the distance between all predicted XRD positions and target
positions. In the second row, we only focus on the peak
positions between the predicted and target XRD spectra. In the
last row, we use peak merging to apply shifting on the
predicted peak position to make it clear. By focusing on peak
position, the errors calculated by Cosine, Pearson, and JSD
functions have increased from 0.884, 0.885, and 0.773 to 0.943,
0.950, and 0.811, respectively. The increase may be caused by
the accurate nonpeak positions we ignored in this step.
However, after merging peaks, the errors of these three
functions have reduced to 0.633, 0.633, and 0.550 respectively.
The decrease shows that although predicted peak positions are
not totally exact, most of them are very close to the ground
truth positions. The errors calculated by the DTW function are
kept reducing from 4.54 to 3.92 and then to 3.57. DTW can
warp the sequence so it can calculate the distance of peaks of a
similar wave shape. Table 2 shows that our DeepXRD model
can find the key peak position of materials only through its
composition. The distance error distribution of all testing
samples is shown in Figure 7. The first row shows the
predicted peak position distance distribution, and the second
row shows the distance errors after ignoring the noise and
applying peak merging. The distance distribution figures show
that by using peak merging, predicted XRD peak positions can
be more similar to true peak positions thus the distribution of
errors is more close to 0.
To choose the best loss function for the DeepXRD model,

we use the peak match percentage as the criterion to evaluate
four different loss functions’ performance on the ABC3-XRD
and Ternary-XRD data sets, respectively, while keeping other
hyper-parameters such as the batch size, learning rate, and
training epoch unchanged. We compare two traditional loss
functions, MSE and MSLE with Cosine and Pearson, which
have been shown to perform better in XRD similarity
studies.45,46 Table 3 shows that all loss functions achieve
better peak match percentages on the smaller ABC3-XRD data
set. The peak match accuracy improves by about 1% compared
with the larger Ternary-XRD data set. We also find that the
models trained with the Pearson loss function achieve the best
match percentages on both data sets, which are 0.681 and
0.678, respectively. Compared with MSE’s 0.626 and 0.612,
MSLE’s 0.644 and 0.631, Cosine’s 0.673 and 0.667, the match
percentages have improved by 6, 4, and 1%, respectively. The
results of Table 3 prove that for the XRD prediction problem,
Cosine and Pearson loss functions are better than traditional
MSE and MSLE loss functions because they focus more on the
shape rather than the exact values.
Figure 8 shows an example of the prediction results of

BaTbO3. Figure 8a shows the predicted XRD values and the
target values, we find that our DeepXRD model can find the

Figure 6. Training error versus training set ratio on ABC3-XRD and
Ternary-XRD data sets, respectively.

Table 2. Testing Errors (cps) Evaluated by Four Different
Performance Measures for Composition-Based XRD
Prediction

Cosin Pearson JSD DTW

prediction distance 0.884 0.885 0.773 4.54
peak distance 0.943 0.950 0.811 3.92
peak alignment distance 0.633 0.633 0.550 3.57
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positions for most peaks. Figure 8b focuses only on all peak
positions in the predicted and target XRD, and we use peak
alignment to fine-tune peak positions as Figure 8c shows. Our
algorithm has found almost all XRD peak positions, although
the peak magnitudes maybe not be very accurate.
3.2. Hyper-Parameter Tuning of DeepXRD Models.

To obtain the best hyper-parameters for the DeepXRD model,
we compare peak position match percentages under different
hyper-parameter combinations on two data sets. For a given
formula, we first predict its XRD spectrum and then determine
all peak positions with intensity greater than 10 cps. The
performance results are shown in Table 4. For models with 10,
15, 20, and 25 ResNet layers, we calculate and compare the
peak position match percentages with different learning rates
and batch sizes. From Table 4, we find that for the ABC3-XRD
data set, the model with 20 ResNet layers, learning rate 0.001,
and batch size 64 achieves the best performance. After peak
shift operations, the final average peak match percentage is
68%. For the Ternary-XRD data set (Table 5), the model with

