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Abstract
We consider networks of small, autonomous devices that communicate with each other wirelessly.Minimizing energy usage is
an important consideration in designing algorithms for such networks, as battery life is a crucial and limited resource.Working
in a model where both sending and listening for messages deplete energy, we consider the problem of finding a maximal
matching of the nodes in a radio network of arbitrary and unknown topology. We present a distributed randomized algorithm
that produces, with high probability, a maximal matching. The maximum energy cost per node is O

(
(log n)(log!)

)
, and

the time complexity is O(! log n). Here n is any upper bound on the number of nodes, and ! is any upper bound on the
maximum degree; n and ! are parameters of our algorithm that we assume are known a priori to all the processors. We note
that there exist families of graphs for which our bounds on energy cost and time complexity are simultaneously optimal up
to polylog factors, so any significant improvement would need additional assumptions about the network topology. We also
consider the related problem of assigning, for each node in the network, a neighbor to back up its data in case of eventual
node failure. Here, a key goal is to minimize the maximum load, defined as the number of nodes assigned to a single node.
We present an efficient decentralized low-energy algorithm that finds a neighbor assignment whose maximum load is at most
a polylog (n) factor bigger that the optimum.

Keywords Distributed algorithms · Energy-aware computation · Radio networks ·Maximal matching · Sensor networks

1 Introduction

For networks of small computers, energy management and
conservation is often a major concern. When these networks
communicate wirelessly, usage of the radio transceiver to
send or listen for messages is often one of the dominant
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causes of energy usage. Moreover, this has tended to be
increasingly true as the devices have gotten smaller; see,
for example, [3,13,21]. Motivated by these considerations,
Chang et al. [5] introduced a theoretical model of distributed
computation in which each send or listen operation costs one
unit of energy, but local computation is free. Over a sequence
of discrete timesteps, nodes choose whether to sleep, listen,
or send a message of O(log n) bits. A listening node suc-
cessfully receives a message only when exactly one of its
neighbors has chosen to send in that timestep; otherwise it
receives no input.

It is not uncommon for research on sensor networks to
make assumptions about the topology of the network, such
as assuming the network is defined by a unit disk graph, or
that each node is aware of its location using GPS. However,
we will be interested in the more general setting where we
make almost no assumptions about the network topology.
We will assume that communication takes place via radio
broadcasts, and that there is an arbitrary and unknown undi-
rected graphG whose edges indicatewhich pairs of nodes are
capable of hearing each other’s broadcasts.Wewill, however,
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assume that each node is initialized with shared parameters
n and !, which are upper bounds on, respectively, the total
number of nodes, and the maximum degree of any node. By
designing algorithms to operate without pre-conditions on,
or foreknowledge of, the network topology, we potentially
broaden the possible applications of our algorithms, and, by
extension, of sensor networks. For instance, we can imagine
a network of small sensors scattered rather haphazardly from
an airplane passing over hazardous terrain; the sensors that
survive their landing are unlikely to be placed predictably or
uniformly.

In this model, Chang et al. [5] presented a polylog-energy,
polynomial-time algorithm for the problem of one-to-all
broadcast. A later paper by Chang et al. [6] gave a sub-
polynomial (no(1)) energy, polynomial-time algorithm for
the related problem of breadth-first search. An earlier body
of work examined energy complexity in single hop net-
works [4,7,8,14–17,20], i.e., in which the network topology
is known to be a clique.

In the present work, we will be concerned with another
fundamental problem of graph theory, namely to find large
sets of pairwise disjoint edges, or matchings. The problem
of finding large matchings has been thoroughly studied in a
wide variety of computational models dating back more than
a century, toKönig [18]. For a fairly comprehensive review of
past results, we recommend Duan and Pettie [11, Section 1].

The main goal of the present work is to present a polylog-
energy, polynomial-time distributed algorithm that computes
a maximal matching in the network graph. The term maxi-
mal here indicates that the matching intersects every edge of
the graph, and therefore cannot be augmented without first
removing edges. It is well-known that a maximal matching
necessarily has at least half as many edges as the largest, or
“maximum” matching. In fact, as we discuss in Sect. 2.2,
maximal matchings are often significantly closer to being
maximum than the aforementioned fact would indicate.

Theorem 1 Let G be any graph on at most n vertices, of max-
imum degree at most!. Then Algorithm 1 always terminates
in O(! log n) timesteps, at which point each node knows its
partner in a matching, M. Furthermore, with probability at
least 1− 1

n2 , M is a maximal matching and every node used
energy at most 2C(log n)(log!)

Observe that the per-node energy use is polylog(n), which
obviously cannot be improved by more than a polylog factor.
Moreover, the time complexity bound, O(! log n), is also
nearly optimal, when one considers that G could contain a
clique of size !, in which case, in order for all the nodes
in that clique to get even one chance to send a message and
have it received by the other nodes in the clique, there must
be at least ! timesteps, since our model does not allow a
node the possibility to receive two or more messages in a
single round. To put this another way, when ! is small, a

high degree of parallelism is possible, which our algorithm
exploits; but, when ! is large, there exist graphs for which
this parallelism is impossible.

1.1 Application: neighbor assignment

One possible motivation for finding large matchings, apart
from their intrinsic mathematical interest, comes from the
desire to back up data in case of node failures. Suppose we
had a perfect matching (that is, one whose edges contain
every node) on the n nodes of our network. Then thematching
could beviewed as pairing eachnodewith a neighboringnode
that could serve as its backup device. This would ensure that
each device has a load of one node to back up, and that each
node is directly adjacent to its backup device.

