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ABSTRACT

A k-vertex connectivity oracle for undirected G is a data structure
that, given u, v € V(G), reports min{k, x(u, v) }, where k(u, v) is the
pairwise vertex connectivity between u, v. There are three main
measures of efficiency: construction time, query time, and space.
Prior work of Izsak and Nutov [Inf. Process. Lett. 2012] shows
that a data structure of total size O(knlog n), which can even be
encoded as a O(k log® n)-bit labeling scheme, can answer vertex-
connectivity queries in O(k logn) time. The construction time is
polynomial, but unspecified.

In this paper we address the top three complexity measures.

The first is the space consumption. We prove that any k-vertex
connectivity oracle requires Q(kn) bits of space. This answers a
long-standing question on the structural complexity of vertex con-
nectivity, and gives a strong separation between the complexity of
vertex- and edge-connectivity. Both Izsak and Nutov [Inf. Process.
Lett. 2012] and the data structure we will present in this work match
this lower bound up to polylogarithmic factors.

The second is the query time. We answer queries in O(logn)
time, independent of k, improving on Q(k log n) time of Izsak and
Nutov [Inf. Process. Lett. 2012]. The main idea is to build instances
of SetIntersection data structures, with additional structure based
on affine planes. This structure allows for optimum query time that
is linear in the output size (This evades the general k1/2=0(1) and
k'=°() lower bounds on Setlntersection from the 3SUM or OMv
hypotheses, resp. Kopelowitz et al. [SODA 2016] and Henzinger et
al. [STOC 2015].)

The third is the construction time. We build the data structure in
time of roughly a max-flow computation on a unit-capacity graph,
which is m*/3+0(1) using state-of-the-art algorithm by Tarun et al.
[FOCS 2020]. Max-flow is a natural barrier for many problems that
have an all-pairs-min-cut flavor. The main technical contribution
here is a fast algorithm for computing a k-bounded version of a
Gomory-Hu tree for element connectivity, a notion that generalizes
edge and vertex connectivity.
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1 INTRODUCTION

Most measures of graph connectivity can be computed in poly-
nomial time, and much of the recent work in graph algorithms
aims at reducing these complexities to some natural barrier, either
near-linear [26, 29, 30, 43, 44, 54, 60, 63], max-flow-time [49, 50],
or matrix-multiplication-time [1, 13]. Graph connectivity has also
been extensively studied from a structural perspective, where the
aims are to understand the structure of some/all minimum cuts.
This genre includes Gomory-Hu trees [33], the cactus representa-
tion [17], block-trees, SPQR-trees, and extensions to higher vertex
connectivity [4, 15, 42, 58], and many others [6, 7, 18-23, 25, 31, 32,
35, 59].

In this paper we study the data structural approach to under-
standing graph connectivity, which incorporates elements of the
algorithmic and structural camps, but goes further in that we want
to be able to efficiently query the connectivity, e.g., either ask for
the size of a min-cut or the min-cut itself.

Suppose we are given an undirected graph G and wish to be
able to answer pairwise edge- and vertex-connectivities up to some
threshold k. Let A(u,v) and x(u,v) be the maximum number of
edge-disjoint and internally vertex-disjoint paths, resp., between u
to v. By Menger’s theorem, these are equal to the minimum number
of edges and vertices, resp., necessary to disconnect u and v.!

e-conn(u,v) : Return min{A(u,v), k}.

e-cut(u,v) : If A(u,0) < k, return an edge-cut separating u, v
with size A(u,v).

v-conn(u,v) : Return min{x(u,v), k}.

v-cut(u,0) : If k(u,0) <k, return a vertex-cut separating u, v
with size k(u, v).

The edge-connectivity problems are close to being solved. Gomory-
Hu tree T [33] (aka cut equivalent tree) is an edge-weighted tree
such that the bottleneck edge e between any u, v has weight A(u, ),
and the partition defined by T — {e} corresponds to a A(u, v)-edge
cut, which can be explicitly associated with e if we wish to also
answer e-cut queries. Bottleneck queries can be answered in O(1)
time with O(nlogn) preprocessing and O(n) space, or O(a(n))

UIf {u, v} € E, then k(u, v) represents the size of a mixed cut separating u, v consisting
of {u, v} and k(u, v) — 1 other vertices.
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time with O(n) preprocessing and O(n) space; see [9, 16, 57].> The
time to compute the full Gomory-Hu tree is é(m3/2n1/6) [2] and
there are faster O(n?)-time algorithms on simple graphs [3, 52] or
O(m + nk3)-time algorithms [36] for representing connectivity up
to k.

Thus, e-conn-queries can be answered in O(1) time by a data
structure occupying space O(n) It is a long-standing open prob-
lem whether a similar result is possible for v-conn-queries. In 1979
Schnorr [61] proposed a cut-equivalent tree for roundtrip flow® in
directed graphs, and in 1990 Gusfield and Naor [34] used Schnorr’s
result to build a Gomory-Hu-type tree for vertex connectivity.
Benczur [5] found errors in Schnorr [61] and Gusfield and Naor [34],
and proved more generally that there is no cut-equivalent tree for
vertex connectivity. Benczur [5, pp. 505-506] suggested a way to get
a flow-equivalent tree for roundtrip flow using a result of Cheng
and Hu [12], which would yield a Gomory-Hu-type tree suitable
for answering v-conn (but not v-cut) queries. This too, turned out
to be incorrect. Hassin and Levin [37] gave an example of a vertex-
capacitated graph (integer capacities in [1, n© (1) that has Q(n?)
distinct pairwise vertex connectivities, which cannot be captured
by a Gomory-Hu-type tree representation.*

When the underlying graph has unit capacity, the counterexam-
ples of [5, 37] do not rule out a representation of vertex-connectivity
using, say, O(1) trees, nor do they rule out some completely differ-
ent O(n)—space structure for answering v-conn-queries, indepen-
dent of k.

