Journal of Dynamics and Differential Equations
https://doi.org/10.1007/510884-022-10178-7

®

Check for
updates

Curve Lengthening via Regularized Motion Against
Curvature from the Strong FCH Flow

Yuan Chen'@® - Keith Promislow?

Received: 6 September 2020 / Revised: 24 April 2022 / Accepted: 16 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

We present a rigorous analysis of the transient evolution of nearly circular bilayer interfaces
evolving under the thin interface limit, ¢ < 1, of the mass preserving L?-gradient flow of
the strong scaling of the functionalized Cahn—Hilliard equation. For a domain £2 C R? we
construct a bilayer manifold with boundary comprised of quasi-equilibria of the flow and a
projection onto the manifold that associates functions u in an H> tubular neighborhood of
the manifold with an interface I" embedded in §2. The linearization of the flow about the
manifold does not present a clear spectral separation of modes normal and tangential to the
manifold. The dimension of the parameterization of the interfaces and the bilayer manifold
controls both the normal coercivity of the manifold and the coupling between normal and
tangential modes, both of which increase with this dimension. The key step in the analysis
is the identification of a range of dimensions in which coercivity dominates the coupling,
permitting the closure of the nonlinear estimates that establish the asymptotic stability of
the manifold. Orbits originating in a thin, forward invariant, tubular neighborhood ultimately
converge to an equilibrium associated to a circular interface. Projections of these orbits
yield interfacial evolution equivalent at leading order to the regularized curve-lengthening
motion characterized by normal motion against mean curvature, regularized by a higher
order Willmore expression. The curve lengthening is driven by absorption of excess mass
from the regions of 2 away from the interface, leading to high dimensional dynamics that
are ill-posed in the ¢ — 07 limit.
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1 Introduction

Amphiphilic molecules are surfactants that form thin, bilayer interfaces comprised of two
single-molecule layers. The functionalized Cahn-Hilliard (FCH) free energy, introduced
in [11], models mixtures of amphiphilic molecules and solvent. It generalizes the energy
proposed by Gompper and Goos [13], that was motivated by earlier studies of small-angle
X-ray scattering data. The FCH free energy is given in terms of the volume fraction u — b_
of the amphiphilic molecule over a domain £2 as

e 1o N\ m
F(u) :=/95<Au—8—2W(u)) _ b I(EIVulz—i-;zW(u))dx, (1.1)

where W : R — Ris a smooth tilted double well potential with local minima at u = b4 with
b_ <by,Wob-)=0> W(by), and W' (b_) > 0. The state u = b_ corresponds to pure
solvent, while # = b, denotes a maximum packing of amphiphilic molecules. The system
parameters 1 > 0 and 1, characterize key structural properties of the amphiphilic molecules.
The small positive parameter ¢ < 1 characterizes the ratio of the length of the molecule to
the domain size. The term e”~! is a distinguished limit of a second small parameter with the
weak scaling p = 2 balancing the Willmore-type residual of the dominant squared term and
the amphiphilic structure terms, while the strong scaling p = 1 places these latter terms in a
position of dominance. We consider the strong scaling p = 1, and refer the interested reader
to [12] for a detailed discussion of physical meaning of the parameters. The FCH is known
to be bounded from below over subsets of H?($2) that incorporate a wide range of boundary
conditions, [20]. Work of Choksi and Ren [6] established the Ohta-Kawasaki free energy as
a long-chain limit of a self-consistent mean field theory for diblock polymers. In particular
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their follow-up paper [7], considered diblocks immersed within a homopolymer, deriving a
continuum model for the a diblock-homopolymer blend in the long-chain limit. This approach
seems amenable to a short-chain limit, in which the homopolymer approximates a solvent
and the Florey-Huggins parameters for each component of the diblock can be adjusted to
mimic the hydrophilic-hydrophobic interactions of an amphiphilic diblock with a solvent
(homopolymer) phase. Such a model is evocative of amphiphilic blends, deriving a continuum
reduction would clarify the relation between the FCH and these important statistical physics
models.

The goal of this work is to characterize the evolution of bilayer distributions under a mass-
preserving gradient flow of the FCH energy. More specifically, to any smooth, embedded
curve I" C £2 we may associate a bilayer distribution ® = & € H 2(£2) which is an
approximate critical point of the FCH energy. In a neighborhood of I" the bilayer distribution
is expressed as

E£O0
(W (b))%

where z = z(x) is e-scaled signed distance to I", ¢ is the leading order bilayer profile
defined as the unique non-trivial solution of the ODE

370 = W'(¢o), (13)

that is homoclinic to b_ as z — Zoo. The solution is extended to be constant away from
the front, with the constant o determining the “bulk density” of surfactant. The system mass
which is set by the initial data, u(, and is scaled by &,

Qr(x;o) =¢o(2) + (1.2)

/ (uo — b-)dx = eMj. 1.4)
2

For a bilayer distribution @ with mass M the bulk density o and the length of I are slaved
through the leading order relation
My [$2] o

=2 _ - 1.5
I T e (-

where m( denotes the bilayer mass-per-unit-length,

mo :=/(¢0—b_)dz. (1.6)
R

It is instructive to examine the leading order reduction of the FCH energy at @ (-; o).
Accounting for the mass-dependent slaving (1.5) the strong scaling of the FCH reduces to a
Canham—Helfrich type energy [4, 15]

2
E(l,0) :=F(Pr(;o0)) = %/r k| ds + ;—’; (0 — 01*)2, (1.7)

where the bulk coefficient v, > 0 depends only upon the system parameters and the domain
size |£2|, while 61*, the leading order equilibrium value of the bulk parameter o, and m are
given by

of 1= =g Ty, m = ol 12R)- (1.8)

The equilibrium 0" represents the bulk density at which absorption of surfactant into a bilayer
balances with ejection of surfactant out of the bilayer. The £ ~! scaling of the (o — 01*)2 term
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in (1.7) shows the strong energetic preference for a bulk density o close to equilibrium, and
enforces an equilibrium length on I" through the mass constraint (1.5).

The nature of the interfacial evolution arising from gradient flows of the reduced energy
(1.7) is best understood through the normal velocity it induces on the interface I”. Accounting
for the slaving o = o (|I"]) from (1.5), formal arguments, [8], show that the full energy (1.1)
and the reduced energy (1.7) both drive a geometric gradient flow that dissipates the energy
(1.7), at leading order through the regularized curve lengthening normal velocity

2
VReL = —& 'mo(0 — o7k —m? (AS + %) K. (1.9)

If the bulk density is lower than the equilibrium value, 0 — o < 0, then the surface term
induces a familiar mean curvature flow, which shortens the curve. However, if the bulk density
exceeds the equilibrium value, 0 — o > 0, then the system dissipates total energy through a
curve-lengthening motion against curvature, absorbing amphiphilic material from the bulk,
see Fig. 1. We call this the regularized curve lengthening regime in which the higher-order
Willmore term serves as a singular perturbation that regularizes the ill-posed motion against
curvature.

We consider the mass-preserving L?(§2) gradient flow of the FCH energy (1.1), written
in terms of the chemical potential F = F(u), associated to F through the rescaled variational
derivative

F(u) := 83% = (e2A — W' w)(e*Au — W' () + P (16> Au — ma W' (w)). (1.10)

The mass-preserving FCH L?-gradient flow takes the form
o;u = —ITyF(u), (1.11)

subject to periodic boundary conditions on £2 € R?. Here I is the zero-mass projection
given by

Iy f = f =2, (1.12)

in terms of the averaging operator

1
2= — dx. 1.13
=g [ 7 (13)

We provide a rigorous justification of the regularized curve lengthening flow via an asymp-
totically large dimensional center-stable manifold reduction in a vicinity of the equilibrium
arising from the bilayer distribution with a circular interface 7.

Previous work, [5], addressed this system and constructed a manifold with boundary
contained in H?(£2) whose constituent points are refinements of the bilayer distributions that
are quasi-equilibria of the system (1.11). More specifically, for ¢ and 6 > 0 independently
small the work constructed a bilayer manifold, M, and associated nonlinear projection that
uniquely decomposes functions # from an open neighborhood of Mj into a point on the
manifold (a bilayer distribution) and a perturbation that is orthogonal to the tangent plane
of the manifold. The manifold is parameterized by an asymptotically large but finite set of
meander parameters, grouped asa vectorp = (po, - - - , py;—1), residing in the bilayer domain
Ds C RN defined in (2.8). A parameter vector also defines an interface I, immersed in
£2, and the bilayer distribution @,,. The interfaces are constructed as perturbations of a fixed
base interface I and the construction of the projection requires that the base interface Iy
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Fig. 1 Numerical simulation of the strong FCH mass preserving L2 gradient flow on 2 = [—27, 2712 from
initial data ug = @ (x; o) with I" a circle and o0 = 20{", double the equilibrium value. Left to right, color
coded contours of the evolving solution u = u(¢) at indicated times, show a meandering transient followed
by relaxation to a circular equilibrium with larger radius. System parameters are ¢ = 0.20, n; = 1.45 and
12 = 2.0 and well W as [17] (Color figure online)

and the scaled system mass M are compatible in the sense that the background mass of
surfactant is sufficiently close to the equilibrium value,

loo(Iy, Mo) — | < 6. (1.14)

Here oy is slaved to Iy and M through (1.5). We identify two slow spaces, the pearling and
meander spaces, as small eigenvalue eigenspaces of the second variation of the FCH energy
at @p. The pearling eigenfunctions are associated to variations in the width of a bilayer
interface and can be linearly unstable. To preclude this instability we impose an equilibrium
pearling stability condition

(PSC,)  ofS1+ (n1 —n2)ro > 0, (1.15)

on the system parameters ; > 0 and 72 € R, that renders the pearling modes linearly stable.
Here A9 < 0 is the ground state eigenvalue of the linearization of (1.3) about ¢, and S; € R
depends only upon the form of the double well, W. A detailed investigation of the onset of
the pearling instability was conducted in [10, 17].

In this work we consider a bilayer manifold, M built around a circular base interface I
and in Theorem 4.2 identify conditions under which solutions to the flow (1.11) arising from
initial data from an O (¢3/?) tubular H>-neighborhood of the bilayer manifold remain close for
all time and ultimately converge to a unique, up to translation and system mass, equilibrium
corresponding to the bilayer distribution with circular interface. Moreover Proposition 4.4
establishes that the normal velocity of the interface I'y(;) arising from the manifold projection
of u(t) agrees with the regularized-curve lengthening flow (1.9) to leading order. The most
significant impact of the additional restrictions of the initial data is that the background
density o associated to the manifold projection of the initial data g must satisfy

log — 0| < Ce!/?s, (1.16)

for some positive constant C. This restricts the length of the evolving interface to lie within
0(&'/28) of the equilibrium interface length determined by the system mass.

There are two main issues that prevent the application of a standard center-stable manifold
analysis. The first is that the pearling modes are associated to O(g) spectrum and overlap
significantly with the spectrum of the meander modes that characterize the curvature flow.
There is no spectral gap. This is remedied by inserting a third small parameter p > 0, a
spectral cut-off which constrains the eigenvalues associated to the meander and pearling
modes, see Definition 3.12. The value of p impacts the dimension, N, of the meander
space and equivalently the dimension of the bilayer manifold. The choice is constrained by
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two competing requirements. The first is that p should be large enough so that the normal
coercivity of the bilayer manifold, characterized in Lemma3.14, is sufficiently strong to
close the nonlinear estimates that establish the asymptotic stability. On the other hand, to
prevent the motion of the interface from exciting the weakly-damped pearling modes, the
spectral cut-off must be sufficiently small that the Laplace—Beltrami eigenmodes associated
to the pearling and meander modes, have a large gap, see (3.36). This asymptotically large
pearling-meander gap weakens the coupling between these spectral sets, see Lemma3.13, and
precludes the meander motion from driving a large pearling excursion. The second issue is
that the tangent space of the bilayer manifold and the meander space are asymptotically large.
To establish coercivity on the space perpendicular to the tangent space requires that it well-
approximates the meander space. This is achieved in Sect. 2.1 through an implicit construction
of the bilayer interfaces as perturbations of the base interface as a Galerkin expansion in
the Laplace Beltrami modes of the perturbed interface. This implicit construction yields a
tangent space that well-approximates the spectral meander space, allowing for a larger choice
of spectral cut-off p. The nonlinear estimates of Theorem 4.2 culminate with Eq. (4.30) which
combines the constraints on control parameters &, €, and p under which the argument closes.
Specifically we find that the spectral cut-off must satisfy

1
e L p K 1,

where the constants depend only upon system parameters. In turn, this condition on p sets a
range of allowable dimensions N ~ ¢~ p!/# for the bilayer manifold.

It is natural to compare the results for the bilayer interface dynamics of the FCH gradient
flow with those derived for the front solutions of the Cahn—Hilliard equation. For the Cahn—
Hilliard system, much of the initial work, notably [2, 18], focused on formal and rigorous
derivations of the Mullins-Sekerka flow in the ¢ — 0 limit. Quasi-stationary dynamics based
upon a radial scaling and translation parameters were derived in [1, 3] in 2D and 3D.

The FCH gradient flows differ from Cahn—Hilliard flows in that its sharp interface limit,
& — 0, is ill posed. The I"-limits constructed in [21] consider the case 1, = n; < 0, for
which the Willmore and functionalization terms act in concert. The situation is fundamentally
different when these two terms are in competition, as expressed in the the strong FCH with
m > 0. This competition leads to a wide variety of minimizing sequences from H?(£2)
whose energies are bounded as ¢ — 0T but are not readily associated to bilayers. These
include the pearled interfaces constructed in [19], as well the cylindrical filaments studied in
[8, 9]. Pearling can lower the free energy of a bilayer distribution by modulating the width
of the level sets of u# near an interface. Neither these higher codimension structures not has
no analogy within the study of the front solutions in the Cahn—Hilliard model.

The remainder of this article is organized as follows. In Sect. 2, we present the local
coordinates and implicit construction of the finite dimensional interface I. In Sect. 3 we
construct the bilayer distributions and define the map p — @, which gives the bilayer
manifold M;. We establish the coercivity of the linearization ITylLy, of the gradient flow
about @, when the operator is restricted to act on the orthogonal complement to the slow
space. Section 4 presents the main results, including the nonlinear estimates establish the
asymptotic stability of the bilayer manifold and the estimation of the difference the normal
velocity induced by the flow and RCL normal velocity, (1.9). For clarity of presentation, some
estimates required in Sect. 4 are postponed to Sect. 5, in particular the impact of the evolution
of the meander parameter vector p on the pearling and meander spaces are quantified there.
Various technical estimates, including those that relate the smoothness of the interface I, to
p are presented in the “Appendix”, Sect. 6.
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1.1 Notation

We present some general notation.

1. The symbol C generically denotes a positive constant whose value depends only on the
system parameters 71, 72, mass parameter Mo, the domain §2. In particular its value is
independent of ¢ and p, so long as they are sufficiently small. The value of C may vary
line to line without remark. In addition, A < B indicates that quantity A is less than
quantity B up to a multiplicative constant C as above,and A ~ Bif A < B and B < A.
The expression f = O(a) indicates the existence of a constant C, as above, and a norm
| - | for which

|f] = Clal.

2. The quantity v is a positive number, independent of &, that denote an exponential decay
rate. It may vary from line to line.

3. If a function space X (§2) is comprised of functions defined on the whole spatial domain
£2, we will drop the symbol £2.

4. We use 1g as the characteristic function of an index set E C N,i.e. 1g(x) = 1ifx € E;
1£(x) = 0if x ¢ E. We denote the usual Kronecker delta by

5. — I, i=7j;
0, i #£ .
5. For a finite vector q = (q;) j, we denote the norms

1/k
Il = > 1g;l*] . fork e NT,
J

and [|qll;~ = max; |q;|. For a matrix Q = (Q;;);; as a map from /2 to /% has operator
norm /2 defined by

IQlz = sup Qg

{llall2_}

We write
qj = O@e;, Qij = O(a)E;,

where e = (e;); is a vector with |le[|,2 = 1 or [E is a matrix with operator norm ||E||l§ =
1 to imply that ||qll2 = O(a) or ||Q||l£ = O(a) respectively. See (6.14)—(6.15) of
Notation 6.5 for usage.

