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ABSTRACT
It has been known since the early 1980s that Byzantine Agreement
in the full information, asynchronous model is impossible to solve
deterministically against even one crash fault [FLP 1985], but that
it can be solved with probability 1 [Ben-Or 1983], even against an
adversary that controls the scheduling of all messages and corrupts
up to 5 < =/3 players [Bracha 1987]. The main downside of [Ben-
Or 1983, Bracha 1987] is that they terminate with 2⇥(=) latency in
expectation whenever 5 = ⇥(=).

King and Saia [KS 2016, KS 2018] developed a polynomial pro-
tocol (polynomial latency, polynomial local computation) that is
resilient to 5 < (1.14 ⇥ 10�9)= Byzantine faults. The new idea in
their protocol is to detect—and blacklist—coalitions of likely-bad
players by analyzing the deviations of random variables generated
by those players over many rounds.

In this work we design a simple collective coin-�ipping protocol
such that if any coalition of faulty players repeatedly does not
follow protocol, then they will eventually be detected by one of two
simple statistical tests. Using this coin-�ipping protocol, we solve
Byzantine Agreement in polynomial latency, even in the presence
of up to 5 < =/4 Byzantine faults. This comes close to the 5 < =/3
upper bound on the maximum number of faults [LSP 1982, BT 1985,
FLM 1986].

CCS CONCEPTS
• Theory of computation ! Distributed algorithms; Proba-
bilistic computation.
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1 INTRODUCTION
The �eld of forensic accounting is concerned with the detection of
fraud in �nancial transactions, or more generally, �nding evidence
of fraud, malfeasance, or fabrication in data sets. Some examples
include detecting faked digital images [13], suspicious reports of
election data [41] and political fundraising [23], fraudulent COVID
numbers,1 and manipulated economic data [1, 30, 46] via Newcomb-
Benford’s law [31], detecting fabricated data sets2 in social science
research [44, 45], or detecting match-�xing in sumo wrestling [20].

Theoretical computer science has a strong tradition of embracing
a fundamentally adversarial view of the universe that borders on
being outright paranoid. Therefore it is somewhat surprising that
TCS is, as a whole, credulous when it comes to adversarial manip-
ulation of data and transactions. In other words, fraud detection
does not play a signi�cant part in most algorithm design, even in
multi-party models that explicitly posit the existence of malicious
parties.

To our knowledge, the only work in TCS that has explicitly
adopted a forensic accounting mindset is King and Saia’s [34, 35]
breakthrough in Byzantine Agreement in the most challenging
model: the full-information (no crypto) asynchronousmodel against
an adaptive adversary. In this problem there are = players, each
with initial input bits in {�1, 1}, up to 5 of which may fail (i.e., be
adaptively corrupted by the adversary) and behave arbitrarily. They
must each decide on a bit in {�1, 1} subject to:
Agreement: All non-corrupt players decide the same value E .
Validity: If E is the value decided by non-corrupt players, E was

initially held by some non-corrupt player.
See Section 2.1 for details of the model. Prior to King and Saia’s
work [34, 35], it was known from Bracha [14] (see also Ben-Or [9])
that the problem could be solved with probability 1 in 2⇥(=) time
in expectation even if 5 < =/3 players fail, that 5 < =/3 cannot
be improved [15, 21, 36], and by Fischer, Lynch, and Patterson’s
impossibility result [22], that no deterministic protocol exists even
against a single crash failure.

King and Saia [34] reduce the problem to a certain coin-�ipping
game, in which all players—good and adversarial—attempt to gen-
erate a (global) unbiased coin �ip and agree on its outcome. Coin
�ipping games have been studied extensively under adversarial ma-
nipulation (see Section 1.2), but the emphasis is always on bounding
the power of the adversarial players to bias the coin �ip in their
desired direction. King and Saia recognized that the primary long
term advantage of the adversary is anonymity. In other words, it

1https://theprint.in/opinion/benfords-law-detects-data-fudging-so-we-ran-it-
through-indian-states-covid-numbers/673085/
2http://datacolada.org/98

502

https://doi.org/10.1145/3519935.3520015
https://doi.org/10.1145/3519935.3520015
https://doi.org/10.1145/3519935.3520015
https://theprint.in/opinion/benfords-law-detects-data-fudging-so-we-ran-it-through-indian-states-covid-numbers/673085/
https://theprint.in/opinion/benfords-law-detects-data-fudging-so-we-ran-it-through-indian-states-covid-numbers/673085/
http://datacolada.org/98


STOC ’22, June 20–24, 2022, Rome, Italy Shang-En Huang, Seth Pe�ie, and Leqi Zhu

Table 1: Asynchronous Byzantine Agreement in the full information model against an adaptive adversary.

Citation Byzantine Faults (5 ) Expected Latency / Computation Per Round
Fischer, Lynch, Patterson 1983 5 � 1 impossible deterministically
[15, 21, 36] 1982 5 � =/3 impossible, even with randomization

Ben-Or 1983
5 < =/5 exp(=) / poly(=)
5 < $ (p=) $ (1) / poly(=)

Bracha 1984 5 < =/3 exp(=) / poly(=)

King & Saia 2016
5 < =/400 poly(=) / exp(=)
5 < =/(1.14�1 ⇥ 109) poly(=) / poly(=)

new 2021 5 < =/4 poly(=) / poly(=)

can bias the outcome of coin �ips at will, in the short term, but its
advantage simply evaporates if good players can merely identify
who the adversarial players are, by detecting likely fraud via a
statistical analysis of their transactions. Good players can blacklist
(ignore) the adversarial players, removing their in�uence over the
game. If a su�cient number of fraudulent players are blacklisted,
collective coin-�ipping by a set of good players becomes easy.

The journal version of King and Saia’s work [34] presents two
methods for blacklisting players, which leads to di�erent fault tol-
erance levels. The �rst protocol has a polynomial round complexity
and requires a polynomial amount of local computation; it is claimed
to be resilient to 5 < (4.25 ⇥ 10�7)= Byzantine faults. The second
protocol is tolerant to 5 < =/400 Byzantine faults, but requires
exponential local computation. In response to some issues raised by
Melynyk, Wang, and Wattenhofer (see Melynyk’s Ph.D. thesis [38,
Ch. 6]), King and Saia [35] released a corrigendum, reducing the
tolerance of the �rst protocol to 5 < (1.14 ⇥ 10�9)=.

1.1 New Results
In this paper we solve Byzantine Agreement in the full-information,
asynchronous model against an adaptive adversary, by adopting
the same forensic accounting paradigm of King and Saia [34]. We
design a coin-�ipping protocol and two simple statistical tests such
that if the Byzantine players continually foil attempts to �ip a fair
coin, they will be detected in a polynomial number of rounds by
at least one of the tests, so long as 5 < =/4. (The tests measure
individual deviation in ;2 norm and pair-wise correlation.) Our
analysis is tight inasmuch as these two particular tests may not
detect anything when 5 � =/4.

One factor contributing to the low resiliency of King and Saia’s
protocols [34, 35] is that two good players may blacklist di�erent
sets of players, making it easier for the adversary to induce dis-
agreements on the outcome of the shared coin �ip. A technical
innovation in our protocol is a method to drastically reduce the
level of disagreement between the views of good players. First,
we use a fractional blacklisting scheme. Second, to ensure better
consistency across good players, we extend King and Saia’s [34]
Blackboard to an Iterated Blackboard primitive that drastically re-
duces good players’ disagreements of the historical transaction
record by allowing retroactive corrections to the record.

1.2 Related Work
The approach of King and Saia [34] was foreshadowed several
years earlier by Lewko [37], who showed that protocols broadly
similar to Ben-Or and Bracha must have exponential latency. The
key assumption is that messages are taken at face value, without
taking into account the identity of the sender, nor the history of the
sender’s messages.

Byzantine agreement has been studied in synchronous and asyn-
chronous models, against computationally bounded or unbounded
adversaries, and with adaptive or non-adaptive adversaries. (In par-
ticular, a special case of the problem that restricts attention to crash
failures, called consensus, has been very extensively studied.) We
refer the reader to [5–7, 11, 18, 33] for some key results and surveys
of the literature. A result that is fairly close to ours is that of Kapron
et al. [29]. They proved that against a non-adaptive adversary (all
corruptions made in advance) Byzantine agreement can be solved
asynchronously, against 5 < =/(3 + n) faults.