Most prior data structures supporting v-conn queries were actu-
ally labeling schemes.

Le., a vertex labeling ¢ : V — {0,1}" is created such that a
v-conn(u,v) query is answered by inspecting £(u), £(v). Katz, Katz,
Korman, and Peleg [46] initiated this line of research into labeling
for connectivity. They proved that the maximum label length to
answer v-conn queries is Q(klog(n/k3)) and o2k logn). To be
specific, they give a class of graphs for which a ©(1/k?)-fraction of
the vertices require Q(k log(n/k3))-bit labels. However, this does
not imply any non-trivial bound on the average/total label length.
Their upper bound was subsequently improved to O(k> log n) [48]
and then to O(k?logn) [39].° Using a different approach, Izsak
and Nutov [40] gave an O(k log® n)-bit labeling scheme for v-conn
queries. A centralized version of the data structure takes O(kn log n)
total space® and can be augmented to support v-cut queries with
O(Kk%nlog n) total space.

2These upper and lower bounds are in the comparison model. When G is unweighted,
all min-cut values are integers in [1, n), which can be sorted in linear time. In this
case O(n) preprocesssing for O(1)-time queries is possible.

*min{f (u,0), f (v,u) }

#Hassin and Levin [37] pointed out that Benczur’s proposal yields a Gomory-Hu-type
tree representation for vertex “separations” in a capacitated graph G = (V,E,c: V —
R*). The minimum separation of u, v is the minimum of ¢ (u), ¢(v), and the minimum
¢(K) over all vertex cuts K disconnecting u, v.

5The labeling schemes of Katz et al. [46], Korman [48], and Hsu and Lu [39] differ-
entiate between x (1, v) > ko and x(u,v) < ko using labels of size O(2%0 logn),
O(kZlogn),and O (ko log n), respectively. They can be used to answer v-conn queries
by concatenating labels for all kg = 1,2, ..., k, thereby introducing an O (k)-factor
overhead in [39, 48].

®Following convention, the space of centralized data structures is measured in
O(log n)-bit words and labeling schemes are measured in bits.
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The labeling schemes [39, 40, 46, 48] focus on label-length, and
do not discuss the construction time in detail, which is a large
polynomial.

1.1 New Results

We resolve the long-standing question concerning the space com-
plexity of representing vertex connectivity; cf. [5, 37]. In particular,
we prove that any data structure answering v-conn queries requires
space Q(kn/logn) (i.e., Q(kn) bits), and that the lower bound ex-
tends to threshold queries (decide whether k(u,v) < k), equality
queries (decide whether x(u,v) = k), and approximate queries (dis-
tinguish x(u,0) < k — Vk from x(u,0) > k + \/E) This implies
that Izsak and Nutov’s [40] centralized data structures are opti-
mal to within a log? n-factor, and that even the average length of
their labeling scheme cannot be improved by more than a log® n-
factor; cf. [46]. It also implies a strong separation between the space
complexity of storing all edge-connectivities (O(n) space) and all
vertex-connectivities (Q(n?/log n) space when k = n).

Although the Izsak-Nutov structure is space-optimal, its query
time of O(k log n) and polynomial construction time can be substan-
tially improved. We design a version of this structure that allows for
O(log n) query time independent of k. The key problem is to create
random instances of SetIntersection that are still structured enough
to answer intersection queries S; N S; optimally, in time O(|S; NS;[).
Conditional lower bounds from 3SUM and OMv [38, 47] imply that
this should be impossible for worst-case instances of SetIntersec-
tion.

Turning to construction time, we prove that the vertex con-
nectivity oracle (or labeling scheme) can be constructed in time
Tuflow (m) - poly(k, log n), where T,qow () is the time for one max-
flow computation on unit-capacity graphs with m edges. The main
subproblem solved in the construction algorithm is computing a
Gomory-Hu tree for element connectivities up to k.

1.2 Organization

Section 2 covers some preliminary concepts such as vertex connec-
tivity, element connectivity, Gomory-Hu trees, and the (vertex-cut
version of) the isolating cuts lemma of [49, 50].

Section 3 presents the lower bound on representations of vertex
connectivity. Section 4 presents a space- and query-efficient vertex
connectivity oracle based on Izsak and Nutov’s [40] labeling scheme.
In order to build this oracle efficiently, we need to compute Gomory-
Hu trees that capture all element connectivities up to k. In Section 5
we show how to do this in Tygqy (m)poly(k, log n) time.

Section 6 concludes with some inspiring open problems.

2 PRELIMINARIES

2.1 Vertex Connectivity, Element Connectivity,
and Gomory-Hu Trees

Define kg (u,v) to be the vertex connectivity of u,0 in G = (V, E),
i.e., the maximum number of internally vertex-disjoint paths be-
tween u and v. By Menger’s theorem [53], this is the size of the
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Table 1: A history of vertex-connectivity oracles. By convention, space for centralized data structures is measured in O (log nn)-bit words and space
for labeling schemes is measured in bits. With a couple exceptions, all data structures and lower bounds are for v-conn(u, v) = min{x(w, v),k}
queries, where k is an arbitrary parameter. The constructions based on block trees, SPQR trees [4], and [42] only work for k € {2,3,4}, and
Pettie and Yin [58] only works when k = k(G) + 1 where k(G) is the global minimum vertex connectivity of G. Nutov’s [56] data structure (%)
determines whether x(u,v) < k and if so, returns a pointer to a cut of size at most k in O(1) time. The Q(klog(n/k%)) lower bound of Katz et
al. [46] is for the worst-case (longest) label length; it implies nothing on average length. The new Q(nk)-bit lower bound is for the total size of
the data structure, and implies an Q(k)-bit lower bound on the average length of any labeling scheme.

