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ABSTRACT

It has been known since the early 1980s that Byzantine Agreement
in the full information, asynchronous model is impossible to solve
deterministically against even one crash fault [FLP 1985], but that
it can be solved with probability 1 [Ben-Or 1983], even against an
adversary that controls the scheduling of all messages and corrupts
up to f < n/3 players [Bracha 1987]. The main downside of [Ben-
Or 1983, Bracha 1987] is that they terminate with 28(n) latency in
expectation whenever f = 0(n).

King and Saia [KS 2016, KS 2018] developed a polynomial pro-
tocol (polynomial latency, polynomial local computation) that is
resilient to f < (1.14 X 10~%)n Byzantine faults. The new idea in
their protocol is to detect—and blacklist—coalitions of likely-bad
players by analyzing the deviations of random variables generated
by those players over many rounds.

In this work we design a simple collective coin-flipping protocol
such that if any coalition of faulty players repeatedly does not
follow protocol, then they will eventually be detected by one of two
simple statistical tests. Using this coin-flipping protocol, we solve
Byzantine Agreement in polynomial latency, even in the presence
of up to f < n/4 Byzantine faults. This comes close to the f < n/3
upper bound on the maximum number of faults [LSP 1982, BT 1985,
FLM 1986].
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1 INTRODUCTION

The field of forensic accounting is concerned with the detection of
fraud in financial transactions, or more generally, finding evidence
of fraud, malfeasance, or fabrication in data sets. Some examples
include detecting faked digital images [13], suspicious reports of
election data [41] and political fundraising [23], fraudulent COVID
numbers,! and manipulated economic data [1, 30, 46] via Newcomb-
Benford’s law [31], detecting fabricated data sets® in social science
research [44, 45], or detecting match-fixing in sumo wrestling [20].

Theoretical computer science has a strong tradition of embracing
a fundamentally adversarial view of the universe that borders on
being outright paranoid. Therefore it is somewhat surprising that
TCS is, as a whole, credulous when it comes to adversarial manip-
ulation of data and transactions. In other words, fraud detection
does not play a significant part in most algorithm design, even in
multi-party models that explicitly posit the existence of malicious
parties.

To our knowledge, the only work in TCS that has explicitly
adopted a forensic accounting mindset is King and Saia’s [34, 35]
breakthrough in Byzantine Agreement in the most challenging
model: the full-information (no crypto) asynchronous model against
an adaptive adversary. In this problem there are n players, each
with initial input bits in {1, 1}, up to f of which may fail (i.e., be
adaptively corrupted by the adversary) and behave arbitrarily. They
must each decide on a bit in {1, 1} subject to:

Agreement: All non-corrupt players decide the same value v.
Validity: If v is the value decided by non-corrupt players, v was
initially held by some non-corrupt player.

See Section 2.1 for details of the model. Prior to King and Saia’s
work [34, 35], it was known from Bracha [14] (see also Ben-Or [9])
that the problem could be solved with probability 1 in 2°(?) time
in expectation even if f < n/3 players fail, that f < n/3 cannot
be improved [15, 21, 36], and by Fischer, Lynch, and Patterson’s
impossibility result [22], that no deterministic protocol exists even
against a single crash failure.

King and Saia [34] reduce the problem to a certain coin-flipping
game, in which all players—good and adversarial—attempt to gen-
erate a (global) unbiased coin flip and agree on its outcome. Coin
flipping games have been studied extensively under adversarial ma-
nipulation (see Section 1.2), but the emphasis is always on bounding
the power of the adversarial players to bias the coin flip in their
desired direction. King and Saia recognized that the primary long
term advantage of the adversary is anonymity. In other words, it
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Table 1: Asynchronous Byzantine Agreement in the full information model against an adaptive adversary.

Citation [ Byzantine Faults (f) [ Expected Latency / Computation Per Round

Fischer, Lynch, Patterson 1983 | f > 1 impossible deterministically

[15, 21, 36] 1982 | f = n/3 impossible, even with randomization
f<n/5 exp(n) / poly(n)

Ben-Or 1983 | f < 0(yn) 0(1) / poly(n)

Bracha 1984 | f < n/3 exp(n) / poly(n)
f < n/400 poly(n) / exp(n)

King & Saia 2016 | £ < n/(1.1471 x 10%) | poly(n) / poly(n)

new 2021 | f <n/4 poly(n) / poly(n)

can bias the outcome of coin flips at will, in the short term, but its
advantage simply evaporates if good players can merely identify
who the adversarial players are, by detecting likely fraud via a
statistical analysis of their transactions. Good players can blacklist
(ignore) the adversarial players, removing their influence over the
game. If a sufficient number of fraudulent players are blacklisted,
collective coin-flipping by a set of good players becomes easy.

The journal version of King and Saia’s work [34] presents two
methods for blacklisting players, which leads to different fault tol-
erance levels. The first protocol has a polynomial round complexity
and requires a polynomial amount of local computation; it is claimed
to be resilient to f < (4.25 X 1077)n Byzantine faults. The second
protocol is tolerant to f < n/400 Byzantine faults, but requires
exponential local computation. In response to some issues raised by
Melynyk, Wang, and Wattenhofer (see Melynyk’s Ph.D. thesis [38,
Ch. 6]), King and Saia [35] released a corrigendum, reducing the
tolerance of the first protocol to f < (1.14 X 10~%)n.

1.1 New Results

In this paper we solve Byzantine Agreement in the full-information,
asynchronous model against an adaptive adversary, by adopting
the same forensic accounting paradigm of King and Saia [34]. We
design a coin-flipping protocol and two simple statistical tests such
that if the Byzantine players continually foil attempts to flip a fair
coin, they will be detected in a polynomial number of rounds by
at least one of the tests, so long as f < n/4. (The tests measure
individual deviation in I norm and pair-wise correlation.) Our
analysis is tight inasmuch as these two particular tests may not
detect anything when f > n/4.

One factor contributing to the low resiliency of King and Saia’s
protocols [34, 35] is that two good players may blacklist different
sets of players, making it easier for the adversary to induce dis-
agreements on the outcome of the shared coin flip. A technical
innovation in our protocol is a method to drastically reduce the
level of disagreement between the views of good players. First,
we use a fractional blacklisting scheme. Second, to ensure better
consistency across good players, we extend King and Saia’s [34]
Blackboard to an Iterated Blackboard primitive that drastically re-
duces good players’ disagreements of the historical transaction
record by allowing retroactive corrections to the record.
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1.2 Related Work

The approach of King and Saia [34] was foreshadowed several
years earlier by Lewko [37], who showed that protocols broadly
similar to Ben-Or and Bracha must have exponential latency. The
key assumption is that messages are taken at face value, without
taking into account the identity of the sender, nor the history of the
sender’s messages.

Byzantine agreement has been studied in synchronous and asyn-
chronous models, against computationally bounded or unbounded
adversaries, and with adaptive or non-adaptive adversaries. (In par-
ticular, a special case of the problem that restricts attention to crash
failures, called consensus, has been very extensively studied.) We
refer the reader to [5-7, 11, 18, 33] for some key results and surveys
of the literature. A result that is fairly close to ours is that of Kapron
et al. [29]. They proved that against a non-adaptive adversary (all
corruptions made in advance) Byzantine agreement can be solved
asynchronously, against f < n/(3 + €) faults.

