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Abstract—Today’s datacenters need to meet service level ob-
jectives (SLOs) for applications, which can be translated into
deadlines for (co)flows running between job execution stages.
As a result, meeting (co)flow deadlines with high probabilities
is essential to attract and retain customers and hence, generate
high revenue. To fill the lack of a transport protocol that can
facilitate low (co)flow deadline miss rate, especially in the face
of incast congestion, in this paper, we propose DCMRG, an
incast-coflow-aware, ECN-based soft minimum-rate-guaranteed
congestion control protocol for datacenter applications. DCMRG
is composed of two major components, i.e., a congestion controller
running on the send host and an incast congestion controller
running on the receive host. DCMRG possesses three salient
features. First, it is the first congestion control protocol that
integrates congestion control with coflow-aware incast control
while providing soft minimum flow rate guarantee. Second,
DCMRG is readily deployable in datacenter networks. It only
requires software upgrade in the hosts and minimum assistance
(i.e., ECN) from in-network nodes. Third, DCMRG is backward
compatible with and, by design, friendly to the widely deployed,
standard-based transport protocols, such as DCTCP. The results
from large-scale datacenter network simulation demonstrate
that in the absence of incast congestion, DCMRG can reduce
flow deadline miss rates by 3x and 1.6x compared to D>*TCP
and MRG, respectively. Moreover, DCMRG further reduces the
coflow deadline miss rate by more than 40% and 60% and lowers
the packet drop probability by 60% and 80%, in the face of
incast congestion, compared to D°TCP with ICTCP and MRG
with ICTCP, respectively.

Index Terms—Congestion control, incast congestion, datacen-
ter, minimum rate guarantee

I. INTRODUCTION

Today’s datacenter applications can be broadly classified
into two categories, i.e., user-facing interactive applications
and background batch applications. While background batch
applications, such as big data analytics, may have to meet a
mean-latency Service Level Objective (SLO) [1], user-facing
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interactive applications, such as web searching and social
networking, generally call for tail-latency SLO guarantee
[2], [3]. A major challenge to satisfy SLOs for datacenter
applications is how to ensure that given (co)flow deadlines
are met. The majority of the datacenter applications are scale-
out by design. Namely, each job may involve multiple rounds
of parallel task processing by a group of machines and the
intermediate results, in the form of a collection of flows,
known as a coflow [4], to be sent to another group of machines
serving the next round of parallel task processing. Oftentimes,
the next round cannot start until all the flows in the coflow
of the current round finishes. Hence, to meet a given job
SLO, all the associated coflows must meet their respective
coflow deadlines. As coflows often cause incast congestion,
i.e., multiple flows from a coflow fan-in at a machine in a
burst, a key challenge is how to meet coflow deadlines in the
presence of incast congestion [5], [6].

To meet coflow deadlines or minimize coflow completion
time (CCT), the existing coflow scheduling solutions working
at the application layer, e.g., [4], [7]-[10], generally call for
explicit flow rate allocation for all the flows in a coflow.
This, however, must be done by an underlying transport layer
protocol, with or without the assistance of the IP layer (i.e.,
the network nodes).

To provide flow rate/deadline guarantee, some transport
protocols with significant assistance of the IP layer have
been developed, e.g., based on priority queuing [11] or clean-
slate, custom solutions [12]-[15]. As a result, they may incur
substantial queuing parameter tuning costs and/or require new
switch hardware design. A notably example of flow-deadline-
aware transport protocol that require minimum assistance
from the network nodes is D?*TCP [16], based on single-
bit marking for explicit congestion notification (ECN) [17].
However, D?*TCP may suffer from high flow deadline miss
rate even at modest load, especially in the presence of incast
congestions. To the best of our knowledge, the only end-to-end



(i.e., without the assistance of the IP layer) transport protocol
that provides soft minimum flow rate guarantee is MRG [18].
MRG is backward compatible with TCP, i.e., it degenerates
to the TCP Reno, when the minimum guaranteed rate is set
to zero. However, it inherits all the drawbacks of TCP when
applied to datacenter networks.

Meanwhile, the existing solutions that address incast con-
gestion, e.g., [5], [6], [19]-[21], exclusively focus on how
to improve link utilization for elastic flows, not providing
coflow deadline guarantee. In fact, none of the above transport
protocols address the impact of incast congestion on meeting
the coflow deadlines.