l Citation ‘ Space (Words) Labeling (Bits) ‘ Query Time ‘ Construction Time
Block-tree k=21 0(n) 0(1) O(m)
Block-tree + SPQR-tree [4] k=3 | O(n) 0(1) O(m)
Block-tree + SPQR-tree + [42] k = | O(n) 0(1) O(m+ na(n))
4
0(n2F) 0(2Flogn) | 0(2F) poly(n)
[46] Q(klog(n/k%) | any any
[48] 0(nk3) O(k3logn) | O(klogk) poly(n)
[39] 0(nk?) 0(k%?logn) | O(logk) poly(n)
[40] O(nklogn) O(k log3 n) | O(klogn) poly(n)
[1] 0(n?) O(nlogn) | O(1) O(nk)®
[58] k=xk(G)+1 | O(nk(G)) O(x(G)logn) | O(1) O(m+n - poly(x(G)))
[56] (*) | O(nk? + n?) 0(1) poly(n)
O(nklogn) O(klog®n) | O(logn) Tufiow (M) - poly(k, log n)
New Q(nk/logn) Q(k) avg. | any any

smallest mixed cut C ¢ (E U (V — {u,v})) whose removal discon-
nects u,0.” Element connectivity is a useful generalization of vertex-
and edge-connectivity [10, 11, 14, 24, 27, 41]. Let U C V be a set of
terminals. Then for u,v € U, K’G’U(u, v) is the maximum number of

paths between u and o that are E-disjoint and (V — U)-disjoint.?
By duality, this is equivalently the size of the smallest mixed cut
C c (EU (V - U)) whose removal disconnects u, v. Observe that
whenU =V, Ké’U (u,v) = Ag(u,v) is the same as edge-connectivity,
and when U = {u, v}, Ké’U(u, v) = kG (u,v) captures vertex connec-
tivity. More generally we have Lemma 2.1, which follows directly
from the definitions.

Lemma 2.1. Fix an undirected graph G = (V,E) and a terminal
setU C V. For anyu,v € U, K’GU(u, v) > kg(u,v) with equality
if and only if there exists a mixed kG (u,v)-cut C disconnecting u, v
withCNU = 0.

To shorten our notations, we add a definition:

Definition 2.2. A terminal setU C V captures u, v if there exists a
mixed kG (u,v)-cut C € V U E such that

U N ({u,0} UC) = {u,0}.

Lemma 2.1 is then rephrased as: Ké’U(u,v) > ky(u,0) with
equality if and only if U captures u, v.

If C is a mixed cut, the connected components of G — C are
called sides of C. Note that minimum edge-cuts have two sides but

7Sometimes only “pure” vertex cuts C C V — {u, v} are considered and kg (&, v) is
left undefined or artificially defined to be |V'| — 1 whenever u, v are adjacent in G.
This definition fails to distinguish highly connected and poorly connected pairs of
vertices that happen to be adjacent. Inserting a vertex into every edge can be a trivial
reduction that transforms “mixed cuts” into “pure cuts”, but this increases the number
of vertices to Q(m), so only used when the time bound is based to m. This explains
why we define kG (1, v) in this way.

8Namely, these paths does not intersect at edges in E, nor vertices in (V — U).
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minimum vertex-cuts may have an unbounded number of sides.
For any A C V, 9A is the set of vertices adjacent to A in G, but not
in A. Thus, JA is a vertex cut disconnecting A from V — (A U 0A).

It is well known that Gomory-Hu trees exist for element connec-
tivity; see [11, 62]. We use the following general definition:

Definition 2.3. A k-Gomory-Hu tree for element connectivity w.r.t.
graph G and terminal set U is a triple (T, f, C) satisfying

o (Flow equivalency) T (Vr,Er,w : ET — [1,k)) isa
weighted tree and f : U — Vr satisfies that, if f(u) = f(v)
then K’G’U(u, v) > k; and otherwise,
K’G,U(u, v) = miNeer(f(w).f(v)) W(e), where T(x,y) is the
unique T-path between x and y.
(Cut equivalency) C : Ep — 2EYV=U) For any edgee €
T(f(u), f(v)),C(e) isaw(e)-cut disconnectingu,v inG. (Each
of the two connected components in T — e represents the union
of some subset of the sides of C(e).)

Note that f is unnecessary if k = co as in this case Vr = U, and
that C is unnecessary if we are only interested in min{Ké’U (u,0), k}-
queries. This definition can be extended to (1 + €)-approximations
by relaxing the first criterion (flow equivalency) to Ké’U (u,0) <
MiNg et (f(u).f (o)) W(e) < (1+ e)K’G’U(u, v), with trivial f (Vp = U
and f maps trivially), and the second criterion similarly.

2.2 Isolating Cut Lemma and Max-Flows

Li and Panigrahi’s [50] isolating cuts lemma finds, for a terminal
set I, the minimum edge-cut separating u € I from I — {u} in time
proportional to O(log |I|) max-flows. It was generalized to vertex
connectivity in [49] and here we generalize this lemma slightly
further to be able to handle element connectivity.
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Lemma 2.4 (Isolating cuts, vertex version with forbidden termi-
nals). Let I U F be an independent set in graph G = (V,E), and
INF = 0. We want to find, for eachv € I, a set S, C V such that (i)
So NI ={v} and (3Sy) N F = 0, (ii) it minimizes |3S,|, (iii) subject
to (ii), it minimizes |Sy|. Then {Sy}yer can be computed with log ||
calls to max-flow on graphs with O(m) edges, O(m) vertices, and
capacities in {1, o}. If we do not care to minimize |3S,| if it is larger
than k, then the max-flow instances can be unit-capacity multigraphs
with O(m + k|F|) edges and vertices.

