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ABSTRACT: Fast and accurate crystal structure prediction (CSP)

algorithms and web servers are highly desirable for the exploration
and discovery of new materials out of the infinite chemical design S
space. However, currently, the computationally expensive first- EIMD l Oxidation

principles calculation-based CSP algorithms are applicable to
relatively small systems and are out of reach of most materials

researchers. Several teams have used an element substitution Templates

approach for generating or predicting new structures, but usually in ‘ l
an ad hoc way. Here we develop a template-based crystal structure DFT
prediction (TCSP) algorithm and its companion web server, which | ' ( C |) Relaxation
makes this tool accessible to all materials researchers. Our N ) |

algorithm uses elemental/chemical similarity and oxidation states

to guide the selection of template structures and then rank them based on the substitution compatibility and can return multiple
predictions with ranking scores in a few minutes. A benchmark study on the 98290 formulas of the Materials Project database using
leave-one-out evaluation shows that our algorithm can achieve high accuracy (for 1314S target structures, TCSP predicted their
structures with root-mean-square deviation < 0.1) for a large portion of the formulas. We have also used TCSP to discover new
materials of the Ga—B—N system, showing its potential for high-throughput materials discovery. Our user-friendly web app TCSP
can be accessed freely at www.materialsatlas.org/crystalstructure on our MaterialsAtlas.org web app platform.

1. INTRODUCTION work,"" Hautier et al. proposed a data-mining-based approach
to identify the probabilities for different pairs of ionic

Crystal structure prediction (CSP) is increasingly becoming
substitutions, which can be applied to any prototype structures

one of the most effective approaches for the discovery of new

functional materials’ because of the ease to obtain new to generate new structures or used to select templates for
compositions by either enumeration,” heuristic knowledge, or template-based crystal structure prediction (TCSP). The
the latest deep-learning-based generative machine learning difference of our algorithm from this substitution method is
models.” While the peer protein structure prediction problem that their algorithm uses learned element substitution pairs to
has recently been almost solved by the deep-learning-based find formulas with existing structures that can be used as
AlphaFold and RossettaFold algorithms, the CSP problem templates, without considering the overall composition
remains elusive for a majority of categories of compositions. similarity and oxidation state compatibility. Despite the wide

There are mainly three types of CSP approaches including the
ab initio based global optimization’ " as reviewed in ref 9,
machine-learning-based prediction,”'’ and template-based
elemental substitution.'' The first approach instead depends
on computationally expensive density functional theory (DFT)
calculations and is applicable to only small chemical systems.
The second approach is inspired by the AlphaFold family of
deep-learning algorithms'>' but is only at the early stage of Received: December 13, 2021 norgaric sty
development. The last template-based CSP methods are the Published: April 14, 2022
most widely used and easiest to implement. Even though this
method cannot predict crystal structures of new prototypes,
recent deep generative models can discover new prototype
materials that can partially address this issue.'* In a pioneering

usage of TCSP methods, there are many different ways to
implement, and there is no working web app/server that is
user-friendly enough to make it accessible to all materials
scientists (the structure predictor of the Materials Project™
web site was previously available, but it is not functional now).
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Here we propose a fast and user-friendly TCSP algorithm
and related companion web server for broad adoption of CSP
in the daily life of materials science. Our algorithm TCSP is
based on the careful selection of template structures based on
chemical formula similarity and the matching of oxidation
states using an exhaustive enumeration strategy. Our predicted
structures can be optimized by DFT or machine-learning-
based structure relaxation. By using seven case studies, we have
shown that our user-friendly and fast CSP web server has a
high prediction performance when appropriate templates are
available. We also apply our TCSP algorithm to predict the
structures of all 98290 formulas using leave-one-out evaluation
and have achieved good performances for a large portion of the
targets: more than 13145 target structures have been found
with maximum root-mean-square distances of less than 0.1.
The good performance of this high-throughput CSP shows
that the template/prototype-based element substitution CSP
approach has big potential in exploratory materials discovery.
With the development of large-scale prototype databases'®'’
and their applications in the generative design of new
crystals,'®"? the performance of our TCSP algorithm can be
further improved.