6. The matrix ¢’ denotes rotation through the angle # with the generator R. More explicitly,

(0 ~—1 orR _ [ cosf —sin6
R_<1 O)’ ¢ _<sin9 cosO)'
2 Bilayer Interfaces and Local Coordinates

The bilayer manifold is composed of a finite dimensional family of smooth closed interfaces
immersed in 2. We fix a base interface Iy which is a circle of radius Ry. Without loss of
generality we may rescale the domain so that Ry = 1. We first define a family of closed
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interfaces parameterized by y : .# +— £2, where .# is the periodic interval of length 27r. We
introduce the periodic distance | - | » defined as

Is|.» = min{|s — 27k| : k € Z}.
The following class consists of smooth curves that do not self-intersect, quoted from [5].
Definition 2.1 Given K, £ > 0 and an integer k > 0 the class Q’,‘(’ ¢ consists of closed curves
I' embedded in £2 whose parameterization p has the properties (a) minge s |/ (s)| > %

and ||y [ly#.x(sy < K and (b) for any two points on .# that satisfy |s; — 527 > BLK then
[y (s1) —y(s2)| > £

For each I' € g%(. ¢ With £ < ﬁ there exists a tubular neighborhood, I"¢ of I" with
thickness ¢, such that the change of coordinates x — (s, r) through

x =y(s) +rn(s), 2.1

is well defined, see [5]. Here n = e~"*/2y’ /|y’ | is the outer normal of I" and r = r(x) is the
signed distance of x to the curve I". Introducing the scaled distance z = r /e € [—{/¢, £/¢],
we refer to (z, s) as the local coordinate near I".

2.1 Bilayer Interfaces

In the sequel we fix a base interface Iy which is a circle with radius 1 and constant curvature
ko = —1. The local coordinate associated to I is defined on all of £2 except for the center
of the circular curve Iy. Let yy = yo(s) be the arc-length parameterization of I, with
| y6(5)| = 1 for all s € .#. The associated Laplace—Beltrami operator —Ay : H*(%) —>
L2(.#) has the scaled eigenvalues {,3,%},?‘;0 and normalized eigenfunctions {6;};2, which
satisfy,

— Ao = Bi6y. (2.2)
In particular the ground state eigenmode is spatially constant,
bo=1/v2m,  fo=0, 23)

fork = 1,2, ..., the higher modes are given by

cos (ks), Oy = sin (ks); with Byx_1 = B = k. 2.4)

1 1
Or—1 =
27 27
In the following, we will introduce the set of bilayer interfaces whose components are
perturbations of Iy parameterized by p € RV, The dimension N shall be defined in (3.30)
and (3.35) in terms of the values of small parameters ¢, and p introduced in (3.30). The
parameter vector p is decomposed as

p=(po,p1,p2,P), P= (D3, P4, ....PN—1), (2.5)

in which pg scales the length of the bilayer interface, py, po translate the interface, and
P controls the deviation of the bilayer interface from circularity. The following weighted
spaces control p.
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Definition 2.2 (Weighted perturbation space) Let D be the (N1 — 3) x (N; — 3) diagonal
matrix

D = diag{f3, B3, -~ B, —1)- (2.6)
We say p lies in V¥ if ||f’||V’; := ||D"/?p||;x < oo, or more precisely,
Ni—1 17k
Bl = | D B Ipil ] < oo @7
j=0

When k = 1, we omit the superscript k and denote the space by V.

The bilayer manifold is constructed as a graph over the domain introduced below.

Definition 2.3 (Bilayer domain) Fix C < 1 and let § > 0 be a small parameter, independent
of ¢. The bilayer manifold domain is the set

Ds = {p e RM

po > —1/2, Ipil+ Ip2l + [Pllv, = C, [Pllv, < C5}~ 2.8)

We fix Kg, £¢9 > 0 and a base interface I € Q%(O, t and associate to each p € D; a bilayer
interface Iy with parameterization y, associated to the p-variation of I. This construction
is implicit in p but is well-defined for p € Ds, via Lemma 2.10 of [5]. Below we sketch the
construction by two steps, see also Fig. 2.

(S1) The first step in the interface construction is to define the Laplace—Beltrami—Galerkin
perturbation p associated to p,

Ni—1

~ - 27s
6 =Y pbi)., GG =6 (ﬁ> (2.9)
i=3 pl

Here § = §(s) is the arc-length parameterization of the perturbed curve I}, which takes

values in %, := [0, |Ip|] and is defined implicitly as the solution of

ds -
T =gl 5O =0. (2.10)

(S2) The second step constructs the intermediate curve fp, parameterized by
Yp(s) == yo(s) + p(&)no(s), (2.11)

where ng(s) is the outer normal vector of the circle Iy parameterized in its arc-length
parameter s. The scaled length of the intermediate curve,

A(p) := |ro|*1/] ¥5()] ds, (2.12)
is used to rescale the perturbed curve so that its length is controlled only by po,
1+ po
yp(s) = AD) yﬁ(s) + p16oE1 + p26oE;, for s e 7. (2.13)

Then I, is the perturbed interface defined by parameterization y .
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o

——t_e,

v

Fig. 2 The construction of the bilayer interface I in the translation-free case py = pp = 0. First the base
curve [ (solid black) is deformed along its normal vectors by p, defined through the implicit local variable
§ = 5(s). Then the intermediate curve I'p (dotted blue) is linearly rescaled, see black arrows, to Iy (solid blue)

in such a way that its length is controlled only by pg. Any point x in the reach, I’pyZ of I'p can be decomposed
in the local coordinate of I'p as x = yp(sp) + np(sp)zp, and equivalently in the local coordinate of I as
x = pyq(s) +ng(s)z. Here (sp, zp) and (s, z) are functions of x (Color figure online)

With the bilayer domain in Definition 2.3, we are at the point to introduce the set of bilayer
interfaces,

Is = T5(10) == {Ip|p € Ds}. (2.14)

We summarize the bilayer interface construction in the following Lemma.

Lemma 2.4 Fix Ko, £y > 0 and base interface Iy € g}(o 0 There exist positive constants
K, ¢, 8§ > 0 independent of € such that the set of bilayer interfaces, ZLs, resides in Q%(y%.

Proof This is an immediate consequence of Lemma 2.11 of [5]. We remark that the condi-
tion pp > —1/2 in Ds prevents the shrinking of the base circle to a point, while the bound
on ||plly, prevents self intersection of the perturbed curve. The V>-norm bound on p con-
trols the curvature of I', guaranteeing the existence of K, ¢ for which I, € Q%{‘n for all
p € Ds. O

The implicit definition of I insures that the tangent plane is well conditioned with respect
to the orthogonal basis {6; }jv;g of Lz(ﬂp), which satisfy

/ 00 ds = (1 +po)8jk, j,k=0,1,...,N; — L. (2.15)

7p
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In particular the rescaling by A removes the impact of the high-frequency terms, p, on the
curve length. Indeed, the length of I}, given by |I,| = 27 (1 + po), is controlled uniquely
by po. The parameters p; and p, govern the rigid translation of the interface and are treated
separately as rigid translations are not described as normal perturbations to the original
interface. The projections of the rigid translations onto ng satisfy

1 1
6E; -ng = cos(s) =01, 6pEr -ng = sin(s) = 6. (2.16)
21 N2
From (2.2) and (2.9) the scaled Laplace—Beltrami modes 6 = ] i (5) satisfy
OO =B, Bpy= 2.17)
A ) |

Here and below, primes of §; denote their derivatives with respect to 5. We remark that By, ;
reduces to 8; when p = 0. The orthogonality (2.15) implies

Bllvz ~ 15 ryys 15 Nzecry) S 1Bl (2.18)

for all p € Ds.

When developing expansions of the interface I}, it is convenient to build in the uniform
rescaling and translations associated to (pg, p1, p2) so that the expansions are controlled by
p. To this end we define the leading order perturbed interfacial map

Yp.o = (1 +p0)¥o(s) + p16E1 + p26oEa, (2.19)

whose interface I o is a translated, scaled circle with constant curvature «p .

2.2 Local Coordinate Expansions

Since Zs () C gi’%, introduced in Definition 2.1, each I}, has a tubular neighborhood of
width 2¢, denoted I p%, called the reach of Iy, on which the pair (sp, zp) form a well-defined
coordinate. In particular each x € I p% has a unique expression in the form

X = yp(sp) + np(sp)zp. (2.20)

as depicted in Fig. 2. We will also have occasion to use the coordinate system (5p, zp) posed
in the arc-length scaling of I'},.

For each p € Ds, the local coordinates of I}, induce natural L?-inner products and
expressions for the Cartesian Laplacian in the local coordinates of I',. These results have
been introduced in [5, 14], which we quote and adapt to our notation system in the following.
For any a > 0 we define the interval

R, =[—a/e,a/e]. 2.21)

For each f, g € L*(£2) with support in I p%, their L?-inner product can be written in local
coordinates (sp, zp) as

oo = [ [ Fn et e = ezpplryldspdip. 222
Rop .7
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or equivalently in the arc-length scaled variables (Sp, zp) with d5p = [yp|dsp and 5p €
as

(f 82 = / / f(Sp, 2p)&(sp, zp)e(1 — ezpkyp) dspdzp. (2.23)

Ryp J .2

The e-scaled Laplacian admits the local expansion

§7Ar = 07 +eHpdy, + 67 Ay, Agi= Ay, + 62Dy, (2.24)

where Hp, is the extended curvature

K (sp)
Hp(sp, zp) i= —————, 2.25
p(p Zp) I — ezpk (sp) ( )
—4s, = —8§2p is the Laplace-Beltrami operator on the surface I, and Dy, 2 is a relatively
bounded perturbation of Ay, . In particular,

Dy, 2 = a(sp, zp) As, + b(sp, 2p) s, (2.26)

where the smooth coefficients a, b are given explicitly by

)= ez (———— 1) b _ )t 227
a(sp, zp) = (e2p) |1_8Zpr|2 - s (sp, 2p) = 2|Vi)|2 spa(spazp)- (2.27)

We say a function f = f(sp) lies in Lz(fp) if

||f||iz(]p) = /j fz(sp)|y;)|dsp < 0o or equivalently /j fz(sp) dsp < oo.
/ P

3 Bilayer Manifold and Linear Stability

The bilayer manifold M is introduced as the graph of the bilayer distributions {®p}, defined
in Lemma 3.7, over the domain Dg, from Definition 2.3. In addition the residual of the vector
field evaluated at @}, is characterized and the coercivity of the linearized operator on the
space perpendicular to the tangent plane to M is established.

3.1 Bilayer Distributions and Bilayer Manifold

In this subsection we develop the bilayer distributions , {®p}, that include the equilibrium @«
of the FCH flow. We deduce Lipschitz estimates on @}, for p near p*. A bilayer distribution is
constructed through a matching of an inner description in the reach sze to an outer distribution

on the remainder of 2. The inner construction begins with ¢o defined on L%(R) as the
nontrivial homoclinic solution of

920 — W (o) =0, Jim o) =b-. 3.1)

The orbit ¢ is unique up to translation, even about z = 0, and converges to the smaller
minima, b_, of W as z tends to 00 at the exponential rate ./ W”(b_) > 0. The linearization
Lo of (3.1) about ¢y,

Lo := =32 + W (¢v), (3.2)
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is a Sturm-Liouville operator on the real line whose coefficients decay exponentially fast
to constants at z = oo. The following Lemma follows from classic results, see for example
Chapter 2.3.2 of [16].

Lemma 3.1 The spectrum of Ly is real, and uniformly positive except for two point spectra:
Ao < 0 and A1 = 0. The ground state eigenfunction o of Lo is even and positive, with
ground state eigenvalue Lo < 0. The operator Lo has an inverse that is well defined on the
L? perp of its kernel, span{gy}, and both Ly and its inverse preserve even and odd parity.

The base profile ¢y is a function of one variable. For an interface I'}, the first step in the
construction of @}, is introduction of the dressing of base profile with respect to I, as defined
below.

Definition 3.2 (Dressing) Let p € Ds. Given a function f(z) : R — R which tends to a
constant f°° and whose derivatives of all orders are continuous and tend to zero at an &-
independent exponential rate as 7 — 400, we define the dressed function, f d ¢ Lz(.Q), of
f with respect to the interface I, via the relation

FA@) = fap))x (elzp@)I/0) + [P0 = x(elzp(0)1/0),  Vx € 2.

Here x : R — R is a fixed smooth cut-off function satisfying: x(r) = 1 if r < 1 and
x(r) = 0if r > 2. Where there is no ambiguity we abuse notation and use f(zp) to denote
the dressing of f* with respect to 1.

We introduce the dressed operator as follows.

Definition 3.3 (Dressed operator) Let L : D C L*(R) — L?(R) be a self-adjoint differ-
ential operator with smooth coefficients whose derivatives of all order decay to zero at an
exponential rate at co. We define the space S to consist of the functions f as in Definition 3.2.
Then to each p € Ds the dressed operator L, : DN S L2(£2) and its r’th power, r € N
are given by

Ly f =L )7 (3.3)

If r < O then we assume that f € R(L) and the inverse Ly ! f decays exponentially to a
constant at =00.

Since the function 1 is orthogonal to ¢(/, in L?(R) we may define Ly k1 on the real line R.
Its dressing, subject to I, is denoted Bp x € L2(£2) and called the background function,

Bpi(x) =Lyl =" D!, xeq. (3.4)

It provides the leading-order far-field variation in the bilayer distributions and satisfies
Bpi — B as |z| — oo, where the far-field value BY® = (W”(b_))~%. When p = 0,
we drop the subscript p and denote Bp x as Bi. An important role is played by the mass of
the background function,

Bp i = / Bp k dx. (3.5)
2
With this notation the first correction ¢ to the pulse profile is defined as
dy

2 ;}) (ZP¢6(Zp)) . (3.6)

It depends upon the bulk density and meander parameters, o and p, respectively. As a function
of zp, ¢1 is smooth and is even about z, = 0.

¢ (0) = $1(zp; 0) = 0 Bpo +
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The existence of equilibrium bilayer distributions associated to circular interfaces, up to
exponentially small terms, was established in [10]. The system mass M determines the equi-
librium radius pfj and bulk density o*, and hence, up to the choice of rigid-body translations
p1 and p2, the system mass fully characterizes the circular equilibrium state.

Lemma 3.4 Lete > 0andlet I'y be a circular interface with curvature k., centered at the ori-
gin, and strictly contained within the periodic domain 2. Let 7, denote the e-scaled distance
to I'y. Then for each s sufficiently small there exists a unique constant 0 = o +e0%, (k«, &),
a uniformly (in &) bounded function % = ¢*;(zs; k«, €) which decays exponentially fast
to a constant as 7 — 00, and a uniformly (in €) smooth function ¢, = ¢ (x; ky, €, 2) and
a v > 0 such that,

D (x) =00 (24(x)) + £G1 (24(): 07) + £ (24 () 0%, ) + 7% 3 (2 (X): 0%, k)
+e G (xs 0* k),

is an equilibrium of (1.11) subject to periodic boundary conditions on 2. Translations of
periodic extensions of @, are also exact equilibrium.

The exponential correction ¢, is nontrivial outside the reach I'2¢, and it arises from the
interaction of the radial equilibrium inside the reach with the period box 2 = [—L, L]?.

The dressing process introduces functions that decay rapidly outside of I'2¢, and depend
upon I} only through zp. Frequently functions will arise that decay to a constant outside of
the reach, but that depend explicitly upon the interfacial map y;, and its derivatives up to a
certain order. These functions enjoy certain classes of estimates, and the following notation
allows them to be grouped.

Definition3.5 Let I}, € Q%(’M, we say a scalar function & € L%(£2) lies in Hy (Vp) if it takes
the form

h = ho(zp; yp) +h™,

where 7 is a constant and & has its support inside szz and depends upon sp only through
a smooth function of the first & derivatives of Yp In addition, we assume that there exists a
constant v > 0 such that ho(zp; yp)e”|1p| is uniformly bounded independent of & on Fp”.

The space Hy (yp) consists of scalar functions & € Lz(ﬂp) arising as smooth functions
of the first k derivatives of y,.

Remark 3.6 These comments clarify the usage of the 7 and 7 notation.

(a) The geometric quantities |y{,| and np, - ng lie in Hy (yp) while «p lies in 7-_{2(;/],). For the
dressing ¢o(zp) of ¢p associated to I, then ¢o(zp; Yp) € Ho(yp) with constant value
b_ while |y£,|2¢>6(zp) € H1(yp) and ¢ (zp)kp € Ha(¥p), both with constant value 0.

(b) Forany natural number m, the action of the operator ™ V;’; on y, is bounded independent
of ¢ for N restricted as in (3.35). Thus 7 € H; implies that & V;:‘) h enjoys the same
estimates as 4, see Lemma 6.4 for details.

(c) Inusage, functions in Hye (yp) arise as integrals in zj over Ry, of functions from H (yp).

The following Lemma presents the bilayer distributions and their residuals. They include
the equilibrium bilayer distribution @, associated to the circular interface I'.
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Lemma 3.7 Let ¢g and ¢ be as defined in (3.1), (3.6) respectively. Let ¢>3(zp) denote the
dressing of ¢% 5 with respect to I'y with p € Ds. Let ¢y . be the translation of ¢, defined in
Lemma?3.4. Specifically we take

¢z3(Zp) = ¢;3(Zp; 0%, k), ¢p,e = ¢o(x — p160E1 — p200E2; Ky, o®).

