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Abstract
We present a rigorous analysis of the transient evolution of nearly circular bilayer interfaces
evolving under the thin interface limit, ε � 1, of the mass preserving L2-gradient flow of
the strong scaling of the functionalized Cahn–Hilliard equation. For a domain Ω ⊂ R

2 we
construct a bilayer manifold with boundary comprised of quasi-equilibria of the flow and a
projection onto the manifold that associates functions u in an H2 tubular neighborhood of
the manifold with an interface Γ embedded in Ω . The linearization of the flow about the
manifold does not present a clear spectral separation of modes normal and tangential to the
manifold. The dimension of the parameterization of the interfaces and the bilayer manifold
controls both the normal coercivity of the manifold and the coupling between normal and
tangential modes, both of which increase with this dimension. The key step in the analysis
is the identification of a range of dimensions in which coercivity dominates the coupling,
permitting the closure of the nonlinear estimates that establish the asymptotic stability of
the manifold. Orbits originating in a thin, forward invariant, tubular neighborhood ultimately
converge to an equilibrium associated to a circular interface. Projections of these orbits
yield interfacial evolution equivalent at leading order to the regularized curve-lengthening
motion characterized by normal motion against mean curvature, regularized by a higher
order Willmore expression. The curve lengthening is driven by absorption of excess mass
from the regions of Ω away from the interface, leading to high dimensional dynamics that
are ill-posed in the ε → 0+ limit.
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1 Introduction

Amphiphilic molecules are surfactants that form thin, bilayer interfaces comprised of two
single-molecule layers. The functionalized Cahn–Hilliard (FCH) free energy, introduced
in [11], models mixtures of amphiphilic molecules and solvent. It generalizes the energy
proposed by Gompper and Goos [13], that was motivated by earlier studies of small-angle
X-ray scattering data. The FCH free energy is given in terms of the volume fraction u − b−
of the amphiphilic molecule over a domain Ω as

F(u) :=
∫

Ω

ε

2

(
Δu − 1

ε2
W ′(u)

)2
− ε p−1

(η1

2
|∇u|2 + η2

ε2
W (u)

)
dx, (1.1)

whereW : R �→ R is a smooth tilted double well potential with local minima at u = b± with
b− < b+, W (b−) = 0 > W (b+), and W ′′(b−) > 0. The state u = b− corresponds to pure
solvent, while u = b+ denotes a maximum packing of amphiphilic molecules. The system
parameters η1 > 0 and η2 characterize key structural properties of the amphiphilicmolecules.
The small positive parameter ε � 1 characterizes the ratio of the length of the molecule to
the domain size. The term ε p−1 is a distinguished limit of a second small parameter with the
weak scaling p = 2 balancing the Willmore-type residual of the dominant squared term and
the amphiphilic structure terms, while the strong scaling p = 1 places these latter terms in a
position of dominance. We consider the strong scaling p = 1, and refer the interested reader
to [12] for a detailed discussion of physical meaning of the parameters. The FCH is known
to be bounded from below over subsets of H2(Ω) that incorporate a wide range of boundary
conditions, [20]. Work of Choksi and Ren [6] established the Ohta-Kawasaki free energy as
a long-chain limit of a self-consistent mean field theory for diblock polymers. In particular
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their follow-up paper [7], considered diblocks immersed within a homopolymer, deriving a
continuummodel for the a diblock-homopolymer blend in the long-chain limit. This approach
seems amenable to a short-chain limit, in which the homopolymer approximates a solvent
and the Florey-Huggins parameters for each component of the diblock can be adjusted to
mimic the hydrophilic-hydrophobic interactions of an amphiphilic diblock with a solvent
(homopolymer) phase. Such amodel is evocative of amphiphilic blends, deriving a continuum
reduction would clarify the relation between the FCH and these important statistical physics
models.

The goal of this work is to characterize the evolution of bilayer distributions under a mass-
preserving gradient flow of the FCH energy. More specifically, to any smooth, embedded
curve Γ ⊂ Ω we may associate a bilayer distribution Φ = ΦΓ ∈ H2(Ω) which is an
approximate critical point of the FCH energy. In a neighborhood of Γ the bilayer distribution
is expressed as

ΦΓ (x; σ) = φ0 (z) + εσ

(W ′′(b−))2
, (1.2)

where z = z(x) is ε-scaled signed distance to Γ , φ0 is the leading order bilayer profile
defined as the unique non-trivial solution of the ODE

∂2z φ0 = W ′(φ0), (1.3)

that is homoclinic to b− as z → ±∞. The solution is extended to be constant away from
the front, with the constant σ determining the “bulk density” of surfactant. The system mass
which is set by the initial data, u0, and is scaled by ε,∫

Ω

(u0 − b−) dx = εM0. (1.4)

For a bilayer distributionΦΓ with mass M0 the bulk density σ and the length of Γ are slaved
through the leading order relation

|Γ | = M0

m0
− |Ω|

(W ′′(b−))2
· σ

m0
, (1.5)

where m0 denotes the bilayer mass-per-unit-length,

m0 :=
∫
R

(φ0 − b−) dz. (1.6)

It is instructive to examine the leading order reduction of the FCH energy at ΦΓ (·; σ).
Accounting for the mass-dependent slaving (1.5) the strong scaling of the FCH reduces to a
Canham–Helfrich type energy [4, 15]

E(Γ , σ ) := F(ΦΓ (·; σ)) = m2
1

2

∫
Γ

|κ|2 ds + νb

2ε

(
σ − σ ∗

1

)2
, (1.7)

where the bulk coefficient νb > 0 depends only upon the system parameters and the domain
size |Ω|, while σ ∗

1 , the leading order equilibrium value of the bulk parameter σ , and m1 are
given by

σ ∗
1 := −η1 + η2

2m0
m2

1, m1 := ‖φ′
0‖L2(R). (1.8)

The equilibrium σ ∗
1 represents the bulk density at which absorption of surfactant into a bilayer

balances with ejection of surfactant out of the bilayer. The ε−1 scaling of the (σ −σ ∗
1 )2 term
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in (1.7) shows the strong energetic preference for a bulk density σ close to equilibrium, and
enforces an equilibrium length on Γ through the mass constraint (1.5).

The nature of the interfacial evolution arising from gradient flows of the reduced energy
(1.7) is best understood through the normal velocity it induces on the interfaceΓ . Accounting
for the slaving σ = σ(|Γ |) from (1.5), formal arguments, [8], show that the full energy (1.1)
and the reduced energy (1.7) both drive a geometric gradient flow that dissipates the energy
(1.7), at leading order through the regularized curve lengthening normal velocity

VRCL = −ε−1m0(σ − σ ∗
1 )κ − m2

1

(
Δs + κ2

2

)
κ. (1.9)

If the bulk density is lower than the equilibrium value, σ − σ ∗
1 < 0, then the surface term

induces a familiarmean curvature flow,which shortens the curve. However, if the bulk density
exceeds the equilibrium value, σ −σ ∗

1 > 0, then the system dissipates total energy through a
curve-lengthening motion against curvature, absorbing amphiphilic material from the bulk,
see Fig. 1. We call this the regularized curve lengthening regime in which the higher-order
Willmore term serves as a singular perturbation that regularizes the ill-posed motion against
curvature.

We consider the mass-preserving L2(Ω) gradient flow of the FCH energy (1.1), written
in terms of the chemical potential F = F(u), associated to F through the rescaled variational
derivative

F(u) := ε3
δF
δu

= (ε2Δ − W ′′(u))(ε2Δu − W ′(u)) + ε p(η1ε
2Δu − η2W

′(u)). (1.10)

The mass-preserving FCH L2-gradient flow takes the form

∂t u = −Π0F(u), (1.11)

subject to periodic boundary conditions on Ω ⊂ R
2. Here Π0 is the zero-mass projection

given by

Π0 f := f − 〈 f 〉L2 , (1.12)

in terms of the averaging operator

〈 f 〉L2 := 1

|Ω|
∫

Ω

f dx . (1.13)

We provide a rigorous justification of the regularized curve lengthening flow via an asymp-
totically large dimensional center-stable manifold reduction in a vicinity of the equilibrium
arising from the bilayer distribution with a circular interface Γ0.

Previous work, [5], addressed this system and constructed a manifold with boundary
contained in H2(Ω)whose constituent points are refinements of the bilayer distributions that
are quasi-equilibria of the system (1.11). More specifically, for ε and δ > 0 independently
small the work constructed a bilayer manifold,Mδ , and associated nonlinear projection that
uniquely decomposes functions u from an open neighborhood of Mδ into a point on the
manifold (a bilayer distribution) and a perturbation that is orthogonal to the tangent plane
of the manifold. The manifold is parameterized by an asymptotically large but finite set of
meander parameters, grouped as a vectorp = (p0, · · · , pN1−1), residing in the bilayer domain
Dδ ⊂ R

N1 , defined in (2.8). A parameter vector also defines an interface Γp, immersed in
Ω , and the bilayer distribution Φp. The interfaces are constructed as perturbations of a fixed
base interface Γ0 and the construction of the projection requires that the base interface Γ0
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(a) (b) (c) (d)

Fig. 1 Numerical simulation of the strong FCH mass preserving L2 gradient flow on Ω = [−2π, 2π ]2 from
initial data u0 = ΦΓ (x; σ) with Γ a circle and σ = 2σ∗

1 , double the equilibrium value. Left to right, color
coded contours of the evolving solution u = u(t) at indicated times, show a meandering transient followed
by relaxation to a circular equilibrium with larger radius. System parameters are ε = 0.20, η1 = 1.45 and
η2 = 2.0 and well W as [17] (Color figure online)

and the scaled system mass M0 are compatible in the sense that the background mass of
surfactant is sufficiently close to the equilibrium value,

|σ0(Γ0, M0) − σ ∗
1 | ≤ δ. (1.14)

Here σ0 is slaved to Γ0 and M0 through (1.5). We identify two slow spaces, the pearling and
meander spaces, as small eigenvalue eigenspaces of the second variation of the FCH energy
at Φp. The pearling eigenfunctions are associated to variations in the width of a bilayer
interface and can be linearly unstable. To preclude this instability we impose an equilibrium
pearling stability condition

(PSC∗) σ ∗
1 S1 + (η1 − η2)λ0 > 0, (1.15)

on the system parameters η1 > 0 and η2 ∈ R, that renders the pearling modes linearly stable.
Here λ0 < 0 is the ground state eigenvalue of the linearization of (1.3) about φ0, and S1 ∈ R

depends only upon the form of the double well, W . A detailed investigation of the onset of
the pearling instability was conducted in [10, 17].

In this work we consider a bilayer manifold,Mδ built around a circular base interface Γ0

and in Theorem 4.2 identify conditions under which solutions to the flow (1.11) arising from
initial data fromanO(ε5/2) tubular H2-neighborhoodof the bilayermanifold remain close for
all time and ultimately converge to a unique, up to translation and system mass, equilibrium
corresponding to the bilayer distribution with circular interface. Moreover Proposition 4.4
establishes that the normal velocity of the interfaceΓp(t) arising from themanifold projection
of u(t) agrees with the regularized-curve lengthening flow (1.9) to leading order. The most
significant impact of the additional restrictions of the initial data is that the background
density σ0 associated to the manifold projection of the initial data u0 must satisfy

|σ0 − σ ∗
1 | ≤ Cε1/2δ, (1.16)

for some positive constant C . This restricts the length of the evolving interface to lie within
O(ε1/2δ) of the equilibrium interface length determined by the system mass.

There are twomain issues that prevent the application of a standard center-stable manifold
analysis. The first is that the pearling modes are associated to O(ε) spectrum and overlap
significantly with the spectrum of the meander modes that characterize the curvature flow.
There is no spectral gap. This is remedied by inserting a third small parameter ρ > 0, a
spectral cut-off which constrains the eigenvalues associated to the meander and pearling
modes, see Definition 3.12. The value of ρ impacts the dimension, N1, of the meander
space and equivalently the dimension of the bilayer manifold. The choice is constrained by
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two competing requirements. The first is that ρ should be large enough so that the normal
coercivity of the bilayer manifold, characterized in Lemma3.14, is sufficiently strong to
close the nonlinear estimates that establish the asymptotic stability. On the other hand, to
prevent the motion of the interface from exciting the weakly-damped pearling modes, the
spectral cut-off must be sufficiently small that the Laplace–Beltrami eigenmodes associated
to the pearling and meander modes, have a large gap, see (3.36). This asymptotically large
pearling-meander gapweakens the coupling between these spectral sets, see Lemma3.13, and
precludes the meander motion from driving a large pearling excursion. The second issue is
that the tangent space of the bilayer manifold and themeander space are asymptotically large.
To establish coercivity on the space perpendicular to the tangent space requires that it well-
approximates themeander space. This is achieved in Sect. 2.1 through an implicit construction
of the bilayer interfaces as perturbations of the base interface as a Galerkin expansion in
the Laplace Beltrami modes of the perturbed interface. This implicit construction yields a
tangent space that well-approximates the spectral meander space, allowing for a larger choice
of spectral cut-off ρ. The nonlinear estimates of Theorem 4.2 culminate with Eq. (4.30)which
combines the constraints on control parameters δ, ε, and ρ under which the argument closes.
Specifically we find that the spectral cut-off must satisfy

ε
1
10 � ρ � 1,

where the constants depend only upon system parameters. In turn, this condition on ρ sets a
range of allowable dimensions N1 ∼ ε−1ρ1/4 for the bilayer manifold.

It is natural to compare the results for the bilayer interface dynamics of the FCH gradient
flow with those derived for the front solutions of the Cahn–Hilliard equation. For the Cahn–
Hilliard system, much of the initial work, notably [2, 18], focused on formal and rigorous
derivations of the Mullins-Sekerka flow in the ε → 0 limit. Quasi-stationary dynamics based
upon a radial scaling and translation parameters were derived in [1, 3] in 2D and 3D.

The FCH gradient flows differ from Cahn–Hilliard flows in that its sharp interface limit,
ε → 0, is ill posed. The Γ -limits constructed in [21] consider the case η2 = η1 < 0, for
which theWillmore and functionalization terms act in concert. The situation is fundamentally
different when these two terms are in competition, as expressed in the the strong FCH with
η1 > 0. This competition leads to a wide variety of minimizing sequences from H2(Ω)

whose energies are bounded as ε → 0+ but are not readily associated to bilayers. These
include the pearled interfaces constructed in [19], as well the cylindrical filaments studied in
[8, 9]. Pearling can lower the free energy of a bilayer distribution by modulating the width
of the level sets of u near an interface. Neither these higher codimension structures not has
no analogy within the study of the front solutions in the Cahn–Hilliard model.

The remainder of this article is organized as follows. In Sect. 2, we present the local
coordinates and implicit construction of the finite dimensional interface Γp. In Sect. 3 we
construct the bilayer distributions and define the map p �→ Φp which gives the bilayer
manifold Mδ . We establish the coercivity of the linearization Π0Lp of the gradient flow
about Φp when the operator is restricted to act on the orthogonal complement to the slow
space. Section 4 presents the main results, including the nonlinear estimates establish the
asymptotic stability of the bilayer manifold and the estimation of the difference the normal
velocity induced by the flow andRCL normal velocity, (1.9). For clarity of presentation, some
estimates required in Sect. 4 are postponed to Sect. 5, in particular the impact of the evolution
of the meander parameter vector p on the pearling and meander spaces are quantified there.
Various technical estimates, including those that relate the smoothness of the interface Γp to
p are presented in the “Appendix”, Sect. 6.
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1.1 Notation

We present some general notation.

1. The symbol C generically denotes a positive constant whose value depends only on the
system parameters η1, η2, mass parameter M0, the domain Ω . In particular its value is
independent of ε and ρ, so long as they are sufficiently small. The value of C may vary
line to line without remark. In addition, A � B indicates that quantity A is less than
quantity B up to a multiplicative constant C as above, and A ∼ B if A � B and B � A.
The expression f = O(a) indicates the existence of a constant C , as above, and a norm
| · | for which

| f | ≤ C |a|.
2. The quantity ν is a positive number, independent of ε, that denote an exponential decay

rate. It may vary from line to line.
3. If a function space X(Ω) is comprised of functions defined on the whole spatial domain

Ω , we will drop the symbol Ω .
4. We use 1E as the characteristic function of an index set E ⊂ N, i.e. 1E (x) = 1 if x ∈ E ;

1E (x) = 0 if x /∈ E . We denote the usual Kronecker delta by

δi j =
{
1, i = j;
0, i �= j .

5. For a finite vector q = (q j ) j , we denote the norms

‖q‖lk =
⎛
⎝∑

j

|q j |k
⎞
⎠

1/k

, fork ∈ N
+,

and ‖q‖l∞ = max j |q j |. For a matrix Q = (Qi j )i j as a map from l2 to l2 has operator
norm l2∗ defined by

‖Q‖l2∗ = sup
{‖q‖l2=1}

‖Qq‖l2 .

We write

q j = O(a)e j , Qi j = O(a)Ei j ,

where e = (e j ) j is a vector with ‖e‖l2 = 1 or E is a matrix with operator norm ‖E‖l2∗ =
1 to imply that ‖q‖l2 = O(a) or ‖Q‖l2∗ = O(a) respectively. See (6.14)–(6.15) of
Notation6.5 for usage.

6. Thematrix eθR denotes rotation through the angle θ with the generatorR.More explicitly,

R =
(
0 −1
1 0

)
, eθR =

(
cos θ − sin θ

sin θ cos θ

)
.

2 Bilayer Interfaces and Local Coordinates

The bilayer manifold is composed of a finite dimensional family of smooth closed interfaces
immersed in Ω . We fix a base interface Γ0 which is a circle of radius R0. Without loss of
generality we may rescale the domain so that R0 = 1. We first define a family of closed
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interfaces parameterized by γ : I �→ Ω , where I is the periodic interval of length 2π . We
introduce the periodic distance | · |I defined as

|s|I = min
{∣∣s − 2πk

∣∣ : k ∈ Z
}
.

The following class consists of smooth curves that do not self-intersect, quoted from [5].

Definition 2.1 Given K , � > 0 and an integer k > 0 the class Gk
K ,� consists of closed curves

Γ embedded in Ω whose parameterization γ has the properties (a) mins∈I |γ ′(s)| ≥ 1
4

and ‖γ ‖Wk,∞(I ) ≤ K and (b) for any two points on I that satisfy |s1 − s2|I > 1
8K then

|γ (s1) − γ (s2)| > �.

For each Γ ∈ G2
K ,� with � ≤ π

16K there exists a tubular neighborhood, Γ � of Γ with
thickness �, such that the change of coordinates x �→ (s, r) through

x = γ (s) + rn(s), (2.1)

is well defined, see [5]. Here n = e−πR/2γ ′/|γ ′| is the outer normal of Γ and r = r(x) is the
signed distance of x to the curve Γ . Introducing the scaled distance z = r/ε ∈ [−�/ε, �/ε],
we refer to (z, s) as the local coordinate near Γ .

2.1 Bilayer Interfaces

In the sequel we fix a base interface Γ0 which is a circle with radius 1 and constant curvature
κ0 = −1. The local coordinate associated to Γ0 is defined on all of Ω except for the center
of the circular curve Γ0. Let γ 0 = γ 0(s) be the arc-length parameterization of Γ0, with
|γ ′

0(s)| = 1 for all s ∈ I . The associated Laplace–Beltrami operator −Δs : H2(I ) →
L2(I ) has the scaled eigenvalues {β2

k }∞k=0 and normalized eigenfunctions {θk}∞k=0 which
satisfy,

− Δsθk = β2
k θk . (2.2)

In particular the ground state eigenmode is spatially constant,

θ0 = 1/
√
2π, β0 = 0, (2.3)

for k = 1, 2, . . ., the higher modes are given by

θ2k−1 = 1√
2π

cos (ks) , θ2k = 1√
2π

sin (ks) ; with β2k−1 = β2k = k. (2.4)

In the following, we will introduce the set of bilayer interfaces whose components are
perturbations of Γ0 parameterized by p ∈ R

N1 . The dimension N1 shall be defined in (3.30)
and (3.35) in terms of the values of small parameters ε, and ρ introduced in (3.30). The
parameter vector p is decomposed as

p = (p0, p1, p2, p̂), p̂ = (p3, p4, . . . , pN1−1), (2.5)

in which p0 scales the length of the bilayer interface, p1, p2 translate the interface, and
p̂ controls the deviation of the bilayer interface from circularity. The following weighted
spaces control p̂.
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Definition 2.2 (Weighted perturbation space) Let D be the (N1 − 3) × (N1 − 3) diagonal
matrix

D = diag{β2
3 , β

2
4 , · · · β2

N1−1}. (2.6)

We say p̂ lies in V
k
r if ‖p̂‖Vk

r
:= ‖Dr/2p̂‖lk < ∞, or more precisely,

‖p̂‖Vk
r

=
⎛
⎝N1−1∑

j=0

βkr
j |p j |k

⎞
⎠

1/k

< ∞. (2.7)

When k = 1, we omit the superscript k and denote the space by Vr .

The bilayer manifold is constructed as a graph over the domain introduced below.

Definition 2.3 (Bilayer domain) Fix C � 1 and let δ > 0 be a small parameter, independent
of ε. The bilayer manifold domain is the set

Dδ :=
{
p ∈ R

N1

∣∣∣ p0 > −1/2, |p1| + |p2| + ‖p̂‖V2 ≤ C, ‖p̂‖V1 ≤ Cδ
}

. (2.8)

We fix K0, �0 > 0 and a base interface Γ0 ∈ G2
K0,�0

and associate to each p ∈ Dδ a bilayer
interface Γp with parameterization γ p associated to the p-variation of Γ0. This construction
is implicit in p but is well-defined for p ∈ Dδ , via Lemma 2.10 of [5]. Below we sketch the
construction by two steps, see also Fig. 2.

