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ABSTRACT: Performing first-principles calculations to discover
electrodes’ properties in the large chemical space is a challenging
task. While machine learning (ML) has been applied to effectively
accelerate those discoveries, most of the applied methods ignore the
materials’ spatial information and only use predefined features:
based only on chemical compositions. We propose two attention-
based graph convolutional neural network techniques to learn the
average voltage of electrodes. Our proposed methods, which
combine both atomic composition and atomic coordinates in 3D-
space, improve the accuracy in voltage prediction significantly when
compared to composition-based ML models. The first model
directly learns the chemical reaction of electrodes and metal ions to
predict their average voltage, whereas the second model combines
electrodes’ ML predicted formation energy (Eform) to compute their average voltage. Our Eform-based model demonstrates improved
accuracy in transferability from our subset of learned Li ions to Na ions. Moreover, we predicted the theoretical voltage of 10
NaxMPO4F (M = Ti, Cr, Fe, Cu, Mn, Co, and Ni) fluorophosphate battery frameworks, which are unavailable in the Material Project
database. It could be shown that we can expect average voltages higher than 3.1 V from those Na battery frameworks except from the
NaTiPO4F and TiPO4F pair of electrodes, which offer an average voltage of 1.32 V.
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1. INTRODUCTION

Batteries are the dominant source of energy for diverse
applications and the main workhorse for portable elec-
tronics.1,2 Common examples where batteries are increasingly
adopted are electric vehicles and grid energy storage.3,4 Besides
their wide use, there are still big interests in improving these
batteries’ performance for more improved reliability in devices
demanding large energy density. But to develop next-
generation batteries, accurate and efficient exploration of
large chemical space is necessary, and predicting their
performance represents the first step toward this goal.
Traditionally, the exploration of these batteries’ or electrodes’
properties was done by using time-consuming physics-based
simulations5 and/or by using resource-intensive experiments.6

Mainly, examining each material in the large chemical space
while searching for robust electrodes imposes great difficulties
with these traditional methods. Hence, machine learning (ML)
has been used as an alternative for their impressive
performance and are increasingly adopted in the battery
community for predicting the performance metrics of battery
components including intercalation potentials or voltage.2,7−14

Recently, multiple ML-based approaches to predict the
voltage of electrodes materials have been used.8,15,16 Such
approaches include models based on ML potentials and also
other simple deep neural network, which are the most accurate.
ML-potential-based models are trained to learn the potential
energy surface of solids by using data from physics-based
simulations.8 Though promising, the accuracy of these ML
potentials is limited to particular types of materials with
specific atomic compositions and have weak transferability.
Another important limitation to these ML potentials is that
generating the data set for their model from density functional
theory (DFT), for each composition space, is extremely
challenging. For instance, Viswanathan and Houchins adapted
ML potentials to predict voltage, only for C-based electrodes,
using a relatively small DFT based data set.8 While the
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accuracy of Viswanathan’s model compares to that of DFT
simulations for Li-graphite-based electrodes, its transferability
to Na-graphite or K-graphite is impractical. This impractic-
ability results from the fact that the Li-graphite-specific ML
potentials model performs poorly on other types of electrodes.
Because such data do not exist for each material for other
metal-ion batteries, ML models that will work well with diverse
metal-ion batteries and transfer equally well are necessary.
For other models including the deep neural network, ML

models are trained on nearly 5000 electrodes materials from
the materials project database with density functional theory
calculated voltage as target.15,16 Nonetheless, these models
have poorer predictive ability than other ML models used for
properties of solids.17 This poor performance can be attributed
to both the small size of the data set and chemical diversity
within such a small data set for the different metal-ion
batteries. Also, more advanced ML methods, such as graph-
based ML approaches, had not been applied yet in the domain
of electrode materials. The majority of existing literature
mostly employs predefined calculated features as input
information for the materials. Solely relying on these
precalculated atomic composition features implies that the
model ignores any 3D structural environment information
within the materials and thus misses the key attributes used in
reference physics-based simulations.15,16 However, we antici-
pate that combining both chemical composition and some 3D
structural information inside of a more complex deep learning
method may lead to a significantly more accurate voltage
prediction, as it has been shown for other crystals’ properties
predictions.17−19