Then there exists v > 0 and a function ¢ € Ha (see Definition 3.5) such that the bilayer
distribution

@p(x; 0) 1= do(zp) + 01 (zp; 0) + 2h=2(2p; ¥, 0) + ¢ Vo p o (), 3.7)
with ¢>2 = ¢2 + ep>3(zp) has the residual
F(®p) = Fyu(sp, 2p) + ¢ V/¥F, (1), (3.8)

with B,, = eo + 2F, + e3F3 + £4FZ4, whose expansion terms take the form
Fy = «kp(o — Gl*)fZ(Zp),
F3 = _¢6ASPKP + f3(zp; }’p)v (39)
Fou = Ag fa1(zp; ¥p) + fa,2(zp; ¥p)-

Here f> has far field value zero and has odd parity in zp, while f3, f3, fa1, fa2 € Ha. In
addition, the projections of F», F3 satisfy

/ F ¢(/) dzp = mo (o] — o)kp + O(e—év/s);
Roe

3 (3.10)

K,
[ Fadhasy =t (=ae = 2+ ) + 0
Roe

Here a = a(0; n1, n2) depends smoothly on o.

Proof This is adapted from Lemma 3.2 of [5], subject to the incorporation of lower order
terms terms in @p that do not affect the form of F 3 4. Explicit formulations of ¢, and « are
given in [5]. They are omitted here as they do not impact the results. O

As constructed the bilayer distribution converges to an equilibrium of the FCH system
if the meander and bulk density parameters converge. In light of Lemma 3.4, we assume a
priori that there exist some p* and o * in the form of

p*:(péastp;sov"' 70)7 O—*ZO'I*JFO(E)' (3'11)

such that p(r) — p* and 6 (t) — o™ ast — oo. The FCH gradient flow preserves system
mass, (1.4), which is set by the initial data. We constrain the bulk density parameter o so that
the mass of @, equals the system mass. From the form (3.7) of @, with ¢; = ¢ (o) given
by (3.6) we deduce that the mass constraint

My

(Dp(x) —b_)2 = “ap (3.12)

is satisfied precisely if

1 1 —tv/e - /
o(p) = E{Mo - /g {g(qso(zl]) —bo 4+ ) + (Lp,})(Zp¢o)>i|dx}.
(3.13)

The following result shows that at leading order o depends upon (pg, p) only through pg.
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Lemma3.8 Let ¢ € (0, g9) with go small enough and system mass My independent of e.
Suppose the bilayer distribution @y, with p € Ds satisfies the mass constraint (3.12), then

COm% 20a
7() = a0 = by + eCpoopo + O (<2Mplog) (3.14)

Here C is a smooth function of po that is bounded uniformly independent of €. The base bulk
density oy = oo(Iy, M) is independent of p, and cg is a fixed positive constant. Indeed,
Mo — mo| I

(I, Mo) + 0@ 2
Of s = &), co = —
oo o B®|22| O Bom?

> 0. (3.15)

Proof We address the terms on the right-hand side of (3.13) one-by-one. First, using the local
coordinate in FPN we rewrite

f(¢o(zp)—b_)dx=e/f ($0(zp) — b)Y, I(1 — e2picp) dsp dzp.
Q 7 JRy

Since ¢o(zp) —b- = d)g — b_ has far field value zero and has even parity with respect to zp,
we have

/ (¢o(zp) —b-)dx = SIFpI/ (¢o(z) — b-)x(ez/0) dz.
2 Ra¢
With mg defined as in (1.6), there exists a constant C1, independent of p, such that

/ (¢o(zp) — b_) dx = e[ I}| (mo + Cle—“/S) . (3.16)
2

The remaining leading order terms depend only on zj, have far-field value zero. We deduce
that

L L;%)(zqu(’)) dx = Caellpl, Coi= /R Lo_l(zdb(’))x(sz/ﬁ) dz. 3.17)
20

The constant Ep,g defined in (3.13) is the mass of the dressed function By, > introduced in
(3.4)-(3.5). Since By > approaches BS° as |z| — 0o, we may rewrite

Ep,zzf (Bpa — BS®) dx + BE|€2].
2

The integrand of the first term above has far-field value zero and is even with respect to z.
From this we deduce

Bpo =eC3|Ip| + BC|R|,  C3:= A (By — BS®)x(ez/¢) dz. (3.18)
20

Finally, the term ¢~ lies in the function family H; (see Definition 3.5). Subtracting the far
field value qb;%, integrating out zj, under the local coordinate and applying Lemma 6.9 for
j =0,k =0 we find

/_Q p=2dx = ¢25|2| + £/ (Po) + O(elllly2), (3.19)

for some smooth function f = f(pp). Combining (3.16)—(3.17) and (3.18)—(3.19) with
(3.13) yields
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1

cop)= ——
®) BF|2| + £Ca[ |

—Lv/e
e A
(Mo - M. - e202512] — (mo + Ce)|Ip| + &2 f (po) + 0<ez||p||V%)>
where C = Cie~le /¢ 4+ C; < 1and

M, 3=/ ¢p,e(x)dX=/ ¢e(x) dx,
2 2

is a mass correction arising from the exponential small correction ¢p . introduced in
Lemma 3.4. The result follows from (6.2) by extracting the leading order terms, introducing
the p independent constants c¢g and

1 e—tv/e ) o
= —{Mp— M, —¢ 2] - ot <1,
ol BEI%2| { 0 A e $=5182| — mo| ol} S
and taking o small enough. O

The bilayer manifold is defined as the graph of bilayer distributions {®@p (o) : p € Ds}
where each @, is associated to the interface I, with o = o (p) satisfying the mass relation.
The scaled system mass My introduced in (1.4) and the length of Iy form an admissible pair
if they balance in the sense that

Mo —mo| o]l S 1, (3.20)

for all € € (0, &9). In light of (3.15) we see that the pair (17, Mp) is admissible if and only
if og is uniformly bounded with respect to € € (0, &¢).

Definition 3.9 (Bilayer manifold) Fix N1 > 0. Given a circular base interface Iy with radius
1 and system mass My which form an admissible pair, (3.20), we define the N|-dimensional
bilayer manifold M;(Ip, M) to be the graph of the map p + ®p (o (p)) over the domain
Ds, where the bilayer distribution @y (o) is introduced in (3.7) with bulk density o = o (p)
satisfying the mass relation (3.13).

The particular choice of Nj is controlled through the spectral parameter p, see Defini-
tion 3.12 and (3.35). In the sequel we assume that the bulk density parameter satisfies the
mass relation (3.13). Recalling that we also assume p* = (pj, pj. P53, 0) is the equilibrium
meander parameter vector and o* is the equilibrium bulk density, hence the mass relation
implies o (p*) = o *. With this relation we have the following result.

Corollary 3.10 For p* = (p§, p}, P53, 0) € Ds the bulk density parameter o = o (p) depends
at leading-order only upon the interface parameter po, satisfying

C

ot —o@=—

2
om A
L (po —p5) + O (<lpo — p €7 Dl3). (3.21)
Our analysis requires Lipschitz estimates on the residual F(&®y) for p near p*.
Lemma 3.11 For p € Ds the components of the residual F(Pp) given in (3.8) satisfy
IF2ll2 S 6'%10 — o + %2,

IFs = B2l + 1P — X2 S 6 (1Bl +1).
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and the exponential residual satisfies |F.| 2 < 1. The overall residual satisfies the Lipschitz
estimate

IT0F@p)ll.2 < €2 1po — pj| + ™2 1Bllz + "/ 1Bl

Proof The L2-bounds of the difference between F; and its bulk value for k = 2, 3, 4 follow
from the expressions for F», F3, F4 given in Lemma 3.7, see [5] for details. The L2-estimate
of ITyF (@) follows from comparing it to the zero residual of @,. Indeed we write

I TToF(@p)ll 2 = [TToF(Pp) — TToF(Py) | 12, (3.22)
where @, is the equilibrium solution associated with bulk density state o* and interface I

with parameterization

7+ =7y +00((p1 = PDEI + (b2~ PHE2). (3.23)
obtained by translating Iy« to place its center at (py, p2). The triangle inequality and the
expansion of F = F(®p) from Lemma 3.7, yield the estimate

I1To(F(@p) — F(@)) 12 < %[ To(Fy — Fo(@4)ll 2 + &7 [To(F3 — F3(@,)) | .2
+e¥ | Mo (F2a — Foa (@)l 2 + e/ |[Fe = Fo(@) 2.
(3.24)

We use the form of the Fy (@) residuals to establish that they are Lipschitz in (py — pé, P).
We observe from Lemma 3.7 that F> admits the general form F> = «y f2(zp) (0 — o), while
F2(®4) = k4 f2(z4) (0 — 0]). We deduce that

12 —Fa(@)[12, < lo —0? /Q 2 2 (zp) drtlo® — of fg i f2(2p) — K faen) P dx.

Note that the function f, has far field zero. The integrals contribute a factor of ¢ since
the integrands are bounded and they support near the interfaces I, and I, respectively.
We decompose the second integrand as «p ( fzp) — f2 (z*)) + (Kp — K*) f2(z4+) which we
bound by |zp — z«| + [kp — kx| in its support set. Using the estimates of Lemmas 6.6, 6.2
and 6.1, recalling [0* — | < & we arrive at the bound

|MoF> = MoFx(@) (2 S elo =™+ (Ipo = o>+ IBI3;) . (329
The L2 bounds of F3 — F3(®,) and F>4 —F>4(®,) involve higher derivatives of the perturbed
curve y, from (2.13) which are controlled with through (2.15), specifically

2
le® Ay ¥ 302y + v — ¥ ¥

L2y S ||f)||V§ + Ipo — pl-
Using the bound above and the form of F3, F4 in Lemma 3.7, we establish that
I11T0Fs — MoF3 ()17, + I1TToFa — MoFa(@)lI 72 <IN, + 27 Ipo = pgl*. (3:26)

The term F, incorporates residual from ¢, and from the dressing process. However ¢, in
Lemma 3.7 cancels with the corresponding term in @,., and this component of the residual
is due solely to the dressing process, which makes a contribution

IFe —Fe(@:)llz2 < 1Bllv2- (3.27)
Combining these bounds in (3.25)—(3.27) with (3.24), applying Corollary 3.10 completes the

proof. O
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3.2 Linearized Operator and Slow Spaces

The nonlinear stability analysis hinges upon the properties of the linearization of the flow
(1.11) about a bilayer distribution @}, introduced in Lemma 3.7. The linearization takes the
form ITyLLp where

L >
Lp:i= —5 =(@E’A - W'(® 2A-W'(@
) Su2 U=, (& ( p) +en(e ( p)) (3.28)
— (£2ADp — W (D)W (Pp) + ena W (Dp),
denotes the second variational derivative of the free energy F at @y and 1y = 171 — 2.

When restricted to functions with support within the I, ng’ the Cartesian Laplacian admits the
expansion (2.24) and the leading order operator takes the form

Lpo:=Lp.  where Lp:=Lpo— &4y, (3.29)

An analysis of the spectrum of the leading order operator Ly, o led to the definition of slow
spaces Zg and Zé, called the pearling and meander spaces respectively. For each p € Ds these
slow spaces are spanned by the products of a collection of Laplace—Beltrami eigenmodes
of I', and the associated dressings of the normalized ground-state and first excited state
eigenvectors, Yo and 1| respectively, of the operator Ly defined in Lemma 3.1. These spaces
are sufficiently accurate approximations of the small-eigenvalue eigenspaces of L to generate
coercivity estimates of this operator on the orthogonal compliment of the combined slow
space Z = Zy + 21, see [10, 14, 17]. However these spaces are only invariant under the
action of the full operator IL;, up to order of . This is not sufficient to close the nonlinear
energy estimates required to establish stability and accurately recover the normal velocity.
Consequently the modified space slow spaces were introduced in [5] and are summarized
below. This definition uses the dressed and scaled version lﬁk (zp) of &k defined as

Ui (zp) i= 2P (zp).

Definition 3.12 (Slow spaces) For k = 0, 1, fixed p > 0, and p € D;s we introduce the
disjoint index sets:

. 2
T = Si(p) = [J|A§i = (A + €287 §p], and T :=3%oUY,, (3.30)

and the slow space Z, = Z.(p, p) C L2, as the union of the pearling and meander spaces,
ka) and Zi,

z:=2002!  with 2 =spanZf e mf k=01, (3.31)

The modified basis functions take the form
Z81 = (Ve + e610) 6 + 2628, (332)
fork =0, l andi € X4. Forl = 1, 2 the correction functions ¢; ; = ¢~ /2¢; ; (zp, ¥p) € Ha

(see Definition 3.5) have far-field value zero and are defined in Lemma 4.6 of [5] so as to
satisfy

/ @i (2, Yp)¥i(2) dz=0, ieX,k=0,1. (3.33)
R
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Fork = 0,1 and i € X the leading order term in Zﬁf*, obtained by setting ¢;; = 0, is
denoted
Z]l;i = &[(,‘)éi. (3.34)
The Laplace—Beltrami eigenvalues satisfy the classical Weyl’s Law asymptotics 8; ~ j, [22]
or (2.4), from which we deduce that
No:= %ol ~e o2 Ni=|Zi|~e'p!/4 (3.35)

A key point in the analysis is that for p sufficiently small, independent of e, the
Laplace—Beltrami eigenvalues associated to the pearling index set X, are asymptotically
well-separated from those of the meander index set 1. Specifically with this restriction on
p itis straightforward to determine C > 0, independent of ¢, such that the pearling-meander
gap

1B —Bjl = Ce™!,  ie%y je, (3.36)

holds. This gap, together with (2.15) and (3.33), affords the basis functions of Z, an enhanced
orthogonality that is essential to establishing Lemma 3.13. As outlined in Section 4.2 of [5],
fori, j € X, they satisfy

(. 2 (1+p0) 8 + O (2,22 llyz ) Bijo 1) = 1());
D, - A : ;
’ 2| o (e b)) By, 16) # 1()).

Here E is a norm-one (Ng + Ni) x (Nog + N;) matrix, and here and below the indicator
function [ takes values 1(i) =0ifi € Ygand I (i) = 1ifi € X;.
We denote the L? linear projection on the subspace Z¥ by IT zt for k = 0,1. In

(3.37)

particular, for any u € L? there exists a unique vector (u;)icx, € 12(RM) such that
Nz = D iex, Ui legf*. When restricted to Z, the bilinear form of the full linearized operator

HO]Lp|Z , induces an (Ny + N;) x (Ng + N;) matrix M* with entries
M = (MoLpZh ', Z07) 2. (3.38)
We decompose M* into a block structure corresponding to the pearling and meander spaces,

MF — M*(0, 0) M*(0, 1)
ML, 0) MA(LL D) )

where the blocks has entries M?‘j k,1) = M;“j fori € Xk, j € ¥;. A detailed analysis of M*
is given in [5]. In particular, the dynamic pearling stability condition

(PSC)  oS1+ngro >0, (3.40)

(3.39)

compares the bulk density o = o (p) to the ground state eigenvalue A9 of Lo in terms of
the shape-factor S1 which depends only upon the form of the well W, see [17]. When the
pearling-stability condition holds the pearling sub-block M*(0, 0) is positive definite, that
is,

&
" M0, 0)g = S (1 +po) (@St + naro)lall, for allq & RY. (3.41)

The modified slow spaces ZE and Z,l, together with the pearling—meander gap, reduces
the strength of couplings between the meander space and the pearling space, (3.37), as well
as between the meander space and the fast decay space Z;-. The later coupling becomes
0(£?) as recorded in the following Lemma.
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Lemma 3.13 For g, p, and § sufficiently small in terms of |§2| and given system parameters.
Then for all € € (0, eg) we have the meander-fast decay space coupling bound

Iz Lot iz S (8 + e Bllz ) vt 2
forany vt € (2:2,1)l and p € Ds.
Proof This is a direct adaptation of Theorem 4.11 of [5]. O

The bilinear form induced by the linearized operator 1oLy is uniformly coercive on the
set perpendicular to the slow space Z,.

Lemma 3.14 Fix p, €9, § > O sufficiently small with smallness depending only on the domain
and given system parameters. Then there exists C > 0 such that for all ¢ € (0, 9), p € Ds,
and w € Z:‘ the following coercivity estimates hold

(Lpw, w) >2 > Cp* (* w3, + lwll?.)  and  |Lpwll7,
> Cp?(< Lpw, w) >2 . (3.42)

Proof This is a direct adaptation of Theorem 4.13 of [5]. O

4 Nonlinear Stability and the Main Results

In this section the nonlinear estimates are developed which establish the main result: stability
of the bilayer manifold defined around the circular base interface. Moreover the normal
velocity of the interfaces I'p is captured through the projection of the flow onto the modified
meander space. Technical details involving the projected flow are postponed to Sect. 5.