Since perfect matchings are not always available, we con-
sider a more general scheme, in which each node is assigned
one of its neighbors to be its backup device, but we allow for
loads greater than one. Such a function can be visualized as
a directed graph, with a directed edge from each node to its
backup device. In this case, each node has out-degree 1, and
load equal to its in-degree. We would like to minimize the
maximum load over all vertices.

In Sect. 6, we will show that, if one is willing to accept
a maximum load that is O(log n) times the optimum, this
problem can be simply reduced to the maximal matching
problem. In light of our main result, this means that, if there
exists a neighbor assignmentwith polylog(n)maximumload,
then we can find one on a radio network, while using only
polylog(n) energy.

1.2 Techniques

Our matching algorithm can be thought of as a distributed
and low-energy version of the following greedy, centralized
algorithm. Randomly shuffle the m edges. Then, processing
the edges in order, accept each edge that is disjoint from all
previous edges. Note that this always results in a maximal
matching.

To make this into a distributed algorithm, we make each
node, in parallel, try to establish contact with one of its
unmatched neighbors to form an edge. Since a node can only
receive a message successfully if exactly one of its neighbors
is sending, we limit the probability for each node to partici-
pate in a given round, by setting a participation rate that is,
with high probability, at most the inverse of the maximum
degree of the residual graph induced by the unmatched nodes.
It turns out that this can be accomplished using a set sched-
ule, where the participation rate is a function of the amount
of elapsed time.

The main technical obstacle in the analysis is proving
that the maximum degree of the graph decreases accord-
ing to schedule (or faster). This is achieved by noting that,
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if not, the first vertex to have its degree exceed the sched-
ule would have to have been failed to be paired by our
algorithm, despite going through a long sequence of consec-
utive rounds in which its chance to be paired was relatively
high.

1.3 Related work

Multi-hop radio network models have a long history, going
back at least to work in the early 1990’s by Bar-Yehuda et
al. [1,2] among others. The particular model of energy-aware
radio computation we are using was introduced by Chang et
al. [5].

A recent result by Chatterjee et al. [9] considered the
closely related problem of Maximal Independent Set in
another model, called the “Sleeping model.” Although it has
some interesting similarities to our work, there are several
important differences. Firstly, we note that although match-
ings of G are nothing more than independent sets on the line
graph of G, in distributed computing, we cannot just convert
an algorithm designed to run on the line graph of G into an
algorithm to run on G. Secondly, we note that the Sleeping
model is based on the CONGEST model, and so, when a
node is awake, it is allowed to send a different message to
each of its neighbors at a unit cost. By contrast, in our model,
one node can only send onemessage in a timestep, and it may
collide with messages sent by other nodes.

Moscibroda andWattenhofer [19] considered the problem
of finding a Maximal Independent Set in a radio network.
Their work also has some interesting similarities to ours,
although they are assuming a unit-disk topology, and listen-
ing for messages is free in their model. On the other hand,
their algorithm works even when the nodes wake up asyn-
chronously at the start of the algorithm.

2 Preliminaries

2.1 Matchings

A matching is a subset of the edges of a graph G, such that
no two of the edges share an endpoint. We say a matching is
maximum if it has at least as many edges as any other match-
ing forG. We say a matching ismaximal if it is not contained
in a larger matching for G. Equivalently, a matching is max-
imal if every edge of G shares at least one endpoint with an
edge from the matching.

For α > 1, a matching is α-approximately maximum if its
cardinality is at least 1/α times the cardinality of a maximum
matching. It is an immediate consequence of the definitions
that any maximal matching is 2-approximately maximum.

2.2 Maximal versus maximummatchings

Perhaps themain reasonwhymaximalmatchings are of inter-
est is as an approximate solution to the related problem of
maximum matchings. Before we begin, we introduce some
notations and terminology.

Definition 1 We say a matching M is maximal if it is not a
subset of any larger matching; equivalently, if the comple-
mentary set of nodes is an independent set. For a graph G,
let ν(G) denote its matching number, that is, the maximum
number of edges in a matching of G. Let β(G) denote the
minimum number of edges in a maximal matching of G.
Let α(G) denote the independence number of G, that is, the
maximum size of an independent set (or anti-clique) of G.

The following well-known result says that every maxi-
mal matching is at least a 1

2 -approximation to the size of the
maximum matching.

Proposition 1 Let G be any graph. Then

β(G) ≥ ν(G)

2
.

The bound in Proposition 1 is tight, as shown for example,
by a path of four vertices. However, for most graphs, it is
rather far from tight. The following bound is due to M. Zito
[23, Theorem 2].

Proposition 2 1. For every graph G, we have β(G) ≥
n−α(G)

2 ≥ ν(G) − α(G)
2 .

2. For a random graph G = Gn,p, where p = d/n, the
inequality

β(G) ≥ n
2

(
1 − 2 ln(d)

d

)

holds with probability approaching 1 as d → ∞.

A number of analogous, related results are proved in [23],
generalizing the above to classes of random bipartite graphs,
random regular graphs, and the case where d is a fixed con-
stant, rather than tending to infinity.

We mention another kind of random graph which is pop-
ular in distributed computing applications, and particularly
for radio networks. These are the so-called randomgeometric
graphs, also known as random unit disk graphs. For param-
eters n, r , we define the vertex set by choosing n points
(vertices) uniformly at random from a square of area n. Two
vertices are considered adjacent if their Euclidean distance
is less than r . If we neglect boundary effects, this leads to
an average degree of πr2. For such graphs, we can make the
following observation.
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Proposition 3 Let G = RGG(n, r) be a random geometric
graph. Then,

β(G) ≥ n
2
(1 − O(1/d)),

where d is the expected average degree of G.

