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Abstract
Wepresent almost linear time approximation schemes for several generalizedmatching
problems on nonbipartite graphs. Our results include Oε(mα(m, n))-time algorithms
for (1− ε)-maximum weight f -matching and (1+ ε)-approximate minimum weight
f -edge cover. As a byproduct, we also obtain direct algorithms for the exact cardinality
versions of these problems running in O(mα(m, n)

√
f (V )) time, where f (V ) is the

sum of degree constraint on the entire vertex set. The technical contributions of this
work include an efficient method for maintaining relaxed complementary slackness
in generalized matching problems and approximation-preserving reductions between
the f -matching and f -edge cover problems.

Keywords Matching · f-Factors · Edge covers

1 Introduction

Many combinatorial optimization problems are known to be reducible to computing
optimal matchings in non-bipartite graphs [6,7]. These problems include computing
b-matchings, f -factors, f -edge covers, T -joins, undirected shortest paths (with no
negative cycles), and bidirected flows; see [8,12,19,23]. These problems have been
investigated heavily since Tutte’s work in the 1950s [22,25]. However, the exist-
ing reductions to graph matching are often inadequate: they blow up the size of the
input [19], use auxiliary space [10], or piggyback on specificmatching algorithms [10]
like the Micali-Vazirani algorithm [20,26,27]. Moreover, some existing reductions
destroy the dual structure of optimal solutions and are therefore not approximation
preserving.
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In this paper we design algorithms for computing f -matchings and f -edge covers
(both defined below) in a direct fashion, or through efficient, approximation-preserving
reductions. Because our algorithms are based on the LP formulations of these prob-
lems (in contrast to approaches using shortest augmenting walks [10,20,26,27]), they
easily adapt toweighted and approximate variants of the problems. Let us define these
problems formally. Let G = (V , E) be a graph that possibly contains parallel edges
and self loops. For any subset F of edges, we use degF (v) to indicate the degree of
vertex v in the subgraph induced by F . Notice that each self-loop on v that is in F con-
tributes 2 to this degree. We use n to denote the number of vertices andm to denote the
number of edges, counting multiplicities. We define f -matching and f -edge covers
as follows.

f -matching An f -matching is a subset F ⊆ E such that degF (v) ≤ f (v). F is
perfect if the degree constraints hold with equality. In this case it is also
called an f -factor.

f -edge cover An f -edge cover is a subset F ⊆ E such that degF (v) ≥ f (v). It is
perfect if all degree constraints hold with equality.

The maximum weight f -matching problem asks, given a graph G = (V , E) and a
weight function w on E , for an f -matching F that maximizes

∑
e∈F w(e). Similarly,

theminimumweight f -edge cover problem and theminimumweight f -factor problem
ask for an f -edge cover and an f -factor that minimize their respective weight.

For these three problems, we can assume, without loss of generality, that all the
weights are nonnegative, but for different reasons. For maximum weight f -matching,
it is safe to ignore any negative weight edges as discarding negative weight edges from
F can only improve the solution. For minimum weight f -edge cover, any optimum
solution must include the set of all negative weight edges. Hence we can include them
into the solution and update the degree constraint accordingly. For minimum weight
f -factor, since all f -factors are of the same size, we can translate all the weights by
−mine∈E w(e) without changing the optimal solution so that the resulting graph has
only nonnegative weights.

Classic Reductions
The classical reduction from f -matching to standard graph matching uses the b-
matching problemas a stepping stone.Ab-matching is a function x : E → Z≥0 (where
x(e) indicates how many copies of e are in the matching) such that

∑
e∈δ(v) x(e) ≤

b(v), i.e., the number of matched edges incident to v, counting multiplicity, is at most
b(v). The maximum weight f -matching problem on G = (V , E, w) can be reduced
to b-matching by subdividing each edge e = (u, v) ∈ E into a path (u, ue, ve, v).
Here ue, ve are new vertices. We set the weight of the new edges to be w(u, ue) =
w(ve, v) = w(u, v) + W and w(ue, ve) = 2W , where W is the maximum weight in
the original graph. The capacity function b is given by b(ue) = b(ve) = 1 for the new
vertices and b(u) = f (u) for the original vertices.

To see this reduction correctly reduces the maximum weight f -matching problem
to the maximum weight b-matching problem, we first notice that if the original graph
has an f -matching M of weight W ∗, then the new graph must contain a b-matching
of weight at least 2W ∗ + 2Wm, wherem is the number of edges in the original graph:
for every unmatched edge (u, v), we take the edge (ue, ve) into the b-matching and
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leave the two edges (u, ue) and (v, ve) unmatched. Otherwise we take only the edges
(u, ue) and (v, ve). For the other direction, we notice that ifM is a maximumweight b-
matching in the new graph, for each subdivision of original edge (u, v), we can assume
without loss of generality that M ′ must either take only the middle edge (ue, ve), or
the two side edges (u, ue) and (v, ve): By the degree constraints on ue and ve, taking
the middle edge will prevent the b-matching from taking any of the side edges, and
vice versa. Moreover, we cannot take only one of the side edges since in that case
we can swap it for the middle edge without decreasing the total weight. Therefore, a
b-matching of weight 2W ∗ + 2mW must also correspond to an f -matching of weight
W ∗ of the original graph.

This reduction blows up the number of vertices to O(m) and is not approxima-
tion preserving. The b-matching problem is easily reduced to standard matching by
replicating each vertex u b(u) times, and replacing each edge (u, v) with a bipartite
b(u)×b(v) clique on its endpoints’ replicas. This step of the reduction is approximation
preserving, but blows up the number of vertices and edges. Both reductions together
reduce f -matching to a graph matching problem on O(m) vertices and O( fmaxm)

edges. Gabow [10] gave a method for solving f -matching in O(m
√

f (V )) time using
black-box calls to single iterations of the Micali-Vazirani [20,26,27] algorithm.

Observe that f -matching and f -edge cover are complementary problems: ifC is an
fC -edge cover, the complementary edge set F = E\C is necessarily an fF -matching,
where fF (v) = deg(v) − fC (v). Complementarity implies that any polynomial-time
algorithm for one problem solves the other in polynomial time, but it says nothing
about the precise complexity of solving them exactly or approximately. Indeed, this
phenomenon is very well known in the realm of NP-complete problems. For example,
Maximum Independent Set andMinimumVertex Cover are complementary problems,
but have completely different approximation profiles: Minimum Vertex Cover has
a well-known polynomial time 2-approximation algorithm, while it is NP-hard to
approximate Maximum Independent Set within n1−ε for any ε > 0 [16,28]. Gabow’s
O(m

√
fF (V )) cardinality fF -matching algorithm [10] implies that fC -edge cover

is computed in O(m
√
2m − fC (V )) = O(m3/2) time, and says nothing about the

approximability of fC -edge cover. As far as we are aware, the fastest approximation
algorithms for fC -edge cover (see [17]) treat it as a general weighted Set Cover
problem on 2-element sets. Chvátal’s analysis [2] shows the greedy algorithm is an
H(2)-approximation, where H(2) = 3/2 is the 2nd harmonic number.

Our interest in the approximate f -edge cover problem is inspired by a new applica-
tion to anonymizing data in environments where users have different privacy demands;
see [1,17,18]. Here the data records correspond to edges and the privacy demand of
v is measured by f (v); the goal is to anonymize as few records to satisfy everyone’s
privacy demands.

New Results
Wegive new algorithms for computing f -matchings and f -edge covers approximately
and exactly.

• We give an Oε(mα(m, n)-time (1 − ε)-approximation algorithm for maximum
weight f -matching problem. The algorithm generalizes the (1 − ε)-approximate
maximum weight matching algorithm by Duan and Pettie [4] and improves on the
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O( f (V )(m + n log n)) running time of Gabow [11], which computes an exactly
optimum solution. The main technical contribution is the application of relaxed
complementary slackness [4,14,15] on f -matchings, and a new version of DFS-
based search procedure algorithm for looking for a maximal set of edge-disjoint
augmenting paths in O(mα(m, n)) time.

• We show that a folklore reduction from minimum weight 1-edge cover to max-
imum weight 1-matching (matching) is approximation-preserving, in the sense
that any (1 − ε)-approximation for matching gives a (1 + ε)-approximation
for edge cover. This implies that 1-edge cover can be (1 + ε)-approximated in
Oε(m) time [4], and that one can apply any number of simple and practical algo-
rithms [3,4,21] to approximate 1-edge cover. This simple reduction does not extend
to f -matchings/ f -edge covers when f is arbitrary.

• We give an Oε(mα(m, n))-time (1 + ε)-approximation algorithm for weighted
fC -edge cover, for any fC . Our algorithm follows from two results, both of which
are somewhat surprising. First, any approximate weighted fF -matching algorithm
that reports a (1± ε)-optimal dual solution can be transformed into a (1+O(ε))-
approximate weighted fC -edge cover algorithm. Second, such an fF -matching
algorithm exists, and its running time is Oε(mα(m, n)). The first claim is clearly
false ifwe drop the approximate dual solution requirement (for the same reason that
an O(1)-approximate vertex cover does not translate into an O(1)-approximate
maximum independent set), and the second is surprising because the running time
is independent of the demand function fF and the magnitude of the edge weights.

• As corollaries of these reductions, we obtain a new exact algorithm for mini-
mum cardinality fC -edge cover running in O(mα(m, n)

√
fC (V )) time, rather

than O(m3/2) time ([10]), and a direct algorithm for cardinality fF -matching that
runs in O(mα(m, n)

√
fF (V )) time, without reduction [10] to the Micali-Vazirani

algorithm [20,26,27].

The blossom structure and LP characterization of b-matching is considerably sim-
pler than the corresponding blossoms/LPs for f -matching and f -edge cover. In the
interest of simplicity, one might want efficient code that solves (approximate) b-
matching directly, without viewing it as a special case of the f -matching problem.1

We do not know of such a direct algorithm. Indeed, the structure of b-matching blos-
soms seems to rely on strict complementary slackness, and is incompatible with our
main technical tool, relaxed complementary slackness.2 Thus, for somewhat technical
reasons, we are forced to solve approximation b-matching using more sophisticated
f -matching tools.

Comparison to Previous Results
Our almost linear time (1 − ε)-approximation algorithm for maximum weight f -
matching can be seen as a direct generalization of the Duan-Pettie algorithm for

1 The b-matching problem can be regarded as an f -matching problem on a multigraph in which there is
implicitly an infinite supply of each edge.
2 Using relaxed complementary slackness, matched and unmatched edges have different eligibility criteria
(to be included in augmenting paths and blossoms) whereas b-matching blossoms require that all copies of
an edge—matched and unmatched alike—are all eligible or all ineligible.
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approximate maximum weight matching (1-matching) [4]. The key technical ingre-
dient is the generalization of relaxed complementary slackness, see [4,14,15], to
f -matching, and a corresponding implementation of Edmonds’ Search with relaxed
complementary slackness. The former relies heavily on the ideas (blossoms, augment-
ing walks) defined in [11]. Our implementation of Edmonds’ search involves finding
augmenting walks in batches. The procedure of [15, Sect. 8] for matching finds a
maximal set of vertex-disjoint augmenting paths. We develop a corresponding proce-
dure that finds a maximal set of edge-disjoint augmenting walks and cycles. Including
alternating cycles in the output allows us to conduct the search in almost linear time,
and keep the search more organized and tree-structured.3

Structure of the Paper
In Sect. 2 we give an introduction to the LP-formulation of generalized matching
problems and Gabow’s formulation [11] for their blossoms and augmenting walks.
In Sect. 3.1 we show that a folklore reduction from 1-edge cover to 1-matching is
approximation-preserving and in Sect. 3.2 we reduce approximate f -edge cover to
approximate f -matching. In Sect. 4 we give an O(Wmα(m, n)ε−1)-time algorithm
for (1− ε)-approximate f -matching in graphs with weights in [0,W ] and then speed
it up to O(mα(m, n)ε−1 log ε−1), independent of the weight function. Sect. 5 gives
O(mα(m, n)) algorithm to compute a maximal set of augmenting walks and alternat-
ing cycles; cf. [15, Sect. 8].

2 Basis of f -Matching and f -Edge Cover

This section reviews basic algorithmic concepts from matching theory and their gen-
eralizations to the f -matching and f -edge cover problems, e.g., LPs, blossoms, and
augmenting walks. These ideas lay the foundation for generalizing the Duan-Pettie
algorithm [4] for Approximate Maximum Weight Matching to Approximate Maxi-
mum Weight f -Matching and Approximate Minimum Weight f -Edge Cover.

Notation
The input is a multigraph G = (V , E) with a nonnegative weight function w : E +→
R≥0. For any vertex v, define δ(v) and δ0(v) be the set of non-loop edges and self-
loops, respectively, incident on v. For S ⊆ V , let δ(S) and γ (S) be the sets of edges
with exactly one endpoint and both endpoints in S, respectively, so δ0(v) ⊆ γ (S)
if v ∈ S. For T ⊆ E , δT (S) denotes the intersection of δ(S) and T . By definition,
degT (S) = |δT (S)|.