4.1 Decomposition of the Flow

To define the nonlinear manifold projection we restrict the perturbation parameters p to lie
in a smaller space O,, s C Ds, defined in (2.8), given by

Ons = {p € RY | Ipol + Blly2 = m3} . .1

We denote by Vg (Mg, O,.s) the tubular neighborhood of thickness R in the H 2 inner norm,

gz 1= 12 ) + 4l g 4.2)

that surrounds the bilayer manifold M restricted to Oy, s,

eM
Vr(Ms, Ons5) := {u e H*| min [lu—®plly2 <R, (w—b_) = —0} 4.3)
PO 5 in 2]

Definition 4.1 (Manifold projection) Let U be a neighborhood of M. We say ITpqu =
®p(0) is a projection of U onto M and IT /J\_/tgu := vt is its complement if for each u € U

there exist a unique p € Dy and mass-free meander-orthogonal perturbation v € (Zl )+
such that

e — (4.4)

We call p and I, the meander parameter vector and interface associated to u, respectively.
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The following, from Lemma 5.2 of [5], establishes the existence of the manifold projection.

Lemma 4.2 Let Mg = Ms(lo, My) be the bilayer manifold of Definition 3.9. Let §, g9 > 0
be sufficiently small, then forall ¢ € (0, go) there exists amanifold projection Il a1 defined on
the tubular neigborhood U = Vs (Ms, Oy ). Moreover, for u € U of the form u = @p, +v
with po € Ds and massless perturbation v € H? satisfying ||v|| H2 = 8¢, then u’s meander

parameter vector p and meander-orthogonal perturbation, v+ satisfy
1/2 . i
Ip—polle S eVlvllzs Tvtllye S Mollye.

Assume a priori that a solution u = u(t) of the FCH gradient flow satisfies u €
Veesre (Ms, Ozs) on the interval [0, T']. Then for gy sufficiently small, depending on 4,
we have u € U and may decompose u as

u(x, 1) = Pp(x; 0) +vh(x, 1), vhe(Eh?h f vhdx = 0. (4.5)
2

The FCH gradient flow (1.11) can be written in terms of the pair (p, vh) = (Pp@), vl (1)) with
the bulk density parameter o = o (p(¢)) given through (3.13). Substituting the decomposition
(4.5) into the FCH gradient flow leads to an equation for ¢, and vt

3 Pp = —IIoF(®p) + Z[v], (4.6)
where Z[v] is the meander-orthogonal remainder contributed by v=. Specifically
Zlvt] = —dvt — MyLpvt — MHN(h), 4.7)
where N(v1) is the genuinely nonlinear term defined by
N(vt) := F(®p + vF) — F(®p) — Lpvt. (4.8)

A key to the nonlinear stability analysis is that the operator I1yLLp is uniformly coercive on
the space L2-orthogonal to the modified slow space Z. (p). However the modified slow space
includes the modified pearling space Z2(p) on which the operator is only weakly coercive,
see (3.41). This dichotomy motivates a further decomposition of the meander-orthogonal
perturbation v in pearling and “fast modes” as

vt =00+ w0, we Z(p.p), (4.9)
where Q =11 ngl € 20 admits the Galerkin expansion
0
0= Z q;j Zp'ss
J€Zo

for some q = q(¢) = (qi)iex,. The decomposition is well defined by Lemma 4.10 of [5]
which follows from the enhanced orthogonality estimate (3.37) and establishes the bounds

€L
=+ [|w < v . ~ .
”Q”Hl%1 I ”[-151 Sl ”Hii’ ”Q”Hl%1 llqll;2

The decomposition (4.9) of v, allows the evolution Eq. (4.6) to be rewritten in terms of Q
and w:

3 Q + Moy Q + dyw + MyLpw = —8,®p — [ToF(®p) — [HN(v>).  (4.10)
The orthogonality of (4.9) and the coercivity of I, on pearling and fast spaces induces L?

estimates on q (Lemma 6.15) and H 2_estimates on w (Lemma6.16).
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The following result, Theorem 5.13 of [5], establishes that the bilayer manifold for an
admissible pair (I, Mp), see (3.20), is stable up to its boundary. Specifically, orbits that start
within a thin tubular neighborhood of M; stay within a comparable tubular neighborhood
until such as time, 7', that the meander parameter vector p reaches the boundary of the domain
Os. The result requires a strengthening of the admissible pair condition that correlates the
system mass M and the base interface Iy, here expressed in terms of the difference between
the bulk parameter oy and its leading order equilibrium value o7".

Theorem 4.1 (Theorem 5.13 [5]) Consider the mass preserving flow (1.10)—(1.11) subject
to periodic boundary condition and initial data uy € V,s,2(Ms(To, Mo), Os). Let (I, Mo)
be a admissible pair that satisfies

loo(IT10], Mo) — o7 < 8,

where o = o' (n1, n2), introduced in (1.8), satisfies the equilbrium pearling stability con-
dition (PSC,), (1.15). Then for § small enough depending only on domain and system
parameters, there exists o such that for all ¢ € (0, &9) the solution u lies in the projec-
tion valid domain U(My) so long as p € Oa 5.

Moreover the following statements hold on the residence interval [0, T'].

1. The solution of the mass preserving flow (1.11) can be decomposed as
u(x) = Pp(x;0) + v (x),  vHE) = Q(x) + w(x) (.11

where ®p € Ms(Iy, My) and Q = HZQUJ‘ € ZE is the projection of v to the pearling
slow space.

2. The meander-orthogonal perturbation v
C, that is

L remains in Vs p-2 for some positive constant

e S lwllge @) + llall2 (@) < Ce¥2p72, Vi € [0, T]. 4.12)

4.2 Nonlinear Stability of the Bilayer Manifold

The heart of the analysis lies in the bounds on the dynamic meander parameter vector p.
These are recovered via energy and continuity arguments which hinge on an appropriate
choice of the spectral parameter p which controls the dimension of the meander space. The
initial energy in the system is restricted to control the extend of the transient excursion. This
energy is measured principally by the difference between the initial and equilibrium curve
length, |po — pgl. and secondarily by the weighted V%— and V%—norms of p that control the
deviation of the initial curve from circularity. Correspondingly we introduce the parameter
set

s = {P € BV |7 2Ipo — pj | + [Blly; < mo}. “.13)

As usual we omit the subscript m if m = 1. Our analysis requires that O}, s C Op,s, defined
in (4.1). This containment is established in the following Lemma.

Lemma4.3 Fix § > 0, and let ¢g > 0 be sufficiently small. Then for any admissible pair
(I'y, Mo) whose base bulk density oy, (see (3.15)), is sufficiently close to the equilibrium bulk
density o', (see (1.8)), so as to satisfy

. _ comi
loo(I'o, Mo) — oy | < 3, (4.14)
2mg
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then Ofn,a C Opsform > 1.

Proof Pick any p € (’)m 5> we show p € Oy, 5 for m > 1. By the definition of O, s in (4.1),
it suffices to show |pg| < 8. From Lemma 3.8 and the triangle inequality we have

2 lo(p) — of | + —|at — oo| + Ce.
comi

Recalling 0* = o} + O(e) , the bound above, together with Corollary 3.10 and |po — pjl <
mel/? forp € Oy, s yields

)
Ipol < Ipo —ppl + 5 + Ce <3,
for ¢ € (0, &9) and & sufficiently small with respect to §. ]

Our main result establishes the asymptotic stability of the bilayer manifold with circular
base interface (. More specifically we assume that (17, M) forms an admissible pair, that
the base interface I is circle, and the pair satisfies (4.14) for which o = o' (n1, n2),
introduced in (1.8), satisfies the equilibrium pearling stability condition (PSC,), (1.15).

Theorem 4.2 Consider the mass preserving gradient flow (1.10)—(1.11) subject to periodic
boundary conditions. Let (I'y, My) be an admissible pair that satisfies (4.14), and of =
o (n1, m2) given in (1.8) satisfies the equilibrium pearling stability condition (PSCy), (1.15).
For 8, p, and gg sufficient small, then for all ¢ € (0, &¢), the solution u of the mass preserving
gradient flow arising from initial data ug € Vs (Ms(Iy, Mo), O3) defined in (4.3), remains
ina slightly bigger set forallt € [0, 00). Indeed the solution admits the decomposition (4.11)
and there are constants C, ¢ > 0 independent of §, p, ¢ € (0, &p), and choice of initial data
for which the orthogonal perturbation v satisfies

52,2,

lot e < Co ot < Cemes, (@.15)

and the projected meander parameter vector relaxes to an equilibrium value p* =
(P§ P} 5. 0) according to

[P0 = PjI* + ellBll, < 4e6% et (4.16)

The equilibrium curve length parameter pjy admits the approximation

N mo N nm+m 5 Moy — 2myg 2
=———(of —0p)+ O0(), of =— my, 09g=—f=—+ 0(e),
Po C()mz( 1 0) (e), o 1 0 B2 (&)

2mg
4.17)

where the positive constants co, mo, m are defined in (3.15) and (1.6) while ny, na are system
parameters. For all k < 4 we have the temporal L* bound

x4
84/ e IPIIS, dr < 48°. (4.18)
0 k

The translation parameters p1, p2 remain within O (§) of their initial values p1(0), p2(0) and
converge to py, p; ast — oQ.
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Proof Since ug € V,s,2(Ms, O3), there exist po € Of and vy € Hii satisfying |lvoll g2 <
m

&3/% such that ug = ®p, +vo. Lemma 4.2 affords the decomposition ug = Pp(o) + vOl where
Dp0) = ITr5u0 and vé‘ is the orthogonal perturbation. The distance from p(0) to pg € Of
can be bounded by

Ip©) —poll2 S & 1BO) — Pollyz < NPIBO) — ol < o7,

where we also applied Lemma 6.1 and bounded N; from (3.35). Note that pg € Of. Hence
for &g, p small enough depending on §, the triangle inequality implies that the initial meander
parameter components satisfy

- . 36
e Ipo(0) = pjl + IBO)llvz =< = (4.19)
and there exists 7 > 0 such that
@A) & Plpo@) = pgl + Blly2 (1) <28, [pllp() <26 Vi €[0,T). (4.20)

We show T = oo in the following.

The equilibrium pearling stability condition (PSC,) holds by assumption. Under the a
priori assumption (A) the dynamic pearling stability condition (PSC) (3.40) holds uniformly.
Indeed, since 0* = o} + O(¢), (PSC) holds if o stays sufficiently close to o*, which follows
from Corollary 3.10 by

o =™ < Ipo = pj| + 2 1Bllz < /2. @.21)

Choosing &g small enough the dynamic pearling stability condition (PSC) holds uniformly
on [0, 7] and Theorem 4.1 applies. From (4.12) this in turn affords the following uniform
bounds on w, q

[Lpw, w)2 Swllf, Sep™ gl Se¥p™  Veelo, 1) (422)

Since v+ = Q + wis an orthogonal decomposition and || Q|| ;2 ~ |Iqll;2, we may estimate
m

v’ with the aid of the coercivity Lemma 3.14,and the nonlinear term N(v1) from Lemma
6.17,

2
I 2 S o7 (Lpwo )+l IN@DIZ: S 67 (072 (Lpw. w),: + laliz)
(4.23)
The first Hi%1 bound of v1 on [0, 7) in (4.15) follows from (4.23), particularly,
ot () SeP%p72  Vielo,T). (4.24)

The estimate above and assumptions in (4.20), supersede assumptions in (5.1) of Sect. 5 so
long as g9 < 52p*. Hence the results of Sect. 5 apply on [0, T'). Particularly Lemma 5.14
applies. Combining these estimates (4.22)—(4.23) with Lemma 5.14 recovers the a priori
estimate of ||pl|;2 in (4.20). In fact, for gy small enough we have

Iple <& Vrel0,T). (4.25)
For future use, we may rewrite the bounds in (4.23) as
v 152 S P Ipwiiz, + gl IN@DIZ: S & Ilpwiiz, + %~ lal:.
(4.26)
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To recover the a priori assumptions (A) it remains to bound the interface length residual
[po — pgl and ”f’”V%‘ From Lemma 5.14 and (4.26) we obtain the dynamic bound on ||p||;2

11172 S €%lpo — 51 + % IIBlIG, + &% o~ ILpwliz, + %07

lal:. @27
We break the remainder of the proof into three steps.

Step 1: Uniform estimates of |po — py| and p in V% We introduce a mixed energy:

73 -5
lal%,

E1(1) = Ipll3z + & Ipo — G + & 720" (Lpw. w)2 + ¢
and a positive time-dependent function
Ar(0) = e DI, + £%Ipo — pil* + e p ™ ClLpwligs + 2720l

Combining the first estimate on w from Lemma 6.16, q-estimate from Lemma 6.15, and the
V%-estimate of p from Lemma 5.15, and the ||p||,2 bound (4.27) we find a revised positive
constant c, independent of ¢, p, § for which the &;-dissipation inequality

%& O+ e A1) S B0 + 707 e ot + e IN@DIT  @28)
holds. Here we have introduced
Bi(1) =" (8% +ep™ 1" + 2 ) IBIG, + £7(5 + e0™ ') po — piI?
+e2p 0 + e Lpwl7: + e 070 + 207l
For p < 1 there exists a constant C, depending only on system parameters, such that
Bi(t) < C©% +ep” "0+ p)A1(0). (4.29)

This implies the existence of €; > 0, independent of ¢, §, p, such that for any combination
of &, §, p that satisfies

2 +ep 04 p<e, (4.30)

the function Bj(¢) can be absorbed into the positive term A1 (¢) on the left-hand side of the
&1-dissipation inequality. Particularly this can be achieved by choosing positive parameters
8, p small enough independent of ¢, and ¢ € (0, g9) with gy small enough, depending on
p, 8. The bounds on the orthogonal perturbation v! and nonlinear terms N(v+) from (4.26)
and estimates on w, q from (4.22) imply

d
0N c—*Al(z) <eSp10.

Since ||P||V2 < ||p||Vz we deduce that A (f) > &*&(¢) and & - -dissipation inequality above
reduces to the s1mple form

d
—sl(t) + —8451 1) <ep 10,

Multiplying by ¢“*¢*/2 and integrating, we derive the uniform bound
E1(1) < e 128,(0) + Cep™°

In view of the definition of £;(0) and the initial bound, (4.19) and (4.22) with r = 0, the
right hand side is strictly less than 48 for &9 small enough depending on p, 8. Again from the
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definition of & (¢), the first assumption in (A) holds uniformly on [0, 7'), which combined
with the /2-bound of p in (4.25) yields T = oo.

Step 2. Decay estimates To obtain a decay estimate, we introduce a second mixed energy
(1) = Bl + ™ Ipo = Pl + o~ (Lpw, w2 + 67 o gl (431)
and a time-dependent function
Ax(t) = e IBIS, + €%1po — piI* + o~ ILpwllZ: + » 7 gl (4.32)
From the definition of &, the estimates (4.19) and (4.22) yield the initial bound
£(0) < 487, (4.33)

Combining the second estimate on w from Lemma 6.16, the q-estimate from Lemma 6.15,
and the V%—estimate on p from Lemma 5.14, yields a revised constant ¢, > 0 independent
of ¢, p, § such that

d 1 104 _
38O+ eda® S pTIBIE +ellvt I + e IN@D . (4.34)

The remainder of Step 2 follows the approach of Step 1. We employ the upper bound on p
from (4.27) and the estimates on v, N(v+) from (4.26) to eliminate these terms from the
right-hand side so long as §, p and ¢ are small enough satisfying (4.30). We deduce that

e+ S am <0
a2 2 ="

Since ||f)||V% < ||13||sz1, the coercivity of ILp from (3.42) allows us to bound the positive term
on the left-hand side from below, A2 (7) > £*&>(¢). This yields the & -dissipation inequality

cxe?
4

den+ e+ A <0
dr ? 2 4 PR ="

coett /4

Multiplying both sides by e and integrating with respect to time from O to ¢ yields

t
e g (1) + / e/ Ax(1) dr < £(0).
0

from which we deduce the asymptotic decay of the & on the e ~* time-scale,

&(t) < e=E128,0) Vi € [0, ). (4.35)
The decay estimates in (4.15)—(4.16) follow with a use of the first inequality in (4.23).
Moreover the relaxation of the weighted norms is controlled by the initial energy,

x4
/ e T4 Ay (7) dT < £(0). (4.36)
0

The bound (4.33) on &£,(0), and definition of A; in (4.34) yield the temporal estimate (4.18)
for k = 4, which implies them for k < 4.