20 ResNet layers, learning rate 0.001, and batch size 128
achieves the best performance with peak match percentage
63%.

3.3. Case Studies of DeepXRD for XRD Spectrum
Prediction. To evaluate the performance of our DeepXRD
model, we randomly select three target compositions and their
XRD spectra as design targets from the ABC3-XRD test set.
The XRD of the formulas predicted by the DeepXRD model
(red color) are shown in Figure 9 together with the target XRD
(blue color). The first row shows the structure of the given
formulas. The second row shows XRD values predicted by the
DeepXRD model. The third row shows the results that ignore
the noise and only focus on peak positions and peak values.
The last row shows predicted and ground truth XRD peak
positions and peak values after peak alignment.
As most ABC3 structures are ABO3, we fix the C in ABC3 as

oxygen and choose different A and B values to evaluate how
DeepXRD models perform on different materials. In the 3D
space of crystal materials, there are seven crystal systems:
triclinic, monoclinic, orthorhombic, tetragonal, trigonal,
hexagonal, and cubic. We choose three samples from the
most common crystal systems of ABO3: cubic, orthorhombic,
and monoclinic, respectively, to evaluate the predictive
performance of our model. The crystal system of SrSeO3 is
monoclinic, and the structure of SrSeO3 is shown in Figure 9a.
It has two high peaks: one is between 25 and 35°; another is
around 175 to 180°, and also some small peaks and noises, as

Figure 7. Histogram of peak distance errors over the testing samples.

Table 3. Prediction Performance (Peak Position Match
Percentage) of Different Loss Functions

performance measure

data set MSE MSLE Cosine Pearson

ABC3-XRD 0.626 0.644 0.673 0.681
Ternary-XRD 0.612 0.631 0.667 0.678

Figure 8. XRD prediction performance of BaTbO3.
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shown in Figure 9d. The predicted peaks (red color) match
well with the approximate positions of the first two high peaks
along with some small peaks, and the magnitude of the highest
peak is accurately predicted. The last high peak located
between 175 and 180° is missed, which is probably due to we
do not have many training samples containing elements Sr and
Se that generate peaks in this area. That is why our model does
not predict a peak at around 180°. After filtering the noise
signals in the XRD values (values smaller than 10 cps) we
obtain Figure 9g, which shows the peak matches much better
than in panel d by focusing only on significant peaks. From this
figure, we find that there are small gaps in terms of the peak
positions, which is related to the common X-ray diffraction
peak shifting phenomena in crystallography.48 To consider this
factor, we conduct a peak shifting operation to match and
adjust the predicted peaks within a distance smaller than 2° to
the ground truth peaks, which makes our predictions much
closer to the true values, as shown in Figure 9j.
The crystal system of YAlO3 is orthorhombic, and its

structure is shown in Figure 9b. It has only one high peak,
around 30 to 35°, along with several small peaks. As shown in
Figure 9e, the predicted peaks (red color) successfully match
the approximate positions of almost all peaks with a value
greater than 20. After ignoring the noises in the XRD spectrum
(values smaller than 10), Figure 9h shows our predicted peaks
and their matches with the ground truth more clearly. Figure
9k shows the matches after peak alignment: our algorithm
predicts the same number of peaks as the true ones and only
the smallest three of the 11 peaks are not aligned. Figure 9c
shows the structure of BaZrO3, which is a cubic material with
scattered peaks and two high peaks around 30 and 165°,
respectively. It also has several median peaks and almost no
noise. As shown in Figure 9f, the predicted result (red color)
successfully matches the approximate positions and magni-
tudes of the highest peak and almost all peak positions within
the first 90°. Ignoring the noises in the XRD values (values
smaller than 10 cps) does not improve the prediction results
very much as shown in Figure 9i. Peak alignment can help to
adjust the predicted peak positions in the second half as shown

in Figure 9l. Our algorithm misses only the smallest three
peaks.
From Figure 9, we can find that the XRD distributions