2. METHOD

2.1. TCSP Algorithm. Our TCSP method is inspired by
the fact that all known crystal structures, as deposited in ICSD
and Materials Project databases, actually belong to a limited
catalog of crystal structure prototypes,'®***" each correspond-
ing to one or more different compositions. This is because
some ionic species substitutions for each other within these
prototypes can retain the crystal structure, e.g, keeping the
crystal symmetry/space group unchanged with minor adjust-
ments of the unit cell constants or Wyckoff coordinates. The
substitution patterns have been discovered using heuristics™
and data-mining probabilistic models."" This general element
substitution strategy has been used to find a variety of new
compounds.”"*¥**

Our TCSP algorithm is illustrated in Figure 1. Given an
input formula (e.g.,, SrTiOj;), the user can choose to specify the
expected space group number for predicted structures, which
can be predicted by algorithms*>*® or without constraining the
space group. We then search structure templates with the same
prototype (sometimes called an anonymous formula, e.g,
ABC;) and the same space group if specified. This step may
retrieve too many matched templates, so we use Module Al,
an Element’s mover distance, to measure the composition
similarity between the query formula and compositions of all of
the template structures, which are then ranked by ascending
order. We then pick the top K structures as template
candidates with the smallest composition distances. For each
of the candidate templates, we use the Pymatgen package to
estimate its oxidation states and compare them to those of the
query formula. If we find templates with identical oxidation
states, we then add them to the final template list. If no such
templates are found, we then neglect the oxidation match
requirements and directly add them as final templates. The
next step is to determine all of the possible element
substitution pairs between the query and template formulas
using the algorithm described in Algorithm 2. To further
reduce the redundant template structures, we use the
Pymatgen’s StructureMatcher module to detect redundant
(too similar) structure templates and keep only one for each
such cluster, which can significantly remove duplicate similar
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Figure 1. Flowchart of our TCSP. The space group specification is
optional.

structure templates. Next, we will pick the template structure
files and replace the elements according to the pair
arrangements found by Algorithm 2. A replacement quality
score is also calculated for each such element substitution
arrangement using the procedure as described in Module 3.
The resulting structures will then be subjected to DFT or
machine-learning-based structure relaxation, which can be
further used to calculate the formation energy, e-above-hull
energy, and phonon dispersion for validation.

Module Al: Element Mover’s Distance for Formula
Similarity Calculation. We use the Element’s Mover Distance
measure EIMD”” to select the most similar template structures.
EIMD is a metric that allows measurement of the chemical
similarity of two formulas in an explainable fashion. The EIMD
is computed between two compositions from the ratio of each
of the elements and the absolute distance between the
elements on the modified Pettifor scale p (several other
element similarities can also be used such as Mendeleev, Petti,
Atomic, Mod_petti, Oliynyk, Oliynyk sc, Jarvis, Jvarvis_sc,
magpie,magpie_sc, CGCNN, Elemnet, mat2vec, Matscholar,
megnetl6, random). This metric shows clear strength in
distinguishing compounds. It is shown that the EIMD distances
have greater alignment with chemical understanding than the
Euclidean distances. The EIMD is defined in formula (1).

EIMD(X, Y)

min Z Z qijlpl_ - }yl, subject to 9,

i=1 j=1

[\

Ofor Vi, j (1)
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subject to

n
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j=1

)

Zqijgyj, forV1<j<n
i=1
)

i=1

(3)

n

24,=1

j=1

(4)

where the EIMD distance is first calculated by matching and
pairing each of the m elements in an element fraction vector, X
of formula A, to its most similar unmatched partner in the n
elements of a second element fraction vector Y of formula B,
until all have been paired. x; indicates the fraction of the
element at the ith position of formula A. y; indicates the
fraction of the element at the jth position of formula B. The
quantity matched, g, from the ith element of X to the jth
element of Y is given by g;. p; and p; are the element properties
of the ith/jth element in formula A/B. Detailed calculation
examples can be found in ref 27.

Algorithm A2: Element Replacement Pair Enumeration
Algorithm. This algorithm is used to enumerate all possible
element replacement strategies between two pairs of formulas.

Algorithm A2: Element replacement pair enumeration algorithm

1: Given two formulas XY, calculate theirs oxidation states then get the statelist and
elementlist.