(S1) The first step in the interface construction is to define the Laplace–Beltrami–Galerkin
perturbation p̄ associated to p,

p̄(s̃) :=
N1−1∑
i=3

pi θ̃i (s̃), θ̃i (s̃) := θi

(
2π s̃

|Γp|
)

. (2.9)

Here s̃ = s̃(s) is the arc-length parameterization of the perturbed curveΓp, which takes
values in Ip := [0, |Γp|] and is defined implicitly as the solution of

ds̃

ds
= |γ ′

p|, s̃(0) = 0. (2.10)

(S2) The second step constructs the intermediate curve Γ̄p, parameterized by

γ̄ p(s) := γ 0(s) + p̄(s̃)n0(s), (2.11)

where n0(s) is the outer normal vector of the circle Γ0 parameterized in its arc-length
parameter s. The scaled length of the intermediate curve,

A(p) := |Γ0|−1
∫
I

|γ ′
p̄(s)| ds, (2.12)

is used to rescale the perturbed curve so that its length is controlled only by p0,

γ p(s) := 1 + p0
A(p)

γ p̄(s) + p1θ0E1 + p2θ0E2, for s ∈ I . (2.13)

Then Γp is the perturbed interface defined by parameterization γ p.
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Fig. 2 The construction of the bilayer interface Γp in the translation-free case p1 = p2 = 0. First the base
curve Γ0 (solid black) is deformed along its normal vectors by p̄, defined through the implicit local variable
s̃ = s̃(s). Then the intermediate curve Γ̄p (dotted blue) is linearly rescaled, see black arrows, to Γp (solid blue)
in such a way that its length is controlled only by p0. Any point x in the reach, Γ 2�

p of Γp can be decomposed
in the local coordinate of Γp as x = γ p(sp) + np(sp)zp, and equivalently in the local coordinate of Γ0 as
x = γ 0(s) + n0(s)z. Here (sp, zp) and (s, z) are functions of x (Color figure online)

With the bilayer domain in Definition 2.3, we are at the point to introduce the set of bilayer
interfaces,

Iδ = Iδ(Γ0) := {Γp
∣∣p ∈ Dδ}. (2.14)

We summarize the bilayer interface construction in the following Lemma.

Lemma 2.4 Fix K0, �0 > 0 and base interface Γ0 ∈ G2
K0,�0

. There exist positive constants

K , �, δ > 0 independent of ε such that the set of bilayer interfaces, Iδ , resides in G2
K ,2�.

Proof This is an immediate consequence of Lemma 2.11 of [5]. We remark that the condi-
tion p0 > −1/2 in Dδ prevents the shrinking of the base circle to a point, while the bound
on ‖p̂‖V1 prevents self intersection of the perturbed curve. The V2-norm bound on p̂ con-
trols the curvature of Γp guaranteeing the existence of K , � for which Γp ∈ G2

K ,2� for all
p ∈ Dδ . ��

The implicit definition ofΓp insures that the tangent plane is well conditioned with respect

to the orthogonal basis {θ̃i }N1−1
i=0 of L2(Ip), which satisfy

∫
Ip

θ̃ j θ̃k ds̃ = (1 + p0)δ jk, j, k = 0, 1, . . . , N1 − 1. (2.15)
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In particular the rescaling by A removes the impact of the high-frequency terms, p̂, on the
curve length. Indeed, the length of Γp, given by |Γp| = 2π(1 + p0), is controlled uniquely
by p0. The parameters p1 and p2 govern the rigid translation of the interface and are treated
separately as rigid translations are not described as normal perturbations to the original
interface. The projections of the rigid translations onto n0 satisfy

θ0E1 · n0 = 1√
2π

cos(s) = θ1, θ0E2 · n0 = 1√
2π

sin(s) = θ2. (2.16)

From (2.2) and (2.9) the scaled Laplace–Beltrami modes θ̃ j = θ̃ j (s̃) satisfy

− θ̃ ′′
j (s̃) = β2

p, j θ̃ j (s̃), βp, j = β j

(1 + p0)
. (2.17)

Here and below, primes of θ̃ j denote their derivatives with respect to s̃. We remark that βp, j

reduces to β j when p = 0. The orthogonality (2.15) implies

‖p̂‖
V
2
k

∼ ‖ p̄‖Hk (Ip)
, ‖ p̄(k)‖L∞(Ip) � ‖p̂‖Vk , (2.18)

for all p ∈ Dδ .
When developing expansions of the interface Γp it is convenient to build in the uniform

rescaling and translations associated to (p0, p1, p2) so that the expansions are controlled by
p̂. To this end we define the leading order perturbed interfacial map

γ p,0 = (1 + p0)γ 0(s) + p1θ0E1 + p2θ0E2, (2.19)

whose interface Γp,0 is a translated, scaled circle with constant curvature κp,0.

2.2 Local Coordinate Expansions

Since Iδ(Γ0) ⊂ G2
K ,2�, introduced in Definition 2.1, each Γp has a tubular neighborhood of

width 2�, denoted Γ 2�
p , called the reach of Γp, on which the pair (sp, zp) form a well-defined

coordinate. In particular each x ∈ Γ 2�
p has a unique expression in the form

x = γ p(sp) + np(sp)zp, (2.20)

as depicted in Fig. 2. We will also have occasion to use the coordinate system (s̃p, zp) posed
in the arc-length scaling of Γp.

For each p ∈ Dδ , the local coordinates of Γp induce natural L2-inner products and
expressions for the Cartesian Laplacian in the local coordinates of Γp. These results have
been introduced in [5, 14], which we quote and adapt to our notation system in the following.
For any a > 0 we define the interval

Ra = [−a/ε, a/ε]. (2.21)

For each f , g ∈ L2(Ω) with support in Γ 2�
p , their L2-inner product can be written in local

coordinates (sp, zp) as

〈 f , g〉L2 =
∫
R2�

∫
I

f (sp, zp)g(sp, zp)ε(1 − εzpκp)|γ ′
p| dspdzp, (2.22)
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or equivalently in the arc-length scaled variables (s̃p, zp) with ds̃p = |γ ′
p| dsp and s̃p ∈ Ip

as

〈 f , g〉L2 =
∫
R2�

∫
Ip

f (sp, zp)g(sp, zp)ε(1 − εzpκp) ds̃pdzp. (2.23)

The ε-scaled Laplacian admits the local expansion

ε2Δx = ∂2zp + εHp∂zp + ε2Δg, Δg := Δsp + εzpDsp,2, (2.24)

where Hp is the extended curvature

Hp(sp, zp) := − κ(sp)

1 − εzpκ(sp)
, (2.25)

−Δsp = −∂2s̃p
is the Laplace–Beltrami operator on the surface Γp and Dsp,2 is a relatively

bounded perturbation of Δsp . In particular,

Dsp,2 = a(sp, zp)Δsp + b(sp, zp)∂sp , (2.26)

where the smooth coefficients a, b are given explicitly by

a(sp, zp) = (εzp)
−1
(

1

|1 − εzpκp|2 − 1

)
, b(sp, zp) = (εzp)−1

2|γ ′
p|2

∂spa(sp, zp). (2.27)

We say a function f = f (sp) lies in L2(Ip) if

‖ f ‖2L2(Ip)
:=
∫
I

f 2(sp)|γ ′
p| dsp < ∞ or equivalently

∫
Ip

f 2(sp) ds̃p < ∞.

3 Bilayer Manifold and Linear Stability

The bilayer manifoldMδ is introduced as the graph of the bilayer distributions {Φp}, defined
in Lemma3.7, over the domainDδ , from Definition2.3. In addition the residual of the vector
field evaluated at Φp is characterized and the coercivity of the linearized operator on the
space perpendicular to the tangent plane to Mδ is established.

3.1 Bilayer Distributions and Bilayer Manifold

In this subsectionwe develop the bilayer distributions , {Φp}, that include the equilibriumΦp∗
of the FCH flow.We deduce Lipschitz estimates onΦp for p near p∗. A bilayer distribution is
constructed through amatching of an inner description in the reachΓ 2�

p to an outer distribution

on the remainder of Ω . The inner construction begins with φ0 defined on L2(R) as the
nontrivial homoclinic solution of

∂2z φ0 − W ′(φ0) = 0, lim|z|→∞ φ0(z) = b−. (3.1)

The orbit φ0 is unique up to translation, even about z = 0, and converges to the smaller
minima, b−, ofW as z tends to ±∞ at the exponential rate

√
W ′′(b−) > 0. The linearization

L0 of (3.1) about φ0,

L0 := −∂2z + W ′′(φ0), (3.2)
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is a Sturm–Liouville operator on the real line whose coefficients decay exponentially fast
to constants at z = ∞. The following Lemma follows from classic results, see for example
Chapter 2.3.2 of [16].

Lemma 3.1 The spectrum of L0 is real, and uniformly positive except for two point spectra:
λ0 < 0 and λ1 = 0. The ground state eigenfunction ψ0 of L0 is even and positive, with
ground state eigenvalue λ0 < 0. The operator L0 has an inverse that is well defined on the
L2 perp of its kernel, span{φ′

0}, and both L0 and its inverse preserve even and odd parity.

The base profile φ0 is a function of one variable. For an interface Γp the first step in the
construction ofΦp is introduction of the dressing of base profile with respect toΓp, as defined
below.

Definition 3.2 (Dressing) Let p ∈ Dδ . Given a function f (z) : R → R which tends to a
constant f ∞ and whose derivatives of all orders are continuous and tend to zero at an ε-
independent exponential rate as z → ±∞, we define the dressed function, f d ∈ L2(Ω), of
f with respect to the interface Γp via the relation

f d(x) := f (zp(x))χ(ε|zp(x)|/�) + f ∞(1 − χ(ε|zp(x)|/�)), ∀x ∈ Ω.

Here χ : R → R is a fixed smooth cut-off function satisfying: χ(r) = 1 if r ≤ 1 and
χ(r) = 0 if r ≥ 2. Where there is no ambiguity we abuse notation and use f (zp) to denote
the dressing of f with respect to Γp.

We introduce the dressed operator as follows.

Definition 3.3 (Dressed operator) Let L : D ⊂ L2(R) �→ L2(R) be a self-adjoint differ-
ential operator with smooth coefficients whose derivatives of all order decay to zero at an
exponential rate at∞. We define the space S to consist of the functions f as in Definition 3.2.
Then to each p ∈ Dδ the dressed operator Lp : D ∩ S �→ L2(Ω) and its r ’th power, r ∈ N

are given by

Lr
p f := (Lr f )d . (3.3)

If r < 0 then we assume that f ∈ R(L) and the inverse L−1
p f decays exponentially to a

constant at ±∞.

Since the function 1 is orthogonal to φ′
0 in L2(R) we may define L−k

0 1 on the real line R.
Its dressing, subject to Γp, is denoted Bp,k ∈ L2(Ω) and called the background function,

Bp,k(x) := L−k
p,01 = (L−k

0 1)d , x ∈ Ω. (3.4)

It provides the leading-order far-field variation in the bilayer distributions and satisfies
Bp,k → B∞

k as |z| → ∞, where the far-field value B∞
k = (W ′′(b−))−k . When p = 0,

we drop the subscript p and denote Bp,k as Bk . An important role is played by the mass of
the background function,

Bp,k :=
∫

Ω

Bp,k dx . (3.5)

With this notation the first correction φ1 to the pulse profile is defined as

φd
1 (σ ) = φ1(zp; σ) := σ Bp,2 + ηd

2
L−1
p,0

(
zpφ

′
0(zp)

)
. (3.6)

It depends upon the bulk density andmeander parameters, σ andp, respectively. As a function
of zp, φ1 is smooth and is even about zp = 0.
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The existence of equilibrium bilayer distributions associated to circular interfaces, up to
exponentially small terms, was established in [10]. The systemmass M0 determines the equi-
librium radius p∗

0 and bulk density σ ∗, and hence, up to the choice of rigid-body translations
p1 and p2, the system mass fully characterizes the circular equilibrium state.

Lemma 3.4 Let ε > 0 and letΓ∗ be a circular interface with curvature κ∗, centered at the ori-
gin, and strictly contained within the periodic domainΩ . Let z∗ denote the ε-scaled distance
toΓ∗. Then for each ε sufficiently small there exists a unique constant σ ∗ = σ ∗

1 +εσ ∗≥2(κ∗, ε),
a uniformly (in ε) bounded function φ∗≥3 = φ∗≥3(z∗; κ∗, ε) which decays exponentially fast
to a constant as z → ∞, and a uniformly (in ε) smooth function φe = φe(x; κ∗, ε,Ω) and
a ν > 0 such that,

Φ∗(x) :=φ0(z∗(x)) + εφ1(z∗(x); σ ∗) + ε2φ2(z∗(x); σ ∗, κ∗) + ε3φ∗≥3(z∗(x); σ ∗, κ∗)
+ e−�ν/εφe(x; σ ∗, κ∗),

is an equilibrium of (1.11) subject to periodic boundary conditions on Ω . Translations of
periodic extensions of Φ∗ are also exact equilibrium.

The exponential correction φe is nontrivial outside the reach Γ 2�∗ , and it arises from the
interaction of the radial equilibrium inside the reach with the period box Ω = [−L, L]2.

The dressing process introduces functions that decay rapidly outside of Γ 2�
p , and depend

upon Γp only through zp. Frequently functions will arise that decay to a constant outside of
the reach, but that depend explicitly upon the interfacial map γp and its derivatives up to a
certain order. These functions enjoy certain classes of estimates, and the following notation
allows them to be grouped.

Definition 3.5 Let Γp ∈ G2
K ,2�, we say a scalar function h ∈ L2(Ω) lies inHk(γ p) if it takes

the form

h = h0(zp; γ p) + h∞,

where h∞ is a constant and h0 has its support inside Γ 2�
p and depends upon sp only through

a smooth function of the first k derivatives of γ p. In addition, we assume that there exists a
constant ν > 0 such that h0(zp; γ p)e

ν|zp| is uniformly bounded independent of ε on Γ 2�
p .

The space H̄k(γ p) consists of scalar functions h ∈ L2(Ip) arising as smooth functions
of the first k derivatives of γ p.

Remark 3.6 These comments clarify the usage of the Hk and H̄k notation.

(a) The geometric quantities |γ ′
p| and np ·n0 lie in H̄1(γ p) while κp lies in H̄2(γ p). For the

dressing φ0(zp) of φ0 associated to Γp, then φ0(zp; γ p) ∈ H0(γ p) with constant value
b− while |γ ′

p|2φ′
0(zp) ∈ H1(γ p) and φ′

0(zp)κp ∈ H2(γ p), both with constant value 0.
(b) For any natural numberm, the action of the operator εm∇m

sp on γ p is bounded independent
of ε for N1 restricted as in (3.35). Thus h ∈ Hk implies that εm∇m

sph enjoys the same
estimates as h, see Lemma6.4 for details.

(c) In usage, functions in H̄k(γ p) arise as integrals in zp overR2� of functions fromHk(γ p).

The following Lemma presents the bilayer distributions and their residuals. They include
the equilibrium bilayer distribution Φ∗ associated to the circular interface Γ∗.
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Lemma 3.7 Let φ0 and φ1 be as defined in (3.1), (3.6) respectively. Let φ≥3(zp) denote the
dressing of φ∗≥3 with respect to Γp with p ∈ Dδ . Let φp,e be the translation of φe defined in
Lemma3.4. Specifically we take

φ≥3(zp) := φ∗≥3(zp; σ ∗, κ∗), φp,e = φe(x − p1θ0E1 − p2θ0E2; κ∗, σ ∗).

Then there exists ν > 0 and a function φ2 ∈ H2 (see Definition 3.5) such that the bilayer
distribution

Φp(x; σ) := φ0(zp) + εφ1(zp; σ) + ε2φ≥2(zp; γ , σ ) + e−�ν/εφp,e(x), (3.7)

with φ≥2 := φ2 + εφ≥3(zp) has the residual

F(Φp) = Fm(sp, zp) + e−�ν/εFe(x), (3.8)

with Fm = εσ + ε2F2 + ε3F3 + ε4F≥4, whose expansion terms take the form

F2 = κp(σ − σ ∗
1 ) f2(zp),

F3 = −φ′
0Δspκp + f3(zp; γ p),

F≥4 = Δg f4,1(zp; γ p) + f4,2(zp; γ p).

(3.9)

Here f2 has far field value zero and has odd parity in zp, while f2, f3, f4,1, f4,2 ∈ H2. In
addition, the projections of F2,F3 satisfy∫

R2�

F2 φ′
0 dzp = m0(σ

∗
1 − σ)κp + O(e−�ν/ε);

∫
R2�

F3 φ′
0 dzp = m2

1

(
−Δspκp − κ3

p

2
+ ακp

)
+ O(e−�ν/ε).

(3.10)

Here α = α(σ ; η1, η2) depends smoothly on σ .

Proof This is adapted from Lemma 3.2 of [5], subject to the incorporation of lower order
terms terms in Φp that do not affect the form of F2,3,4. Explicit formulations of φ2 and α are
given in [5]. They are omitted here as they do not impact the results. ��

As constructed the bilayer distribution converges to an equilibrium of the FCH system
if the meander and bulk density parameters converge. In light of Lemma 3.4, we assume a
priori that there exist some p∗ and σ ∗ in the form of

p∗ = (p∗
0, p

∗
1, p

∗
2, 0, · · · , 0), σ ∗ = σ ∗

1 + O(ε). (3.11)

such that p(t) → p∗ and σ(t) → σ ∗ as t → ∞. The FCH gradient flow preserves system
mass, (1.4), which is set by the initial data. We constrain the bulk density parameter σ so that
the mass of Φp equals the system mass. From the form (3.7) of Φp with φ1 = φ1(σ ) given
by (3.6) we deduce that the mass constraint

〈Φp(x) − b−〉L2 = ε
M0

|Ω| , (3.12)

is satisfied precisely if

σ(p) = 1

Bp,2

{
M0 −

∫
Ω

[
1

ε

(
φ0(zp) − b− + ε2φ≥2 + e−�ν/εφp,e

)
+ ηd

2

(
L−1
p,0(zpφ

′
0)
) ]

dx

}
.

(3.13)

The following result shows that at leading order σ depends upon (p0, p̂) only through p0.
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Lemma 3.8 Let ε ∈ (0, ε0) with ε0 small enough and system mass M0 independent of ε.
Suppose the bilayer distribution Φp with p ∈ Dδ satisfies the mass constraint (3.12), then

σ(p) = σ0 − c0m2
1

m0
p0 + εC(p0)p0 + O

(
ε2‖p̂‖

V
2
2

)
. (3.14)

Here C is a smooth function of p0 that is bounded uniformly independent of ε. The base bulk
density σ0 = σ0(Γ0, M0) is independent of p, and c0 is a fixed positive constant. Indeed,

σ0(Γ0, M0) = M0 − m0|Γ0|
B∞
2 |Ω| + O(ε2), c0 := 2πm2

0

B2m2
1

> 0. (3.15)

Proof We address the terms on the right-hand side of (3.13) one-by-one. First, using the local
coordinate in Γ 2�

p we rewrite
∫

Ω

(φ0(zp) − b−) dx = ε

∫
I

∫
R2�

(φ0(zp) − b−)|γ ′
p|(1 − εzpκp) dsp dzp.

Since φ0(zp)− b− = φd
0 − b− has far field value zero and has even parity with respect to zp,

we have ∫
Ω

(φ0(zp) − b−) dx = ε|Γp|
∫
R2�

(φ0(z) − b−)χ(εz/�) dz.

With m0 defined as in (1.6), there exists a constant C1, independent of p, such that∫
Ω

(φ0(zp) − b−) dx = ε|Γp|
(
m0 + C1e

−�ν/ε
)

. (3.16)

The remaining leading order terms depend only on zp have far-field value zero. We deduce
that ∫

Ω

L−1
p,0(zpφ

′
0) dx = C2ε|Γp|, C2 :=

∫
R2�

L−1
0 (zφ′

0)χ(εz/�) dz. (3.17)

The constant Bp,2 defined in (3.13) is the mass of the dressed function Bp,2 introduced in
(3.4)–(3.5). Since Bp,2 approaches B∞

2 as |z| → ∞, we may rewrite

Bp,2 =
∫

Ω

(
Bp,2 − B∞

2

)
dx + B∞

2 |Ω|.