2.1 LP formulation

The maximum weight f -matching problem can be expressed as maximizing∑
e∈E w(e)x(e), subject to the following constraints:

3 These issues only arise when finding augmenting paths in batches, not one-at-a-time [11], and when the
problem is f -matching, not matching.
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∑

e∈δ(v)

x(e)+
∑

e∈δ0(v)

2x(e) ≤ f (v), for all v ∈ V ,

∑

e∈γ (B)∪I

x(e) ≤
⌊
f (B)+ |I |

2

⌋
, for all B ⊆ V , I ⊆ δ(B),

0 ≤ x(e) ≤ 1, for all e ∈ E . (1)

Here, the blossom constraint
∑

e∈γ (B)∪I x(e) ≤
⌊

f (B)+|I |
2

⌋
is a generalization of

blossom constraint
∑

e∈γ (B) x(e) ≤
⌊
|B|
2

⌋
in ordinary matching. The reason that we

have a subset I of incident edges in the sum is that the subset allows us to distinguish
between matched edges that have both endpoints inside B with those with exactly one
endpoint. Any basic feasible solution x of this LP is integral [23, Chapter 33], and
can therefore be interpreted as a membership vector of an f -matching F . To certify
(approximate) optimality of a solution, the algorithm works with the dual LP, which
is:

minimize
∑

v∈V f (v)y(v)+ ∑
B⊆V ,I⊆δ(B)

⌊
f (B)+|I |

2

⌋
z(B, I )+ ∑

e u(e),

subject to yzF (e)+ u(e) ≥ w(e), for all e ∈ E,
y(v) ≥ 0, z(B, I ) ≥ 0, u(e) ≥ 0.

(2)

Here the aggregated dual yzF : E +→ R≥0 is defined as:

yzF (u, v) = y(u)+ y(v)+
∑

B,I :(u,v)∈γ (B)∪I ,
I⊆δ(B))

z(B, I ).

Notice that u can be equal to v when the edge is a self-loop. Unlike matching, each
z-value here is associated with the combination of a vertex set B and a subset I of its
incident edges.

The minimum weight f -edge cover problem can be expressed as minimizing∑
e∈E w(e)x(e), subject to:

∑

e∈δ(v)

x(e)+
∑

e∈δ0(v)

2x(e) ≥ f (v), for all v ∈ V ,

∑

e∈γ (B)∪(δ(B)\I )
x(e) ≥

⌈
f (B) − |I |

2

⌉
, for all B ⊆ V and I ⊆ δ(B),

0 ≤ x(e) ≤ 1, for all e ∈ E . (3)
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With the dual program being:

maximize
∑

v∈V f (v)y(v)+ ∑
B⊆V ,I⊆δ(B)

⌈
f (B)−|I |

2

⌉
z(B, I ) − ∑

e∈E u(e),

subject to yzC (e) − u(e) ≤ w(e), for all e ∈ E,
y(v) ≥ 0, z(B, I ) ≥ 0, u(e) ≥ 0,

(4)

where
yzC (u, v) = y(u)+ y(v)+

∑

B,I :(u,v)∈γ (B)∪(δ(B)\I )
I⊆δ(B)

z(B, I ).

Both of our f -matching and f -edge cover algorithms maintain a dynamic feasible
solution F ⊆ E that satisfies the primal constraints4 following Gabow [11]. We call
edges in F matched and all other edges unmatched, which is referred to as the type of
an edge. A vertex v is saturated if degF (v) = f (v). It is unsaturated/oversaturated if
degF (v) is smaller/greater than f (v). Given an f -matching F , the deficiency def(v)
of a vertex v is defined as def(v) = f (v) − degF (v). Similarly, for an f -edge cover
C , the surplus of a vertex is defined as surp(v) = degC (v) − f (v).

2.2 Blossoms

We follow Gabow’s [11] definitions and terminology for f -matching blossoms, aug-
menting walks, etc. A blossom is a tuple (B, EB,β(B), η(B)) where B is the vertex
set, EB is the edge set, β(B) ∈ B is the base vertex, and η(B) ⊂ δ(β(B)) ∩ δ(B),
|η(B)| ≤ 1, is the base edge set, which may be empty. We often refer to the blossom
by referring to its vertex set B. Blossoms can be defined inductively as follows.

Definition 1 (See [11, Definition 4.2]) A single vertex v forms a trivial blossom, or a
singleton. Here B = {v}, EB = ∅, β(B) = v, and η(B) = ∅.

Inductively, let B0, B1, . . . , Bl−1 be a sequence of disjoint singletons or nontrivial
blossoms. Suppose there exists a closed walk CB = {e0, e1, . . . , el−1} ⊆ E starting
and ending with B0 such that ei ∈ Bi × Bi+1 (mod l). The vertex set B = ⋃l−1

i=0 Bi is
identified with a blossom if the following are satisfied:

1. Base Requirement: If B0 is a singleton, the two edges incident to B0 on CB , i.e.,
e0 and el−1, must both be matched or both be unmatched.

2. Alternation Requirement: Fix a Bi , i 0= 0. If Bi is a singleton, exactly one of ei−1
and ei is matched. If Bi is a nontrivial blossom, then η(Bi ) 0= ∅ and must be either
{ei−1} or {ei }.
The edge set of the blossom B is EB = CB ∪ (

⋃l−1
i=0 EBi ) and its base is β(B) =

β(B0). If B0 is not a singleton, η(B) = η(B0). If B0 is a singleton, η(B) may either
be empty or contain one edge, which is in δ(B)∩ δ(B0) that is the opposite type of e0
and el−1.

4 We use yzF and yzC to denote the aggregated dual yz for f -matching and f -edge cover respectively.
We will omit the subscript if it is clear from the context.
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Blossoms are classified as light/heavy [11, p. 32]. If B0 is a singleton, B is
light/heavy if e0 and el−1 are both unmatched/matched. Otherwise, B is light/heavy if
B0 is light/heavy. Note that blossoms in the ordinary matching problem (1-matching)
are always light, since no vertex is adjacent to 2 matched edges.

One purpose of blossoms is to identify parts of graph that can be contracted and
treated similar to individual vertices when searching for augmenting walks. This is
formalized by Lemma 1, which can be seen as a restatement of Lemma 4.4 from [11]
for f -matchings.

Lemma 1 Let v be an arbitrary vertex in B. There exists an even length alternating
walk P0(v) (whose length could be 0) and an odd length alternating walk P1(v) from
β(B) to v using edges in EB. Moreover, the terminal edge incident to β(B), if it exists,
must have a different type than the edge in η(B), if any. In other words, this edge must
be matched if B is heavy and unmatched if B is light.

Proof Weprove this by induction. Thebase case is a blossom B consisting of singletons
〈v0, v1, . . . , vl−1〉, where v = vi for some 0 ≤ i < l. Then one of the two walks
〈v0, v1, . . . , vi 〉 and 〈v0, vl−1, vl−2 . . . , vi 〉 must be odd and the other must be even.

Now for the inductive step: Consider the cycle CB = 〈B0, e0, B1, . . . , el−2, Bl−1
el−1, B0〉 where Bi ’s are singletons or contracted blossoms. Suppose the claim holds
inductively for all nontrivial blossoms in B0, B1, . . . , Bl−1. Let v be an arbitrary vertex
in B. We use PBi , j (u) (0 ≤ i < l, j ∈ {0, 1}, u ∈ Bi ) to denote the walk P0(u) and
P1(u) guaranteed in blossom Bi . There are two cases:

Case 1: When v is contained in a singleton Bk . We examine the two walks
P̂ = 〈B0, e0, B1, e1, . . . , ek−1, Bk〉 and P̂ ′ = 〈B0, el−1, Bl−1, el−2, . . . , ek, Bk〉.
Notice that P̂ and P̂ ′ are walks in the graph obtained by contracting all subblos-
soms B0, B1, . . . , Bl−1 of B. By the inductive hypothesis, we can extend P̂ and P̂ ′ to
P and P ′ in the original graph G by replacing each Bi with the walk in the original
graph connecting the endpoints of ei−1 and ei of the appropriate parity. In particular, if
ei−1 and ei are of different types, we replace Bi with the even length walk guaranteed
by the induction hypothesis. Otherwise, we replace it with the odd length walk. Notice
that by the alternation requirement, one of P and P ′ must be odd and the other must
be even.

Case 2:When v is contained in a non-trivial blossom Bk , 0 ≤ k < l.Without loss of
generality, {ek−1} = η(Bk). Consider the contracted walk P̂ = 〈e0, e1, . . . , ek−1〉. We
extend P̂ to an alternating walk P in EB terminating at ek−1 similar to Case 1. Then
P0(v) and P1(v) are obtained by concatenating P with the alternating walk PBk ,0(v)

or PBk ,1(v), whichever has the right parity.
Notice that in both cases, thebase requirement inDefinition 1guarantees the starting

edge of both alternating walks P1(v) and P0(v) alternates with the base edge η(B). 34

Themain difference between blossoms in generalizedmatching problems and blos-
soms in ordinary matching is that P0(v) and P1(v) are both meaningful for finding
augmenting walks or blossoms. In ordinary matching, since each vertex has at most 1
matched edge incident to it, an alternating walk enters the blossom at the base vertex
via a matched edge and must leave with an unmatched edge. As a result the subwalk
inside the blossom is always even. In generalized matching problems, this subwalk
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can be either even or odd, and may contain a cycle. In general, an alternating walk
enters the blossom at the base edge and can leave the blossom at any nonbase edge.

Similar to ordinary matching algorithms, we contract blossoms in order to find
augmenting structures to improve our f -matching. Contracting a blossom B means
replacing Bwith a single vertexvwith an f -value f (v) = ∑

v′∈B f (v′)−2|M∩E[B]|.
Here E[B] is the set of edges induced by the vertex set B.

Next we extend to notion of maturity from [11, p. 43] to f -matching and f -edge
cover. Let us focus on f -matching first. Due to complementary slackness, we can only
assign a positive z-value for the pair (B, I ) if it satisfies the constraint |F ∩ (γ (B) ∪
I )| ≤ 5( f (B)+ |I |)/26 with equality. For ordinary matching, this requirement is
implied by the combinatorial definition of blossoms. However, this is not the case for
generalized matching, so we need a blossom to bemature to fulfill the complementary
slackness property.

Definition 2 (Mature Blossom) A blossom is mature w.r.t an f -matching F if it sat-
isfies the following:

1. Every vertex v ∈ B \ {β(B)} is saturated.
2. def(β(B)) = 0 or 1. If def(β(B)) = 1, B must be a light blossom and η(B) = ∅;

If def(β(B)) = 0, η(B) 0= ∅.
The algorithm only contracts and manipulates mature blossoms. The definition for

maturity is motivated by the requirement that a blossom processed by the algorithm
must satisfy the following two properties:

• Complementary slackness: A dual variable can be positive only if its primal con-
straint is satisfied with equality. In our algorithm, a blossom can have a positive
z-value only if |F∩(γ (B)∪ I (B))| =

⌊
f (B)+|I (B)|

2

⌋
, for a particular I (B) ⊆ δ(B)

that we are going to define momentarily.
• Topology of augmenting walks: An augmenting walk in G can only start with an
unmatched edge. As a result, an augmenting walk in the contracted graph must
start with a singleton or an unsaturated light blossom. If a blossom is unsaturated,
it must be eligible to start an augmenting walk, and thus must be light.

According to Definition 2, a mature blossom cannot be both heavy and unsaturated.
Now we show that a mature blossom satisfies its corresponding primal constraint with
equality. To show this fact, we first define the I -set of a blossom B [11, p. 44], which
is the set I (B) associated with blossom B for which we will assign a positive z-value,
given by:

I (B) = δF (B) ⊕ η(B),

where ⊕ is the symmetric difference operator (XOR). All other subsets I of δ(B)will
have z(B, I ) = 0. If B is a mature blossom, then we have |F ∩ (γ (B) ∪ I (B))| =⌊

f (B)+|I (B)|
2

⌋

Lemma 2 If an f -matching blossom B is mature, we have |F ∩ (γ (B) ∪ I (B))| =⌊
f (B)+|I (B)|

2

⌋
.
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Proof Wefirst sketch the idea of the proof. Assume for simplicity that the deficiency is
0 for every vertex v ∈ B, i.e., there are exactly f (v)matched edges incident to v, and
every edge in I (B) is matched. Then every matched edge e ∈ F ∩ γ (B) contributes 2
to f (B), one for each endpoint, and every edge e ∈ I (B) ∩ F contributes 1 to f (B)
and 1 to |I (B)|. Thus we have:

2|F ∩ (γ (B) ∪ I (B))| = f (B)+ |I (B)|.

Now we eliminate the assumption by a case analysis for the deficiency of β(B).
If def(β(B)) = 0, the assumption on deficiency holds, while all but possibly 1 edge
in I (B), namely the base edge, are matched. This makes f (B) + |I (B)| at least
2|F ∩ (γ (B) ∪ I (B))| and at most 2|F ∩ (γ (B) ∪ I (B))| + 1, and the equality
|F ∩ (γ (B) ∪ I (B))| =

⌊
f (B)+|I (B)|

2

⌋
follows.

When def(β(B)) = 1, since η(B) = ∅, the assumption that I (B) only contains
matched edges holds. Since exactly 1 of B’s vertices has deficiency 1, we have:

2|F ∩ (γ (B) ∪ I (B))| + 1 = f (B)+ |I (B)|

And the equality |F ∩ (γ (B) ∪ I (B))| =
⌊

f (B)+|I (B)|
2

⌋
follows. 34

We complete the discussion by giving the definition for maturity and the corre-
sponding properties for mature blossoms in f -edge cover. The details are similar to
f -matching.

Definition 3 (Mature Blossom for f -edge cover) A blossom ismaturew.r.t an f -edge
cover F if it satisfies the following:

1. Every vertex v ∈ B \ {β(B)} is saturated: degF (v) = f (v).
2. surp(β(B)) = 0 or 1. If surp(β(B)) = 1, B must be a heavy blossom and

η(B) = ∅; If surp(β(B)) = 0, η(B) 0= ∅.
Lemma 3 If an f -edge-cover blosom B is mature, we have |F ∩ (γ (B) ∪ (δ(B) \
I (B)))| =

⌈
f (B)−|I (B)|

2

⌉
.