In this work, we adapt a graph-convolutional neural network
that learns the robust representation of electrode materials
from the atom types and corresponding 3D coordinates only.
We show that our method provides gradual improvement upon
existing work. Our proposed method shows great trans-
ferability to new metal-ion battery chemistry as it outperforms
all related published works on voltage prediction. Our voltage
prediction solution includes two techniques. The first consists
of a model that learns the chemical reaction of input electrodes
and outputs their average voltage. The other technique
involves using a trained model that predicts Eform of individual
electrodes. These electrodes’ Eform are subsequently used
within our derived formula to output the voltage prediction.
Comparing our performance to those found in the literature,
we show that calculating the voltage from formation energy of
electrodes is an ideal way to predict voltage in the scenario
where there are limited data to train ML models for
intercalation reactions.

2. METHODS
2.1. Data. DFT computed voltages and structures of electrodes

materials for 4402 battery systems were collected from the Material
Project (MP) database using Pymatgen Materials Genomes
(pymatgen).20 The distribution of the data set, which consists of 10
different metal ion (Cs, Y, Zn, Ca, Li, Mg, Na, K, Al, and Rb)
batteries, is shown in Figure 1.21 Because of its high popularity as a
charge carrier, Li (2291) has the highest number of battery systems.
The other battery frameworks include Ca-based systems (484), Mg
(393), Na (328), Zn (385), Rb (50), and Cs (39)-based electrodes.
These electrode distributions are displayed in Figure 1.
To develop the two proposed methods below described, we use the

previously mentioned data set of 4402 electrodes for the chemical
reaction-based model and another data set of about 60000 materials

downloaded from the MP database for Eform-based model.22 The two
data sets are mutually exclusive of their materials.

2.2. Voltage. Understanding the chemical reaction of an
intercalation battery framework is essential to learn the voltage of
the corresponding system. As an example, the intercalation reaction of
the hypothetical layered material A x1

BαCβDγ and A ions to form A x2

BαCβDγ can be represented as follows:

γ γ+ − + − ↔α β α β
+ −x x z x xA B C D ( )A ( )e A B C Dx

z
x2 1 2 11 2

(1)

The electrode on the left-hand side, which reacts with the cation,
exhibits a higher potential than the electrode on the right-hand side.
Thus, we label the left-hand and right-hand side electrodes as high-
potential and low-potential electrodes, respectively. To calculate the
voltage in DFT, we estimate the Gibbs free energy of individual
electrodes defined as G = ΔE + PΔV′ − TΔS, where ΔE is the
internal energy change, P is the pressure, ΔV′ is the volume change, T
is the temperature, and ΔS is the entropy difference of the system.
However, PΔV′ ≈ 10−5 eV and TΔS ≈ 25 meV at room temperature.
Therefore, by neglecting those two terms, we can calculate the voltage
(V) by only considering the internal energy change as shown in eq 2.
Here, the terms η[ ] =E i( 1, 2)xi

are the total energy of the chemical

formula (η) with x1 and x2 contents of the ion (A), and z is the
valency of the intercalating metal ion. For instance, η =x1

A x1
BαCβDγ

and η =x2
A x2

BαCβDγ for the chemical reaction of eq 1. For the ions

mentioned in Figure 1, z = 1 for Li, Na, K, Rb, and Cs, z = 2 for Ca,
Mg, and Zn, and z = 3 for Al and Y.