Collective coin flipping has an illustrious history in computer
science, as it is a key concept in cryptography, distributed comput-
ing, and analysis of boolean functions. The problem was apparently
first raised by Blum [12], who asked how two mutually untrusted
parties could flip a shared coin over the telephone. His solution
used cryptography. See [8, 16, 17, 19, 25, 26, 39] for some recent
work on coin flipping using cryptography.

Ben-Or and Linial [10] initiated a study of full information proto-
cols for coin-flipping. The players broadcast messages one-by-one
in a specific order, and the final coin flip is a function of these mes-
sages. The goal is to minimze the influence of a coalition of k bad
players, which is, roughly speaking, the amount by which they can
bias the outcome towards heads or tails. Ben-Or and Linial’s [10]
protocol limits k < nlo8s 2 ad players to influence O(k/n). Saks [43]
and Ajtai and Linial [2] improved it to O(k/n) influence with up
to k = O(n/logn) players, and Alon and Naor [3] achieved opti-
mum O(k/n) influence for k even linear in n. The message size in
these protocols is typically more than a single bit. If only single-bit
messages are allowed and each player speaks once, the problem
is equivalent to bounding the influence of variables in a boolean
function [28]. Russel, Saks, and Zuckerman [42] considered parallel
coin-flipping protocols. The proved that any protocol that uses
1-bit messages and is resilient to linear-size coalitions must use
Q(log* n) rounds.
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Aspnes [4] considered a sequential coin-flipping game where n
coins are flipped sequentially and the outcomes broadcast, but up to
t of these may be suppressed by the adversary. Regardless of which
function is used to map the coin-flip sequence to a shared coin, the
adversary can bias it whenever ¢t = Q(+/n). Very recently Haitner
and Karidi-Heller [24] resolved the complexity of Ben-Or-Linial-
type sequential coin flipping games against an adaptive adversary,
that can corrupt players at will, as information is revealed. They
proved that any such shared coin can be fixed to a desired outcome
with probability 1 — o(1) by adaptively corrupting O(+/n) parties.

1.3 Organization

In Section 2 we review the model, the reliable broadcast primitive,
and Bracha’s Byzantine agreement protocol, and introduce the
Iterated Blackboard primitive, which generalizes [32, 34].

In Section 3 we begin with a simplified iterated coin-flipping
game and then proceed to study a more complicated iterated coin-
flipping game that can be implemented in the asynchronous dis-
tributed model and used within Bracha’s algorithm.

The full paper [27] contains proofs from Section 2 on reliable
broadcast and the iterated blackboard. It also contains some proofs
showing that a certain fractional matching algorithm has a Lipschitz

property.

2 PRELIMINARIES
2.1 The Model

There are n processes, p1, . . ., pn, and 2n® message buffers, Inj—; and
Out;,; for all i, j € [n]. All processes are initially good (they obey
the protocol) and the adversary may dynamically corrupt up to f
processes. A bad/corrupted process is under complete control of the
adversary and may behave arbitrarily. The adversary controls the
pace at which progress is made by scheduling two types of events.

e A compute(i) event lets p; process all messages in the buffers
Inj_,;, deposit new messages in Out;—, j, and change state.
o A deliver(i, j) event removes a message from Out;—; and
inserts it into In;— ;.
Note that the adversary may choose a malicious order of events, but
cannot, for example, misdeliver or forge messages. The adversary
must eventually deliver every message, and schedule compute(i)
events infinitely often.

The adversary is computationally unbounded and is aware, at
all times, of the internal state of all processes. Thus, cryptography
is not helpful, but randomness potentially is, since the adversary
cannot predict the outcome of future coin flips.

In this model, the communication time or latency is defined w.r.t. a
hypothetical execution in which all local computation occurs in-
stantaneously and all messages have latency in [0, A]. The latency
of the algorithm is L if all non-corrupt processes finish by time LA.
Note that in this hypothetical, A is unknown and cannot influence
the execution of the algorithm.

2.1.1 Reliable Broadcast. The goal of Reliable-Broadcast is to sim-
ulate a broadcast channel using the underlying point-to-point mes-
sage passing system. In Byzantine Agreement protocols, each pro-
cess initiates a series of Reliable-Broadcasts. Call m, ¢ the £th mes-
sage broadcast by process p.
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Theorem 1. Ifa good process p initiates the Reliable-Broadcast of
mp,¢, then all good processes q eventually accept my, ¢. Now suppose
a bad process p does so and some good q accepts my, ¢. Then all other
good g’ will eventually accept my ¢, and no good g’ will accept any
other m;’{, # myp p. Moreover, all good processes accept mp ¢—1 before
Mp.e, ift > 1.

The property that m, ¢ is only accepted after my 1 is accepted is
sometimes called FIFO broadcast. This property is explicitly used in
the Iterated-Blackboard algorithm outlined in Section 2.2. See [27,
Appendix] for a proof of Theorem 1.

Algorithm 1 Reliable-Broadcast(p, ¢)

1: if £ > 1 then wait until mp ;1 has been accepted.

2: if T am process p then generate my ¢ and send (init, my ¢) to
all processes.

3: wait until receipt of one (init, m,,¢) message from p, or more
than (n + f)/2 (echo, mp ) messages, or f + 1 (ready, mp,¢)
messages.

send (echo, my,¢) to all processes.

4: ‘wait until the receipt of > (n + f)/2 (echo, my ¢) messages or

f+1 (ready, mp ¢) messages.
send (ready, my ) to all processes.

5: wait until receipt of 2f + 1 (ready, my,¢) messages.

accept mp¢.

2.1.2  Validation and Bracha’s Protocol. Consider a protocol IT of
the following form. In each round r , each process reliably broad-
casts its state to all processes, waits until it has accepted at least
n — f validated messages from round r, then processes all validated
messages, changes its state, and advances to round r + 1. A good
process validates a round-r state (message) sq,- accepted from an-
other process g only if (i) it has validated the state sg,—1 of q at
round r — 1, and (ii) it has accepted n — f messages that, if they were
received by a correct g, would cause it to transition from sq,—1 to
sq,r- The key property of validation (introduced by [14]) is:

Lemma 2. A good process p validates the message of another process
q in an admissible execution a of I1 if and only if there is an execution
B of 11 in which q is a good process and the state of every other good
process (including p) is the same in a and f (with respect to their
validated messages).

To recap, reliable broadcast prevents the adversary from sending
conflicting messages to different parties (i.e., it is forced to partici-
pate as if the communication medium were a broadcast channel)
and the validation mechanism forces its internal state transitions
to be consistent with the protocol. Its remaining power is limited
to (i) substituting deterministic outcomes for coin flips in bad pro-
cesses, (ii) dynamic corruption of good processes, and (iii) malicious
scheduling.

Bracha’s protocol improves the resilience of Ben-Or’s protocol
to the optimum f < n/3. Each process p initially holds a value
up € {—1,1}. It repeats the same steps until it decides a value
v € {-1,1} (Line 8). As we will see, if some process decides v,
all good processes will decide v in this or the following iteration.
Thus, good processes continue to participate in the protocol until
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all other good processes have executed Line 8. Here sgn(x) = 1 if
x >0and -1ifx < 0.