To fill the lack of a transport protocol that can facili-
tate effective flow rate allocation for deadline-aware (co)flow
scheduling, especially in the presence of incast congestion,
in this paper, we put forward an incast-and-coflow-deadline-
aware transport protocol, called DataCenter transport with soft
Minimum Rate Guarantee (DCMRG). DCMRG is composed
of a congestion controller running on the send host side and a
coflow-aware incast congestion controller on the receive host
side. DCMRG possesses following desirable features:

o It is the first transport protocol that integrates the con-
gestion control with coflow-aware incast control. In par-
ticular, it provides software minimum rate guarantee and
(co)flow-deadline-aware flow rate allocation in the face
of incast congestion, one of the most challenging issues
for datacenter network flow rate allocation;

o It is highly scalable and readily deployable in datacenter
networks without (i.e., end-to-end) or with minimum as-
sistance (i.e., ECN) from the IP layer. Its implementation
only requires software upgrade at hosts and does not
require any in-network node software/hardware modifi-
cation.

o It is backward compatible with TCP, DCTCP and MRG.
Specifically, in the absence of incast control, DCMRG
degenerates to MRG, when ECN is turned off; to DCTCP,
when the minimum guaranteed flow rate is set to zero;
and to TCP, when ECN is turned off and the minimum
guaranteed flow rate is set to zero.

We conduct the evaluation of DCMRG based on large-
scale datacenter network simulation. The simulation results
demonstrate that in the absence of incast congestion, DCMRG
can achieve 3x and 1.6x lower flow and coflow deadline
miss rate, while offering comparable average flow completion
time (FCT) for flows without deadline, compared to D>*TCP
and MRG, respectively. Moreover, DCMRG further reduces
the coflow deadline miss rate by more than 40% and 60%
and lowers the packet drop probability by 60% and 80%, in
the presence of incast congestion, compared to D>*TCP with
ICTCP [6] and MRG with ICTCP, respectively.

II. DCMRG CONTROLLERS

Datacenter networks are significantly different from the
public Internet. The round trip time (RTT) for a datacenter
network is usually much smaller (less than 200 ps versus
tens to hundreds of milliseconds in the public Internet). As a

result, a data flow may consume a huge amount of bandwidth
at very low packet latency. TCP is particularly ineffective
in such a high-bandwidth-low-latency environment, causing
excessive packet queuing delay and packet losses, especially
in the presence of incast congestion [22].

On one hand, DCTCP [22] manages to address the above
shortcomings of TCP by employing the ECN mechanism for
earlier congestion detection, allowing switches to maintain
short queues and hence, reducing packet latency. However,
DCTCP is flow deadline unaware. On the other hand, MRG
[18] improves over TCP by incorporating minimum-rate-
guaranteed features. However, as an end-to-end transport pro-
tocol like TCP, it inherits all the above shortcomings from
TCP. Although flow deadline aware and ECN-based, D>*TCP
[16] is found to give high flow deadline miss rate, even at
modest load. Moreover, these protocols do not provide incast
congestion control and are coflow-unaware. To fill the lack of
a transport protocol that can facilitate low (co)flow deadline
miss rate, especially in the presence of incast congestion, and
that is readily deployable in any existing datacenter networks,
in what follows, we develop DCMRG, a transport protocol
that integrates congestion control and coflow-aware incast
control for low (co)flow deadline miss rate and that requires
minimum assistance of the IP layer. In the following, we first
briefly introduce the utility-based optimal control law and then
derive the DCMRG congestion controller, and finally design
the DCMRG incast controller.

A. Optimal Control Law

Both DCMRG and MRG are underpinned by the work in
[23], which solves the network utility maximization (NUM)
problem for any concave user utility functions in the form of
a family of fully distributed flow control laws. In the follows,
we first summarize the results in [23].

For any given concave utility function, U;(x;), of flow rate
x; for user flow 4, for ¢ = 1,2,..., N, where N is the total
number of active flows, the NUM problem can be stated as
follows,

N
mazz U;(x;) (1)

subject to the link bandwidth constraints for all links in the net-
work and the minimum flow rate constraints for inelastic flows,
i.e., flows with minimum rate, or equivalently, deadline re-
quirements (the equivalence of the two will be explained later).
In general, NUM solutions can lead to unfair/unpredictable
flow rate allocation where different flows may take on different
user utilities, i.e., U;(x;) may be different for different flows
;. Our recent work [24] proposes a variation of NUM
framework that addresses this issue. In this paper, however,
we limit ourself to the case where all flows share a single
TCP utility function, to be defined shortly. The optimal control
law that maximizes the system utility for any given flow x (the
subscript ¢ is skipped for simplicity), satisfying Eq.(1) is given
as follows,