Proof Note that the square of area n can be covered by
O(n/r2) disks of radius r , hence this is an upper bound on the
independence number of any radius-r disk graph, and in par-
ticular a randomone. Thusβ(G) ≥ n

2−O( n
r2 ). Since, for r =

&(
√
log(n)), asymptotically almost surely all of the degrees

in G are '(r2), this shows that β(G) ≥ n
2 (1 − O(1/d)),

where d is any vertex degree of G. %&

Taken together, these results show that, in many settings
when the graph is not adversarial, maximal matchings may
be very good approximations to maximum matchings, espe-
cially when the average degree is large.

2.3 Radio networks and energy usage

We work in the Radio Network model, where we have a
communication network on an arbitrary underlying graph
G. Each node in G is a processor equipped with a transmitter
and receiver to communicate with other nodes. There is an
edge between nodes u and v in the graph if u and v are within
transmission range of each other. We note that the graph G
is not known to the nodes. In fact we will assume that nodes
do not know even who their neighbors are in the graph, until
they have explicitly heard from them during the running of
the algorithm.

All of the processors begin in the same configuration,
although we assume they have access to independent sources
of random bits. As a consequence, they can locally generate
O(log n)-bit IDs that are unique, with high probability. We
assume the nodes each knowparameters (n,!), where n is an
upper bound on the number of nodes in G, and ! is an upper
bound on the maximum degree of G. It is important for the
correctness of our algorithm that these values be shared by
all nodes, since they act as a kind of synchronization mech-
anism. Accuracy of these shared estimates is not needed for
correctness, but both running time and energy usage depend
on these parameters, so if n and ! are gross overestimates,
it will result in increased costs for the algorithm.

Time is divided into discrete timesteps. In each timestep
a processor can choose to do one of three actions: transmit,
listen, or sleep. Amessage travels from a node u to a neighbor
v of u at time t if

• u decides to transmit at time t ,
• v decides to listen at time t and
• no other neighbor of v decides to transmit at time t .

Thus when a node u decides to send a message, that message
is heard by all neighbors of u that happen to be listening, and
for whom none of their other neighbors are sending.

What happens if node v decides to listen and more than
one of its neighbors sends a message? There are several dif-
ferent models for this situation. In the most permissive of
these, the LOCAL and CONGEST models, v receives all the
messages sent by its neighbors. As already specified, we are
not working in these models. A more restrictive model is
the Collision Detection model (CD) where, when a listening
node does not receive a message, it can can tell the differ-
ence between silence (no neighbors sending) and a collision
(more than one neighbor sending). Another model of inter-
est is the “No Collision Detection” model (no-CD), which is
even more restrictive: here, collisions between two or more
messages are indistinguishable from silence. Priorwork [5,6]
used exponential backoff to deal with collisions in both the
CD and no-CDmodels, making the distinction between these
models less important, except in the case of deterministic
algorithms. The maximal matching algorithm in our current
paper works in the most challenging (no-CD) model despite
not using backoff. This can be seen as a corollary of the very
local nature of maximal matchings.

What about message sizes? The LOCAL model allows
nodes to send messages of arbitrary size in a single timestep.
CONGEST is the same, but with messages restricted to
O(log n) bits. In our work we follow the message-size
constraint of the CONGEST model, i.e., each message is
O(log n) bits.

We measure the cost of our algorithms in terms of their
energy usage.We assume that a node incurs a cost of 1 energy
unit each time that it decides to send or listen.When the node
is sleeping there is no energy cost. We also assume that local
computation is free. The goal of energy aware computation
is to design algorithms where the nodes can schedule sleep
and communication times so that the energy expenditure is
small, ideally polylog(n), without compromising the time
complexity toomuch, i.e., the running time is still polynomial
in n.

3 Notation

3.1 The network

As mentioned earlier, G = (V , E) is the graph defining our
radio network. We denote n = |V |, and refer to the nodes
as “processors.” Although the processors are identical, and
run identical code, we will assume each node has a unique
ID that it knows and uses as its “name” in communication.
We make the standard observation that, if each node were to
generate an independently random string of C log n bits as
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its ID, the probability that all n nodes have distinct IDs is at
least 1−1/nC−2, which can be made overwhelmingly likely.

When we present our pseudocode, it will be written from
the perspective of a single processor. However, most of our
analysis will be written from the “global” perspective of the
entire graph.

3.2 Measuring time

To begin with, we define two units of time that will be used
throughout the paper. The smaller unit of time is called a
timestep, and refers to the basic time unit of our radio network
model: in each timestep the nodes that choose to transmit are
allowed to send a single message.

The larger unit of time is called a round. A round consists
of three timesteps of the form 3t − 2, 3t − 1, 3t , where 1 ≤
t ≤ T is the round number. As shall be seen, rounds have
the property that at the end of each round, the aggregate
state of the network encodes a matching. More precisely,
each node has a variable, partner, and at the end of each
round, this variable is either the ID of one of its neighbor
nodes, or has the value null; moreover, whenever, at the
end of a round, partner(v) = w (= null, we also have
partner(w) = v.

3.3 The evolvingmatching

For t ≥ 0, we denote by M(t) the matching encoded by the
network at the end of round t ; this is a random variable whose
value is always a pairwise disjoint set of edges of the graph.
As discussed earlier, M(t) is well defined because, at the end
of every round, all vertices have a mutually consistent view
of whom they are paired to.

It will be convenient to define some related random vari-
ables, all of which are deterministic functions of M(t).

• Let V (t) denote the set of unmatched vertices after round
t . That is, V (t) = V \

(⋃
e∈M(t) e

)
.

• LetG(t) denote the subgraph ofG induced by V (t). Thus
G(t) = (V (t), E(t)), where E(t) = E ∩

(V (t)
2

)
. We will

refer to this as the residual graph at the end of round t ,
or simply the residual graph.

