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ABSTRACT: Crystal structure prediction (CSP) has emerged as
one of the most important approaches for discovering new
materials. CSP algorithms based on evolutionary algorithms and
particle swarm optimization have discovered a great number of
new materials. However, these algorithms based on ab initio
calculation of free energy are inefficient. Moreover, they have
severe limitations in terms of scalability. We recently proposed a
promising crystal structure prediction method based on atomic
contact maps, using global optimization algorithms to search for
the Wyckoft positions by maximizing the match between the
contact map of the predicted structure and the contact map of the
true crystal structure. However, our previous contact-map-based
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CSP algorithms have two major limitations: (1) the loss of search capability due to getting trapped in local optima; (2) it only uses
the connection of atoms in the unit cell to predict the crystal structure, ignoring the chemical environment outside the unit cell,
which may lead to unreasonable coordination environments. Herein, we propose a novel multiobjective genetic algorithm for
contact-map-based crystal structure prediction by optimizing three objectives, including contact map match accuracy, individual age,
and coordination number match. Furthermore, we assign the age values to all the individuals of the GA and try to minimize the age,
aiming to avoid the premature convergence problem. Our experimental results show that compared to our previous CMCrystal
algorithm, our multiobjective crystal structure prediction algorithm (CMCrystalMOO) can reconstruct the crystal structure with
higher quality and alleviate the problem of premature convergence. The source code is open sourced and can be accessed at https://

github.com/usccolumbia/MOOCSP.

1. INTRODUCTION

The discovery and development of new materials are
fundamental to the progress of technology. There are several
promising approaches for exploring new materials including
crystal structure predictions, " generative machine learning
models,’™* inverse materials design,”” and first-principles' ™"
calculation-based structural tinkering. The Materials Genome
Initiative attempts to use data-driven methods'>™" to help
discover new material science research paradigms and
accelerate the design and exploration of new materials. Since
the structure of a material determines its many physical and
chemical properties, crystal structure prediction is thus an
important process for finding new materials. Global
optimization and data mining are currently the two main
crystal structure prediction methods.'® Data mining methods
usually have higher requirements for crystal structure data and
faster speed. However, because some data may not be
complete and effective, it is easy to make mistakes. Evolu-
tionary algorithms instead have become an important method
for predicting crystal structures due to their excellent global
optimization performance.”'” The crystal structure prediction
algorithms based on an evolutionary algorithm and particle
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swarm optimization have discovered many new materials.

However, these global optimization algorithms are usually
based on ab initio calculations of free energies, which rely on
expensive DFT calculations. This makes them inefficient and
has many limitations in terms of scalability.””*"

Compared to the vast chemical space of crystal materials, the
known crystal structures (200 000) as deposited in the ICSD
and Materials Project database are quite limited. Recently, we
proposed a generative machine learning model CubicGAN>*
for automated generation of cubic crystal structures, allowing
us to discover hundreds of new prototype cubic materials.
However, that approach is currently only limited to generate
cubic structures with special coordinates. Another strategy to
generate hypothetical crystal structures is to first generate the
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(a) Structural display with
complete coordination info for
all atoms within unit cell (20
atoms, 24 bonds, 4 polyhedra)

Figure 1. Different views of the crystal structure of V,S,.

(b) The connections of
atoms within the unit
cell(8 atoms, 10 bonds,
0 polyhedra)