Proor. (sketch) The proof follows [49, Lemma 4.2]. The authors
called max-flow instances to compute the isolating cuts. Our lemma
adds a new requirement, that S, N F = 0. This can be effected by
replacing v € F in the flow networks with two vertices and an edge
Uin — Uout With capacity co. (Or in the unit-capacity case, with k+1
parallel edges from vj, to voyt.) This ensures vertices in F never
appear in the cuts dS, we are interested in. O

3 SPACE LOWER BOUND ON VERTEX
CONNECTIVITY ORACLES

Informal strategy and intuitions. We use an error-correcting-
code-type argument to derive an Q(n?)-bit lower bound in the
case that k = n. By taking the product of n/k copies of this con-
struction on ©(k)-vertex graphs, we derive the Q(kn)-bit lower
bound for general k € [1, n]. The idea is to show the existence of a
codebook T~ of n X n Boolean matrices with the following property.
Each T € 7 can be represented by a certain graph G[T] on O(n)
vertices. Supposing there exists a b-bit vertex connectivity oracle
for this graph, we query kg[r](w 0) for all pairs u, 0. From these
values we reconstruct a different Boolean matrix T # T, which is
within the decoding radius’ of 7, and therefore lets us deduce the
identity of the original matrix T. In other words, it must be that
b > log, |T|. A key technical idea is to show that each T € 7 in
the codebook can, in a certain sense, be approximately factored as
the product of two rectangular Boolean matrices, with addition and
multiplication over Z.

The specifics of the construction are detailed in Theorem 3.1.

THEOREM 3.1. There exists a constant ¢ > 5 and a subset T C
{0, 1}™" of boolean matrices having the following properties.

(1) (Code Properties) |T| = 2”2/3, each row of each T € T has
Hamming weight exactly n/2, and every two T,T’ € T has
Hamming distance at least n®/3.

(2) (Matrix Decomposition) For every T € T, there exists A €
{0,1}™%" B € {0,1}°™" such that C = AB encodes T in the
following way. Let T € {0, 1}™" be such that

. [0 ifC(i,j)<2n
T(l”)‘{ 1 ifC(i,j) > 2n

ThenT, T have Hamming distance less than n2/6. Moreover,
C(i,j) < 2.1n for alli, j.

(3) (Vertex Connectivity) Let A, B be the matrices corresponding
toT from Part 2. Let G[T] = (X UY U Z,E) be an undirected
tripartite graph with |X| = |Z| = n and |Y| = cn, where
EN(X XY) encodes A and E N (Y X Z) encodes B.

9We define the half of minimum Hamming distance between two different matrices in
7 as the decoding radius of 7.
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Let T be such that
= 0 ifk(xizj) <4n-2
T(I’J)_{ 1 ifK(xizj) > 4n—2

ThenT =T so T, T have Hamming distance less than n2/6.

Proor. For Part 1, a simple probabilistic construction shows
the existence of 7. Pick a random codebook 7y containing (1 +
0(1))2"2/ 3 matrices and discard a negligible fraction of codewords
that are within distance (2/5)n? of another codeword. Obtain 7~
from 7 as follows. Take each Ty € 7y and see if it is within Ham-
ming distance O(n3/ 2) of a matrix T, all of whose rows have Ham-
ming weight n/2. If so, include T € 7 as a representative of Tp.
Only a negligible fraction of 7y matrices fail to satisfy this property.
Thus, 7~ has the requisite size and each pair of matrices in 7~ has
Hamming distance at least (2/5)n? — 0(n3/2) > n?/3.

Turning to Part 2, the construction of A, B is probabilistic. We
pick B uniformly at random such that each row has Hamming
weight n/2, then choose A depending on B. We call (i, k) eligible if
the vector B(k, ) has an unusually high agreement with T (i, -), in
particular, if

{j: Bk, j) =T(i, )} = n/2+Vn.

For each row i, we set A(i,k) = 1 for the first 4n values of k for
which (i, k) is eligible. Since the probability of (i, k) being eligible
is some constant p, it is possible to build A with high probability if
¢ is sufficiently large, say 4p~! + 1.

Suppose T(i, j) = 1 and consider the random variable C(i, j). By
the definition of eligibility and the fact that rows of B and T have
Hamming weight n/2,

1/2(n/2++n) 1+L
n/2 T2

\n
Thus C(i, j) is a random variable that dominates Binom(4n, 1/2 +
1/4/n), hence E(C(i, j)) > 2n + 4+/n. The case when T(i, j) = 0 is
symmetric, in which case Binom(4n, 1/2 — 1/+/n) dominates C(i, j).
By a Chernoff bound, the probability that T(i, j) # T(i, ) is the
probability that C(i, j) deviates from its expectation by at least 4+/n,
which is at most exp(—2(4vn)?/4n) = exp(-8). The Hamming
distance between T and T is therefore at most n? exp(-8) < n?/6
in expectation.

Lastly, by a Chernoff bound, the probability that C(i, j) deviates
from 2n by a constant factor is exponentially small. In particular,
we have C(i, j) < 2.1n for all i, j with high probability. This proves
the existence of matrices A,Bforany T € 7.

Pr(B(k, j) = 1| (i, k) eligible) >

Part 3. Observe that C(i, j) reflects the maximum flow from x;
to z; if G[T] were a unit-capacity network with all edges directed
from X — Y — Z. However, G[T] is undirected, and by Menger’s
theorem x(x;, z;) is the maximum number of internally vertex dis-
joint paths from x;, zj. We consider paths of length 2 (corresponding
to C(i, j)) and two types of paths of length 4.

For technical reasons we will modify the construction of A as
follows. For each row i, set A(i,k) = 1 for r = O(clogn) values
of k chosen uniformly at random, then set A(i,k) = 1 for 4n —r
additional values of k for which (i, k) is eligible. This changes the
expectation of C(i, j) by O(clogn)/+/n < 1 but does not otherwise
affect the analysis in Part 2.
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We claim that with high probability, the vertex connectivity of
Xj, zj is exactly

Kk(xi,zj) = min{C(i, j) + 2(n — 1), 4n}.