== stateList, then
lement pairs

3: else

4: Create elementGroupList to represent and distinguish elements of equal state
5: fori=0,1,...do

6: if i == 0 then

7: elementGroup = element List,[i];

8: else if (stateList,[ teList,[i — 1]) then
9: append element List,[i] to elementGroup;
10: else

11: append element List,[i] to elementGroup;
12: end if

13 end for

Create pre_patterns to represent permutation and combination of elements in
elementGroupList

15: for element = 0,1,..., j do

16: if j =0 then

17: pre_patterns = permutations of elementGroupList|[j];
else

patterns =permutations of elementGroupList[j];
for p1 =0,1,...,m do
for p2=0,1,...,n do
append pl, p2 to new _patterns;

23: end for

24: pre_patterns = new_patterns;

25: end for

26: end if

27: end for

28 If the element in pre_patterns is different from the element in elementList,, then
replace the element

29: end if

Module A3: Element Substitution Scoring Function. To
differentiate the resulting structures from the different element
substitution arrangements between the query formula and
template structure and rank the final output structures from
different templates, we use the EIMD distance in Module Al to
calculate the similarity score between each pair of substitution
elements for a given query formula and the final structure.
Then we sum up these similarity scores for all of the element
substitution pairs and use them to calculate the quality scores
of the final structures.

S.. = EIMD(e,, e,),

r
Sr = z S;s

i=1

(s)
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where S, measures the element matching quality between two
substitution elements e; and e,. S, is the replacement distance
score for a given element substitution arrangement of a given
query formula and template structure, which is equal to the
sum of all of the element similarity scores of all substitution
element pairs in the element substitution arrangement.

The final quality of the generated structures is then
measured by the S, scores, with lower scores corresponding
to higher quality.

DFT or Genetic-Algorithm-Based Structure Relaxation. As
with all predicted crystal structures, they usually need a fine-
tuning or relaxation step to adjust the local atomic coordinates
using either the DFT-based structural relaxation method or the
recently developed machine-learning- and optimization-based
relaxation approach,”® which is much faster than the DFT
approach. In this study, we used the DFT approach for
evaluation purposes.

2.2, User Interface of Our Web Server. Our TCSP
server has a user-friendly web interface, as shown in Figure 2.

Crystal Structure Prediction

© Template/substitution

Provide one formula

SITio3

Y
Select target spacegroupl1-230] (optional,default=0 no
constraint)

o

Or provide a set of elements,separated by space or
comma,

Your email for receiving job completion notice &
download link

your-email

Predict Now

Figure 2. User interface of our TCSP web app for CSP.

Each time, a user can just put in a formula/composition, and
then the target space group number from 1 to 230 can be set
or just assigned to O to allow a template with any space group.
Then the user types in their email in order to receive the job
completion notification email with a downloadable URL link
for the predicted structures. After a few minutes, an email will
be sent to the user with the downloadable URL link for the
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Figure 3. Structures predicted by TCSP compared to the targets: (a) SrTiO;(Target), (b) NijS,(Target), (c) NiS,(Target), (d)
SrTiO;(Predicted), (e) Ni;S,(Predicted), (f) NiS,(Predicted), (g) GaBN,(Target), (h) GaBN,(Predicted), (i) GaBN,(Predicted), (j)
GaB;N,(Target), (k) GaB;N,(Predictedl), (1) GaB;N,(Predicted2), (m) GaB,N;(Target), (n) GaB,N;(Predictedl), and (o)

GaB,N;(Predicted2).

predicted structures. After the zipped result file is downloaded
and unzipped, the user can go into the folder and click the
Name column to sort the files by filename. Then it shows
several key files: (1) results.txt shows the template similarity
scores, the templates with compatible oxidation states, and the
element replace pairs for each template; (2) similar_formu-
las.csv file shows the distance scores of all templates to the
query formula; (3) TemplateCandiates.csv shows the Materials
Project IDs of the selected templates. (4) All of the remaining
.cif files are predicted, which are sorted by their replacement
quality score (the number before _mp of the filename), which
is better when the number is smaller. However, it is strongly
suggested to validate a couple of top-scored candidate
structures because the candidate structure with the top quality
score is not always the best one.