& = z(x,t,cg)[f(x) — (1 —cgr(z))] 2)



with
fla) =1— e U@/ 3)

here cg is the path congestion indicator, taking value 1, if the
path is congested, and 0, otherwise. ¢g is the logical negation
of ¢g. z(x,t,cg) can be any positive piecewise continuous
scaler function. r(z) is a scalar parameter associated with the
minimum rate requirement. Assume that a flow has a minimum
rate requirement, i.e., > 6, then r(z) is given as follows,

_ 1 if >0
@) = {7“008 if v<46 @)

with 7., > 1, a design parameter. We select 1., = 3 in
throughout the paper based on our analysis and simulation
results (not shown in the paper due to lack of space).

The above optimal control law for each flow, z, is a
distributed control law, because it is only dependent on the
utility function, U(x), of the flow, and the only nonlocal
information needed as input is a single bit, cg, indicating
whether the flow forwarding path is congested or not. Clearly,
this information may be either source inferred, as in the
case of end-to-end TCP or explicitly conveyed with minimum
assistance from the IP layer, e.g., via ECN. Moreover, since
z(x,t,cg) is an arbitrary piecewise continuous positive scaler
function, the control law above represents, in fact, a family of
control laws that solve the NUM problem.

As discussed in detail for MRG in [18], [25], a user utility
function U(z) is in general composed of an inelastic, convex
lower part and an elastic, concave upper part separated by
an inflection point x = 6. For example, for adaptive video
streaming, 6 may represent the minimum video encoding rate
below which the user utility quickly diminishes. As a result,
allocating at least # amount of bandwidth to a flow is essential
to the longevity of the video service. Any additional rate
allocation further increases the user utility, but is no longer
essential, just like any other concave user utilities for elastic
applications whose elastic flows may be well served by TCP.
So an important decision made in the design of MRG is to let
2 > 0 be the flow constraint in the NUM problem and U (x)
be the TCP utility to be shared by all the flows. By doing
so, all the flows, including TCP flows, will share network
resources fairly, provided that the minimum rate requirements,
ie., x > 0, are met.

TCP utility function is derived by reverse engineering the
TCP Reno control law in [18]. Let wx and p be the multiplica-
tive and additive increase rates, and Sx be the multiplicative
decrease rate of TCP, respectively. The TCP utility function
can then be derived from Eq. (2), which is given as follows:
in the slow start phase,

U(x) = zlog(1 +w/p), (5)
and z(z,t,cg) given as,
z(@,t,¢9) = Zicp(w,t, cg) = (w+ B)z, (6)

and, in the congestion avoidance phase,

Ulx) = (u/B + z)[log(p + Bx) — 1] — xllog(Bx) — 1], (7)

with z(x,t, cg) given as,

Z(x,t,cg) :Zt(:p(mat7cg) :M+ﬁxa (8)
B. DCMRG congestion controller

The congestion controller in DCMRG runs on the send host.
In Eq. (2), 2(.) is an arbitrary positive piecewise continuous
scalar function. The actual function selected determines how
well the control law can track the optimal operational point,
an ever moving target in a dynamically changing network en-
vironment. Since DCTCP is able to address the shortcomings
of TCP by incorporating ECN, we adopt the similar idea to
improve over MRG. In what follows, we show that this can be
done by selecting a different control law in the same family
of control laws that MRG belongs to, i.e., through a specific
selection of z(.) only. More specifically, we use « defined in
DCTCP (i.e., the fraction of packets that are marked in one
RTT) as a measurement of the degree of congestion and define
z(.) as,

Z(x,t,cg) = ztcp(x,t7cg)(@+acg). (9)

The defined z(.) function is discontinuous at instants the con-
gestion status change (i.e., from congestion to non-congestion
and vice versa). As in practice, the congestion status cannot
change until the end of each RTT epoch, z(.) thus defined is
indeed a piecewise continuous positive function. Substituting
z(.) above and the TCP utility function in Eqs. (5) and (7)
into Egs. (3) and (2), we arrive at the DCMRG congestion
controller as follows,

. r(x)wz + (r(z) — 1)z if cg=0
o= { —afx if cg=1, (10)
for the slow start phase and,
. (r(z) = Dwa + pr(z) if cg=0
ro= { —afx if cg=1, an

for the congestion avoidance phase. In the case where in-
network nodes are not ECN-capable, a=1 and this DCMRG
congestion controller degenerates to MRG. The DCMRG
congestion controller possesses some salient features as we
now explain.