(c) polyhedron representation

compositions, using our composition generative machine
learning model (MatGAN),® which can generate hypothetical
crystal material compositions by learning implicit chemical
composition rules. Our model can be used to generate millions
of new hypothetical materials compositions, with the potential
to significantly expand the chemical design space for inorganic
material design and large-scale computational screening.”*” It
is of great significance to analyze their physical and chemical
properties, which depend on the availability of their structures.
However, predicting the crystal structure of the given chemical
composition is a major difficulty that has merited decades of
research.”’ 'We previously proposed a contact-map-based
crystal structure prediction method AlphaCrystal,”* which
predicts the contact map,” space group, and lattice constants
of the material through deep learning methods and then uses
global optimization algorithms such as GA and PSO to
maximize the match between the contact map of the predicted
structure and the predicted contact map by searching for the
Wyckoff positions. Our experiments proved that the geometric
constraints’®~*® in the crystal structure help the crystal
structure reconstruction. Compared with the crystal structure
prediction method based on global free energy optimiza-
tion,"®*” our method uses a large number of hidden geometric
constraints, composition, and atomic configuration rules in
known crystal structures, thus improving the sampling
efficiency, which makes it suitable for large-scale crystal
structure prediction. However, our previous crystal structure
prediction method based on contact maps still has two major
limitations in terms of its search capability. First, it only used
the connections of atoms in the unit cell to predict the crystal
structure, ignoring the chemical environment outside the unit
cell, which may form an unreasonable coordination environ-
ment. As a result, some predicted crystal structures are very
different from the target structures. Here, we take the approach
of physics-informed machine learning, which incorporates
physical principles into machine learning (ML) mod-
els.>**™* We find that the polyhedral formed by cations
and nearby anions can serve as an important optimization
target to the machine learning framework of crystal materials.”'
Therefore, we added the coordination number of the cation as
an additional optimization objective to the previous contact-
map-based CSP algorithm, the CMCrystal.

In addition, during our usage of the crystal structure
prediction method based on evolutionary algorithms such as
CALYPSO™* and CrySPY,” we find both algorithms are easy
to converge prematurely and fall into local optima. However,
studies have shown that dividing the evolving population into
different age groups can significantly improve the ability to
obtain globally optimal solutions and avoid falling into local
optimal solutions.”**> Therefore, in order to improve the
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performance of the evolutionary algorithm to reconstruct the
crystal structure, we take ages of the individuals as an explicit
optimization target in addition to the contact map match and
the coordination number accuracy, leading to a multiobjective
GA for CSP, the CMCrystaMOO algorithm.*® This method
evolves a population of nondominated candidate solutions in
the Pareto front considering the time (age) of the individuals
in the population and their performance (fitness regarding
contact map and coordination number prediction accuracy). In
the end, we constituted a multiobjective genetic algorithm with
a contact map, a coordination number of the cation, and ages
of the individuals for crystal structure prediction.
Our contributions can be summarized as follows

e Compared to our previous contact-map-based crystal
structure prediction algorithm CMCrystal, we propose
an additional optimization target, the coordination
number of the cation, to comprehensively consider the
chemical environment inside and outside the unit cell.
The connection of atoms in the unit cell and the
coordination number of the cation outside the unit cell
needs to be optimized. The reconstructed crystal
structures tend to resemble the real crystal structure
with this additional physics-informed optimization
target.

e To address the common premature convergence issue of
evolutionary algorithms in challenging optimization
tasks, we introduced the ages of the individuals as one
additional optimization objective in our optimization
algorithm, which naturally leads to a multiobjective GA
that takes the contact map accuracy, the coordination
number accuracy of the cation, and the age as the
optimization objectives, which alleviates the problem of
the genetic algorithm falling into local optima and
improves the global search ability of the genetic
algorithm.

e We evaluated our multiobjective genetic algorithm
CMCrystalMOO on a set of crystal structures with
extensive experiments to prove the effectiveness of our
algorithm for reconstructing the structures from the
contact map and coordination number of the cation.

2. METHODS

2.1. Coordination Number as an Optimization Target
for Atomic Coordinate Reconstruction. In a crystal
structure, the coordination number of a central atom or ion
is the number of atoms or ions directly adjacent to it. It forms a
coordination polyhedron when the neighboring atoms/ions are
connected to a central atom/ion. In many cases, the radius
ratio of the atom pair determines the coordination number of
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the cation in ionic crystals. The contact map records the
connection relationship between all atoms in the unit cell and
captures the interaction between atoms.

Figure 1 shows the crystal structure of V,S, with 20 atoms,
24 bonds, and 4 polyhedra. Out of the 20 atoms, 8 are within
the unit cell, while the remaining atoms are the equivalent
atoms of the S atoms in the neighbor unit cells due to the
structure periodicity. Our previous contact-map-based crystal
structure prediction method only considers the connections of
the 8 atoms within the unit cell, ignoring the coordination
environment outside the unit cell, as shown in Figure 1b. So,
we added the optimization goal of the coordination number of
the cation to the previous method of crystal structure
prediction based on contact map.