In particular there are x(x;,z;) paths P = Py U Py U P;, where
|Po| = C(i, j) are length-2 paths, P; are n—1 paths internally disjoint
from Py of the formx; Y - X — Y — zjand Py areupton—1
paths disjoint from Py U P; of the formx; - Y - Z - Y — z;.

We construct P; as follows. Choose Y7 x to be any n—1 neighbors
of x; that are not part of Py paths, and Y , to be any n—1 neighbors
of z; that are not part of Py paths. Clearly Y;x N Y1, = 0. Let
G1,x, G1,z be the subgraphs of G[T] induced by X — {x;} U Y1 x and
X — {xi} U Y1, respectively. These graphs contain many edges
of generated from A, but we only consider the r edges per vertex
generated randomly.'? Since r = @(clog n) and |Y| = cn, vertices in
both Gy x and G ; have degree ©(log n) with high probability. It is
well known that such graphs have perfect matchings w.h.p. (see [8]
or [28]); call them M x, My .. Together with x;, z;, these form n — 1
paths P; internally disjoint from Py. The construction of paths P,
is symmetric. Let Y2 x be min{n — 1, 4n — |Py| — |P1|} neighbors of
x; not already included in Py, P1, and Y2, be |2 | neighbors of
zj not included in Py, P1. Note that both Y3 x and Y2, have size at
least 0.9n because |Py| < 2.1n and |P;| < n. The graphs Go x, G2,z
induced by Z -~ {z;} UY, x and Z - {z;} U Y, ; again contain perfect
matchings My, 5, My , with high probability.!! Together with x; and
zj these generate |Y2 | paths internally disjoint from Py, P;.

We conclude that with high probability, C(i, j) < 2n if and only
if k(xj,2zj) < 2n+2(n - 1) and, from Part 2, that there exist A, B

such that "f, T have Hamming distance less than n2/ 6. O

Corollary 3.2. Suppose Z(G, k) is a data structure for an undirected
n-vertex graph G that can determine whether k(u,v) < k orx(u,v) >
k. Then 9 requires Q(kn) bits of space in the worst case.

ProorF. Pickany T € 7, and let G[T] be the (c+2)n-vertex graph
encoding of T from Theorem 3.1. Using Z(G[T], k) withk = 4n—2,
we can generate the matrix T, and then deduce T since T is within
its decoding radius n? /6. Thus, & requires at least log |77| = ©(n?)
bits of space. For general values of k, we can take ®(n/k) disjoint
copies of this construction, each having ©(k) vertices and requiring
O(k?) space. O

Remark 3.3. The lower bound of Corollary 3.2 also applies to
data structures Z(G, k) that distinguish between x(u,v) = k and
k(u,v) # k. For this case we would use the construction of Theo-
rem 3.1 with k = 4n and let T(i, j) = 1 iff x(x;, zj) = 4n.

Corollary 3.4. Suppose Z(G, k, €) is a data structure for an undi-
rected n-vertex graph G that can distinguish between k(u,v) <
(1 — &)k or k(u,0) > (1 + €)k. Then P requires Q(ne~2) bits of
space for some €.

Proor. The construction of Theorem 3.1 and Corollary 3.2 still
works when k = @(n) and € = ©(1/+/n). o

1The edges included by the eligibility criterion have subtle dependencies, which
makes reasoning about them somewhat tricky. Including truly random edges in A is a
technical hack and surely not necessary.

Note that Gy x, Gy, correspond to submatrices of B, which was chosen randomly
with density 1/2. Due to the Hamming weight restriction, the entries of B are slightly
negatively correlated, which only improves the chance of finding perfect matchings.
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4 VERTEX CONNECTIVITY ORACLES

Lemma 2.1 says that for any terminal set U, Ké U(u, v) never un-
derestimates the true value xg(u,v) and achieves the equality
K'G U(u, v) = kg(u,v) if U captures u,v. This naturally induces
a cfesign pattern for vertex connectivity oracles: find some (usually
random) terminal sets Uj, construct oracles for Ké,U', and output
min;. (4 5} cu; K,G,U,» (u,v) to a query for kg (u, v); if with high prob-
ability at least one U; captures u, v, we succeed. Furthermore, K’G U
can be succinctly represented as a Gomory-Hu tree (Definition 2i3)
and queried via bottleneck edge queries [9, 16, 57] in O(1) time.
This is the basic idea of how Izsak and Nutov’s [40] and our data
structure work.

At the first glance it seems a bit paradoxical because, Hassin
and Levin [37] have shown pairwise vertex connectivity cannot be
captured by a Gomory-Hu-type tree representation, while we are
constructing Gomory-Hu trees of element connectivity to answer
it, where element connectivity is a generalization of vertex connec-
tivity. However, there is no contradiction, because we maintain a
set of carefully designed terminal sets, each captures a subset of
pairs, and they together, captures all pairwise vertex connectivity.

Izsak and Nutov’s [40] ingenious algorithm proceeds by sam-
pling several terminal sets with probability 1/k. Each terminal set
includes both u and v with probability 1/k? and avoids C,, , with
constant probability if |Cy 5| < k, hence O(k? log n) terminal sets
suffice to accurately capture all vertex connectivities up to k with
high probability. The space for the centralized data structure is just
that of storing O(k? log n) Gomory-Hu trees and data structures
for answering bottleneck-edge queries. Each tree is on O(n/k)
terminals, for a total of O(knlogn) space. A query v-conn(u,v)
needs to examine all terminal sets containing both u and v. This
is a classic SetIntersection query. Each of u, v is in ©(k log n) sets,
and are jointly in ©(log n) sets. And their implementation requires
checking through ©(k log n) sets.

In this section we show how to build appropriate SetIntersection
instances such that queries are answered in (optimal) O(log n) time.
(If minimum cuts are associated with edges in the Gomory-Hu tree,
a v-cut(u,v) query can be answered in O(1) additional time be
returning a pointer to the appropriate cut. This increases the space
to O(k%nlogn).)