First, We note that DCMRG degenerates to DCTCP at
r(x)=1, i.e., #=0 (for the ease of comparison, the readers may
also refer to the window-based DCMRG presented in the next
subsection). This is true because the rate decrease cases in Eqs.
(10) and (11) are the same as the one in DCTCP and the rate
increase case is also the same as DCTCP, which coincides
with TCP [22]. The performance improvement of DCMRG
over MRG or DCTCP over TCP, in practice, comes from faster
and finer-grained adaptation to congestion via ECN signaling.

Second, since the DCMRG congestion controller degener-
ates to MRG at a=1, when ECN is turned off (i.e., using
source inferable information only), which in turn, degenerates
to TCP at r(x)=1, DCMRG is a parent control law from which
the other three control laws can be “derived” as special cases.
In other words, DCMRG is backward compatible with MRG,
DCTCP and TCP.



C. Window based DCMRG congestion controller

The DCMRG congestion controller presented above is fluid-
flow based. Now we give its window-based version, as the
window-based version is easier to implement and backward
compatible with MRG, DCTCP and TCP. First, to apply the
DCMRG congestion controller to a flow with a deadline, T}.
T, must be mapped to a minimum flow rate, 6. Following
[11], [14], for a flow with deadline, assume that the flow size,
Sy, is a given. Then, we have, 0 = Sy /Ty. For window-based
flow control, the flow rate is considered as a constant within a
RTT, hence the minimum required rate 6 can be transformed
into a minimum requested window size W,,;, as,

ORTT  S¢;RTT
MSS — Ty;MSS’

where MSS is the maximum segment size. For a flow without
deadline, W,,,;,=0.

Next, we need to determine w, 8 and p. These parameters
are the coefficients of multiplicative increase rate and multi-
plicative decrease rate, respectively, for TCP Reno. In window
based TCP, the rate is a constant within each RTT, and its TCP
congestion window size is doubled and reduced by half every
RTT without and with congestion, respectively. So w and f3
can be approximated as 1/RTT and 1/2RTT, respectively.
[ is the rate corresponding to 1 packet increase per RTT,
ie, u = 1 x MSS/RTT. The rate change in a RTT is
Ax = 2 RTT. In the window based protocol, the window size
change AW, is calculated as AW, = AzRTT /M SS, and the
congestion window size (W) adjustment is W, = W,.+AW..

With the above preparation, now we can write the window
update algorithm for the congestion window, W, after each
RTT in DCMRG as follows: in the slow start phase,

(%Tcos + %)W(, if cg=0& We < Wiin

W, = 2W., Zf cg=0 & We > Wiin (13)
Wo(l—a/2) ifcg=1,

and in the congestion avoidance phase,
TeosWe + 1 if cg=0& W, < Wpin

We = We+1 Zf cg = 0& We = Whiin (14)
Wo(l—a/2) if cg=1.

From these equations, we know that the flow increase rate is
determined by W,,;,, which is associated with flow deadline.
For a flow with a given deadline and flow size, W,,,;,, is given.
For a flow with deadline but unknown flow size, e.g., when
a flow starts, while the task execution for the task associated
with the flow is still producing more data to be transmitted,
the minimum rate can be set at the data generation rate or
the flow is treated as an elastic flow by setting Wp,;, = 0
until all the data are generated, when the W,,;, is updated
and enforced.

D. DCMRG incast controller

The congestion caused by many-to-one traffic is called
incast congestion [6], [20]. As datacenter applications are
predominantly scale-out by design, how to meet incast coflow

deadlines in the face of incast congestion becomes a critical
challenge. For instance, even with only 10% flow deadline
miss rate, the coflow deadline miss rate for a coflow with only
10 flows in it will reach 65%! So it is imperative to further
enhance flow-deadline-aware transport protocols to enable
coflow-deadline-aware control for fan-in coflows. Unfortu-
nately, the existing solutions that address incast congestion,
e.g., [5], [6], [19]-[21], exclusively focus on how to improve
link utilization for elastic flows, not providing coflow deadline
guarantee. In this section, we introduce the DCMRG incast
controller running on the receive host that aims at providing
high fan-in coflow deadline guarantee, while preserving and/or
enhancing all the nice features of the DCMRG congestion
controller. Again, DCMRG can serve as a transport layer flow
rate allocation protocol to facilitate (co)flow scheduling for the
existing [4], [7]-[10] and future (co)flow scheduling solutions.