η η≈
−

[ ] − [ ] + −V
z x x e

E E x x E
1

( )
( ( ) (A))x x

2 1
2 11 2 (2)

η α β γ= [ ] − − − −E E x E E E E(A) (B) (C) (D)xform 1xi i (3)

The Eform per unit formula of A x1
BαCβDγ electrode is given by eq 3,

where E(A), E(B), E(C), and E(D) represent the energy of each atom
in their bulk phase. By computing the difference between formation
energies of high and low electrodes, we can show that voltage can be
determined using eq 4.

≈
−

−V
z x x e

E E
1

( )
( )

2 1
form formx x1 2 (4)

However, we can calculate the voltage in two different ways with ML:
(I) by training the ML models directly to learn the voltage and (II) by
training ML models to learn the formation energy of involved high-
and low-potential electrodes. We compare the performance of the
model trained on each case. In the first method, the structures
corresponding to high- and low-potential electrodes for an

Figure 1. Distribution of the numbers of battery frameworks collected
from the MP database for each metal ion.
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intercalation reaction are used simultaneously (hence labeled
reaction-based model). In contrast, for the second method, the
structure of each compound is input separately to first learn the
formation energy (labeled Eform-based model). Once the formation
energy is predicted, the corresponding voltage can then be calculated
by using eq 4.
2.3. Graph Neural Network Architecture. Graph neural

networks (GNN) are deep neural networks that have been applied
to effectively learn latent features from network or graph data.23 Our
models are based on a subset of these GNNs that adapt the technique
of the attention mechanism to GNN.24−26 Particularly, we adapt the
technique of GATGNN introduced by Louis et al.27 for this study.
The input to our GATGNN adapted models is materials encoded

as a graph with nodes representing atoms and edges representing
those nodes connections. We encode a material as a graph where each
node (atom) connects with the 16 nearest nodes (atoms). Each atom
type is then attributed a 92-dimensional vector, and each edge’s
distance is also encoded as a 41-dimensional vector.27

Compared to other GNN applied in the domain of materials,
GATGNN learns each atom’s contribution both locally (within a local
atomic space) and globally (with respect to all atoms in the
material).17,18,28,29 The overall architecture of the GATGNN model is
shown in Figure 2. GATGNN first efficiently captures the atoms’ local
importance through its augmented graph attention layers (AGAT)
and then a global attention.

In our research, we adapt the proposed GATGNN to construct our
models for learning voltage from materials. For the local attention, our
model consist of four AGAT layers of four attention heads, each
consisting of 64 neurons. The local soft-attention αi,j between a node i
and a neighbor j can be represented as

α =
∑ ∈

a

a

exp( )

exp( )i j
i j

k N i k
,

,

,i (5)

where Ni denotes the neighborhood of node i and ai,j is the
parametrized weight coefficient between nodes i and j, which denotes
the importance of node j to node i in eq 5.

Upon learning the local importance of the atoms, we subsequently
use a single fully connected layer to learn this global attention value.
In our study, the two inputs needed for the global attention layer are
an atom’s embedding and a material’s compositional vector.27 The
global attention gi can be described as follows:

=
·

∑ ·∈
g

x E W
x E W

( )
( )i

i

x cXc (6)

∈ x F denotes a learned embedding, E denotes a compositional

vector of the crystal, ∈ × +| |W F E1 ( ) denotes a parametrized matrix,
and xc denotes the learned embedding of any atom c within the crystal
in eq 6.

We implement all the components in our proposed approach using
deep learning libraries of Pytorch and the library of Pytorch-
Geometric.30,31 The same SmoothL1 loss function is used to train
both models.32

2.4. Chemical-Reaction-Based Voltage Predictor. Because of
their recent advances, ML models have been increasingly adopted for
learning the properties of chemical reactions of molecules.33,34 These
models, however, have not been used for reactions involving crystals.
Hence, we developed a GNN model that considers the chemical
reaction of electrodes and metal ions as the input. Our proposed
model is based on the previously existing GATGNN method. Mainly,
our reaction-based model consists of two modified GATGNN
(GATGNNR) modules arranged in parallel, which are both followed
by series of hidden fully connected layers. Figure 3 illustrates the
framework of our proposed model.