Collective coin �ipping has an illustrious history in computer
science, as it is a key concept in cryptography, distributed comput-
ing, and analysis of boolean functions. The problem was apparently
�rst raised by Blum [12], who asked how two mutually untrusted
parties could �ip a shared coin over the telephone. His solution
used cryptography. See [8, 16, 17, 19, 25, 26, 39] for some recent
work on coin �ipping using cryptography.

Ben-Or and Linial [10] initiated a study of full information proto-
cols for coin-�ipping. The players broadcast messages one-by-one
in a speci�c order, and the �nal coin �ip is a function of these mes-
sages. The goal is to minimze the in�uence of a coalition of : bad
players, which is, roughly speaking, the amount by which they can
bias the outcome towards heads or tails. Ben-Or and Linial’s [10]
protocol limits: < =log3 2 bad players to in�uence$ (:/=). Saks [43]
and Ajtai and Linial [2] improved it to $ (:/=) in�uence with up
to : = $ (=/log=) players, and Alon and Naor [3] achieved opti-
mum $ (:/=) in�uence for : even linear in =. The message size in
these protocols is typically more than a single bit. If only single-bit
messages are allowed and each player speaks once, the problem
is equivalent to bounding the in�uence of variables in a boolean
function [28]. Russel, Saks, and Zuckerman [42] considered parallel
coin-�ipping protocols. The proved that any protocol that uses
1-bit messages and is resilient to linear-size coalitions must use
⌦(log⇤ =) rounds.
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Aspnes [4] considered a sequential coin-�ipping game where =
coins are �ipped sequentially and the outcomes broadcast, but up to
C of these may be suppressed by the adversary. Regardless of which
function is used to map the coin-�ip sequence to a shared coin, the
adversary can bias it whenever C = ⌦(p=). Very recently Haitner
and Karidi-Heller [24] resolved the complexity of Ben-Or-Linial-
type sequential coin �ipping games against an adaptive adversary,
that can corrupt players at will, as information is revealed. They
proved that any such shared coin can be �xed to a desired outcome
with probability 1 � > (1) by adaptively corrupting $̃ (p=) parties.

1.3 Organization
In Section 2 we review the model, the reliable broadcast primitive,
and Bracha’s Byzantine agreement protocol, and introduce the
Iterated Blackboard primitive, which generalizes [32, 34].

In Section 3 we begin with a simpli�ed iterated coin-�ipping
game and then proceed to study a more complicated iterated coin-
�ipping game that can be implemented in the asynchronous dis-
tributed model and used within Bracha’s algorithm.

The full paper [27] contains proofs from Section 2 on reliable
broadcast and the iterated blackboard. It also contains some proofs
showing that a certain fractional matching algorithm has a Lipschitz
property.

2 PRELIMINARIES
2.1 The Model
There are = processes, ?1, . . . , ?= , and 2=2 message bu�ers, In9!8 and
Out8!9 for all 8, 9 2 [=]. All processes are initially good (they obey
the protocol) and the adversary may dynamically corrupt up to 5
processes. A bad/corrupted process is under complete control of the
adversary and may behave arbitrarily. The adversary controls the
pace at which progress is made by scheduling two types of events.

• A compute(8) event lets ?8 process all messages in the bu�ers
In9!8 , deposit new messages in Out8!9 , and change state.

• A deliver(8, 9) event removes a message from Out8!9 and
inserts it into In8!9 .

Note that the adversary may choose a malicious order of events, but
cannot, for example, misdeliver or forge messages. The adversary
must eventually deliver every message, and schedule compute(8)
events in�nitely often.

The adversary is computationally unbounded and is aware, at
all times, of the internal state of all processes. Thus, cryptography
is not helpful, but randomness potentially is, since the adversary
cannot predict the outcome of future coin �ips.

In this model, the communication time or latency is de�nedw.r.t. a
hypothetical execution in which all local computation occurs in-
stantaneously and all messages have latency in [0,�]. The latency
of the algorithm is ! if all non-corrupt processes �nish by time !�.
Note that in this hypothetical, � is unknown and cannot in�uence
the execution of the algorithm.

2.1.1 Reliable Broadcast. The goal of Reliable-Broadcast is to sim-
ulate a broadcast channel using the underlying point-to-point mes-
sage passing system. In Byzantine Agreement protocols, each pro-
cess initiates a series of Reliable-Broadcasts. Call<?,✓ the ✓th mes-
sage broadcast by process ? .

Theorem 1. If a good process ? initiates the Reliable-Broadcast of
<?,✓ , then all good processes @ eventually accept<?,✓ . Now suppose
a bad process ? does so and some good @ accepts<?,✓ . Then all other
good @0 will eventually accept<?,✓ , and no good @0 will accept any
other<0?,✓ <<?,✓ . Moreover, all good processes accept<?,✓�1 before
<?,✓ , if ✓ > 1.

The property that<?,✓ is only accepted after<?,✓�1 is accepted is
sometimes called FIFO broadcast. This property is explicitly used in
the Iterated-Blackboard algorithm outlined in Section 2.2. See [27,
Appendix] for a proof of Theorem 1.

Algorithm 1 Reliable-Broadcast(?, ✓)
1: if ✓ > 1 then wait until<?,✓�1 has been accepted.
2: if I am process ? then generate<?,✓ and send (init,<?,✓ ) to

all processes.
3: wait until receipt of one (init,<?,✓ ) message from ? , or more

than (= + 5 )/2 (echo,<?,✓ ) messages, or 5 + 1 (ready,<?,✓ )
messages.

send (echo,<?,✓ ) to all processes.
4: wait until the receipt of > (= + 5 )/2 (echo,<?,✓ ) messages or
5 + 1 (ready,<?,✓ ) messages.

send (ready,<?,✓ ) to all processes.
5: wait until receipt of 25 + 1 (ready,<?,✓ ) messages.

accept<?,✓ .

2.1.2 Validation and Bracha’s Protocol. Consider a protocol ⇧ of
the following form. In each round A , each process reliably broad-
casts its state to all processes, waits until it has accepted at least
= � 5 validated messages from round A , then processes all validated
messages, changes its state, and advances to round A + 1. A good
process validates a round-A state (message) B@,A accepted from an-
other process @ only if (i) it has validated the state B@,A�1 of @ at
round A � 1, and (ii) it has accepted =� 5 messages that, if they were
received by a correct @, would cause it to transition from B@,A�1 to
B@,A . The key property of validation (introduced by [14]) is:

Lemma 2. A good process ? validates the message of another process
@ in an admissible execution U of ⇧ if and only if there is an execution
V of ⇧ in which @ is a good process and the state of every other good
process (including ?) is the same in U and V (with respect to their
validated messages).

To recap, reliable broadcast prevents the adversary from sending
con�icting messages to di�erent parties (i.e., it is forced to partici-
pate as if the communication medium were a broadcast channel)
and the validation mechanism forces its internal state transitions
to be consistent with the protocol. Its remaining power is limited
to (i) substituting deterministic outcomes for coin �ips in bad pro-
cesses, (ii) dynamic corruption of good processes, and (iii) malicious
scheduling.

Bracha’s protocol improves the resilience of Ben-Or’s protocol
to the optimum 5 < =/3. Each process ? initially holds a value
E? 2 {�1, 1}. It repeats the same steps until it decides a value
E 2 {�1, 1} (Line 8). As we will see, if some process decides E ,
all good processes will decide E in this or the following iteration.
Thus, good processes continue to participate in the protocol until
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all other good processes have executed Line 8. Here sgn(G) = 1 if
G � 0 and �1 if G < 0.

Algorithm 2 Bracha-Agreement() from the perspective of process ?

Require: E? 2 {�1, 1}.
1: loop
2: reliably broadcast E? and wait until = � 5 messages are

validated from some processes ( .
set E? := sgn(Õ@2( E@).

3: reliably broadcast E? and wait until = � 5 messages are
validated.

if more than =/2 messages have some value E then set
E? := (dec, E).

4: reliably broadcast E? and wait until = � 5 messages are
validated.

let G? be the number of (dec, E) messages validated by
? .

5: if G? � 1 then
6: set E? := E .
7: if G? � 5 + 1 then
8: decide E .
9: if G? = 0 then
10: E? := Coin-Flip(). ù Returns value in {�1, 1}.