Step 3. Relaxation of the translation parameters The decay from step 2 shows that the
translation parameters converge to some equilibrium points close to their initial values. In
fact for k = 1,2 and any #; <, on [0, 00)

5]

[P (o)) de < / 1Bl de.

4l

5]

1Dk () — pic ()| 5/

4l
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which combined with (4.27) implies

5]
1Pk (22) = pic(tn)| < / (%100 = b1 + 1Bz + e~ ILpwl 2 + £2p gl ) d.

4l

We use the weighted norm relaxation estimate (4.36) and Holder’s inequality to bound the
right-hand side. The integral of the |po — p{j|-term satisfies

B b 12, 12
[t pitar <o ([Test e —pipar) - (([Teeetar)
H n 151
o0 4 172 4 4 12
S (/O P 1/482|p0 _p8|2 df) o CxE 1/8 g e CxE 11/882/ (0)

The other terms have similar or better bounds and from (4.33) we obtain

_ 4
Ik (12) — pr ()| S e~ 11/8s,

We deduce that py 2 (¢) converges to some unique equilibrium value pj , as time tends to oo.
Moreover, taking t| = 0, 1, = ¢ yields

Ipr(®) —pe(O)] S8, Vi €0, 00).

We conclude that p; 2(¢) stays in a Cé-neighborhood of its initial datum for some positive
constant independent of ¢, p, §. The proof is complete. O

4.3 Recovery of the Normal Velocity

The projection [T r4; of an orbit u = u(t) of the system (4.6) onto the bilayer manifold Ms,
defines the meander parameters and induces a normal velocity on the associated interface
I'y(t). Some elements of this analysis are postponed to Sect. 5 to streamline the presentation.
As indicated in Remark 5.4 and Eq. (5.28) of Corollary 5.8, the flow induced by the manifold
projection, 9,y , - p, is equivalent at leading order to a finite dimensional Galerkin projection
of a geometric flow. More specifically, at leading order the flow satisfies

Mg, (3;yp-mp — Vp) =0, (4.37)
with the velocity given by a rescaled, p-parmeterized version of Vrcr, (1.9),
e
Vp = 53%(01" —0)kp — et (Aspr + Ep + oucp> , (4.38)

and I1g, : Lz(fp) — L2(Jp) is the projection onto the Galerkin space G| C Lz(ﬂp)
spanned by the first Ny Laplace-Beltrami modes of I},
=
Og, fi=—— ) 0 §p)0; (5p) d5p. 4.39
= T X i, i iy “39)

There are two sources of error that differentiate the flow induced by the manifold projection
and that defined by V},. The first are the lower order terms in (4.37). The second is the fact
that the conditions on p, in particular those imposed in (4.30) require that ¢~ 1/10 « p « 1
and hence from the approximation (3.35) the dimension N of the Galerkin expansion must
reside in the tight range

W« Ny < el (4.40)
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Thus there is an e-dependent Galerkin truncation error. The following result quantifies these
errors.

Proposition 4.4 There exists a C > 0, independent of p, § and eo such that for all ¢ € (0, &)
andp € OS’ s the normal velocity satisfies the error bound

107 M = Vo2 = € (%207 + &%61Bly2) (441)

Proof From the triangle inequality we have the relation

18,75 1 = Vol 2y = 176, (07 -1 = Vo) |2 + | 16,007 o o

n Hngl Vp‘ (4.42)

L2(Ap)

where I1 é‘l = 1— T, is the complement to the Galerkin projection onto G C LZ(JP), the
space spanned by the first N1 Laplace-Beltrami eigenmodes. For the first term, from (5.28)
of Corollary 5.8 and Lemma5.11 we find that

176, (07 - mp = Vo)l 12,y S &7 10T N2 lBlliz + 72 + 221Dl v 2 + &2 IN@) 2

+etlof —ol+ e + e lpllyz + elblle-
From the estimates (4.22)~(4.23) and the relation [[v1]|;2 < [Jut]| 2 arising from the defi-
nition of A2 inner norm, see (4.2), we bound the L2-norm of v and N(v1) as
vl S 77072 IN@DI Seto™.

With these estimates, (4.21) combined with (4.16), and |0* — o}| < &, then for gy small
enough depending on p, the first term on the right-hand side of (4.42) can be estimated as

|76, (v mp = Vo)l 2y S €720 7F + 6202 Bl +elBllie. (4.43)

Bounding the last two terms in (4.42) requires a standard Sobolev estimate of the L2 projection
to the high frequency space Gf- in terms of H'-norm of a function. In fact for any function

f=f(sp) € H' (A,

m;: < B! Sgp /4 4.44

I1G, fllr2co) < By I f i ryy S €0 I T () (4.44)
Here we used Sy, ~ N with N bounded from below by (3.35). Applying the Sobolev
estimate (4.44) twice to 0:yp - Mp and utilizing the identity (5.4) yields the bound

L 2 —1/2 .
115, 0:¥p - Mpll2(rp) S €°P ! H Z pj&j HHZ(JP),
JEZI

where (£;), with its components given in Lemma 6.6, is bounded in H z(fp)-norm, inde-
pendent of ¢ for all p € O, 5. Hence for ¢ € (0, g9) and g9 < p we deduce that

117G, 3:vp - mpll 200y S €l (4.45)

To bound the last term in (4.42), we deduce from the definition of V), in (4.38) and triangle
inequality that

1 3 1 4 L 4 1 3
1115, Vollr2(s ) Sello— 01*H|HGIKpHLZ(yp) + &7 MG, Agyipllacry) + € MG kpll L2y
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From the Corollary 6.3 and the estimate (4.21), since p € (’)g’ 5 we have

1775, Voll L2y (€310 = o1+ &%) IBlly2 1Bll2 + e* 1B ll2 1Bll2

<207 4 e IBllz 1Bl o
Returning the estimates (4.43) and (4.45)—(4.46) to (4.42) we obtain
18:7p - 1p = Vol 2y S €207 + ¥ IBll2 1Bl + elBl 2.
The /?-bound of p with p € Og’ s from (4.27) completes the estimation. m}

Remark 4.5 The dominant source of error in comparing the exact and formal normal velocity
arises from the truncation error in the Galerkin projection of the surface diffusion term A, «p.
For a general p € O3 ;, the largest term in Vj, is generically the surface diffusion term which
scales like &*|| Agpll 2 ) ™ 8e3, while its Galerkin residual &*§ Blly2 < &3 Bllyz <
7/2

8%&3 is smaller. The Lz(ﬂp) norms of the other terms in V), typically scale like &'/~ or g4,

5 Dynamics of the Meander Parameters

The dynamics of the meander parameter vector p and hence of the interface I, is determined
by the projection of the mass preserving gradient flow (1.10)—(1.11), equivalently (4.6), onto
the slow meander space Z,l, which approximates the tangent plane of the bilayer manifold.
The dependence of the bilayer distributions, the slow space Z,, and the local coordinate
(zp» sp) on p makes the analysis somewhat technical. We break the projection of the system
into three subsections, characterizing the projection of d; @y, of the residual [T)F(Pp), and
of the remainder Z[v"] in turn. In the final two subsections the projection estimates are
used to recover the evolution of p and deduce energy estimates for its relaxation back to
equilbrium. The analysis is conducted on the time interval ¢ € [0, T') for which u(-, ) €
V25 (Ms(Tn, M), Oz 5) and

IOl <26%  p@) €Oy €Dy and e otz <8 (D)

These assumptions are strong enough to validate the manifold projection of Lemma 4.2
and to resolve the leading-order dynamics of p. However they are weaker than (4.20) and
(4.24) enforced in Sect.4, and hence the results of this section hold under the assumptions
of Theorem 4.2.

5.1 Projection of 6;Pp

The projection of d;®p onto the meander slow space Zj( involves the N; x Np matrix T
whose (k, j)th component is defined by

m-—mﬂz”‘ fork, j € 5.2
K=o L ork, j € Xi. (5.2
Pj L2

This matrix can be viewed as an approximation of the first fundamental form of the bilayer
manifold induced by graph of @, over the approximate tangent space Z!. The asymptotic
form of dp; @p follows from Lemmas 6.6 and 3.7. This is presented below.
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Lemma5.1 For j € Xy, the bilayer distribution @y, given in Lemma 3.7 satisfies

I,
P *(‘Po + 8¢1)§; (sp) + &R;.
Pj

Here &j(sp) = ¢ app depends on p and is given in Lemma 6.6. The remainder R = (Rj)?ll

lies in LE(RNY) and it’s projection to the meander slow space satisfies the estimate
TR 2 S e/

Proof This is a consequence of Lemma 6.4 of [5]. O

Introducing the canonical unit basis {By}rex, of RN, the chain rule and (5.2) lead to the
expression

(Tp. Bi) = (0:0p. 35) | for k € 5. (5.3)

Up to a multiplicative constant, the leading order term of the the inner product on the right-
hand side above has the leading-order expression

/ Yp- npék dsp.
I
From Lemma 6.6 and the chain rule we have the relation
aZp .
3zyp ‘hp = _SW == ;:: ;&) (sp)- 54
J 1

The projection of & (sp) to the Galerkin space G, (4.39), involves an (N| — 3) x N| matrix
U with (j, k)th component given by

k= / 500k dsp,  j=3.4,- Ni—1, keX. (5.5
‘]P

1+ po

With this notation, the projection of &; to G| has the following approximation, expressed
component-wise in relation to a unit-norm matrix E.

Lemma 5.2 With §;(sp) defined in Lemma 6.6, it holds that for j, k € X

1/60 + O ([Iplly2)Eoo, j=0,k=0;
) Pilyzs) — B UBk+ OB Ew0  j=0.k=1;

—7/ & (sp)Or dsp = R _
(1+po) [, 8jk + O(IBlly3)Exj j=lL2kex;
8k + ORI, j=3 ke

Moreover when j € X1,k > 3, we have the following approximation for the weighted
projection

Bepx = B UBL + O(IBl132)Exo j=0;

7f £j(sp)Bibi d5p = | Bk + O(lIplly2)Ex; i=12
(1 +po)
Bidjk + OBz IDllv2)Exj + O(IIPIIVz)ﬂj, Jj=3.
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The proof of the Lemma is postponed to the “Appendix”.
To complete the reduction of T we introduce the translation vector

p1.2 = p1B1 + p2Bo, (5.6)
the constants m», mj
_ 1 —1 / . _ ] 72
my = = | Ly (z¢) dz; m3 = = [ |z¢gl~dz, 5.7
2 Jr 2 Jr
and the scalar function py = (o, po),
m

mo(o, po) = =1+ O(po, &). (5.8)

m? + e(omy +ngm3) 14 po

Lemma 5.3 Suppose the assumptions in (5.1) hold, there exists a unit vector e = (ex)kex,
for which (5.3) admits the expansion:

1. ifk=0,
1/2 |
R _ L. 2 N . 5.9
o (Th. Bo) =-bo + O (€% + 111l (59)
2. ifk>1,
el

(Tb, Be) = b + po (prl=3) — B UBk) + 0 (nf)nvg P2l + (62 + ||f>||§v%>||pn,z) e,
(5.10)

where U is given in (5.5) and the indicator function 1y jy(k) has value 1 for k > j and
Ofork < j.

Proof Starting with the algebraic relation
(Tp, Bi)p = ) Tijpj, (5.11)
JEX]

we calculate Ty; for k, j € X and then sum over j. From the definition of ¢, ¢ in (3.1),
(3.6), we have the following identity

fR(@’) + ed))py dz = mT + e(omy + nam3), (5.12)

where m1, my, m3 are defined in (1.8) and (5.7). Using the expressions for o, Pp from
Lemma 5.1 and for le){‘* with k € ¥ from (3.32), the equality vy = ¢,/m;, the local
expressions for the dressed eigenfunctions of Ly, and the orthogonality (3.33) we find

1

Ty = ﬁ/ / (By(ap) + £} (2p)) 208, (3p)8i 05y 2y + OV By,
& / Ro¢ J.7p mi

Here from Lemma 6.5 the remainder matrix [E may be taken with unit lf norm. From (5.12)
we simplify this expression

2 2
+e + 5o
Ty = 1 ("”1“ 145) [ g (o) d5p + O3By, (5.13)
g el/2 7 g

To complete the proof for k > 1 we employ the three cases on j in Lemma 5.2 and return
to the summation (5.11). The second identity of the Lemma then follows with the reduction
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of o from (5.8). The first identity, for k = 0, follows from similar arguments with the
simplification that the terms involving U are small and placed in the remainder. O

Remark 5.4 By the definition of Ty;, the identities (5.13) and (5.11) in the proof of Lemma 5.3
imply

1k
(0:2. ZP’*>L2

5 D b f £ (sp)0 d5p + O ("2 Bl e

JEX)
When combined with identity (5.4) the result above implies

mj 5o~ .
(00p.235) . =75 fﬂ 3y p - pbk d5p + OBl e (5.14)
<P

Corollary 5.5 With the same assumptions as Lemma 5.3, the B-weighted projection satisfies

1/2 A
MO s . . N .
o (T, BiB) =Bube -+ bo (Bepe — BT UBBL) + OBl b1 2l )ex

O((E B + Dl 1Bll2)IBl2)ex + OB, IBlly2)er.
for k > 3 and e a unit vector in 2(RM -3,

Proof Following the proof of Lemma 5.3, we estimate 8 Ty;. From (5.13), we obtain

2 2
mi + e(omy + nam3) 5 -
By = "SI [ i o) sy + OB,
‘]P
The corollary follows from Lemma 5.2. O

Lemma 5.6 As defined in (5.5), the matrix U = (Uy) for 1,k = 3, --- N1 — 1 satisfies the
norm bound

07 g S D255 (5.15)
Proof Taking the inner product of U with p = (p3,--- ,pwn,—1) € 12, and the canonical
vector By
Ni—1
<UTI3, Bk> Z Uipr = AGS IS
P Ip

Here we recall p = Y 5 " p16(5p), from (2.18) satisfies || p ||L2(jp)N||p||V2—||]D)1/2p||z

The result then follows from Lemma 6.5. O

5.2 Projection of the Residual
The projection of the bilayer distribution residual F(®p) from Lemma 3.7 to the meander slow

space Z! drives the dynamics of meander parameters p. This is characterized in the following
Lemma. At leading order the projection arises from the normal velocity V}, defined in (4.38),
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to emphasize this we introduce the term-wise projections of the curvature and Willmore terms
of Vp,
M ~ ~
Vo (p) = / Kkpbk dsp,
A

3 (5.16)

w Kp ~ o~
Vi ()= P —Asykp — > + akp | Ok dsp.
P

Lemma 5.7 Under the assumptions in (5.1), there exists a unit vector e = (ex)kex, such
that:

1. Fork =0,
€0 ~
(moF(@p). Z3L) | =e¥my («Qﬂpo) - 9—0p0> + 0 (21po — pjl 112

+ 0 (721llyalBlly2. ¢ 1Bllv2 )

where </ (po) is a smooth function of po and given by

2w Oymg
o = o —oy) +2n0p| —————
(®o) w2 (o1 = o0) + 27 [2(1 +p0)?

+ &C1(po)po + £C2(po) (po — pgy) + £C3(po).