To start, a low and a high electrode are input into the low/high
dedicated GATGNNR module which learn from their corresponding
electrodes. Following the graph convolutions, the output of both
blocks or modules is then concatenated into a 128-dimensional vector
to be fed to two fully connected layers. The final predicted average
voltage is calculated by learning the chemical interaction of the two
electrodes.

Hyperparameters were optimized for all the models used in this
work. We train the model for 500 epochs with early stopping using a
learning rate of 1 × 10−3, a weight decay of 5 × 10−3, and a batch size
of 128.

2.5. Formation Energy-Based Voltage Predictor. Our
proposed Eform-based model is based on an optimized pretrained
model of a GATGNN of four layers 128 neurons with four attention
heads to model crystals to their Eform. As illustrated in Figure 4, the
proposed method consists of one GATGNN which independently
outputs the Eform for the low- and high-potential electrodes. This
optimized Eform-based GATGNN model was trained for 300 epochs
early stopping by using a learning rate of 1 × 10−3, a weight decay of 5
× 10−3, and a batch size of 64. For the data set, we split the data into
three sets: with 85% used for training, 7.5% for testing, and 7.5% for
validation. Following the prediction of the electrodes’ Eform, their
average voltage is subsequently obtained by using eq 4.

2.6. Experiments. To assess the validity of our proposed method,
we conducted two different experiments. In the first experiment, we
do a 10-fold cross-validation as done in the works by Moses et al.16 In
the second experiment, we apply the holdout test with a data split of
85% used for training, 7.5% for testing, and 7.5% for validation.
Notably, we use the first experiment to compare the performance of
our proposed method to other voltage works that only use
composition. In contrast, we use the second experiment to compare
the performance of using the reaction-based model to the Eform-based
model.

3. RESULTS AND DISCUSSION

To evaluate the performance of the models, we used the metric
of mean absolute error (MAE) defined in the equation

Figure 2. An overview of the GATGNN architecture.
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∑= | − |
=N

V VMAE
1

i

N

i i
1

DFT ML

(7)

where Vi
DFT represents the voltage computed from DFT, Vi

ML

the machine learning predicted voltage, i a given battery
sample, and N the total number of samples in a data set. Table

1 displays the cross-validation results obtained from our first
experiment and the reported results from the composition-
based experiments.16 Whereas the data splits may be different,
the folds were obtained from the same electrodes data set.
Based on the listed MAE values, our proposed reaction-based
model outperforms the composition-based model by more

Figure 3. Architecture of our reaction-based average voltage model. The top panel shows the underlying GATGNN modules used in the work.

Figure 4. Architecture of Eform-based average voltage model.

Table 1. MAE Results for the 10-Fold Cross-Validation Study Comparing Our Proposed Reaction-Based Model to the Other
Method’s Composition-Based Model (Average MAE and Std Listed in the Last Column)

model 1 2 3 4 5 6 7 8 9 10 avg and std

reaction-based 0.34 0.34 0.35 0.32 0.35 0.36 0.39 0.33 0.34 0.31 0.34 ± 0.02
composition-based16 0.42 0.39 0.38 0.38 0.43 0.39 0.38 0.39 0.39 0.37 0.39 ± 0.02
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than 13.6%. Our reaction-based model achieved an overall
average MAE of 0.34 with 0.02 standard deviation whereas the
composition-based mode did 0.39 with the variance. From the
results, we can conclude that our proposed method
considerably benefits from the additional structural informa-
tion and the learned reaction of the two electrodes.
In our second experiment, the testing set consisted of 329

battery systems comprised of 177 Li, 35 Ca, 3 Cs, 7 Rb, 11 K,
10 Y, 20 Na, 11 Al, 29 Zn, and 26 Mg battery systems. To
prevent data leakage, we made sure to remove all electrodes
from the 60000 size data set used to pretrain the Eform-based
model. The same testing set aforementioned is used for
evaluating our Eform-based approach. Figure 5 reports the