2.3 Augmenting/reducing walks

Augmentingwalks are analagous to augmenting paths fromordinarymatching (Fig. 1).
Complications arise from the fact that an f -matching blossom cannot be treated iden-
tically to a single vertex after it is contracted. For example, in Fig. 2, the two edges
(v0, v1) and (v4, v6) incident to blossom {v1, v2, v4, v5, v3} are of the same type, both
before and after augmenting along the walk 〈v0, v1, v3, v5, v4, v6〉. This can never
happen in ordinary matching! Moreover, augmenting walks can begin and end at the
same vertex and can visit the same vertex multiple times. Hence a naive contraction
of a blossom into a single vertex loses key information about the internal structure
of blossoms. Definition 4, taken from Gabow [11, p. 28, p. 44] characterizes when a
walk in the contracted graph can be extended to an augmenting walk.
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Fig. 1 Two examples of
contractible blossoms: Bold
edges are matched and thin ones
are unmatched. Blossoms are
circled with a border. Base edges
are represented with arrow
pointing away from the blossom
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Definition 4 Let Ĝ be the graph obtained from G by contracting a laminar set ' of
blossoms. Let P̂ = 〈B0, e0, B1, e1, . . . , Bl−1, el−1, Bl〉 be a walk in Ĝ. Here {ei } are
edges and {Bi } are nontrivial blossoms or singletons, with ei ∈ Bi × Bi+1 for all
0 ≤ i < l. We say P̂ is an augmenting walk with respect to the f -matching F if the
following requirements are satisfied:
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Fig. 2 An example for how a
blossom changes with an
augmentation: here the
augmenting walk is
〈v0, v1, v3, v5, v4, v6〉. Notice
that after rematching, the base
edge of the blossom changes
from (v0, v1) to (v4, u6), and
the blossom turns from a heavy
blossom to a light one
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v4 v5
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v4 v5
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1. Terminal Vertices Requirement The terminals B0 and Bl must be unsaturated sin-
gletons or unsaturated light nontrivial blossoms. If P is a closed walk (B0 = Bl ),
B0 must be a singleton and def(β(B0)) ≥ 2.

2. Terminal Edges Requirement If the terminal vertex B0 (Bl ) is a singleton, the
incident terminal edge e0 (el−1) must be unmatched. Otherwise it can be either
matched or unmatched.

3. Alternation Requirement Let Bi , 0 < i < l, be an internal blossom. If Bi is a
singleton, exactly one of ei−1 and ei is matched. If Bi is a nontrivial blossom,
η(Bi ) 0= ∅ and must be one of {ei−1} or {ei }.

A natural consequence of the above definition is that an augmenting walk P̂ in Ĝ
can be extended to an augmenting walk P in G. This is proved exactly as in Lemma 1.
We call P the preimage of P̂ in G and P̂ the image of P in Ĝ.

Definition 5 Let P̂ be an augmenting walk in Ĝ. An augmentation along P̂ makes the
following changes to F and '.

1. Let P be the preimage of P̂ in G. Update F to F ⊕ P .
2. If B ∈ ' is a blossom intersecting P , we set η(B) ← (P ∩ δ(B)) \ η(B) and set

β(B) to the vertex in B that is incident to the edge in η(B). Notice that |P∩δ(B)| =
1 or 2, and in the case when |P ∩ δ(B)| = 1, we must have η(B) = ∅.

Some remarks can be made here regarding connection to augmenting walks and
mature blossoms.

• A blossom that is not mature may contain an augmenting walk. Specifically, sup-
pose B is light and unsaturated. If any nonbase vertex v 0= β(B) in B is also
unsaturated, the odd length alternating walk from β(B) to v satisfies the definition
of an augmenting walk. Alternatively, if β(B) has deficiency of 2 or more, the odd
length alternating walk from β(B) to β(B) is also augmenting. For these reasons,
the algorithm is designed such that immature blossoms are never contracted.

• Augmentation never destroysmaturity. In particular, it never creates an unsaturated
heavy blossom. As a result, all blossoms we maintain stay mature throughout the
entirety of the algorithm.
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In f -edge cover, the corresponding notion is called reducing walk. The definition
of reducing walk can be naturally obtained from Definition 4 while replacing “unsat-
urated”, “deficiency”, and “light” with “oversaturated”, “surplus”, and “heavy”, and
exchanging “matched” and “unmatched”. It is also worth pointing out that if an f -
matching F and an f ′-edge cover F ′ are complement to each other, i.e., F ′ = E\F and
f (v)+ f ′(v) = deg(v), and they have the same blossom set ', then an augmenting
walk P̂ for F is also a reducing walk for F ′.

2.4 Complementary slackness

To characterize an (approximately) optimal solution, we maintain dual functions:
y : V +→ R≥0 and z : 2V +→ R≥0. Here z(B) is short for z(B, I (B)). We do
not explicitly maintain the edge dual u : E +→ R≥0 since its minimizing value can be
explicitly given by u(e) = max{w(e) − yz(e), 0}. For f -matching F , the following
property characterizes an approximate maximum weight f -matching:

Property 1 (Approximate Complementary Slackness for f -matching) Let δ1, δ2 ≥
0 be nonnegative parameters. We say an f -matching F , duals y, z, and the set of
blossoms ' satisfies (δ1, δ2)-approximate complementary slackness if the following
hold:

1. Approximate Domination For each unmatched edge e ∈ E \F , yz(e) ≥ w(e)−δ1.
2. Approximate Tightness For each matched edge e ∈ F , yz(e) ≤ w(e)+ δ2.
3. BlossomMaturityFor each blossom B ∈ ', |F∩(γ (B)∪ I (B))| =

⌊
f (B)+|I (B)|

2

⌋
.

4. Unsaturated Vertices’ Duals For each unsaturated vertex v, y(v) = 0.

Lemma 4 Let F be an f -matching in G along with duals y, z and let F∗ be the
maximum weight f -matching. If F,', y, z satisfy Property 1 with parameters δ1 and
δ2, we have

w(F) ≥ w(F∗) − δ1|F∗| − δ2|F |.

Proof We first define u : E +→ R as

u(e) =
{
w(e) − yz(e)+ δ2, if e ∈ F .
0, otherwise.

Fromapproximate tightness,wehaveu(e) ≥ 0 for all e ∈ E . Therefore, yz(e)+u(e) ≥
w(e) − δ1 for all e ∈ E and yz(e) + u(e) = w(e) + δ2 for all e ∈ F . This gives the
following:

w(F) =
∑

e∈F
w(e) =

∑

e∈F
(yz(e)+ u(e) − δ2)

=
∑

v∈V
degF (v)y(v)+

∑

B∈'

|F ∩ (γ (B) ∪ I (B))|z(B)+
∑

e∈F
u(e) − |F |δ2
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By Property 1 (Unsaturated Vertices’ Duals, Blossom Maturity, and the definition of
u), this is equal to

=
∑

v∈V
f (v)y(v)+

∑

B∈'

⌊
f (B)+ |I (B)|

2

⌋
z(B)+

∑

e∈E
u(e) − |F |δ2

≥
∑

v∈V
degF∗(v)y(v)+

∑

B∈'

|F∗ ∩ (γ (B) ∪ I (B))|z(B)+
∑

e∈F∗
u(e) − |F |δ2

=
∑

e∈F∗
(yz(e)+ u(e)) − |F |δ2

≥
∑

e∈F∗
(w(e) − δ1) − |F |δ2 = w(F∗) − |F∗|δ1 − |F |δ2.

34
We can easily extend the proof of Lemma 4 to show that if we have multiplicative

errors for approximate domination/tightness, F is an approximately optimal solution.
Formally, if we have the following multiplicative version of Property 1:

Property 2 (Approximate Complementary Slackness for f -matching with Multiplica-
tive Error) Let 0 ≤ ε1, ε2 < 1 be nonnegative parameters. We say an f -matching
F , duals y, z, and the set of blossoms ' satisfies (ε1, ε2)-multiplicative approximate
complementary slackness if it satisfies Property 1(3,4), with Property 1(1,2) being
replaced with:

1. Approximate Domination For each unmatched edge e ∈ E \ F , yz(e) ≥ (1 −
ε1)w(e).

2. Approximate Tightness For each matched edge e ∈ F , yz(e) ≤ (1+ ε2)w(e).

We can show the following:

Lemma 5 Let F be an f -matching in G along with duals y, z and let F∗ be the
maximum weight f -matching. If F,', y, z satisfy Property 2 with parameters ε1 and
ε2, we have

w(F) ≥ (1 − ε1)(1+ ε2)
−1w(F∗)

We also give the corresponding theorems for f -edge covers:

Property 3 (Approximate Complementary Slackness for f -edge cover) Let δ1, δ2 ≥ 0
be positive parameters. We say an f -edge cover C , with duals y, z and blossom
family ' satisfies the (δ1, δ2)-approximate complementary slackness if the following
requirements holds:

1. Approximate Domination. For each unmatched edge e ∈ E \C , yzC (e) ≤ w(e)+
δ1.

2. Approximate Tightness. For each matched edge e ∈ C , yzC (e) ≥ w(e) − δ2.
3. Blossom Maturity. For each blossom B ∈ ', |C ∩ (γ (B) ∪ (δ(B) \ IC (B)))| =⌈

f (B)−|IC (B)|
2

⌉
.
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4. Oversaturated Vertices’ Duals. For each oversaturated vertex v, y(v) = 0.

Property 4 (Approximate Complementary Slackness for f -edge cover with Multi-
plicative Error) Let 0 ≤ ε1, ε2 < 1 be positive parameters. We say an f -edge cover
C , with duals y, z and blossom family ' satisfies the (ε1, ε2)-approximate comple-
mentary slackness if it satisfies Property 3(3,4), with Property 3(1,2) being replaced
with:

1. Approximate Domination. For each unmatched edge e ∈ E \ C , yzC (e) ≤ (1 +
ε1)w(e).

2. Approximate Tightness. For each matched edge e ∈ C , yzC (e) ≥ (1 − ε2)w(e).

Recall that we are using the aggregated duals yzC for f -edge cover:

yzC (u, v) = y(u)+ y(v)+
∑

B:(u,v)∈γ (B)∪(δ(B)\IC (B))
z(B)

Lemma 6 Let C be an f -edge cover with duals y, z,' satisfying Property 3 with
parameters δ1 and δ2, and let C∗ be the minimum weight f -edge cover. We have
w(C) ≤ w(C∗)+ δ1|C∗| + δ2|C |.

Lemma 7 Let C be an f -edge cover with duals y, z,' satisfying Property 4 with
parameters ε1 and ε2, and let C∗ be the minimum weight f -edge cover. We have
w(C) ≤ (1+ ε1)(1 − ε2)

−1w(C∗).

3 Connection Between f -Matchings and f -Edge Covers

The classical approach to solve the f -edge cover problem is to reduce it to f -matching.
Specifically, looking for aminimumweight fC -edge coverC for some function fC can
be seen as choosing edges that are not inC , which is a maximumweight fF -matching
where fF (u) = deg(u) − fC (u).

The main drawback of this reduction is that it yields inefficient algorithms. For
example, Gabow’s algorithms [11] for solving maximum weight fF -matching scales
linearly with fF (V ), which makes it undesirable when fC is small. Even when
fC (V ) = O(n), Gabow’s algorithm runs in O(m2 + mn log n) time. Moreover, this
reduction is not approximation-preserving. In other words, the complement of an arbi-
trary (1 − ε)-approximate maximum weight fF -matching is not guaranteed to be a
(1+ ε)-approximate fC -edge cover.

In this section we establish two results: First we prove that a folklore reduction
from 1-edge cover to matching in nonnegative weight graphs is approximation pre-
serving. This allows us to use an efficient approximatematching algorithm for ordinary
matching, such as [4], to solve the weighted 1-edge cover problem. Then we establish
the connection between approximate fF -matching and approximate fC -edge cover
using approximate complementary slackness from the previous section. This will give
a (1 + ε)-approximate minimum weight f -edge cover algorithm from our (1 − ε)

approximate maximum weight f -matching algorithm.
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3.1 Approximate preserving reduction from 1-edge cover to 1-matchings

The edge cover problem is a special case of f -edge cover where f is 1 everywhere.
The minimum weight edge cover problem is reducible to maximum weight matching,
simply by reweighting edges [23]. The reduction is as follows: Let e(v) be any edge
with minimum weight incident to v and let µ(v) = w(e(v)). Define a new weight
function w′ as follows

w′(u, v) = µ(u)+ µ(v) − w(u, v).

Schrijver [23, Chapter 27] showed the following theorem:

Theorem 1 Let M∗ be a maximum weight matching with respect to a nonnegative
weight function w′, and C = M∗ ∪ {e(v) : v ∈ V \ V (M)}. Then C is a minimum
weight edge cover with respect to weight function w.

We show this reduction is also approximation preserving. Recall that the generally
weighted versions of these problems are reducible to the non-negatively weighted
versions in linear time.

Theorem 2 Let M ′ be a (1−ε)-maximumweight matchingwith respect to nonnegative
weight function w′, and C ′ = M ′ ∪ {e(v) : v ∈ V \ V (M ′)}. Then C ′ is a (1 + ε)-
minimum weight edge cover with respect to weight function w.

Proof Let C∗ and M∗ be the optimal edge cover and matching defined previously. By
construction, we have

w(C ′) = w(M ′)+ µ(V \ V (M ′))
= µ(V (M ′)) − w′(M ′)+ µ(V \ V (M ′))
= µ(V ) − w′(M ′)

Similarly, we have w(C∗) = µ(V ) − w′(M∗). Then

w(C ′) = µ(V ) − w′(M)

≤ µ(V ) − (1 − ε)w′(M∗)
= w(C∗)+ εw′(M∗)
≤ w(C∗)+ εw(C∗)
= (1+ ε)w(C∗).