The DCMRG incast controller not only makes DCMRG
coflow-deadline-aware but also help improve the convergence
speed of DCMRG in tracking the optimal operational point
where the sum of TCP-based user utilities is maximized. The
DCMRG incast controller only involves software upgrade at
the end hosts, requiring no additional assistance from the
network nodes.

As the sending window size (Weyq) in the send host is the
minimum of congestion window size (W) and receive window
size (W,.,), the idea is to regulate the receive window size
to bound flow rate. Although the idea of the using receive
window size to bound flow rate is not new, e.g., ICTCP [6],
none of the existing solutions that deal with incast congestion
can provide minimum rate guarantee. Specifically, let x denote
the flow rate bound for a given incoming flow. Then the
receive window size, W, is given by W,..,, = xtRTT/MSS.
However, as RTT is usually measured at the send host and the
receive host may not know the value of RTT, in DCMRG,
a fake RTT= RTTy is used, and the receive window size

W0, = xRTTy/MSS is conveyed to the send host, which
then convert W2, to the actual receive window size W, as
Wiyew = WO, RTT/RTTy by using the measured RTT at the

send host. Now the question is how the receive host calculates
z for an incoming flow.

The DCMRG incast controller requires that a send host who
has an inelastic flow convey the minimum rate, 6, and the ID
of the coflow the flow belongs to, to the receive host. This
can be done by piggybacking the two values using the Option
field in TCP header in the SYN packet.

The DCMRG incast controller at the receive host tries to
evenly allocate the port bandwidth to all the flows coming
into the same port, provided that the required minimum rates
for inelastic flows are satisfied. Clearly, this design objective
maximizes the sum of TCP-based user utilities, subject to
network resource and minimum rate constraints. In what
follows, we discuss the details how to achieve this design
objective.

We first define the needed notations. At any given instant
in time, assume that there are N incoming flows sharing a
port of the receive host with port bandwidth C'. Out of these



N flows, there are IV;,, inelastic flows, i.e., the inelastic flows
with minimum rates, 6;, for i=1,...,N;,, and the rest, N, =
N — N;,, flows are elastic flows. Further, let R,, = Zf\if 0;
represent the reserved rate at the port of the receive host. We
must have, R,, < C. Further, define R,, = C — R,., as the
available bandwidth to accommodate more inelastic flows.

With the above preparation, now we describe how the
receive host allocates the port bandwidth among all the flows
sharing the port. The available rate, R,, is partitioned into
two parts, Re; and R, — Re;. Re; is evenly allocated to all
elastic flows, i.e., each elastic flow receives, re; = Rej/Nei.
Here R,; is determined by the following condition,

Nip

Rap — R =Y _(rer — 0:)I(rer — 6;)

i=1

15)

where I(x) is an indicator function and it takes value 1 if
x > 0, and 0, otherwise. Allocating R.; above to the elastic
flows ensures that R,, — R.; amount of bandwidth is just
enough to allow (r — 0;)I(r — 6;) additional amount of
bandwidth to be assigned to inelastic flow ¢. This ensures that
the flow rate for an inelastic flow is r.; if 6; < r.; and 6; if
0; > r.;, and hence the sum of the TCP-based user utilities is
maximized.

Clearly, the bandwidth allocation must be adjusted upon a
flow arrival or departure. Upon the arrival or departure of an
elastic flow, R.; must be updated through Eq. (15) and the
receive windows for all the affected flows must be adjusted.
Upon the departure of an inelastic flow, both R,., and R,; must
be updated. Now upon the arrival of an inelastic flow, if the
minimum rate of the flow, 6 < R, it will be admitted as an
inelastic flow and again, both R,., and R.; must be updated.
Then the receive window for the flow will be calculated. If,
on the other hand, 0 > R,;, then the flow will be treated as
an elastic flow. Moreover, if this flow is associated with an
fan-in coflow and some other flows in the coflow are already
using the port with minimum rates reserved, the minimum rate
reservations for all those flows will be released and those flows
will also be treated as elastic flows. The rationale for doing
so is based on the understanding that a coflow deadline is
determined by the slowest flow in the coflow. Since the flow
that just arrives cannot meet its deadline due to bandwidth
shortage, there is no point to attempt to meet the deadlines of
other flows in the coflow. Releasing the reservations for those
flows will only help the future inelastic flows or coflows to
meet their deadlines. After releasing the reservations, both R,.,,
and R,; are updated and then the receive windows for all the
affected flows are updated.