predicted by our DeepXRD model are very similar to the true
XRD spectrum. When we focus only on the peak positions, the
prediction errors can be further reduced. The peak position
matches the ground truths and can be fine-tuned with the peak
alignment operations. We also find that if the material crystal
system or composition elements of a test material composition
are infrequent in the training set, the predicted accuracy may
become lower.
To further evaluate the DeepXRD model’s performance on

the ABC3-XRD data set, we choose test samples with different
A, B, and C elements. Figure 10 shows their predicted XRD
(red color) and ground truth XRD spectra (blue color). The
first test sample Ca3SiO is orthorhombic (Figure 10a), which
has two high-intensity peaks within the interval of 30 to 40°
and a median peak around 50° together with several small
peaks. Our predicted XRD spectrum matches almost all peaks
of Ca3SiO as shown in Figure 10d. The second test case is
CsInBr3, which has a cubic structure as shown in Figure 10b.
CsInBr3 has 5 high peaks: the first four peak positions are
around 20 to 50° and the last peak is located at 160 to 165°.
Figure 10e shows that for peaks with magnitude values greater
than 20 cps, our predicted peak intensity and positions are
similar to the true ones except for the last high peak. The third
test sample CsCaCl3, as shown in Figure 10c, is tetragonal.
Figure 10f shows that CsCaCl3’s main peak is around 20 to
60°. Our model accurately predicted the exact positions of
these peaks. The fourth test sample NdLuS3 is orthorhombic,
and its structure is shown in Figure 10g. Its highest peak is the
first peak located around 20° and the remaining peaks are
around 20 to 60° as shown in Figure 10j. Our predicted XRD
spectrum matches almost all peak positions with only several
peak differences in intensities. Figure 10h shows the fifth test
case Ca3BiSb, which is a cubic with two high peaks: the first
and the last one of all peaks with intensity greater than 80 cps.
Our predicted XRD matches the first and highest peak very
well and matches the second highest peak with only a small

Table 4. Prediction Performance (Peak Position Match Percentage) Of Different Parameter Settings on the ABC3-XRD Data
Set

learning rate

0.001 0.002 0.003 0.004

ResNet
layers

batch size
32

batch size
64

batch size
128

batch size
32

batch size
64

batch size
128

batch size
32

batch size
64

batch size
128

batch size
32

batch size
64

batch size
128

10 0.58 0.63 0.57 0.6 0.64 0.57 0.58 0.64 0.60 0.59 0.61 0.55
15 0.58 0.63 0.63 0.57 0.62 0.59 0.58 0.63 0.65 0.56 0.59 0.53
20 0.57 0.68 0.59 0.58 0.65 0.58 0.56 0.61 0.57 0.54 0.59 0.53
25 0.54 0.61 0.59 0.57 0.59 0.59 0.59 0.59 0.56 0.59 0.56 0.53

Table 5. Prediction Performance (Peak Position Match Percentage) Of Different Parameter Settings on the Ternary-XRD
Data Set

learning rate

0.001 0.002 0.003 0.004

ResNet
layers

batch
size 64

batch size
128

batch size
256

batch
size 64

batch size
128

batch size
256

batch
size 64

batch size
128

batch size
256

batch
size 64

batch size
128

batch size
256

10 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.59 0.57 0.55 0.56 0.57
15 0.57 0.59 0.57 0.57 0.57 0.57 0.57 0.58 0.58 0.56 0.56 0.54
20 0.61 0.63 0.6 0.57 0.58 0.58 0.57 0.59 0.58 0.53 0.58 0.57
25 0.6 0.61 0.59 0.53 0.59 0.56 0.52 0.58 0.51 0.56 0.59 0.57

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.2c05812
ACS Appl. Mater. Interfaces 2022, 14, 40102−40115

40109

www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.2c05812?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


distance that can be aligned by the shifting operation of the
peak alignment process. As shown in Figure 10k, the trends of
the other peaks we predicted are the same as the ground truth
peaks. The last cubic test case MgAgF3 is shown in Figure 10i.
We find that due to fewer training samples containing elements
Ag and Mg, the positions of the two highest peaks of MgAgF3