The second to last inequality holds because M∗ ⊆ C∗ and, by definition, w′(u, v) =
µ(u)+ µ(v) − w(u, v) ≤ 2w(u, v) − w(u, v) = w(u, v). 34

The reduction does not naturally extend to f -edge cover. In the next section we will
show how to obtain a (1 + ε)-approximate f -edge cover algorithm from a (1 − ε)-
approximate f -matching within the primal-dual framework.
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Fig. 3 Illustration on relation between I -set of an f -matching and the I -set of its complementary f ′-edge
cover. Left: an f -matching and its blossom set. Right: Its complementary f -edge cover. Their I -sets are
circled (dashed)

3.2 From f-edge cover to f-matching

We show that a primal-dual algorithm computing a (1 − ε)-approximate f -matching
can be used to compute a (1 + ε)-approximate f -edge cover. In particular, we show
that if we have an f ′-matching F with blossoms' and duals y, z satisfying Property 1,
and an f -edge coverC that is F’s complement, then the same blossom set' and duals
y, z can be also used to certify Property 3 for C with a same set of parameters. This
is formally stated in the following lemma:

Lemma 8 If the duals y, z,'andan f ′-matching F satisfy Property 1with parameters
δ′
1, δ

′
2, then the same duals y, z,' and the complementary f -edge cover C = E \ F

satisfies Property 3 with parameters δ1 = δ′
2 and δ2 = δ′

1.

Proof It is easy to see a vertex is oversatured in an f -edge cover if and only if it is
unsaturated in its complementary f -matchings. Therefore, Property 3(4) (Oversatu-
rated Vertices’ Duals) and Property 1(4) (Unsaturated Vertices’ Duals) are equivalent
to each other.

To showProperty 3(1) is equivalent to Property 1(2), and Property 3(2) is equivalent
to Property 1(1), it suffices to show that the function yzF for f ′-matching F agrees
with the function yzC for its complementary f -edge cover C (Fig. 3). Recall that

yzC (u, v) = y(u)+ y(v)+
∑

B:(u,v)∈γ (B)∪(δ(B)\IC (B))
z(B),

yzF (u, v) = y(u)+ y(v)+
∑

B:(u,v)∈γ (B)∪IF (B)

z(B).

Here IC and IF refer to the I -sets of a blossom with respect to the f -edge cover C
and the f ′-matching F . This reduces to showing that IF (B) = δ(B) \ IC (B):

IF (B) = η(B) ⊕ δF (B) = η(B) ⊕ (δ(B) ⊕ δC (B))

= δ(B) ⊕ (η(B) ⊕ δC (B)) = δ(B) \ IC (B).
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Therefore, in yzF (e) and yzC (e), z-values are summed up over the same set of blos-
soms in '. In other words, yzF (e) = yzC (e) for each e ∈ E and the claim follows

To prove that Property 1(3) implies Property 3(3), we argue by definition that the
maturity of an f ′-matching blossom implies the maturity of the corresponding f -
edge-cover blossom. Equality is then implied by Lemma 2 and Lemma 3. Indeed,
by how we define our f ′-matching F and f -edge cover C , a vertex’s surplus with
respect toC and f is equal to a vertex’s deficiency with respect to F and f ′. Moreover,
the blossom is heavy/light for f ′-matching iff it is light/heavy for the corresponding
f -edge cover. Since the base edge is defined to be the same, maturity of one blossom
implies the other. This completes the proof. 34

4 Approximation Algorithms for f -Matching and f -Edge Cover

In this section, we prove the main result by giving an approximation algorithm for
computing (1−ε)-approximatemaximumweight f -matching. The crux of the result is
an implementation of Edmonds’ search with relaxed complementary slackness as the
eligibility criterion. The notion of approximate complementary slackness was intro-
duced by Gabow and Tarjan for both bipartite matching [14] and general matching
[15]. Gabow gave an implementation of Edmonds’ search with exact complementary
slackness for the f -matching problem [11], which finds augmenting walks one at a
time. The main contribution of this section is to adapt [11] to approximate comple-
mentary slackness to facilitate finding augmenting walks in batches.

To illustrate how this works, we will first give an approximation algorithm for f -
matching in graphs with small edge weights. Letw(·) be a positive weight functionw :
E +→ {0, . . . ,W }. The algorithm computes a (1 − ε)-approximate maximum weight
f -matching in O(mα(m, n)Wε−1) time, independent of f . We also show how to
use scaling techniques to transform this algorithm to run in O(mα(m, n)ε−1 log ε−1)

time, independent of W .

4.1 Approximation for small weights

The main procedure in our O(mα(m, n)Wε−1) time algorithm is a variation on
Edmonds’ search. In one iteration, Edmonds’ search finds a set of augmenting walks
using eligible edges, creates and dissolves blossoms, and performs dual adjustments
on y and z while maintaining the following Invariant:

Invariant 1 (Approximate Complementary Slackness) Let δ > 0 be some parameter
such that w(e) is a multiple of δ, for all e ∈ E:

1. Granularity. y-values are multiples of δ/2 and z-values are multiples of δ.
2. Approximate Domination. For each unmatched edge and each blossom edge e ∈

(E \ F) ∪ (
⋃

B∈' EB), yz(e) ≥ w(e) − δ.
3. Approximate Tightness. For each matched and each blossom edge e ∈ F ∪

(
⋃

B∈' EB), yz(e) ≤ w(e).
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4. BlossomMaturity. For each blossom B ∈ ', |F∩(γ (B)∪I (B))| =
⌊

f (B)+|I (B)|
2

⌋
.

Root blossoms in ' have positive z-values.
5. Unsaturated Vertices. All unsaturated vertices have the same y-value; their y-

values are strictly less than the y-values of other vertices.

Notice that here we relax Property 1(4) to allow unsaturated vertices to have pos-
itive y-values. The purpose of Edmonds’ search is to decrease the y-values for all
unsaturated vertices while maintaining Invariant 1. Following [4,5,15], we define the
following eligibility criterion:

Criterion 1 An edge (u, v) is eligible if it satisfies one of the following:

1. e ∈ EB for some B ∈ '.
2. e /∈ F and yz(e) = w(e) − δ.
3. e ∈ F and yz(e) = w(e).

A key property of this definition is that it is asymmetric for matched and unmatched
edges that are not in any blossom. As a result, if we augment along an eligible aug-
menting walk P , all edges in P , except for those in contracted blossoms, will become
ineligible; and its image in the contracted graph will become entirely ineligible.

We define Gelig to be the graph obtained from G by discarding all ineligible edges,
and let Ĝelig = Gelig/' be obtained from Gelig by contracting all blossoms in'. For
initialization, we set F = ∅, y = W/2, z = 0, ' = ∅. Edmonds’ search repeatedly
executes the following steps: Augmentation, Blossom Formation, Dual Adjustment,
and Blossom Dissolution until all unsaturated vertices have 0 y-values. See Fig. 4.5

Now we define what we mean by reachable vertices in Steps 1–3 of the algo-
rithm, as well as the inner/outer labelling of nontrivial blossoms and singletons. This
is analogous to the reachable/inner/outer vertices in Edmonds’ Search for ordinary
matching [4,5], except that we cannot simply treat a contracted blossom like a single
vertex. The corresponding definition for f -matching is given in Gabow [11, p. 46].
For completeness, we restate these definitions and further supplement them with the
notion of alternation, which provides further insights for reachability.

We start by defining alternation which follows from Definition 4 of an augmenting
walk. We say two distinct edges e, e′ incident to a blossom/singleton B alternate if
either B is a singleton and e and e′ are of different types, or B is a nontrivial blossomand
|η(B)∩ {e, e′}| = 1. An alternating walk/cycle in the contracted graph is a walk/cycle
where every two consecutive edges alternates. An augmenting walk is an alternating
walk with its terminal edges and terminal vertices satisfying the requirement specified
in Definition 4.

Ŝ is the set of blossoms and vertices in Ĝelig that are reachable from an unsaturated
singleton or an unsaturated light blossom via an eligible alternating walk. It can be
obtained by inductively constructing an alternating search tree rooted at an unsaturated
singleton or an unsaturated light blossom.We label the root nodes outer. For a nonroot
vertices v in Ŝ , let τ (v) be the edge in Ŝ pointing to the parent of v. The inner/outer
status of v is defined as follows:

5 In an actual implementation, the inner/outer labelling can be computed in the search inBlossomFormation
step. The labelling continues to be valid after contracting a maximal set of blossoms.
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1. Augmentation. Find a set of edge-disjoint augmenting walks Ψ̂ and
a set of alternating cycles Ĉ in Ĝelig, such that after removing their
edges from Ĝelig, Ĝelig does not contain any augmenting walk. Let
Ψ and C be the preimages of Ψ̂ and Ĉ in Gelig. Update F ← F ⊕((

⋃

P∈Ψ

P

)
∪

(
⋃

C∈C
C

))
. After this step, the new Ĝelig contains no

augmenting walk.
2. Blossom Formation. Find a maximal set Ω′ of nested blossoms reach-

able from an unsaturated vertex/blossom in Ĝelig. Update Ω ← Ω∪Ω′

and then update Ĝelig to be G/Ω. After this step, Ĝelig contains no
blossom reachable from an unsaturated vertex/blossom.

3. Dual Adjustment. Let Ŝ be the set of vertices from Ĝelig reachable
from an unsaturated vertex via an eligible alternating walk. We clas-
sify vertices in Ŝ into V̂in, the set of inner vertices and V̂out, the set
of outer vertices.5 Let Vin and Vout be the set of original vertices in
V represented by V̂in and V̂out. Adjust the y and z values as follows:

y(v) ← y(v) − δ/2, if v ∈ Vout

y(v) ← y(v) + δ/2, if v ∈ Vin

z(B) ← z(B) + δ, if B is a root blossom in V̂out

z(B) ← z(B) − δ, if B is a root blossom in V̂in

Here a root blossom is an inclusionwise maximal blossom in Ω.
4. Blossom Dissolution. After Dual Adjustment some root blossoms in

Ω might have 0 z-values. Remove them from Ω until none exists.
Update Ω and Ĝelig.

Fig. 4 A (1 − ε)-approximate f -matching algorithm for small integer weights

Definition 6 [11, p. 46] A vertex v is outer if one of the following is satisfied:

1. v is the root of a search tree.
2. v is a singleton and τ (v) ∈ F .
3. v is a nontrivial blossom and {τ (v)} = η(v).

Otherwise, one the the following holds and v is classified as inner:

1. v is a singleton and τ (v) ∈ E\F .
2. v is a nontrivial blossom and {τ (v)} 0= η(v).

An individual search tree in Ŝ, call it T̂ , can be grown by repeatedly attaching a
child v to its parent u using an edge (u, v) that is eligible for u in Ŝ; See Gabow [11,
p. 46]. Let Bu denote the root blossom in ' containing u. We say an edge (u, v) ∈ E
is eligible for u if it is eligible according to Criterion 1 and one of the following is
satisfied:

1. u is an outer singleton and e /∈ F .
2. Bu is an outer blossom and {e} 0= η(Bu).
3. u is an inner singleton and e ∈ F .
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4. Bu is an inner blossom and {e} = η(Bu).

Hence, Ŝ consists of singletons and blossoms that are reachable from an unsaturated
singleton or light blossom, via an eligible alternating path. We call such blossoms and
singletons reachable, and all other singletons and blossoms unreachable. A vertex v

from the original graph Gelig is reachable (unreachable) if Bv is reachable (unreach-
able) in Ĝelig .6

In Edmonds’ Search, primal and dual variables are initialized in a way that Prop-
erty 1(1) (Approximate Domination) is always satisfied, and Property 1 (Approximate
Tightness) is vacuous (as the f -matching is initially empty) but Property 1(4) (Unsat-
urated Vertices) is not. For this reason, there is a large gap between primal and dual
objective, besides the error introduced by approximate tightness and domination, at
the beginning of the algorithm. This gap is given by the following, assuming exact
tightness and domination is satisfied (i.e. δ1 = δ2 = 0 in Property 1):

yz(V ) − w(F)

=
∑

v∈V
f (v)y(v)+

∑

B∈'

⌊
f (B)+ |I (B)|

2

⌋
z(B)+

∑

e∈E
u(e) −

∑

e∈F
w(e)

=
∑

v∈V
def(v)y(v).

The goal of the algorithm can be seen as bridging the gap between the primal objec-
tive and dual objective while preserving all other complementary slackness properties.
It can be achieve in two ways. Augmentations enlarge the f -matching by augment-
ing F along some augmenting walk P . This will reduce the total deficiency on the
vertex set V . Dual Adjustments change the dual variables in a way that decreases the
y-value on unsaturated vertices while maintaining other approximate complementary
slackness conditions. In this algorithm, the progress of Edmonds’ Search is measured
by the latter, i.e., the overall reduction in y-values of unsaturated vertices.

The correctness of our algorithm reduces to showing that Augmentation, Blossom
Formation, Blossom Dissolution, and Dual Adjustment all preserve Invariant 1.

Lemma 9 The Augmentation step, Blossom Formation step and Blossom Dissolution
step preserve Invariant 1.

Proof We first show that the identity of I (B) is invariant under an augmentation; in
particular, augmenting along an augmenting walk that intersects B does not change
I (B). As a result, the function yz(·) is invariant under augmentation. This is a restate-
ment of Lemma 5.3 in [11], for completeness, we restate the proof.

We use I (B), η(B) and I ′(B), η′(B) to denote the I -set and base edge of B before
and after the augmentation. By Definition 4 (augmenting walks), if P intersects B,
then

δP (B) = η(B) ∪ η′(B) = η(B) ⊕ η′(B).

6 Of course, if Bv is inner and reachable in Ĝ, this only implies that β(Bv) is reachable from an unsaturated
vertex in G; other vertices in Bv may not be reachable in G.

123



Algorithmica (2022) 84:1952–1992 1973

Let F and F ′ be the f -matching before and after augmentation. We have

δF ′(B) = δF (B) ⊕ δP (B)

Combining both equations, we have

δF ′(B) = δF (B) ⊕ (η(B) ⊕ η′(B))

Hence
I ′(B) = δF ′(B) ⊕ η′(B) = δF (B) ⊕ η(B) = I (B).