III. EVALUATION OF DCMRG
We evaluate DCMRG by ns-3 simulator using real datacen-
ter workloads, i.e., Web-search [22] and Data-mining [26].
A. Testing of the DCMRG congestion controller

We first test the performance of the DCMRG congestion
controller (i.e., without activating in-cast controller) against
MRG [18] and D?TCP [16], as they are the only existing
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Fig. 1. Performance comparison of Congestion controller (Web-search
workload).

lightweight (i.e., end-to-end and ECN-based, respectively),
flow-deadline-aware congestion control protocols. The other
existing deadline-aware congestion control protocols, e.g.,
[11]-[14], require significant network node involvement and/or
new hardware support, and hence are not compared.

Consider an 8x8 leaf-spine network topology with each rack
having 32 hosts. The bandwidth/propagation delay is set at
10Gbps/10us between a host and a leaf node and 20Gbps/20.s
between a leaf node and a spine node. The queue size for the
10/20 Gbps links are set at 150/300 kbyes (i.e., 100/200 pack-
ets) and the ECN marking threshold is set at 65/130 packets,
the typical value used in DCTCP and D*TCP. The flow arrival
process is assumed to be Poisson. We adjust the average flow
arrival interval to generate different network loads. When a
flow arrives, a send host is randomly selected, and another
host in a different rack is randomly selected as the receive
host. In this experiment, we assume that there is no coflow. The
flows are classified into small (size<=100 Kbytes), medium
(100<size<=1 Mbytes) and big (size>1 Mbytes) flows. The
flow deadline miss rates of overall, small, medium and big
inelastic flows as well as the average (including both elastic
and inelastic) FCT and the 99th percentile of FCT are used as
the performance metrics.

We first consider the web-search workload [22], and ran-
domly select 20% flows as inelastic flows whose deadlines
are set at: (i) Ims+flow size/2Gbps for both small and medium
flows; and (ii) flow size/2.5Gbps for big flows.

Figure 1 presents the results for the three protocols. We see
that DCMRG performs much better in terms of flow deadline
miss rates. DCMRG reduces the overall flow miss rate by
as much as 3x and 1.6x, compared to D2TCP and MRG,
respectively, at high load. We also note that MRG achieves
performance comparable with DCMRG for medium and big
flows, but much poorer performance for small flows. This is



because for small flows, fast flow rate increase helps little on
improving FCT as the flow is over in a few RTTs. Instead,
FCT for a small flow is mainly determined by RTT, i.e., the
shorter the RTT, the smaller the FCT. Just like TCP, MRG
tends to cause longer switch queue, and hence, longer RTT
and FCT. In contrast, like DCTCP [22], DCMRG incurs much
smaller queuing delays, and hence, is able to maintain small
flow deadline miss rate even for small flows. Overall, DCMRG
outperforms D?TCP by big margins across the entire load
region tested. These results clearly demonstrate that DCMRG
can effectively support inelastic flows.

Among the three protocols, MRG gives the smallest average
FCT at light and medium network loads, but larger average
FCT than DCMRG at the heavy load. At the light and medium
loads, where the congestion occurs infrequently and the queue
length is short, MRG experiences a smaller number of slow-
down times due to the full use of the port buffer and hence
lower average FCT. But at heavy load, MRG experiences more
packet losses due to congestion and more retransmissions, and
hence higher average FCT than DCMRG. The 99th FCT is
determined by the big elastic flows. MRG benefits big flows
and hence gives the best 99th FCT. Since DCMRG can provide
better flow deadline guarantee, the tail FCT becomes less
important because flows with tail constraints can be enforced
as flows with deadlines. Again, DCMRG almost outperforms
D2TCP across the entire load region tested.

Now we test DCMRG with the Data-mining workload
[26]. We randomly select 30% flows as inelastic flows whose
deadlines are set at 0.6ms+flow size/4Gbps for small flows,
and the same deadlines for medium and big flows as those
in the Web-search workload case. We set a tighter deadline
for small flows in this case because most small flows in the
Data-mining workload have very small sizes ( a few packets).