The integrand of the first term above has far-field value zero and is even with respect to zp.
From this we deduce

Bp,2 = εC3|Γp| + B∞
2 |Ω|, C3 :=

∫
R2�

(B2 − B∞
2 )χ(εz/�) dz. (3.18)

Finally, the term φ≥2 lies in the function family H2 (see Definition 3.5). Subtracting the far
field value φ∞≥2, integrating out zp under the local coordinate and applying Lemma 6.9 for
j = 0, k = 0 we find∫

Ω

φ≥2 dx = φ∞≥2|Ω| + ε f (p0) + O(ε‖p̂‖
V
2
2
), (3.19)

for some smooth function f = f (p0). Combining (3.16)–(3.17) and (3.18)–(3.19) with
(3.13) yields
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σ(p) = 1

B∞
2 |Ω| + εC3|Γp|(
M0 − e−�ν/ε

ε
Me − ε2φ∞≥2|Ω| − (m0 + Cε)|Γp| + ε2 f (p0) + O(ε2‖p̂‖

V
2
2
)

)

where C = C1ε
−1e−�ν/ε + C2 � 1 and

Me :=
∫

Ω

φp,e(x) dx =
∫

Ω

φe(x) dx,

is a mass correction arising from the exponential small correction φp,e introduced in
Lemma3.4. The result follows from (6.2) by extracting the leading order terms, introducing
the p independent constants c0 and

σ0 := 1

B∞
2 |Ω|

{
M0 − e−�ν/ε

ε
Me − ε2φ∞≥2|Ω| − m0|Γ0|

}
� 1,

and taking ε0 small enough. ��
The bilayer manifold is defined as the graph of bilayer distributions {Φp(σ ) : p ∈ Dδ}

where each Φp is associated to the interface Γp with σ = σ(p) satisfying the mass relation.
The scaled system mass M0 introduced in (1.4) and the length of Γ0 form an admissible pair
if they balance in the sense that

|M0 − m0|Γ0|| � 1, (3.20)

for all ε ∈ (0, ε0). In light of (3.15) we see that the pair (Γ0, M0) is admissible if and only
if σ0 is uniformly bounded with respect to ε ∈ (0, ε0).

Definition 3.9 (Bilayer manifold) Fix N1 > 0. Given a circular base interface Γ0 with radius
1 and system mass M0 which form an admissible pair, (3.20), we define the N1-dimensional
bilayer manifold Mδ(Γ0, M0) to be the graph of the map p �→ Φp(σ (p)) over the domain
Dδ , where the bilayer distribution Φp(σ ) is introduced in (3.7) with bulk density σ = σ(p)

satisfying the mass relation (3.13).

The particular choice of N1 is controlled through the spectral parameter ρ, see Defini-
tion 3.12 and (3.35). In the sequel we assume that the bulk density parameter satisfies the
mass relation (3.13). Recalling that we also assume p∗ = (p∗

0, p
∗
1, p

∗
2, 0) is the equilibrium

meander parameter vector and σ ∗ is the equilibrium bulk density, hence the mass relation
implies σ(p∗) = σ ∗. With this relation we have the following result.

Corollary 3.10 For p∗ = (p∗
0, p

∗
1, p

∗
2, 0) ∈ Dδ the bulk density parameter σ = σ(p) depends

at leading-order only upon the interface parameter p0, satisfying

σ ∗ − σ(p) = c0m2
1

m0
(p0 − p∗

0) + O
(
ε|p0 − p∗

0|, ε2‖p̂‖
V
2
2

)
. (3.21)

Our analysis requires Lipschitz estimates on the residual F(Φp) for p near p∗.

Lemma 3.11 For p ∈ Dδ the components of the residual F(Φp) given in (3.8) satisfy

‖F2‖L2 � ε1/2|σ − σ ∗| + ε3/2,

‖F3 − F∞
3 ‖L2 + ‖F≥4 − F∞≥4‖L2 � ε1/2

(
‖p̂‖

V
2
4
+ 1
)

,
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and the exponential residual satisfies ‖Fe‖L2 � 1. The overall residual satisfies the Lipschitz
estimate

‖Π0F(Φp)‖L2 � ε5/2|p0 − p∗
0| + ε5/2‖p̂‖

V
2
2
+ ε7/2‖p̂‖

V
2
4
.

Proof The L2-bounds of the difference between Fk and its bulk value for k = 2, 3, 4 follow
from the expressions for F2,F3,F4 given in Lemma 3.7, see [5] for details. The L2-estimate
of Π0F(Φp) follows from comparing it to the zero residual of Φ∗. Indeed we write

‖Π0F(Φp)‖L2 = ‖Π0F(Φp) − Π0F(Φ∗)‖L2 , (3.22)

where Φ∗ is the equilibrium solution associated with bulk density state σ ∗ and interface Γ∗
with parameterization

γ ∗ := γ p∗ + θ0

(
(p1 − p∗

1)E1 + (p2 − p∗
2)E2

)
. (3.23)

obtained by translating Γp∗ to place its center at (p1, p2). The triangle inequality and the
expansion of F = F(Φp) from Lemma 3.7, yield the estimate

‖Π0(F(Φp) − F(Φ∗))‖L2 ≤ ε2‖Π0(F2 − F2(Φ∗))‖L2 + ε3‖Π0(F3 − F3(Φ∗))‖L2

+ε4‖Π0(F≥4 − F≥4(Φ∗))‖L2 + e−�ν/ε‖Fe − Fe(Φ∗)‖L2 .

(3.24)

We use the form of the Fk(Φ∗) residuals to establish that they are Lipschitz in (p0 − p∗
0, p̂).

We observe from Lemma 3.7 that F2 admits the general form F2 = κp f2(zp)(σ −σ ∗
1 ), while

F2(Φ∗) = κ∗ f2(z∗)(σ ∗ − σ ∗
1 ). We deduce that

‖F2−F2(Φ∗)‖2L2 ≤ |σ −σ ∗|2
∫

Ω

κ2
p f 22 (zp) dx+|σ ∗ − σ ∗

1 |2
∫

Ω

|κp f2(zp) − κ∗ f2(z∗)|2 dx .
Note that the function f2 has far field zero. The integrals contribute a factor of ε since
the integrands are bounded and they support near the interfaces Γp and Γ∗, respectively.
We decompose the second integrand as κp

(
f2(zp) − f2(z∗)

) + (κp − κ∗
)
f2(z∗) which we

bound by |zp − z∗| + |κp − κ∗| in its support set. Using the estimates of Lemmas 6.6, 6.2
and 6.1, recalling |σ ∗ − σ ∗

1 | � ε we arrive at the bound

‖Π0F2 − Π0F2(Φ∗)‖2L2 � ε|σ − σ ∗|2 + ε
(

|p0 − p∗
0|2 + ‖p̂‖2

V
2
2

)
. (3.25)

The L2 bounds of F3−F3(Φ∗) and F≥4−F≥4(Φ∗) involve higher derivatives of the perturbed
curve γ p from (2.13) which are controlled with through (2.15), specifically

‖ε2Δspγ
(k)
p ‖L2(Ip)

+ ‖γ (k)
p − γ (k)∗ ‖L2(I ) � ‖p̂‖

V
2
k
+ |p0 − p∗

0|.
Using the bound above and the form of F3,F4 in Lemma 3.7, we establish that

‖Π0F3 − Π0F3(Φ∗)‖2L2 + ‖Π0F4 − Π0F4(Φ∗)‖2L2 � ‖p̂‖2
V
2
4
+ ε−1|p0 − p∗

0|2. (3.26)

The term Fe incorporates residual from φe and from the dressing process. However φe in
Lemma 3.7 cancels with the corresponding term in Φ∗, and this component of the residual
is due solely to the dressing process, which makes a contribution

‖Fe − Fe(Φ∗)‖L2 � ‖p̂‖
V
2
4
. (3.27)

Combining these bounds in (3.25)–(3.27) with (3.24), applying Corollary 3.10 completes the
proof. ��
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3.2 Linearized Operator and Slow Spaces

The nonlinear stability analysis hinges upon the properties of the linearization of the flow
(1.11) about a bilayer distribution Φp introduced in Lemma 3.7. The linearization takes the
form Π0Lp where

Lp := δ2F
δu2

∣∣∣
u=Φp

=(ε2Δ − W ′′(Φp) + εη1)(ε
2Δ − W ′′(Φp))

− (ε2ΔΦp − W ′(Φp))W
′′′(Φp) + εηdW

′′(Φp),

(3.28)

denotes the second variational derivative of the free energy F at Φp and ηd := η1 − η2.
When restricted to functions with support within the Γ 2�

p , the Cartesian Laplacian admits the
expansion (2.24) and the leading order operator takes the form

Lp,0 := L2
p, where Lp := Lp,0 − ε2Δsp . (3.29)

An analysis of the spectrum of the leading order operator Lp,0 led to the definition of slow
spacesZ0

p andZ1
p , called the pearling andmeander spaces respectively. For eachp ∈ Dδ these

slow spaces are spanned by the products of a collection of Laplace–Beltrami eigenmodes
of Γp and the associated dressings of the normalized ground-state and first excited state
eigenvectors, ψ0 and ψ1 respectively, of the operator L0 defined in Lemma3.1. These spaces
are sufficiently accurate approximations of the small-eigenvalue eigenspaces ofL0 to generate
coercivity estimates of this operator on the orthogonal compliment of the combined slow
space Z = Z0 + Z1, see [10, 14, 17]. However these spaces are only invariant under the
action of the full operator Lp up to order of ε. This is not sufficient to close the nonlinear
energy estimates required to establish stability and accurately recover the normal velocity.
Consequently the modified space slow spaces were introduced in [5] and are summarized
below. This definition uses the dressed and scaled version ψ̃k(zp) of ψ̃k defined as

ψ̃k(zp) := ε−1/2ψk(zp).

Definition 3.12 (Slow spaces) For k = 0, 1, fixed ρ > 0, and p ∈ Dδ we introduce the
disjoint index sets:

�k = �k(ρ) :=
{
j
∣∣�2

ki := (λk + ε2β2
i

)2 ≤ ρ
}

, and � := �0 ∪ �1, (3.30)

and the slow space Z∗ = Z∗(p, ρ) ⊂ L2, as the union of the pearling and meander spaces,
Z0∗ and Z1∗ ,

Z∗ := Z0∗ ∪ Z1∗ with Zk∗ := span
{
Zki
p,∗, i ∈ �k

}
, k = 0, 1. (3.31)

The modified basis functions take the form

Zki
p,∗ :=

(
ψ̃k + εϕ̃1,i

)
θ̃i + ε2ϕ̃2,i θ̃

′
i , (3.32)

for k = 0, 1 and i ∈ �k . For l = 1, 2 the correction functions ϕ̃l,i = ε−1/2ϕl,i (zp, γ p) ∈ H2

(see Definition 3.5) have far-field value zero and are defined in Lemma 4.6 of [5] so as to
satisfy

∫
R

ϕl,i (z, γ p)ψk(z) dz = 0, i ∈ �k, k = 0, 1. (3.33)
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For k = 0, 1 and i ∈ �k the leading order term in Zki
p,∗, obtained by setting ϕl,i = 0, is

denoted

Zki
p := ψ̃I (i)θ̃i . (3.34)

The Laplace–Beltrami eigenvalues satisfy the classicalWeyl’s Law asymptotics β j ∼ j , [22]
or (2.4), from which we deduce that

N0 := |�0| ∼ ε−1ρ1/2, N1 := |�1| ∼ ε−1ρ1/4. (3.35)

A key point in the analysis is that for ρ sufficiently small, independent of ε, the
Laplace–Beltrami eigenvalues associated to the pearling index set �0 are asymptotically
well-separated from those of the meander index set �1. Specifically with this restriction on
ρ it is straightforward to determine C > 0, independent of ε, such that the pearling-meander
gap

|βi − β j | ≥ Cε−1, i ∈ �0, j ∈ �1, (3.36)

holds. This gap, together with (2.15) and (3.33), affords the basis functions ofZ∗ an enhanced
orthogonality that is essential to establishing Lemma 3.13. As outlined in Section 4.2 of [5],
for i, j ∈ �, they satisfy

〈
Z I (i)i
p,∗ , Z I ( j) j

p,∗
〉
L2

=
⎧⎨
⎩

(1 + p0) δi j + O
(
ε2, ε2‖p̂‖

V
2
2

)
Ei j , I (i) = I ( j);

O
(
ε2, ε2‖p̂‖

V
2
4

)
Ei j , I (i) �= I ( j).

(3.37)

Here E is a norm-one (N0 + N1) × (N0 + N1) matrix, and here and below the indicator
function I takes values I (i) = 0 if i ∈ �0 and I (i) = 1 if i ∈ �1.

We denote the L2 linear projection on the subspace Zk∗ by ΠZk∗ for k = 0, 1. In

particular, for any u ∈ L2 there exists a unique vector (ui )i∈�k ∈ l2(RNk ) such that
ΠZk∗ u =∑i∈�k

ui Zki
p,∗.When restricted toZ∗ the bilinear formof the full linearized operator

Π0Lp
∣∣Z∗ , induces an (N0 + N1) × (N0 + N1) matrix M

∗ with entries

M
∗
i j = 〈Π0LpZ

I (i)i
p,∗ , Z I ( j) j

p,∗ 〉L2 . (3.38)

We decomposeM∗ into a block structure corresponding to the pearling and meander spaces,

M
∗ =

(
M

∗(0, 0) M∗(0, 1)
M

∗(1, 0) M∗(1, 1)

)
, (3.39)

where the blocks has entriesM∗
i j (k, l) = M

∗
i j for i ∈ �k, j ∈ �l . A detailed analysis ofM∗

is given in [5]. In particular, the dynamic pearling stability condition

(PSC) σ S1 + ηdλ0 > 0, (3.40)

compares the bulk density σ = σ(p) to the ground state eigenvalue λ0 of L0 in terms of
the shape-factor S1 which depends only upon the form of the well W , see [17]. When the
pearling-stability condition holds the pearling sub-block M

∗(0, 0) is positive definite, that
is,

qTM∗(0, 0)q ≥ ε

2
(1 + p0)(σ S1 + ηdλ0)‖q‖2l2 , for all q ∈ R

N0 . (3.41)

The modified slow spaces Z0∗ and Z1∗ , together with the pearling–meander gap, reduces
the strength of couplings between the meander space and the pearling space, (3.37), as well
as between the meander space and the fast decay space Z⊥∗ . The later coupling becomes
O(ε2) as recorded in the following Lemma.
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Lemma 3.13 For ε0, ρ, and δ sufficiently small in terms of |Ω| and given system parameters.
Then for all ε ∈ (0, ε0) we have the meander-fast decay space coupling bound

‖ΠZ1∗Lpv
⊥‖L2 �

(
ε2 + ε2‖p̂‖

V
2
4

)
‖v⊥‖L2

for any v⊥ ∈ (Z1∗ )⊥ and p ∈ Dδ .

Proof This is a direct adaptation of Theorem 4.11 of [5]. ��
The bilinear form induced by the linearized operator Π0Lp is uniformly coercive on the

set perpendicular to the slow space Z∗.

Lemma 3.14 Fix ρ, ε0, δ > 0 sufficiently small with smallness depending only on the domain
and given system parameters. Then there exists C > 0 such that for all ε ∈ (0, ε0), p ∈ Dδ,

and w ∈ Z⊥∗ the following coercivity estimates hold

〈Lpw,w〉 >L2 ≥ Cρ2 (ε4‖w‖2H2 + ‖w‖2L2

)
and ‖Lpw‖2L2

≥ Cρ2〈< Lpw,w〉 >L2 . (3.42)

Proof This is a direct adaptation of Theorem 4.13 of [5]. ��

4 Nonlinear Stability and theMain Results

In this section the nonlinear estimates are developed which establish the main result: stability
of the bilayer manifold defined around the circular base interface. Moreover the normal
velocity of the interfaces Γp is captured through the projection of the flow onto the modified
meander space. Technical details involving the projected flow are postponed to Sect. 5.

4.1 Decomposition of the Flow

To define the nonlinear manifold projection we restrict the perturbation parameters p to lie
in a smaller space Om,δ ⊂ Dδ , defined in (2.8), given by

Om,δ :=
{
p ∈ R

N1
∣∣ |p0| + ‖p̂‖

V
2
3

≤ mδ
}

. (4.1)

We denote by VR(Mδ,Om,δ) the tubular neighborhood of thickness R in the H2 inner norm,

‖u‖H2
in

:=
√

‖u‖2
L2(Ω)

+ ε4‖u‖2
H2(Ω)

, (4.2)

that surrounds the bilayer manifold Mδ restricted to Om,δ ,

VR(Mδ,Om,δ) :=
{
u ∈ H2

∣∣ min
p∈Om,δ

‖u − Φp‖H2
in

< R, 〈u − b−〉L2 = εM0

|Ω|
}

. (4.3)

Definition 4.1 (Manifold projection) Let U be a neighborhood of Mδ . We say ΠMδu :=
Φp(σ ) is a projection of U onto Mδ and Π⊥

Mδ
u := v⊥ is its complement if for each u ∈ U

there exist a unique p ∈ Dδ and mass-free meander-orthogonal perturbation v⊥ ∈ (Z1∗ (p))⊥
such that

u = Φp + v⊥. (4.4)

We call p and Γp the meander parameter vector and interface associated to u, respectively.
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The following, from Lemma 5.2 of [5], establishes the existence of the manifold projection.

Lemma 4.2 LetMδ = Mδ(Γ0, M0) be the bilayer manifold of Definition 3.9. Let δ, ε0 > 0
be sufficiently small, then for all ε ∈ (0, ε0) there exists amanifold projectionΠMδ defined on
the tubular neigborhood U = Vδε(Mδ,O2,δ). Moreover, for u ∈ U of the form u = Φp0 + v

with p0 ∈ Dδ and massless perturbation v ∈ H2 satisfying ‖v‖H2
in

≤ δε, then u’s meander

parameter vector p and meander-orthogonal perturbation, v⊥ satisfy

‖p − p0‖l2 � ε1/2‖v‖L2 ; ‖v⊥‖H2
in

� ‖v‖H2
in
.

Assume a priori that a solution u = u(t) of the FCH gradient flow satisfies u ∈
VCε5/2(Mδ,O2,δ) on the interval [0, T ]. Then for ε0 sufficiently small, depending on δ,

we have u ∈ U and may decompose u as

u(x, t) = Φp(x; σ) + v⊥(x, t), v⊥ ∈ (Z1∗)⊥,

∫
Ω

v⊥ dx = 0. (4.5)

The FCH gradient flow (1.11) can be written in terms of the pair (p, v⊥) = (p(t), v⊥(t))with
the bulk density parameter σ = σ(p(t)) given through (3.13). Substituting the decomposition
(4.5) into the FCH gradient flow leads to an equation for Φp and v⊥:

∂tΦp = −Π0F(Φp) + R[v⊥], (4.6)

where R[v⊥] is the meander-orthogonal remainder contributed by v⊥. Specifically

R[v⊥] := −∂tv
⊥ − Π0Lpv

⊥ − Π0N(v⊥), (4.7)

where N(v⊥) is the genuinely nonlinear term defined by

N(v⊥) := F(Φp + v⊥) − F(Φp) − Lpv
⊥. (4.8)

A key to the nonlinear stability analysis is that the operatorΠ0Lp is uniformly coercive on
the space L2-orthogonal to the modified slow spaceZ∗(p). However the modified slow space
includes the modified pearling space Z0∗ (p) on which the operator is only weakly coercive,
see (3.41). This dichotomy motivates a further decomposition of the meander-orthogonal
perturbation v⊥ in pearling and “fast modes” as

v⊥ = Q(x, t) + w(x, t), w ∈ Z⊥∗ (p, ρ), (4.9)

where Q = ΠZ0∗ v⊥ ∈ Z0∗ admits the Galerkin expansion

Q =
∑
j∈�0

q j Z
0 j
p,∗,

for some q = q(t) = (qi )i∈�0 . The decomposition is well defined by Lemma 4.10 of [5]
which follows from the enhanced orthogonality estimate (3.37) and establishes the bounds

‖Q‖H2
in

+ ‖w‖H2
in

� ‖v⊥‖H2
in
; ‖Q‖H2

in
∼ ‖q‖l2 .

The decomposition (4.9) of v⊥, allows the evolution Eq. (4.6) to be rewritten in terms of Q
and w:

∂t Q + Π0LpQ + ∂tw + Π0Lpw = −∂tΦp − Π0F(Φp) − Π0N(v⊥). (4.10)

The orthogonality of (4.9) and the coercivity of Lp on pearling and fast spaces induces L2

estimates on q (Lemma 6.15) and H2-estimates on w (Lemma6.16).
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The following result, Theorem 5.13 of [5], establishes that the bilayer manifold for an
admissible pair (Γ0, M0), see (3.20), is stable up to its boundary. Specifically, orbits that start
within a thin tubular neighborhood of Mδ stay within a comparable tubular neighborhood
until such as time, T , that themeander parameter vector p reaches the boundary of the domain
Oδ . The result requires a strengthening of the admissible pair condition that correlates the
system mass M0 and the base interface Γ0, here expressed in terms of the difference between
the bulk parameter σ0 and its leading order equilibrium value σ ∗

1 .

Theorem 4.1 (Theorem 5.13 [5]) Consider the mass preserving flow (1.10)–(1.11) subject
to periodic boundary condition and initial data u0 ∈ Vε5/2(Mδ(Γ0, M0),Oδ). Let (Γ0, M0)

be a admissible pair that satisfies

|σ0(|Γ0|, M0) − σ ∗
1 | � δ,

where σ ∗
1 = σ ∗

1 (η1, η2), introduced in (1.8), satisfies the equilbrium pearling stability con-
dition (PSC∗), (1.15). Then for δ small enough depending only on domain and system
parameters, there exists ε0 such that for all ε ∈ (0, ε0) the solution u lies in the projec-
tion valid domain U(Mb) so long as p ∈ O2,δ .

Moreover the following statements hold on the residence interval [0, T ].
1. The solution of the mass preserving flow (1.11) can be decomposed as

u(x) = Φp(x; σ) + v⊥(x), v⊥(x) = Q(x) + w(x) (4.11)

where Φp ∈ Mδ(Γ0, M0) and Q = ΠZ0∗ v⊥ ∈ Z0∗ is the projection of v⊥ to the pearling
slow space.