Algorithm 2 Bracha-Agreement() from the perspective of process p

Require: vy € {-1,1}.
1: loop
2 reliably broadcast v, and wait until n — f messages are
validated from some processes S.

set vp = sgn(qus 0g).

3 reliably broadcast v, and wait until n — f messages are
validated.
if more than n/2 messages have some value v then set
vp = (dec,0).
4: reliably broadcast v, and wait until n — f messages are
validated.
let xp be the number of (dec, v) messages validated by
p.
5: if xp > 1 then
6: setvp = 0.
7: if xp > f + 1 then
8: decide v.

9: if xp = 0 then

10: vp = Coin-Flip(). > Returns value in {-1, 1}.

Correctness. Suppose that at the beginning of an iteration, there
is a set of at least (n + f + 1)/2 good processes who agree on a
value v € {-1,1}.3 It follows that in Line 2, every process hears
from atleast (n+ f+1)/2 — f > (n— f)/2 of these good processes,
i.e., a strict majority in any set of n — f. Thus, every good process
broadcasts v in Line 3, and due to the validation mechanism, any
bad process that wishes to participate in Line 3 also must broadcast
v. Thus, every good process p will eventually validate n — f > n/2
votes for v and set v, := (dec, v) indicating it is prepared to decide
v in this iteration. By the same reasoning, every good process p
will set xp :=n— f > f + 1 and decide v in Line 8.

It is impossible for p to validate two messages (dec,v) and
(dec,v”) in Line 4 with v # v’. To validate such messages, p would
need to receive strictly greater than n/2 “0” and “0’” messages in
Line 3, meaning some process successfully broadcast two distinct
messages with the same timestamp. By Theorem 1 this is impossible.

Now suppose that in some iteration p decides v in Line 8. This
means that p validated n — f messages in Line 4 and set x, > f +1.
Every other good process g must have validated at least n — 2f of
the messages that p validated, and therefore set x4 > 1, forcing it
to set vg := v in Line 6. Thus, at the beginning of the next iteration
n — f good processes agree on the value v and all decide v (Line 8)
in that iteration.*

The preceding paragraphs establish correctness. Turning to ef-
ficiency, consider any iteration in which no process decides v in

3Note that this is always numerically possible since (n + f +1)/2 < n — f with
equality if f = (n—1)/3.

4Bracha [14] sets the thresholds in Line 5 and 7 to be f +1 and 2f + 1. The idea was to
guarantee that if x, > f + 1 then at least one good process sent p a (dec, v) message.
However, because of the validation mechanism this is not important. A corrupt process
can try to send a (dec, v) message but it will not be validated unless v does, in fact,
have a strict majority (> n/2) of messages sent in Line 3.
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Line 8. We can partition the good population into G; and G, de-
pending on whether they execute Line 6 (setting v, := v) or Line 10.
If a sufficiently large number of calls to Coin-Flip() made by G-
processes returns v (specifically, (n + f +1)/2 — |Gs|) then by the
argument above, all processes will decide v (Line 8) in the next
iteration. Call this happy event E. If G = 0 then both values of v
are acceptable, which just increases the likelihood of &.

Bracha [14] and Ben-Or [9] implement Coin-Flip by each process
privately flipping an independent, unbiased coin. Thus, for any
f<n/3,Pr(&E) > 27(n=f=1) and the expected number of iterations
is at most 2©(™) If there were a mechanism to implement Coin-Flip
as a roughly unbiased shared coin (all processes in G, see the same
value; see Rabin [40] and Toueg [47]), then Pr(&) is constant and
we only need O(1) iterations in expectation. Efficient collective
coin-flipping is therefore the heart of the Byzantine Agreement
problem in this model.

2.2 The Iterated Blackboard Model

King and Saia [34] implemented a Coin-Flip() routine using a black-
board primitive, which weakens the power of the scheduling adver-
sary to give drastically different views to different processes.’ Their
blackboard protocol is resilient to f < n/4 faults. Kimmett [32] sim-
plified and improved this protocol to tolerate f < n/3 faults. In this
section, we describe a useful extension of the Kimmett-King-Saia
style blackboard that further reduces the kinds of disagreements
that good processes can have.

In the original model [32, 34], a blackboard is an m X n matrix BB,
initially all blank (L), such that column BB(-, i) is only written to by
process i. Via reliable broadcasts, process i attempts to sequentially
write non-_L values to BB(r,i), r € [m]. The scheduling power
of the adversary allows it to control the rate at which different
processes write values. Because there could be up to f crash-faults,
no process can count on BB containing more than n — f complete
columns (those i for which BB(m, i) #.1). The final BB-matrix may
therefore contain up to f partial columns.

The main guarantee of [32, 34] is that every process p has a
mostly accurate view BB(P) that agrees with the “true” blackboard
BB in all but at most f locations. In particular, the last non-L entry
of each partial column in BB may still be L in BB(P). If we were to
generate a sequence of blackboards with [32, 34], the views from
two processes could differ by f locations in each blackboard.

An iterated blackboard is an endless series BB = (BB, BBo,...)
of m X n blackboards, such that process i only attempts to write
its column in BB; once it completes participation in BB;_;. Af-
ter p finalizes BBy, p obtains a view of the full history BB(P:) =
(Bng’t), i Bng’t)) that differs from (BBy,...,BB;) in f loca-
tions in total. As a consequence, BB(P:t-1) may not be identical to
the first t — 1 matrices of BB (! ), i.e., p could record “retroactive”
updates to previous matrices while it is actively participating in the
construction of BB;.

See [27, Appendix] for proof of Theorem 3.

SFor example, in Line 2 of Bracha-Agreement, the scheduling adversary can show
p any n — f messages S, and therefore have significant control over the value of

Sgn(quS Uq)-
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Theorem 3. There is a protocol for n processes to generate an iterated
blackboard BB that is resilient to f < n/3 Byzantine failures. For
t > 1, the following properties hold:

(1) Upon completion of the matrix BB, each column consists of a
prefix of non-L values and a suffix of all- L values. Letlast(i) =
(¢’,r) be the position of the last value written by process i, i.e.,
BBy (r,i) # L and ift’ < t then i has not written to any cells
of BB;. When BB; is complete, it has at least n— f full columns
and up to f partial columns.

(2) For each t, each process p forms a history

: (p.t)
R0 B,”")

_ (pt)
=(BB,"",....,B

such that for everyt’ € [t],i € [n],r € [m],

BB(P) (1)~ BB (7 i).
g € {BBy(r,i), L}

if last(i) # (¢',r)

otherwise

(3) If q writes any non-L value to BB;y1, then by the time any
process p fixes BB p will be aware of q’s view BB(4:)
of the history up to blackboard t.

3 ITERATED COIN FLIPPING GAMES

We begin in Section 3.1 with a simplified coin-flipping game and
extend it in Section 3.2 to the real coin-flipping game we use to im-
plement Coin-Flip() in Bracha-Agreement. In the real coin-flipping
game we assign weights to the processes, which is a measure of
trustworthiness. Section 3.3 explains how the weights are updated
and Section 3.4 bounds numerical inconsistencies in different pro-
Cessors views.