First, we show how to find O(k? log n) terminal sets that capture
all pairs in V2 using a construction based on affine planes and
3-wise independent hash functions.

Lemma 4.1. There is an algorithm using O(log? n) random bits that
generates terminal sets U with the following properties.

e |U| = O(k?logn) and each U € U has [U| = O(n/k).

o Given vertices u,v with k(u,v) < k we can find O(logn) sets
Ui, Uo(log n) in U costing O(logn) time, such that each,
independently, captures u,v with constant probability. As a
consequence, w.h.p., U captures all of V2.

PRrOOF. Let pg be the first prime larger than n = |V| and p be the
first prime larger than 2k. Let H = (P, L) be a subset of an affine
plane, defined as follows. P = {u;; | i € [[po/p1],j € [p]} is a set
of points arranged in a rectangular grid and L = {£; | s, j € [p]}
is a set of lines, where & j = {u jisr mod p | T € [[po/p1]} is the
line with slope s passing through ug, ;. We pick a hash function
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h:V — P of the form

h(x) = )| i) /p | i) mod p»

where h(x) = (ax? + bx + ¢) mod po with a, b, ¢ chosen uniformly
at random from [pg], then form the p? = ©(k?) terminal sets
U[h] = {Us,j} as follows.

Us,]’ = {U | h(v) € fs,]’}.
Now fix any two vertices u,v and a k(u,v) cut C with k(u,0) <
k. Then U[h] will capture u, v if (i) h(u), h(v) differ in their 1st
coordinates of the rectangular grid P, and, assuming this happens,
(ii) C N Us,j = 0 where £, ; is the unique line containing h(u), h(v).
The probability of (i) is 1 — p/po = 1 — ©(k/n) and the probability
of (ii) is
Pr(CNUs;=0] h(u),h(v))
>1- Z Pr(h(x) € £ | h(u), h(v))

xeCnV
21-k[po/pl/po = 1/2,

where the second last inequality is because |£s j| < [po/p], IC| < k,
and h is sampled from a 3-wise independent hash family.

Let U be the union of U [h1], ..., U[ho(1og n)] using indepen-
dent hash functions hy, ..., ho(log n)- Then, it follows that |U| =
O(p?logn) = O(k?logn).

Preprocessing a table of inverses modulo p, given u,v with
k(u,v) < k, we can clearly identify whether points h;(u), h;(v)
differing in 1st coordinate, and when so, identify £ ; (and hence
Us,j € U[h;]) containing them all in O(1) time. Therefore, we can
identify Uy, ..., Up(logn) € U in O(logn) time such that at least
one of these terminal sets captures u, v w.h.p.

We now turn to the load balancing condition |U| = O(n/k). Note
that if the coeflicients of h satisfy (a,b,c) # (0,0,c) then h is at
most a 2-to-1 function (as the polynomial defining h has degree
2), meaning that each U € U has |U| < 2 [po/p] = O(n/k). The
performance of the algorithm is clearly quite bad whena =b =0
(each terminal set U is either () or V) so we can remove these hash
functions from the hash family and only improve the probability of

success. O

Remark 4.2. One way that U [h] can fail to capture u, v is if h(u)
and h(v) agree on their 1st coordinate. This could be rectified by
including the lines lo,; = {ujq : i = j (mod p),q € [p]} for
J € [p], which occupies O(n/k) points.

Now, by using the collection U of terminal sets with additional
structure from Lemma 4.1 instead of the O(k? log n) random termi-
nal sets generated independently as used in [40], we can speed up
the query time from O(k log n) to O(log n)'?. Below, we state the
guarantee of our oracle formally.

THEOREM 4.3. Given an undirected graph G = (V,E) and k €
[1,n], a data structure with size O(knlogn) can be constructed in
0(m) + Tyow (nk)poly(k,logn) = O(m) + n*/3*°Wpoly(k) time
such that v-conn(u,v) = min{kg(u,v), k} queries can be answered

2Finding all U; that contains u, v takes O(log n) time, and each kg, (1, v) takes
Ui

O(1) time, so in total min;.(y o}ct; (4, ) takes O(log n) time. And each U; captures

u, v with constant probability, so at least one U; captures u, v, i.e., the output is correct,

with high probability.
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in O(log n) time. Using space O(k%*nlogn), a v-cut(u,v) query can
be answered in O(1) additional time; it returns a pointer to a kg (u, v)-
size u-v cut whenever kg (u,0) < k.

The claims of Theorem 4.3 concerning construction time are
substantiated in Section 5. In the context of our vertex connectivity
oracle, note that we can assume that our original graph has O(nk)
edges by applying Nagamochi-Ibaraki algorithm [55] with O(m)
running time to reduce the number of edges to O(kn). So the con-
struction time is n*/ 3+0(l)poly(k) using the max-flow algorithm
for unit-capacity graphs by Kathuria, Liu, and Sidford [45].

5 GOMORY-HU TREES FOR ELEMENT
CONNECTIVITY

The goal in this section is to prove the following:

THEOREM 5.1. A k-Gomory-Hu tree for element connectivity w.r.t.
graph G and terminal set U can be constructed in O(k - Tyfow(m +
k|U|)) time.

Note that, given the above theorem, we can indeed conclude
Theorem 4.3 because there are O(k?logn) terminal sets in the
oracle construction and we just need to build a Gomory-Hu tree for
each terminal set by calling Theorem 5.1. As m = O(nk) and |U| =
O(n/k) by Lemma 4.1, this takes Ty gow (m + k|U|) = Tygow (O(nk))
for each terminal set.

Obstacles in Adapting Algorithms of [51] for Element Connectivity.
The proof of Theorem 5.1 is obtained by adapting the Gomory-Hu
tree construction for edge connectivity by Li and Panigrahi [51] to
work for element connectivity. Although we use the same high-level
approach, element connectivity introduces some extra complication
that we need to deal with.