2. The meander-orthogonal perturbation v⊥ remains in VCε5/2ρ−2 for some positive constant
C, that is

‖v⊥‖H2
in

� ‖w‖H2
in
(t) + ‖q‖l2(t) ≤ Cε5/2ρ−2, ∀t ∈ [0, T ]. (4.12)

4.2 Nonlinear Stability of the Bilayer Manifold

The heart of the analysis lies in the bounds on the dynamic meander parameter vector p.
These are recovered via energy and continuity arguments which hinge on an appropriate
choice of the spectral parameter ρ which controls the dimension of the meander space. The
initial energy in the system is restricted to control the extend of the transient excursion. This
energy is measured principally by the difference between the initial and equilibrium curve
length, |p0 − p∗

0|, and secondarily by the weighted V
2
2- and V

2
3-norms of p̂ that control the

deviation of the initial curve from circularity. Correspondingly we introduce the parameter
set

O◦
m,δ :=

{
p ∈ R

N1
∣∣ ε−1/2|p0 − p∗

0| + ‖p̂‖
V
2
3

< mδ
}

. (4.13)

As usual we omit the subscript m if m = 1. Our analysis requires thatO◦
m,δ ⊂ Om,δ , defined

in (4.1). This containment is established in the following Lemma.

Lemma 4.3 Fix δ > 0, and let ε0 > 0 be sufficiently small. Then for any admissible pair
(Γ0, M0)whose base bulk density σ0, (see (3.15)), is sufficiently close to the equilibrium bulk
density σ ∗

1 , (see (1.8)), so as to satisfy

|σ0(Γ0, M0) − σ ∗
1 | ≤ c0m2

1

2m0
δ, (4.14)
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then O◦
m,δ ⊂ Om,δ for m ≥ 1.

Proof Pick any p ∈ O◦
m,δ , we show p ∈ Om,δ for m ≥ 1. By the definition of Om,δ in (4.1),

it suffices to show |p0| ≤ δ. From Lemma 3.8 and the triangle inequality we have

|p0| ≤ m0

c0m2
1

|σ(p) − σ ∗
1 | + m0

c0m2
1

|σ ∗
1 − σ0| + Cε.

Recalling σ ∗ = σ ∗
1 + O(ε) , the bound above, together with Corollary 3.10 and |p0 − p∗

0| ≤
mε1/2 for p ∈ Om,δ yields

|p0| ≤ |p0 − p∗
0| + δ

2
+ Cε < δ,

for ε ∈ (0, ε0) and ε0 sufficiently small with respect to δ. ��

Our main result establishes the asymptotic stability of the bilayer manifold with circular
base interface Γ0. More specifically we assume that (Γ0, M0) forms an admissible pair, that
the base interface Γ0 is circle, and the pair satisfies (4.14) for which σ ∗

1 = σ ∗
1 (η1, η2),

introduced in (1.8), satisfies the equilibrium pearling stability condition (PSC∗), (1.15).

Theorem 4.2 Consider the mass preserving gradient flow (1.10)–(1.11) subject to periodic
boundary conditions. Let (Γ0, M0) be an admissible pair that satisfies (4.14), and σ ∗

1 =
σ ∗
1 (η1, η2) given in (1.8) satisfies the equilibrium pearling stability condition (PSC∗), (1.15).

For δ, ρ, and ε0 sufficient small, then for all ε ∈ (0, ε0), the solution u of the mass preserving
gradient flow arising from initial data u0 ∈ Vε5/2(Mδ(Γ0, M0),O◦

δ ) defined in (4.3), remains
in a slightly bigger set for all t ∈ [0,∞). Indeed the solution admits the decomposition (4.11)
and there are constants C, c > 0 independent of δ, ρ, ε ∈ (0, ε0), and choice of initial data
for which the orthogonal perturbation v⊥ satisfies

‖v⊥‖H2
in

≤ Cε5/2ρ2, ‖v⊥‖H2
in

≤ Ce−cε4t , (4.15)

and the projected meander parameter vector relaxes to an equilibrium value p∗ =
(p∗

0, p
∗
1,2, 0) according to

|p0 − p∗
0|2 + ε‖p̂‖2

V
2
2

≤ 4εδ2e−cε4t . (4.16)

The equilibrium curve length parameter p∗
0 admits the approximation

p∗
0 = − m0

c0m2
1

(σ ∗
1 − σ0) + O(ε), σ ∗

1 = −η1 + η2

2m0
m2

1, σ0 = M0 − 2πm0

B∞
2 |Ω| + O(ε2),

(4.17)

where the positive constants c0,m0,m1 are defined in (3.15) and (1.6)while η1, η2 are system
parameters. For all k ≤ 4 we have the temporal L2 bound

ε4
∫ ∞

0
ecε

4t‖p̂‖2
V
2
k
dt ≤ 4δ2. (4.18)

The translation parameters p1, p2 remain within O(δ) of their initial values p1(0), p2(0) and
converge to p∗

1, p
∗
2 as t → ∞.
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Proof Since u0 ∈ Vε5/2(Mδ,O◦
δ ), there exist p0 ∈ O◦

δ and v0 ∈ H2
in satisfying ‖v0‖H2

in
≤

ε5/2 such that u0 = Φp0 +v0. Lemma 4.2 affords the decomposition u0 = Φp(0) +v⊥
0 where

Φp(0) = ΠMδu0 and v⊥
0 is the orthogonal perturbation. The distance from p(0) to p0 ∈ O◦

δ

can be bounded by

‖p(0) − p0‖l2 � ε3, ‖p̂(0) − p̂0‖V2
3

� N 3
1 ‖p̂(0) − p̂0‖l2 � ρ3/4,

where we also applied Lemma 6.1 and bounded N1 from (3.35). Note that p0 ∈ O◦
δ . Hence

for ε0, ρ small enough depending on δ, the triangle inequality implies that the initial meander
parameter components satisfy

ε−1/2|p0(0) − p∗
0| + ‖p̂(0)‖

V
2
3

≤ 3δ

2
, (4.19)

and there exists T > 0 such that

(A) ε−1/2|p0(t) − p∗
0| + ‖p̂‖

V
2
3
(t) < 2δ, ‖ṗ‖l2(t) < 2ε3 ∀t ∈ [0, T ). (4.20)

We show T = ∞ in the following.
The equilibrium pearling stability condition (PSC∗) holds by assumption. Under the a

priori assumption (A) the dynamic pearling stability condition (PSC) (3.40) holds uniformly.
Indeed, since σ ∗ = σ ∗

1 +O(ε), (PSC) holds if σ stays sufficiently close to σ ∗, which follows
from Corollary 3.10 by

|σ − σ ∗| � |p0 − p∗
0| + ε2‖p̂‖

V
2
2

� ε1/2δ. (4.21)

Choosing ε0 small enough the dynamic pearling stability condition (PSC) holds uniformly
on [0, T ] and Theorem 4.1 applies. From (4.12) this in turn affords the following uniform
bounds on w,q

〈
Lpw,w

〉
L2 � ‖w‖2

H2
in

� ε5ρ−2, ‖q‖2l2 � ε5ρ−4 ∀t ∈ [0, T ). (4.22)

Since v⊥ = Q + w is an orthogonal decomposition and ‖Q‖H2
in

∼ ‖q‖l2 , we may estimate

v⊥ with the aid of the coercivity Lemma 3.14,and the nonlinear term N(v⊥) from Lemma
6.17,

‖v⊥‖2
H2
in

� ρ−2 〈
Lpw,w

〉
L2 + ‖q‖2l2 , ‖N(v⊥)‖2L2 � ε−2

(
ρ−2 〈

Lpw,w
〉
L2 + ‖q‖l2

)2
.

(4.23)

The first H2
in bound of v⊥ on [0, T ) in (4.15) follows from (4.23), particularly,

‖v⊥‖H2
in
(t) � ε5/2ρ−2, ∀t ∈ [0, T ). (4.24)

The estimate above and assumptions in (4.20), supersede assumptions in (5.1) of Sect. 5 so
long as ε0 � δ2ρ4. Hence the results of Sect. 5 apply on [0, T ). Particularly Lemma 5.14
applies. Combining these estimates (4.22)–(4.23) with Lemma 5.14 recovers the a priori
estimate of ‖ṗ‖l2 in (4.20). In fact, for ε0 small enough we have

‖ṗ‖l2 ≤ ε3 ∀t ∈ [0, T ). (4.25)

For future use, we may rewrite the bounds in (4.23) as

‖v⊥‖2
H2
in

� ρ−4‖Lpw‖2L2 + ‖q‖2l2 , ‖N(v⊥)‖2L2 � ε3ρ−8‖Lpw‖2L2 + ε3ρ−4‖q‖2l2 .
(4.26)
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To recover the a priori assumptions (A) it remains to bound the interface length residual
|p0 − p∗

0| and ‖p̂‖
V
2
3
. From Lemma 5.14 and (4.26) we obtain the dynamic bound on ‖ṗ‖l2

‖ṗ‖2l2 � ε6|p0 − p∗
0|2 + ε8‖p̂‖2

V
2
4
+ ε4ρ−8‖Lpw‖2L2 + ε4ρ−4‖q‖2l2 . (4.27)

We break the remainder of the proof into three steps.

Step 1: Uniform estimates of |p0 − p∗
0| and p̂ in V

2
3 We introduce a mixed energy:

E1(t) := ‖p̂‖2
V
2
3
+ ε−1|p0 − p∗

0|2 + ε−2ρ−10 〈
Lpw,w

〉
L2 + ε−3ρ−5‖q‖2l2 ,

and a positive time-dependent function

A1(t) := ε4‖p̂‖2
V
2
5
+ ε2|p0 − p∗

0|2 + ε−2ρ−10‖Lpw‖2L2 + ε−2ρ−5‖q‖2l2 .
Combining the first estimate on w from Lemma 6.16, q-estimate from Lemma 6.15, and the
V
2
3-estimate of p̂ from Lemma 5.15, and the ‖ṗ‖l2 bound (4.27) we find a revised positive

constant c∗ independent of ε, ρ, δ for which the E1-dissipation inequality

d

dt
E1(t) + c∗A1(t) � B1(t) + ε5ρ−10 + ε−2‖v⊥‖2L2 + ε−5‖N(v⊥)‖2L2 (4.28)

holds. Here we have introduced

B1(t) :=ε4(δ2 + ερ−10 + ε2ρ−2)‖p̂‖2
V
2
4
+ ε2(δ2 + ερ−10)|p0 − p∗

0|2

+ ε−2ρ−10(ρ + ερ−8)‖Lpw‖2L2 + ε−2ρ−5(ε2ρ−8 + ε3ρ−9)‖q‖2l2 .
For ρ ≤ 1 there exists a constant C , depending only on system parameters, such that

B1(t) ≤ C(δ2 + ερ−10 + ρ)A1(t). (4.29)

This implies the existence of ε1 > 0, independent of ε, δ, ρ, such that for any combination
of ε, δ, ρ that satisfies

δ2 + ερ−10 + ρ < ε1, (4.30)

the function B1(t) can be absorbed into the positive term A1(t) on the left-hand side of the
E1-dissipation inequality. Particularly this can be achieved by choosing positive parameters
δ, ρ small enough independent of ε, and ε ∈ (0, ε0) with ε0 small enough, depending on
ρ, δ. The bounds on the orthogonal perturbation v⊥ and nonlinear terms N(v⊥) from (4.26)
and estimates on w,q from (4.22) imply

d

dt
E1(t) + c∗

2
A1(t) � ε5ρ−10.

Since ‖p̂‖
V
2
3

≤ ‖p̂‖
V
2
5
, we deduce that A1(t) ≥ ε4E1(t) and E1-dissipation inequality above

reduces to the simple form

d

dt
E1(t) + c∗

2
ε4E1(t) � ε5ρ−10.

Multiplying by ec∗ε
4t/2 and integrating, we derive the uniform bound

E1(t) ≤ e−c∗ε4t/2E1(0) + Cερ−10.

In view of the definition of E1(0) and the initial bound, (4.19) and (4.22) with t = 0, the
right hand side is strictly less than 4δ2 for ε0 small enough depending on ρ, δ. Again from the
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definition of E1(t), the first assumption in (A) holds uniformly on [0, T ), which combined
with the l2-bound of ṗ in (4.25) yields T = ∞.

Step 2. Decay estimates To obtain a decay estimate, we introduce a second mixed energy

E2(t) := ‖p̂‖2
V
2
2
+ ε−1|p0 − p∗

0|2 + ρ−10〈Lpw,w〉L2 + ε−1ρ−5‖q‖2l2 (4.31)

and a time-dependent function

A2(t) := ε4‖p̂‖2
V
2
4
+ ε2|p0 − p∗

0|2 + ρ−10‖Lpw‖2L2 + ρ−5‖q‖2l2 . (4.32)

From the definition of E2, the estimates (4.19) and (4.22) yield the initial bound

E2(0) < 4δ2. (4.33)

Combining the second estimate on w from Lemma 6.16, the q-estimate from Lemma 6.15,
and the V2

2-estimate on p̂ from Lemma 5.14, yields a revised constant c∗ > 0 independent
of ε, ρ, δ such that

d

dt
E2(t) + c∗A2(t) � ε−1ρ−10‖ṗ‖2l2 + ε‖v⊥‖2L2 + ε−3‖N(v⊥)‖2L2 . (4.34)

The remainder of Step 2 follows the approach of Step 1. We employ the upper bound on ṗ
from (4.27) and the estimates on v⊥,N(v⊥) from (4.26) to eliminate these terms from the
right-hand side so long as δ, ρ and ε are small enough satisfying (4.30). We deduce that

d

dt
E2(t) + c∗

2
A2(t) ≤ 0,

Since ‖p̂‖
V
2
2

≤ ‖p̂‖
V
2
4
, the coercivity of Lp from (3.42) allows us to bound the positive term

on the left-hand side from below, A2(t) ≥ ε4E2(t). This yields the E2-dissipation inequality
d

dt
E2(t) + c∗ε4

4
E2(t) + c∗

4
A2(t) ≤ 0.

Multiplying both sides by ec∗ε
4t/4 and integrating with respect to time from 0 to t yields

ec∗ε
4t/4E2(t) +

∫ t

0
ec∗ε

4τ/4A2(t) dτ ≤ E2(0),

from which we deduce the asymptotic decay of the E2 on the ε−4 time-scale,

E2(t) ≤ e−c∗ε4t/2E2(0) ∀t ∈ [0,∞). (4.35)

The decay estimates in (4.15)–(4.16) follow with a use of the first inequality in (4.23).
Moreover the relaxation of the weighted norms is controlled by the initial energy,∫ ∞

0
ec∗ε

4τ/4A2(τ ) dτ ≤ E2(0). (4.36)

The bound (4.33) on E2(0), and definition of A2 in (4.34) yield the temporal estimate (4.18)

for k = 4, which implies them for k < 4.

Step 3. Relaxation of the translation parameters The decay from step 2 shows that the
translation parameters converge to some equilibrium points close to their initial values. In
fact for k = 1, 2 and any t1 ≤ t2 on [0,∞)

|pk(t2) − pk(t1)| ≤
∫ t2

t1
|ṗk(τ )| dτ ≤

∫ t2

t1
‖ṗ‖l2 dτ,
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which combined with (4.27) implies

|pk(t2) − pk(t1)| �
∫ t2

t1

(
ε3|p0 − p∗

0| + ε4‖p̂‖
V
2
4
+ ε2ρ−4‖Lpw‖L2 + ε2ρ−2‖q‖l2

)
dτ.

We use the weighted norm relaxation estimate (4.36) and Hölder’s inequality to bound the
right-hand side. The integral of the |p0 − p∗

0|-term satisfies
∫ t2

t1
ε3|p0 − p∗

0| dτ ≤ ε3
(∫ t2

t1
ec∗ε

4τ/4|p0 − p∗
0|2 dτ

)1/2 (∫ t2

t1
e−c∗ε4τ/4 dτ

)1/2
,

�
(∫ ∞

0
ec∗ε

4τ/4ε2|p0 − p∗
0|2 dτ

)1/2
e−c∗ε4t1/8 � e−c∗ε4t1/8E1/2

2 (0).

The other terms have similar or better bounds and from (4.33) we obtain

|pk(t2) − pk(t1)| � e−c∗ε4t1/8δ.

We deduce that p1,2(t) converges to some unique equilibrium value p∗
1,2 as time tends to ∞.

Moreover, taking t1 = 0, t2 = t yields

|pk(t) − pk(0)| � δ, ∀t ∈ [0,∞).

We conclude that p1,2(t) stays in a Cδ-neighborhood of its initial datum for some positive
constant independent of ε, ρ, δ. The proof is complete. ��

4.3 Recovery of the Normal Velocity

The projection ΠMδ of an orbit u = u(t) of the system (4.6) onto the bilayer manifoldMδ ,
defines the meander parameters and induces a normal velocity on the associated interface
Γp(t). Some elements of this analysis are postponed to Sect. 5 to streamline the presentation.
As indicated in Remark 5.4 and Eq. (5.28) of Corollary 5.8, the flow induced by the manifold
projection, ∂tγ p ·np, is equivalent at leading order to a finite dimensional Galerkin projection
of a geometric flow. More specifically, at leading order the flow satisfies

ΠG1

(
∂tγ p · np − Vp

) = 0, (4.37)

with the velocity given by a rescaled, p-parmeterized version of VRCL, (1.9),

Vp := ε3
m0

m2
1

(σ ∗
1 − σ)κp − ε4

(
Δspκp + κ3

p

2
+ ακp

)
, (4.38)

and ΠG1 : L2(Ip) �→ L2(Ip) is the projection onto the Galerkin space G1 ⊂ L2(Ip)

spanned by the first N1 Laplace–Beltrami modes of Γp,

ΠG1 f := 1

1 + p0

N1−1∑
j=0

θ̃ j

∫
Ip

f (s̃p)θ̃ j (s̃p) ds̃p. (4.39)

There are two sources of error that differentiate the flow induced by themanifold projection
and that defined by Vp. The first are the lower order terms in (4.37). The second is the fact
that the conditions on ρ, in particular those imposed in (4.30) require that ε−1/10 � ρ � 1
and hence from the approximation (3.35) the dimension N1 of the Galerkin expansion must
reside in the tight range

ε− 39
40 � N1 � ε−1. (4.40)
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Thus there is an ε-dependent Galerkin truncation error. The following result quantifies these
errors.

Proposition 4.4 There exists a C > 0, independent of ρ, δ and ε0 such that for all ε ∈ (0, ε0)
and p ∈ O◦

2,δ the normal velocity satisfies the error bound

‖∂tγ p · np − Vp‖L2(Ip)
≤ C

(
ε9/2ρ−4 + ε4δ‖p̂‖

V
2
4

)
. (4.41)

Proof From the triangle inequality we have the relation

‖∂tγ p · np − Vp‖L2(Ip)
≤ ∥∥ΠG1

(
∂tγ p · np − Vp

)∥∥
L2(Ip)

+
∥∥∥Π⊥

G1
∂tγ p · np

∥∥∥
L2(Ip)

+
∥∥∥Π⊥

G1
Vp
∥∥∥
L2(Ip)

, (4.42)

where Π⊥
G1

= I−ΠG1 is the complement to the Galerkin projection onto G1 ⊂ L2(Ip), the
space spanned by the first N1 Laplace–Beltrami eigenmodes. For the first term, from (5.28)
of Corollary5.8 and Lemma5.11 we find that
∥∥ΠG1

(
∂tγ p · np − Vp

)∥∥
L2(I p)

� ε−1‖v⊥‖L2‖ṗ‖l2 + (ε5/2 + ε5/2‖p̂‖
V
2
4
)‖v⊥‖L2 + ε1/2‖N(v⊥)‖L2

+ ε4|σ ∗
1 − σ | + ε5 + ε5‖p̂‖

V
2
4
+ ε‖ṗ‖l2 .

From the estimates (4.22)–(4.23) and the relation ‖v⊥‖L2 ≤ ‖v⊥‖H2
in
arising from the defi-

nition of H2 inner norm, see (4.2), we bound the L2-norm of v⊥ and N(v⊥) as

‖v⊥‖L2 � ε5/2ρ−2, ‖N(v⊥)‖L2 � ε4ρ−4.

With these estimates, (4.21) combined with (4.16), and |σ ∗ − σ ∗
1 | ≤ ε, then for ε0 small

enough depending on ρ, the first term on the right-hand side of (4.42) can be estimated as
∥∥ΠG1

(
∂tγ p · np − Vp

)∥∥
L2(Ip)

� ε9/2ρ−4 + ε5ρ−2‖p̂‖
V
2
4
+ ε‖ṗ‖l2 . (4.43)

Bounding the last two terms in (4.42) requires a standardSobolev estimate of the L2 projection
to the high frequency space G⊥

1 in terms of H1-norm of a function. In fact for any function
f = f (sp) ∈ H1(Ip),

‖Π⊥
G1

f ‖L2(Ip)
≤ β−1

N1
‖ f ‖H1(Ip)

� ερ−1/4‖ f ‖H1(Ip)
. (4.44)

Here we used βN1 ∼ N1 with N1 bounded from below by (3.35). Applying the Sobolev
estimate (4.44) twice to ∂tγ p · np and utilizing the identity (5.4) yields the bound

‖Π⊥
G1

∂tγ p · np‖L2(Ip)
� ε2ρ−1/2

∥∥∥∑
j∈�1

ṗ jξ j

∥∥∥
H2(Ip),

where (ξ j ), with its components given in Lemma 6.6, is bounded in H2(Ip)-norm, inde-
pendent of ε for all p ∈ O2,δ . Hence for ε ∈ (0, ε0) and ε0 � ρ we deduce that

‖Π⊥
G1

∂tγ p · np‖L2(Ip)
� ε‖ṗ‖l2 . (4.45)

To bound the last term in (4.42), we deduce from the definition of Vp in (4.38) and triangle
inequality that

‖Π⊥
G1

Vp‖L2(I p) � ε3|σ − σ ∗
1 |‖Π⊥

G1
κp‖L2(I p) + ε4‖Π⊥

G1
Δspκp‖L2(I p)

+ ε4‖Π⊥
G1

κ3
p‖L2(I p).
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From the Corollary 6.3 and the estimate (4.21), since p ∈ O◦
2,δ we have

‖Π⊥
G1

Vp‖L2(Ip)

(
ε3|σ − σ ∗

1 | + ε4
) ‖p̂‖

V
2
2
‖p̂‖

V
2
3
+ ε4‖p̂‖

V
2
2
‖p̂‖

V
2
4

� ε9/2ρ−1/4 + ε4‖p̂‖
V
2
2
‖p̂‖

V
2
4
.