3.1 A Simplified Game

In this game there are n players partitioned into n — f good players
G and f = n/(3 + €) bad players B, for some small € > 0. The good
players are unaware of the partition (G, B). The game is played
up to T times in succession according to the following rules. Let
t € [T] be the current iteration.

o The adversary privately picks an adversarial direction o(t) €
{-1,1}.6

e Fach good player i € G picks X;(t) € {-1, 1} uniformly at
random. The bad players see these values then generate their
values {X;(t)};ep, each in {1, 1}, as they like.

o If the outcome of the coin flip, sgn(3;¢ ) Xi(t)), is equal to
o(t), the game continues to iteration ¢ + 1.

From the good players’ perspective, the nominal goal of this game
is to eventually achieve the outcome sgn(X e[, Xi(t)) # o(t), but
the adversary can easily foil this goal if T = poly(n). We consider
a secondary goal: namely to identify bad players based solely on
the historical data {X;(t)}; ;. This turns out to be a tricky problem,
but we can identify a pair of processes, at least one of which is bad,
w.h.p.

®In the context of Bracha-Agreement, ¢ would be —v, where v is the value set by
processes executing Line 6.
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Lemma 4. Suppose the game does not end after T iterations. If
T = ©((n/€)?), then the pair (i, j) € [n]?, i # j, maximizing

(Xi, X;) Zx,(t)x,(t)

has BN {i,j} # 0.

Proor. If i, j € G are good, by a Chernoff-Hoeffding bound
(Xi.Xj) < B= O(VT) with high probability, thus every pair whose
inner product exceeds  must contain at least one bad process. We
now argue that there exists an i*, j* € B such that (X;x,X;x)
exceeds . Observe that

2
PRI

ieB

> XX (1) =

(i#j)eB?

2
DiXi(e)? = (me) -

ieB ieB

1)

Let S(¢) = 2};ec Xi(t) be the sum of the good processes in iteration
t. The bad players force the sign of the sum to be o(¢), i.e., sgn(S(t)+
Yiep Xi(#))o(t) = 1. Thus,

’ 5(1))?
(in(t)) Z{(() (®)

ieB

if sgn(S(t)) # o(t)
otherwise

= (max{0, —a(£)S(1)})?. ()

Let Z(t) = (max{0, —o(¢)S(t)})?. By a Chernoff-Hoeffding bound,
w.h.p. Z(t) < y = O(n) for every t. Moreover, since the distribution
of S(t) is symmetric around the origin,

E[Z(1)] > E[S(t)2 | —o(1)S(t) > 0] —(n . 3)
Thus, by linearity of expectation and Chernoff-Hoeffding, we have,
w.h.p.,

T
OE %T(n—f) —y-O(T) = %T(n—f) - O(nVT). (4)
t=1

Combining Eqns. (1), (2), and (4), we have, w.h.p.,

5, )= 3 (S -

(i#j)€eB? i€eB

> >z -
te[T]
enT/2 — O(n\/f).
®)
We lower bound the average correlation score within B by dividing

Eqn. (5) by the f(f — 1) distinct pairs i, j € B%. Using the fact that
f=n/(3+¢), we have

> 5T(n -3f) = O(nVT)

(Xir, Xje)

v

max
i*j* €B,i*# "

Jﬁ (enT/Z - O(n\ﬁ))
(B+e)e

2(f-1)

Note that the O(VT/n) term is negligible and that
O(NT) whenever T = O((n/e)?).

22T O(NT/n)

(3+€)e

2(f-1)

T>f=

[m]
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3.2 The Real Coin-Flipping Game

In this section we describe a protocol for calling Coin-Flip() iter-
atively in the context of Bracha-Agreement. It is based on a coin-
flipping game that differs from the simplified game of Section 3.1
in several respects, most of which stem from the power of the ad-
versarial scheduler to give good players slightly different views of
reality. The differences are as follows.

e The bad players are not fixed in advance, but may be cor-
rupted at various times.

Rather than picking X;(t) € {—1, 1}, the processes generate
an iterated blackboard BB where each write is a value in
{-1,1}, chosen uniformly at random if the writing process is
good. Each blackboard BB; has n columns and m = ©(n/e?)
rows. When BB; is complete, let X;(¢) be the sum of all non-
1L values in column BB; (-, i). Every player’s view of reality is

slightly different. X i(P ) () refers to p’s most up-to-date view
of Xj(t), which is initially the sum of column BBEP 4 (-, 0).
By Theorem 3, 3¢ p] Xl.(p) (1) - X,'(t)| < f for any p, t.

e Each process i has a weight w; € [0, 1], initially 1, which is
non-increasing over time. At all times, the processes main-
tain complete agreement on the weights of the actively par-
ticipating processes, i.e., those who broadcast coin flips. This
is accomplished as follows. By Theorem 3(3), if any pro-
cess g writes to BBy, every other process p learns BB(¢:-1)
by the time they finish computing BB;. Based on the his-
tory BB(@1-1), p can locally compute the weight vector

(wi(q))ie[n] of g. However, due to different views of the his-
tory, (wi(q))ie[n] may be slightly different than (wi(p))ie[n].
We reconcile these views by defining the weight of each
participating process based on its own view of history, i.e.

{ w(i) ifw.<i)
w; = i i

0 otherwise.

> Wmin

In other words, w; is drawn from the weight vector computed
by process i. Thus, by Theorem 3(3), the weight w; of any
process participating in BB; is common knowledge. (It is
fine that the weights of non-participating processes remain
uncertain.) For technical reasons, a weight is rounded down
to 0 if it is less than a small threshold, wyjn = Vnlnn/T,
where T is defined below.
e In iteration ¢, process p sets its own output of Coin-Flip()
to be sgn (Zie[n] wiXi(p)(t)). If this quantity is —o(t) for
every good process p, the game ends “naturally” (In the next
iteration of Bracha’s algorithm, all processes will decide on
a common value.)
The iterations are partitioned into O(f) epochs, each with
T = ©(n? In® n/€?) iterations, where the goal of each epoch
is to either end the game naturally or gather enough sta-
tistical evidence to reduce the weight of some processes
before the next epoch begins. This can be seen as fractional
blacklisting.
o Because the scheduling adversary can avoid delivering mes-
sages from f good processes, the resiliency of the protocol
dropsto f = n/(4+¢€). Any positive € > 0 suffices, so we can
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tolerate f as high as (n — 1)/4. In some places we simplify
calculations by assuming ¢ < 1/2.

Throughout ¢ is an arbitrarily large constant. All “with high prob-
ability” bounds hold with probability 1 — n~2(©) Since each process
flips at most m coins in each iteration, by a Chernoff-Hoeffding
bound we have

|Xi(t)| < VemInn def Xmax

holds for all i, ¢, with high probability. To simplify some arguments
we will actually enforce this bound deterministically. If X;(¢) is
not in the interval [—Xmax, Xmax], map it to the nearest value of
+Xmax-

With high probability, the weight updates always respect Invari-
ant 1, which says that the total weight-reduction of good players
is at most the weight reduction of bad players, up to an additive
error of €2f/8. This error term arises from the fact that we are

integrating slightly inconsistent weight vectors (wl.(P )) for each p
to yield (w;). With the assumption € < 1/2, Invariant 1 implies
that the total weight of good processes is always Q(n).