Figure 2 indicates that the simulation results. Similarly
to the results in the Web-search workload case, DCMRG
performs much better for big flows than small flows. DCMRG
performs 2x and 3x better than D>TCP in terms of the overall
and big flow deadline miss rate at high load. DCMRG reduces
the overall and small flow deadline miss rates by 2x as much
as these in MRG. Similarly, DCMRG outperforms D>TCP in
terms of the average FCT for all load levels tested. DCMRG
offers smaller 99th FCT in medium and high loads, but
longer 99th FCT at high loads (70% and above) than D2>TCP.
DCMRG achieves big flow deadline miss rate comparable with
and a little bit larger deadline miss rate for medium flow than
MRG. However, MRG performs poorly in terms of small flow
deadline miss rate, even worse than D2TCP.

The above case study clearly demonstrates that DCMRG
congestion controller achieves overall best performance among
all the three protocols, especially in providing high perfor-
mance for inelastic flows.

B. Testing of both DCMRG congestion and incast controllers

As the majority of datacenter applications are scale-out by
design, we evaluate the performance of DCMRG with the
both congestion controller and incast controller by simulating
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Fig. 3. A Fork-Join process.

a Fork-Join process !, as depicted in Figure 3. A job arriving at
a job scheduler running in a server spawns F' tasks, which are
dispatched to F' workers to be processed. The data as a result
of task processing are returned as data flows from the workers
to the scheduler to be merged. The F' fan-in data flows forming
an incast coflow at the link between the top of rack switch and
the server in which the job scheduler resides, called incast link
hereafter. The slowest flow in the coflow determines the job
response time. A job SLO can be translated into a coflow
deadline. For simplicity, we consider the case where each job
must meet a given deadline.

We use the same network topology as the one in the previous
section. Assume that there are four job schedulers running
in four different servers in each rack, resulting in a total of
32 schedulers. Jobs arrive following a Poisson process. When
a job with fanout/fan-in degree F' and deadline 7T arrives,
it is randomly assigned to a scheduler. Upon receiving the
job, the selected scheduler randomly selects F' workers (i.e.,
servers which do not run schedulers) to dispatch the tasks to.
Upon arrival at a worker, a task is queued and then processed
before the resulting data are returned to the same scheduler the
task is dispatched. Assume that the task time, i.e., the queuing
time plus task processing time, follows a truncated exponential

'We test DCMRG in many-to-one incast congestion control, but it can also
be applied to many-to-many incast congestion control without modification.
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distribution with average time 7' and cutoff time 7., where
Tewt < Tp. After a response flow is generated at time 7.
(T, <= Teyt), it must be completed within Tp — 7, amount
of time to meet its deadline. As the user face applications [16],
[27] usually have small flow sizes and deadline requirements,
we further assume that each task to be dispatched has a small
fixed size of 2K bytes and the size of each response flow is
linearly distributed from 1K to 400K bytes.

Some background flows among servers without schedulers
are also generated based on a mixture of the web-search [22]
and Data-ming [26] workloads. Again, the background flows
arrive following a Poisson process. When a background flow
arrives, a server is randomly picked as the send host and
another server in a different rack is randomly selected as the
receive host. The background traffic load is fixed at 60% of
the spine switch load.

In this study, we consider four performance metrics (i)
the coflow deadline miss rate; (ii) the packet drop rate at
the incast port of the server a scheduler resides in; (iii) the
90th percentile of coflow completion time (CCT); and (iv) the
99th percentile of CCT. To be fairly compare the performance
of incast solution, we compare DCMRG against D?TCP and
MRG with incast solution ICTCP [6] (called as D>*TCP-IC and
MRG-IC, respectively). We compare DCMRG with D?TCP-
IC and MRG-IC for the following two cases,

o Case I: all the jobs have the same fanout/fan-in degree
and deadline. Tp = 5ms, Tp = 15ms and T,,; = dms.
Consider the cases with fanout/fan-in degrees ranging
from 10 to 40.

o Case II: the fanout/fan-in degree is uniformly distributed
from 1 to 50. Tp and Tp pair is randomly selected from
a set of values: {(20,10), (30, 20), (40, 25), (50,30)}
and T,.,; = 5ms. The incast port load varies from 30%
to 80%.

Case I Coflows with same fan-in degree and deadline:
The results are presented in Figure 4. We see that the coflow
deadline miss rate and packet drop rate at the incast link
increase as the fan-in degree increases for all the three proto-
cols. This is because more traffic is generated as fan-in degree
increases, resulting in heavier incast congestion.