(4.46)

Returning the estimates (4.43) and (4.45)–(4.46) to (4.42) we obtain

‖∂tγ p · np − Vp‖L2(Ip)
� ε9/2ρ−4 + ε4‖p̂‖

V
2
2
‖p̂‖

V
2
4
+ ε‖ṗ‖l2 .

The l2-bound of ṗ with p ∈ O◦
2,δ from (4.27) completes the estimation. ��

Remark 4.5 The dominant source of error in comparing the exact and formal normal velocity
arises from the truncation error in the Galerkin projection of the surface diffusion termΔspκp.
For a general p ∈ O◦

2,δ , the largest term in Vp is generically the surface diffusion term which

scales like ε4‖Δsκp‖L2(Ip)
∼ δε3, while its Galerkin residual ε4δ‖p̂‖

V
2
4

� ε3δ‖p̂‖
V
2
3

�
δ2ε3 is smaller. The L2(Ip) norms of the other terms in Vp typically scale like ε7/2 or ε4.

5 Dynamics of theMeander Parameters

The dynamics of the meander parameter vector p and hence of the interface Γp is determined
by the projection of the mass preserving gradient flow (1.10)–(1.11), equivalently (4.6), onto
the slow meander space Z1∗ , which approximates the tangent plane of the bilayer manifold.
The dependence of the bilayer distributions, the slow space Z∗, and the local coordinate
(zp, sp) on p makes the analysis somewhat technical. We break the projection of the system
into three subsections, characterizing the projection of ∂tΦp, of the residual Π0F(Φp), and
of the remainder R[v⊥] in turn. In the final two subsections the projection estimates are
used to recover the evolution of p and deduce energy estimates for its relaxation back to
equilbrium. The analysis is conducted on the time interval t ∈ [0, T ) for which u(·, t) ∈
Vε2δ(Mδ(Γ0, M0),O2,δ) and

‖ṗ(t)‖l2 ≤ 2ε3, p(t) ∈ O2,δ ⊂ Dδ and ε−2‖v⊥‖H2
in
(t) ≤ δ. (5.1)

These assumptions are strong enough to validate the manifold projection of Lemma 4.2
and to resolve the leading-order dynamics of p. However they are weaker than (4.20) and
(4.24) enforced in Sect. 4, and hence the results of this section hold under the assumptions
of Theorem 4.2.

5.1 Projection of@t8p

The projection of ∂tΦp onto the meander slow space Z1∗ involves the N1 × N1 matrix T

whose (k, j)th component is defined by

Tk j :=
〈
∂Φp

∂p j
, Z1k

p,∗
〉
L2

fork, j ∈ �1. (5.2)

This matrix can be viewed as an approximation of the first fundamental form of the bilayer
manifold induced by graph of Φp over the approximate tangent space Z1∗ . The asymptotic
form of ∂p j Φp follows from Lemmas 6.6 and 3.7. This is presented below.
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Lemma 5.1 For j ∈ �1, the bilayer distribution Φp given in Lemma 3.7 satisfies

∂Φp

∂p j
= 1

ε
(φ′

0 + εφ′
1)ξ j (sp) + εR j .

Here ξ j (sp) = ε
∂zp
∂p j

depends on p and is given in Lemma 6.6. The remainder R = (R j )
N1
j=1

lies in L2(RN1) and it’s projection to the meander slow space satisfies the estimate

‖ΠZ1∗R‖L2 � ε1/2.

Proof This is a consequence of Lemma 6.4 of [5]. ��
Introducing the canonical unit basis {Bk}k∈�1 of RN1 , the chain rule and (5.2) lead to the
expression

〈Tṗ,Bk〉 =
〈
∂tΦp, Z

1k
p,∗
〉
L2

for k ∈ �1. (5.3)

Up to a multiplicative constant, the leading order term of the the inner product on the right-
hand side above has the leading-order expression∫

Ip

∂tγ p · npθ̃k ds̃p.

From Lemma 6.6 and the chain rule we have the relation

∂tγ p · np = −ε
∂zp
∂t

= −
∑
j∈�1

ṗ jξ j (sp). (5.4)

The projection of ξ j (sp) to the Galerkin space G1, (4.39), involves an (N1 − 3) × N1 matrix
U with ( j, k)th component given by

U jk := 1

1 + p0

∫
Ip

s̃pθ̃
′
j θ̃k ds̃p, j = 3, 4, · · · , N1 − 1, k ∈ �1. (5.5)

With this notation, the projection of ξ j to G1 has the following approximation, expressed
component-wise in relation to a unit-norm matrix E.

Lemma 5.2 With ξ j (sp) defined in Lemma 6.6, it holds that for j, k ∈ �1

− 1

(1 + p0)

∫
Ip

ξ j (sp)θ̃k ds̃p =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/θ0 + O(‖p̂‖
V
2
2
)E00, j = 0, k = 0;

pk1{k≥3} − p̂TUBk + O(‖p̂‖2
V
2
2
)Ek0 j = 0, k ≥ 1;

δ jk + O(‖p̂‖
V
2
2
)Ek j j = 1, 2, k ∈ �1;

δ jk + O(‖p̂‖2
V
2
2
)Ek j , j ≥ 3, k ∈ �1.

Moreover when j ∈ �1, k ≥ 3, we have the following approximation for the weighted
projection

− 1

(1 + p0)

∫
I p

ξ j (sp)βk θ̃k ds̃p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βkpk − p̂TUBk + O(‖p̂‖2
V
2
2
)Ek0 j = 0;

βkδ jk + O(‖p̂‖
V
2
2
)Ek j j = 1, 2;

βkδ jk + O(‖p̂‖
V
2
2
‖p̂‖

V
2
3
)Ek j + O(‖p̂‖2

V
2
2
)β j , j ≥ 3.
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The proof of the Lemma is postponed to the “Appendix”.
To complete the reduction of T we introduce the translation vector

p1,2 = p1B1 + p2B2, (5.6)

the constants m2,m3

m2 = 1

2

∫
R

L−1
0 (zφ′

0) dz; m3 = 1

2

∫
R

|zφ′
0|2 dz, (5.7)

and the scalar function μ0 = μ0(σ, p0),

μ0(σ, p0) := m2
1

m2
1 + ε(σm2 + ηdm2

3)

1

1 + p0
= 1 + O(p0, ε). (5.8)

Lemma 5.3 Suppose the assumptions in (5.1) hold, there exists a unit vector e = (ek)k∈�1

for which (5.3) admits the expansion:

1. if k = 0,

−ε1/2μ0

m1
〈Tṗ,B0〉 = 1

θ0
ṗ0 + O

(
(ε2 + ‖p̂‖

V
2
2
)‖ṗ‖l2

)
. (5.9)

2. if k ≥ 1,

− ε1/2μ0

m1
〈Tṗ,Bk 〉 = ṗk + ṗ0

(
pk1{k≥3} − p̂TUBk

)
+ O

(
‖p̂‖

V
2
2
|ṗ1,2| + (ε2 + ‖p̂‖2

V
2
2
)‖ṗ‖l2

)
ek ,

(5.10)

where U is given in (5.5) and the indicator function 1{k≥ j}(k) has value 1 for k ≥ j and
0 for k < j .

Proof Starting with the algebraic relation

〈Tṗ,Bk〉l2 =
∑
j∈�1

Tk j ṗ j , (5.11)

we calculate Tk j for k, j ∈ �1 and then sum over j . From the definition of φ0, φ1 in (3.1),
(3.6), we have the following identity∫

R

(φ′
0 + εφ′

1)φ
′
0 dz = m2

1 + ε(σm2 + ηdm
2
3), (5.12)

where m1,m2,m3 are defined in (1.8) and (5.7). Using the expressions for ∂p j Φp from
Lemma 5.1 and for Z1k

p,∗ with k ∈ �1 from (3.32), the equality ψ1 = φ′
0/m1, the local

expressions for the dressed eigenfunctions of L0, and the orthogonality (3.33) we find

Tk j = 1

ε1/2

∫
R2�

∫
Ip

(φ′
0(zp) + εφ′

1(zp))
φ′
0

m1
ξ j (sp)θ̃k ds̃p dzp + O(ε3/2Ek j ).

Here from Lemma6.5 the remainder matrix E may be taken with unit l2∗ norm. From (5.12)
we simplify this expression

Tk j = m2
1 + ε(σm2 + ηdm2

3)

ε1/2

∫
Ip

ξ j (sp)θ̃k ds̃p + O(ε3/2Ek j ). (5.13)

To complete the proof for k ≥ 1 we employ the three cases on j in Lemma 5.2 and return
to the summation (5.11). The second identity of the Lemma then follows with the reduction
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of μ0 from (5.8). The first identity, for k = 0, follows from similar arguments with the
simplification that the terms involving U are small and placed in the remainder. ��

Remark 5.4 By the definition ofTk j , the identities (5.13) and (5.11) in the proof of Lemma5.3
imply

〈
∂tΦp, Z

1k
p,∗
〉
L2

= m1

ε1/2

∑
j∈�1

ṗ j

∫
Ip

ξ j (sp)θ̃k ds̃p + O(ε1/2‖ṗ‖l2)ek .

When combined with identity (5.4) the result above implies

〈
∂tΦp, Z

1k
p,∗
〉
L2

= − m1

ε1/2

∫
Ip

∂tγ p · npθ̃k ds̃p + O(ε1/2‖ṗ‖l2)ek . (5.14)

Corollary 5.5 With the same assumptions as Lemma5.3, the β-weighted projection satisfies

−ε1/2μ0

m1
〈Tṗ, βkBk〉 =βk ṗk + ṗ0

(
βkpk − p̂TUβkBk

)
+ O(‖p̂‖

V
2
2
‖ṗ1,2‖l2)ek

O((ε2βk + ‖p̂‖
V
2
2
‖p̂‖

V
2
3
)‖ṗ‖l2)ek + O(‖p̂‖2

V
2
2
‖ṗ‖

V
2
1
)ek .

for k ≥ 3 and e a unit vector in l2(RN1−3).

Proof Following the proof of Lemma5.3, we estimate βkTk j . From (5.13), we obtain

βkTk j = −m2
1 + ε(σm2 + ηdm2

3)

ε1/2

∫
Ip

βkξ j (sp)θ̃k ds̃p + O(ε3/2βkEk j ).

The corollary follows from Lemma 5.2. ��

Lemma 5.6 As defined in (5.5), the matrix U = (Ulk) for l, k = 3, · · · N1 − 1 satisfies the
norm bound

‖UT ‖l∗2 � ‖D1/2‖l∗2 . (5.15)

Proof Taking the inner product of U with p̂ = (p3, · · · , pN1−1) ∈ l2, and the canonical
vector Bk

〈
U
T p̂,Bk

〉
l2

=
N1−1∑
k=3

Ulkpl = 1

1 + p0

∫
Ip

p̄′(s̃p)θ̃k ds̃p.

Here we recall p̄ =∑N1−1
l=3 pl θ̃ (s̃p), from (2.18) satisfies ‖ p̄′‖L2(Ip)

� ‖p̂‖
V
2
1

= ‖D1/2p̂‖l2 .
The result then follows from Lemma 6.5. ��

5.2 Projection of the Residual

The projection of the bilayer distribution residual F(Φp) fromLemma3.7 to themeander slow
spaceZ1∗ drives the dynamics of meander parameters p. This is characterized in the following
Lemma. At leading order the projection arises from the normal velocity Vp defined in (4.38),
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to emphasize this we introduce the term-wise projections of the curvature andWillmore terms
of Vp,

V M
k (p) :=

∫
Ip

κpθ̃k ds̃p,

VW
k (p) :=

∫
Ip

(
−Δspκp − κ3

p

2
+ ακp

)
θ̃k ds̃p.

(5.16)

Lemma 5.7 Under the assumptions in (5.1), there exists a unit vector e = (ek)k∈�1 such
that:

1. For k = 0,
〈
Π0F(Φp), Z

1k
p,∗
〉
L2

=ε5/2m1

(
A (p0) − c0

θ0
p0

)
+ O

(
ε5/2|p0 − p∗

0|‖p̂‖
V
2
2

)

+ O
(
ε7/2‖p̂‖

V
2
2
‖p̂‖

V
2
3
, ε9/2‖p̂‖

V
2
4

)
,

where A (p0) is a smooth function of p0 and given by

A (p0) := − 2πθ0m0

m2
1

(
σ ∗
1 − σ0

)+ 2πθ0ε

[
1

2(1 + p0)2
− α(σ ∗

1 )

]

+ εC1(p0)p0 + εC2(p0)(p0 − p∗
0) + ε2C3(p0).

Here Ck(p0) for k = 1, 2, 3 are smooth functions of p0 with uniform bounds independent
of ε ∈ (0, ε0).

2. For k ≥ 1 and k ∈ �1,〈
Π0F(Φp), Z

1k
p,∗
〉
L2

= − ε5/2m1ck(p0)pk1{k≥3}

+ O(ε7/2|p0 − p∗
0|‖p̂‖

V
2
2
, ε5/2|p0 − p∗

0|‖p̂‖2
V
2
2
)ek

+ O(ε7/2‖p̂‖
V
2
2
‖p̂‖

V
2
4
, ε9/2‖p̂‖

V
2
4
)ek .

Here ck depends only on p0 and admits the form

ck(p0) :=(β2
k − 1)

[
c0(p0 − p∗

0) + O(ε|p0 − p∗
0|2) + ε

(
−m0

m2
1

σ ∗
2 + 2β2

k − 3

2(1 + p0)2
+ α(σ ∗

1 )

)]
.

Proof Adding and subtracting the far-field value of the residual and using the definition of
the mass projection Π0 and the decomposition of Z1k

p,∗, we break the projection in dominant
and remainder terms 〈

Π0F(Φp), Z
1k
p,∗
〉
L2

= Ik + Rk . (5.17)

The dominant term Ik and remainder Rk := Rk,1 + Rk,2 are defined as

Ik :=
∫

Ω

(
F(Φp) − F∞

m

)
Z1k
p dx,

Rk,1 := ε

∫
Ω

(
F(Φp) − F∞

m

)
(ϕ̃1,k θ̃k + ϕ̃2,kεθ̃

′
k) dx,

Rk,2 := 1

|Ω|
∫

Ω

(
F(Φp) − F∞

m

)
dx
∫

Ω

Z1k
p,∗ dx .

(5.18)
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The approximations of the remainder terms Rk,0,Rk,1 are given in section 6.3. To approxi-
mate the dominant term Ik we replace Z1k

p by its definition (3.34), and replace ψ1(zp) with
φ′
0(zp)/m1. Rewriting Ik in the local coordinates we find

Ik = ε1/2

m1

∫
R2�

∫
Ip

(F(Φp) − F∞
m )φ′

0θ̃k(1 − εzpκp) ds̃p dzp.

Using the expansion of F(Φp) from Lemma 3.7, we decompose Ik =∑3
j=1 Ik, j , where

Ik,1 = ε5/2

m1

∫
R2�

∫
Ip

(
F2 − F∞

2

)
φ′
0θ̃k(1 − εzpκp) ds̃p dzp,

Ik,2 = ε7/2

m1

∫
R2�

∫
Ip

(
F3 − F∞

3

)
φ′
0θ̃k(1 − εzpκp) ds̃p dzp,

Ik,3 = ε9/2

m1

∫
R2�

∫
Ip

(
F≥4 − F∞≥4 + e−�ν/εε−4Fe

)
φ′
0θ̃k(1 − εzpκp) ds̃p dzp,

(5.19)

and address these terms one by one. First, from Lemma 3.7, F2 has far-field value F∞
2 = 0,

while both φ′
0 and F2 have odd parity in zp, we deduce

Ik,1 = ε5/2

m1

∫
R2�

∫
Ip

F2φ
′
0θ̃k ds̃p dzp.

Changing the integrating order and using (3.10) yields the reduction

Ik,1 = ε5/2m0

m1
(σ ∗

1 − σ)V M
k (p), (5.20)

where the curvature projection V M
k is defined in (5.16). For Ik,2, F3 has the projection (3.10)

so that

Ik,2 = ε7/2m1V
W
k + ε9/2

m1

∫
R2�

∫
Ip

(F3 − F∞
3 )φ′

0θ̃k zpκp ds̃p dzp,

= ε7/2m1V
W
k + ε9/2

m1

∫
R2�

∫
Ip

(φ′
0Δspκp + f3 − f ∞

3 )φ′
0θ̃k zpκp ds̃p dzp.

Here f3 = f3(zp; γ p) ∈ H2 since it depends only on second and lower derivatives of γ p.
The function |φ′

0|2zp has odd parity and does not contribute to the integral. We deduce

Ik,2 = ε7/2m1V
W
k + ε9/2

m1

∫
R2�

∫
Ip

( f3 − f ∞
3 )φ′

0θ̃k zpκp ds̃p dzp. (5.21)

Addressing the integral, we change the order of integration order and integrate in zp, leaving
a function h = h(γ p) ∈ H̄2 (see Definition 3.5). With this notation we deduce

ε9/2

m1

∫
R2�

∫
Ip

( f3 − f ∞
3 )φ′

0θ̃k zpκp ds̃p dzp = ε9/2

m1

∫
Ip

h(γ p)θ̃k ds̃p.

Applying Lemma 6.9 to bound the right-hand side of this identity and returning the estimate
to Ik,2 in (5.21) yields the asymptotic form

Ik,2 = ε7/2m1V
W
k + ε9/2C(p0)δk0 + O(ε9/2‖p̂‖

V
2
2
)ek . (5.22)
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For Ik,3 similar arguments yield the expansion

Ik,3 = ε9/2C(p0)δk0 + O(ε9/2‖p̂‖
V
2
4
)ek . (5.23)

Combining the estimates (5.20), (5.22), and (5.23) yields the asymptotic expansion

Ik = ε5/2m0

m1
(σ ∗

1 − σ)V M
k (p)+ε7/2m1V

W
k (p)+ε9/2C(p0)δk0+O(ε9/2‖p̂‖

V
2
4
)ek . (5.24)

Rearranging and including the error estimates on Rk,1,Rk,2 from Lemma 6.11, we reduce
(5.17) to

〈
Π0F(Φp), Z

1k
p,∗
〉
L2

=ε5/2m0

m1
(σ ∗

1 − σ)
(
V M
k (p) + εC1(p0)δk0 + O(ε‖p̂‖

V
2
2
)
)

+ ε7/2m1V
W
k (p) + ε9/2C2(p0)δk0 + O(ε9/2‖p̂‖

V
2
4
)ek .

(5.25)

where C1,C2 are smooth functions of p0. To reduce these expressions to their final forms
we consider the cases k = 0 and k �= 0 separately. For k = 0, using the form of V M

0 , VW
0

presented in Corollary 6.8, we rewrite the expansion above as

〈
Π0F(Φp), Z

10
p,∗
〉
L2

=ε5/2m0

m1
(2πθ0 + εC1(p0))(σ − σ ∗

1 )

+ ε7/2m1πθ0

(
1

(1 + p0)2
− α

)
+ ε9/2C(p0)

+ O(ε9/2‖p̂‖
V
2
4
, ε7/2‖p̂‖

V
2
2
‖p̂‖

V
2
3
, ε5/2|σ − σ ∗|‖p̂‖

V
2
2
).

Here we used σ ∗
1 = σ ∗ + O(ε) to simplify the error term. The coefficient α = α(σ) is

smooth and affords the expansion

α(σ) =α(σ ∗
1 ) + O(ε, |σ − σ ∗|). (5.26)

Using the first expansion of Corollary 3.10 and deducing that |σ −σ ∗| � |p0−p∗
0|+ε2‖p̂‖

V
2
2

from the second expansion, we arrive at the expression
〈
Π0F(Φp), Z

10
p,∗
〉
L2

= ε5/2m1

(
A (p0) − c0

θ0
p0

)

+ O(ε9/2‖p̂‖
V
2
4
, ε7/2‖p̂‖

V
2
2
‖p̂‖

V
2
3
, ε5/2|p0 − p∗

0|‖p̂‖
V
2
2
).