Here Cy(po) for k = 1, 2, 3 are smooth functions of po with uniform bounds independent
of ¢ € (0, &).
2. Fork>1andk € %y,

- a(af)]

<H0F(d’p)7 Zé{l>L2 = — &2 mycr(po)prlix=3)

+ 0" 1po — pllIBllyz. €72

9/2

A IRN2
IPo =PGBI e
+ 0@ 2 1Bllyz Bllvz, €2 [1Blly2 e

Here cy depends only on po and admits the form

* s * 2/32 -3 *
cx(po) :=(B; — 1)[00(130 —p§) + OCelpo —pj1») + & <—nmi(12)02 + m + (o] )) }

Proof Adding and subtracting the far-field value of the residual and using the definition of

the mass projection 1y and the decomposition of le,f‘*, we break the projection in dominant

and remainder terms
(HOF(cp,,), z},{;>L2 = Ty + % (5.17)

The dominant term 7 and remainder %y := %k, 1 + %2 are defined as
T == / (F(®p) — Fyy) 23" dx,
Q
Ry, = 8f (F(Q5p) - Frono) (¢l,k9~k + gﬁzykSé]é) dx, (5.18)
Q

1
Ry = 7/ (F(@p) — FY) dx/ Z)}, dx.
12| Jo 2
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The approximations of the remainder terms % o, %Zx,1 are given in section 6.3. To approxi-
mate the dominant term Z; we replace le,k by its definition (3.34), and replace V| (zp) with
#((zp)/m1. Rewriting Zj in the local coordinates we find

el/2
/R / (F(®p) — F°°)¢09k(1 — ezpkp) dSp dzp.
20

Using the expansion of F(®)) from Lemma 3.7, we decompose Z; = 23:1 Iy, j, where
£3/2
Tk = / / Fz — F2 ) ¢09k(1 8Zpr) dSp de,
Roe J 7
7/2
Tk = / / F3 F5$° )¢>09k(1 — &zpkp) dsp dzp, (5.19)
Ray J 7

9/2
Tis = / / Foy —FZ 4 e /fe ™ F, )¢09k(1 — ezpkp) d5p dzp,
Ray ﬂp

and address these terms one by one. First, from Lemma 3.7, F; has far-field value F3° = 0,
while both ¢, and F, have odd parity in z,, we deduce

£3/2
Tk = 7/ / F2¢09k dTp de
Ry J Ip
Changing the integrating order and using (3.10) yields the reduction
5/2
e>“mo
Tt = (@f =)V ), (5.20)

where the curvature projection VkM is defined in (5.16). For Zj », F3 has the projection (3.10)
so that
£9/2 .
Tio = &Pm VY +— (F3 — F3°) 0k zpkp dSp dzp,
Raop fp
£9/2
ml Vk + (¢0Avpr + f3 - f3 )¢09kZpr dfp dzp
Ry /Iy
Here f3 = f3(zp; yp) € Ha since it depends only on second and lower derivatives of y,.
The function |¢;, |zzp has odd parity and does not contribute to the integral. We deduce
£9/2
Tio=e"Pm vy + (fs = 15000k zpip d5p dzp. (5.21)
Ry /I

Addressing the integral, we change the order of integration order and integrate in zp, leaving
a function h = h(yp) € Hy (see Definition 3.5). With this notation we deduce

£9/2 ~ £9/2 ~
/ (f3 = [5O)bobkzpip dSpdzp = —— | h(y )6k dSp.
Ry, J S mi J.g,
Applying Lemma 6.9 to bound the right-hand side of this identity and returning the estimate
to Zx 2 in (5.21) yields the asymptotic form

Tio = e"2miV¥ +”2C(po)sro + 0™ (1Bllvz)ex- (5.22)
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For Z 3 similar arguments yield the expansion
Tz = €2 Cpo)dko + O™ [Blly2)ex. (5.23)
Combining the estimates (5.20), (5.22), and (5.23) yields the asymptotic expansion

5/2
& mo A
Ti=— = (of — o)V @)+ P m V¥ 0+ 2Cp0)so+ O Ibllypex. (5.24)

Rearranging and including the error estimates on %, 1, %k,2 from Lemma 6.11, we reduce
(5.17) to

5/2

& no N
(MoF@p). 235} , == 207 = o) (VI )+ eCitpoio + O B3))

(5.25)
+e"2mi V¥ (0) + €72 Cap0)dko + 0”2 [Blly2)er.

where C, C, are smooth functions of pg. To reduce these expressions to their final forms
we consider the cases k = 0 and k # 0 separately. For k = 0, using the form of VOM , VOW
presented in Corollary 6.8, we rewrite the expansion above as

10 85/2111()
(MoF (@), 230} , == 2 @b +£C1 (o)) (@ — o)
1
+ 87/2H117T90 <m - Ol> + SQ/ZC(PO)

5/2

+ 0Bl 72 1Bllvz1Bllvz. %10 — o *|IBll2)-

Here we used o = 0* 4 O(e) to simplify the error term. The coefficient « = a(0) is
smooth and affords the expansion

a(o) =a(o]) + O(g, |o — ™). (5.26)

Using the first expansion of Corollary 3.10 and deducing that |0 —o™*| < [po —p§j| + &2||p ||V%
from the second expansion, we arrive at the expression

(&)
<170F(¢p), lenf]*>L2 =&"m (ﬂf(Po) - %po) 627

+ 02 Bllvz. e 21Dl 1Bllv2. €0 — pol1Bll3)-

Here o7 = 7 (po) takes the form presented in part 1 of Lemma5.7. For the case k # 0, we
replace o with (0% — 8a§2), and reduce (5.25) to

5/2
& m m

s, ), 2
1

+ 020" — o lIBllyz. e IBllva)ex

Using this expansion, together with the expansions of VkM , VkW from Corollary 6.8, and the
bound |0 — o*| < |po — pjl + 82||f)||V% and the expansion of « from (5.26) yields part 2 of
Lemma5.7 with ¢y = cx(po) as defined therein. ]

Collecting the results on the projection of 9, P}, and of the residual F(®p) we can bound
the Galerkin meander projection of the difference between the normal velocity of Iy, and the
curvature induced velocity defined in (4.38).
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Corollary 5.8 There exists a unit vector e € I1>(RN) such that the Galerkin projections of
the normal and curvature induced velocity,(4.38), satisfy

1/2
~ &
QY My — Vi) O dspy = ——— (Z[v*], ZIK ) > 5
[ Grpom = ve)ieasy = -0 LA

+0( o —ol. €%, e plly2. elpllp)er.  (5.28)
fork € 2.

Proof From (5.25) we have

5/2
e1"my
(HOF(cbp), Zé{;)Lz - (o7 — o)V ) + &2 m V¥ (p) + 0" (o] — 0), 8" H)dro

+ 02 Bllyz. € 1Bl e

with VM, VkW defined in (5.16). The result follows by combining this with (5.14), multiplying
by —¢ {(/z/ml , and using the formulation (4.6) of the gradient flow to replace 0, @p + IToF(Pp)
with Z[v1]. O The meander parameter po = po(¢) controls the length of the interface I7p,.
Its equilibrium value pjj satisfies

=0 (5.29)

(moF@n. 735 |

for p* = (pg. p}. p3. 0).
Lemma 5.9 Suppose |oo(Iy, Mo) — 0| S 1, then there exists &g small enough such that

for each ¢ € (0, e9) pg is well defined through (5.29) and admits the approximation py =
Do + Py + O(e?) with

mo
P60 = ——3 (0 = a0(lo, Mo)) ;
comy
5.30
01 o \ 201 + Pp.0)> ! o F0.07%0.00
Proof From part 1 of Lemma 5.7 and (5.29), p;; solves
copo/bo = </ (po)- (5.31)

Here <7 can be decomposed as </ (po) = <% + £ (po) with

mo
1

(5.32)
1
21 (po) := 2mby <m - a(ﬁ‘)) + C1(po)po + C2(po) (po — Pé) + eC3(po),

where the base bulk density o has the form (3.15). The system (5.31) is linear in py for
& = 0, and hence has a unique solution. The smooth continuation of this unique solution, for
& € (0, eg) with g9 small enough, is a simple application of the implicit function theorem
since ¢/ is smooth in pg. Recalling that 6y = 1/ V27, a regular perturbation expansion
Py =P o + P + O(e?), yields (5.30). o
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From Lemma 3.8, the equilibrium bulk density o* = o(p*) with p* = (p§, p}, p3.0)
depends only on the meander length parameter pfj through

2
* comy
c* =09 —
mo

Po + £poC(Py)- (5.33)

From the approximation of pj from Lemma 5.9 , we find the expansion 0* = o} + 05 +
0(£?) with

G*__C()G()m% " _m% —1

— ! 0.0C (06 . 5.34

P 1 +a(or) + poo (P0,0)> (5.34)
These relations give the map from the system mass to a unique, up to translation, equilibrium
profile with parameters (o, po, p) = (¢, p;;, 0). Returning to (5.31) we may expand <7 (py)
around p;; to write the residual in the form

o (po) — ;—gpo - ;—g(pz; — po) + 0 ()P — po)- (5.35)

This allows the reformulation of the projection of the residual IToF(®p) onto Z’,, given in

part 1 of Lemma 5.7, in terms of the small quantities pg — pg; and ”f’”V%’

mico
o (6 —po) + 0" |po — p§)
o (5.36)

+ 0 (¢%2Ipo — pj11Bllvz. 7 1Bll2 1Bllv2. € 1Blz)

/ MToF(®y) Z,", dx =&/
2

Using (5.34) to eliminate o}’ and the a priori assumption |po(¢)| < 1 forall ¢ € [0, T), we
rewrite ¢y as,

ck(po) = coDik — D(po — p§) + e @ik — D? + O(elpo|Dk), (5.37)

where D is the diagonal matrix defined in (2.6) that induces the norm V%.
We estimate weighted projections by absorbing the factors of fy into higher V? norms of
p- This requires modifications of these error terms.

Corollary 5.10 It holds that the weighted projections

/Q MR (@y) izt dx = —™2mcifip + 0> 1po — pilIBll2 11Bllv2)ex

7/2 7/2 9/2

+0("1po — p3llipllyz. &2 1Blyz 1Bllyz. &7 1Blya IBllyz. /2Bl e

fork > 3.
Proof Multiplying (5.17) by By yields
(MoF@p). Z3L) | = BTi+ Bushe,

with Bk %k = Br%r.1 + BkcZk,2 given in Lemma 6.14. We focus on Sy Z; and which we
expand as BiZr.1 + BrZk.2 + PiZk 3, given in (5.19). Utilizing (5.20) and (5.21), we have

92 my * M 7/2 w
Bk = - (of —o)BiVy (p) + e/ "m1 BV, (p)
g2 = -
+— / / (f3 = 13550 BkOkzpip dSp dzp + BTk 3-
my Jry, J.7,
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Integrating in zp and recalling the form of f3 = f3(zp; y}), then Lemma 6.12 and Eq. (6.12)
with / = 1 allow us to rewrite and estimate the integral on the second line of the equality
above as

912 /j Wy p)Bebi 45y = 02 plly2e
P

The bounds on B Z 3 can be achieved by similar arguments that exploit the form of F~4 and
F.. These terms collectively contribute an error of order 0% 2||[A)||V§). The remainder of

the reduction follows the lines of the proof of Lemma 5.7, using Lemmas 6.13 and 6.14. The
details are omitted. O

5.3 Projection of the Orthogonal Remainder Z[v+]

The orthogonal remainder Z[v~] appearing in (4.6) is induced by the meander-orthogonal
perturbation v* and lifts the solution u off of the bilayer manifold Ms. In this section we
estimate its prOJectlon which requires control of the impact of the flow on the meander basis

functions Zp’ « defined in (3.32) for k = 0, 1 and j € Xi. Under the assumptions that hold
here, Lemma 6.5 of [5] establishes the bounds

I1())j _ . .
19: Zp37 1,2 S e MIpllp, Viex, (5.38)

where the indicator function 7 is from (3.37). This bound helps estimate the residual projec-
tions.

Lemma 5.11 Under the assumptions in (5.1), there exists a unit vector e = (ek)N1 U such
that the projection of the orthogonal remainder Z (v, defined in (4.7), to the meander space
z! satisfies the bound

(#1041, 238 ) = 0 (21w 1218l (62 + 1Bl 0 2, INWDI 22 ek,

and the weighted estimate

(#1011, 873 ) = 0 (75210 12 Bl @2 1Bllyz + &' 2, e INWH 2 e
fork >3 andk € Xy.

Proof We break the orthogonal remainder into its three components as presented in (4.7),
and rewrite the projection of 9,v" as

1 1k 1 1k 1k
<8,v ,Zp’*>L2=8t<v ,zp,*> < Lz >L2

The first item on the right-hand side is zero since v is perpendicular to the meander slow
space Z!; and the second term is bounded through Holder’s inequality and estimate (5.38).
Combining these, we deduce

(o0t 2iE) = 0 bl ). ke w, (5.39)

which together with the upper bound on the meander dimension N; < e¢~! and approximate
orthogonality of (3.37) we deduce

1 —1A71/2) 1 =3/2 14 1
1Tz 2 S e NP Bl vt e S e 2Bl llv e
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To bound the projection of the second term, Ho]vaJ-, of the orthogonal remainder, we
turn to Lemma 3.13. This yields the estimate

H”Zi novai‘

2 S @Bl vl e (5.40)

The third term in the orthogonal residual expansion is the nonlinearity, N(v1), which enjoys
the simple bound
172 MN@H) 2 < IN@D) 2 (5.41)

The unweighted estimate of Lemma 5.11 follows. To derive the weighted estimate we observe
that the terms g are uniformly bounded by e ~! for k € X1, so that the unweighted estimate
immediately implies

(#1041, Bizgt) = 0 (20 12 1Bl (o + ellBlly) o™ 2 e~ IN@D 2 e

From the definition of Vz, and Young’s inequality we have the embedding estimate

N Anl/2)a01/2 1204 —1/2 4
1Bllvz < 1Bl 1Bl S &2 1Bllvz + &~ 21Bly2-
The weighted estimate follows by the a priori bound on ||f)||V% forp € Oy 5. O

5.4 Dynamics of the Meander Parameter Vector p

The results of Lemmas 5.3, 5.7 and 5.11 provide a detailed description of the dynamics of the
meander parameter vector p as induced by the gradient flow. For simplicity of presentation,
we introduce two time-dependent functions

E(t) =&+ [Bllyz + Ipol +& 2 vtll2: Ew(®) := e+ [Bllyz + Ipol + & v 2.
(5.42)

It is immediate that E(¢) < E,,(¢) for any t € R™. The assumptions in (5.1) make these two
quantities small in L% (R™), explicitly they imply

E@t) S8, Euw®) <6, (5.43)
which allow the extraction of the main flow of p, as presented below.

Theorem 5.1 Suppose that the assumptions in (5.1) hold, then there exists a positive constant
€1 independent of €, p with the following property. If § < €1, then the meander parameter
vector p = (po, P1,2, P) evolves according to

Po = —¢>co(po — pg) + do.

. 3 A

b= 0 (e%lpo — pilllpllyz ) +dic for k=1.2, (5.44)
p=—¢ [co(D + U (o — pg) + (@ — H)z] b+d.

Here 1 is the (N1 — 3) x (N - 3) identity matrix, and U is defined in (5.5). The vector
d = (dy,d") withd' = (d, d», d) has components which are error terms that satisfy

ldol < €*E@po — pgl + e* EOIBlly + &2 vT 2 + 2N 2
ld'll2 S e E@1po = p5lIBllyz + & (e + e llvt 1 2)Ipo — Pyl + e E@IIBl;
+&2 ot + 6 IN@D 2
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Moreover the rate of change p = (po, P1.2, f)) admits the upper bound
1Bl < &lpo — pgl + *1Bllyz + Idol + 1l 2 (5.45)

Proof Projecting Eq. (4.6) onto le,{‘* in L2, using identity (5.3) yields

(Tp. Bl = — (MoF(@y). 235) |+ (#1041, 2%, ) . (5.46)

where Z[v"] defined in (4.7) is the orthogonal remainder contributed by v. We first address

_ . . . . . _ ] 2 .
the case k = 0. Multiplying the identity (5.46) with k = 0 by —g!/ r’fl—?&o and applying
Lemmas 5.3 and identity (5.36) yields the ODE

po = £ co(po — pg) + do. (5.47)
where the remainder d satisfies the bound
\do| <&’ <6 + IIf)IIVg + o — 1|) Ipo — pjl + (6> + Hf’llvg)llpllz2 + 84||l3llvg IIﬁllvg + ESHfillvg

+l/?

(1738,

Recalling the quantity o = 1 4+ O(|pol, €), introduced in (5.8), and the first estimate of the
projection of the orthogonal remainder from Lemma 5.11, we introduce E(¢) in (5.42) and
obtain the simplified bound

\do| Se*E@lpo — pgl + E@ Bl + e E@lIBllyz + &2l ll 2 + 2 IN@H | 2.
(5.48)

For k > 1, we multiply identity (5.46) by —e'/2119/m and apply Lemmas 5.3 and 5.7 to
deduce

i = —po (i3 — BT UBL) — e uockpi +di. (5.49)

The remainder d’ = (dk),i\,:‘f1 can be bounded in {2 by collecting the remainder estimates
from Lemmas 5.3 and 5.7 and applying Lemma 5.11,

1l S E@lpo — p3lIBllys + e E@IBllyz + (2 + 1115 + e‘lnvlnu)npu(lsz 5%
+ Bl D120l + &2 vl 2 + 2N 2

Replacing po on the right-hand side of (5.49) with the right-hand side of (5.47), again using
the expansion o = 1 + O(|pol, €), and replacing cx with (5.37) yields

Pk = — co(po — Py) (Pkl{kz3} - fJTUBk> — &dcxpr + d, 5.51)
=— &> [co(po — p§)Dik + ek — D] prlix=3) + co(po — p)PUBx + di.
Here we have introduced the revised error term
dy = di.+ O(Iplly2do. & (Ipol + &)Ipo — Pl IBll2. &* Ipol + &) 1Bll2)e.
In the remainder of the proof we omit the tilde on dj. From (5.50) the revised version of
d' = (d)p';" enjoys the 12-bound

I/l < & E@)lpo = pillBl: + 1Bl 1dol + 6  ElIpllyz + (o2 + 113
(5.52)
+ e~ vt ) IBlle + 1Bl 91 21 + /2wt 2 + e 2N 2.
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The bounds (5.48) and (5.52) are not yet closed since they depend on p, however from (5.44)
we derive

ol S [P0 — p§| + Idol.
IBll2 < €% — P51 I1Bllvz + 1Bl + eIl (5.53)
1.2 S € 1po — PGl IBllvz + lld'l2-

The estimate (5.45) follows directly. Using this bound (5.45) and the bound on p > from (5.53)
on the right-hand side of (5.48) and (5.50), and remarking that 24! vt 2+ ”f’”V§ <1,
then algebraic rearrangements lead to the bounds

ldol < e*E®po = pgl + E@d'll2 + e* EOIIBllyz + ™2 v 2 + /2 IN@H | 23
ld'llz < e*E@)Ipo — p5lI1Bllz + (6 + &> l[vr 1l 2)Ipo — PGl + e* E@IBllyz + E)do
+ &2 ot 2 + e ZIN@ Y.