Correctness. Suppose that at the beginning of an iteration, there
is a set of at least (= + 5 + 1)/2 good processes who agree on a
value E 2 {�1, 1}.3 It follows that in Line 2, every process hears
from at least (= + 5 + 1)/2 � 5 > (= � 5 )/2 of these good processes,
i.e., a strict majority in any set of = � 5 . Thus, every good process
broadcasts E in Line 3, and due to the validation mechanism, any
bad process that wishes to participate in Line 3 also must broadcast
E . Thus, every good process ? will eventually validate = � 5 > =/2
votes for E and set E? := (dec, E) indicating it is prepared to decide
E in this iteration. By the same reasoning, every good process ?
will set G? := = � 5 � 5 + 1 and decide E in Line 8.

It is impossible for ? to validate two messages (dec, E) and
(dec, E 0) in Line 4 with E < E 0. To validate such messages, ? would
need to receive strictly greater than =/2 “E” and “E 0” messages in
Line 3, meaning some process successfully broadcast two distinct
messages with the same timestamp. By Theorem 1 this is impossible.

Now suppose that in some iteration ? decides E in Line 8. This
means that ? validated = � 5 messages in Line 4 and set G? � 5 + 1.
Every other good process @ must have validated at least = � 25 of
the messages that ? validated, and therefore set G@ � 1, forcing it
to set E@ := E in Line 6. Thus, at the beginning of the next iteration
= � 5 good processes agree on the value E and all decide E (Line 8)
in that iteration.4

The preceding paragraphs establish correctness. Turning to ef-
�ciency, consider any iteration in which no process decides E in

3Note that this is always numerically possible since (= + 5 + 1)/2  = � 5 with
equality if 5 = (= � 1)/3.
4Bracha [14] sets the thresholds in Line 5 and 7 to be 5 + 1 and 25 + 1. The idea was to
guarantee that if G? � 5 + 1 then at least one good process sent ? a (dec, E) message.
However, because of the validation mechanism this is not important. A corrupt process
can try to send a (dec, E) message but it will not be validated unless E does, in fact,
have a strict majority (> =/2) of messages sent in Line 3.

Line 8. We can partition the good population into ⌧6 and ⌧10, de-
pending on whether they execute Line 6 (setting E? := E) or Line 10.
If a su�ciently large number of calls to Coin-Flip() made by ⌧10-
processes returns E (speci�cally, (= + 5 + 1)/2 � |⌧6 |) then by the
argument above, all processes will decide E (Line 8) in the next
iteration. Call this happy event E. If ⌧6 = ; then both values of E
are acceptable, which just increases the likelihood of E.

Bracha [14] and Ben-Or [9] implementCoin-Flip by each process
privately �ipping an independent, unbiased coin. Thus, for any
5 < =/3, Pr(E) � 2�(=�5 �1) and the expected number of iterations
is at most 2⇥(=) . If there were a mechanism to implement Coin-Flip
as a roughly unbiased shared coin (all processes in⌧10 see the same
value; see Rabin [40] and Toueg [47]), then Pr(E) is constant and
we only need $ (1) iterations in expectation. E�cient collective
coin-�ipping is therefore the heart of the Byzantine Agreement
problem in this model.

2.2 The Iterated Blackboard Model
King and Saia [34] implemented aCoin-Flip() routine using a black-
board primitive, which weakens the power of the scheduling adver-
sary to give drastically di�erent views to di�erent processes.5 Their
blackboard protocol is resilient to 5 < =/4 faults. Kimmett [32] sim-
pli�ed and improved this protocol to tolerate 5 < =/3 faults. In this
section, we describe a useful extension of the Kimmett-King-Saia
style blackboard that further reduces the kinds of disagreements
that good processes can have.

In the original model [32, 34], a blackboard is an<⇥= matrix BB,
initially all blank (?), such that column BB(·, 8) is only written to by
process 8 . Via reliable broadcasts, process 8 attempts to sequentially
write non-? values to BB(A , 8), A 2 [<]. The scheduling power
of the adversary allows it to control the rate at which di�erent
processes write values. Because there could be up to 5 crash-faults,
no process can count on BB containing more than = � 5 complete
columns (those 8 for which BB(<, 8) <?). The �nal BB-matrix may
therefore contain up to 5 partial columns.

The main guarantee of [32, 34] is that every process ? has a
mostly accurate view BB(?) that agrees with the “true” blackboard
BB in all but at most 5 locations. In particular, the last non-? entry
of each partial column in BB may still be ? in BB(?) . If we were to
generate a sequence of blackboards with [32, 34], the views from
two processes could di�er by 5 locations in each blackboard.

An iterated blackboard is an endless series BB = (BB1,BB2, . . .)
of< ⇥ = blackboards, such that process 8 only attempts to write
its column in BBC once it completes participation in BBC�1. Af-
ter ? �nalizes BBC , ? obtains a view of the full history BB(?,C ) =
(BB(?,C )

1 , . . . ,BB(?,C )
C ) that di�ers from (BB1, . . . ,BBC ) in 5 loca-

tions in total. As a consequence, BB(?,C�1) may not be identical to
the �rst C � 1 matrices of BB(?,C ) , i.e., ? could record “retroactive”
updates to previous matrices while it is actively participating in the
construction of BBC .

See [27, Appendix] for proof of Theorem 3.

5For example, in Line 2 of Bracha-Agreement, the scheduling adversary can show
? any = � 5 messages ( , and therefore have signi�cant control over the value of
sgn(Õ@2( E@ ) .
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Theorem 3. There is a protocol for= processes to generate an iterated
blackboard BB that is resilient to 5 < =/3 Byzantine failures. For
C � 1, the following properties hold:

(1) Upon completion of the matrix BBC , each column consists of a
pre�x of non-? values and a su�x of all-? values. Let last(8) =
(C 0, A ) be the position of the last value written by process 8 , i.e.,
BBC 0 (A , 8) < ? and if C 0 < C then 8 has not written to any cells
of BBC . When BBC is complete, it has at least =� 5 full columns
and up to 5 partial columns.

(2) For each C , each process ? forms a history

BB(?,C ) = (BB(?,C )
1 , . . . ,BB(?,C )

C )

such that for every C 0 2 [C], 8 2 [=], A 2 [<],

BB(?,C )
C 0 (A , 8)

(
= BBC 0 (A , 8) if last(8) < (C 0, A )
2 {BBC 0 (A , 8),?} otherwise

(3) If @ writes any non-? value to BBC+1, then by the time any
process ? �xes BB(?,C+1) , ? will be aware of @’s view BB(@,C )

of the history up to blackboard C .

3 ITERATED COIN FLIPPING GAMES
We begin in Section 3.1 with a simpli�ed coin-�ipping game and
extend it in Section 3.2 to the real coin-�ipping game we use to im-
plementCoin-Flip() in Bracha-Agreement. In the real coin-�ipping
game we assign weights to the processes, which is a measure of
trustworthiness. Section 3.3 explains how the weights are updated
and Section 3.4 bounds numerical inconsistencies in di�erent pro-
cessors views.

3.1 A Simpli�ed Game
In this game there are = players partitioned into = � 5 good players
⌧ and 5 = =/(3 + n) bad players ⌫, for some small n > 0. The good
players are unaware of the partition (⌧,⌫). The game is played
up to ) times in succession according to the following rules. Let
C 2 [) ] be the current iteration.

• The adversary privately picks an adversarial direction f (C) 2
{�1, 1}.6

• Each good player 8 2 ⌧ picks -8 (C) 2 {�1, 1} uniformly at
random. The bad players see these values then generate their
values {-8 (C)}82⌫ , each in {�1, 1}, as they like.

• If the outcome of the coin �ip, sgn(Õ82 [=] -8 (C)), is equal to
f (C), the game continues to iteration C + 1.

From the good players’ perspective, the nominal goal of this game
is to eventually achieve the outcome sgn(Õ82 [=] -8 (C)) < f (C), but
the adversary can easily foil this goal if ) = poly(=). We consider
a secondary goal: namely to identify bad players based solely on
the historical data {-8 (C)}8,C . This turns out to be a tricky problem,
but we can identify a pair of processes, at least one of which is bad,
w.h.p.

6In the context of Bracha-Agreement, f would be �E, where E is the value set by
processes executing Line 6.

Lemma 4. Suppose the game does not end after ) iterations. If
) = ⇥̃((=/n)2), then the pair (8, 9) 2 [=]2, 8 < 9 , maximizing

⌦
-8 ,- 9

↵
=

)’
C=1

-8 (C)- 9 (C)

has ⌫ \ {8, 9} < ;.