(5.27)

Here A = A (p0) takes the form presented in part 1 of Lemma5.7. For the case k �= 0, we
replace σ ∗

1 with (σ ∗ − εσ ∗≥2), and reduce (5.25) to

〈
Π0F(Φp), Z

1k
p,∗
〉
L2

= ε5/2m0

m1
(σ ∗ − σ)V M

k + ε7/2

(
VW
k − m0

m2
1

σ ∗≥2V
M
k

)

+ O(ε7/2|σ ∗ − σ |‖p̂‖
V
2
2
, ε9/2‖p̂‖

V
2
4
)ek

Using this expansion, together with the expansions of V M
k , VW

k from Corollary 6.8, and the
bound |σ − σ ∗| � |p0 − p∗

0| + ε2‖p̂‖
V
2
2
and the expansion of α from (5.26) yields part 2 of

Lemma5.7 with ck = ck(p0) as defined therein. ��
Collecting the results on the projection of ∂tΦp and of the residual F(Φp) we can bound

the Galerkin meander projection of the difference between the normal velocity of Γp and the
curvature induced velocity defined in (4.38).

123



Journal of Dynamics and Differential Equations

Corollary 5.8 There exists a unit vector e ∈ l2(RN1) such that the Galerkin projections of
the normal and curvature induced velocity,(4.38), satisfy

∫
Ip

(
∂tγ p · np − Vp

)
θ̃k ds̃p = −ε1/2

m1
〈R[v⊥], Z1k

p,∗〉 >L2

+O(ε4|σ ∗
1 − σ |, ε5, ε5‖p̂‖

V
2
4
, ε‖ṗ‖l2)ek, (5.28)

for k ∈ �1.

Proof From (5.25) we have

〈
Π0F(Φp), Z

1k
p,∗
〉
L2

= ε5/2m0

m1
(σ ∗

1 − σ)V M
k (p) + ε7/2m1V

W
k (p) + O(ε7/2(σ ∗

1 − σ), ε9/2)δk0

+ O(ε7/2‖p̂‖
V
2
2
, ε9/2‖p̂‖

V
2
4
)ek

with V M
k , VW

k defined in (5.16). The result follows by combining thiswith (5.14),multiplying
by−ε1/2/m1, and using the formulation (4.6) of the gradient flow to replace ∂tΦp+Π0F(Φp)

with R[v⊥]. �� The meander parameter p0 = p0(t) controls the length of the interface Γp.
Its equilibrium value p∗

0 satisfies〈
Π0F(Φp), Z

1k
p,∗
〉
L2

∣∣∣
p=p∗ = 0 (5.29)

for p∗ = (p∗
0, p

∗
1, p

∗
2, 0).

Lemma 5.9 Suppose |σ0(Γ0, M0) − σ ∗
1 | � 1, then there exists ε0 small enough such that

for each ε ∈ (0, ε0) p∗
0 is well defined through (5.29) and admits the approximation p∗

0 =
p∗
0,0 + εp∗

0,1 + O(ε2) with

p∗
0,0 = − m0

c0m2
1

(
σ ∗
1 − σ0(Γ0, M0)

) ;

p∗
0,1 = 1

c0

(
1

2(1 + p∗
0,0)

2 − α(σ ∗
1 )

)
+ θ0

c0
C1(p∗

0,0)p
∗
0,0.

(5.30)

Proof From part 1 of Lemma 5.7 and (5.29), p∗
0 solves

c0p0/θ0 = A (p0). (5.31)

Here A can be decomposed as A (p0) = A0 + εA1(p0) with

A0 := −m0

m2
1

2πθ0
(
σ ∗
1 − σ0(Γ0, M0)

)
,

A1(p0) := 2πθ0

(
1

2(1 + p0)2
− α(σ ∗

1 )

)
+ C1(p0)p0 + C2(p0)(p0 − p∗

0) + εC3(p0),
(5.32)

where the base bulk density σ0 has the form (3.15). The system (5.31) is linear in p0 for
ε = 0, and hence has a unique solution. The smooth continuation of this unique solution, for
ε ∈ (0, ε0) with ε0 small enough, is a simple application of the implicit function theorem
since A1 is smooth in p0. Recalling that θ0 = 1/

√
2π , a regular perturbation expansion

p∗
0 = p∗

0,0 + εp∗
0,1 + O(ε2), yields (5.30). ��
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From Lemma 3.8, the equilibrium bulk density σ ∗ = σ(p∗) with p∗ = (p∗
0, p

∗
1, p

∗
2, 0)

depends only on the meander length parameter p∗
0 through

σ ∗ = σ0 − c0m2
1

m0
p∗
0 + εp∗

0C(p∗
0). (5.33)

From the approximation of p∗
0 from Lemma 5.9 , we find the expansion σ ∗ = σ ∗

1 + εσ ∗
2 +

O(ε2) with

σ ∗
2 = −c0θ0m2

1

m0
p∗
0,1 = m2

1

m0

(
−1

2(1 + p∗
0,0)

2 + α(σ ∗
1 ) + p∗

0,0C(p∗
0,0)

)
. (5.34)

These relations give the map from the systemmass to a unique, up to translation, equilibrium
profile with parameters (σ, p0, p̂) = (σ ∗, p∗

0, 0). Returning to (5.31) we may expand A (p0)
around p∗

0 to write the residual in the form

A (p0) − c0
θ0

p0 = c0
θ0

(p∗
0 − p0) + O(ε)(p∗

0 − p0). (5.35)

This allows the reformulation of the projection of the residual Π0F(Φp) onto Z10
p,∗, given in

part 1 of Lemma 5.7, in terms of the small quantities p0 − p∗
0 and ‖p̂‖

V
2
2
,

∫
Ω

Π0F(Φp)Z
10
p,∗ dx =ε5/2

m1c0
θ0

(p∗
0 − p0) + O(ε7/2|p0 − p∗

0|)

+ O
(
ε5/2|p0 − p∗

0|‖p̂‖
V
2
2
, ε7/2‖p̂‖

V
2
2
‖p̂‖

V
2
3
, ε9/2‖p̂‖

V
2
4

)
.

(5.36)

Using (5.34) to eliminate σ ∗
2 and the a priori assumption |p0(t)| � 1 for all t ∈ [0, T ), we

rewrite ck as,

ck(p0) = c0(Dkk − 1)(p0 − p∗
0) + ε(Dkk − 1)2 + O(ε|p0|Dkk), (5.37)

where D is the diagonal matrix defined in (2.6) that induces the norm V
2
2.

We estimate weighted projections by absorbing the factors of βk into higher V2
j norms of

p. This requires modifications of these error terms.

Corollary 5.10 It holds that the weighted projections
∫

Ω

Π0F(Φp)βk Z
1k
p,∗ dx = −ε5/2m1ckβkpk + O(ε5/2|p0 − p∗

0|‖p̂‖
V
2
2
‖p̂‖

V
2
3
)ek

+O(ε7/2|p0 − p∗
0|‖p̂‖

V
2
3
, ε7/2‖p̂‖

V
2
3
‖p̂‖

V
2
4
, ε7/2‖p̂‖

V
2
2
‖p̂‖

V
2
5
, ε9/2‖p̂‖

V
2
5
)ek

for k ≥ 3.

Proof Multiplying (5.17) by βk yields〈
Π0F(Φp), Z

1k
p,∗
〉
L2

= βkIk + βkRk,

with βkRk = βkRk,1 + βkRk,2 given in Lemma 6.14. We focus on βkIk and which we
expand as βkIk,1 + βkIk,2 + βkIk,3, given in (5.19). Utilizing (5.20) and (5.21), we have

βkIk =ε5/2m0

m1
(σ ∗

1 − σ)βkV
M
k (p) + ε7/2m1βkV

W
k (p)

+ ε9/2

m1

∫
R2�

∫
Ip

( f3 − f ∞
3 )φ′

0βk θ̃k zpκp ds̃p dzp + βkIk,3.
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Integrating in zp and recalling the form of f3 = f3(zp; γ p), then Lemma 6.12 and Eq. (6.12)
with l = 1 allow us to rewrite and estimate the integral on the second line of the equality
above as

ε9/2
∫
Ip

h(γ p)βk θ̃k ds̃p = O(ε9/2‖p̂‖
V
2
3
)ek

The bounds on βkIk,3 can be achieved by similar arguments that exploit the form of F≥4 and
Fe. These terms collectively contribute an error of order O(ε9/2‖p̂‖

V
2
5
). The remainder of

the reduction follows the lines of the proof of Lemma 5.7, using Lemmas 6.13 and 6.14. The
details are omitted. ��

5.3 Projection of the Orthogonal RemainderR[v⊥]

The orthogonal remainder R[v⊥] appearing in (4.6) is induced by the meander-orthogonal
perturbation v⊥ and lifts the solution u off of the bilayer manifold Mδ . In this section we
estimate its projection, which requires control of the impact of the flow on the meander basis
functions Zkj

p,∗ defined in (3.32) for k = 0, 1 and j ∈ �k . Under the assumptions that hold
here, Lemma 6.5 of [5] establishes the bounds

‖∂t Z I ( j) j
p,∗ ‖L2 � ε−1‖ṗ‖l2 , ∀ j ∈ �, (5.38)

where the indicator function I is from (3.37). This bound helps estimate the residual projec-
tions.

Lemma 5.11 Under the assumptions in (5.1), there exists a unit vector e = (ek)
N1−1
k=0 such

that the projection of the orthogonal remainderR[v⊥], defined in (4.7), to the meander space
Z1∗ satisfies the bound
〈
R[v⊥], Z1k

p,∗
〉
= O

(
ε−3/2‖v⊥‖L2‖ṗ‖l2 , (ε2 + ε2‖p̂‖

V
2
4
)‖v⊥‖L2 , ‖N(v⊥)‖L2

)
ek,

and the weighted estimate〈
R[v⊥], βk Z

1k
p,∗
〉
= O

(
ε−5/2‖v⊥‖L2‖ṗ‖, (ε3/2‖p̂‖

V
2
5
+ ε1/2)‖v⊥‖L2 , ε−1‖N(v⊥)‖L2

)
ek

for k ≥ 3 and k ∈ �1.

Proof We break the orthogonal remainder into its three components as presented in (4.7),
and rewrite the projection of ∂tv

⊥ as〈
∂tv

⊥, Z1k
p,∗
〉
L2

= ∂t

〈
v⊥, Z1k

p,∗
〉
L2

+
〈
v⊥, ∂t Z

1k
p,∗
〉
L2

.

The first item on the right-hand side is zero since v⊥ is perpendicular to the meander slow
space Z1∗ ; and the second term is bounded through Hölder’s inequality and estimate (5.38).
Combining these, we deduce〈

∂tv
⊥, Z1k

p,∗
〉
L2

= O(ε−1‖ṗ‖l2‖v⊥‖L2), k ∈ �1, (5.39)

which together with the upper bound on the meander dimension N1 ≤ ε−1 and approximate
orthogonality of (3.37) we deduce

‖ΠZ1∗ ∂tv
⊥‖L2 � ε−1N 1/2

1 ‖ṗ‖l2‖v⊥‖L2 � ε−3/2‖ṗ‖l2‖v⊥‖L2 .
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To bound the projection of the second term, Π0Lpv
⊥, of the orthogonal remainder, we

turn to Lemma 3.13. This yields the estimate∥∥∥ΠZ1∗ Π0Lpv
⊥
∥∥∥
L2

� (ε2 + ε2‖p̂‖
V
2
4
)‖v⊥‖L2 . (5.40)

The third term in the orthogonal residual expansion is the nonlinearity, N(v⊥), which enjoys
the simple bound

‖ΠZ1∗Π0N(v⊥)‖L2 � ‖N(v⊥)‖L2 . (5.41)

The unweighted estimate of Lemma5.11 follows. To derive theweighted estimatewe observe
that the terms βk are uniformly bounded by ε−1 for k ∈ �1, so that the unweighted estimate
immediately implies〈

R[v⊥], βk Z
1k
p,∗
〉
= O

(
ε−2‖v⊥‖L2‖ṗ‖, (ε + ε‖p̂‖

V
2
4
)‖v⊥‖L2 , ε−1‖N(v⊥)‖L2

)
ek .

From the definition of V2
k , and Young’s inequality we have the embedding estimate

‖p̂‖
V
2
4

≤ ‖p̂‖1/2
V
2
3
‖p̂‖1/2

V
2
5

� ε1/2‖p̂‖
V
2
5
+ ε−1/2‖p̂‖

V
2
3
.

The weighted estimate follows by the a priori bound on ‖p̂‖
V
2
3
for p ∈ O2,δ . ��

5.4 Dynamics of theMeander Parameter Vector p

The results of Lemmas 5.3, 5.7 and 5.11 provide a detailed description of the dynamics of the
meander parameter vector p as induced by the gradient flow. For simplicity of presentation,
we introduce two time-dependent functions

E(t) := ε + ‖p̂‖
V
2
2
+ |p0| + ε−3/2‖v⊥‖L2 ; Ew(t) := ε + ‖p̂‖

V
2
3
+ |p0| + ε−2‖v⊥‖L2 .

(5.42)

It is immediate that E(t) ≤ Ew(t) for any t ∈ R
+. The assumptions in (5.1) make these two

quantities small in L∞(R+), explicitly they imply

E(t) � δ, Ew(t) � δ, (5.43)

which allow the extraction of the main flow of p, as presented below.

Theorem 5.1 Suppose that the assumptions in (5.1) hold, then there exists a positive constant
ε1 independent of ε, ρ with the following property. If δ ≤ ε1, then the meander parameter
vector p = (p0, p1,2, p̂) evolves according to

ṗ0 = −ε3c0(p0 − p∗
0) + d0,

ṗk = O
(
ε3|p0 − p∗

0|‖p̂‖
V
2
3

)
+ dk for k = 1, 2,

˙̂p = −ε3
[
c0(D + U

T )(p0 − p∗
0) + ε(D − I)2

]
p̂ + d̂.

(5.44)

Here I is the (N1 − 3) × (N1 − 3) identity matrix, and U is defined in (5.5). The vector
d = (d0, d ′) with d ′ = (d1, d2, d̂) has components which are error terms that satisfy

|d0| � ε3E(t)|p0 − p∗
0| + ε4E(t)‖p̂‖

V
2
4
+ ε5/2‖v⊥‖L2 + ε1/2‖N(v⊥)‖L2 ;

‖d ′‖l2 � ε3E(t)|p0 − p∗
0|‖p̂‖

V
2
2
+ ε4(ε + ε−2‖v⊥‖L2)|p0 − p∗

0| + ε4E(t)‖p̂‖
V
2
4

+ ε5/2‖v⊥‖L2 + ε1/2‖N(v⊥)‖L2 .
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Moreover the rate of change ṗ = (ṗ0, ṗ1,2, ˙̂p) admits the upper bound

‖ṗ‖l2 � ε3|p0 − p∗
0| + ε4‖p̂‖

V
2
4
+ |d0| + ‖d ′‖l2 . (5.45)

Proof Projecting Eq. (4.6) onto Z1k
p,∗ in L2, using identity (5.3) yields

〈Tṗ,Bk〉l2 = −
〈
Π0F(Φp), Z

1k
p,∗
〉
L2

+
〈
R[v⊥], Z1k

p,∗,
〉
L2

, (5.46)

whereR[v⊥] defined in (4.7) is the orthogonal remainder contributed by v⊥. We first address
the case k = 0. Multiplying the identity (5.46) with k = 0 by −ε1/2

μ0
m1

θ0 and applying
Lemmas 5.3 and identity (5.36) yields the ODE

ṗ0 = ε3c0(p0 − p∗
0) + d0, (5.47)

where the remainder d0 satisfies the bound

|d0| �ε3
(
ε + ‖p̂‖

V
2
2
+ |μ0 − 1|

)
|p0 − p∗

0| + (ε2 + ‖p̂‖
V
2
2
)‖ṗ‖l2 + ε4‖p̂‖

V
2
2
‖p̂‖

V
2
3
+ ε5‖p̂‖

V
2
4

+ ε1/2
∣∣∣
〈
R[v⊥], Z1k

p,∗
〉
L2

∣∣∣ .
Recalling the quantity μ0 = 1+ O(|p0|, ε), introduced in (5.8), and the first estimate of the
projection of the orthogonal remainder from Lemma 5.11, we introduce E(t) in (5.42) and
obtain the simplified bound

|d0| �ε3E(t)|p0 − p∗
0| + E(t)‖ṗ‖l2 + ε4E(t)‖p̂‖

V
2
4
+ ε5/2‖v⊥‖L2 + ε1/2‖N(v⊥)‖L2 .

(5.48)

For k ≥ 1, we multiply identity (5.46) by −ε1/2μ0/m1 and apply Lemmas 5.3 and 5.7 to
deduce

ṗk = −ṗ0
(
pk1{k≥3} − p̂TUBk

)
− ε3μ0ckpk + dk . (5.49)

The remainder d ′ = (dk)
N1−1
k=1 can be bounded in l2 by collecting the remainder estimates

from Lemmas 5.3 and 5.7 and applying Lemma 5.11,

‖d ′‖l2 �ε3E(t)|p0 − p∗
0|‖p̂‖

V
2
2
+ ε4E(t)‖p̂‖

V
2
4
+
(
ε2 + ‖p̂‖2

V
2
2
+ ε−1‖v⊥‖L2

)
‖ṗ‖l2

+ ‖p̂‖
V
2
2
‖ṗ1,2‖l2 + ε5/2‖v⊥‖L2 + ε1/2‖N(v⊥)‖L2 .

(5.50)

Replacing ṗ0 on the right-hand side of (5.49) with the right-hand side of (5.47), again using
the expansion μ0 = 1 + O(|p0|, ε), and replacing ck with (5.37) yields

ṗk = − c0(p0 − p∗
0)
(
pk1{k≥3} − p̂TUBk

)
− ε3ckpk + d̃k,

= − ε3
[
c0(p0 − p∗

0)Dkk + ε(Dkk − 1)2
]
pk1{k≥3} + c0(p0 − p∗

0)p̂UBk + d̃k .
(5.51)

Here we have introduced the revised error term

d̃k = dk + O(‖p̂‖
V
2
2
d0, ε

3(|p0| + ε)|p0 − p∗
0|‖p̂‖

V
2
2
, ε4(|p0| + ε)‖p̂‖

V
2
4
)ek .

In the remainder of the proof we omit the tilde on dk . From (5.50) the revised version of
d ′ = (dk)

N1−1
k=1 enjoys the l2-bound

‖d ′‖l2 � ε3E(t)|p0 − p∗
0|‖p̂‖

V
2
2
+ ‖p̂‖

V
2
2
|d0| + ε4E(t)‖p̂‖

V
2
4
+
(
ε2 + ‖p̂‖2

V
2
2

+ ε−1‖v⊥‖L2

)
‖ṗ‖l2 + ‖p̂‖

V
2
2
‖ṗ1,2‖l2 + ε5/2‖v⊥‖L2 + ε1/2‖N(v⊥)‖L2 .

(5.52)
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The bounds (5.48) and (5.52) are not yet closed since they depend on ṗ, however from (5.44)
we derive

|ṗ0| � ε3|p0 − p∗
0| + |d0|,

‖ ˙̂p‖l2 � ε3|p0 − p∗
0|‖p̂‖

V
2
2
+ ε4‖p̂‖

V
2
4
+ ‖d ′‖l2 ,

|ṗ1,2| � ε3|p0 − p∗
0|‖p̂‖

V
2
2
+ ‖d ′‖l2 .

(5.53)

The estimate (5.45) followsdirectly.Using this bound (5.45) and the boundon ṗ1,2 from (5.53)
on the right-hand side of (5.48) and (5.50), and remarking that ε2+ε−1‖v⊥‖L2 +‖p̂‖

V
2
2

� 1,
then algebraic rearrangements lead to the bounds

|d0| � ε3E(t)|p0 − p∗
0| + E(t)‖d ′‖l2 + ε4E(t)‖p̂‖

V
2
4
+ ε5/2‖v⊥‖L2 + ε1/2‖N(v⊥)‖L2 ;

‖d ′‖l2 � ε3E(t)|p0 − p∗
0|‖p̂‖

V
2
2
+ (ε5 + ε2‖v⊥‖L2)|p0 − p∗

0| + ε4E(t)‖p̂‖
V
2
4
+ E(t)d0

+ ε5/2‖v⊥‖L2 + ε1/2‖N(v⊥)‖L2 .

Using the estimate on ‖d ′‖l2 to eliminate it from the right-hand side of the estimate on |d0|
yields the final upper bound for d0. The final l2-estimate for d ′ follows from the estimate
above and the a priori assumptions (5.1). ��
Corollary 5.12 Suppose the assumptions of Theorem5.1 hold. Then the meander parameter
vector evolution takes the form

D
1/2 ˙̂p = −ε3

[
c0(D + U

T )(p0 − p∗
0) + ε(D − I)2

]
D
1/2p̂ + d̂w, (5.54)

where the weighted remainder d̂w = (dw,k)
N1−1
k=3 satisfies

‖d̂w‖l2 �ε3Ew(t)|p0 − p∗
0|‖p̂‖

V
2
3
+ ε4|p0 − p∗

0| + Ew(t)|p̂‖
V
2
5
+ ε‖v⊥‖L2 + ε−1/2‖N(v⊥)‖L2 .

Proof Multiplying the Eq. (5.46) by the weight βk we have

〈Tṗ, βkBk〉l2 = −
〈
Π0F(Φp), βk Z

1k
p,∗
〉
L2

−
〈
R[v⊥], βk Z

1k
p,∗
〉
L2

.