• Similarly, for each surviving vertex v ∈ V (t), we define
its residual neighbor set at the end of round t , N (v, t) =
N (v)∩V (t), and its residual degree, d(v, t) = |N (v, t)|.
We denote the closed residual neighborhood of v at the
end of round t by N [v, t], defined as N [v, t] = (N (v)∪
{v}) ∩ V (t). For matched vertices, v /∈ V (t), we adopt
the convention d(v, t) = 0.

• Finally, we denote the maximum degree in the residual
graph by !(t) = max

v∈V (t)
d(v, t), taking this value to be

zero if V (t) is empty.

We observe that our matching will be non-decreasing over
time, that is, for all t < t ′,

M(t) ⊆ M(t ′)

with probability one. It follows that the quantities |V (t)|,
!(t) and the residual degrees of the individual vertices are
all non-increasing in time.

4 Maximal matching algorithm

The basic idea of our algorithm is, starting with the empty
matching, to greedily add disjoint edges until a maximal
matching is achieved. The challenge is to keep each node’s
energy cost low. We achieve this by having nodes wake up
at random times, and try to recruit one of their neighbors to
pair with them. If this succeeds without being hampered by
additional, redundant, neighbors that also happen towake up,
then an edge is added to the matching.

To ensure that both endpoints of the edge agree about who
they are paired with, the nodes execute a three-step “hand-
shake” protocol, with the property that, if it succeeds, both
nodes know that the other node has only been in communi-
cation with them, and was not, for instance, trying to form
an edge with another, different, endpoint.

To keep the energy costs low, it is essential that nodes
wake up with approximately the correct frequency. If the rate
is too high, too many nodes will wake up at once, causing
collisions. Even if we get around these collisions by some
device, having too many nodes wake up at once seems likely
to lead to excessive energy consumption, since at most one
neighbor of a node can get a message through in a single
round.

If, on the other hand, the rate is too low, too few nodes
will wake up at once, again leading to an excessive waste of
energy, since a node whose neighbors are all asleep cannot
form an edge all by itself.

From the perspective of an individual node, whose goal is
to connect with exactly one of its neighbors, the ideal would
be that, in any given round, it and its neighbors participate
with a probability equal to the inverse of its residual degree at
the time. There are, however, two problems with setting this
to be the participation rate. Firstly, the nodes do not know
even their initial degrees, let alone their evolving degrees
in the residual graph. Secondly, even if these degrees were
known, nodes of different degrees would desire different par-
ticipation rates for their neighbors, but their neighbor sets
might overlap.

To get around these difficulties, we want to define a global
participation rate for each round, that acts as a proxy for
each node’s ideal participation rate. To this end, we define
the function
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r(t) = 1

2+ 3
(
1 − t−1

T

)
!

where T = C! log(n). The constant C will be specified in
the proof of Theorem 1. This function, r(t) gives a sched-
ule for gradually raising the participation probability from
r(1) = 1

2+3! (which is '(1/!)) up to r(T ) = '(1).
Initially, when the rate is '(1/!) it will be lower than

ideal for all but the highest degree vertices. Nevertheless,
there is some chance of some pairings being formed. As the
algorithm proceeds, the participation probability increases
slowly, while a node’s residual degree decreases. So for some
rounds during the algorithm, the current participation rate
(for everyone) will be approximately equal to the inverse of
the node’s degree, and those are the rounds when the node is
most likely to be matched.

This completes the informal description of our algorithm.
For a formal specification, Algorithms 1, 2 and 3 comprise
the full pseudocode for our distributed protocol.

Algorithm 1 Main Algorithm: A Low-Energy Distributed
implementation of Greedy Maximal Matching in a Radio
Network.
1: t ← 1
2: partner← null
3: while partner= null and t ≤ T do
4: Sample x uniformly from [0, 1].
5: if x ≤ r(t)/2 then
6: Do RECRUIT_PROTOCOL this round.
7: else if r(t)/2 < x ≤ r(t) then
8: Do ACCEPT_PROTOCOL this round.
9: else
10: Sleep this round.
11: end if
12: t ← t + 1
13: end while
14: Sleep for the remaining T − t rounds.

Algorithm 2 RECRUIT_PROTOCOL: Try to form an edge
as initial sender.
1: At timestep 1, Send my_I D / “My name is my_I D and I am

available”
2: At timestep 2, Listen
3: if message received then
4: Interpret the message as an ordered pair of integers (x, y)
5: if x = my_I D then / Match found
6: partner← y
7: At timestep 3, send (x, y) / “x and y are paired”
8: end if
9: else
10: Sleep for timestep 3.
11: end if

Algorithm 3 ACCEPT_PROTOCOL: Try to form an edge
as initial listener.
1: At timestep 1, Listen
2: if message received then
3: Interpret the message as an integer x
4: At timestep 2, Send (x,my_I D) / “Hello, lets match up, x and

my_I D”
5: At timestep 3, Listen
6: if message received then
7: Interpret the message as an ordered pair of integers (x, y)
8: if (y == my_I D) then / x and y are matched
9: partner← x
10: end if
11: end if
12: end if
13: Sleep for any timesteps remaining in the round.

5 Maximal matching analysis

In this section we prove the correctness and analyze the run-
ning time and energy complexity of Algorithm 1.

To begin, we show that the Recruit and Accept protocols
run by the individual nodes interact correctly, so that at the
end of each round there is no disagreement between nodes
about whether or not they are matched and to whom.

Lemma 1 With probability one, at the end of every round
t ≥ 0, the partner variables of the n nodes encode a well-
defined matching M(t).