2.3. DFT Validation of Predicted Structures. The first-
principles calculations based on DFT are carried out using the
Vienna ab initio simulation package (VASP).””~>* The
projected-augmented-wave pseudopotentials, with 520 eV
plane-wave cutoff energy, were used to treat the electron—
ion interactions.””** The exchange-correlation functional was

8434

considered with the generalized gradient approximation based
on the Perdew—Burke—Ernzerhof method.*>* The energy
convergence criterion was set as 107> eV, while the atomic
positions were optimized with the force convergence criterion
of 1072 eV/A. The Brillouin zone integration for the unit cells
was computed using the I'-centered Monkhorst—Pack k
meshes. The formation energies (in eV/atom) of several
materials were determined based on the expression in eq 6,
where E[Material] is the total energy per unit formula of the
considered structure, E[A,] is the energy of the ith element of
the material, x; indicates the number of A; atoms in a unit
formula, and # is the total number of atoms in a unit formula

(n= Eixi)-

B = % E[Material] — 2 xE[A] ©)
; 6

2.4. Evaluation Criteria. To evaluate the reconstruction
performance of the algorithm, we define the root-mean-square
distance (RMSD) and mean absolute error (MAE) of two
structures as

https://doi.org/10.1021/acs.inorgchem.1c03879
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Table 1. Prediction Performance (RMSD Error) of Top 10 Results for Each Sample in the Benchmark Set by TCSP

formula metric top 1 top 2 top 3 top 4 top S top 6 top 7 top 8 top 9 top 10
SrTiO; RMSD 0 0 0 0 0.1667 0.2832 0.4082 0.4410 0.4410 0.4410
score 2 2 2 3 1 1 1 1 1 2
Ni;S, RMSD 0.0007 0.2885 0.2888 0.2897
score 3 4 1 4
NiS, RMSD 0.0049 0.0124 0.0777 0.2282 0.2424 0.2846
score 3 1 3 2 1 2
GaBN, RMSD 0.0039 0.0039 0.0174 0.0209 0.3410 0.3412 0.3412 0.3886
score 3 1 2 1 9 1 S 31
GaB;N, RMSD 0.0023 0.0023 0.0152 0.0162 0.3335 0.3344 0.3344 0.3347 0.3347
score 1 3 22 1 1 1 3 4 0
GaB,N; RMSD 0.2475 0.2475
score 11 7
Ga;BN, RMSD 0.0040 0.0040 0.0206 0.3336 0.3337 0.3345 0.3345 0.3347 0.3347
score 1 3 1 1 22 1 3 0 4
12000
RMSD(v, w) =
10000
1 n
_ 2 2 2 8000
= ; Z [(Vix - W1x) + (Uiy - Wzy) + (Uiz - le) ]
= 6000
(7)
L 4000
MAE(v, w) = = 37 |lv; = w,
n 2000 A
i=1
1 n D - T T
— 0.0 02 04 06 0.8 10
_;Z(‘vtx_wtx + Hviy_win + (Ve — W )
i=1 (8) Figure 4. Distribution of RMSD errors of all Materials Project

where n is the number of independent atoms in the target
crystal structure. For symmetrized CIF structures, n is the
number of independent atoms of the set of Wyckoff equivalent
positions. For regular CIF structures, it is the total number of
atoms in the compared structure. v; and w; are the
corresponding atoms in the predicted crystal and target crystal
structures, respectively.

In addition to the RMSD and MAE criteria based on the
coordinates of the Wyckoff positions, other generic crystal
structure similarity distances can also be used, including the
geometry-based and symmetry-adapted similarity metrics, to
compare the crystal structures.”” Another possible evaluation
method is to use the superpose3d-based RMSD,*® which can
translate and rotate the crystal structures (point clouds) to
achieve maximum alignment, and then perform the RMSD
calculation. This may provide a better measurement of the
structural similarity.

3. RESULTS

3.1. Data Set. We used more than 130000 crystal
structures deposited in the Materials Project database as our
template sources. We picked seven test materials, including
SITiO; (mp-5229), NisS, (mp-1050), NiS, (mp-849059),
GaBN, (mp-1007823), GaB;N, (mp-1019740), GaB,N; (mp-
1245554), and Ga;BN, (mp-1019743). We then ran our
algorithm and checked whether it could predict the correct
structures that match the target structures.