Using the estimate on ||d’||;2 to eliminate it from the right-hand side of the estimate on |dp|
yields the final upper bound for dy. The final /2-estimate for d’ follows from the estimate
above and the a priori assumptions (5.1). O

Corollary 5.12 Suppose the assumptions of Theorem 5.1 hold. Then the meander parameter
vector evolution takes the form

D' = —&* [co@+ U)o — pf) + @~ | Dp+dy,  (554)
where the weighted remainder c?w = (dw,k)ljyz';l satisfies
ldwlli2 <> Ew(®lpo — pil1Bllvz +&*lpo = pil + Ew IBllyz + ellvtll2 + e 2INQWH] 2.
Proof Multiplying the Eq. (5.46) by the weight S we have

(Tp. BB = — (MF(@y). B ZL) |, — (#1011 B L) -

Multiply this result by —e~'/210/m and apply Corollaries 5.5 and 5.10, this yields
Bubx = —o (Bepk — BpTUBL) — & uoci bk + du. (5.55)
Here from Lemma 5.11 the weighted remainder c?w = (dy k) can be bounded as

Idulle 56 (IBllv2 + ) 1o = P IIBllyz + e Ew (B2 + IBlly3 b2l
+ (e + [Bllyz IBllvz + &~ v 2 1Bl + 1N 1B Iz
+ellvtllz + e 2 IN@D 2.

As in the unweighted case, we use the first equation of (5.44) to substitute for po on the right-
hand side of (5.55), replace ¢ with its definition (5.37), and recall that ug = 1+ O (¢, |pol)-
These manipulations yield the equation

Bidk = —& [co(po — Pi)Dik + @ik — D] Beprlix=3) + co(Po — p) BkDUB + duy &,

where from Lemma 5.6 the revised remainder takes the form

dy i = dy i+ O(Ipll2do, &3 Eylpo — Pﬁlllﬁllvg, e*E, llf)llyg)-
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We drop the tilde, and the weighted evolution (5.54) presented in the Lemma follows. The
revised from of the remainder d,, satisfies the bound

Idwllz Se*Ew(@1po = pillIBllv2 + I1Bllyzldol + *Ew @) 1Bllyz + IBllvz P12
+ (e + IBllz Bz + 2o ) Bl + 1BI5 1B llvg + ellvtllz2 + &~ 2 IN@H 2.
(5.56)

As the unweighted case, this system is not closed as it contains p = (po, P1.2, f)). From
Eq. (5.54) which we have established, the definition of V2, and the bounds on Po, P1.2 from
Theorem 5.1 we find

1Bl < 1Bl + 1B1.2] + D2l 2
S €'1po — Pyl + Idol + 1"z + et Ipllyz + w2

Using this estimate and the bounds on dp, ||d’|;2, [|Pll;2 from Theorem 5.1 on the right-hand
side of (5.56), we obtain the desired bound on a?w. O

Lemma 5.13 The diagonal matrices D and D — 1 are uniformly comparable as maps from 1>
to 12, in particular,

1
5Dl < ID ~ Tl < [Dlls.
Proof Since D and D — T are both diagonal, we only need compare their diagonal elements.

Indeed, their kth diagonal term are ,8,? and /3,% — 1, for D and D — T respectively. The result
follows directly from the relationship

1
5;3,355,3—15;9,?

since ;3,% > 2 fork > 3, see (2.4). |

5.5 Energy Estimates on p

We derive energy estimates on p from its dynamics established in Theorem 5.1 and Corollary
5.12. These estimates are used in Theorem4.2 to show that the residence time 7' of orbits
u = u(t) that start in the thin tubular neighborhood is infinite, and that the orbits converge
to a translation of the circular equilibrium.

Lemma 5.14 Under the a priori assumptions in (5.1) with § small enough independent of &
and p, the projected meander parameters satisfy the energy estimates

d . _
3P0 = POI* + colpo = pI* S 8% IBIIG + v 1T + e IN@DI7;
and
d oo et o 2 1215012 12 -3 Lyp2
EIIPIIV% + ﬁllpllw < &71po — Pyl IIPIIV% +ellvTlz, + e IN@DII7..
Moreover, the time derivative of p has the following 1> bound

Bll2 < €%lpo = pgl + *1Bll2 + &>l 2 + e 2 IN@ D) [ 2.

@ Springer



Journal of Dynamics and Differential Equations

Proof Multiplying the po evolution from Theorem 5.1 by 2(po — pg;) and applying Young’s
inequality yields the bound

d -
/1P =PI + &colpo — pG I < &7 .

Using the bound on the remainder dy from Theorem 5.1 with E(¢) bounded by (5.43), the
inequality of pg follows provided that § is chosen small enough.
For the first estimate on p, we note that IIﬁIIV% = ||Dp|l,2 and take the inner product of

the evolution equation for p in Theorem 5.1 with 2D?p. This yields the equality

d, . N N
—IBI%; = —*2co(po — pp) (@ +UT)p. D%)

~26*((D — 1)2p, D2p),, +2 (3, D2f>> . (5.57)

12

By Holder’s inequality and the bound ||U7 || 15 < ID| 15 from Corollary 5.6, the first term on
the right-hand side of (5.57) can be bounded from above by

—e*2c0(po — p5) (@ +UT)p. D?B) | S &*Ipo — pil IDBIl2 DBl

e

32
for a constant C independent of ¢ € (0, gg). From Lemma 5.13, the second term on the
right-hand side of (5.57) is negative and can be bounded from above by

< CE21BI1% oo — pE2 + S 1p|12
< Ce DI Ipo — bl + S5 1BI

4
A N N A
—2¢*((D = 1)*p, D*p) = —2¢*| (@ = D?PIIf < — 1Bl

Employing Holder’s and Young’s inequalities to bound the third item on the right-hand side
of (5.57) implies

d .o et 2 2402 40 5112
+ S e%lpo — Py + e ldll-
I IIPIIV% 16IIPIIV5 < €7lpo — pol IIPIIV% 1l
It remains to obtain an bound on ||ci ;2. In fact, IIQ ;2 < Ild’'|l;2 and the latter is bounded in

Theorem 5.1. We note that E(¢) < § and 8_2||UJ‘||L2 < 8. Using the bound on ||d’||;2 from
Theorem 5.1, we have

e dIl7, < €28%po — PGP IBI, + £*po — 51 + e 8% IBIT, + el il + e INWD I

Absorbing these terms involving ||13||V} and IIﬁIIV% for § suitably small (independent of ¢),

we obtain the first estimate on p. Finally, the />-bound on p follows from the bound on ||p|| 2
and these estimates on d = (dg, d’) in Theorem 5.1. O

We require bounds on the evolution of weighted norms of p.

Lemma 5.15 Under the a priori assumptions (5.1) with § small enough independent of ¢,
there exists a strictly positive constant c, independent of ¢ € (0, €9), p, 8 such that

d . ) ) B B
5 I3 + caeIBIT; < €lpo — PGP IBIT, +e'po — P51 + e v 17, + e IN@HIZ,.

2
Vs ~
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Proof Since ||p||Vz = ||D3/?p| pll;2 we take the [%-inner product of the weighted evolution
equation in Corollary 5.12 with 2D°/2p. This yields the equality

S IBI, = —e2c0(po — ) (@ + UT)DY2p, Dp)

. (5.58)
e (@ - 1?D'p, D) , +2(ds, DY)

By Hoélder’s inequality and the bound [[U7 ||1; < ||]D)||1; from Corollary 5.6, the first term on
the right-hand side of (5.58) can be bounded from above by

—&%co(po — p5) (@ +UT)D'/2p, DY2p) | < &*po — b5 1D Bl IID5/2ﬁ||12

< Ce%lIBlI3 Ipo — pg I + ||p||Vz

The second inequality above follows from an application of Young’s inequahty and the
definition of V%, V% in terms of ID. To address the second term on the right-hand side of

(5.58) we recall from Lemma5.13 that the diagonal matrices satisfy %]D) <D-I<Dso
that

4
A A & A
—26* (@ - D’D'%p, %), < 264D~ DVpI, < —||D5/2p||,2_ Tl

To bound the third term on the right-hand side of (5.58) we apply Hoélder’s and Young’s
inequalities, and deduce that

(du- D7), < ||1p||Vz + Ce w3

2_64

Using the />-bound of d, from Corollary 5.12, returning these three estimates above to (5.58),
and taking ¢, = i completes the proof provided that g and § are small enough. O

Acknowledgements Both authors thank Gurgen Hayrapetyan for sharing preliminary results on this problem
for the weak FCH that arose out of his thesis.

6 Appendix

This section contains technical results whose proof was deferred from the main presentation.

6.1 Elementary Embeddings in the Weighted Space

The following embeddings are direct results of Holder’s inequality and the asymptotic form
of B; introduced in (2.4), details are omitted.

Lemma 6.1 Suppose that p € [°(RMN), then ”f)”V% = |Ipll,2 and

N{‘H /2

Bl < Bl 5 IBllvy,, S Nillbllvy,  [1Bllve S D12

k+1 ™
In addition, for any vector a € I>(R™) we have the dimension dependent bound

lall;r < m'?|al. 6.1)
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6.2 Geometric Quantities and Their Bounds

Lemma 6.2 (Geometric quantities of I') Let p € Ds with Ds given by (2.8) in Definition 2.3.
The length normalization A(p) depends quadradically upon p, and the length of I'y depends
only on po,

A() =1+ 0(plIy,):  Tpl = (14 po)lTol. (6.2)
The gradient of A with respect to p satisfies
IVpAllz < 1Dl
The curvature of I, defined by
kp = yp-mp/lyplt with mp =Ry [y 6.3)
admits the expansion

1
1+po’

kp(s) =kpo+ Q1+ Q2, Kpo=— 6.4

where the linear approximation is given by

Ni—1

Q = 1+p Z(l—ﬁ ;.
and the quadratic remainder Q) satisfies
1921112, S ||P||Vz, 192111 (r) S B2 I1Bll2,
1921127y S IBI2IBI2:  1Q2ll k3 sy S BNz Bl + B2 11Blly2-
The curvature kp and normal ny depend only on po and p, and satisfy the following bounds
liepllzoe + lle* Agyiepllzoe S T+ 1Bllvy;  Imp —mol S Bllwv,. (6.5)
Moreover, the perturbed and original normal satisfy the relation
n, -no =1+ O(IpIF,). (6.6)

Proof The length of I, follows from its definition, and the approximation of A(p) and its
gradient estimate are given in Lemma 2.11 of [5]. Taking the derivative of y, in (2.13) and
using nj, = —koy, we find

1 +po _ o~
7o =2 [ (1= k0P @) + 5 @lyplnos)], ©.7)
A(p)
and hence for p € V; we have the approximations
l¥pl = LEpo +O0UBlG). vyl = O0UBlv,) (6.8)
Yp A( ) ( KOP) p Vi yp - P V] . .

To obtain an approximation of the curvature «xp we take an additional s derivative of (6.7).
Using the relation between the tangent and normal we find the equality

" __ 1+ po |:(K + (1+p0) —11

Y2 = "A(p) AZ(p)

PG —«gp+ Qz,o)no - Zkoﬁ/(f)l)’;,l}’f)] .
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Here Q2.0(yp) takes the explicit form

/ 1+ 2 =/
020 = <|y,,|2 - %) + vyl

and is an intermediate quadratic remainder from (6.8). From the tangent and normal relation:
n = e "R/2y’ we deduce from (6.7) that

1
e TRyl = A—EI; [(1 —kop(8)mg — p (S)|}’p|}’o] (6.9)

which when dotted with the approximation for y;; implies

_ 14po)\ (14 po)? _ _
€NR/2}’;,')’;;=< p) Ko+ oo P =25p+ Q|

A(p) A2(p)
in which Q5 ; is a quadratic term given by
_ _((14po)* _ _ -
Q1 =0l —xop) + [—KOP (T(p)p” —kop | + <2K0P/|}';,| + Kép) Plypl|-

Finally, in light of (6.8) we rewrite

1 A(p) )3 _ 1 _
= L+3k0p+ Q22), 22:=—=—1-3«0p,
7y <1+po ( ) e b
and substituting these expressions in (6.3) we obtain the curvature expansion,
A(P) |: I+ PO) —// ]
kp = Ko +Kgp+ —5 +Q
P= Ty | 0P A2(p) () + 3

where A(p) =1 + 0(||f)||%, ) and the final quadratic remainder takes the form
A(p) o—TRI2, (1+p0)?® 1 _ [(1 +po)? _,
— Do+ — Q1 +3 —_—
Wrpo2t Yo Ve @2t T s Q3R | T
The form of the expansion (6.4) follows from the definition of p, (6.2), and (A(p) — 1) is

quadratic. The H* estimates of Q5 follows directly from the formulas for the quadratic terms,
the independence of A(p) from 5y, and the embedding estimates in Lemma 6.1.

Q3= — 2:(013] .

The curvature bounds in (6.5) follow directly from these expansions and the embedding
estimate of Lemma 6.1. To establish that the normals are nearly parallel, from the definition
(6.3) of ny, we have

—nR/Zyp

np-Np = —— - N
p 0 0-
[¥pl

The estimate (6.6) follows directly by (6.9) and (6.8). This completes the proof. O Recall
that I7 é‘l = I — IIg, is the complement to the Garlerkin projection onto G| C Lz(fp). The
curvature expansion and remainder estimates in the Lemma 6.2 above imply the following
estimates.

Corollary 6.3 With the same assumptions as in Lemma 6.2, it holds that
€ 1 3 A A And .
TG, kpll L2y + TG kp Nl L2y S BN 1By (1 + IIPIIV§),

1 A N
11, AsyiepllL2 iy S 1Bl2 1Bl2-
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Proof The curvature admits the expansion (6.4), for which the first two terms kp 9, Q1 € G1,
and hence I7, é‘l kp =11 (J;-I Q5. Applying the H' (#p)-bound of Q) from Lemma 6.2 we find

1 ~ ~
115 0l 20y S 1Q2llr1 () S B2 B2

From (6.4) that we expand

Ky = Ko+ 3k 0Q1 + 3kp.0Q7 + 3k5,0 Q2 + 3kp.0Q3 + 397 Q2 +3Q1Q3
+6kp,021 22 + o} + 93,

Note the first two terms lies in G| and |kp ol < 1 for p € Ds. Then from the Sobolev
embedding L (%) H! (), and definition of Q; and the L2(,ﬂp), H' (#p)-bounds of
Q, from Lemma 6.2 we derive

1l 3 ~ ~ ~And
TG, kepll 20y S ID152 1B 12 (1 + IPll2)-

Similarly, since G| is invariant under As, and Hé-l Agkp = Hé-l As, Q2, applying the
H 2(Jp)-bound of Q, from Lemma 6.2 implies

1 ~ A
114, Aol 2y S 12025 S IBl3 B2

The corollary follows. O

Forafunction i € Ha(yp), see (3.5), its value at the perturbed interface yp will frequently
be compared to its value at leading order circular interface yp o defined in (2.19). This leads
to the decomposition

h(zp; ¥p) = h(zp; ¥p0) + (h(zp; ¥p) — h(zps ¥p0)) - (6.10)

The following Lemma provides Lipschitz estimates on the second term of the decomposition.