Proof Initially, all the vertices are unmatched, with null
partners, so M(0) = ∅. Later, we observe that the only cir-
cumstances under which the partner variables have their
values reassigned is when a vertex v has chosen to participate
in that round as recruiter, a neighboring vertex w has chosen
to participate in that round as accepter, and furthermore, both
v andw receive a message each time they Listen during their
respective protocols. Since a message is received if and only
if exactly one neighbor Sends in that timestep, the messages
v receives must come from w, and vice-versa. Therefore v

stores the ID of w in its partner variable, and vice-versa.
Furthermore, since v and w would not have participated

in round t unless their partner variables were both null
beforehand, we know by induction that no other vertices have
v orw as their partners. Since this applies for all vertices and
all rounds, the pairing is one-to-one, as desired. %&

Now, suppose the algorithm has run for some time, and
two neighboring vertices v and w remain unmatched. The
following Lemma gives a fairly tight lower bound on the
probability that the edge {v,w}will be added to thematching
in the next timestep.
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Lemma 2 Let t ≥ 1, let {v,w} ∈ E, and let Xv,w,t be the
indicator random variable for the event that v and w get
matched to each other in round t. Then

E
(
Xv,w,t | M(t − 1)

)

≥ r(t)2

2
(1 − r(t))!(t−1)−1 1(v,w ∈ V (t − 1))

Proof In order for an edge to form between v andw in round
t , it is necessary and sufficient for the following four events
all to occur:

E0 = {v,w ∈ V (t − 1)},
E1 = {v,w both participate in round t},
E2 = {exactly one of v,w participates as recruiter,

the other as accepter, in round t},
E3 = {E2, and v and w receive each others messages

without any collision}.

Note that E3 ⊂ E2 ⊂ E1 ⊂ E0. For 0 ≤ i ≤ 3, let Xi =
1(Ei ). We now compute expectations, conditioned on the
matching at the end of the previous round. We will prove,
below, that

E (X1 | M(t − 1)) = r(t)2X0, (1)

E (X2 | X1,M(t − 1)) = 1
2
X1, (2)

E (X3 | X2, X1,M(t − 1)) ≥ (1 − r(t))!(t−1)−1 X2. (3)

It follows by the law of total expectation that

E (X3 | M(t − 1)) ≥ r(t)2

2
(1 − r(t))!(t−1)−1 X0,

which is equivalent to the statement of the lemma, noting that
X0 = 1(v,w ∈ V (t − 1)) and X3 = Xv,w,t .

To prove the three conditional expectation relations above,
first note that Eqs. (1) and (2) follow immediately from the
definitions of E1 and E2, and the fact that every vertex in
V (t − 1) has probability r(t)/2 to participate as recruiter in
round t , and the same probability to participate as accepter.

To establish inequality (3), we note that, conditioned on
E2 occurring, for E3 to occur it is sufficient1 that no other
neighbor of w decides to participate in round t in the same
role as v, and no other neighbor of v decides to participate
in the same role as w. Thus the conditional probability that
E3 occurs is bounded below by the probability that

1 We note that this is not a necessary condition. If v sends amessage and
two of its neighbors w and x both decide to listen, it could still happen
that only w receives the message, because some vertex in N (x)\N (w)
sends a message at the same time as v, thereby causing a fortuitous
collision at x .

• no node in N (v, t−1)∩N (w, t−1) decides to participate
at all,

• no node in N (v, t−1)\N [w, t−1] decides to participate
with the same role as w, and

• no node in N (w, t−1)\N [v, t−1] decides to participate
with the same role as v.

Since each node makes its participation decision indepen-
dently, this probability equals

(1 − r(t))A
(
1 − r(t)

2

)B

≥ (1 − r(t))A+B/2,

where

A = |N (v, t − 1) ∩ N (w, t − 1)|

and

B = |N (v, t − 1)\N [w, t − 1]|
+|N (w, t − 1)\N [v, t − 1]|,

andwe have applied the inequality (1−x/2)2 ≥ 1−x , which
holds for all real x .

Next observe that

N (v, t − 1)\{w} = (N (v, t − 1) ∩ N (w, t − 1))
·∪ (N (v, t − 1)\N [w, t − 1])

and N (w, t − 1)\{v} satisfies a corresponding inequality, so
that

2A + B = |N (v, t − 1)\{w}| + |N (w, t − 1)\{v}|
= d(v, t − 1)+ d(w, t − 1) − 2

≤ 2(!(t − 1) − 1).

Thus, for a fixed matching M(t − 1), the conditional proba-
bility of E3 given E2 is at least

(1 − r(t))!(t−1)−1

This establishes (3), which completes the proof. %&

Having estimated the probability that a particular match-
ing edge forms at a particular time, we now want to
understand the running of the algorithm as a whole. To this
end, we make the following definition.

Definition 2 Let 1 ≤ t ≤ 1 + T . We say that the residual
graph is good for round t if

!(t − 1)r(t) < 1/2.
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We will also, more concisely, say that t is good, to mean the
same thing.

Thus, we say “t is good” if, prior to round t , every vertex
v has either been matched (and thus v /∈ V (t −1)) or enough
neighbors of v have been matched to reduce v’s residual
degree below a target threshold, 1

2r(t) . The threshold 1
2r(t)

was chosen to ensure that any particular vertex listening in
round t is unlikely to miss a message due to a collision.
So, when t is good, any high degree vertex that decides to
participate in round t is “primed to succeed.”

Our goal will be to prove that, with high probability, t is
good for all 1 ≤ t ≤ T + 1; that is, no degree ever exceeds
1

2r(t) . In particular, noting that r(T+1) = 1/2, the property of
beinggood for time T+1means that!(T ) < 1,whichmeans
the final residual graphG(T ) is an empty graph; equivalently,
M(T ) is a maximal matching.