P����. If 8, 9 2 ⌧ are good, by a Cherno�-Hoe�ding bound⌦
-8 ,- 9

↵
 V = $̃ (

p
) ) with high probability, thus every pair whose

inner product exceeds V must contain at least one bad process. We
now argue that there exists an 8¢, 9¢ 2 ⌫ such that

⌦
-8¢,- 9¢

↵
exceeds V . Observe that

’
(8<9)2⌫2

-8 (C)- 9 (C) =
 ’
82⌫

-8 (C)
!2
�

’
82⌫

(-8 (C))2 =
 ’
82⌫

-8 (C)
!2
� 5 .

(1)

Let ( (C) = Õ
82⌧ -8 (C) be the sum of the good processes in iteration

C . The bad players force the sign of the sum to bef (C), i.e., sgn(( (C)+Õ
82⌫ -8 (C))f (C) = 1. Thus,

 ’
82⌫

-8 (C)
!2
�

(
(( (C))2 if sgn(( (C)) < f (C)
0 otherwise

= (max{0,�f (C)( (C)})2 . (2)

Let / (C) = (max{0,�f (C)( (C)})2. By a Cherno�-Hoe�ding bound,
w.h.p. / (C)  W = $̃ (=) for every C . Moreover, since the distribution
of ( (C) is symmetric around the origin,

E[/ (C)] � 1
2
E[( (C)2 | �f (C)( (C) � 0] = 1

2
(= � 5 ) . (3)

Thus, by linearity of expectation and Cherno�-Hoe�ding, we have,
w.h.p.,

)’
C=1

/ (C) � 1
2
) (= � 5 ) � W · $̃ (

p
) ) =

1
2
) (= � 5 ) � $̃ (=

p
) ) . (4)

Combining Eqns. (1), (2), and (4), we have, w.h.p.,

’
(8<9)2⌫2

⌦
-8 ,- 9

↵
=

’
C 2 [) ]

©≠
´
 ’
82⌫

-8 (C)
!2
� 5 ™Æ

¨
�

’
C 2 [) ]

(/ (C) � 5 )

� 1
2
) (= � 35 ) � $̃ (=

p
) ) = n=) /2 � $̃ (=

p
) ) .
(5)

We lower bound the average correlation score within ⌫ by dividing
Eqn. (5) by the 5 (5 � 1) distinct pairs 8, 9 2 ⌫2. Using the fact that
5 = =/(3 + n), we have

max
8⇤, 9⇤ 2⌫,8⇤<9⇤

⌦
-8⇤ ,- 9⇤

↵
� 1
5 (5 � 1)

⇣
n=) /2 � $̃ (=

p
) )

⌘

� (3 + n)n
2(5 � 1)) � $̃ (

p
) /=)

Note that the $̃ (
p
) /=) term is negligible and that (3+n)n

2(5 �1)) � V =

$̃ (
p
) ) whenever ) = ⇥̃((=/n)2). ⇤
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3.2 The Real Coin-Flipping Game
In this section we describe a protocol for calling Coin-Flip() iter-
atively in the context of Bracha-Agreement. It is based on a coin-
�ipping game that di�ers from the simpli�ed game of Section 3.1
in several respects, most of which stem from the power of the ad-
versarial scheduler to give good players slightly di�erent views of
reality. The di�erences are as follows.

• The bad players are not �xed in advance, but may be cor-
rupted at various times.

• Rather than picking -8 (C) 2 {�1, 1}, the processes generate
an iterated blackboard BB where each write is a value in
{�1, 1}, chosen uniformly at random if the writing process is
good. Each blackboard BBC has = columns and< = ⇥(=/n2)
rows. When BBC is complete, let -8 (C) be the sum of all non-
? values in column BBC (·, 8). Every player’s view of reality is
slightly di�erent. - (?)

8 (C) refers to ?’s most up-to-date view
of -8 (C), which is initially the sum of column BB(?,C )

C (·, 8).
By Theorem 3,

Õ
82 [=]

���- (?)
8 (C) � -8 (C)

���  5 for any ?, C .
• Each process 8 has a weight F8 2 [0, 1], initially 1, which is
non-increasing over time. At all times, the processes main-
tain complete agreement on the weights of the actively par-
ticipating processes, i.e., those who broadcast coin �ips. This
is accomplished as follows. By Theorem 3(3), if any pro-
cess @ writes to BBC , every other process ? learns BB(@,C�1)

by the time they �nish computing BBC . Based on the his-
tory BB(@,C�1) , ? can locally compute the weight vector
(F (@)

8 )82 [=] of @. However, due to di�erent views of the his-
tory, (F (@)

8 )82 [=] may be slightly di�erent than (F (?)
8 )82 [=] .

We reconcile these views by de�ning the weight of each
participating process based on its own view of history, i.e.

F8 =
⇢
F (8)
8 ifF (8)

8 > Fmin
0 otherwise.

In other words,F8 is drawn from theweight vector computed
by process 8 . Thus, by Theorem 3(3), the weight F8 of any
process participating in BBC is common knowledge. (It is
�ne that the weights of non-participating processes remain
uncertain.) For technical reasons, a weight is rounded down
to 0 if it is less than a small threshold, Fmin =

p
= ln=/) ,

where ) is de�ned below.
• In iteration C , process ? sets its own output of Coin-Flip()
to be sgn

⇣Õ
82 [=] F8-

(?)
8 (C)

⌘
. If this quantity is �f (C) for

every good process ? , the game ends “naturally.” (In the next
iteration of Bracha’s algorithm, all processes will decide on
a common value.)

• The iterations are partitioned into $ (5 ) epochs, each with
) = ⇥(=2 ln3 =/n2) iterations, where the goal of each epoch
is to either end the game naturally or gather enough sta-
tistical evidence to reduce the weight of some processes
before the next epoch begins. This can be seen as fractional
blacklisting.

• Because the scheduling adversary can avoid delivering mes-
sages from 5 good processes, the resiliency of the protocol
drops to 5 = =/(4+n). Any positive n > 0 su�ces, so we can

tolerate 5 as high as (= � 1)/4. In some places we simplify
calculations by assuming n  1/2.

Throughout 2 is an arbitrarily large constant. All “with high prob-
ability” bounds hold with probability 1�=�⌦ (2) . Since each process
�ips at most < coins in each iteration, by a Cherno�-Hoe�ding
bound we have

|-8 (C) | 
p
2< ln= def= -max

holds for all 8, C , with high probability. To simplify some arguments
we will actually enforce this bound deterministically. If -8 (C) is
not in the interval [�-max,-max], map it to the nearest value of
±-max.

With high probability, the weight updates always respect Invari-
ant 1, which says that the total weight-reduction of good players
is at most the weight reduction of bad players, up to an additive
error of n2 5 /8. This error term arises from the fact that we are
integrating slightly inconsistent weight vectors (F (?)

8 ) for each ?
to yield (F8 ). With the assumption n  1/2, Invariant 1 implies
that the total weight of good processes is always ⌦(=).

Invariant 1. Let ⌧ and ⌫ denote the set of good and bad processes
at any given time. Then,’

82⌧
(1 �F8 ) 

’
82⌫

(1 �F8 ) + n2 5 /8.

Whereas pairwise correlations alone su�ce to detect bad players
in the simpli�ed game, the bad players canwin the real coin-�ipping
game without being detected by this particular test. As we will see,
this can only be accomplished if {-8 (C)}C 2 [) ] di�ers signi�cantly
from a binomial distribution, for some 8 2 ⌫. Thus, in the real
game we measure individual deviations in the ;2-norm in addition
to pairwise correlations. De�ne dev(8) and corr(8, 9) at the end
of a particular epoch as below. The iterations of the epoch are
indexed by C 2 [) ] and throughout the epoch the weights {F8 } are
unchanging.

dev(8) =
’

C 2 [) ]
(F8-8 (C))2,

corr(8, 9) =
’

C 2 [) ]
F8F 9-8 (C)- 9 (C) .

Naturally each process ? estimates these quantities using its view
of the historical record; let them be dev(?) (8) and corr(?) (8, 9).

The Gap Lemma says that if we set the deviation and correla-
tion thresholds (U) , V) ) properly, no good player will exceed its
deviation budget, no pairs of good players will exceed their corre-
lation budget, but some bad player or pair involving a bad player
will be detected by one of these tests. One subtle point to keep in
mind in this section is that random variables that depend on the
coins �ipped by good players can still be heavily manipulated by
the scheduling power of the adversary.7 See [38, Ch. 6] for further
discussion of this issue.