Lemma 6.4 Supposeh = h(y,) lies inthe function family Ho (yp) asintroduced in Definition
3.5, and is decomposed as in (6.10). Then the leading order term h(y , o) is independent of
Sp and if p € V3, then

Ih(yp) = h(¥p0)llL2sy S IPlly2- (6.11)

If moreover p € V%, then forl > 1,

e 10l (hr) = h )|, S Tl (6.12)

L%(Sp)

Proof These estimates in (6.11)—(6.12), can be derived directly by the approximations of
Iy;)I, kp and ny in (6.8), (6.4). We only need to verify that i (zp; 7p.0) is independent of sp.
This holds true since |}’;,,0| = 1+ pg by (6.8), «p,0 admits form in (6.4) and

—nR/2,,/
¢ Ypo

5 (6.13)
|)’p70|

ng-Npo= 1, for Npo =

Here we used (6.9) with p = 0. O
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Lemma 6.5 Recalling the notation of Sect. 1.1, if f € Lz(fp), then there exists a unit vector
e = (e;) such that

/ 01 d5p = O fll 205, e (6.14)
]P

If in addition f € L on .9, then for any vector a = (a;) € 12, we have

» f fBia;0; d5p| < llall2 )l fllocei. (6.15)
- §4
Jj <P

and there exists a matrix E = (E;;) with lf norm one, such that

/ 70:0;dsp = Ol fll ) E;;. (6.16)

Ip

Proof The estimates follow from Plancherel and classic applications of Fourier theory. O

The following Lemma estimates the p-variation of the local coordinate associated to Ip,.
In particular it provides estimates on the difference between (sp, zp) and (s, z) in terms of p.
It is equivalent to Lemma 6.2 of [5] and the proof is omitted.

Lemma 6.6 Let (sp, zp) be the local coordinate subject to I}, on sze. Assuming (2.8) the
tangent coordinate sy satisfies

||Vpsp||L2(.ﬂp) S
while zp have the p-gradient

()

—1
=& &j(sp),
3PJ J\°p

where & is a function of sy given explicitly by

I+p Spp’ .
—(T(l—(l—i-po)apolnA)— ‘;‘ 1 - ny, j=0
Ej(sp) =1 — OE; - np, J=12
~  (14+po)dp,InA } .
—(9,~——Ap’ (l—l—p))no-np j=3.

Moreover, we have the estimate

lsp —sI S pli, lzp— 2l <& Mipllp. (6.17)
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6.3 Results on the Projection of the Normal Velocity

Lemma 6.7 Under the assumption (2.8), the curvature of Iy admits the following projection
identities:

/ o dSp = —2760810 — (B = Dpilpees) + O (1B ) exs

7p
o, 276 38— 1) L
3 0 i
KO dspy = — k0 — 1 + 0 ( )e s
//p pOk dsp Tt o220 ™ g poyz Pele=3) IBlly2 1Pl ) ex
(B — DB

prl=3y + O (llf)llvgllf)HVg) exlii>1y.

Ag K é/(df =
./,;/,, PP (14 po)?

fork € 1. Here e = (ej)?lgl denotes a possibly different unit vector in each line.

Proof The curvature admits the expansion as in Lemma 6.2, and the quadratic term QO
contributes

O dsy = O (|1p|I% 6.18
| sy (1813 ) ex. (6.18)

while from the orthogonality (2.15) the projection of the linear term takes the form

010, dsp = (1 — BPprly=3)- (6.19)
jp

The leading order term &y, o contributes

/ Kp.00k dSp = —27608%0- (6.20)

7p

Combining (6.4) with the identities (6.18)—(6.20) yields the first result of the Lemma. For
the /cg projection, we expand

"3 = "3.0 + 3/6370@1 + O, (6.21)
where Q5 denotes quadratic terms in p and satisfies
1921 S 1211 +1Q2P +1Q1171Q2l +1Q111Q2
Since [Q1] 4+ |Q2| < IPllv, S 1, the assumption (2.8) and the estimates above imply
”QZHLZ(JP) S Qi ll Q2 + 11920125 S DIV, BNz S 1B N5211Blly2-

Here we also used the embedding estimate in the perturbation space V, see Lemma 6.1.
Since kp o is independent of sy, the second identity of Lemma follows from (6.19), (6.20),
the definition of «p ¢ in (6.4), and Holder’s inequality. For the Laplace-Beltrami curvature
projection, we integrate by parts and use (2.17), to find

J,

Y

Agyipbi dip = — B /ﬂ Q16 dsp + /, Ag, Q2 O dSp. (6.22)
<P

P
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The first term on the right-hand side is dominant, and can be estimated by (6.19). The second
term on the right-hand side is higher order and can be bounded by

S IBlly2 Bl ex- (6.23)

’/ Ay, (o)) ék dsp
A

The result follows. ]

Combining the identities in Lemma 6.7, yields the following result.

Corollary 6.8 For VkM = VkM P, VkW = ka (p) defined in (5.16), there exists a unit vector
e = (ey) such that

VM (p) = — 27608k0 — (B7 — Dpilig=3) + 0(||f)||%;%)€k7

R )5 O Bi-1 (283
20+ po? )T Ap? | 2

+ OUPllyz IBlly)e =1y + O(IBlly2 1Bl )ex,

V¥ (p) =276, < —a(l+ po)z] Prli>3

fork=0,...,N — 1.

Lemma 6.9 Leth = h(y,) lie in Hy (see Definition 3.5). Then for j=0,1,2
/ Vi h(rfik 45 = Clpo)Siodso + OBl ).
/ Vi h (el s = OBl ).

Proof From decomposition (6.10) the function 4 can be rewritten as h(yp) = h(ypyo) +
(h(yp) — h(ypyo)), and the integral of the leading order term h(ypqo) reduces to

/ Vi, h(vp.0)0k dSp = 8j0h(7.0) / Ok dSp = C(po)Skod jo. (6.24)
]P ]P

where the constant C(po) depends only on pg. Here we note A(y, o) is independent of sp by
Lemma 6.4. Moreover, we have the bound

S IPlvzer (6.25)

‘ / Vi (h(ry) — h(@p.0)) Oc d5p
]P
The proof is complete. o

Lemma 6.10 Imposing assumptions (2.8), then there exist smooth functions Cr = Ci(po)
fork =1, 2 such that

/ (F(@p) — Fy¥) dx = C1(po)e* + C2po)e* (@ — o) + O (e 1Bz, & IBll2 ) -
2

Proof This is a direct result of the form of F given in Lemma 3.7 and the Lemma 6.9, details
are omitted. O
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Lemma 6.11 There exists a unit vector e = (ek),ivzlal such that the remainders defined in

(5.18) satisfy
Hra®) = (07 = o) (Cipo)sio + Obll2)er) + £”2Calpo) + O Bl
Fea®) = e"2(C1(p0) + C2po)(@ = 0) )80 + O (2 Bl3) e
where C1 and Cy are smooth functions of po.
Proof For %} 1 in (5.18), we expand F as in Lemma 3.7 thatis, F — F® = &2F) + &3(Fz —
F$°) + e*(Fy — F°) + e~t/VF, by noting F5° = 0. Integrating out zp and using that the
functions @1 x = &~ /201 1 (zp; Yp) P2k = e 1205 1 (zp; ¥p) from (3.32) belong to the

function family H; as introduced in Definition 3.5, the leading order contribution from F;
takes the form

g0} - a)/ (hl(yp)ék + hg(yp)sé,i) dsp.
T

The dependence of ¢ x, @2k on sp is uniform in k so that Lemma 6.5 applies. Applying
Lemma 6.9 with j = 0 we see that this term provides the leading order contribution to % 1.
From the form of F3, F4 in Lemma 3.7 and Lemma 6.9 we find that the remaining terms can
be bounded by 89/2||ﬁ||V%.

To estimate % » we turn to the definition of le,{‘* with k € X and use that ¥ = ¢)/m
has odd parity to derive

Fpp=C /Q (F(®p) — FyY) dx (53/2 /] (hl(yp)ék +h2(yp)gé,g) d§p>. (6.26)
“p
Applying Lemma 6.9 to i1, hs, the identity (6.26) reduces to
K2 = £3/2 (C(po)5k0 + 0||f)||V%)ek) / (F(q)p) - F,‘ff) dx, (6.27)
Q

which, combined with Lemma 6.10, yields the revised functions C (pg), C2(po) which appear
in the statement of the Lemma. O

6.4 Weighted Estimates

The proof of the weighted estimates in Corollaries 5.5 and 5.10 are based on the following
Lemma which primarily follows from integration by parts.

Lemma6.12 Let f = f(sp) be a function of sp. Then if f € Hl(,ﬂp) there exists a unit
vector (ex) € 12 such that

[ £ din = 001, Pz e
<P

fork > 3. Moreover if f € Wl'oo(ﬂp), then there exists a matrix E bounded in the lf norm
such that

/j f(sp)0; Bl d5p = O Vs, fllLo)Exj + Ol fllLoo) B Ex;-
P
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Proof We observe from (2.17) that if we denote
0k (Bp) 1= —(1 4 po) By 10i Gp), (6.28)
then
0 5p) = Prbr(p).-

Hence through integration by parts
[ rovpbas, == [ 9, 160060 5.
Tp Tp

In light of Lemma 6.5, we only need to show that {6, k > 3} are orthogonal to each other.
Since

G — - ,Bp,kék+1 if k is odd;
¢ ,Bp,kékfl if k is even.

The orthogonality of 6 follows from its definition and orthogonality of f in (2.15). The first
estimate follows from the identity By ; = B8;/(1 + po). The second estimate is derived from
similar arguments using Lemma 6.5. O

Lemma6.13 For k > 3 and k € %, the quantities VkM, ka defined in (5.16) satisfy the
weighted approximations,

BV (0) = —(B; — DBpx + OBl [1Bll2)ex.

_Bi—1 (283
(1 +po)? 2

BV, (0) = —a(l+ PO)Z} Bipk + O(IBllyz [1Bllz- 1Bz 1Bllvz)ex-

Proof For the first approximation, since «p admits expansion (6.4) we can rewrite the defi-
nition (5.16) of VkM as

BV (p) = _Kp,O/ Bk dp + ﬂk/ Q16 d5p +/ Q2 Bk dip.
Ip I Ip

The first term is zero since 6 has no mass for any k > 3; by (6.18) the second term equals

b Q10k d5p = (1 — B2) Brpr
7P

and with the aid of Lemma 6.12 and the H'! () estimate of @, from Lemma 6.2 the third
term is bounded as

| apicds, = 01l Ibllzer.
'ﬂl’

The first estimate follows. The approximation of VkW (p) is derived from similar arguments
through the use of the higher-order estimates on quadratic term Q; afforded by Lemma 6.2.
]

Lemma 6.14 For k > 3, the reminders defined in (5.18) satisfy the weighted estimates
B = 0" ?lof —ollIllyz. €1l )exs

BxPk,2 = 0(511/2||f’||v§)€k-
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Proof This follows from arguments similar to those for Lemma 6.11, using the weighted
estimates from Lemma 6.12. The details are omitted. ]

Finally, we give a proof a Lemma 5.2 deferred from Sect. 5.

Proof of Lemma 5.2 We first address the unweighted approximation for the three cases j = 0,
j=1,2and j > 3.

Case 1: j = 0. We use Lemma 6.6 to replace £y(sp) in the integral to obtain

o L= (14p0)dp A 5 .
—/ so(sp)ekdspzf [ i o (1+p)—"Tf’ no - npfy dsp.
']p ']p

From (6.6) and (6.2) both the normal projection ny, - ng and length normalization A take the
value one up to a quadratic correction. This yields the leading order approximation

— | Eo(sp)Oi dsp = 1= (1+p0)dp, In A)(1+ p) — 5pp | Ok d5p + O(IPII% ) Exo.
A, A, Vz
'p “p

For k > 1 the eigenmode ¢ has zero mass in Lz(ﬂp). Using the definition (2.9) of p, the
orthogonality (2.15), and introducing U from (5.5) we arrive at the expansion

- / 0(5p)0 d5p = (1 +p0) (1 = (1 + po)dy In 4) 26000 — (1 + po)” UB

7p

+ (1 — (I +po)dp, In A)(l + po)pclk=3y + 0(||f1||§,%)1€k0-

Since |9, In A| S ||f)||v§ from Lemma 6.2, and 6y = 6y = 1 /+/2m, we rewrite this expansion
as

~ . 1 .
— | &) dsp = (1 +po) (1+ OUPll3)) 58k — (1 + po)p” UBy

Ty o (6.29)
+ (14 po)pxlix=3) + O(Ilf)l|§,%)Eko-

The second approximation for k& > 1 follows directly. The first estimate for k = 0 follows
by placing terms involving U into the error.

Case 2: j = 1, 2. Using Lemma 6.6 to replace &; (sp) in (5.13), we have

- / & (Sp)ék dsp = / OE; - npék dsp

7p

Since np = ng + O(||pllv,) by Lemma 6.2 and applying identity (2.16) we find

- / & (5p)f dfp = /j 0,6k d5p + O(I1Blly2)Exj
p
= (14 po)djx + O(lIPlly2)Ex;-
Here we used ||§j —0; ||Lz(fp) < ||f’”v§ by its definition in (2.9).

Case 3: j > 3. We follow the approach for the case j = 1. Using Lemmas 6.6 and 5.1, we

write
o _ (I+po)dp,InA o
_/ gj(sp)ek dsp = / I:gj - +(1 + p)] ng - np9k dSp.
Ip Ip
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Approximating the normal projection ng - n, with (6.6) and using the orthogonality of {6}
in (2.15) we derive

— ~ (147po)dp, In A 1. .
—/ awwm%=/ Pfu——jfL—n+pJ@aer@%m%
7 Zp 2

= (1+po)djic + OUIBIEs).

Here we also used the /> upper bound of VpA in Lemma 6.2. The last identity for the case
j = 3 follows.

To deal with the weighted case for k > 3 we use a similar derivation which leads to the
estimate

/j £ (sp)Brdi dsp = (1 + po) By — (1 + pO)prkast + /j R[£ 180k d5p.
P P

Here the remainder term R[&;] is given by

14p0)d,InA o ngen
COEPORIA 1y (M) o
A A
RIE1={ 60 (E; mp - ) j=12
_ (1+po)dy, In A i .
0jmg - (np —ng) — +(l + p)ng - mp, j=3.

We observe R[£;] involves only the zero and first derivatives: p, p’. Again we note that by
Lemma 6.2 both np - ng and A are equal to one up to some quadratic errors. The contribution
from the remainder is estimated through Lemma 6.12. O

6.5 Control of q, w

Taking the L? projection of the evolution Eq. (4.10) with Q and 9; QO we obtain [ 2 estimates
on the evolution of the pearling parameter vector q.

Lemma 6.15 Under the assumptions of Theorem 4.1, then there exists C > 0 independent of
€ such that the pearling parameter vector q = (qk (t))kex, obeys

dllall + Cellal, < ep*ILpwll7, + & IN@HIZ, + egufon@ﬁ.

Moreover, the 12-norm of the time derivative ¢ can be bounded by

lals S llalls + e lwl7. + elpli + IN@DI7, + eguf»n%yﬁ.

Proof The proof is a simplification of that of Lemma 5.4 of [5] since the base interface Iy is
a circle, so the contribution from the geometric quantities of the base interface I are zero. O

Taking L2-inner product of (4.10) with Lyw we develop two H 2 estimates of w by dealing
with the residual differently. These estimates have utility on different time scales.
Lemma 6.16 Under the same assumptions of Theorem 4.1, the function w € Zi‘, obeys
d 1 1y —
< (Low, w)p + SILpwiiz, S e Il + %~ lall?
+&7Ipo — Pl + &7 (1 + 1BI5) + INWH 1723
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The fast mode also obeys the second estimate

d 1 1y - .
3 [Low, w)p + SILpwligs S e IBlE + 2%~ lallf + &% (Ipo — pol* + IBI)

+e [pl5, + IN@HII7,. (6.30)
4

Proof The first estimate is derived in Lemma 5.3 of [5], we address the second estimate.
Taking the L?-inner product of (4.10) with Lyw we estimate each term as in the first case,
except for the residual F(®p). This yields the bound

d . _ .
o (Lpw, w),» + ILpwli2> < (2102 + eo~2(llall2 + ldll2) + INI 22) ILpwll 2

— 2(MoF(@p), Lpw),» .

Applying Holder’s and Young’s inequalities this reduces to the estimate

d . _ .
3 (Lows ) + LpwiiZs Sellpl + %~ (gl + 16017 + INI7> + 1 ToF(@p) 7.
The second estimate on w follows from the L?-bound on the residual TTyF(®Pp) given in
Lemma 3.11, and the />-bound on ¢ in Lemma 6.15. O

The Lemmas 6.16, 6.15 and Theorem 5.1, incorporate L%-bounds of the nonlinear term
N(v1). This quantity, and the L> norm of the orthogonal perturbation are bounded in terms of
the fast and the pearling modes in Lemma 5.9 of [5], which we quote below for completeness.

Lemma 6.17 If vt | oo (2 is bounded independent of ¢, then
IN@HI2 < e (072 (Lpw, w],2 + a1 ). (6.31)
Moreover, if vt = w + Q as in (4.9) then it admits the upper bound

— — 1/2
ol S e (07 Lypw, wly + la@lle)
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