Multiply this result by −ε−1/2μ0/m1 and apply Corollaries 5.5 and 5.10, this yields

βk ṗk = −ṗ0
(
βkpk − βk p̂TUBk

)
− ε3μ0ckβkpk + dw,k . (5.55)

Here from Lemma 5.11 the weighted remainder d̂w = (dw,k) can be bounded as

‖d̂w‖l2 �ε3
(
‖p̂‖

V
2
2
+ ε
)

|p0 − p∗
0|‖p̂‖

V
2
3
+ ε4Ew(t)‖p̂‖

V
2
5
+ ‖p̂‖

V
2
2
‖ṗ1,2‖l2

+ (ε + ‖p̂‖
V
2
2
‖p̂‖

V
2
3
+ ε−2‖v⊥‖L2)‖ṗ‖l2 + ‖p̂‖2

V
2
2
‖ṗ‖

V
2
1

+ ε‖v⊥‖L2 + ε−1/2‖N(v⊥)‖L2 .

As in the unweighted case, we use the first equation of (5.44) to substitute for ṗ0 on the right-
hand side of (5.55), replace ck with its definition (5.37), and recall that μ0 = 1+ O(ε, |p0|).
These manipulations yield the equation

βk ṗk = −ε3
[
c0(p0 − p∗

0)Dkk + ε(Dkk − 1)2
]
βkpk1{k≥3} + c0(p0 − p∗

0)βk p̂UBk + d̃w,k,

where from Lemma 5.6 the revised remainder takes the form

d̃w,k = dw,k + O(‖p̂‖
V
2
2
d0, ε

3Ew|p0 − p∗
0|‖p̂‖

V
2
3
, ε4Ew‖p̂‖

V
2
5
).
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We drop the tilde, and the weighted evolution (5.54) presented in the Lemma follows. The
revised from of the remainder d̂w satisfies the bound

‖d̂w‖l2 �ε3Ew(t)|p0 − p∗
0|‖p̂‖

V
2
3
+ ‖p̂‖

V
2
2
|d0| + ε4Ew(t)‖p̂‖

V
2
5
+ ‖p̂‖

V
2
2
‖ṗ1,2‖l2

+ (ε + ‖p̂‖
V
2
2
‖p̂‖

V
2
3
+ ε−2‖v⊥‖L2 )‖ṗ‖l2 + ‖p̂‖2

V
2
2
‖ṗ‖

V
2
1
+ ε‖v⊥‖L2 + ε−1/2‖N(v⊥)‖L2 .

(5.56)

As the unweighted case, this system is not closed as it contains ṗ = (ṗ0, ṗ1,2, ˙̂p). From
Eq. (5.54) which we have established, the definition of V2

1, and the bounds on ṗ0, ṗ1,2 from
Theorem 5.1 we find

‖ṗ‖
V
2
1

� |ṗ0| + |ṗ1,2| + ‖D1/2 ˙̂p‖l2
� ε3|p0 − p∗

0| + |d0| + ‖d ′‖l2 + ε4‖p‖
V
2
5
+ ‖d̂w‖l2 .

Using this estimate and the bounds on d0, ‖d ′‖l2 , ‖ṗ‖l2 from Theorem 5.1 on the right-hand
side of (5.56), we obtain the desired bound on d̂w . ��
Lemma 5.13 The diagonal matrices D and D− I are uniformly comparable as maps from l2

to l2, in particular,

1

2
‖D‖l∗2 ≤ ‖D − I‖l∗2 ≤ ‖D‖l∗2 .

Proof Since D and D − I are both diagonal, we only need compare their diagonal elements.
Indeed, their kth diagonal term are β2

k and β2
k − 1, for D and D − I respectively. The result

follows directly from the relationship

1

2
β2
k ≤ β2

k − 1 ≤ β2
k

since β2
k > 2 for k ≥ 3, see (2.4). ��

5.5 Energy Estimates on p

We derive energy estimates on p from its dynamics established in Theorem 5.1 and Corollary
5.12. These estimates are used in Theorem4.2 to show that the residence time T of orbits
u = u(t) that start in the thin tubular neighborhood is infinite, and that the orbits converge
to a translation of the circular equilibrium.

Lemma 5.14 Under the a priori assumptions in (5.1) with δ small enough independent of ε
and ρ, the projected meander parameters satisfy the energy estimates

d

dt
|p0 − p∗

0|2 + ε3c0|p0 − p∗
0|2 � ε5δ2‖p̂‖2

V
2
4
+ ε2‖v⊥‖2L2 + ε−2‖N(v⊥)‖2L2 ;

and

d

dt
‖p̂‖2

V
2
2
+ ε4

32
‖p̂‖2

V
2
4

� ε2|p0 − p∗
0|2‖p̂‖2

V
2
2
+ ε‖v⊥‖2L2 + ε−3‖N(v⊥)‖2L2 .

Moreover, the time derivative of p has the following l2 bound

‖ṗ‖l2 � ε3|p0 − p∗
0| + ε4‖p̂‖

V
2
4
+ ε5/2‖v⊥‖L2 + ε1/2‖N(v⊥)‖L2 .
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Proof Multiplying the p0 evolution from Theorem 5.1 by 2(p0 − p∗
0) and applying Young’s

inequality yields the bound

d

dt
|p0 − p∗

0|2 + ε3c0|p0 − p∗
0|2 � ε−3d20 .

Using the bound on the remainder d0 from Theorem 5.1 with E(t) bounded by (5.43), the
inequality of p0 follows provided that δ is chosen small enough.

For the first estimate on p̂, we note that ‖p̂‖
V
2
2

= ‖Dp̂‖l2 and take the inner product of

the evolution equation for p̂ in Theorem 5.1 with 2D2p̂. This yields the equality

d

dt
‖p̂‖2

V
2
2

= −ε32c0(p0 − p∗
0)
〈
(D + U

T )p̂,D2p̂
〉
l2

−2ε4
〈
(D − I)2p̂,D2p̂

〉
l2 + 2

〈
d̂,D2p̂

〉
l2

. (5.57)

By Hölder’s inequality and the bound ‖UT ‖l∗2 � ‖D‖l∗2 from Corollary5.6, the first term on
the right-hand side of (5.57) can be bounded from above by

−ε32c0(p0 − p∗
0)
〈
(D + U

T )p̂,D2p̂
〉
l2

� ε3|p0 − p∗
0|‖Dp̂‖l2‖D2p̂‖l2

≤ Cε2‖p̂‖2
V
2
3
|p0 − p∗

0|2 + ε4

32
‖p̂‖2

V
2
5

for a constant C independent of ε ∈ (0, ε0). From Lemma 5.13, the second term on the
right-hand side of (5.57) is negative and can be bounded from above by

−2ε4
〈
(D − I)2p̂,D2p̂

〉
l2 ≤ −2ε4‖(D − I)2p̂‖2l2 ≤ −ε4

8
‖p̂‖2

V
2
4
.

Employing Hölder’s and Young’s inequalities to bound the third item on the right-hand side
of (5.57) implies

d

dt
‖p̂‖2

V
2
2
+ ε4

16
‖p̂‖2

V
2
4

� ε2|p0 − p∗
0|2‖p̂‖2

V
2
2
+ ε−4‖d̂‖2l2 .

It remains to obtain an bound on ‖d̂‖l2 . In fact, ‖d̂‖l2 ≤ ‖d ′‖l2 and the latter is bounded in
Theorem 5.1. We note that E(t) � δ and ε−2‖v⊥‖L2 ≤ δ. Using the bound on ‖d ′‖l2 from
Theorem5.1, we have

ε−4‖d̂‖2l2 � ε2δ2|p0 − p∗
0|2‖p̂‖2

V
2
2
+ ε4|p0 − p∗

0|2 + ε4δ2‖p̂‖2
V
2
4
+ ε‖v⊥‖L2 + ε−3‖N(v⊥)‖2L2 .

Absorbing these terms involving ‖p̂‖
V
2
4
and ‖p̂‖

V
2
2
for δ suitably small (independent of ε),

we obtain the first estimate on p̂. Finally, the l2-bound on ṗ follows from the bound on ‖ṗ‖l2
and these estimates on d = (d0, d ′) in Theorem 5.1. ��

We require bounds on the evolution of weighted norms of p.

Lemma 5.15 Under the a priori assumptions (5.1) with δ small enough independent of ε,
there exists a strictly positive constant c∗ independent of ε ∈ (0, ε0), ρ, δ such that

d

dt
‖p̂‖2

V
2
3
+ c∗ε4‖p̂‖2

V
2
5

� ε2|p0 − p∗
0|2‖p̂‖2

V
2
3
+ ε4|p0 − p∗

0|2 + ε−2‖v⊥‖2L2 + ε−5‖N(v⊥)‖2L2 .
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Proof Since ‖p̂‖
V
2
3

= ‖D3/2p̂‖l2 we take the l2-inner product of the weighted evolution

equation in Corollary 5.12 with 2D5/2p̂. This yields the equality

d

dt
‖p̂‖2

V
2
3

= −ε32c0(p0 − p∗
0)
〈
(D + U

T )D1/2p̂,D5/2p̂
〉
l2

− 2ε4
〈
(D − I)2D1/2p̂,D5/2p̂

〉
l2

+ 2
〈
d̂w,D5/2p̂

〉
l2

.

(5.58)

By Hölder’s inequality and the bound ‖UT ‖l∗2 � ‖D‖l∗2 from Corollary5.6, the first term on
the right-hand side of (5.58) can be bounded from above by

−ε3c0(p0 − p∗
0)
〈
(D + U

T )D1/2p̂,D5/2p̂
〉
l2

� ε3|p0 − p∗
0|‖D3/2p̂‖l2‖D5/2p̂‖l2

≤ Cε2‖p̂‖2
V
2
3
|p0 − p∗

0|2 + ε4

64
‖p̂‖2

V
2
5
.

The second inequality above follows from an application of Young’s inequality and the
definition of V2

3,V
2
5 in terms of D. To address the second term on the right-hand side of

(5.58) we recall from Lemma5.13 that the diagonal matrices satisfy 1
2D ≤ D − I ≤ D so

that

−2ε4
〈
(D − I)2D1/2p̂,D5/2p̂

〉
l2

≤ −2ε4‖(D − I)5/2p̂‖2l2 ≤ − ε4

16
‖D5/2p̂‖2l2 ≤ − ε4

16
‖p̂‖2

V
2
5
.

To bound the third term on the right-hand side of (5.58) we apply Hölder’s and Young’s
inequalities, and deduce that

〈
d̂w,D5/2p̂

〉
l2

≤ ε4

64
‖p̂‖2

V
2
5
+ Cε−4‖d̂w‖2L2 .

Using the l2-bound of d̂w fromCorollary 5.12, returning these three estimates above to (5.58),
and taking c∗ = 1

32 completes the proof provided that ε0 and δ are small enough. ��
Acknowledgements Both authors thank Gurgen Hayrapetyan for sharing preliminary results on this problem
for the weak FCH that arose out of his thesis.

6 Appendix

This section contains technical results whose proof was deferred from the main presentation.

6.1 Elementary Embeddings in theWeighted Space

The following embeddings are direct results of Hölder’s inequality and the asymptotic form
of β j introduced in (2.4), details are omitted.

Lemma 6.1 Suppose that p̂ ∈ l∞(RN1), then ‖p̂‖
V
2
0

= ‖p̂‖l2 and

‖p̂‖Vk � ‖p̂‖
V
2
k+1

, ‖p̂‖Vr
k+1

� N1‖p̂‖Vr
k
, ‖p̂‖Vk � Nk+1/2

1 ‖p̂‖l2 .

In addition, for any vector a ∈ l2(Rm) we have the dimension dependent bound

‖a‖l1 ≤ m1/2‖a‖l2 . (6.1)
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6.2 Geometric Quantities and Their Bounds

Lemma 6.2 (Geometric quantities of Γp) Let p ∈ Dδ withDδ given by (2.8) in Definition 2.3.
The length normalization A(p) depends quadradically upon p̂, and the length of Γp depends
only on p0,

A(p) = 1 + O(‖p̂‖2
V1

); |Γp| = (1 + p0)|Γ0|. (6.2)

The gradient of A with respect to p satisfies

‖∇pA‖l2 � ‖p̂‖
V
2
2
.

The curvature of Γp, defined by

κp := γ ′′
p · np/|γ ′

p|2, with np = e−πR/2γ ′
p
/|γ ′

p| (6.3)

admits the expansion

κp(s) = κp,0 + Q1 + Q2, κp,0 = − 1

1 + p0
, (6.4)

where the linear approximation is given by

Q1 = 1

1 + p0

N1−1∑
j=3

(1 − β2
j )p j θ̃ j ,

and the quadratic remainder Q2 satisfies

‖Q2‖L2(Ip)
� ‖p̂‖2

V
2
2
, ‖Q2‖H1(Ip)

� ‖p̂‖
V
2
3
‖p̂‖

V
2
2
,

‖Q2‖H2(Ip)
� ‖p̂‖

V
2
4
‖p̂‖

V
2
2
; ‖Q2‖H3(Ip)

� ‖p̂‖
V
2
5
‖p̂‖

V
2
2
+ ‖p̂‖

V
2
3
‖p̂‖

V
2
4
.

The curvature κp and normal np depend only on p0 and p̂, and satisfy the following bounds

‖κp‖L∞ + ‖ε2Δspκp‖L∞ � 1 + ‖p̂‖V2 ; |np − n0| � ‖p̂‖V1 , (6.5)

Moreover, the perturbed and original normal satisfy the relation

np · n0 = 1 + O(‖p̂‖2
V1

). (6.6)

Proof The length of Γp follows from its definition, and the approximation of A(p) and its
gradient estimate are given in Lemma 2.11 of [5]. Taking the derivative of γ p in (2.13) and
using n′

0 = −κ0γ
′
0 we find

γ ′
p = 1 + p0

A(p)

[(
1 − κ0 p̄(s̃)

)
γ ′
0 + p̄′(s̃)|γ ′

p|n0(s)
]
, (6.7)

and hence for p̂ ∈ V2 we have the approximations

|γ ′
p| = 1 + p0

A(p)
(1 − κ0 p̄) + O(‖p̂‖2

V1
), |γ ′

p|′ = O(‖p̂‖V1). (6.8)

To obtain an approximation of the curvature κp we take an additional s derivative of (6.7).
Using the relation between the tangent and normal we find the equality

γ ′′
p = 1 + p0

A(p)

[(
κ0 + (1 + p0)2

A2(p)
p̄′′(s̃) − κ2

0 p̄ + Q2,0

)
n0 − 2κ0 p̄

′(s̃)|γ ′
p|γ ′

0

]
.
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Here Q2,0(γ p) takes the explicit form

Q2,0 =
(

|γ ′
p|2 − (1 + p0)2

A(p)

)
p̄′′ + p̄′|γ ′

p|′

and is an intermediate quadratic remainder from (6.8). From the tangent and normal relation:
n = e−πR/2γ ′, we deduce from (6.7) that

e−πR/2γ ′
p = 1 + p0

A(p)

[
(1 − κ0 p̄(s̃))n0 − p̄′(s̃)|γ ′

p|γ ′
0

]
, (6.9)

which when dotted with the approximation for γ ′′
p implies

e−πR/2γ ′
p · γ ′′

p =
(
1 + p0
A(p)

)2 [
κ0 + (1 + p0)2

A2(p)
p̄′′ − 2κ2

0 p̄ + Q2,1

]
,

in which Q2,1 is a quadratic term given by

Q2,1 = Q2,0(1 − κ0 p̄) +
[
−κ0 p̄

(
(1 + p0)2

A2(p)
p̄′′ − κ0 p̄

)
+
(
2κ0 p̄

′|γ ′
p| + κ ′

0 p̄
)
p̄′|γ ′

p|
]

.

Finally, in light of (6.8) we rewrite

1

|γ ′
p|3

=
(

A(p)

1 + p0

)3 (
1 + 3κ0 p̄ + Q2,2

)
, Q2,2 := 1

|γ ′
p|3

− 1 − 3κ0 p̄,

and substituting these expressions in (6.3) we obtain the curvature expansion,

κp = A(p)

1 + p0

[
κ0 + κ2

0 p̄ + (1 + p0)2

A2(p)
p̄′′(s̃) + Q2,3

]

where A(p) = 1 + O(‖p̂‖2
V1

) and the final quadratic remainder takes the form

Q2,3 := A(p)

(1 + p0)2
e−πR/2γ ′

p · γ ′′
p Q2,2 + (1 + p0)3

A3(p)

1

|γ ′
p|3

Q2,1 + 3κ0 p̄

[
(1 + p0)2

A2(p)
p̄′′ − 2κ0 p̄

]
.

The form of the expansion (6.4) follows from the definition of p̄, (6.2), and (A(p) − 1) is
quadratic. The Hk estimates ofQ2 follows directly from the formulas for the quadratic terms,
the independence of A(p) from s̃p, and the embedding estimates in Lemma 6.1.

The curvature bounds in (6.5) follow directly from these expansions and the embedding
estimate of Lemma 6.1. To establish that the normals are nearly parallel, from the definition
(6.3) of np we have

np · n0 = e−πR/2γ ′
p

|γ ′
p|

· n0.

The estimate (6.6) follows directly by (6.9) and (6.8). This completes the proof. �� Recall
that Π⊥

G1
= I −ΠG1 is the complement to the Garlerkin projection onto G1 ⊂ L2(Ip). The

curvature expansion and remainder estimates in the Lemma 6.2 above imply the following
estimates.

Corollary 6.3 With the same assumptions as in Lemma 6.2, it holds that

‖Π⊥
G1

κp‖L2(Ip)
+ ‖Π⊥

G1
κ3
p‖L2(Ip)

� ‖p̂‖
V
2
2
‖p̂‖

V
2
3
(1 + ‖p̂‖4

V
2
3
);

‖Π⊥
G1

Δspκp‖L2(Ip)
� ‖p̂‖

V
2
2
‖p̂‖

V
2
4
.
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Proof The curvature admits the expansion (6.4), for which the first two terms κp,0,Q1 ∈ G1,
and hence Π⊥

G1
κp = Π⊥

G1
Q2. Applying the H1(Ip)-bound ofQ2 from Lemma 6.2 we find

‖Π⊥
G1

κp‖L2(Ip)
� ‖Q2‖H1(Ip)

� ‖p̂‖
V
2
2
‖p̂‖

V
2
3
.

From (6.4) that we expand

κ3
p = κ3

p,0 + 3κ2
p,0Q1 + 3κp,0Q2

1 + 3κ2
p,0Q2 + 3κp,0Q2

2 + 3Q2
1Q2 + 3Q1Q2

2

+6κp,0Q1Q2 + Q3
1 + Q3

2.

Note the first two terms lies in G1 and |κp,0| � 1 for p ∈ Dδ . Then from the Sobolev
embedding L∞(Ip) ↪→ H1(Ip), and definition of Q1 and the L2(Ip), H1(Ip)-bounds of
Q2 from Lemma 6.2 we derive

‖Π⊥
G1

κ3
p‖L2(Ip)

� ‖p̂‖
V
2
2
‖p̂‖

V
2
3
(1 + ‖p̂‖4

V
2
3
).

Similarly, since G1 is invariant under Δsp and Π⊥
G1

Δspκp = Π⊥
G1

ΔspQ2, applying the

H2(Ip)-bound of Q2 from Lemma 6.2 implies

‖Π⊥
G1

Δspκp‖L2(Ip)
� ‖Q2‖H2(Ip)

� ‖p̂‖
V
2
2
‖p̂‖

V
2
4
.

The corollary follows. ��

For a function h ∈ H2(γ p), see (3.5), its value at the perturbed interface γp will frequently
be compared to its value at leading order circular interface γp,0 defined in (2.19). This leads
to the decomposition

h(zp; γ p) = h(zp; γ p,0) + (h(zp; γ p) − h(zp; γ p,0)
)
. (6.10)

The following Lemma provides Lipschitz estimates on the second term of the decomposition.

Lemma 6.4 Suppose h = h(γ p) lies in the function family H̄2(γ p) as introduced inDefinition
3.5, and is decomposed as in (6.10). Then the leading order term h(γ p,0) is independent of
s̃p and if p̂ ∈ V2, then

‖h(γ p) − h(γ p,0)‖L2(Ip)
� ‖p̂‖

V
2
2
. (6.11)

If moreover p̂ ∈ V
2
3, then for l ≥ 1,

∥∥∥εl−1∂ lsp

(
h(γ p) − h(γ p,0

)∥∥∥
L2(Ip)

� ‖p̂‖
V
2
3
. (6.12)

Proof These estimates in (6.11)–(6.12), can be derived directly by the approximations of
|γ ′

p|, κp and np in (6.8), (6.4). We only need to verify that h(zp; γ p,0) is independent of sp.
This holds true since |γ ′

p,0| = 1 + p0 by (6.8), κp,0 admits form in (6.4) and

n0 · np,0 = 1, for np,0 = e−πR/2γ ′
p,0

|γ ′
p,0|

. (6.13)

Here we used (6.9) with p̂ = 0. ��
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Lemma 6.5 Recalling the notation of Sect.1.1, if f ∈ L2(Ip), then there exists a unit vector
e = (ei ) such that

∫
Ip

f θ̃i ds̃p = O(‖ f ‖L2(Ip)
)ei . (6.14)

If in addition f ∈ L∞ on Ip, then for any vector a = (a j ) ∈ l2, we have

∣∣∣∣∣∣
∑
j

∫
Ip

f θ̃ia j θ̃ j ds̃p

∣∣∣∣∣∣ � ‖a‖l2‖ f ‖L∞ei , (6.15)

and there exists a matrix E = (Ei j ) with l2∗ norm one, such that

∫
Ip

f θ̃i θ̃ j ds̃p = O(‖ f ‖L∞)Ei j . (6.16)

Proof The estimates follow from Plancherel and classic applications of Fourier theory. ��

The following Lemma estimates the p-variation of the local coordinate associated to Γp.
In particular it provides estimates on the difference between (sp, zp) and (s, z) in terms of p.
It is equivalent to Lemma 6.2 of [5] and the proof is omitted.