By Invariant 1, any blossom edge e ∈ ⋃
B∈' EB satisfies both approximate domi-

nation as well as approximate tightness, so it continues to satisfy these Invariants after
augmentation. For any eligible edge not in EB for any B ∈ ', by Criterion 1, if e is
matched, yz(e) = w(e)− δ, thus after the Augmentation step its duals satisfy approx-
imate domination. If e is unmatched, yz(e) = w(e), so its duals satisfy approximate
tightness after the Augmentation step.

Augmentation also preserves the maturity of blossoms. For any vertex v in a non-
terminal blossom B, degF (v) = degF ′(v) = f (v), so maturity is naturally preserved.
If B is a terminal blossom, we have degF (v) = f (v) − 1 for v = β(B) and
degF (v) = f (v) for all v 0= β(B). Moreover, after augmentation B always has a
base edge η(B) = δP (B). Therefore, B is also mature after augmentation.

All the newly formed blossoms in this step must be mature and have 0 z-values, so
the value of the yz function is unchanged and all the invariants are preserved.

For blossom dissolution step, discarding blossoms with zero z-values preserves the
value of the yz function and hence preserves the invariants. 34

The crux of the proof is to show that Dual Adjustment also preserves Invariant 1,
in particular approximate domination and approximate tightness. Before proving the
correctness of Dual Adjustment, we first prove the following parity lemma, which was
first used in [15]; we generalize it to f -matching:

Lemma 10 (Parity) Let Ŝ be the search forest defined as above. Let S be the preimage
of Ŝ in G. The y-value of every vertex in S has the same parity, as a multiple of δ/2.

Proof The claim clearly holds after initialization as all vertices have the same y-values.
Now notice that every eligible edges e = (u, v) that straddles two distinct singletons
or nontrivial blossom must have its yz-value beingw(e) orw(e)− δ. Sincew(e) is by
assumption an integral multiple of δ, yz(e) is also a multiple of δ. Because z-values
are always multiples of δ, y(u) and y(v) must both be odd or even as a multiple of
δ/2.

Therefore it suffices to show that every vertex in a blossom B ∈ ' has the same
parity.

To prove this, we only need to show that the Blossom Formation step only
groups vertices with the same parity together. This is because new blossoms B are
formed when we encounter a cycle of nontrivial blossoms and singletons CB =
〈B0, e0, B1, e1, . . . , Bl−1, el−1〉 whose edges are eligible. Therefore the endpoints
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of those edges share the same parity. Hence by induction, all vertices in B also share
the same parity. The Dual Adjustment step also preserves this property as vertices in
a blossom will have the same inner/outer classification and thus have their y-values
all incremented or decremented by δ/2. 34

The following theorem is a generalization of Lemma 5.8 in [11] to approximate
complementary slackness. The proof follows from the same framework but has a
slightly more complicated case analysis.

Lemma 11 Dual Adjustment and Blossom Dissolution preserves Invariant 1.

Proof We focus on part 2 (Approximate Domination) and part 3 (Tightness) of Prop-
erty 1. Part 1 (Granularity) is naturally preserved since we are adjusting y-values by
δ/2 and z-values by δ. Part 5 (Unsaturated vertices duals) is also preserved because
unsaturated vertices are labelled as outer and their dual is adjusted by the same amount.
Maturity of blossoms is not affected by Dual Adjustment. Although after dual adjust-
ment, some (inner) root blossoms might have 0 z-values, such blossoms are removed
in Blossom Dissolution step so part 4 for Invariant 1 is restored at the end of the
iteration.

Similar to ordinarymatching, preservation of approximate domination and tightness
can be argued using a case analysis on vertices and blossoms dual. Notice that there
are more cases to consider in f -matching compared to ordinary matching. Different
cases can be generated for an edge (u, v) by considering the inner/outer classification
of both endpoints, whether (u, v) is matched, whether (u, v) is the base edge for its
respective endpoints, if they are in blossoms, and whether (u, v) is eligible. In the
following analysis, we follow the framework in Lemma 5.8 [11] to narrow down the
number of meaningful cases to just 8. Notice that Lemma 5.8 [11] can be seen as a
version of this lemma for exact complementary slackness. Although one can expect
the same conclusion to hold, the proof still differs in details.

We consider an edge e = (u, v). If u and v are both unreachable, or both in the
same root blossom, yz(u, v) clearly remains unchanged after Dual Adjustment.

Therefore we can assume Bu 0= Bv and at least one of them, say Bu , is reachable.
Every reachable endpoint will contribute a change of ±δ/2 to yz(u, v). This is the
adjustment of y(u), plus the adjustment of z(Bu) if e ∈ I (Bu). Define )(u) to be the
net change of the quantity y(u)+∑

e∈I (Bu) z(Bu). By definition of Dual Adjustment,
we have the following scenarios:

• )(u) = +δ/2: This occurs if u is an inner singleton, or Bu is an outer blossom
with e ∈ I (Bu), or an inner blossom with e /∈ I (Bu).

• )(u) = −δ/2: This occurs if u is an outer singleton, or Bu is an inner blossom
with e ∈ I (Bu), or an outer blossom with e /∈ I (Bu).

Then we consider the effect of a Dual Adjustment on the edge e = (u, v). First we
consider the case when exactly one of Bu and Bv , say Bu , is in Ŝ. In this case only u
will introduce a change on yz(u, v):

Case 1: u is an inner singleton: Here )(u) = +δ/2. In this case approximate
domination is preserved, so we only need to worry about approximate tightness and
hence assume e ∈ F . Since Bv is not in Ŝ, e cannot be eligible for Bu or Bv would
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have been included in Ŝ as a child of Bu . Because e ∈ F , e cannot be eligible. Hence
yz(e) < w(e). By Granularity, yz(e) ≤ w(e)−δ/2. Therefore we have yz(e) ≤ w(e)
after the Dual Adjustment.

Case 2: u is an outer singleton: Here )(u) = −δ/2. In this case tightness is
preserved and we only need to worry about approximate dominination when e /∈ F .
Similar to Case 1, emust be ineligible and yz(e) ≥ w(e)−δ/2. After Dual Adjustment
we have yz(e) ≥ w(e) − δ.

Case 3: Bu is an inner blossom: We divide the cases according to whether e is
matched or not.

Subcase 3.1: e ∈ F . If e /∈ η(Bu), then e ∈ I (Bu) and )(u) = −δ/2. In this case
tightness is preserved. If e ∈ η(Bu), then e /∈ I (Bu) and)(u) = +δ/2.But e cannot be
eligible since otherwise Bv would be in the search tree, so we have yz(e) ≤ w(e)−δ/2
and yz(e) ≤ w(e) after Dual Adjustment.

Subcase 3.2: e /∈ F . This is basically symmetric to Subcase 3.1. If e ∈ η(Bu), then
e ∈ I (Bu) and )(u) = −δ/2. But e cannot be eligible therefore yz(e) ≥ w(e)− δ/2,
and yz(e) ≥ w(e) − δ after Dual Adjustment. If e /∈ η(Bu), then e /∈ I (Bu) and
)(u) = +δ/2, so approximate Domination is preserved.

Case 4: Bu is an outer blossom:
Subcase4.1: e ∈ F . If e ∈ η(Bu), then Bv must be the parent of Bu in the search tree,

contradicting the fact that Bv /∈ Ŝ. Thus e /∈ η(Bu), so e ∈ I (Bu) and )(u) = +δ/2.
Since Bv is not reachable, e cannot be eligible, so yz(u, v) ≤ w(e)− δ/2 before Dual
Adjustment and yz(u, v) ≤ w(e) afterward.

Subcase 4.2: e /∈ F . Similarly, e /∈ η(Bu), so e /∈ I (Bu) and )(u) = −δ/2.
Similarly Bv is not reachable so e cannot be eligible. Therefore we have yz(u, v) ≥
w(e) − δ/2 and yz(u, v) ≥ w(e) − δ after Dual Adjustment.

This completes the case when exactly one of e’s endpoints is reachable. The follow-
ing part will complete the argument for when both endpoints are reachable. We argue
that three scenarios can happen: either)(u) and)(v) are of opposite signs and cancel
each other out, or )(u) and )(v) are of the same sign and the sign aligns with the
property we wish to keep, or if neither case holds, we use Lemma 10 (Parity) to argue
that there is enough room for dual adjustment not to violate approximate domination
or tightness.

We first examine tree edges in Ŝ. In this case we assume Bu is the parent of Bv and
e is the parent edge of Bv . Hence e must be eligible for Bu . We argue by the sign of
)(u).

Case 5: If e is a tree edge and )(u) = +δ/2:
There are three cases here: u is an inner singleton, Bu is an outer blossom with

e ∈ I (Bu), or Bu is an inner blossom with e /∈ I (Bu). We first observe that in all three
cases, e ∈ F . This is straightforward when u is an inner singleton. If Bu is an outer
blossom with e ∈ I (Bu), we know that since Bu is outer, e /∈ η(Bu), so therefore
e ∈ F . If Bu is an inner singleton with e /∈ I (Bu), since Bu is inner, e ∈ η(Bu), so
combined with the fact that e /∈ I (Bu) we have e ∈ F .

Notice that since Bu is the parent of Bv , and e ∈ F , v can be an outer singleton, or
Bv is an outer blossom with e ∈ η(Bv), or Bv is an inner blossom with e /∈ η(Bv). In
the second case e /∈ I (Bv) and in the third case e ∈ I (Bv). In all three cases we have
)(v) = −δ/2, and yz(e) remains unchanged.
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Case 6: If e is a tree edge and )(u) = −δ/2: Case 6 is symmetric to Case 5. Bu
can either be an outer singleton, an inner blossomwith e ∈ I (Bu), or an outer blossom
with e /∈ I (Bu). In all cases, the fact that e must be eligible for Bu implies e /∈ F ,
and Bv can only be an inner singleton, an outer blossom with e ∈ I (Bu), or an inner
blossom with e /∈ I (Bv). Hence we have )(v) = +δ/2 so yz(e) remains unchanged.

Now suppose Bu and Bv are both in Ŝ but (u, v) is not a tree edge. We still break
the cases according to the sign of)(u) and)(v). Here we only need to consider when
)(u) = )(v), since otherwise they cancel each other and yz(e) remains constant.

Case 7: If e is a tree edge and)(u) = )(v) = δ/2. In this case yz(e) is incremented
by δ. Therefore we only need to worry about tightness when e ∈ F . Notice that Bu can
only be an inner singleton, an outer blossom with e ∈ I (Bu) or an inner blossom with
e /∈ I (Bu). When Bu is an outer blossom, e /∈ η(Bu). When Bu is an inner blossom,
since e ∈ F and e /∈ I (Bu), e ∈ η(Bu). The same holds for the other endpoint Bv .

It is easy to verify that in all cases, e is eligible for Bu (or Bv) if and only if e
is eligible. But notice that after Augmentation and Blossom Formation steps, there
is no augmenting walk or reachable blossom in Ĝelig , i.e., there cannot be an edge
(u, v) that is eligible for both endpoints Bu and Bv since otherwise one can find an
augmenting walk or a new reachable blossom. Thus e is ineligible and yz(e) < w(e).
But by Invariant 1(1) (Granularity) and Lemma 10 (Parity), bothw(e) and yz(e)must
be multiples of δ. Therefore we have yz(e) ≤ w(e) − δ. This implies yz(e) ≤ w(e)
after Dual Adjustment.

Case 8: If e is a tree edge and )(u) = )(v) = −δ/2. Here yz(e) is decremented
by δ. Similar to the case above, we can assume e /∈ F and only focus on approximate
domination. Bu can be an outer singleton, inner blossom with e ∈ I (Bu), or outer
blossom with e /∈ I (Bu). Since e /∈ F , e ∈ I (Bu) if and only if e ∈ η(Bu). Therefore
if e is eligible, e must be eligible for both Bu and Bv . But similar to Case 7, e being
eligible for both endpoints will lead to the discovery of an additional blossom or
augmenting walk in Gelig , which is impossible after Augmentation and Blossom
Formation. Therefore we conclude in this case e is ineligible and yz(e) > w(e)−δ. By
Lemma 10 (Parity), we have yz(e) ≥ w(e) before Dual Adjustment, so approximate
domination still holds after Dual Adjustment. 34
Theorem 3 A (1−ε)-approximate f -matching canbe computed in O(Wmα(m, n)ε−1)

time.

Proof We initialize the f -matching to be ∅ and y(v) = W/2 for all v. Set δ =
1/

⌈
ε−1⌉ ≤ ε. Since each iteration decreases y-values by δ/2, y-values of unsaturated

vertices takes (W/2)/(δ/2) = O(Wε−1) iterations to reach 0, thereby satisfying
Property 1 with δ1 = δ, δ2 = 0. By invoking Lemma 4, with F∗ being the optimum
f -matching, we have

w(F) ≥ w(F∗) − |F∗|δ ≥ w(F∗) − w(F∗)δ ≥ (1 − ε)w(F∗).

For the running time, each iteration of Augmentation, Blossom Formation, Dual
Adjustment, and BlossomDissolution can be implemented in O(mα(m, n)). We defer
the detailed implementation toSect. 5. There are a total ofW/δ = O(Wε−1) iterations,
so the running time is O(Wmα(m, n)ε−1). 34
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As a result of Lemma 8 and Lemma 6, we also obtain the following result:

Corollary 1 A (1+ ε)-approximate f -edge cover can be computed in O(Wmα(m, n)
ε−1) time.