7For example, by Doob’s optional stopping theorem for martingales, it is true that
E[-8 (C ) ] = 0, but not true that the distribution of -8 (C ) is symmetric around 0, or
that it is close to binomial, or that we can say anything about-8 (C ) after conditioning
on some natural event, e.g., that it was derived from summing the values in a full
column of BBC ( ·, 8) .
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Lemma 5 (The Gap Lemma). Consider any epoch in which the game
does not end, and let {F8 }82 [=] be process weights. Let⌧ and ⌫ be the
good and bad processes at the end of the epoch. With high probability,

(1) Every good 8 2 ⌧ has dev(8)  F2
8 U) , where U) = <() +p

) (2 ln=)3).
(2) Every pair 8, 9 2 ⌧ has corr(8, 9)  F8F 9 V) , where V) =

<
p
) (2 ln=)3.

(3) If the weights satisfy Invariant 1 and no processes were added
to ⌫ in this epoch, then

’
82⌫

max{0, dev(8) �F2
8 U) } +

’
(8<9)2⌫2

max{0, corr(8, 9) �F8F 9 V) }

� n

16
5 U) .

P���� �� T�� G�� L����, P���� 1 ��� 2.

Part 1. Fix a good process 8 2 ⌧ and C 2 [) ]. For A 2 [<], let XA 2
{�1, 0, 1} be the outcome of its A th coin-�ip, being 0 if the adversary
never lets it �ip A coins in iteration C . Then for any A < B ,E[XAXB ] = 0.
This clearly holds when XB = 0, and if the adversary lets the Bth
�ip occur, E[XAXB | XB < 0, XA ] = 0 since XB 2 {�1, 1} is uniform
and independent of XA . Therefore, E[(-8 (C))2] = E[(Õ<

A=1 XA )2] =Õ<
A=1 E[X2A ] +

Õ
A<B E[XAXB ] =

Õ<
A=1 E[X2A ]  <.

Now consider the sequence of randomvariables ((C )C 2 [0,) ] where
(0 = 0 and (C = (C�1 + (-8 (C))2 �<. Since E[(C | (C�1, . . . , (0] 
(C�1, ((C ) is a supermartingale. For all C 2 [) ] we guarantee
|-8 (C) |  -max, so |(C � (C�1 | = | (-8 (C))2 �< |  - 2

max. Hence,
by Azuma’s inequality, ()  - 2

max
p
) (2 ln=) with probability

1 � exp{�(- 2
max

p
) (2 ln=))2/2)- 2

max} = 1 � =�⌦ (2) . Therefore,
with high probability, for all 8 2 [=],

dev(8) =
)’
C=1

(F8-8 (C))2 = F2
8 (() +)<)

 F2
8 ()< + - 2

max
p
) (2 ln=))

= F2
8<

⇣
) +

p
) (2 ln=)3

⌘
= F2

8 · U) .

Part 2. Fix a C 2 [) ] and let X8,A 2 {�1, 0, 1} be the outcome of
the A th coin-�ip of 8 in iteration C . By the same argument as above,
E[-8 (C)- 9 (C)] = E[(ÕA X8,A ) (

Õ
B X 9,B )] =

Õ
A ,B E[X8,AX 9,B ] = 0. Now

consider the sequence ((C )C 2 [0,) ] where (0 = 0 and (C = (C�1 +
-8 (C)- 9 (C). It follows that E[(C | (C�1, . . . , (0] = (C�1, so ((C ) is a
martingale. By assumption, for all C , both |-8 (C) |, |- 9 (C) |  -max.
So, |(C � (C�1 | = |-8 (C) | |- 9 (C) |  - 2

max. By Azuma’s inequality,
()  - 2

max
p
)2 ln= with probability 1 � =�⌦ (2) . Therefore, with

high probability, for all 8, 9 ,

corr(8, 9) =
)’
C=1

F8F 9-8 (C)- 9 (C)  F8F 9-
2
max
p
)2 ln=

= F8F 9 ·<
p
) (2 ln=)3 = F8F 9 · V) . ⇤

Part 3 of the Gap Lemma is proved in Lemmas 6–11. By Invari-
ant 1, the total weight loss of the good players is at most the weight
loss of the bad players plus n2 5 /8. De�ne d to be the relative weight

loss of the bad players:

d � 0 is such that
’
82⌫

F8 = (1 � d) 5 .

Thus, at this moment
Õ
82⌧ (1 �F8 )  d 5 + n2 5 /8. Remember that

the scheduling adversary can allow the protocol to progress while
neglecting to schedule up to 5 good players. Thus, in Lemma 6 we
consider an arbitrary set ⌧̂ ⇢ ⌧ of = � 25 good players.

Lemma 6. If Invariant 1 holds then
(1) For any ⌧̂ ✓ ⌧ with |⌧̂ | = = � 25 ,’

82⌧̂
F2
8 � (1 �max{d/2, n/8})2 (= � 25 ) .

(2)
Õ

(8<9)2⌫2 F8F 9  (1 � d)2 5 2 and
(1 � d)2 5  Õ

82⌫ F2
8  (1 � d) 5 .

P����. We �rst claim that, for any real numbers F̂1, . . . , F̂: 2
[0, 1], if Õ:

8=1 F̂8 = (1 � d̂): for some d̂ 2 [0, 1], then (1 � d̂)2: Õ:
8=1 F̂

2
8  (1 � d̂): . The lower bound follows from Jensen’s in-

equality and is achieved when all weights are equal. The upper
bound follows from the fact that F̂2

8  F̂8 .
Part 1. Note thatÕ

82⌧̂ F8 = = � 25 �
Õ
82⌧̂ (1 �F8 )

� = � 25 � (d + n2/8) 5 (Invariant 1)

= (1 � d+n2/8
2+n ) (= � 25 )

� (1 �max{d/2, n/8})(= � 25 )

Thus the relative weight loss from ⌧̂ ’s point of view is less than
d̂ = max{d/2, n/8}, and from the �rst claim of the proof,

Õ
82⌧̂ F

2
8 �

(1 �max{d/2, n/8})2 (= � 25 ).
Part 2. From the �rst claim of the proof with d̂ = d , we have

(1 � d)2 5  Õ
82⌫ F2

8  (1 � d) 5 . For the other claim,
Õ

(8<9)2⌫2 F8F 9 = (
’
82⌫

F8 )2 �
’
82⌫

F2
8

 (1 � d)2 5 2 � (1 � d)2 5
 (1 � d)2 5 2 . ⇤

Let us recall a few key facts about the game. Before BBC is con-
structed the adversary commits to its desired direction f (C). The
< ⇥= matrix BBC is complete when it has = � 5 full columns, there-
fore the adversary must allow at least<(= � 25 ) coins to be �ipped
by good players. We de�ne (⌧ (C) to be the weighted sum of all
the coin �ips �ipped by good players. I.e., if the set ⌧ is stable
throughout iteration C then

(⌧ (C) =
’
82⌧

F8-8 (C).

If a process 8 were corrupted in the middle of iteration C then only
a pre�x of its coin �ips would contribute to (⌧ (C). If sgn((⌧ (C)) =
f (C) then the adversary is happy. For example, it can just let the
sum of the coin �ips controlled by corrupted players sum up to
zero, which does not look particularly suspicious. However, if
sgn((⌧ (C)) < f (C) then the adversary must counteract the good
coin �ips. Due to disagreements in the state of the blackboard (see
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Lemma 10), players can disagree about the sum of blackboard en-
tries by up to 5 , so the adversary may only need to counteract the
good players by �f (C)(⌧ (C)� 5 . Lemma 7 lower bounds the second
moment of this objective.

Lemma 7. For all C 2 [) ],

E[(max{0,�f (C)(⌧ (C) � 5 })2]

� <
⇣
(1 �max{d/2, n/8})2 (=/2 � 5 ) � n 5 /16

⌘
.

P����. Let (A , A � 0, be theweighted sumof the �rst<(=�25 )+A
coin �ips generated by good players, and /A = (max{0,�f (C)(A �
5 })2 be the objective function for (A . The adversary can choose to
stop letting the good players �ip coins at any time after<(= � 25 ),
thus E[(max{0,�f (C)(⌧ (C) � 5 })2] = E[/25<], which we argue
is at least E[/0]. Note that if /A�1 = 0 then the adversary has
achieved the minimum objective and has no interest in further
�ips, so E[/A | /A�1 = 0] � /A�1. If /A�1 > 0, then were the
adversary to allow some 8 2 ⌧ to �ip another coin, we would have
(A = (A�1 +F8XA , XA 2 {�1, 1}, and

/A =

8>>>>><
>>>>>:

(�f (C)(A�1 � 5 +F8 )2 = /A�1 + 2F8 (�f (C)(A�1 � 5 ) +F2
8

with probability 1
2 ,

(�f (C)(A�1 � 5 �F8 )2 = /A�1 � 2F8 (�f (C)(A�1 � 5 ) +F2
8

with probability 1
2 .