For example, given an input graph G, all Gomory-Hu tree algo-
rithms for edge connectivity proceed by finding a minimum edge
cut (A, B), contract one side, say B, of the cut into a single vertex
b, and recurse on the contracted graph denoted by G’. By submod-
ularity of edge cuts, we have that the edge connectivity between
any two vertices aj, az € A are preserved in G’. This is crucial for
the correctness of the whole algorithm.

Unfortunately, the direct analog of this statement fails com-
pletely for element connectivity. For example, suppose p, q ¢ B are
disconnected by an element cut C of graph G. Then in graph G’,
C’ = {b} U (C\ B) becomes an element cut disconnecting p and gq.
As long as C contains more than one element in B (an edge, or a
non-terminal vertex), |C’| < |C], so k’(p, q) decreased.

To bypass this complication, we actually exploit the generality of
element connectivity. When we recurse in a contracted graph, the
trick is to add the contracted node into a terminal set for element
connectivity. That is, the terminal set will change throughout the
recursion so that we can preserve element connectivity between
vertices inside the subject graph.

In the rest of this section, we formally prove Theorem 5.1.
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5.1 The Approximate Element Connectivity
Gomory-Hu Tree Algorithm

Instead of proving Theorem 5.1 directly, it is more convenient
to prove the following (1 + €)-approximation version, which is
precisely the element connectivity analog of the result in [51].

THEOREM 5.2. A (1+ €)-approximate Gomory-Hu tree for element
connectivity w.r.t. graph G and terminal set U can be computed in
O(e " Thow (m)) time, where Ty, (m) is the time to compute max
flow in an m-edge graph.

Theorem 5.1 almost follows from Theorem 5.2 just by setting
€ = 1/k. However, there is some minor things to take care of, and
we give the formal proof in Section 5.2.

Before we give the proof of Theorem 5.2, observe that as a sim-
plifying assumption, Lemma 2.4 (isolating cuts with forbidden ter-
minals) required that I U F be an independent set. We can force
any instance to satisfy this property by subdividing all edges in
E N (IUF)% As a consequence, from now we can assume that all
element cuts in the modified graph consist solely of vertices.!?

5.1.1 Algorithm. The precise algorithm for Theorem 5.2 is de-
scribed in Algorithm 1. For the reader to better understand, we
first briefly explain how the algorithm works, how the input and
the output of the algorithm relate to Definition 2.3.

The basic framework is a recursion. For a random set of terminals
R!, we call Lemma 2.4 to compute its isolating cuts Si. We select
those o such that S) < (1 +¢)A and |S§, N U| < |U| /2 into set RL,.
Now 95}, is a (1 + €)-approximation to the minimum element cut
between S and V' \ (S U 8S%), so we split the problem into sub-
graphs G, generated by Si for each v € R., and one large part,
which we call G;. We specify the new parameters added in the
algorithm.

As mentioned before, to avoid the sub-cases underestimate the
original element connectivity, we add a new parameter: the forbid-
den set F. The vertices in F are terminals counted when computing
the connectivity, but queries related to them are not supported.
Accordingly, the output T is a (1+¢€)-approximate Gomory-Hu tree,
that represents element connectivity in G with the terminal set
U U F, while the tree nodes only represent vertices from U.!* For
u,v € U, the bottleneck edge weight between f(u) and f(v) on T is
Ké}’UU p(4,0). In the top-level call F is set to 0, but may accumulate
up to O(|U|) vertices in the recursion.

As will be proved in Lemma 5.3, the element connectivity be-
tween vertices inside Uy, are preserved exactly in the contracted
graph Gi,. For the small graphs Gy, by Lemma 5.4, we accept a
(1 + €)-factor approximation to element connectivity, which ac-
crues to (1 + €)°81U as a vertex can only appear in the small
branch of the recursion log |U| times.

To link the sub-trees at correct nodes and to compute f, we
added a tool function g : V.— VU {L} that maps vertices of G
into tree nodes of T, or a symbol L. g indicates at which tree nodes
we should link two sub-trees. Moreover, the algorithm ensures that
at the end, g(v) # L for every v € U. From the definition of g, g(v)

31f (x, y) is subdivided into (x, Uxy), (0x,y, Y), then any vertex-only element cut
containing vy, in the modified instance contains (x, y) in the original instance, and
vice-versa.

H1e., f: U — V(T) does not embed F in T.
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with v € U satisfies the properties of the embedding function f in
Definition 2.3.

To summarize, to compute (1 + €)-approximate Gomory-Hu tree,
call Algorithm 1 with desired G, U, ¢, and F = 0. It outputs (T, g, C).
We set the embedding f(v) = g(v) for all v € U, and then return
(T, f,C), which satisfies Definition 2.3. At this point, every node
t € T are in the range of f, because t is only created in the base
case, where g maps a vertex u € U to t.

Algorithm 1: ApPROXELEMCONNGHTREE(G(V, E), U, F, €)

input :The graph G = (V, E), the terminal set U, the
forbidden set F, the approximation accuracy €

output:A (1 + ¢)-approximate element-connectivity
Gomory-Hu tree (T, g,C)

if |U| = 1 then // The Base Case

Construct T with one node ¢, g(u) « ¢ for allu € V(G)
and C an empty function

I

return (T, g,C)

@

4 end

[

Let A « the global minimum element connectivity // See
Remark 5.7

Call CutThresholdStep(G, U, F, (1 + €)A) and store its
output s, {Rgm, RJ, S{;}

Fixie€ {0,1,---,|log|U|]|} that maximizes
Uperi (S5 N U)‘.

o

<

foreach v € R, do
Let G, « the graph with V' \ (S}, U dS})) contracted into
a vertex xy.
Let Uy « SN U.
Let (Ty, go, Co)
ApproxElemConnGHTree(Gy, Uy, F U {x}, €).

o

©

10

1

12 end

13 Let G « the graph G with S! contracted into a vertex y,
for each v € RY,.

Let Uy < U \ uveR;»m(s;‘, nU).