(Figure 10l) are predicted with larger offsets than in previous
examples. However, the positions of other peaks and intensities
are still very close to the ground truth.
On the larger Ternary-XRD data set, we also choose several

test samples with different elements and crystal systems to
evaluate our DeepXRD model’s performance. Their predicted

Figure 9. Prediction performance of peak positions by DeepXRD. Structure and predicted peak positions of (a, d, g, j) BaSnO3, (b, e, h, k) YAlO3,
and (c, f, i, l) BaZrO3.
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XRD (red color) and truth XRD spectra (blue color) are
shown in Figure 11. Comparing Figure 11 with Figure 10, we
can find that the peaks of these ternary materials are more
complex than ABC3. It is also found that our predicted XRD
spectra are denser than those of the ABC3-XRD data set.

As shown in Figure 11a, Fe3(OF2)2 is monoclinic. Its highest
peak is located around 25°, and most of the peaks are within
the first 90°. Our predicted XRD matches almost all peaks of
the first half and misses those peaks within the interval of 160
to 180° again as shown in Figure 11d. The next test case is

Figure 10. Prediction performance of DeepXRD. Structure and predicted XRD of (a, d) Ca3SiO, (b, e) CsInBr3, (c, f) CsCaCl3, (g, j) NdLuS3, (h,
k) Ca3BiSb, and (i, l) MgAgF3.
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PBr2N with a triclinic structure as shown in Figure 11b.
PBr2N’s highest peak position is around 20° followed by a
series of peaks with intensity larger than 40 cps. Figure 11e
shows that almost all true peaks are located within the interval
of 20 to 40°, the same as the predicted ones. Figure 11c shows
the structure of Tl6PbI10, which has a trigonal crystal system.

This crystal has three very close main peaks around 30°
(Figure 11f). Our model accurately predicts the positions and
intensities of all these peaks. Another monoclinic test case
Al2NiO4 is shown in Figure 11g. Its peaks are discrete within
the first 90° as shown in Figure 11 j. Our predicted XRD could
match almost all the peak positions with intensity errors for

Figure 11. Prediction performance of DeepXRD. Structure and predicted XRD of (a, d) Fe3(OF2)2, (b, e) PBr2N, (c, f) Tl6PbI10, (g, j) Al2NiO4,
(h, k) Co3Bi3N5, and (i, l) V(C2N3)3.
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only a few peaks. Figure 11h shows a triclinic test case
Co3Bi3N5, which has a series of close high peaks and two single
peaks around 180°. Our predicted XRD matches the first series
of peaks very well as shown in Figure 11k. The trends of the
other predicted peaks are also similar to the true ones. The last
case is the orthorhombic V(C2N3)3 as shown in Figure 11I
with the peaks gathered between 0 and 30° and our predicted
XRD spectrum has the same distribution (Figure 11l).
3.4. Discussion. From all three case studies discussed

before, we show that for a given material formula, our
DeepXRD model can predict its probable XRD spectrum only
based on its composition. Even though the predicted peaks
may not be at the exact positions compared to the ground
truths, they are within the minor shifting range. For test cases
with good performance, our model can find most peak
positions and corresponding values but a few peaks may still
not match, which may be caused by infrequent elemental
combinations that only appear in limited times during model
training. In machine learning studies, models trained with a
larger data set usually achieve better prediction performance.
However, in our XRD study, the predicted XRD peaks of the
test samples in the small ABC3-XRD data set to match their
target XRD spectra better. This is due to the fact that the
smaller ABC3-XRD data set contains more similar composi-
tions and structures compared to the samples of the Ternary-
XRD data set, which are much more diverse. During model
training, we find that our model can easily overfit, which is
probably due to the XRD spectrum data containing noise and
being sensitive to its composition change, which means that
even if there is one elemental change on the input formula, the
corresponding XRD spectrum may change dramatically. If the
training process focuses too much on the training set, the
model tends to adapt to the details or even noises within the
XRD spectra of the training set, which makes the model to be
not generalizable to the test samples. To deal with this
overfitting problem, we add dropout layers in our model to
control model overfitting and use early stopping to avoid our
model’s overfitting. We also find that the performance of our
XRD prediction models may be significantly improved by