Lemma 3 Let A be the event that, for all 1 ≤ t ≤ T + 1, the
residual graph is good for time t. Then

P (M(T ) is maximal ) ≥ P (A) ≥ 1 − o
(

1
n2

)
.

In order to proveLemma3we introduce a randomvariable
that will be used crucially in the remainder of the analysis.

Definition 3 For each 1 ≤ t ≤ 1 + T and v ∈ V , let
Z(v, t) denote the indicator random variable for the event{
t is good and d(v, t) ≥ 1

3r(t)

}
. By convention, if v /∈ V (t),

d(v, t) = 0, so Z(v, t) = 0 also.

The intuition behind this definition is that the event
{Z(v, t) = 1}means that despite the best possible conditions
for v getting matched: many available unmatched neighbors
(since d(v, t − 1) ≥ d(v, t) > 1

3r(t) ), and a small chance
of collisions (since t is good), v still failed to get matched
in round t . Thus this event represents a lost opportunity for
vertex v. Since a vertex cannot get matched in a round unless
it participates, which happens with probability only r(t), we
must of course be prepared for many such opportunities to
be lost. However, the following lemma shows that there is
a decent chance that any particular such opportunity is not
lost.

Lemma 4

E (Z(v, t) | M(t − 1)) ≤ 1 − r(t)
6e

.

Proof Recall that, by definition, Z(v, t) = 1 if and only if

• v ∈ V (t)
• d(v, t) ≥ 1/3r(t) and
• !(t − 1) < 1/2r(t).

Now, since the degrees at time t − 1 are determined by
M(t − 1), and there is nothing to prove when the condi-
tional information implies Z(v, t) is identically zero, wemay
assume d(v, t − 1) ≥ 1/3r(t) and maxw d(w, t − 1) ≤
1/2r(t).

Also, note that v /∈ V (t)will occur if and only if Xv,w,t =
1 for some w ∈ N (v, t − 1). Since these events are disjoint,
we may sum their probabilities, obtaining

E (Z(v, t) | M(t − 1))

≤ 1 −
∑

w

E
(
Xv,w,t | M(t − 1)

)
(4)

To get a handle on the right hand side,we can applyLemma 2,
to bound the sum. Thus

∑

w

E
(
Xv,w,t | M(t − 1)

)

≥
∑

w∈N (v,t−1)

r(t)2

2
(1 − r(t))!(t−1)−1

Observing that the summands do not depend on the specific
vertices w, there are d(v, t − 1) ≥ d(v, t) terms, and !(t −
1) − 1 ≤ 1/(2r(t)) since t is good, we have

∑

w

E
(
Xv,w,t | M(t − 1)

)

≥ d(v, t)
r(t)2

2
(1 − r(t))1/(2r(t))

Plugging this back into Eq. (4), we have

E (Z(v, t) | M(t − 1))

≤ 1 − d(v, t)
r(t)2

2
(1 − r(t))1/(2r(t))

Additionally, since Z(v, t) = 0 unless d(v, t) ≥ 1
3r(t) , we

have

E (Z(v, t) | M(t − 1)) ≤ 1 − 1
3r(t)

r(t)2

2
(1 − r(t))

1
2r(t)

≤ 1 − r(t)
6

(1 − r(t))
1

2r(t)

≤ 1 − r(t)
6e

.

Here the last inequality follows because for 0 ≤ x ≤ 1/2,
we have 1 − x ≥ e−2x , and r(t) ≤ 1/2 for all t ≤ 1+ T . %&

The above lemma shows that in a good round t , a particular
vertex v has only a bounded chance to “misbehave”. To prove
Lemma 3 we will show that the first bad round, if any, must
be preceded by a long sequence of good rounds t ′ on which
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some vertex v misbehaves (i.e., Z(v, t ′) = 1). Since this is
unlikely, it must follow that, with high probability, all rounds
are good.

Proof of Lemma 3 Assume, for contradiction, that there exists
a bad round. Let t be the first bad round; that is, t is mini-
mal such that !(t) ≥ 1

2r(t) .We note that an easy calculation

shows r(t ′) < 1
2! for t ′ ≤ 1 + T /3, so it must be the case

that t > T /3.
Consider the set I =

{
t ′ < t | 3r(t ′) > 2r(t)

}
. Since r

is an increasing function, I is an interval; let I = {t0, t0 +
1, . . . , t−1}.Another easy calculation shows that r(1) < 1

3! ,
so t0 ≥ 1.

Since t is by definition the first bad round, every t ′ ∈ I is
good. On the other hand, there is a vertex v that is a witness to
t being bad, i.e., d(v, t − 1)r(t) ≥ 1

2 . Then, for every t
′ ∈ I ,

d(v, t ′) ≥ d(v, t − 1) ≥ 1
2r(t)

>
1

3r(t ′)

Combining the two facts above, we conclude that

Z(v, t ′) = 1 for all t ′ ∈ I . (5)

Let Ev,t be the event that
∏

t ′∈I
Z(v, t ′) = 1. We want to

compute the probability ofEv,t . Recall that I = {t0, . . . t−1}.
Then

P
(
Ev,t

)
= E




t−1∏

t ′=t0

Z(v, t ′)





= E



E




t−1∏

t ′=t0

Z(v, t ′) | M(t − 2)









by the Law of Total Expectation. Since M(t − 2) determines
Z(v, t0), . . . , Z(v, t − 2), the term on the right equals

E








t−2∏

t ′=t0

Z(v, t ′)



 E (Z(v, t − 1) | M(t − 2))





which can be bounded using Lemma 4 so that

P
(
Ev,t

)
≤ E




t−2∏

t ′=t0

Z(v, t ′)




(
1 − r(t − 1)

6e

)

Proceeding inductively, we have

P
(
Ev,t

)
≤

∏

t ′∈I

(
1 − r(t ′)

6e

)
≤ exp

(
−1
6e

∑

t ′∈I
r(t ′)

)

since for all x , 1 − x ≤ e−x .