Proof Given aweighted graphG and degree constraint function f , let f ′ = deg− f be
the complement of f . With some paramter δ we run the algorithm from Theorem 3 to
find an f ′-matching F ′ that satisfies Property 1 with parameters (δ, 0). By Lemma 8,
its complement F = E \ F ′ satisfies Property 3 with parameter (0, δ). By Lemma 6,
we have

w(F) − δ|F | ≤ w(F∗)
(1 − δ)w(F) ≤ w(F∗)

Then we can choose a δ = *(ε) to guarantee that we get an (1 + ε)-approximate
minimum weight f -edge cover. 34

Also notice that when W = O(1) is constant, Theorem 3 and Corollary 1 are the
fastest known approximation algorithms for these problems.

4.2 A scaling algorithm for general weights

In this section, we can modify the O(Wmα(m, n)ε−1) weighted f -matching algo-
rithm to work on graphs with general real weights. The modification is based on the
scaling framework in [4]. If the weights are arbitrary reals, we can round them to
integers in [W ], W = poly(n), with negligible loss in accuracy. Thus we can assume
without loss of generality that all weights are O(log n)-bit integers. The idea is to
divide the algorithm into into L = logW + 1 scales that execute Edmonds’ search
with exponentially diminishing δ. The goal of each scale is to use O(ε−1) Edmonds’
searches to halve the y-values of all unsaturated vertices while maintaining a more
relaxed version of approximate complementary slackness. Bymanipulating theweight
function, approximate domination, which is weak at the beginning, is strengthened
over scales, while approximate tightness is weakened in exchange. Assume without
loss of generality that W > 1 and ε < 1 are powers of two. We define δi , 0 ≤ i ≤ L
be the error parameter for each scale, where δ0 = εW and δi = δi−1/2 for 0 < i ≤ L .
Each scale works with a new weight function wi which is the old weight function
rounded down to the nearest multiple of δi , i.e,wi (e) = δi 5w(e)/δi6. In the last scale
WL = w. We maintain a scaled version of Invariant 1 at each scale:

Invariant 2 (Scaled approximate complementary slackness with positive unsaturated
vertices) At scale i = 0, 1, . . . , L = logW, we maintain the f -matching F, blossoms
', and duals y, z to satisfy the following invariant:

1. Granularity. All y-values are multiples of δi/2, and z-values are multiples of δi .
2. Approximate Domination. For each e /∈ F or e ∈ EB for some B ∈ ', yz(e) ≥

wi (e) − δi .
3. Approximate Tightness. For each e ∈ F ∪ (

⋃
B∈' EB), let je ≤ i be the index of

last scale that e joined the set F∪⋃
B∈' EB. We have yz(e) ≤ wi (e)+2δ je −2δi .
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4. Mature Blossoms. For each blossom B ∈ ', |F∩(γ (B)∪ I (B))| =
⌊

f (B)+|I (B)|
2

⌋
.

5. Unsaturated Vertices’ Duals. The y-values of all unsaturated vertices are the same
and less than the y-values of other vertices.

Based on Invariant 2, Edmonds’ search will use the following Eligibility criterion:

Criterion 2 At scale i , an edge e ∈ E is eligible if one of the following holds

1. e ∈ EB for some B ∈ '.
2. e /∈ F and yz(e) = wi (e) − δi .
3. e ∈ F and yz(e) − wi (e) is a nonnegative integer multiple of δi .

This is similar to Criterion 1 except for we have a relaxed criterion for when e ∈ F .
This relaxation is due to the fact that tightness is weakened at termination of each
scale, and the eligibility criterion is then relaxed to accommodate it. We argue below
that this relaxation does not affect the correctness of Edmonds’ Search.

Before the start of scale 0, the algorithm initializes F,', y, z similar to the algo-
rithm for small edge weights: y(u) ← W/2, ' ← ∅, F ← ∅. At scale i , the duals of
unsaturated vertices start at W/2i+1. We execute (W/2i+2)/(δi/2) = O(ε−1) itera-
tions of Edmonds’ search with parameter δi , using Criterion 2 of eligibility. The scale
terminates when the y-values of unsaturated vertices are reduced toW/2i+2, or in the
last iteration, as they reach 0.

Notice that although the invariant and the eligibility criterion are changed, the fact
that Edmonds’ search preserves the complementary slackness invariant still holds. The
proof of Lemma 11 goes through, as long as the definition of eligibility guarantees the
following parity property:

Lemma 12 At any point of scale i , let S be the set of vertices in Gelig reachable from
an unsaturated vertex using eligible edges. The y-value of any vertex v ∈ V with
Bv ∈ S has the same parity as a multiple of δi/2.

We omit the proof of Lemma 12. The details are similar to Lemma 11, using
Criterion 2 in lieu of Criterion 1.

Now we sketch why Criterion 2 ensures Invariant 2, in particular, how it ensures
approximate domination and approximate tightness. We will not prove it formally as
the details are very similar to Lemma 11 and Lemma 9.

Observe that primal and dual variables initially satisfy Invariant 2, in particular
parts 2 and 3. This is because all edges have yz-values equal to W , and no edge is in
M

⋃
B∈' EB .

Notice that dual adjustment never changes the yz-values of edges inside any blos-
som B ∈ ', while it will have the following effect on edge e if its endpoints lie in
different blossoms.

1. If e /∈ F and is ineligible, yz(e) might decrease but will never drop below the
threshold for eligibility, i.e., it will not drop below wi (e) − δi .

2. If e /∈ F and is eligible, yz(e) will never decrease.
3. If e ∈ F and is ineligible, yz(e)might increase but will never exceed the threshold

for eligibility, i.e., it will not raise above wi (e)+ 2δ je − 2δi .
4. If e ∈ F and is eligible, yz(e) will never increase.
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In other words, with the proper definition of Eligibility, Dual Adjustment will
not destroy approximate domination and approximate tightness. Therefore Edmonds’
search within scale i will preserve Invariant 2.

We also need to manipulate the duals between different scales to ensure Invariant 2.
Formally, after completion of scale i , we increment all the y-values by δi+1, i.e., if
yz′ and yz are the function before and after dual adjustment, yz(e) = yz′(e)+ 2δi+1.
No change is made to F,' and z. This will ensure both approximate domination and
approximate tightness hold at scale i + 1. At the previous scale we have approximate
domination yz(e) ≥ wi (e) − δi . The weights at scale i and i + 1 satisfy wi+1(e) ≤
wi (e)+ δi+1. Thus, after dual adjustment,

yz(e) = yz′(e)+ 2δi+1

≥ wi (e) − δi + 2δi+1

≥ wi+1(e) − δi+1 − δi + 2δi+1

= wi+1(e) − δi+1

For approximate tightness, we have

yz(e) − wi+1(e) ≤ yz(e) − wi (e) ≤ 2δ je − 2δi + 2δi+1 = 2δ je − 2δi+1,

since δi+1 = δi/2.
This step is the main motivation for the definition of Invariant 2 (3), as approxi-

mate tightness is gradually relaxed in this step. The algorithm terminates when the
y-values of all unsaturated vertices reach 0. It terminates with an f -matching F and
its corresponding duals y, z and ' satisfying the following property:

Property 5 (Final Complementary Slackness)

1. Approximate Domination. For all e /∈ F or e ∈ EB for any B ∈ ', yz(e) ≥
w(e) − δL .

2. Approximate Tightness. For all e ∈ F ∪ (
⋃

B∈' EB), let je be the index of the last
scale that e joined F ∪ (

⋃
B∈' EB). We have yz(e) ≤ w(e)+ 2δ je .

3. BlossomMaturity.For all blossoms B ∈ ', |F∩(γ (B)∪I (B))| =
⌊

f (V )+|I (B)|
2

⌋
).

4. Unsaturated Vertices’ Duals. The y-values of all unsaturated vertices are 0.

This implies approximate domination and approximate tightness are satisfiedwithin
some factor 1± O(ε). For approximate domination this is easy to see since w(e) ≥ 1
and δL = ε/2, thus yz(e) ≥ (1−ε/2)w(e) if e /∈ F . For approximate tightness, we can
lower bound theweight of e if e last entered F or a blossomat scale j = je. Throughout
scale j , the y-values are at leastW/2 j+2, sow(e) ≥ w j (e) ≥ 2(W/2 j+2)− δ j . Since
δ j = εW/2 j , yz(e) ≤ w(e)+ 2δ j ≤ (1+ 4ε)w(e) when e ∈ F .

This implies we have O(ε) multiplicative error for both approximate domination
and approximate tightness. Together with the Lemma 5, we can show F is a (1 − ε)-
approximate maximum weight f -matching.

The running time of the algorithm is O(mε−1 logW ) because there are logW + 1
scales, and each scale consists of O(ε−1) iterations of Edmonds’ search, which can
be implemented in O(mα(m, n)).
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Theorem 4 A (1− ε)-approximate maximum weight f -matching can be computed in
O(mα(m, n)ε−1 logW ) time.

Corollary 2 A (1 + ε)-approximate minimum weight f -edge cover can be computed
in O(mα(m, n)ε−1 logW ) time.

4.3 AO!(m˛(m, n)) Algorithm

We also point out that by applying techniques in [4, Sect. 3.2], the algorithm can be
modified to run in time independent of W . The main idea is to force the algorithm to
ignore an edge e for all but O(log ε−1) scales. First, we index edges by the first scale
that it can ever become eligible. Since at scale i , y-values can drop at most toW/2i+1,
any edge with weight below W/2i cannot be eligible at scale i . Let µi = W/2i and
scale(e) be the unique i such thatw(e) ∈ [µi , µi−1). Notice that we can ignore e in any
scale j < scale(e). Moreover, we will also forcibly ignore e at scale j > scale(e)+λ

where λ = log ε−1+O(1). Ignoring an otherwise eligible edgemight cause violations
of approximate tightness and approximate domination. However, since the y-values of
free vertices are O(εw(e)) at this point, this violation will only amount to O(εw(e)).

To see this, notice that µi is also an upper bound to the amount of change to yz(e)
caused by all Dual Adjustment after scale i . Hence, after scale scale(e)+ λ, the total
amount of violation to approximate tightness and approximate domination on e can
be bounded by µscale(e)+λ = O(ε)µscale(e) = O(ε)w(e), which guarantees we still
get a (1 − O(ε))-approximate solution.

Therefore, every edge takes part in at most log ε−1 + O(1) scales, with O(ε−1)

cost per scale. The total running time is O(mα(m, n)ε−1 log ε−1). We are omitting
the full proof of Theorem 5.

Theorem 5 A (1 − ε)-approximate maximum weight f -matching and a (1 + ε)-
approximate minimum weight f -edge cover can be computed in O(mα(m, n)ε−1 log
ε−1) time, independent of the weight function.

5 AnO(m˛(m,n)) AugmentingWalk Algorithm

In this section, we show how to implement the augmentation and blossom formation
steps in O(mα(m, n)) time. The goal of the augmentation step is to find a set of
augmenting walks and alternating cycles in the contracted eligible subgraph, such
that after the removal of these cycles and walks, the subgraph no longer contains any
augmenting walks. In the blossom formation step, we are given a contracted graph
without any augmenting walks. The goal is to find a maximal set of reachable and
contractable blossoms, i.e., a set of blossoms whose contraction will leave the graph
without any reachable and contractable blossoms.

We formalize this problem, calledDisjoint Paths andBlossomsProblem, as follows:

Definition 7 In the Disjoint Path and Blossoms Problem, we are given a graph G =
(V , E), where V is partitioned into two sets Vs , Vb, an f -matching M , and a partial
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function η : Vb +→ E such that η(v) ∈ δ(v) if η(v) exists. Here v ∈ Vb represents a
contracted blossom and η(v) the incident base edge, if any. The goal is to find a set
of alternating cycles C, a set of augmenting walks , where all cycles and walks are
mutually edge disjoint, such that after removing all edges in C and ,, the remaining
graph G does not contain any augmenting walks. Moreover, we also output a laminar
set of nested blossoms '′ that G/'′ does not contain any reachable contractable
blossom.

There are several subtleties in this definition. G here is used as a contracted graph
obtained by contracting a set of nested blossoms ' from an underlying graph. There-
fore, augmenting walks and alternating cycles are defined according to Definition 4
and the definition of alternation from Sect. 4.1, by treating η(v) as v’s base edge
when v represents a nontrivial blossom. As a result, an alternating cycle in G might
not have even length in G and an augmenting walk might not have odd length in G.
It is guaranteed, by Lemma 1, that the pre-images of these walks and cycles in the
underlying graph are odd and even, respectively. Moreover, it is not guaranteed that
no augmenting walk exists in the underlying graph after removing the image of , and
C in it.7 However, it is sufficient since in the proof of Lemma 11, we only use the fact
that the contracted graph does not contain any augmenting walks.

This problem is noticeably different from the problem solved in [15, Sect. 8] for
1-matching. Instead of looking for a maximal set of vertex disjoint augmenting paths,
we look for a set of edge disjoint augmenting walks , in conjunction with a set of
alternating cycles C whose removal removes all augmenting walks from G.

Both algorithms try to search for a set of augmenting paths/walks by building an
alternating structure S (not necessarily a tree) whose topology is defined in Sect. 4.1.
However, in 1-matching, the search structure branches only at outer singletons and
blossoms, while in f -matching, it also branches at inner singletons. As a result, when
the search process reaches a vertex v, it also assigns v an inner/outer tag to remind the
algorithm whether it is looking for an unmatched/non-η edge, or a matched/η edge
to continue extending the structure. A vertex can obtain both inner and outer tags,
but only one of them is the primary one where the search procedure uses it to decide
which edge to explore next. If a vertex has two tags, then the non-primary one must
be exhausted, meaning the algorithm has already finished exploring all eligible edges
with respect to that tag.