corresponding MAE and the parity plot comparing the DFT
and ML voltage for both the reaction-based and the Eform-
based models from the second experiment. As it can be seen,
both reaction-based (in red) and Eform-based (in blue) models
achieve good performance with a MAE of 0.34 and 0.31. Even
though the models used in our two different proposed
methods are trained by using significantly different training
sets, both in terms of size (60000 vs 4402) and data
(electrodes vs nonelectrodes), it is noteworthy to observe
that they both achieve significantly lower MAE performance
than the initially proposed composition-based model.16 The
holdout test experiment resulted in a MAE value of 0.315 for
the Eform-based model and 0.344 for reaction-based model.
While the MAE obtained from Eform-based model is about 8%
lower than the reaction-based approach, this improvement
comes at the cost of using more than 13 times more training
samples (see Figure 5). Nonetheless, the Eform-based model
does not learn directly from the battery electrodes. Therefore,
we suggest that neither method is superior to the other, but
instead they are alternatives. In situations where there is a lack
of battery electrodes, the Eform-based method can be a good
way to study the voltages of intercalation reactions.
To examine the transferability of our models, we evaluated

our model’s performance at predicting the voltage in Na- and
K-ion-based electrodes. For this, we replaced the Li ions in
known Li electrodes structures from the MP database with Na
and K ions. For such structures, geometry optimization was
not performed to calculate the voltage from our ML models.
This approach allows us to examine the effect of geometry
optimization on the performance of our models while
predicting the voltage. Our approach is motivated by
benchmark ML models used for molecules, which have

achieved chemical accuracy with empirically obtained 3D
coordinates from SMILES strings of molecules.35

From the MP database, we extracted only the DFT voltage
of those Na- and K-ion-based electrodes, which share the same
structure (symmetry, space groups) as the corresponding Li-
based electrodes. As listed in Table 2, the Na ion shares a

relatively large amount of Li electrode structures (127), while
K-ion electrodes have only 32. We replaced Li in those Li-
based electrodes with Na and K ions and calculated the voltage
using our ML models. We compared such voltage for Na- and
K-based electrodes with the corresponding DFT voltage taken
from the MP database (see Figure 6).

From these examinations, we obtained a somewhat large
MAE of 0.56 V from the reaction-based model. For the K-ion
battery electrodes, we obtained moderately large errors from
both reaction-based and formation-energy-based models. We
found that formation-energy-based models are more accurate
at predicting voltage for a K-ion battery with a MAE of 0.70 V.
The atomic radius difference between K and Li atoms is larger
than that between Na and Li atoms. Therefore, the electrodes
where Li was replaced by K exhibit more significant error
compared to that from Na counterparts, when we predict the
voltage without optimizing the atomic positions and the
geometry as above. Although first-principles calculations
always require geometry and cell parameter optimization
before calculating voltage, our proposed Eform-based approach
is capable of predicting the voltage of Na battery frameworks
without the optimization procedure.

Figure 5. Parity plot comparing the DFT (DFT-Voltage) to the ML
(ML-Voltage) voltage for (a) the reaction-based and (b) Eform-based
models.

Table 2. Number of Na and K Battery Frameworks That
Share the Same Structures of Li Frameworks (Test Set Size)
and the MAE Values in V for Predicting Voltage of the
Battery Systems, Where Li Ions Were Substituted by Those
Alkali Ions

MAE (GATGNN)

alkali ion test set size reaction-based Eform-based

Na 127 0.56 0.47
K 32 0.87 0.70

Figure 6. Performance of reaction-based and Eform-based models to
predict the voltage of Na- and K-ion-based electrodes.
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To further study the accuracy in predicting the voltage of the
battery frameworks where Na substituted Li, we compared the
predicted voltage from our Eform-based model (VGATGNN) to
the DFT calculations (VDFT) reported by Moses et al.,16 as
shown in Table 3. In works done by Moses et al.,16 the authors
screened the MP database to find Na-ion battery electrodes
with high voltage and minimal volume change during the
charging and discharging using only the composition of
electrode materials. We find that 18 battery frameworks of
their data set are in our list of new Na electrodes and listed in
Table 2. We also compared our predictions with the voltage
predicted with simple deep neural network from their research
referenced as VDNN.