To get a handle on the expression on the right hand side,
we need a lower bound on the sum of the participation rates.
Let t∗ ∈ R be such that r(t∗) = 2

3r(t). Then t0−1 ≤ t∗ < t0,
and, interpreting a sum as an upper Riemann sum, we have

t∑

t ′=t0

r(t ′) ≥
∫ t

t0−1
r(t ′)dt ′

≥
∫ t

t∗
r(t ′)dt ′

=
∫ t

t∗

1

2+ 3(1 − t ′−1
T )!

dt ′

To evaluate this integral, we change variables, setting y =
1/r(t ′) to get

T
3!

∫ 1/r(t∗)

1/r(t)

1
y
dy = T

3!
log

(
r(t)
r(t∗)

)

= C
3 log n log(3/2)

the last equation following since T = C! log n.
So we’ve shown that

t∑

t ′=t0

r(t ′) ≥ C
3 log n log(3/2)

But t /∈ I , so we need to correct the above:

∑

t ′∈I
r(t ′) =




t∑

t ′=t0

r(t ′)



 − r(t)

≥ C
3
log n log(3/2) − 1

2

≥ C
8
log n

Plugging this back into the probability calculation,

P
(
Ev,t

)
≤ exp

(

− 1
6e

∑

t ′∈I
r(t ′)

)

≤ exp
(

−C log n
48e

)

≤ 1
n4+ε

.

where the last inequality holds for suitably large values of C ,
e.g., when C = 1000.

Taking a union bound over the nT = O(n2 log n) events
Ev,t completes the proof of the lemma. %&

Lemma 3 showed that Algorithm 1 almost surely outputs
a maximal matching. All that remains is to analyze the algo-
rithm’s energy cost.
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Proof of Theorem 1 The upper bound on energy use comes
from a simple analysis of the number of rounds each vertex
participates in. Clearly, the energy use is at most 3 times the
number of rounds the vertex participates in, which is at most
the number of heads that would be flipped in T independent
coin flips, with probabilities of heads r(1), r(2), . . . , r(T ).
Note that

T−1∑

t=1

r(t) ≤
∫ T

1
r(t)dt lower Riemann sum

= T
3!

∫ 1/r(1)

1/r(T )

1
y
dy setting y = 1/r(t)

= C
3 log n log

(
r(T )
r(1)

)
since T = C! log n

= C
3 log n log

(
1+ 3

2!
)

Thus the expected energy use is at most

3
T∑

t=1

r(t) = r(T )+ 3
T−1∑

t=1

r(t)

≤ C log n log
(
1+ 3

2!
)
+ 1

2

= O
(
(log n)(log!)

)

Chernoff’s bound, together with with a union bound over
the n vertices, implies the high-probability upper bound on
expected energy cost. %&

6 Neighbor assignment functions

Motivated by the problem of assigning nodes to backup data
from their neighbors in a sensor network, we introduce the
following definition. As we shall see later, it is extremely
closely connected to the established concept of matching
covering number.

Definition 4 Given graph G = (V , E), a neighbor assign-
ment function (NAF) is a function f : V → V such that
for all v ∈ V , {v, f (v)} ∈ E . Equivalently, we may think
of this as an oriented subgraph of G, in which each ver-
tex has out-degree 1. The load of the assignment is the
maximum in-degree of this digraph. Equivalently, load is
maxv∈V | f −1(v)|. The minimum NAF load of G is the mini-
mum load among all NAFs for G.

Note: In the case when G is bipartite, NAFs are also known
as “semi-matchings.” (See, for example, [10,12].) However,
since we are particularly concerned with the non-bipartite
case, we preferred to introduce a different term.

In the context of backing up data, we think of the assigned
node f (v) as the node who will store a backup copy of v’s

data. Our goal for this section is to find a NAF whose load
is small. In the energy-aware radio network setting, we also
want to ensure that the per-node energy use is small.

Our next result establishes a close connection between the
load of the best NAF for a graph and the minimum number
of matchings needed to cover all of its vertices.

Definition 5 The matching cover number of a graph G,
denoted mc(G), is the minimum integer k such that there
exists a set of k matchings of G, whose union contains every
vertex of G.

Theorem 2 For every graph G, the minimum NAF-load of G
equals the matching cover number of G, unless the NAF-load
of G equals 1. If the NAF-load of G equals 1, the matching
cover number of G can be 1 or 2.

Proof Suppose V = V (G) is covered by the union of match-
ingsM1, . . . ,ML . Then assigning each vertex v to its partner
in the first matching that contains v is anNAFwithmaximum
load at most L . This establishes that the NAF-load is always
at most the matching covering number.

Before we begin the proof for the reverse implication, we
make the following general observation about digraphs with
out-degree 1. By considering the unique walk obtained by
starting at any vertex v, and repeatedly following the edge
{v, f (v)}, we can see that eachweakly connected component
consists of one oriented cycle (of length ≥ 2), together with
one or more “tributary” trees, each rooted at a node of this
cycle, and oriented towards that root. See Fig. 1.

Now, if f has any leaf, that is, a node v whose load is
zero, we can obtain a new NAF by reassigning f (v) to point
back to v. This increases the load at v to 1, decreases the
load by 1 at f ( f (v)), and does not change any other vertex
loads. Repeated application of this rule to all leaves in turn,
eventually leads to a NAF whose components are all either
(a) directed cycles, which do not have any leaves, or (b) stars
with one bi-directed edge. See Fig. 2. In case (b), the com-
ponent consists of one node, r , of in-degree i ≤ L , i nodes,
x1, . . . , xi , each with an edge directed to r , and one edge
from r to x1.