Invariant 1. Let G and B denote the set of good and bad processes
at any given time. Then,

Dl =wi) < 31— wy) +EXffs.
ieG i€eB
Whereas pairwise correlations alone suffice to detect bad players

in the simplified game, the bad players can win the real coin-flipping
game without being detected by this particular test. As we will see,
this can only be accomplished if {X;(t)};¢[r] differs significantly
from a binomial distribution, for some i € B. Thus, in the real
game we measure individual deviations in the l3-norm in addition
to pairwise correlations. Define dev(i) and corr(i, j) at the end
of a particular epoch as below. The iterations of the epoch are
indexed by t € [T] and throughout the epoch the weights {w;} are
unchanging.

dev(i) = > (wiXi(t)?,

te[T]

corr(i, j) = Z wiw;Xi(£)X;(t).
te[T]

Naturally each process p estimates these quantities using its view
of the historical record; let them be dev(?) (i) and corr(® (i, J).

The Gap Lemma says that if we set the deviation and correla-
tion thresholds (aT, f1) properly, no good player will exceed its
deviation budget, no pairs of good players will exceed their corre-
lation budget, but some bad player or pair involving a bad player
will be detected by one of these tests. One subtle point to keep in
mind in this section is that random variables that depend on the
coins flipped by good players can still be heavily manipulated by
the scheduling power of the adversary.” See [38, Ch. 6] for further
discussion of this issue.

7For example, by Doob’s optional stopping theorem for martingales, it is true that
E[X;(#)] = 0, but not true that the distribution of X; (¢) is symmetric around 0, or
that it is close to binomial, or that we can say anything about X; (¢) after conditioning
on some natural event, e.g., that it was derived from summing the values in a full
column of BB, (-, i).
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Lemma 5 (The Gap Lemma). Consider any epoch in which the game
does not end, and let {w;};c[pn] e process weights. Let G and B be the
good and bad processes at the end of the epoch. With high probability,

. . 2 _
(1) Every goodi € G has dev(i) < wiar, where ar = m(T +

VT(clnn)3).

(2) Every pairi,j € G has corr(i, j) < wiw;fr, where fr

mA/T(cInn)3.
(3) If the weights satisfy Invariant 1 and no processes were added
to B in this epoch, then

Z max{0, dev(i) — wizaT} + Z max{0, corr(i, j) — wiw;fr}

i€B (i#j)€B?

€
> —far.
16fT

Proor oF THE GAP LEMMA, PARTS 1 AND 2.

Part 1. Fix a good processi € Gand t € [T]. Forr € [m], let §, €
{-1,0, 1} be the outcome of its rth coin-flip, being 0 if the adversary
never lets it flip r coins in iteration ¢. Then for any r < s, E[8,ds] = 0.
This clearly holds when §5 = 0, and if the adversary lets the sth
flip occur, E[§,J5 | 85 # 0,6,] = 0 since §s € {—1, 1} is uniform
and independent of 8. Therefore, E[(X;(1))?] = E[(Z, 5)?%] =
27221 E[53] + ZrisE[(SréS] = 27221 E[(SE] <m.

Now consider the sequence of random variables (S¢);¢ [o,7] Where
So=0andS; = S;_1 + (X;(t))® — m. Since E[S; | St_1,...,S0] <
St—1, (St) is a supermartingale. For all t+ € [T] we guarantee
IX:(£)] < Xmax» 50 ISt — St—1] = [(X;())? — m| < X2,. Hence,
by Azuma’s inequality, St < XZ,.v/T(clnn) with probability
1 — exp{-(XZ2xVT(clnn))?/2TX2 .} = 1 - n~(©) Therefore,
with high probability, for all i € [n],

T

dev(i) = Z(wiXi(t))z = w?(Sp +Tm)
t=1

< WH(Tm+ X2 VT (clnn))
=wim (T ++T(cln n)3) =w? - ar.

Part 2. Fix a t € [T] and let §;, € {-1,0,1} be the outcome of
the rth coin-flip of i in iteration t. By the same argument as above,
E[Xi()X;(D)] = E[(S, 6:r) (8 815)] = 55 B8] = 0. Now
consider the sequence (S;);e[o,7] Where So = 0 and S; = S;—1 +
Xi(t)Xj(t). It follows that E[S; | St—1,...,50] = St—1,50 (S¢) isa
martingale. By assumption, for all ¢, both |X;(t)], |X;(t)| £ Xmax.
So, IS¢ = Si-1l = IXi(DIIX; ()] < X2 By Azuma’s inequality,
St < XZ.xVTclnn with probability 1 — n~2(©) Therefore, with
high probability, for all i, j,

T
corr(i, j) = Z wiw;X; (1) X (1) < WinXéaX VIclnn

t=1

=wjw;j - myT(cInn)® = wiw; - fr.

Part 3 of the Gap Lemma is proved in Lemmas 6-11. By Invari-
ant 1, the total weight loss of the good players is at most the weight
loss of the bad players plus €2 f /8. Define p to be the relative weight

]
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loss of the bad players:
p = 0is such that Zwi =(1-pf.
i€eB
Thus, at this moment ;g (1 — w;) < pf + €2f/8. Remember that
the scheduling adversary can allow the protocol to progress while

neglecting to schedule up to f good players. Thus, in Lemma 6 we
consider an arbitrary set G C G of n — 2f good players.

Lemma 6. IfInvariant 1 holds then

(1) Foranyé C G with|G|=n-—- 2f,

Z w? > (1 -max{p/2, €/8})(n - 2f).
ieG

(2) Z(ijyepr wiwj < (1- )2 f% and

(1-p)*f < Yiepwi < (1-p)f.

Proor. We first claim that, for any real numbers wy, ..., W €
[0,1], if Z];:1 wi = (1= p)k for some p € [0,1], then (1 — p)%k <
Zle \2)12 < (1 - p)k. The lower bound follows from Jensen’s in-
equality and is achieved when all weights are equal. The upper
bound follows from the fact that Wl.z < wj.

Part 1. Note that

Diegwi=n=2f =X, 5(1-wi)
>n-2f - (p+€/8)f
2
= (1- 2 (n - 2f)
> (1-max{p/2 /8})(n - 2f)
Thus the relative weight loss from G’s point of view is less than
p = max{p/2, €/8},and from the first claim of the proof, 3, _~ wl.2 >

(1 —max{p/2,¢/8})%(n - 2f).
Part 2. From the first claim of the proof with g = p, we have
(1-p)2f <Y Wl_z < (1 - p)f. For the other claim,

2(i#j)eB? WiWj = (Z wi)? — Z w;

(Invariant 1)

i€eB i€B
<(1-p)Pft-(1-p)*f
< (1-p)*f2 o

Let us recall a few key facts about the game. Before BB; is con-
structed the adversary commits to its desired direction o(¢). The
m X n matrix BB; is complete when it has n — f full columns, there-
fore the adversary must allow at least m(n — 2f) coins to be flipped
by good players. We define Si(t) to be the weighted sum of all
the coin flips flipped by good players. ILe., if the set G is stable
throughout iteration ¢ then

Sa(t) = ) wiXi(t).
ieG
If a process i were corrupted in the middle of iteration ¢ then only
a prefix of its coin flips would contribute to Sg (). If sgn(Sg(¢)) =
o(t) then the adversary is happy. For example, it can just let the
sum of the coin flips controlled by corrupted players sum up to
zero, which does not look particularly suspicious. However, if
sgn(Sg(t)) # o(t) then the adversary must counteract the good
coin flips. Due to disagreements in the state of the blackboard (see
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Lemma 10), players can disagree about the sum of blackboard en-
tries by up to f, so the adversary may only need to counteract the
good players by —a(t)Sg(t) — f. Lemma 7 lower bounds the second
moment of this objective.