A key difference between 1-matching and f -matching is that augmenting walks
can be non-simple, i.e., they may contain an alternating cycle as a subwalk. Conse-
quently, when the search process reaches an outer (inner) singleton u, it can potentially
find, through an unmatched (matched) edge an inner (outer) singleton v that has
already been visited before in the same search, and proceed to discover an augmenting
walk. This phenomenon is illustrated in Fig. 5. If the algorithm intends to discover
(v0, v1, v2, v3, v4, v1, v5, v6) as an augmenting walk, it will reach v1 with inner tag
twice; first from v0, then from v4. Notice that in ordinary matching, edge (v1, v5) can-

7 This is because multiple augmenting walks in the underlying graph can intersect a single blossom in
' before we contract the blossom, while after contracting a blossom, any augmenting walk or alternating
cycle going through the blossom will forbid the other walks and cycle to use the same blossom again (as it
must go through the base edge).
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Fig. 5 An example of an eligible
alternating search tree. Outer
blossoms and singletons are
labeled using solid boundaries
while inner blossoms and
singletons have dashed
boundaries
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not exist and edge (v4, v1) is ignored as it provides no useful information regarding
whether v1 is an inner/outer vertex.

One might propose to ignore and discard the edge (v4, v1) and return the sim-
ple path (v0, v1, v5, v6). However, edges like (v4, v1) cannot simply be discarded
from future searches as they might participate in other augmenting walks, say
(v10, v9, v4, v1, v8, v7) that is edge disjoint from (v0, v1, v5, v6). To achieve a lin-
ear running time, it is essential that edges of this type only get scanned a constant
number of times.

Following the spirit of DFS, we wish to maintain that every search path is not
self-intersecting, i.e., each vertex is visited at most once with an inner tag, and once
with an outer tag. Whenever we discover an edge that leads to a self-intersection
(e.g. (v4, v1) in Fig. 5), we augment along the alternating cycle introduced by this
edge (e.g. (v1, v2, v3, v4, v1)) and thereby remove every edge on the cycle from the
future searches.We backtrack to v1 and the search continues (to the edge (v1, v5)). This
action has the same effect as allowing augmentation along the non-simple augmenting
walk ((v0, v1, v2, v3, v4, v1, v5, v6)), but conceptually avoids a self-intersecting search
structure and thus makes the analysis simpler (Fig. 6).

Overview of the Algorithm
In this algorithm, we follow a standard recursive framework for computing a maxi-
mal set of edge disjoint paths, see [23, Chapter 9]. The algorithm proceeds in phases.
In phase i , i ≥ 1, we choose a vertex r that is still unsaturated after augmenta-
tions in phases 1, 2, . . . , i − 1, and call a procedure SEARCH-ONE from this vertex.
SEARCH-ONE searches for an augmenting walk from r , and terminates with a pos-
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Fig. 6 Example of a self-intersecting search structure and nonsimple augmenting walk. Here v0 is the root
of the search structure and {v0, v2, v4, v5} is the set of outer vertices and {v1, v3} is the set of inner vertices.
The search begins with v0 and proceed to v1, v2, v3, v4 in order. The procedure then scan the edge (v4, v1)
and because it connect an outer vertex to an inner vertex that is already visited, it might ignore the edge and
backtrack to v1 and return the augmenting walk 〈v0, v1, v5, v6〉. However, although (v1, v4) is scanned
and ignored, it cannot be discarded from future search as another augmenting walk, such as the dashed
walk 〈v7, v8, v1, v4, v9, v10〉 might make use of the edge (v1, v4) and , will not be maximal if (v1, v4)
participating in some augmenting walks

sibly empty augmenting walk Pi along with a set of disjoint alternating cycles Ci . It
guarantees that either Pi is nonempty, or in the case when Pi is empty, no augment-
ing walk starting from r can reach another unsaturated vertex without intersecting
Ci . It then augments along Pi and Ci . The phase ends by discarding the set of edges
encountered by the search procedure.

Formally, the input to SEARCH-ONE is a subgraph Gi = (Vi , Ei ) of G, an fi -
matching Mi where Mi ⊆ M and fi (v) ≤ f (v) for all v ∈ Vi , and an unsaturated
vertex r ∈ Vi with respect to fi and Mi . SEARCH-ONE finds an augmenting walk Pi
(possibly empty), a set of alternating cycles Ci and a set of edges Hi ⊆ Ei that satisfy
the following property.

Property 6 Any augmenting walk that intersects Hi must also intersect Pi or a cycle
in Ci .

After SEARCH-ONE terminates, we finish the phase by removing Hi from Gi . If
Pi is empty, we also remove the vertex r from Gi . Let the resulting graph be Gi+1.
Define the fi+1-matching Mi+1 by Mi+1 = Mi \ Hi and

fi+1(v) =






fi (v) − |Mi ∩ Hi ∩ δ(v)| − 2|Mi ∩ Hi ∩ δ0(Mi )|
If v is not a terminal vertex of Pi .

fi (v) − |Mi ∩ Hi ∩ δ(v)| − 2|Mi ∩ Hi ∩ δ0(Mi )| − 1
If Pi is a nonempty nonclosed augmenting walk and v
is one of the two terminal vertices of Pi .

fi (v) − |Mi ∩ Hi ∩ δ(v)| − 2|Mi ∩ Hi ∩ δ0(Mi )| − 2
If Pi is a nonempty closed augmenting walk that starts and ends
with v.
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Conceptually, this change restricts the fi -matching Mi to the subgraph Gi+1 while
maintaining the property that each vertex still has the same deficiency, except for
the terminal vertices of Pi , whose deficiencies are decremented by 1 (or 2 for closed
walks) after augmenting along Pi . Finally, the algorithm adds the path Pi and cycles
Ci to , and C, respectively, and terminates phase i .

A Detailed Illustration of SEARCH-ONE.
The call to SEARCH-ONE in phase i maintains a laminar set of blossoms 'i over
vertices in Gi . Here 'i only contains the blossoms newly discovered in the search
procedure and does not include the already contracted blossoms inherited from the
input (vertices in Vb). In this section, we use the word blossom solely for the newly
discovered blossoms in'i and blossom vertices for blossoms inherited from the input,
i.e., vertices in Vb. Singletons still refer to vertices in Vs . We use B(v) to denote the
inclusion-wise maximal blossom in 'i that contains v and β(v) to denote the base
of B(v). If v is not contained in any nontrivial blossom in 'i , we define B(v) = {v}
and β(v) = v. Each blossom also might have a base edge η(B). We denote the search
structure on Gi with Si , and use Ti to denote the search structure obtained from Si
by contracting all blossoms in 'i . Similar to [15, Sect. 8], the search structure Si is
a subgraph of Gi but not necessarily a tree, while we maintain that Ti must be a tree.
We maintain Ti by storing a parent pointer for each vertex or blossom in 'i . Let τ (B)
be the edge incident to vertex/blossom B joining it to its parent in Ti .

Blossoms are maintained using a data structure that supports the following opera-
tion: given a blossom B, a vertex v in blossom B, and a bit s ∈ {0, 1}, the data structure
returns the alternating walk Ps(v) from v to β(B) whose existence is guaranteed in
Lemma 1, in time linear in the length of the walk. This can be done using simple
bookkeeping as in Gabow’s implementation for Edmonds algorithm [9] and we leave
the details to the readers. We also keep track of pointers such that given the blossom
B, we can find β(B) and the edge from B to its parent in Ti . Moreover, we use a
union-find data structure to find B(v) given v.

SEARCH-ONE explores the graph in a depth first fashion: The search begins at an
unsaturated singleton or an unsaturated blossom vertex r in Gi . Similar to DFS, when
the locus of the search is at u we have an alternating walk P(u) from r to u in Gi .
We call u the active vertex and P(u) the active walk. For efficiency purposes, we do
not maintain the active walk explicitly. Instead, we maintain a contracted active walk
P̂(u). The contracted active walk P̂(u) is of the form 〈B0, e0, B1, e1, . . . , ek−1, Bk〉,
where r ∈ B0, u ∈ Bk and each Bj are either singletons or blossoms (not necessarily
maximal) in 'i . Each edge e j connects Bj−1 to Bj and edges e j and e j+1 alternate
at Bj+1 for all 0 ≤ j < k − 1. The active walk P(u) can be reconstructed from P̂(u)
in time O(|P(u)|) using the blossom data structure mentioned above.

To maintain the property that the active walk is alternating, the algorithm also
assigns tags for each vertex in Si , which is either inner or outer. Tags are assigned
according to Definition 6.

There is onemore issue that arises in this paper compared to the similar DFS routine
in [15, Sect. 8]. Upon discovering and augmenting along an alternating cycle C , the
search structure Si becomes disconnected from the root since C has been effectively
removed from the graph. Therefore we remove all vertices and edges that descend

123



Algorithmica (2022) 84:1952–1992 1985

from C in Ti from Ti and also remove their preimages from Si . However, we still
maintain some useful information about these vertices and edges. This includes the
blossom structure, the former parent pointers of vertices and blossoms, as well as all
the tags that vertices and edges carry and whether they are exhausted or not.

Initially, the contracted active walk consists of a single vertex r , and r is labelled
outer. At each iteration, the algorithm explores a new edge (u, v) incident to the active
vertex u that is eligible for u with respect to u’s current inner/outer tag. Notice that
this immediately defines an inner/outer tag for v. On exploring the edge (u, v), the
algorithm does one of the following depending on the location of v with respect to the
search structure, and the tag v is carrying.

1. Augmentation When v is an unsaturated singleton and (u, v) is unmatched, or v
is an unsaturated blossom vertex, or when v = r is the root of the search tree
and the deficiency of v is at least 2, P(u) ◦ (u, v) forms an augmenting walk. We
extend the active path with (u, v), terminate the search and set the active walk
P(v) = P(u) ◦ (u, v) and Pi = P(v). In this step, the edge (u, v) is considered
explored from u.

2. DFS Extension If v is a singleton and v has never been exhausted before with the
same tag, add (u, v) to the search structure Si and make B(v) a child of B(u)
in Ti . Set the active vertex to v and extend the contracted active walk P̂(v) =
P(u) ◦ (u, v) ◦ B(v) accordingly. In this step, edge (u, v) is considered explored
from u.

3. Cycle Cancellation If both B(u) and B(v) are in Ti and B(v) is an ancestor of
B(u) and (u, v) is not eligible for v, the tree path from B(v) to B(u), along with
the edge (u, v), forms an alternating cycle C . We add C to Ci . Retract the active
walk back to v. After this step, all edges e ∈ C will be categorized as explored
from both endpoints.
This step effectively disconnects all descendants of C from the root.8 We remove
this part from the search structure Si and Ti . However, old parent pointers that
were used to maintain Ti are still kept.

4. Blossom Formation If B(u) 0= B(v) and B(v) is not in P̂(u), and edge (u, v)
is also eligible for v, then we can potentially form a new blossom. We do so by
extending the active walk from B(u) to B(v), then to the chain of ancestors of B(v)
encountered when following parent pointers, until one of the following stopping
conditions is met. If we append B(u) to the active walk then we stop, with a new
blossom having been detected. The process may stop prematurely if (i) the next
parent edge is already marked explored because it is in Ci or (ii) if the head of the
walk is exhausted according to its tag.
Notice that this step puts new tags onto vertices in these blossoms and also attaches
them onto the search tree Ti . Let P̃ be the suffix of P̂ starting from B(v). If P̃
ends at B(u), we have identified a blossom B whose subblossoms consists of the
set of blossoms in P̃ . We contract the blossom by putting B into 'i and update
the union-find data structure accordingly, then contract all vertices of P̃ in Ti .
If P̃ ends prematurely before getting to B(u), we cannot contract the blossom.

8 It is still possible that later we discover some path from a descendant ofC back to the root that circumvents
C
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This search has effectively appended P̃ to P̂ with DFS extensions and the search
proceeds from the last element of P̂ as usual.
In both cases, edges are considered explored in the direction of the active walk
when they first enter the active walk, and exhausted after they leave the active
walk.

5. DFS Retraction If every edge (u, v) eligible for u has already been explored,
retract from u to its predecessor on the (contracted) active walk. If u = r is the
only vertex in the search path, terminate the search with Pi = ∅. Otherwise, let
w (B(w)) be the parent of u in the (contracted) active walk. The edge (w, u)
is now considered exhausted from w. This means that every edge eligible for u
is recursively exhausted and no augmenting walk can be found by following the
active walk via the edge (w, u). (It may still be possible to find an augmenting
walk via edge (w, u) when the search visits u again in a blossom formation step
and explore (u, w) from u). Moreover, the vertex u’s primary tag is now consider
exhausted.

6. Null Exploration This step includes all scenarios where we explore the edge (u, v)
to no effect. This includes: when B(v) is a descendant of B(u) and (u, v) is not
eligible for v; when B(v) is an ancestor of B(u) and (u, v) is eligible for v; or
when (u, v) is a cross edge in Ti . In these cases, we ignore the edge (u, v) while
still categorizing it as exhausted from u.

As stated above, each edge (u, v) along with an endpoint of it, say u, has one of
three statuses at any point in the algorithm:

1. Explored from u This means the search has visited the vertex u, extended the
active walk from u to v using edge (u, v), in either Augmentation, DFS extension,
Blossom Formation, or Cycle Cancellation step.

2. Exhausted from u This means the search has visited the vertex u, extended the
search path to v via (u, v) and then backtracked to u in DFS Retraction or Null
Exploration steps.

3. Unexplored from u If (u, v) is not considered explored or exhausted from u, it
is then unexplored from u. This means the search has either yet to visit u; or
the search has visited u but never extended the active walk using the edge (u, v)
because it is ineligible for u; or it is eligible but the search has yet to explore (u, v).

Finally, the edge set Hi is the set of edges that are explored or exhausted from at
least one of its endpoints during the search. Recall this is the set we remove from
the graph Gi before termination of a phase. This completes our description of the
SEARCH-ONE procedure.

Now we state the set of invariants satisfied by SEARCH-ONE.