2.2, Age-Fitness-Based Multiobjective Genetic Algo-
rithm for Crystal Structure Prediction. In our previous
work,” the crystal structure prediction problem can be mapped
to two related problems: (1) prediction of the contact map of
atoms; (2) the atomic coordinate reconstruction from the
contact map using global optimization algorithms. We have
applied both genetic algorithms and differential evolution
algorithms37 for the coordinate reconstruction. However, in
both algorithms, the evolving population can easily get trapped
in local optima due to premature convergence, when the
diversity of the population decreases dramatically after a few
generations, leading to the loss of search capability. It is thus
essential to introduce prevention techniques to avoid or
ameliorate the premature convergence issue.

Several techniques address the premature convergence issue,
including the well-known fitness sharing or niching techni-
ques,”” which aim to maintain population diversity. Additional
research®® shows that a pipeline of new genetic materials is
needed to maintain sustainable evolutionary search. Based on
this idea, hierarchical fair competition algorithms,34 an age-
layered population search algorithm, and multiobjective
evolutionary algorithms®® have been proposed, which have
demonstrated much stronger evolutionary search capability for
challenging global optimization problems. Here, we choose the
age-fitness multiobjective EA framework (AFMOEA) for
building a more robust genetic algorithm for atomic coordinate
reconstruction from the contact map and the coordination
number of the cation. By optimizing the fitness function and
minimizing the ages of the individuals, the age-fitness
multiobjective algorithm implicitly maintains the population
diversity and a genetic pipeline for sustainable evolutionary
search.

Here, we propose a multiobjective crystal structure
prediction algorithm based on a contact map, the coordination
number of the cation, and ages of individuals as shown in
Figure 2. First, we use the PyXtal library’ to generate 50
random crystal structures based on the given formula and the
space group. We then select five suitable random crystal
structures and use the multiobjective crystal structure
prediction algorithm to search the Wyckoftf positions’
coordinates by approximating the target contact map and the
coordination number of the cations as well as minimizing the
ages of individuals. The goal is to make the contact map of the
optimized structure and the coordination number of the
cations match those of the real structure as much as possible.
Finally, we use the contact map accuracy, the coordination
number error of the cation, the root-mean-square distance
(RMSD), and the mean absolute error (MAE) between the
predicted Wyckoff positions of the crystal structure and the
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Figure 2. Prediction framework of multiobjective genetic algorithm.

Wyckoft positions of the target structure to evaluate the
reconstructed crystal structure.

2.3. 3D Crystal Structure Reconstruction Algorithm.
We use NSGA-II: Nondominated Sorting Genetic Algorithm
in the pymoo framework* to search for the Wyckoff positions
guided by the contact map, the coordination number of the
cations, and the ages of the individuals to realize the prediction
of the crystal structure. Compared with traditional genetic
algorithms, NSGA-II has improved mating and survival
selection. In NSGA-II, first, individuals are selected frontwise.
Because not all individuals are allowed to survive, individuals
on the front lines need to be divided, and the only
representatives will be selected for the next generation. In
this split front, the candidate solutions are selected based on
the crowding distance (the Manhattan Distance in the target
space). In addition, NSGA-II uses binary tournament mating
selection. Each individual first compares the rank and then the
crowded distance.

In order to alleviate the premature convergence issue of
NSGA-II, we added an additional optimization objective that is
the ages of individuals. The specific process is as follows: the
age of an individual is based on generations. All randomly
initialized individuals start at the age of one. Since then, the age
of the individual will increase by one for each surviving
generation. In the process of crossover and mutation, age is
inherited as the maximum age of parents. In addition, we
added 5% of random individuals to the population of the next
generation to ensure the diversity of the population. The
population of candidate solutions can be mapped to the two-
dimensional plane of age and fitness. The goal of multi-
objective optimization is to find the nondominated Pareto
frontier of a given problem domain. Here, our target is to
identify candidate structures with the youngest age and the
greatest fitness, which leads to selection pressure to let old-
mediocre candidates become extinct during the evolutionary
process.

In order to verify the performance of adding the ages of
individuals as an additional optimization target to the NSGA-II
that takes the contact map match and the coordination number
match of the cations as the optimization targets, we analyze the
process of searching the complex Li Fe,F ; Wyckoff positions
with and without the age objective. We use the hypervolume to
compare the search capability, which is a well-known
performance indicator for multiobjective optimization.*'
Calculation of hypervolume requires defining a reference
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Figure 3. Hypervolume comparison of multiobjective genetic algorithms with and without age. The age-enhanced GA has shown higher search

performance.

point that shall be larger than the maximum value of the Pareto
front. We select the reference point (0,16) with the contact
map accuracy to be 0 and the max coordination number error
to be 16.