Lemma 7. Forallt € [T],
E[(max{0, —o(t)S; (t) — f})?]
> m ((1 — max{p/2,¢/8})2(n)2 - f) - ef/lé) .

PROOF. LetS,,r > 0, be the weighted sum of the first m(n—2f)+r
coin flips generated by good players, and Z, = (max{0, —o(¢)S, —
f1? be the objective function for S,. The adversary can choose to
stop letting the good players flip coins at any time after m(n — 2f),
thus E[(max{0, —o(t)Sg(t) — f})?] = E[Z;f], which we argue
is at least E[Z)]. Note that if Z,_; = 0 then the adversary has
achieved the minimum objective and has no interest in further
flips, so E[Z, | Zy—1 = 0] > Z,—1.If Z,_1 > 0, then were the
adversary to allow some i € G to flip another coin, we would have
S =8,-1 +w;iby, 6 € {—1,1}, and

(—o(1)Sr—1— f+wi)? = Zr1 +2wi (=0 (D) Sr—1 — f) + w?

with probability %,

(=6(t)Sr—1 — f = wi)? = Zr_1 = 2wi (= (t)Sp—1 — f) + wiz
with probability %

Thus, E[Z, | Zr—1 > 0,16, > 0] = Zr_1 + W? > Z,_1, ie, if the
adversary is trying to minimize the objective function

(max{0, o (£)SG (1) — f1)%,

it will not allow any good coin flips beyond the bare minimum.
To lower bound E[Zy], the analysis above shows that any adver-
sary minimizing this objective will let the player i with the smallest
weight flip the next coin (thereby minimizing wiz), conditioned on
any prior history. Thus, in the worst case the n — 2f good players
with the smallest weights each flip m coins.
We compute E[Z] under this strategy. Since Sy is

n-2f m
So = Z Zwi5i,r,
i=1 r=1
where §;, € {—1,1} are fair coin flips, Pr(—o(t)Sp > 0) > by a
simple bijection argument (8; » — —J; ). Hence, E[Zy] > 1E[Zo |

—o(t)So > 0]. Continuing,
=E[(=a(1)So — f)* | =(1)So = 0]
+E[Z = (=o(1)S = f)? | ~o(1)So > 0]
> E[(-a(t)So — f)° | —o(t)So = 0] - f°
> E[(So)? | —o(£)So > 0]
= 2fE[-0a(t)So | —o(t)So > 0]
= E[(S0)°] - 2fE[ISol].
The first inequality comes from the fact that Zy # (—o(t)S — f)?

only when —o(t)Sy € [0, f) (given the conditioning) and in this
range is —(—0(t)So — f)? = —f2. The second inequality comes from

E[Zo | —~o(t)So = 0]
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expanding (—o(t)So — f)?, linearity of expectation, and the fact
that o(t)? = 1. Since E[8; 8y ] = 0 for (i,r) # (i’,r"),

o]

E[(S0)%] Z wiwy E[;r i ]

ir,i,r

(1)
We bound the expected value of |Sy| as follows
E[ISol] < VE[(S0)?] (Var[|Sol] = E[(S0)*] -

n-2f
m Z wiz < Vmn
i=1

(E[IS0ID? > 0)

(Equation 1)

E[(S0)?] = m(1 - max{p/2,¢/8})*(n - 2f).

and putting it all together we have

\%

(Lemma 6)

E[Z] > %E[Zo | —o(5)Sp > 0]
> - (BL(50*] - 2f - ElI50]1)
>~ (m(1— max{p/2,¢/8)(n - 2f) - 2f Vi)
>m ((1 —max{p/2,¢/8})2(n/2 - f) - ef/lé)

The last line follows since m = ©(n/e?).

Lemma 8. With high probability, for everyt € [T],
max {0, —o(£)Sg(t) — f}% < cmnlnn.

Proor. The total number of good coin flips is at most mn. By a
Chernoff-Hoeffding bound, S (¢) < VemnIn n with high probabil-
ity and the lemma follows. O

Lemma 9. With high probability,
T
> max{0,~(£)Sq (t) - f}*
t=1

(e 3.2 (1) ) -]

PRrOOF. Let y = ((1— max{p/2,e/8})%(n/2 — f) — ef/16). Con-
sider the sequence of random variables Ay, Ay, . .., AT, where Ay =
0and A; = A;—1 + max{0,-o(£)Sg(t) — f}? — my. By Lemma 7,
E[A; | At—1,...,Ag] = 0.So, (A;) is a submartingale. By Lemma 8,
with high probability, for all t € [T], max{0, —o(t)Sg(t) - f}? <
my’, where y’ = cnlnn. Assuming this holds, |A; — Ay—1| < my’
and, by Azuma’s inequality, A7 < —my’VTcInn with probability
1 - n~2(©) Therefore, with high probability,

p €
2’8

T
Z max{0, —o(t)Sg ()= f}2 = myT+Ar > m(yT-y’NTclnn). 0
t=1
Lemma 10. For every epoch in which no players are corrupted,

T
Dldev(+ Y. corr(ij) 2 ) max{0,—a(t)Sc(t) - f}*.
t=1

i€B (i#j)€B?
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ProoF. Define Sg(t) to be the sum of coin flips declared by
corrupted players. Le., if B were stable throughout iteration ¢ then
Sp(t) = Yijeg wiXi(t). Then

> (ss(1)?

te[T]

= > Dm0+ ) WinXi(t)Xj(t))

te[T] \ieB (i#j)eB?

= Zdev(i) + Z corr(i, j).

i€B (i+j)€B?
In iteration ¢t € [T], the adversary must convince at least one
good process p that sgn (Zi win.(p) (t)) = o(t). By Theorem 3,

i |Xi(p) (t) - Xi(t)| < f and hence the total disagreement between
p’s weighted sum and the true weighted sum is

i ® @ = wixio| = 3w 5P 0 - xio| < 1.
1 1
Thus, if —o(t)Sg(t) = f (the good players sum is in the non-
adversarial direction by at least f) the bad players must correct it
by setting o(¢)Sg(t) = —o(t)Sg(t) — f. Therefore, for any Sg(¢)
we must have (Sg(t))? > max{0, o (t)Sg(t) — f}? and the lemma
follows. o

Recall from Parts 1 and 2 of The Gap Lemma (Lemma 5) that
every good player i € G has dev(i) < w?aT and every good pair
(i, j) € G? has corr(i, j) < w;iw;fr. Lemma 11 lower bounds the
excess of the dev/corr-values involving bad players, beyond these
allowable thresholds.

Lemma 11. In any epoch in which no processes are corrupted, With
high probability,

Z max{0, dev(i) — wl.zaT} + Z max{0, corr(i, j) — wiw;fr}
i€B (i#j)eB?

€
> —for.
16fT

Proor. By Lemma 9 and Lemma 10, with high probability,

Z dev(i) + Z corr(i, j)

i€B (i#j)€B?