Thus, E[/A | /A�1 > 0, |XA | > 0] = /A�1 + F2
8 � /A�1, i.e., if the

adversary is trying to minimize the objective function

(max{0,�f (C)(⌧ (C) � 5 })2,

it will not allow any good coin �ips beyond the bare minimum.
To lower bound E[/0], the analysis above shows that any adver-

sary minimizing this objective will let the player 8 with the smallest
weight �ip the next coin (thereby minimizingF2

8 ), conditioned on
any prior history. Thus, in the worst case the = � 25 good players
with the smallest weights each �ip< coins.

We compute E[/0] under this strategy. Since (0 is

(0 =
=�25’
8=1

<’
A=1

F8X8,A ,

where X8,A 2 {�1, 1} are fair coin �ips, Pr(�f (C)(0 � 0) � 1
2 by a

simple bijection argument (X8,A 7! �X8,A ). Hence, E[/0] � 1
2E[/0 |

�f (C)(0 � 0]. Continuing,

E[/0 | �f (C)(0 � 0] = E[(�f (C)(0 � 5 )2 | �f (C)(0 � 0]
+ E[/0 � (�f (C)(0 � 5 )2 | �f (C)(0 � 0]

� E[(�f (C)(0 � 5 )2 | �f (C)(0 � 0] � 5 2

� E[((0)2 | �f (C)(0 � 0]
� 25 E[�f (C)(0 | �f (C)(0 � 0]

= E[((0)2] � 25 E[|(0 |] .

The �rst inequality comes from the fact that /0 < (�f (C)(0 � 5 )2
only when �f (C)(0 2 [0, 5 ) (given the conditioning) and in this
range is �(�f (C)(0� 5 )2 � �5 2. The second inequality comes from

expanding (�f (C)(0 � 5 )2, linearity of expectation, and the fact
that f (C)2 = 1. Since E[X8,AX80,A 0] = 0 for (8, A ) < (8 0, A 0),

E[((0)2] = E
266664

 ’
8,A

F8X8,A

!2377775
=

’
8,A ,80,A 0

F8F80E[X8,AX80,A 0]

=<
=�25’
8=1

F2
8 . (1)

We bound the expected value of |(0 | as follows

E[|(0 |] 
p
E[((0)2] (Var[|(0 |] = E[((0)2] � (E[|(0 |])2 � 0)

=

vuut
<

=�25’
8=1

F2
8 
p
<= (Equation 1)

E[((0)2] � <(1 �max{d/2, n/8})2 (= � 25 ) . (Lemma 6)

and putting it all together we have

E[/0] �
1
2
E[/0 | �f (C)(0 � 0]

� 1
2

⇣
E[((0)2] � 25 · E[|(0 |]

⌘

� 1
2

⇣
<(1 �max{d/2, n/8})2 (= � 25 ) � 25

p
<=

⌘

� <
⇣
(1 �max{d/2, n/8})2 (=/2 � 5 ) � n 5 /16

⌘
The last line follows since< = ⇥(=/n2). ⇤

Lemma 8. With high probability, for every C 2 [) ],
max {0,�f (C)(⌧ (C) � 5 }2  2<= ln=.

P����. The total number of good coin �ips is at most<=. By a
Cherno�-Hoe�ding bound, (⌧ (C) 

p
2<= ln= with high probabil-

ity and the lemma follows. ⇤

Lemma 9. With high probability,
)’
C=1

max{0,�f (C)(⌧ (C) � 5 }2

� <
✓⇣

1 �max
n d
2
,
n

8

o⌘2 ⇣=
2
� 5

⌘
� n 5

16

◆
) � =

p
) (2 ln=)3

�
.

P����. Let W = ((1 �max{d/2, n/8})2 (=/2 � 5 ) � n 5 /16). Con-
sider the sequence of random variables �0,�1, . . . ,�) , where �0 =
0 and �C = �C�1 + max{0,�f (C)(⌧ (C) � 5 }2 �<W . By Lemma 7,
E[�C | �C�1, . . . ,�0] � 0. So, (�C ) is a submartingale. By Lemma 8,
with high probability, for all C 2 [) ], max{0,�f (C)(⌧ (C) � 5 }2 
<W 0, where W 0 = 2= ln=. Assuming this holds, |�C � �C�1 |  <W 0
and, by Azuma’s inequality, �)  �<W 0

p
)2 ln= with probability

1 � =�⌦ (2) . Therefore, with high probability,
)’
C=1

max{0,�f (C)(⌧ (C)�5 }2 =<W)+�) � <(W)�W 0
p
)2 ln=) . ⇤

Lemma 10. For every epoch in which no players are corrupted,

’
82⌫

dev(8) +
’

(8<9)2⌫2

corr(8, 9) �
)’
C=1

max{0,�f (C)(⌧ (C) � 5 }2 .
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P����. De�ne (⌫ (C) to be the sum of coin �ips declared by
corrupted players. I.e., if ⌫ were stable throughout iteration C then
(⌫ (C) =

Õ
82⌫ F8-8 (C). Then’

C 2 [) ]
((⌫ (C))2

=
’

C 2 [) ]

©≠
´
’
82⌫

(F8-8 (C))2 +
’

(8<9)2⌫2

F8F 9-8 (C)- 9 (C)™Æ
¨

=
’
82⌫

dev(8) +
’

(8<9)2⌫2

corr(8, 9).

In iteration C 2 [) ], the adversary must convince at least one
good process ? that sgn

⇣Õ
8 F8-

(?)
8 (C)

⌘
= f (C). By Theorem 3,Õ

8 |-
(?)
8 (C)�-8 (C) |  5 and hence the total disagreement between

?’s weighted sum and the true weighted sum is
’
8

���F8-
(?)
8 (C) �F8-8 (C)

��� = ’
8

F8

���- (?)
8 (C) � -8 (C)

���  5 .
Thus, if �f (C)(⌧ (C) � 5 (the good players sum is in the non-
adversarial direction by at least 5 ) the bad players must correct it
by setting f (C)(⌫ (C) � �f (C)(⌫ (C) � 5 . Therefore, for any (⌧ (C)
we must have ((⌫ (C))2 � max{0,�f (C)(⌧ (C) � 5 }2 and the lemma
follows. ⇤

Recall from Parts 1 and 2 of The Gap Lemma (Lemma 5) that
every good player 8 2 ⌧ has dev(8)  F2

8 U) and every good pair
(8, 9) 2 ⌧2 has corr(8, 9)  F8F 9 V) . Lemma 11 lower bounds the
excess of the dev/corr-values involving bad players, beyond these
allowable thresholds.

Lemma 11. In any epoch in which no processes are corrupted, With
high probability,’
82⌫

max{0, dev(8) �F2
8 U) } +

’
(8<9)2⌫2

max{0, corr(8, 9) �F8F 9 V) }

� n

16
5 U) .

P����. By Lemma 9 and Lemma 10, with high probability,’
82⌫

dev(8) +
’

(8<9)2⌫2

corr(8, 9)

� <
✓✓⇣

1 �max
n d
2
,
n

8

o⌘2 ⇣=
2
� 5

⌘
� n 5

16

◆
) � =

p
) (2 ln=)3

◆
.

(1)

Recall that U) = <() +
p
) (2 ln=)3), V) = <

p
) (2 ln=)3, and,

by Lemma 6, that
Õ
82⌫ F2

8  (1 � d) 5 and
Õ

(8<9)2⌫2 F8F 9 
(1 � d)2 5 2. Putting these together we have

U)
’
82⌫

F2
8 + V)

’
(8<9)2⌫2

F8F 9

 <
⇣
) +

p
) (2 ln=)3

⌘
· (1 � d) 5 +<

p
) (2 ln=)3 · (1 � d)2 5 2 .