As shown in Figure 3, in the beginning, the performance of
the multiobjective genetic algorithm with age and without age
is close. With the increase of generation, the performance of a
multiobjective genetic algorithm with age is better than the one
without age, and there will be a gradual improvement in
performance later. Experimental results show that our
multiobjective genetic algorithm with age can effectively
alleviate the premature convergence problem and improve
the algorithm’s global searchability. For all the NSGA-II-based
experiments, we set the population size to 100, the number of
generations to 1000, and the crossover probability to 0.9.

2.4. Evaluation Metrics. If the distance between the two
atoms in the unit cell is within the range of [Min.length,
Mazx.length], it means there is a bond between them and the
corresponding contact map position is set to 1, or else, it is set
to 0. The contact map fitness function of the NSGA-II is as
follows

2|A n Bl 2 X AeB
ﬁtnessopt = ~
Al + 1Bl Sum(A) + Sum(B) (1)

where A is the predicted contact map and B is the target
contact map; both only contain 1/0 entries. A N B represents
the common elements between A and B, Igl denotes the
number of elements in a contact map, and Sum(g) denotes the
sum of all contact map elements.

In our study, the coordination number of the cation is the
number of surrounding atoms around the cation that may exist
in the unit cell and outside the unit cell due to the periodic
nature of the structures. Since the contact map has recorded
the atomic connection in the unit cell, it is equivalent to
including the coordination number in the unit cell of the
cation. Therefore, we focus on analyzing the coordination
number outside the unit cell of the cation. The coordination
number error of the cation (to be precise, the coordination

number outside the unit cell error of the cation) is defined as
follows

coordi-number-error-of-cation = Sum(lA — BI) ()

where A is the predicted coordination number outside the
unit cell of all cations, and B is the actual coordination number
outside the unit cell of all cations. The value of the
coordination number A can be calculated as follows: in the
process of searching Wyckoff positions in the optimization
algorithm, first find out the equivalent positions outside the
unit cell of the anion through symmetric operations and then
determine the cations and the anions outside the unit cell
according to the atomic distance thresholds used to define
bonding relationship.

To evaluate the reconstruction performance of NSGA-II, we
can use the contact map accuracy and coordination number
error of the cation as evaluation criteria. Moreover, we define
the root-mean-square distance (RMSD) and mean absolute
error (MAE) of two structures as below

3)

1 n
MAE = =Y [l — w]
i=1

n-

)

Vie = Wix

+ H"iy Wy

*

Vig = Wy

1 n
=—)(
”Z' ‘ (4)

where 7 is the number of Wyckoff positions in the real crystal
structure. v; and w; are the corresponding atoms in the
predicted crystal structure and the real crystal structure.
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3. RESULTS

3.1. Generating and Screening Random Crystal
Structures with a Given Symmetry. PyXtal is a Python
software package that can generate random structures for a
given symmetry and stoichiometry and do structural
optimization.*” To predict the crystal structure from the
multiobjective genetic algorithm, we need a seed structure as a
starting point to optimize. Here, we use Pthal‘?’9 to generate
candidate template structures.

We use the following guidelines to select five suitable
random crystal structures from S0 PyXtal-generated random
crystal structures as the template for Wyckoff atomic
coordinate optimization

e The number of Wyckoff positions is the least (that is, the
multiplicity of each Wyckoff position is as large as
possible)

e The multiplicity of the Wyckoff positions of each kind of
atom is arranged in descending order

e The random crystal structures with the top S greatest
contact map accuracy are selected from the random
structures that meet the above two conditions

The Wyckoft position combination of the random crystal
structures screened by this method is likely to be consistent
with the Wyckoff position combination of the true crystal
structure.

After successfully screening five crystal structures in our
algorithm, we will try to search the Wyckoft positions to
maximize the match of its contact map and the coordination
number of the cation with the target contact map and the
coordination number of the cation.