~f) = L) 7).

o[- 2,51 (3 )-
(1)

Recall that ar = m(T + y/T(clnn)3), fr = my/T(clnn)3, and,

by Lemma 6, that };cp wi2 < (1-p)f and X(jzj)ep wiwj <
(1 - p)%f2. Putting these together we have

2
OCTZWl- +,3T Z wiw;

icB (i%))eB?
<m (T + \/T(clnn)3) ~(1=p)f +m\T(clnn)3 - (1 - p)%f2.

@)
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The expression we wish to bound is at least (1) minus (2), namely:
m|((1 - max{p/2 /81 (n/2 - f) = ef /16 = (1 = p)f T
- (= prf+ (1= p ) VT (elnn) | )

Now depending on the larger value of p/2 and €/8, there are two
cases expanding Equation 3.

Case 1: p/2 < €/8. In this case, we simplify Equation 3 by setting
p=0.
(Equation 3)

>mT [(1— g)z (1+§)f— %v —f] - f(f+1)myT(clnn)3

2
> mT (1+§—%)f—%— }—nzm\/T(clnn)3
> gfmT — n?m\T(clnn)3 (e <1/2)

€
> —far.
l6fT

Case 2: p/2 > €/8. In this case, we expand the (1 — p/2)? term
and simplify Equation 3 using the identity n = (4 +¢€)f.

(Equation 3)
nr(2-a)a-m (2o

=mTf [(e/2)(1—p) + (1 +€/2)p*/4 — €/16] — n*m

which is minimized when p = €¢/(1 + €/2), hence

2
TP
—n’myT(clnn)3
: } - nzm\/T(clnn)3,

and since T = O(n®In® n/e?) and ar = m(T + \/T(cInn)3), with
€ < 1/2 this is lower bounded by

2
LA i] - n’mVT(cInn)3
4 16

:

T(clnn)3,

>mTf

1+€/2

7€ €

- mTf[lé T 4(1+¢/2)

€
> —far.
4fT

Remark 12. We are able to upper bound correlation scores be-
tween two good players, and lower bound the average correla-
tion score between two bad players. However, the correlations
between good and bad players cannot be usefully limited. This
is why Lemma 10 and Lemma 11 only apply to epochs in which
no processes are corrupted, since any corr(i, j) score is difficult to
analyze when i is corrupted halfway through the epoch.

3.3 Weight Updates

When the T iterations of an epoch k are complete, we reduce the
weight vector (w;) in preparation for epoch k + 1. According to
The Gap Lemma, if an individual deviation score dev(i) is too
large, i is bad w.h.p., and if a correlation score corr(i, j) is too
large, BN {i, j} # 0 w.h.p., so reducing both i and j’s weights by
the same amount preserves Invariant 1. With this end in mind,
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Weight-Update (Algorithm 3) constructs a complete, vertex- and
edge-capacitated graph G on [n], finds a fractional maximal match-
ing p in G, then docks the weights of i and j by u(i, j), for each
edge (i, j).

Definition 13 (Fractional Maximal Matching). LetG = (V, E, cy, cg)
be a graph where cy : V — Ry are vertex capacities and cg : E —
R are edge capacities. A function y : E — Ry is a feasible
fractional matching if p(i, j) < cp(i,j) and X; p(i, j) < ey (i). It
is maximal if it is not strictly dominated by any feasible y’. The
saturation level of i is 3’ j (i, j); it is saturated if this equals cy (i).
An edge (i, j) is saturated if p(i, j) = cg(i, j). (Note that contrary to
convention, a self-loop (i, i) only counts once against the capacity
of i, not twice.)

Rounding Weights Down. Recall that if p participates in a black-
board BB, that every other process can compute the weight vector
computed from p’s local view BB(Pt-1) through blackboard ¢ — 1.
The processes use a unified weight vector in which w; is derived
only from i’s local view:

) ) . :
w; = wl.(’) if wl.(l) > Wiin = ~Lpt
0 otherwise.

)

As we will see, the maximum pointwise disagreement |wl.(p

wl.(Q) | between processes p, q is at most wpin, and as a consequence,

(p)

if any p thinks w;*" = 0 then all processes agree that w; = 0.

Excess Graph. The excess graph G = (V,E,cy,cg) used in Al-
gorithm 3 is a complete undirected graph on V = [n], including
self-loops, capacitated as follows:

cy (i) = wi,
16
cg(i,i) = Far - max{0, dev(i) — wizaT},
16
ce(i, j) = Far - 2max{0, corr(i, j) — wiw;fr},

The reason for the coefficient of “2” in the definition of cg (i, j)
is that (i, j) is a single, undirected edge, but it represents two cor-
relation scores corr(i, j) = corr(j,i), which were accounted for
separately in Lemma 11. By parts 1 and 2 of The Gap Lemma,
cg (i, j) = 0 whenever both i and j are good.

The Weight-Update algorithm from the perspective of process
p is presented in Algorithm 3. We want to ensure that the frac-
tional matchings computed by good processes are numerically very
close to each other, and for this reason, we use a specific maximal
matching algorithm called Rising-Tide (Algorithm 4) that has a
continuous Lipschitz property, i.e., small perturbations to its input
yield bounded perturbations to its output. Other natural maximal
matching algorithms such as greedy do not have this property.

3.3.1 Rising Tide Algorithm. The Rising-Tide algorithm initializes
4 = 0 and simply simulates the continuous process of increasing all
(i, j)-values in lockstep, so long as i, j, and (i, j) are not saturated.
At the moment one becomes saturated, u(i, j) is frozen at its current
value.

Lemma 14. Rising-Tide (Algorithm 4) correctly returns a maximal
fractional matching.
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Algorithm 3 Weight-Update from the perspective of process p.

Output: Weights (w; )i [n] k>0 Where w; p_; refers to the weight
w; after processing epoch k — 1, and is used throughout epoch k.
1: Set w;o «— 1 for all i. > All weights are 1 in epoch 1.
2: for epoch k =1,2,..., Kmax do > Kmax = last epoch
3 Play the coin flipping game for T iterations with weights
(Wi k1) and let dev(?) and corr(?) be the resulting deviation
and correlation scores known to p. Construct the excess graph

G](CP ) with capacities:

cv (i) = wig-1,

16
cg(ii) = - max O,dev(p) D-w? a }
B0 = e max {0.dev(P) () - wh_yar
. 16 ®) s
s ) = —— - 2max {0, corr® (i, ) = w1 w1
efar ’ ’
4 U < Rising-Tide(Gy) » A maximal fractional matching
5 For each i set
(») .
wil) = wigor = e )
J
6: Once wl(;c) is known for i € [n], set
@ e, () def Vnlnn
Wi = Wik 1fwi!k > Wimin = ~
’ 0 otherwise.

Algorithm 4 Rising-Tide(G = (V, E, ¢y, cg))

1: B« {(i,j) € E| cg(i,j) > 0}.
2 p(i, j) « Oforalli,jeV.
3. while E’ # 0 do

{1 G eF
v Let pg: (1,J) = 0 otherwise.
5 Choose maximum € > 0 such that y’ = y+epp is a feasible
fractional matching.
6: Set p« p’.
7 E’ — E’—{(i,j) | i or j or (i, j) is saturated} > u(i, j)
cannot increase
8: return L.
Proor. Obvious. O

Recall that cy (i) is initialized to be the (old) weight w; and the
new weight is set to be cy (i) — X ; p(i, j). We are mainly interested
in differences in the new weight vector computed by processes that
start from slightly different graphs G, H. Lemma 15 bounds these
output differences in terms of their input differences.