It is easy to see that, for a directed cycle, whose edges are
e1, . . . , e), a single matching consisting of the even edges,

Fig. 1 Sketch of the digraph of a NAF with only one component. Each
component can be seen as a directed cycle, along with zero or more
“tributary trees”
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Fig. 2 Example of the conversion of a given NAF by decreasing the
number of load-zero nodes. The number by each node indicates its load.
Note that, after the conversion, the maximum load did not increase, and
the connected components of theNAF are now all directed cycles and/or
stars with one bi-directed edge (the components of size 2 are both)

e2, e4, . . . , will cover all the vertices if ) is even, and all but
one vertex if ) is odd. Therefore, one matching covers the
component if ) is even, and two if ) is odd.

For the star with bi-directed edge, the maximum load
equals the degree, d, of the center vertex. And a matching
cover consists of the d single edges that make up the star.

In this way, we can build up our matching cover com-
ponent by component, noting that if every component has
a matching cover of size at most k, then so does the entire
graph. Since the only case when our matching cover was
bigger than the maximum load for the component was when
L = 1, the proof is complete. %&

Wang, Song, and Yuan [22] have given an O(n3)-time
centralized algorithm for finding the minimum number of
matchings needed to cover a graph. In light of Theorem 2,
their result implies an O(n3) time algorithm for finding the
minimum-load NAF for any graph.

In the distributed and low-energy setting, it is unlikely
that we can achieve such an ambitious goal. For instance,
a node cannot determine its exact degree without sending
and/or receiving at least that many messages successfully,
which may require linear energy. Instead, we aim for the less
ambitious goal of finding a NAF whose maximum load is
well within our energy budget. Our next result shows that
this is possible, assuming one exists.

First however, we need another definition.

Definition 6 For a graph G, a partial NAF is a function f :
S → V , where S ⊆ V . As before, we define the maximum
load of f as maxv∈V | f −1(v)|. We say the coverage of f is
|S|/|V |.

Algorithm 4 Low-Energy Distributed algorithm to compute
a NAF in a Radio Network.
1: Run our Maximal Matching algorithm on G.
2: For each edge {u, v} in the matching, mark u, v as assigned, and

assign them to each other.
3: for i ← 1 to k do
4: Run the maximal matching algorithm onG, modified so that only

unassigned nodes are allowed to recruit, and only assigned
nodes are allowed to accept.

5: For each edge {u, v} in the matching, mark u, v as assigned, and
(re-)assign them to each other.

6: end for

Our motivation for introducing partial NAF’s stems from
the following possibility. A particular graph G may not have
any NAF’s whose maximum load is less than its maximum
degree, !(G). Despite this, it is possible that, say, 90% of its
vertices would be satisfied by a partial NAFwhosemaximum
load is 1. In this case, we might prefer the partial NAF to the
best complete one, in spite of the unassigned vertices. Our
next result shows that running Algorithm 4 should produce
a result that is, in some sense, competitive with every partial
NAF for G.

Theorem 3 Let ε ≥ 0, and let G be a graph for which there
exists a partial NAF with coverage 1− ε and maximum load
L. Then Algorithm 4, run with parameter k, will, with prob-
ability 1 − O

(
k
n2

)
, output a partial NAF with coverage

(1 − ε)(1 − e−k/(2L+2)) and maximum load at most k. Its
per-vertex expected energy usage is O(k log2 n). In partic-
ular, if k ≥ (2L + 2) log(n), the output NAF will also have
coverage 1 − ε.

Proof Let f be a partial NAF with coverage 1− ε and max-
imum load L . First we convert f into a complete NAF on a
subgraph of G. Let S be the domain of f , and let R be the
range of f . We extend f to the domain S ∪ R by, for every
vertex v ∈ R\S, arbitrarily choosing a vertex w ∈ f −1(v),
and defining f (v) = w. Since a different w is necessarily
chosen for each v ∈ R\S, this increases the load of f by at
most 1.

Now that f is a NAF for the subgraph induced by S ∪ R,
we apply Theorem 2 to deduce the existence of a matching
cover of size L + 1 that includes every vertex of S ∪ R.
This implies that the maximummatching covers at least (1−
ε)n/(L+1) vertices. Hence every maximal matching covers
at least (1 − ε)n/(2L + 2) vertices. So the first call to the
maximal matching algorithmwill assign neighbors to at least
this many vertices.

In subsequent rounds, the modification to the maximal
matching algorithm has the effect of making it run on the
bipartite graph where the bipartition is into the assigned and
unassigned vertices. By the pigeonhole principle, at least one
matching,M , from the L+1 in thematching covermust cover
at least a 1/(L+1) fraction of the unassignedvertices in S∪R.
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Since the first matching was maximal, no edges in G have
both endpoints unassigned; therefore,M is amatchingwithin
the bipartite graph being fed into our maximal matchings
algorithm. Therefore, the maximal matching that is found
must cover at least a 1/2(L + 1) fraction of the unassigned
vertices. It follows that after k iterations, at most

(
1 − 1

2L + 2

)k

(1 − ε)n ≤ e−k/(2L+2)(1 − ε)n

nodes from S ∪ R will remain unassigned.
Since each run of the maximal matching algorithm suc-

ceeds with probability 1 − O(1/n2), a union bound over
the k outer loop iterations establishes the high-probability
bound. %&

We point out that, at the end of each loop iteration of
Algorithm 4, any assigned vertices that were not matched
with an unassigned node in that iteration must have no unas-
signed neighbors, and can therefore go to sleep for the rest of
the algorithm. If desired, Algorithm 4 can even be run with
parameter k set to∞, since the algorithm will now terminate
once a NAF is found.
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