3.2. Prediction Results of Crystal Structure Based on
a Multiobjective Genetic Algorithm. We selected a set of
materials from the Materials Project database as test cases, and
the space group numbers are between 9 and 176, as shown in
Table 1. For the NSGA-II algorithm, when optimizing the

Table 1. Target Crystal Structures

coordination

space no. of no. of atoms number of
target mp_id group WPs  in unit cell cations

V.S, mp-1868 62 2 8 12

Zn,0, mp- 136 2 8 12
1093993

Pd,I, mp-27747 14 3 12 8

VeSs mp-799 176 3 14 12

NizO, mp- 9 s 20 12
1220143

As;O), mp- 86 3 20 12
1189365

Ce,As,0O4  mp- 11 4 10 10
1078398

CuyAs,S,  mp-530S 62 3 12 8

V,Si,N,  mp- 33 16 15
1246004

Li,Fe,Fi4  mp- 14 6 24 16
777678

Wryckoff positions represented as fractional coordinates, we set
the range of the variables to [0, 1]. For all the NSGA-II
optimizations, the running time ranges are from 600 to 3000 s,
depending on the complexity of the crystal structures. In order
to verify the performance of our multiobjective genetic
algorithm, we compare the multiobjective genetic algorithm
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with our previously proposed contact-map-based CSP
algorithm, CMCrystal. The experimental results are shown in
Table 2.

As shown in Table 2, in the middle multiobjective genetic
algorithm columns, we show the crystal structure reconstruc-
tion performance of our multiobjective genetic algorithm. For
all the test targets, the contact map accuracy ranges from 0.865
to 1.0 where the lowest accuracy is from V,Sg with the highest
space group 176. Accordingly, the coordination number errors
of the cation range from 0 to 3, the RMSD errors range from
0.060 to 0.331, and the MAE errors are between 0.050 and
0.233. Compared to CMCrystal’s experimental results,we find
that for five targets (NigO1,, AsgOy,, Ce,As,04 CuyAs,S,, and
Li,Fe,Fic), the contact map accuracy predicted by the
multiobjective genetic algorithm is higher than CMCrystal,
and others are equal to CMCrystal. This illustrates the
excellent performance of our multiobjective genetic algorithm.
Additionally,we find that for five targets (V,S,, Pd,I;, AsgO,,
Cu,As,S,, and Li,Fe,F 4), we have decreased their coordina-
tion number errors of the cation to 0 with reductions of 0, 4, 3,
2, and 12, respectively, which significantly demonstrates the
effectiveness of the multiobjective genetic algorithm for crystal
structure prediction. For all other remaining targets, the
coordination number error reductions of the cation are
between 0 and 4. Moreover, except for the target materials
V4Sg and NigO;,, the RMSDs of Wyckoff position coordinates
of other materials predicted by the multiobjective genetic
algorithm are less than CMCrystal. In terms of MAE, except
for the target materials V,Sg, NigOy,, and LiFe,Fs the
RMSDs of Wyckoff position coordinates of other materials
predicted by the multiobjective genetic algorithm are less than
CMCrystal.

Figure 4 shows for three sets of predicted and target crystal
structures of Pd,I; V,S, and Cu,As,S,, the contact map
accuracy all reaches 100%, the coordination number errors of
the cation are all 0, and the predicted structures are very close
to the target structures.

Additionally, we relaxed the predicted structures using DFT
based on the Vienna ab initio simulation package (VASP). 374
The plane-wave cutoff energy of 400 eV was considered with
the projected augmented wave (PAW) pseudopotentials.””**
The generalized gradient approximation (GGA)-based ex-
change-correlation functional was employed by using the
Perdew—Burke—Ernzerhof (PBE) method.”*® The energy
convergence criterion was 107° eV, while the force
convergence criterion was 107> eV/A. The I'-centered
Monkhorst—Pack k-meshes were used for the Brillouin zone
integration.

After the DFT optimization, the formation energies of the
predicted structures Pd,Ig, V,S,, and Cu,As,S, are —0.018,
—0.885, and —0.092 eV, respectively.