Invariant 3 1. Structural Invariant of Si : Si consists of a subset of edges in Gi that
are visited during the search. Every vertex in Si carries an inner tag or outer tag
or both. When a vertex is outside the active walk, all its tags are exhausted. When
it is inside the active walk, one tag is the primary tag. The other tag, if it exists,
must be exhausted. Furthermore, If v is inner, there exists an alternating walk from
r to v that ends with an unmatched edge if v ∈ Vs or a non-η edge if v ∈ Vb. If
v is outer, the alternating walk terminates with a matched edge if v ∈ Vs or an η

edge if v ∈ Vb. These walks avoid Ci .
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2. Structural Invariant of Ti : Ti is a contracted graph obtained from Si by contracting
all inclusionwise-maximal blossoms in 'i . Ti must be a tree. Some blossoms in
'i might not be represented in Ti .

3. Depth-first property of Si : The union of the active walk and the set of alternating
cycles Ci consists of precisely the edges that are explored but not exhausted from
at least one endpoint. If (u, v) is an edge in Hi but not in the active walk or the
alternating cycles, then (u, v) must be exhausted from u or v. Moreover, Si is
disjoint from Ci .

4. Maximality If (u, v) is marked exhausted from u while (v,w) is an edge eligible
for v, then the algorithm must have exhausted (v,w) from v. This holds for all
edges regardless whether they are in Si or not.

5. Parent Pointers: Fix any blossom B in 'i , possibly trivial and possibly not in Ti .
If the parent pointer τ (B) is defined, consider the path generated by following
parent pointers from B, terminating when one of the following conditions is met:
(i) the path reaches r , (ii) the next edge in the path would be in Ci , (iii) the last
vertex in the path is exhausted w.r.t. the appropriate tag, or (iv) the last vertex in
the path is in P̂. This path is well defined and is alternating.

Lemma 13 Augmentation,DFSExtension,BlossomFormation,DFSRetraction,Null
Exploration and Cycle Cancellation all preserve Invariant 3.

Proof The first invariant follows from how we grow the search structure Si and active
walk. When the active walk extends to a vertex v with the current tag outer, the active
walk must be an alternating walk ending with a matched edge or an η edge. If the tag
is inner, the active walk ends with a unmatched edge or an non-η edge. This ensures
that there exists an alternating walk from the root to each vertex in Si with a terminal
edge that is consistent with its tag. Moreover, tags are labelled exhausted if and only
if a vertex carrying the tag leaves the active walk by backtracking.

The second invariant follows from the fact that when we form a blossom in the
Blossom Formation step, the constituent (subblossoms) in 'i always come from a
connected ancestor-descendant path in Ti . Contracting a connected component in the
tree will not create any cycle and thus Ti remains a tree.

For the third invariant, observe that an edge becomes explored from an endpoint
when it joins the activewalk in aDFSExtension,BlossomFormation, orAugmentation
step. It becomes exhausted when it leaves the active walk at DFS Retraction, Null
Exploration, and Cycle Cancellation step. Moreover, in the Blossom Formation step,
sincewe are visiting vertices in descendant-to-ancestor direction, all edges in the active
walk must remain explored and edges outside active walk are exhausted. Therefore,
any edge in Hi that is not in the activewalk or alternating cyclesmust be exhausted from
at least one of its endpoints. Lastly, in blossom formation step and cycle cancellation
step, we specifically maintain at any point, the active walk never uses any edge inside
Ci .

For the fourth invariant, first notice that (u, v) becomes exhausted via aDFSRetrac-
tion step or a Null Exploration step. In both cases the search must have retracted from
v to some vertices and therefore has explored and exhausted every edge eligible for
v, including (v,w). If w is an unsaturated singleton and (v,w) is unmatched, or w is
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an unsaturated blossom vertex, an Augmentation step would have occurred when the
algorithm explores (v,w) and left the edge (v,w) explored and not exhausted.

For the fifth invariant, consider a blossom B and the path starting from B following
the parent pointers. We call this path the ancestral path from B. By the inductive
hypothesis, the ancestral path alternates until it ends by reaching r , or an exhausted
vertex, or an alternating cycle edge, or the active walk.9 Now consider how this path
may change in a Cycle Cancellation, DFS Extension, DFS Retraction, or Blossom
Formation step. In a Cycle Cancellation step, we might shorten the path by including
one of its edges in an alternating cycle; this preserves the invariant. In a DFS Extension
or Blossom Formation step, the active walk might extend into the ancestral path,
making the ancestral path terminate earlier; this also preserves the invariant. A DFS
retraction can remove the last vertex from P̂ that appears on the ancestral path. That
vertex is by definition exhausted for its tag type, so the ancestral path terminates at the
same point as before, but for a different reason. In all cases the invariant is preserved.
Finally, notice that for any blossom inside Ti , the ancestral path from that blossom
always alternates until it reaches the root r . 34

Now we state the correctness of SEARCH-ONE:

Lemma 14 When SEARCH-ONE terminates, if there is an augmenting path P ′ that
intersects Hi at some edge e, then P ′ must intersect Pi or Ci at some edge.

Proof Assume for contradiction that P ′ is edge-disjoint with Pi and Ci . Let P ′ intersect
Hi at some edge (u0, u1). Since (u0, u1) is not in Pi or Ci , (u0, u1)must be exhausted
in one of its directions, say from u0. This makes (u0, u1) eligible for u0. Now let
(u0, u1, . . . , uk) be the subpath of P ′ from u0 to the terminal vertex uk of P ′ in the
(u0, u1) direction. We use induction to show that for all 0 ≤ i < k, edges (ui , ui+1)

must be eligible for ui and exhausted from ui :
The base case i = 0 holds by our assumption. Now suppose (ui , ui+1) is exhausted

from ui for some i ≥ 0. Consider the edge (ui+1, ui+2). It is necessary that ui+1 was in
the search structure S when (ui , ui+1) is marked exhausted from ui . And ui+1 is either
inner or outer or both at this moment. In particular, at this moment ui+1 must still own
the tag that is consistent with the predecessor edge (ui , ui+1). Here, by consistent we
mean the tag defined by Definition 6 by treating the edge (ui , ui+1) as the predecessor
edge τ (ui+1). Combined with the fact that the edge (ui , ui+1) alternates with the edge
(ui+1, ui+2), it is necessary that (ui+1, ui+2) is eligible for ui+1. Hence by invariant 3,
it must also be exhausted from ui+1.

This means the edge (uk−1, uk)must be eligible for uk−1 and exhausted from uk−1.
Notice that the vertex uk and edge (uk−1, uk)must satisfy the terminal vertex and edge
requirement in Definition 4. But in this case, an augmenting walk would have been
formed when the algorithm was exploring the edge (uk−1, uk) from uk−1, which put
the edge in Pi , which is a contradiction. 34

This gives the following Lemma:

9 Getting to the activewalk does not automatically imply that you can then get to the root, since the ancestral
path might not alternate at the vertex when it first reaches the active walk
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Lemma 15 SEARCH-ONE finds in time O(miα(mi , ni )) an edge set Hi , a set of
alternating cycles Ci and an augmenting walk Pi such that any augmenting walk P ′

disjoint from Ci that intersects Hi must also intersect Pi . Here mi and ni is the number
of edges and vertices in Hi .

Proof The correctness of SEARCH-ONE is argued in Lemma 14. For running time,
notice that each edge we examined is always classified as explored or exhausted from
at least one of its endpoints. Thus, the total number of edge examinations is O(mi ).
The only non-trivial data structure needed is one for maintaining the set of blossoms,
in particular β(·), which can be solved in O(miα(mi , ni )) with the standard union-
find algorithm [24] . For reconstructing the active walk, we can use the bookkeeping
labelling in [15, Sect. 8], which enable reconstruction of the augmenting walk in time
linear in the length of the walk. 34

Lemma 16 We can find in O(mα(m, n)) a set of augmenting walks , and a set of
alternating cycles C such that any augmenting walk P ′ must intersect , or C.

Proof This algorithmcan be seen as a recursive algorithm that first callsSEARCH-ONE
on an input graph G1 = G, finding an edge set H1, a set of alternating cycles C1 and
an augmenting walk P1. It removes H1 from G1 and the corresponding part in the
f -matching to obtain G2. Then it recurses on G2. Let C′ and , ′ be the output of the
recursive call. We output C = C1 ∪ C′ and , = , ′ ∪ {P1}.

By induction, any augmenting walk P ′ in G2 must intersect, ′ or C′. Now suppose
the augmenting walk P ′ contains an edge in H1. By Lemma 15, P ′ must intersect P1
or C1. Therefore P ′ must intersect , or C.

Finding a Maximal Set of Nested Blossoms
To find a maximal set of nested blossoms in the Blossom Formation step in Edmonds’
Search, we can directly return the blossom set '′ we discovered when we performs
the Augmentation step as the maximal set of reachable blossom. We show that any
reachable blossom after the augmentation must be included in this set. Here, the
blossom as well as the alternating path from the base of the blossom to the root must
avoid , and C.

Consider a blossom B that is reachable from one of the unsaturated vertices after
the augmentation. Using a similar induction in Lemma 14, we can show that all edges
in the path from the root to the blossom B, and edges in blossom B must be explored
by the algorithm. Moreover, by the structure of the blossom, one of the edges inside
the blossom that are incident to the base must be eligible for both endpoints at some
point of the search and therefore must be explored in both direction. We show that this
necessarily triggers a blossom step.

Lemma 17 If (u, v) is an edge that is once explored from both u and v, then u and v

must be in the same blossom in '′.

Proof Notice that in depth-first search, when the algorithm explores (u, v) from both
directions, B(u) and B(v) must be ancestor/descendant of one another in Ti . Now
without loss of generality, we assume (u, v) is first explored from u. If v is a descendant
of u, since the search has already backtracked from v, the only way that v enters the
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search again is by a blossom formation step from ancestor of u to a descendant of v,
making them in the same blossom. If v is an ancestor of u, when (u, v) is explored
from v, i.e., when the search backtracks from u to v, u must still be a descendant of
v because any blossom step in this process will not change the ancestor-descendant
relation between u and v. Then we have a blossom step triggered by (u, v) and put
them in the same blossom. 34

Also notice that 'i might includes blossoms that are not reachable because of the
augmentation (say those that are disconnected from the root by an alternating cycle
or an augmenting walk). However, these blossoms are also not reachable in the Dual
Adjustment step and thus continue to have 0 dual values. They will be dissolved in
the subsequent Blossom Dissolution step.

6 Algorithms for Unweighted f -Matching and f -Edge Cover

In this section we will give an O(
√

f (V )mα(m, n)) algorithm for both maximum
cardinality f -matching and minimum cardinality f -edge cover. This is a direct conse-
quence of the O(Wmα(m, n)ε−1) algorithm for theweighted problem. This algorithm
matches the running time of [10] but does not rely on reduction to iterations of the
Micali-Vazirani algorithm [20,26,27]. Moreover, it is much simpler to state and to
analyze.

For illustration purposes we focus on maximum cardinality f -matching. The algo-
rithm consists of two phases. The first phase, referred to as batch augmentation, finds
an f -matching F that is close to optimal using an instance of the O(Wmα(m, n)ε−1)

algorithm. After F is close to optimum, we discard all dual variables y and z, dis-
solve all the blossoms in ' and use our O(mα(m, n)) augmenting walk algorithm to
increase the cardinality of F until F becomes optimum.

This is stated formally in the following theorem:

Theorem 6 A maximum cardinality f -matching can be computed in O(
√

f (V )mα

(m, n)) time.

Proof We can view the maximum cardinality f -matching problem as a maximum
weight problemwithweight functionw(e) = 1.Choose ε = 1/

√
f (V ), byTheorem3,

we can compute a (1 − 1√
f (V )

)-approximate maximum cardinality matching F in

O(
√

f (V )m) time. If F∗ is the maximum cardinality f -matching, we have

|F | ≥
(
1 − 1√

f (V )

)
|F∗| > |F∗| − 1√

f (V )
· f (V )

2
> |F∗| −

√
f (V )/2.

This means F is only O(
√

f (V )) augmentations away from optimal. Hence we
can then discard the blossom structure ' with duals y and z from the approximate
f -matching and run the O(mα(m, n)) augmenting walk algorithm of Lemma 16 in G
with respect to F until F is optimal. By the discussion above, O(

√
f (V )) iterations

suffice. The total running time of the algorithm is O(
√

f (V )mα(m, n)).

123



Algorithmica (2022) 84:1952–1992 1991

We can also use Gabow’s linear time subroutine [11] that finds one augmenting
walk at a time. This can improve the running time to O(

√
f (V )α(m, n)m) 34

Theorem 7 A minimum cardinality f -edge cover can be computed in O(
√

f (V )mα

(m, n)) time.

Proof This is similar to Theorem 6. We first use the O(Wmε−1) algorithm for
f -edge cover in Corollary 1 to find an (1 + √

f (V )
−1

)-approximate minimum car-
dinality f -edge cover F by viewing the graph as a weighted graph with weight
1 everywhere. Choosing ε = 1/

√
f (V ) will give us an f -edge cover F with

|F | ≤ |F∗|+√
f (V )

−1|F∗|. Notice that we always have |F∗| ≤ f (V ) because taking
f (v) arbitrary incident edges for each v and taking their unionwill always give a trivial
f -edge cover with cardinality at most f (V ). Hence we have |F | ≤ |F∗| + √

f (V ),
which means at most O(

√
f (V )) reductions are needed to make F optimal. Therefore

we can run the augmenting path algorithm from Lemma 16 to find reducing paths (P
is a reducing path w.r.t. F if and only if it is an augmenting path w.r.t. E \ F) until
no reducing path can be found. There are

√
f (V ) iterations in this phase. The total

running time of the algorithm is O(
√

f (V )mα(m, n)). 34
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