designing a smoother loss function: instead of directly
comparing the magnitudes at the sampling points, a loss
function that allows a certain degree of peak shifting should
lead to a smoother loss landscape so that similar compositions
can have similar distribution despite some those peak shifts.
To further estimate our DeepXRD’s performance compared

with other methods, we established a baseline using
Pymatgen,49 and showed the prediction performance of both
DeepXRD and the baseline model on the ABC3-XRD data set.
The input of the baseline model is the corresponding
structures of formulas in the ABC3-XRD data set and we
download it from the Materials Project database.42 Then we
can get the particular A, B, and C of each formula, elements
that appear once in the formula are considered to be A or B,
and the element that appears 3 times are treated as C. Take
SrSiO3 as an example, the A and B are Sr and Si (the order
does not matter), and C is O. After we have this A\B\C
element information, we then use the element substitution
method to replace elements from known structures with other
elements to get new structures. If we substitute Si in SrSiO3 to
Zr, we can get a new unstable structure of SrZrO3. Due to the
substituted atom may have different volumes from the original
one, this new structure needs to be adjusted based on atom
information. After structure adjustment, we can use the XRD
calculator function in Pymatgen to get the probable XRD
pattern of this substituted new structure. And this calculated
XRD pattern can then be applied with our peak selection and
alignment operation to get the final peak positions and
intensities. The prediction performance results are shown in
Table 6. The average match percentage shows the peak match
percentage of the target XRD pattern and the calculated XRD
pattern based on a randomly selected structure with the
prototype ABC3. The max match percentage shows the best
possible peak match percentage when we select the most
similar structure to the target one. Table 6 shows that when
randomly selecting a structure as the template to apply element
substitution, the final XRD peak position match percentage is
only 0.26, which is much smaller than DeepXRD’s 0.68. And
the max match percentage is 0.73, which means even if we
spend a lot of computational cost to find a similar structure to
the target formula, we can only make a 0.05 improvement. The
average peak match percentage distributions of the two
methods are shown in Figure 12. Figure 12a shows the
average peak match percentage distribution of the baseline
model, most percentages are located in the 0.1 to 0.4 interval,
and almost all of them are smaller than 0.5. Figure 12a shows
the average peak match percentage distribution of the

Table 6. Prediction Performance (Peak Position Match
Percentage) of DeepXRD and Baseline Model on the ABC3-
XRD Data Set

methods average match percentage max match percentage

DeepXRD 0.68 N/A
baseline model 0.26 0.73

Figure 12. Average peak match percentage distribution of baseline and DeepXRD.
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DeepXRD model, most percentages are located in the 0.6 to
1.0 interval, and only a few of them are smaller than 0.4. This
distribution figure also supports that XRD patterns predicted
by the DeepXRD method are more similar to the ground truth.

4. CONCLUSION
We propose a deep neural network-based model for predicting
materials’ XRD spectra given their composition only. These
models can be used to conduct high-throughput screening of
the almost infinite composition design space for structures with
specific structural features or symmetry. When evaluated on
two data sets with a more homogeneous ABC3-XRD data set
and a larger Ternary-XRD data set with more diverse
structures, we show that our DeepXRD algorithm can make
an accurate prediction of XRD spectra for a large category of
material formulas. When we want to find materials with target
XRD spectra, we can use the DeepXRD model as preliminary
screening to narrow down the candidates. Based on the
predicted XRD spectra, we may further estimate the material’s
structure. Based on our successful case studies, we believe that
our DeepXRD model and its future variants are of great
significance to be used for guiding the discovery of new
materials.
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