Lemma 6.6 Let (sp, zp) be the local coordinate subject to Γp on Γ 2�
p . Assuming (2.8) the

tangent coordinate sp satisfies

‖∇psp‖L2(Ip)
� 1;

while zp have the p-gradient

∂zp
∂p j

= ε−1ξ j (sp),

where ξ j is a function of sp given explicitly by

ξ j (sp) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
(
1 + p̄

A

(
1 − (1 + p0)∂p0 ln A

)− s̃p p̄′

A

)
n0 · np, j = 0

− θ0E j · np, j = 1, 2;

−
(

θ̃ j − (1 + p0)∂p j ln A

A
(1 + p̄)

)
n0 · np j ≥ 3.

Moreover, we have the estimate

|sp − s| � ‖p‖l1 , |zp − z| ≤ ε−1‖p‖l1 . (6.17)
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6.3 Results on the Projection of the Normal Velocity

Lemma 6.7 Under the assumption (2.8), the curvature of Γp admits the following projection
identities:∫

Ip

κpθ̃k ds̃p = −2πθ0δk0 − (β2
k − 1)pk1{k≥3} + O

(
‖p̂‖2

V
2
2

)
ek,

∫
Ip

κ3
p θ̃k ds̃p = − 2πθ0

(1 + p0)2
δk0 − 3(β2

k − 1)

(1 + p0)2
pk1{k≥3} + O

(
‖p̂‖

V
2
2
‖p̂‖

V
2
3

)
ek,

∫
Ip

Δspκpθ̃k ds̃p = (β2
k − 1)β2

k

(1 + p0)2
pk1{k≥3} + O

(
‖p̂‖

V
2
2
‖p̂‖

V
2
4

)
ek1{k≥1},

for k ∈ �1. Here e = (e j )
N1−1
j=0 denotes a possibly different unit vector in each line.

Proof The curvature admits the expansion as in Lemma 6.2, and the quadratic term Q2

contributes ∫
Ip

Q2θ̃k ds̃p = O
(
‖p̂‖2

V
2
2

)
ek, (6.18)

while from the orthogonality (2.15) the projection of the linear term takes the form
∫
Ip

Q1θ̃k ds̃p = (1 − β2
k )pk1{k≥3}. (6.19)

The leading order term κp,0 contributes
∫
Ip

κp,0θ̃k ds̃p = −2πθ0δk0. (6.20)

Combining (6.4) with the identities (6.18)–(6.20) yields the first result of the Lemma. For
the κ3

p projection, we expand

κ3
p = κ3

p,0 + 3κ2
p,0Q1 + Q̃2, (6.21)

where Q̃2 denotes quadratic terms in p and satisfies

|Q̃2| � |Q1|3 + |Q2|3 + |Q1|2|Q2| + |Q1||Q2|2

Since |Q1| + |Q2| � ‖p̂‖V2 � 1, the assumption (2.8) and the estimates above imply

‖Q̃2‖L2(Ip)
� ‖Q1‖L∞‖Q1‖L2(Ip)

+ ‖Q2‖L2(Ip)
� ‖p̂‖V2‖p̂‖

V
2
2

� ‖p̂‖
V
2
3
‖p̂‖

V
2
2
.

Here we also used the embedding estimate in the perturbation space V, see Lemma 6.1.
Since κp,0 is independent of sp, the second identity of Lemma follows from (6.19), (6.20),
the definition of κp,0 in (6.4), and Hölder’s inequality. For the Laplace–Beltrami curvature
projection, we integrate by parts and use (2.17), to find

∫
Ip

Δspκpθ̃k ds̃p = −β2
p,k

∫
Ip

Q1θ̃k ds̃p +
∫
Ip

ΔspQ2 θ̃k ds̃p. (6.22)
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The first term on the right-hand side is dominant, and can be estimated by (6.19). The second
term on the right-hand side is higher order and can be bounded by

∣∣∣∣∣
∫
Ip

ΔspQ2 θ̃k ds̃p

∣∣∣∣∣ � ‖p̂‖
V
2
2
‖p̂‖

V
2
4
ek . (6.23)

The result follows. ��

Combining the identities in Lemma6.7, yields the following result.

Corollary 6.8 For V M
k = V M

k (p), VW
k = VW

k (p) defined in (5.16), there exists a unit vector
e = (ek) such that

V M
k (p) = − 2πθ0δk0 − (β2

k − 1)pk1{k≥3} + O(‖p̂‖2
V
2
2
)ek,

VW
k (p) =2πθ0

(
1

2(1 + p0)2
− α

)
δk0 − β2

k − 1

(1 + p0)2

[
2β2

k − 3

2
− α(1 + p0)

2

]
pk1k≥3

+ O(‖p̂‖
V
2
2
‖p̂‖

V
2
4
)ek1{k≥1} + O(‖p̂‖

V
2
2
‖p̂‖

V
2
3
)ek,

for k = 0, . . . , N1 − 1.

Lemma 6.9 Let h = h(γ p) lie in H̄2 (see Definition 3.5). Then for j=0,1,2

∫
∇ j
sph(γ p)θ̃k ds̃p = C(p0)δk0δ j0 + O(‖p̂‖

V
2
2+ j

),

∫
∇ j
sph(γ p)εθ̃

′
k ds̃p = O(‖p̂‖

V
2
2+ j

).

Proof From decomposition (6.10) the function h can be rewritten as h(γ p) = h(γ p,0) +
(h(γ p) − h(γ p,0)), and the integral of the leading order term h(γ p,0) reduces to

∫
Ip

∇ j
sph(γ p,0)θ̃k ds̃p = δ j0h(γ p,0)

∫
Ip

θk ds̃p = C(p0)δk0δ j0, (6.24)

where the constant C(p0) depends only on p0. Here we note h(γ p,0) is independent of sp by
Lemma 6.4. Moreover, we have the bound

∣∣∣∣∣
∫
Ip

∇ j
sp

(
h(γ p) − h(γ p,0)

)
θ̃k ds̃p

∣∣∣∣∣ � ‖p̂‖
V
2
2
ek . (6.25)

The proof is complete. ��

Lemma 6.10 Imposing assumptions (2.8), then there exist smooth functions Ck = Ck(p0)
for k = 1, 2 such that
∫

Ω

(
F(Φp) − F∞

m

)
dx = C1(p0)ε

4 + C2(p0)ε
4(σ − σ ∗

1 ) + O
(
ε4‖p̂‖

V
2
2
, ε5‖p̂‖

V
2
4

)
.

Proof This is a direct result of the form of F given in Lemma 3.7 and the Lemma6.9, details
are omitted. ��
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Lemma 6.11 There exists a unit vector e = (ek)
N1−1
k=0 such that the remainders defined in

(5.18) satisfy

Rk,1(p) = ε7/2(σ ∗
1 − σ)

(
C1(p0)δk0 + O(‖p̂‖

V
2
2
)ek
)

+ ε9/2C2(p0) + O(ε9/2‖p̂‖
V
2
4
)ek

Rk,2(p) = ε11/2
(
C1(p0) + C2(p0)(σ − σ ∗

1 )
)
δk0 + O

(
ε11/2‖p̂‖

V
2
2

)
ek

where C1 and C2 are smooth functions of p0.

Proof For Rk,1 in (5.18), we expand F as in Lemma 3.7 that is, F − F∞
m = ε2F2 + ε3(F3 −

F∞
3 ) + ε4(F4 − F∞

4 ) + e−�ε/νFe by noting F∞
2 = 0. Integrating out zp and using that the

functions ϕ̃1,k = ε−1/2ϕ1,k(zp; γ p), ϕ̃2,k = ε−1/2ϕ2,k(zp; γ p) from (3.32) belong to the
function family H2 as introduced in Definition 3.5, the leading order contribution from F2
takes the form

ε7/2(σ ∗
1 − σ)

∫
Ip

(
h1(γ p)θ̃k + h2(γ p)εθ̃

′
k

)
ds̃p.

The dependence of ϕ1,k, ϕ2,k on sp is uniform in k so that Lemma 6.5 applies. Applying
Lemma 6.9 with j = 0 we see that this term provides the leading order contribution toRk,1.
From the form of F3,F4 in Lemma 3.7 and Lemma 6.9 we find that the remaining terms can
be bounded by ε9/2‖p̂‖

V
2
4
.

To estimate Rk,2 we turn to the definition of Z1k
p,∗ with k ∈ �1 and use that ψ1 = φ′

0/m1

has odd parity to derive

Rk,2 = C
∫

Ω

(
F(Φp) − F∞

m

)
dx

(
ε3/2

∫
Ip

(
h1(γ p)θ̃k + h2(γ p)εθ̃

′
k

)
ds̃p

)
. (6.26)

Applying Lemma 6.9 to h1, h2, the identity (6.26) reduces to

Rk,2 = ε3/2
(
C(p0)δk0 + O‖p̂‖

V
2
2
)ek
) ∫

Ω

(
F(Φp) − F∞

m

)
dx, (6.27)

which, combinedwithLemma6.10, yields the revised functionsC1(p0),C2(p0)which appear
in the statement of the Lemma. ��

6.4 Weighted Estimates

The proof of the weighted estimates in Corollaries5.5 and 5.10 are based on the following
Lemma which primarily follows from integration by parts.

Lemma 6.12 Let f = f (sp) be a function of sp. Then if f ∈ H1(Ip) there exists a unit
vector (ek) ∈ l2 such that∫

Ip

f (sp)βk θ̃k ds̃p = O(‖∇sp f ‖L2(Ip)
)ek,

for k ≥ 3. Moreover if f ∈ W 1,∞(Ip), then there exists a matrix E bounded in the l2∗ norm
such that ∫

Ip

f (sp)θ̃ jβk θ̃k ds̃p = O(‖∇sp f ‖L∞)Ek j + O(‖ f ‖L∞)β jEk j .
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Proof We observe from (2.17) that if we denote

θk(s̃p) := −(1 + p0)β
−1
p,k θ̃

′
k(s̃p), (6.28)

then

θ ′
k(s̃p) = βk θ̃k(s̃p).

Hence through integration by parts∫
Ip

f (sp)βk θ̃k ds̃p = −
∫
Ip

∇sp f (sp)θk(s̃p) ds̃p.

In light of Lemma 6.5, we only need to show that {θk, k ≥ 3} are orthogonal to each other.
Since

θ̃ ′
k =

{ − βp,k θ̃k+1 if k is odd;
βp,k θ̃k−1 if k is even.

The orthogonality of θk follows from its definition and orthogonality of θ̃k in (2.15). The first
estimate follows from the identity βp, j = β j/(1+ p0). The second estimate is derived from
similar arguments using Lemma 6.5. ��
Lemma 6.13 For k ≥ 3 and k ∈ �1, the quantities V M

k , VW
k defined in (5.16) satisfy the

weighted approximations,

βkV
M
k (p) = −(β2

k − 1)βkpk + O(‖p̂‖
V
2
2
‖p̂‖

V
2
3
)ek ,

βkV
W
k (p) = − β2

k − 1

(1 + p0)2

[
2β2

k − 3

2
− α(1 + p0)

2

]
βkpk + O(‖p̂‖

V
2
3
‖p̂‖

V
2
4
, ‖p̂‖

V
2
2
‖p̂‖

V
2
5
)ek .

Proof For the first approximation, since κp admits expansion (6.4) we can rewrite the defi-
nition (5.16) of V M

k as

βkV
M
k (p) = −κp,0

∫
Ip

βk θ̃k ds̃p + βk

∫
Ip

Q1θ̃k ds̃p +
∫
Ip

Q2βk θ̃k ds̃p.

The first term is zero since θ̃k has no mass for any k ≥ 3; by (6.18) the second term equals

βk

∫
Ip

Q1θ̃k ds̃p = (1 − β2
k )βkpk,

and with the aid of Lemma 6.12 and the H1(Ip) estimate of Q2 from Lemma 6.2 the third
term is bounded as ∫

Ip

Q2βk θ̃k ds̃p = O(‖p̂‖
V
2
2
‖p̂‖

V
2
3
)ek .

The first estimate follows. The approximation of VW
k (p) is derived from similar arguments

through the use of the higher-order estimates on quadratic term Q2 afforded by Lemma 6.2.
��

Lemma 6.14 For k ≥ 3, the reminders defined in (5.18) satisfy the weighted estimates

βkRk,1 = O(ε7/2|σ ∗
1 − σ |‖p̂‖

V
2
3
, ε9/2‖p̂‖

V
2
5
)ek;

βkRk,2 = O(ε11/2‖p̂‖
V
2
3
)ek .
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Proof This follows from arguments similar to those for Lemma 6.11, using the weighted
estimates from Lemma 6.12. The details are omitted. ��

Finally, we give a proof a Lemma 5.2 deferred from Sect. 5.

Proof of Lemma 5.2 Wefirst address the unweighted approximation for the three cases j = 0,
j = 1, 2 and j ≥ 3.

Case 1: j = 0. We use Lemma 6.6 to replace ξ0(sp) in the integral to obtain

−
∫
Ip

ξ0(sp)θ̃k ds̃p =
∫
Ip

[
1 − (1 + p0)∂p0 ln A

A
(1 + p̄) − s̃p p̄′

A

]
n0 · npθ̃k ds̃p.

From (6.6) and (6.2) both the normal projection np · n0 and length normalization A take the
value one up to a quadratic correction. This yields the leading order approximation

−
∫
Ip

ξ0(sp)θ̃k ds̃p =
∫
Ip

[(
1 − (1 + p0)∂p0 ln A

)
(1 + p̄) − s̃p p̄

′] θ̃k ds̃p + O(‖p̂‖2
V
2
2
)Ek0.

For k ≥ 1 the eigenmode θ̃k has zero mass in L2(Ip). Using the definition (2.9) of p̄, the
orthogonality (2.15), and introducing U from (5.5) we arrive at the expansion

−
∫
Ip

ξ0(sp)θ̃k ds̃p = (1 + p0)
(
1 − (1 + p0)∂p0 ln A

)
2πθ̃0δk0 − (1 + p0)p̂TUBk

+
(
1 − (1 + p0)∂p0 ln A

)
(1 + p0)pk1{k≥3} + O(‖p̂‖2

V
2
2
)Ek0.

Since |∂p0 ln A| � ‖p̂‖
V
2
2
fromLemma 6.2, and θ̃0 = θ0 = 1/

√
2π , we rewrite this expansion

as

−
∫
Ip

ξ0(sp)θ̃k ds̃p = (1 + p0)
(
1 + O(‖p̂‖

V
2
2
)
) 1

θ0
δk0 − (1 + p0)p̂TUBk

+ (1 + p0)pk1{k≥3} + O(‖p̂‖2
V
2
2
)Ek0.

(6.29)

The second approximation for k ≥ 1 follows directly. The first estimate for k = 0 follows
by placing terms involving U into the error.

Case 2: j = 1, 2. Using Lemma 6.6 to replace ξ j (sp) in (5.13), we have

−
∫

ξ j (sp)θ̃k ds̃p =
∫
Ip

θ0E j · npθ̃k ds̃p

Since np = n0 + O(‖p̂‖V1) by Lemma 6.2 and applying identity (2.16) we find

−
∫

ξ j (sp)θ̃k ds̃p =
∫
Ip

θ j θ̃k ds̃p + O(‖p̂‖
V
2
2
)Ek j ,

= (1 + p0)δ jk + O(‖p̂‖
V
2
2
)Ek j .

Here we used ‖θ̃ j − θ j‖L2(Ip)
� ‖p̂‖

V
2
2
by its definition in (2.9).

Case 3: j ≥ 3. We follow the approach for the case j = 1. Using Lemmas 6.6 and 5.1, we
write

−
∫
Ip

ξ j (sp)θ̃k ds̃p =
∫
Ip

[
θ̃ j − (1 + p0)∂p j ln A

A
(1 + p̄)

]
n0 · npθ̃k ds̃p.
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Approximating the normal projection n0 · np with (6.6) and using the orthogonality of {θ̃k}
in (2.15) we derive

−
∫
Ip

ξ j (sp)θ̃k ds̃p =
∫
Ip

[
θ̃ j − (1 + p0)∂p j ln A

A
(1 + p̄)

]
θ̃k ds̃p + O(‖p̂‖2

V
2
2
)Ek j

= (1 + p0)δ jk + O(‖p̂‖2
V
2
2
)Ek j .

Here we also used the l2 upper bound of ∇pA in Lemma 6.2. The last identity for the case
j ≥ 3 follows.

To deal with the weighted case for k ≥ 3 we use a similar derivation which leads to the
estimate∫

Ip

ξ j (sp)βk θ̃k ds̃p = (1 + p0)βkδk j − (1 + p0) ˆpTUBkδ j0 +
∫
Ip

R[ξ j ]βk θ̃k ds̃p.

Here the remainder term R[ξ j ] is given by

R[ξ j ] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− (1 + p0)∂p0 ln A

A
(1 + p̄)n0 · np − 1 − s̃p p̄

′ (n0 · np
A

− 1
)

j = 0;
θ0

(
E j · np − θ̃ j

)
j = 1, 2;

θ̃ jn0 · (np − n0) − (1 + p0)∂p j ln A

A
(1 + p̄)n0 · np, j ≥ 3.

We observe R[ξ j ] involves only the zero and first derivatives: p̄, p̄′. Again we note that by
Lemma 6.2 both np ·n0 and A are equal to one up to some quadratic errors. The contribution
from the remainder is estimated through Lemma 6.12. ��

6.5 Control of q,w

Taking the L2 projection of the evolution Eq. (4.10) with Q and ∂t Q we obtain l2 estimates
on the evolution of the pearling parameter vector q.

Lemma 6.15 Under the assumptions of Theorem 4.1, then there exists C > 0 independent of
ε such that the pearling parameter vector q = (qk(t))k∈�0 obeys

∂t‖q‖2l2 + Cε‖q‖2l2 � ερ−4‖Lpw‖2L2 + ε−1‖N(v⊥)‖2L2 + ε8‖p̂‖2
V
2
4
.

Moreover, the l2-norm of the time derivative q̇ can be bounded by

‖q̇‖2l2 � ‖q‖2L2 + ε2‖w‖2L2 + ε‖ṗ‖2l2 + ‖N(v⊥)‖2L2 + ε9‖p̂‖2
V
2
4
.

Proof The proof is a simplification of that of Lemma 5.4 of [5] since the base interface Γ0 is
a circle, so the contribution from the geometric quantities of the base interface Γ0 are zero. ��

Taking L2-inner product of (4.10) withLpwwe develop two H2 estimates ofw by dealing
with the residual differently. These estimates have utility on different time scales.

Lemma 6.16 Under the same assumptions of Theorem 4.1, the function w ∈ Z⊥∗ , obeys

d

dt

〈
Lpw,w

〉
L2 + 1

2
‖Lpw‖2L2 � ε−1‖ṗ‖2l2 + ε2ρ−4‖q‖2l2

+ε5|p0 − p∗
0|2 + ε7(1 + ‖p̂‖2

V
2
4
) + ‖N(v⊥)‖2L2 ;
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The fast mode also obeys the second estimate

d

dt

〈
Lpw,w

〉
L2 + 1

2
‖Lpw‖2L2 � ε−1‖ṗ‖2l2 + ε2ρ−4‖q‖2l2 + ε5(|p0 − p∗

0|2 + ‖p̂‖2
V
2
2
)

+ε7‖p̂‖2
V
2
4
+ ‖N(v⊥)‖2L2 . (6.30)

Proof The first estimate is derived in Lemma 5.3 of [5], we address the second estimate.
Taking the L2-inner product of (4.10) with Lpw we estimate each term as in the first case,
except for the residual F(Φp). This yields the bound

d

dt

〈
Lpw,w

〉
L2 + ‖Lpw‖2L2 �

(
ε1/2‖ṗ‖l2 + ερ−2(‖q‖l2 + ‖q̇‖l2) + ‖N‖L2

) ‖Lpw‖L2

− 2
〈
Π0F(Φp),Lpw

〉
L2 .

Applying Hölder’s and Young’s inequalities this reduces to the estimate

d

dt

〈
Lpw,w

〉
L2 + ‖Lpw‖2L2 �ε‖ṗ‖2l2 + ε2ρ−4(‖q‖2l2 + ‖q̇‖2l2) + ‖N‖2L2 + ‖Π0F(Φp)‖2L2 .

The second estimate on w follows from the L2-bound on the residual Π0F(Φp) given in
Lemma 3.11, and the l2-bound on q̇ in Lemma 6.15. ��

The Lemmas 6.16, 6.15 and Theorem 5.1, incorporate L2-bounds of the nonlinear term
N(v⊥). This quantity, and the L∞ normof the orthogonal perturbation are bounded in terms of
the fast and the pearling modes in Lemma 5.9 of [5], which we quote below for completeness.

Lemma 6.17 If ‖v⊥‖L∞(Ω) is bounded independent of ε, then

‖N(v⊥)‖L2 � ε−1
(
ρ−2 〈

Lpw,w
〉
L2 + ‖q(t)‖2l2

)
, (6.31)

Moreover, if v⊥ = w + Q as in (4.9) then it admits the upper bound

‖v⊥‖L∞ � ε−1
(
ρ−1 〈

Lpw,w
〉1/2
L2 + ‖q(t)‖l2

)
.
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