Lemma 15 (Rising Tide Output). Let G = (V,E, c‘(,;, cg) and H =
(V,E, cI‘}[, cg) be two capacitated graphs, which differ by

me = > 6§ 0) - el ()
Lj
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in their edge capacities and
= 2| -l
i

in their vertex capacities. Let i and pgy be the fractional matching
computed by Rising-Tide (Algorithm 4) on G and H respectively.
Then:

Z cg(i)_Z”G(i’j) - Ce(i)—ZﬂH(LJ’) < v +21g.
/ J

i
See [27, Appendix] for a proof of Lemma 15.

3.4 Error Accumulation and Reaching
Agreement

The maximum number of epochs is Kmax = 2.5f. Let k € [1, Kmax]
be the index of the current epoch, and let w; ;_; be the weights
that were used in the execution of Coin-Flip() during epoch k.
Upon completing epoch k, each process p applies Algorithm 3 to
update the consensus weight vector (w; x_1);e[n] to produce alocal
weight vector (wi(i)) ie[n]- and then the consensus weight vector
(Wi k)ie[n] used throughout epoch k + 1.

Lemma 16 (Maintaining Invariant 1). Suppose for some € > 0 that
n=(4+e)f, m=0(n/e?), and T = ©(n?log> n/e?). At any point
in epoch k € [1, Kmax|, with high probability,

D= wiger) < (=i 1“7 (k- 1).

ieG i€eB

Proor. We prove by induction on k. For the base case k = 1 all
the weights are 1 so Lemma 16 clearly holds. We will now prove
that if the claim holds for k, it holds for k + 1 as well. Fix any good

process p. The vector (w(p )) is derived from (w; x_1) by deducting
at least as much weight from bad processes as from good processes,
with high probability, and (w; x) is derived from (w. y )qe [nlie[n]
( )

By the inductive hypothe51s

by setting w; ;. = and rounding down to 0 if it is at most wyjp.

2
(p) (p) €
(1-w )< (1- +—(k-1).
Therefore,
Z(l — Wik)
ieG
<m0 Y e~ w s v
i€eB \/_ ie[n]

where ny is the number of processes whose weight is rounded down

to 0 after epoch k.
(») (i)

i,k+1 Wl k+1

€2 /+/n. By Lemma 15, the computed weight difference between
process p and any process g can be bounded by twice the sum of
all edge capacity differences. According to Algorithm 3, the edge

Hence, it suffices to show that 3’ ;¢ [ |w. [+Wmin o <
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capacities differ due to underlying disagreement on the dev(i) and
corr(i, j) values. Thus,

|W(P)

o (‘I)l <2

;ZT (Z )dev(p) (i) — dev(® (i)’

+ Z ‘corr(‘”)(i, ) = corr'@ (i, ])‘)
i#]

By Theorem 3, two processes may only disagree in up to f cells
of the blackboards (BB, ..., BB;). Since the sum of each column
in each blackboard is bounded by Xmax, we have |deV(P) (i) -
dev(q)(i)l < 2Xpmax for at most f values of i, and | corr® (i, j) —
corr?D (i, j)| < 2Xmax for at most nf pairsi € B,j € (G U B).
Continuing,

<2 - 2Xmax +nf - 2X,
efar f max + nf max

_ 64(n+1)Ximax
- emT

< Vnlnn
- T

= Wmin

(ar = mT)

(using m = Q(n/€?))

Now the inductive step for k holds by noticing that

Z |W(P)

i€[n]

(l) | + Wmin 1o

< 2Wpin 1

2

€
<—-n using T = Q(n? log> n/e?
TS 0@ (using (n®log” n/e%))

€2

< —.
Vn
Therefore, with Kimax = 2.5f we obtain Invariant 1. That is, for any
weight vector (w;) that are used on a blackboard,

Dl-w) < Z(l—ww— 3f

ieG ieB

<Z(l—wl)+ f.

ieB

(whenever n > 576)

Note that Invariant 1 is also preserved whenever a process is
corrupted, transferring it from G to B. O

The next observation and Lemma 18 shows that the weight
of every bad process becomes 0 after running Kmax epochs of
Weight-Updates without reaching agreement.

Observation 17. For any i and k, if there exists process p such

that W(P )

k= =0, then w;; = 0.

)

Proor. In the proof of Lemma 16 it was shown that |w(p

(l)| < VYnlnn/T = wpin, hence if w(P)
down to 0. See Algorithm 3.

0, w; i is rounded
O



STOC ’22, June 20-24, 2022, Rome, Italy

Lemma 18. If agreement has not been reached after Kmax = 2.5f
epochs, all bad processes have weight 0, with high probability.

Proor. There are at most f epochs in which the adversary cor-
rupts at least one process. We argue below that after all other
epochs, in the call to Weight-Update, the total edge capacity of the
graph induced by B is at least 1. This implies that in each iteration
of Weight-Update, either some i € B with cy (i) = w; > Wpin
becomes saturated (and thereafter w; = 0 by Observation 17), or
the total weight of all processes in B drops by at least 2. The first
case can occur at most f times and the second at most f/2, hence
after Kmax = 2.5f epochs, all bad players’ weights are zero, with
high probability.

We now prove that the total edge capacity is at least 1. Recall
that each edge (i, j), i # Jj, represents the two correlation scores
corr(i, j) and corr(j,i). Hence, by Lemma 11, the sum of edge ca-
pacities on B is:

16
Z ce(i, j) = Zmax{o, dev(i) — Wizk“T}
{i.j}cB cfar\ i ’
+ Z max{0, corr(i, j) — w;xw; i fr}
(i#))€B?
16 €
= efar (EfaT) (by Lemma 5)
> 1.

Lemma 19. Suppose Invariant 1 holds. In any iteration in which
the bad processes have zero weights, the good processes agree on the
outcome of the coin flip, with constant probability.

PRrROOF. Let S = 3; w;X;(t) be the weighted sum of the players.
Through its scheduling power, the adversary may still be able to
create disagreements between good players on the outcome of the
coin-flip if S € [—f, f]. Moreover, good processes still possess Q(n)
total weight by Invariant 1. With constant probability, |S| is larger
than its standard deviation, namely ©(+/mn), which is much larger
than f as m = Q(n/€?). Thus, with constant probability all good
players agree on the outcome. O

Theorem 20. Supposen = (4 + €)f wheree > 0, m = O(n/e?),
and T = ©(n?log® n/e?). Using the implementation of Coin-Flip()
from Section 3, Bracha-Agreement solves Byzantine agreement with
probability 1 in the full information, asynchronous model against an
adaptive adversary. In expectation the total communication time is
O((n/e€)*). The local computation at each process is polynomial in n.

ProOF. By Lemma 18, after Kpax = 2.5f epochs, all bad pro-
cesses’ weights become zero, with high probability. From then
on, by Lemma 19, each iteration of Bracha-Agreement achieves
agreement with constant probability. Thus, after one more epoch,
all processes reach agreement with high probability. The total
communication time (longest chain of dependent messages) is
O((Kmax + 1)mT) = O((n/e)*). If, by chance, the processes fail
to reach agreement after this much time, they restart the algo-
rithm with all weights w; = 1 and try again. Thus, the algorithm
terminates with probability 1. O
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