3.2. Performance of TCSP. We selected seven formulas of
target structures from the Materials Project database for
evaluation of the capability of our TCSP algorithm for
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structures, as predicted by our TCSP using leave-one-out evaluation.

structure prediction. The first test target formula was SrTiOs,
which has three different phases corresponding to space groups
of 140, 149, and 221. Its most famous structure is the cubic
perovskite structure, as shown in Figure 3a. Our algorithm
identified thousands of compatible templates and picked the
top 10 as templates, including BaZrO; (mp-3834), MgTiO;
(mp-1016830), CaZrO; (mp-542112), MgZrO; (mp-
1017000), BaTiO; (mp-504715), BaTiO; (mp-5020),
SrZrO; (mp-613402), CaTiO; (mp-5827), BaTiO; (mp-
2998), and SrHfO; (mp-4551), among which all are cubic
templates except for BaTiO; (mp-5020), which is a trigonal
structure with space group 160. The top 4 predicted structures
all have a zero RMSD error compared to the perovskite target
structure: they all have fractional coordinates identical with
those of the target structure except that the cubic lengths are
different (the predicted cubic structure in Figure 3d has a
lattice length of 4.256 A, while the target structure has a lattice
length of 3.945 A), which may be fine-tuned using DFT-based
relaxation.

The second test sample is Ni;S,, which only has one cubic
phase with space group 227. The structure is shown in Figure
3b. Our algorithm found the top 4 templates, including CosS,
(mp-943), Co,;Se, (mp-20456), NiySe, (mp-1120781), and
Co;0, (mp-18748), all of which are cubic structures with
space group 227. The lowest RMSD is 0.000714, which is
predicted by our algorithm using Co;S, as the template. The
RMSD errors of the structures from the other three templates
are much larger, all around 0.288. We can see that the

https://doi.org/10.1021/acs.inorgchem.1c03879
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Table 2. Formation Energy and Corresponding Templates of the Top 10 Predictions for Each of the Four New Materials

GaB,N, GaB,Nj, Ga,BN, GaBN,

mp-ID Eorm (€V) mp-ID Eim (€V) mp-ID Eform (€V) mp-ID Eimm (€V)
mp-780282 —3.2957 mp-1224009 —2.4471 mp-532446 —2.9443 mp-30979 -3.29
mp-778103 —3.2414 mp-1225800 —2.2103 mp-698589 —2.8493 mp-20790 —2.9865
mp-13335 —3.2224 mp-1228436 —-2.1092 mp-761314 —2.7696 mp-1224951 —-2.7224
mp-780395 —3.1119 mp-1120750 —1.838 mp-5712 —2.5712 mp-1224810 —2.5462
mp-30161 —-2.9124 mp-29672 —1.69 mp-1212041 —2.5703 mp-555538 —2.4165
mp-1194477 —2.4454 mp-1019378 —1.6865 mp-1255006 —2.5669 mp-1071955 —-2.4012
mp-756317 —2.2645 mp-1228943 —-0.3167 mp-765466 —2.5623 mp-1102285 —2.3984
mp-36866 —2.2639 mp-29672 —0.2741 mp-753397 —2.5622 mp-1071955 —2.398
mp-1208866 —2.1376 mp-1019508 —0.1409 mp-756649 —2.5621 mp-27462 —2.3971
N/A N/A mp-1223879 —0.0784 mp-1178203 —2.5621 mp-1102285 —2.3967

Figure S. New Candidate structures with zero e-above-hull energy for
GaB,N, (using template mp-780282), GaB,N; (using template mp-
1224009), GaBN, (using template mp-30979), and Ga,BN, (using
template mp-698589).

predicted structure in Figure 3e is very close to the target
structure in Figure 3b. We also found that the predicted
structure of NiS, in Figure 3f also matches well with the target
structure in Figure 3¢, which has the smallest RMSD error of
0.004918.