(2)

The expression we wish to bound is at least (1) minus (2), namely:

<
h⇣
(1 �max{d/2, n/8})2 (=/2 � 5 ) � n 5 /16 � (1 � d) 5

⌘
)

�
⇣
(1 � d) 5 + (1 � d)2 5 2

⌘ p
) (2 ln=)3

i
(3)

Now depending on the larger value of d/2 and n/8, there are two
cases expanding Equation 3.

Case 1: d/2  n/8. In this case, we simplify Equation 3 by setting
d = 0.

(Equation 3)

� <)
⇣
1 � n

8

⌘2 ⇣
1 + n

2

⌘
5 � n 5

16
� 5

�
� 5 (5 + 1)<

p
) (2 ln=)3

� <)
✓
1 + n

4
� n

2

8

◆
5 � n 5

16
� 5

�
� =2<

p
) (2 ln=)3

� n
8
5<) � =2<

p
) (2 ln=)3 (n  1/2)

� n

16
5 U) .

Case 2: d/2 > n/8. In this case, we expand the (1 � d/2)2 term
and simplify Equation 3 using the identity = = (4 + n) 5 .
(Equation 3)

� <)
⇣=
2
� 25

⌘
(1 � d) +

⇣=
2
� 5

⌘ d2
4
� n 5

16

�
� =2<

p
) (2 ln=)3

=<) 5
⇥
(n/2) (1 � d) + (1 + n/2)d2/4 � n/16

⇤
� =2<

p
) (2 ln=)3,

which is minimized when d = n/(1 + n/2), hence

� <) 5
"
n

2

✓
1 � n

1 + n/2

◆
+ (1 + n/2)

✓
n

1 + n/2

◆2
/4 � n/16

#

� =2<
p
) (2 ln=)3

=<) 5

7n
16
� n2

4(1 + n/2)

�
� =2<

p
) (2 ln=)3,

and since ) = ⇥(=2 ln3 =/n2) and U) = <() +
p
) (2 ln=)3), with

n < 1/2 this is lower bounded by

� n
4
5 U) .

Remark 12. We are able to upper bound correlation scores be-
tween two good players, and lower bound the average correla-
tion score between two bad players. However, the correlations
between good and bad players cannot be usefully limited. This
is why Lemma 10 and Lemma 11 only apply to epochs in which
no processes are corrupted, since any corr(8, 9) score is di�cult to
analyze when 8 is corrupted halfway through the epoch.

3.3 Weight Updates
When the ) iterations of an epoch : are complete, we reduce the
weight vector (F8 ) in preparation for epoch : + 1. According to
The Gap Lemma, if an individual deviation score dev(8) is too
large, 8 is bad w.h.p., and if a correlation score corr(8, 9) is too
large, ⌫ \ {8, 9} < ; w.h.p., so reducing both 8 and 9 ’s weights by
the same amount preserves Invariant 1. With this end in mind,
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Weight-Update (Algorithm 3) constructs a complete, vertex- and
edge-capacitated graph⌧ on [=], �nds a fractional maximal match-
ing ` in ⌧ , then docks the weights of 8 and 9 by ` (8, 9), for each
edge (8, 9).
De�nition 13 (FractionalMaximalMatching). Let⌧ = (+ , ⇢, 2+ , 2⇢ )
be a graph where 2+ : + ! R�0 are vertex capacities and 2⇢ : ⇢ !
R�0 are edge capacities. A function ` : ⇢ ! R�0 is a feasible
fractional matching if ` (8, 9)  2⇢ (8, 9) and

Õ
9 ` (8, 9)  2+ (8). It

is maximal if it is not strictly dominated by any feasible ` 0. The
saturation level of 8 is

Õ
9 ` (8, 9); it is saturated if this equals 2+ (8).

An edge (8, 9) is saturated if ` (8, 9) = 2⇢ (8, 9). (Note that contrary to
convention, a self-loop (8, 8) only counts once against the capacity
of 8 , not twice.)

Rounding Weights Down. Recall that if ? participates in a black-
board BBC , that every other process can compute the weight vector
computed from ?’s local view BB(?,C�1) through blackboard C � 1.
The processes use a uni�ed weight vector in whichF8 is derived
only from 8’s local view:

F8 =

(
F (8)
8 ifF (8)

8 > Fmin =
p
= ln=
)

0 otherwise.

As we will see, the maximum pointwise disagreement |F (?)
8 �

F (@)
8 | between processes ?,@ is at mostFmin, and as a consequence,

if any ? thinksF (?)
8 = 0 then all processes agree thatF8 = 0.

Excess Graph. The excess graph ⌧ = (+ , ⇢, 2+ , 2⇢ ) used in Al-
gorithm 3 is a complete undirected graph on + = [=], including
self-loops, capacitated as follows:

2+ (8) = F8 ,

2⇢ (8, 8) =
16

n 5 U)
·max{0, dev(8) �F2

8 U) },

2⇢ (8, 9) =
16

n 5 U)
· 2max{0, corr(8, 9) �F8F 9 V) },

The reason for the coe�cient of “2” in the de�nition of 2⇢ (8, 9)
is that (8, 9) is a single, undirected edge, but it represents two cor-
relation scores corr(8, 9) = corr( 9, 8), which were accounted for
separately in Lemma 11. By parts 1 and 2 of The Gap Lemma,
2⇢ (8, 9) = 0 whenever both 8 and 9 are good.

TheWeight-Update algorithm from the perspective of process
? is presented in Algorithm 3. We want to ensure that the frac-
tional matchings computed by good processes are numerically very
close to each other, and for this reason, we use a speci�c maximal
matching algorithm called Rising-Tide (Algorithm 4) that has a
continuous Lipschitz property, i.e., small perturbations to its input
yield bounded perturbations to its output. Other natural maximal
matching algorithms such as greedy do not have this property.

3.3.1 Rising Tide Algorithm. The Rising-Tide algorithm initializes
` = 0 and simply simulates the continuous process of increasing all
` (8, 9)-values in lockstep, so long as 8 , 9 , and (8, 9) are not saturated.
At the moment one becomes saturated, ` (8, 9) is frozen at its current
value.

Lemma 14. Rising-Tide (Algorithm 4) correctly returns a maximal
fractional matching.

Algorithm 3 Weight-Update from the perspective of process ? .
Output:Weights (F8,: )82 [=],:�0 whereF8,:�1 refers to the weight
F8 after processing epoch : � 1, and is used throughout epoch : .
1: SetF8,0  1 for all 8 . ù All weights are 1 in epoch 1.
2: for epoch : = 1, 2, . . . , max do ù  max = last epoch
3: Play the coin �ipping game for ) iterations with weights

(F8,:�1) and let dev(?) and corr(?) be the resulting deviation
and correlation scores known to ? . Construct the excess graph
⌧ (?)
:

with capacities:

2+ (8) = F8,:�1,

2⇢ (8, 8) =
16

n 5 U)
·max

n
0, dev(?) (8) �F2

8,:�1U)
o
,

2⇢ (8, 9) =
16

n 5 U)
· 2max

n
0, corr(?) (8, 9) �F8,:�1F 9,:�1V)

o
.

4: `:  Rising-Tide(⌧: ) ù A maximal fractional matching
5: For each 8 set

F (?)
8,:
 F8,:�1 �

’
9

`: (8, 9).

6: OnceF (8)
8,:

is known for 8 2 [=], set

F8,: =

(
F (8)
8,:

ifF (8)
8,:

> Fmin
def=
p
= ln=
)

0 otherwise.

Algorithm 4 Rising-Tide(⌧ = (+ , ⇢, 2+ , 2⇢ ))
1: ⇢ 0  {(8, 9) 2 ⇢ | 2⇢ (8, 9) > 0}.
2: ` (8, 9)  0 for all 8, 9 2 + .
3: while ⇢ 0 < ; do

4: Let `⇢0 (8, 9) =
(
1 if (8, 9) 2 ⇢ 0
0 otherwise.

.

5: Choose maximum n > 0 such that ` 0 = ` +n`⇢0 is a feasible
fractional matching.

6: Set `  ` 0.
7: ⇢ 0  ⇢ 0 � {(8, 9) | 8 or 9 or (8, 9) is saturated} ù ` (8, 9)

cannot increase
8: return `.

P����. Obvious. ⇤

Recall that 2+ (8) is initialized to be the (old) weightF8 and the
new weight is set to be 2+ (8) �Õ

9 ` (8, 9). We are mainly interested
in di�erences in the new weight vector computed by processes that
start from slightly di�erent graphs ⌧,� . Lemma 15 bounds these
output di�erences in terms of their input di�erences.