16 In Table 3, |ΔVGATGNN| is the absolute
difference between VDFT and VGATGNN, while |ΔVDNN| is that
between VDFT and VDNN. It is clear that the error from our
model (|ΔVGATGNN|, 0.34 V) is considerably smaller than
|ΔVDNN| (0.89 V). We also found that the composition-based
model (VDNN) predicts a large positive voltage of 2.85 V for
the NaV2O4 and Na2VO2 electrode pair, whereas our model
was able to correctly predict the negative voltage of −0.21 V,
which is close to the DFT predicted value of −0.35 V. This
shows that our approach can more accurately represent the
energetics of electrode materials compared to traditional
composition-only-based models.
Another data set that we considered was published by Ong

et al.36 to study the voltages of Li- and Na-ion intercalation
materials listed in Table 4. In ref 36, DFT calculations of
NaMPO4 (M = Fe, Mn, Co, and Ni) materials with Olivine
and Maricite structures were performed. Those two classes of
materials have Pnma space group symmetry. Even though both
have similar structures, Na and M atoms switch their sites in
the two material types (i.e., in maricite structures, Na is at M’s
site and M is at Na’s site of olivine structure). However, the
DFT calculations in Table. 4 show that both structures exhibit
the similar theoretical voltages for a given compound. It is clear

that the Eform-based model predicted voltages provide a good
accuracy (MAE = 0.23 V).
Finally, we predicted the voltages of new Na electrode

materials with the (PO4)
3− polyanion group. These are an

interesting class of materials as inductive effects of (PO4)3−,
(P2O7)

4−, and (SO4)2− polyanions offer high operating
voltage. As an example, DFT calculations of NaxMnM′(PO4)3
(M′ = Cr, Ti, and Zr) show that an average voltage around 4 V
can be obtained. Na3V2(PO4)2F3 fluorophosphate has a
theoretical voltage of 3.9 V. Thus, (PO4)

3−-based electrodes
are popular as high-density cathode materials for Na-ion
batteries.37 Na3(MPO4)2F3 (M = Al, V, Fe, Cr, and Ga) and
AVPO4F (A = Na and Li) have been widely studied as the
cathode materials for Li and Na batteries.38,39 Table 5 contains
predicted voltages for 10 fluorophosphate materials, which are
not included in the MP database. The NaTiPO4F and TiPO4F
pair of electrodes provides a considerably lower voltage than
that of the same family of electrodes with the other transition
metal atoms. Ti-based compounds have been widely

Table 3. Comparison of the Voltages Calculated Using DFT (VDFT) and That Predicted by the Eform-Based Model (VGATGNN)
a

formula-high formula-low VDFT VGATGNN VDNN |ΔVGATGNN| |ΔVDNN|

NaMn3OF8 Na4Mn3OF8 3.15 3.42 3.20 0.27 0.05
NaCuF4 Na2CuF4 4.31 4.56 4.01 0.25 0.30
Na2CrO4 Na4CrO4 1.46 1.27 3.07 0.19 1.61
TiCrO4 Na2TiCrO4 1.54 2.28 3.31 0.74 1.77
Mn3P6WO24 Na6Mn3P6WO24 3.47 3.54 3.50 0.07 0.03
CrWO6 Na2CrWO6 3.75 3.41 3.10 0.34 0.65
NaVTe(WO6)2 Na4VTe(WO6)2 2.90 2.78 3.20 0.12 0.30
NaV2O4 Na2VO2 −0.35 −0.21 2.85 0.14 3.20
CrPO4F Na3Cr2P2(O4F)2 3.26 3.13 3.75 0.13 0.49
NbO2F NaNbO2F 1.36 1.81 3.31 0.45 1.95
NaTiV3O10 Na4TiV3O10 2.47 2.32 3.00 0.16 0.53
Mn2CrO6 Na3Mn2CrO6 2.73 2.73 2.95 0.00 0.22
NaMn(PO4)2 Na3Mn(PO4)2 4.32 4.47 3.28 0.15 1.04
VF5 Na2VF5 4.01 4.32 3.61 0.31 0.40
NaNbTe2WO12 Na4NbTe2WO12 3.10 3.14 3.25 0.04 0.15
CrWO6 Na2CrWO6 3.75 3.41 3.10 0.34 0.65
NaSbF6 Na3SbF6 2.07 3.05 3.79 0.98 1.72
NaNbF6 Na3NbF6 3.31 1.85 2.26 1.46 1.05