We also tested four formulas of the chemical system Ga—B—
N, including GaBN,, GaB;N,, Ga,BN; and Ga;BN,. For
GaBN, with space group 115, the best eight templates are
found by our algorithm. Five of them, including AIBN, (mp-
1008557), AIBN, (mp-1008557), AlGaP, (mp-1228888),
AlGaN, (mp-1008556), and B,AsP (mp-1008528), have the
same tetragonal crystal system as the target structure with
space group 11S. The remaining are trigonal with space group
166. The predicted structures AIBN, (mp-1008557) and
AIBN, (mp-1008557) have the same lowest RMSD error of
0.003889. However, they have different structure patterns, as
shown in Figure 3h,i. For the same template, our algorithm
suggests two element replacement strategies. In the first
strategy, the element Ga in the test formula is used to replace
the element Al in the template AIBN,; in the second strategy,
the element Ga in the test formula GaBN, replaces the element
B in the same template AIBN,. For the formula GaB;N, with
space group 215, TCSP finds the top 9 most similar templates,
AIB;N, (mp-1019379), AlB;N, (mp-1019379), CrGa;P, (mp-

8436

985440), AlGa;N, (mp-1019508), Al;GaN, (mp-1019378),
ALBN, (mp-1019380), Al;BN, (mp-1019380), Ga;BN, (mp-
1019743), and Ga;BN, (mp-1019743), of the same space
group 215 as well. The lowest RMSD error with different
structure templates AlB;N, and AIB;N, is 0.002336 by using
two element replacement strategies. The element Ga in the
first strategy is used to replace Al in the template, as shown in
Figure 3Kk, and as shown in Figure 3], Ga replaces B in AIB;N,
in the second strategy. For the formula GaB,N; (mp-1245554)
in Figure 3m, which has a monoclinic structure with space
group 15, TCSP only finds two templates, AuC,N; (mp-
1245653) and AuC,N; (mp-1245653), with the same space
group. The lowest RMSD is 0.24746 for these two predicted
structures. As shown in Figure 6a, our algorithm uses the first
strategy, in which TCSP uses Ga in the test formula GaB,Nj; to
replace Au in the first template AuC,N;. In the second
strategy, Ga replaces B in the second template, as shown in
Figure 30. For the formula Ga;BN, (mp-1019743) with space
group 215, TCSP finds the 9 most similar templates, Al;BN,
(mp-1019380), ALBN, (mp-1019380), Al;GaN, (mp-
1019378), AlGa;N, (mp-1019508), CrGasP, (mp-985440),
AlB;N, (mp-1019379), AlB;N, (mp-1019379), GaB,N, (mp-
1019740), and GaB;N, (mp-1019740), with the same space
group 21S. The templates A;BN, (mp-1019380) and ALLBN,
(mp-1019380) with different structure patterns have the same
lowest RMSD error of 0.004017781. Al,BN,, AlB;N,, and
GaB;N, all have different structure patterns using the two
element replacement strategies.

Our TCSP algorithm can output multiple predictions using
different templates. To understand this capability, Table 1
shows the RMSD and quality scores of the top 10 predictions
for each input formula. For SrTiOj;, the top 4 structures all
have zero RMSD errors for their fractional coordinates, with
their replacement distance scores ranging from 2 to 3. The
MAE errors of these four structures are also 0. We do find that
their lattice lengths are different from those of the target
structures, which, however, can be tuned by DFT-based
structure relaxation. For Ni;S,, only the top 1 result is very
close to the target structure with three much worse results. For
NiS,, the top 2 predicted structures have RMSD values of
0.0049 and 0.0124. Both are good compared to the target
structures. For GaBN,, the top 4 results all have small RMSD
errors ranging from 0.0039 to 0.0209. The same is true for the
predicted structures of GaB;N,. The worst prediction
performance is on the formula GAB,Nj;, which can only find
two compatible templates, both leading to structures very
different from those of the target structure. Their MAE errors
are 0.1853. For GA3;BN,, the top 3 predictions are all of high
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Figure 6. New material GaB,N, discovered by our TCSP with zero e-above-hull energy, negative formation energy (—3.2957 eV), and dynamical
stability: (a) predicted structure of GaB,N,; (b) phonon dispersion of GaB,N, with the mp-780282 template structure.

quality, with RMSD values of only 0.004, 0.004, and 0.0206. In
terms of the quality score distribution, we found that low
replacement distance scores indicate predicted structures with
good quality: for example, predictions with replacement
distance scores greater than S are all low-quality results.
However, low replacement distance scores do not always mean
their structures are of high quality. For example, in the case of
SrTiO;, the structures with high RMSD values have lower
replacement distance scores than those of the top 4 results.