Among the three protocols, D?TCP-IC has the highest
coflow miss rate across the entire fan-in degree range studied.
This is because D>TCP-IC only provides relative rate differ-
entiations among flows with different deadlines, rather than
explicit rate guarantee. DCMRG achieves the lowest coflow
miss rate due to its ability to explicitly handle incast conges-
tion for coflows. The coflow deadline misses in DCMRG is
mainly due to bandwidth shortage, which causes some coflows
to be downgraded to elastic flows. To provide lower coflow
deadline miss rate, a call admission control mechanism may
be introduced to limit the inelastic flows and coflows so that
R, is kept below C. But due to unpredictability of the flow
start time for each inelastic flow in a coflow, how to do call
admission control effectively is a challenging task, which is
a subject to be explored as our future work. MRG-IC incurs
the highest packet drop rate at the incast link. This is because
it is an end-to-end solution and it does not slow down the
sending rate before packet drop occurs. The packet drop rate in
DCMRG is lowered than D?TCP-IC by more than 70% due to
its incast congestion control. Moreover, with the help with both
ECN and incast congestion control, DCMRG reduces packet
drop rate by more than 90% compared to MRG-IC.

MRG-IC has the shortest 90th percentile of CCT at small
fan-in degrees. In this case, the congestion rarely occurs and
MRG-IC can fully use the switch queue buffer to improve
the link utilization. As the fan-in degree increases, however,
the congestion occurs more frequently and CCT for MRG-IC
grows faster than that for the other three protocols. D?TCP-IC
incurs longer 90th percentile of CCT than DCMRG. This is
because the faster the increase rate for inelastic flows, the
shorter their FCTs are. For the 99th percentile of CCT, MRG
has the similar behavior. But D?*TCP-IC approaches DCMRG
as the fan-in degree increases. Even at a large fan-in degree,
e.g., 40, the coflow deadline miss rate for DCMRG is still
within 10%. The 99th percentile of CCT in DCMRG comes
from coflows being treated as elastic flows which share very
limited bandwidth and hence results in its CCT comparable
with that of D?TCP-IC.

Case II Coflows with mixed fan-in degrees and mixed
deadlines: Now we consider the case for coflows with mixed
fanout/fan-in degrees and mixed deadlines. The results are
depicted in Figure 5. Among the three protocols, DCMRG
reduces coflow deadline miss rate by more than 40% and
60% compared to D?TCP-IC and MRG-IC, respectively.
We also note that the coflow deadline miss rate and packet
drop rate are a little bit higher than those in the previous
case. Due to different cowflow deadlines, the incast flows
belonging to different coflows have higher chance to arrive at
the incast link close to one another. For example, a scheduler
handles a coflow with deadline 7Hh=50ms at time 10ms, and
a coflow with deadline Tp =20ms at time 40ms. In this case,
both coflows have the deadlines at 60ms and hence more
flows coming from both coflows will have a good chance to
compete with each other for the link bandwidth. This results
in more shortage of reserved bandwidth for incast flows and
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Fig. 5. Coflows with mixed fanout/fan-in degrees and mixed deadlines.

hence higher coflow deadline miss rate.

In summary, we conclude that DCMRG is very effective in
reducing incast congestion caused by coflows. The objective
of DCMRG is to minimize the coflow deadline miss rate. This
may result in longer 99th percentile of CCT by treating some
inelastic flows as elastic flows due to the lack of available
bandwidth. If the objective is to minimize the 99th CCT, the
flows in a coflow should share the bandwidth proportional to
their remaining flow size so that all the flows in the coflow
can be completed at the similar time to minimize CCT.

IV. CONCLUSIONS

In this paper, we proposed an incast-coflow-aware, ECN-
based, soft minimum-rate-guaranteed congestion control pro-
tocol for datacenter networks, called DCMRG. DCMRG is
the first traffic control protocol integrating congestion con-
trol and coflow-aware incast congestion control by providing
flow deadline guarantee. DCMRG is composed of two major
components, i.e., a congestion controller running on the send
hosts and an incast congestion controller running on the
receive hosts. DCMRG improves over MRG, an end-to-end
soft minimum-rate-guarantee transport protocol, by integrat-
ing an incast congestion control and leveraging the ECN-
mechanism. DCMRG deals with the incast congestion through
dynamically regulating the receive window size to bound the
overall traffic rate in the incast link while maximizing the
overall network utilities. The large scale simulation results
demonstrated that DCMRG outperform D?>TCP and MRG by
big margins. DCMRG is readily to be deployed in existing dat-
acenters with/without ECN support by only end host software
upgrading.
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