MAE 0.34 0.89
aThe DFT calculations were performed by Moses et al.16 after optimizing the electrodes where Li ions were replaced by Na. Our VGATGNN values
were predicted without relaxing the structures. We also provide the voltages for respective electrodes predicted by the composition-based DNN
model (VDNN).

16 |ΔVGATGNN| is the absolute difference between VDFT and VGATGNN, while |ΔVDNN| is the absolute difference between VDFT and
VDNN. The voltage values and absolute voltage differences were calculated in V.

Table 4. Comparison of the Voltages Calculated by Ong et
al. (VDFT)

36 and That Predicted by the Eform-Based Model
(VGATGNN)

a

material structure VDFT VGATGNN |ΔVGATGNN|

NaFePO4 olivine 3.08 3.36 0.28
NaMnPO4 olivine 3.59 3.85 0.26
NaCoPO4 olivine 4.19 3.71 0.48
NaFePO4 maricite 3.13 3.04 0.09
NaMnPO4 maricite 3.48 3.71 0.23
NaCoPO4 maricite 4.09 4.05 0.04

MAE 0.23
a|ΔVGATGNN| is the absolute difference between VDFT and VGATGNN.
Here, the DFT calculations were performed after optimizing the
electrodes where Li ions were replaced by Na. Our VGATGNN values
were predicted without relaxing the structures. The voltage values and
absolute voltage differences were calculated in V.
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investigated as anode materials for Na-battery electrodes due
to low operating voltages and stability.40 It is reported that
NaTiO2 (1.37 V) electrode has a low theoretical voltage, even
though Ni- and Co-based counterparts have voltages higher
than 3.3 V.36 The battery framework with the NaCuPO4F and
CuPO4F pair of electrodes shows the highest voltage, which is
5.52 V, in Table 5. All the other battery systems in Table 5
exhibit theoretical voltages between 3.1 and 4.5 V.

4. CONCLUSION
In summary, we developed two attention-based graph neural
networks that combine the chemical compositions with the
spatial information to predict the voltage of the battery
electrode materials. The first method predicts the voltage by
considering the chemical reaction between a high-potential
electrode and the metal ions to form a low-potential electrode.
The second model predicts the Eform of individual electrodes
before being used to compute the voltage. Results were
compared with the latest composition based model (Moses et
al.16) from the literature for predicting voltage. Our structure-
based models are much more accurate than this benchmark
work. Our Eform-based model consistently provides lower MAE
compared to that from reaction-based model. And also, we
show that relative to known models in the literature, our Eform-
based model demonstrates high transferability of performance
when applied to Na electrodes. Furthermore, we predicted the
average voltages of 10 fluorophosphate-based battery frame-
works, which are not included in the MP database for Na
batteries. Those fluorophosphates have the NaxMPO4F (M =
Ti, Cr, Fe, Cu, Mn, Co, and Ni) general chemical formula. We
could show that it can expect average voltages greater than 3.1
V from those Na battery frameworks except from the
NaTiPO4F and TiPO4F pair of electrodes, where it exhibits
an average voltage of 1.32 V.
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