To further evaluate the performance of our TCSP algorithm,
we conducted comprehensive predictions of all 98290 formulas
in the Materials Project database using the leave-one-out
evaluation approach. For each formula, we predicted its
structure using existing templates that did not have the same
formula. Here we used the strict mode for finding the
templates: only the top 10 templates with the same prototype
and compatible oxidation states were used to predict new
structures. For each formula, we first identified all of its
corresponding mp-IDs and structures, and then for each of
these target structures, we picked the structure with the lowest
RMSD error out of all of the predicted structures and showed
the distribution of these RMSD errors to see how our TCSP
algorithm can recover the structures in the Materials Project
database. The results are shown in Figure 4. We found that, for
34569 Materials Project structures, our algorithm identified
templates for structure prediction. Out of these target
structures, TCSP predicted hypothetical structures with a
maximum RMSD of less than 0.01 for 11764 Materials Project
structures or with a RMDS of less than 0.1 for 13145 Materials
Project structures. We also found that, for 10433 structures,
the algorithm could not find the correct templates that
generate the same number of atoms in the unit cell for which
we set the RMSD error at 1.0.

3.3. Discovery of New Materials and DFT Validation
of the Predicted Structures. We were interested in how our
TCSP algorithm could help to discover novel stable materials.
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We started with the Ga—B—N chemical system, for which we
found four materials in the Materials Project database, as
shown in our test set discussed in the previous section.
According to the Materials Project database, those available
Ga—B—N structures have nonzero energy-above-hull values,
indicating that those materials are thermodynamically unstable.
We wondered if thermodynamically and dynamically stable
materials of this chemical system exist. We used the
composition enumeration tool from our MaterialsAtlas.com
toolbox to identify new Ga—B—N formula prototypes and their
predicted formation energies. We picked the top 41 formulas
that do not exist in the Materials Project database and used our
TCSP to predict a set of candidate structures for each formula.
We then conducted DFT relaxation and formation energy, e-
above-hull energy, and phonon dispersion calculations to verify
their thermodynamical and dynamical stability.

Our calculations (Table 2) showed that almost all candidate
structures found by our TCSP have negative formation
energies. This is immensely helpful for the discovery of new
materials using first-principles calculations. If most of the
candidate structures of a selected composition have positive
formation energies, we have to waste computational hours to
find the structures with negative formation energies. However,
our ML model is able to filter out the unsuitable candidate
structures to reduce the computational burden.

We further calculated the e-above-hull energy to investigate
the stability against the Ga—B—N competing phases. As given
in the Materials Project database, GaN, BN, Ga, B, and N2 are
the stable competing phases that are available. Total energy
calculations of the competing phases were done with the same
VASP settings as those used for the Ga—B—N systems to
determine the e-above-hull energy using the Pymatgen code.
Our calculations suggest that 4 out of 41 materials exhibit zero
e-above-hull energy, indicating that they are thermodynami-
cally stable (Figure S). Those materials and their candidate
structures are shown in Table 2. We further carried out
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phonon calculations for the candidate structures with the
lowest formation energies for those four materials. It is clear
from Figure 6b that the GaB,N, material with the mp-780282
template structure is dynamically stable at 0 K temperature. It
has an interesting layered honeycomb structure.

4. CONCLUSION

CSP plays a key role in new materials discovery.' However,
large-scale fast prediction of crystal structures is challenging,
and user-friendly web apps are missing for such an important
function despite the availability of some public software that
needs expensive high-performance computing resources and an
expertise of computational materials. We believe such fast CSP
web apps are critical to the materials science community, as
demonstrated by the bioinformatics field, which has more than
9000 web servers.”” Here we propose a TCSP algorithm and
its companion web server for fast and quick CSP. Because of
the widely observed structure similarity across many materials
families such as perovskites in the materials database, TCSP
achieves a strong prediction performance, as benchmarked on
the whole Materials Project structure using leave-one-out
evaluation due to its flexible template selection algorithm using
prototype and oxidation information. To our knowledge, this is
the largest experiment for CSP. We believe our web-based
TCSP algorithm will be of great interest to materials scientists
for exploratory materials discovery. To further improve the
speed of our algorithm, we will reduce the redundancy of the
template structures by using only representative structural
prototypes.lé’20
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