4. DISCUSSION

Compared to our previous contact-map-based crystal structure
prediction algorithm CMCrystal, our multiobjective genetic
algorithm CMCrystalMOO takes the contact map, coordina-
tion number of the cations, and ages of individuals as the
optimization targets, searches for Wyckoff positions, and
achieves successful predictions of a set of crystals with high
contact map accuracy, low coordination error, and low RMSD
and MAE errors between the predicted Wyckoff positions and
the true Wyckoff positions. However, our evaluations on a
large set of target structures show that our algorithm still faces

https://doi.org/10.1021/acs.jpca.1c07170
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Table 2. Prediction Performance Comparison of CMCrystal and the Multiobjective Genetic Algorithm

CMCrystal multiobjective GA (CMCrystalMOO)
contact map coordination contact map coordination coordination error
target accuracy error RMSD MAE accuracy error RMSD MAE reduction
V,S, 1.0 0 0243  0.167 1.0 0 0222 0.183 0
Zn,0, 0.889 4 0210  0.163 0.889 2 0.186  0.123 2
Pd,Ig 1.0 4 0.185 0.162 1.0 0 0.136  0.110 4
VeSg 0.865 2 0.255 0.148 0.865 2 0.331 0.229 0
NigO,, 0.933 N 0.167  0.126 1.0 1 0209  0.161 4
AsgOy, 0.8 3 0216  0.169 0.88 0 0212 0.159 3
Ce,As,04 0.833 3 0.298  0.216 0.9 2 0227  0.184 1
CuyAs,S, 0.909 2 0.221 0.148 1.0 0 0.208 0.142 2
V,Si,Nyg 1.0 6 0318  0.275 1.0 3 0.060  0.050 3
Li,Fe,F 4 0.917 12 0.285 0.227 0.957 0 0.268 0.233 12
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Figure 4. Experimental results of multiobjective genetic algorithm for crystal structure prediction.

difficulties for some types of structures. So, in addition to the
coordination numbers, other physical constraints such as the
polyhedron motifs and angle distributions can also be utilized
in future work following the physics-informed machine
learning paradigm.

In current experiments, we used the true contact maps,
coordination numbers of the cations, space groups, and others
of the real crystal structures in our crystal structure
reconstruction procedure. However, in real situations, the
contact map, coordination number of the cation, space group,
and others are all predicted for a given composition or material
formula, which themselves may contain some errors. This may
affect the performance of our structure reconstruction
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algorithm. There are many factors that determine the
coordination number of cations, such as the number of period,
electric charge, and so on. In many cases, the radius ratio plays
an important role. At present, the space group51’52 and lattice
constants®>* of crystal structures can be predicted, and the
contact map of a given composition can also be predicted by
the deep learning method.”* With the development of machine
learning algorithms, we expect that the various inputs required
by our multiobjective genetic algorithm for crystal structure
reconstruction can be predicted with high precision, so as to
allow our CMCrystalMOO to achieve a high-quality crystal
structure prediction with only a given composition. We also
find that it is imperative to develop large-scale benchmark data
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sets for the crystal structure prediction community to promote
the related research.

5. CONCLUSION

Improving the scalability of crystal structure prediciton
algorithms remains one of the major unsolved problems to
make these methods applicable to more complex structures
such as ternary materials. We previously proposed CMCrystal,
a contact-map-based crystal structure prediction method,
which uses global optimization algorithms such as GA and
PSO to search for the Wyckoff positions by maximizing the
match between the contact map of the candidate structure and
the contact map of the true crystal structure. Our results
proved that the geometric constraints in the crystal structure
greatly facilitate the reconstruction of the crystal structure.
However, our CMCrystal algorithm only uses the connections
of the atoms in the unit cell to predict the crystal structure,
ignoring the chemical environment outside the unit cell, which
may form unreasonable coordination environments. To
address this issue and the premature convergence/local optima
issue of genetic algorithm, we propose a multiobjective genetic
algorithm for contact map base crystal structure reconstruc-
tion. We added the optimization goal of the coordination
numbers of the cations to the CMCrystal algorithm. In order
to improve the performance of the optimization process of GA,
we take the ages of the individuals in the genetic algorithm as
an explicit optimization target. Together, we built a multi-
objective crystal structure prediction algorithm based on the
contact map, coordination number of the cation, and ages of
the individuals.

We use the contact map accuracy, coordination number
error of the cations, root-mean-square distance (RMSD), and
the mean absolute error (MAE) between the predicted
Wyckoff positions of the crystal structure and those of the
real structure to evaluate the quality of the reconstructed
crystal structures by our CMCrysalMOO algorithm. Exper-
imental results show that comapred to CMCrystal, our
multiobjective crystal structure prediction algorithm can
reconstruct the crystal structure with higher quality and can
alleviate the problem of premature convergence.
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