Lemma 15 (Rising Tide Output). Let ⌧ = (+ , ⇢, 2⌧+ , 2
⌧
⇢ ) and � =

(+ , ⇢, 2�+ , 2�⇢ ) be two capacitated graphs, which di�er by

[⇢ =
’
8, 9

���2⌧⇢ (8, 9) � 2�⇢ (8, 9)
���
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in their edge capacities and

[+ =
’
8

���2⌧+ (8) � 2�+ (8)
���

in their vertex capacities. Let `⌧ and `� be the fractional matching
computed by Rising-Tide (Algorithm 4) on ⌧ and � respectively.
Then:

’
8

������
©≠
´
2⌧+ (8) �

’
9

`⌧ (8, 9)™Æ
¨
� ©≠

´
2�+ (8) �

’
9

`� (8, 9)™Æ
¨

������  [+ + 2[⇢ .

See [27, Appendix] for a proof of Lemma 15.

3.4 Error Accumulation and Reaching
Agreement

The maximum number of epochs is  max = 2.55 . Let : 2 [1, max]
be the index of the current epoch, and let F8,:�1 be the weights
that were used in the execution of Coin-Flip() during epoch : .
Upon completing epoch : , each process ? applies Algorithm 3 to
update the consensus weight vector (F8,:�1)82 [=] to produce a local
weight vector (F (?)

8,:
)82 [=] , and then the consensus weight vector

(F8,: )82 [=] used throughout epoch : + 1.

Lemma 16 (Maintaining Invariant 1). Suppose for some n > 0 that
= = (4 + n) 5 ,< = ⇥(=/n2), and ) = ⇥(=2 log3 =/n2). At any point
in epoch : 2 [1, max], with high probability,

’
82⌧

(1 �F8,:�1) 
’
82⌫

(1 �F8,:�1) +
n2p
=
· (: � 1).

P����. We prove by induction on : . For the base case : = 1 all
the weights are 1 so Lemma 16 clearly holds. We will now prove
that if the claim holds for : , it holds for : + 1 as well. Fix any good
process ? . The vector (F (?)

8,:
) is derived from (F8,:�1) by deducting

at least as much weight from bad processes as from good processes,
with high probability, and (F8,: ) is derived from (F (@)

8,:
)@2 [=],82 [=]

by settingF8,: = F (8)
8,:

and rounding down to 0 if it is at mostFmin.
By the inductive hypothesis,

’
82⌧

(1 �F (?)
8,:

) 
’
82⌫

(1 �F (?)
8,:

) + n2p
=
· (: � 1) .

Therefore,

’
82⌧

(1 �F8,: )


’
82⌫

(1 �F8,: ) +
n2p
=
· (: � 1) +

’
82 [=]

|F (?)
8,:
�F (8)

8,:
| +Fmin=0,

where =0 is the number of processes whose weight is rounded down
to 0 after epoch : .

Hence, it su�ces to show that
Õ
82 [=] |F

(?)
8,:+1�F

(8)
8,:+1 |+Fmin=0 

n2/p=. By Lemma 15, the computed weight di�erence between
process ? and any process @ can be bounded by twice the sum of
all edge capacity di�erences. According to Algorithm 3, the edge

capacities di�er due to underlying disagreement on the dev(8) and
corr(8, 9) values. Thus,

|F (?)
@,:
�F (@)

@,:
|  2 · 16

n 5 U)

 ’
8

���dev(?) (8) � dev(@) (8)���

+
’
8<9

���corr(?) (8, 9) � corr(@) (8, 9)���
!

By Theorem 3, two processes may only disagree in up to 5 cells
of the blackboards (BB1, . . . ,BBC ). Since the sum of each column
in each blackboard is bounded by -max, we have | dev(?) (8) �
dev(@) (8) | < 2-max for at most 5 values of 8 , and | corr(?) (8, 9) �
corr(@) (8, 9) | < 2-max for at most =5 pairs 8 2 ⌫, 9 2 (⌧ [ ⌫).
Continuing,

 2 · 16
n 5 U)

✓
5 · 2-max + =5 · 2-max

◆

 64(= + 1)-max
n<)

(U) � <) )


p
= ln=
)

(using< = ⌦(=/n2))
= Fmin

Now the inductive step for : holds by noticing that’
82 [=]

|F (?)
8,:
�F (8)

8,:
| +Fmin=0

 2Fmin=

 n2

=1.5 log2.5 =
· = (using ) = ⌦(=2 log3 =/n2))

<
n2p
=
.

Therefore, with  max = 2.55 we obtain Invariant 1. That is, for any
weight vector (F8 ) that are used on a blackboard,

’
82⌧

(1 �F8 ) 
’
82⌫

(1 �F8 ) +
n2p
=
· 35


’
82⌫

(1 �F8 ) +
1
8
n2 5 . (whenever = � 576)

Note that Invariant 1 is also preserved whenever a process is
corrupted, transferring it from ⌧ to ⌫. ⇤

The next observation and Lemma 18 shows that the weight
of every bad process becomes 0 after running  max epochs of
Weight-Updates without reaching agreement.

Observation 17. For any 8 and : , if there exists process ? such
thatF (?)

8,:
= 0, thenF8,: = 0.

P����. In the proof of Lemma 16 it was shown that |F (?)
8,:
�

F (8)
8,:

| 
p
= ln=/) = Fmin , hence if F (?)

8,:
= 0, F8,: is rounded

down to 0. See Algorithm 3. ⇤
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Lemma 18. If agreement has not been reached after  max = 2.55
epochs, all bad processes have weight 0, with high probability.

P����. There are at most 5 epochs in which the adversary cor-
rupts at least one process. We argue below that after all other
epochs, in the call toWeight-Update, the total edge capacity of the
graph induced by ⌫ is at least 1. This implies that in each iteration
of Weight-Update, either some 8 2 ⌫ with 2+ (8) = F8 > Fmin
becomes saturated (and thereafter F8 = 0 by Observation 17), or
the total weight of all processes in ⌫ drops by at least 2. The �rst
case can occur at most 5 times and the second at most 5 /2, hence
after  max = 2.55 epochs, all bad players’ weights are zero, with
high probability.

We now prove that the total edge capacity is at least 1. Recall
that each edge (8, 9), 8 < 9 , represents the two correlation scores
corr(8, 9) and corr( 9, 8). Hence, by Lemma 11, the sum of edge ca-
pacities on ⌫ is:

’
{8, 9 }⇢⌫

2⇢ (8, 9) =
16

n 5 U)

 ’
82⌫

max{0, dev(8) �F2
8,:U) }

+
’

(8<9)2⌫2

max{0, corr(8, 9) �F8,:F 9,:V) }
!

� 16
n 5 U)

⇣ n
16
5 U)

⌘
(by Lemma 5)

� 1. ⇤

Lemma 19. Suppose Invariant 1 holds. In any iteration in which
the bad processes have zero weights, the good processes agree on the
outcome of the coin �ip, with constant probability.

P����. Let ( =
Õ
8 F8-8 (C) be the weighted sum of the players.

Through its scheduling power, the adversary may still be able to
create disagreements between good players on the outcome of the
coin-�ip if ( 2 [�5 , 5 ]. Moreover, good processes still possess ⌦(=)
total weight by Invariant 1. With constant probability, |( | is larger
than its standard deviation, namely ⇥(p<=), which is much larger
than 5 as< = ⌦(=/n2). Thus, with constant probability all good
players agree on the outcome. ⇤

Theorem 20. Suppose = = (4 + n) 5 where n > 0, < = ⇥(=/n2),
and ) = ⇥(=2 log3 =/n2). Using the implementation of Coin-Flip()
from Section 3, Bracha-Agreement solves Byzantine agreement with
probability 1 in the full information, asynchronous model against an
adaptive adversary. In expectation the total communication time is
$̃ ((=/n)4). The local computation at each process is polynomial in =.

P����. By Lemma 18, after  max = 2.55 epochs, all bad pro-
cesses’ weights become zero, with high probability. From then
on, by Lemma 19, each iteration of Bracha-Agreement achieves
agreement with constant probability. Thus, after one more epoch,
all processes reach agreement with high probability. The total
communication time (longest chain of dependent messages) is
$ (( max + 1)<) ) = $̃ ((=/n)4). If, by chance, the processes fail
to reach agreement after this much time, they restart the algo-
rithm with all weights F8 = 1 and try again. Thus, the algorithm
terminates with probability 1. ⇤
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