Let (TIg’ 9ig> Clg) — _
ApproxElemConnGHTree (Gig, Uy, F U {yo | v € Rip}€).

Initialize T « Tjg U (U,¢ R, Ty), and then add edges
(9o (x0), 916 (yo)) with weight |8Sf,|. Let g inherit values
from gj, or one of the {go}. If the value for v is defined in
more than one such function, set g(v) « L. Let C inherit
the assignment of Cj; and {Cy}, and for the new edges set
C((go(x0), gig(yo))) — Sk,

return (T, g,C).

14

15

16

17

5.1.2  Correctness. We prove the results needed to show the cor-
rectness of Algorithm 1. Denote Fiy = F U {yolo € Ry} and
Fy,=FU {xp}.

Lemma 5.3. For any two vertices p, q € Uy, we have

4 o
KGig Ui UFig (.9 = KG,UuF(P, q).
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Algorithm 2: CuTTHRESHOLDSTEP(G = (V, E), U, Fjp, W)

1 Set s « a uniformly random vertex in U.

2 RO« U.

3 for j from 0 to |log|U|| do

4 Call Lemma 2.4 to compute sets {S{, ;v € R/}, with
I=R/ and F = (U\R/) U Fj.

s | LetRl, «— {oe R\ {s}:]s/n U) < |U|/2 and ‘as{;
W}

6 R/ sampling each vertex of R/ with probability %

<

but s with probability 1.
7 end

8 return s and, for each j, {Rgm, R, {S{;}veRj }.

ProoOF. We first show that Ké’lg’rjlgUFlg (p,q) = Ké’UuF (p,q)- Sup-
pose C is a minimum element cut disconnecting p and q in Gy with
terminal set Uy U Fig. Then C does not contain any ys, so C is still

. ’ —_
an element cut for p and q in G, and therefore K G1g.UigUFig (p,q) =

IC1 2 KL, o (P2 a)-

It remains to show that Ké1g,U1gUF1g (p.q) < KZ’;,UUF(p’ q). Sup-
pose C is a minimum element cut disconnecting p and q in G with
terminal set U U F, and let A, B be the sides containing p, g, respec-
tively. Every o € R, is by definition not in C; let the side of C
containing v be Dy,.

Without loss of generality we assume v and q are in different
sides. For brevity, all the following unspecified element cuts are
with respect to G and U U F. Let H = D, U A, we have that 0H is
a minimum element cut between {0, p} and {q}, and 9(H U S}) is
an element cut between {ov, p} and {q}, so |8(H U S},)l > |0H|. Now
that 855 is also a minimum element cut between {0} and R\ {0}, and
a(S. N H) is also an element cut between {0} and R \ {0}, we have
|6(H n Sl’,)| > |as;',|. By the submodularity of element-connectivity,

|0H | + |aS5| > |o(H N SE)| + [o(H U S})] -

Hence this inequality holds with equality, so IB(H n Szi,)l = |855,\,
But by Lemma 2.4, Sf, is also minimum in size among minimum
isolating cuts, so H N Si = S, and therefore S, C H.

If D, = A, we already have Sf, C Dy. If D, # A, then noticing
that in G — C, D, is not connected to A, while Sf, is connected to v,
we know that S! N A = 0 and S} C D,,.

We have shown that Si C D,. When contracting S} into a
vertex x,, the cut C = 9D, is not affected, so C is still an ele-
ment cut between p and g in G}, with terminal set Uy, U Fjy, and

K. UigURg (P> 9 < 1C1 = K¢ yup (P, @)- o
Lemma 5.4. For any two vertices p, q € U,, we have
KlG,UuF(P: q) < K,Gu,UﬂUFz) (p.g) < (1+ G)K/G,UU[:(P) q).

Proor. We first show that Ké}v,UuUFy (P.9) = xG 1y p(P: 9)- Sup-
pose C is a minimum element cut disconnecting p and q in G, with
terminal set U, U F,. Then C does not contain x,, so C is still an
element cut disconnecting p and q in G, so K/G,UUF(p’ q) <|C| =

KG, U0, (D)

158

Seth Pettie, Thatchaphol Saranurak, Longhui Yin

Next, we show that KévaUvUFv p.g) <(1+ G)K,G,UUF (p,q). Sup-
pose C is a minimum element cut disconnecting p and q in G with
terminal set U U F and let A, B be the sides of p, q. Without loss of
generality, suppose A does not contain s. The following unspecified
element cuts are with respect to G and U U F.

We have that (S}, U A) is an element cut disconnecting p and
s. Therefore, 3(51", U A)| > A. Furthermore, by the definition of Sf,,
|as;',| < (1+ €)A. Therefore, by the submodularity of element cuts,

(1+e)A+]9A| > |aSk| + |9A]
> a(SL U A)| +[a(S, N A)| > A+]as, N A

Now that S N A contains p but not g, 3(S% N A) is an element cut

disconnecting p and g, and since it is contained in Gy, it is still

an element cut in G, with terminal set U, U Fy, so |a(s,5 n A)l >

K,GU,UUUFU (p, q). And by definition |9A| = Ké;,UuF(p’ Q) = A
Therefore,

kG, U.F, (@) < €1+ [0A] < (1+ kG yup (P 9)-

O

Lemma 5.5. The assignment g(v) = L occurs if and only ifv appears
in C(e) for some edge. Therefore, g value of vertices in U U F never
equals 1.

Proor. From the construction of G}y and Gy, it can be seen that
only the vertices in S} = C((go(x0), g1g(yv))) are defined twice
(or more), so their g-value are set to L. These are all the vertices
such that g(v) = L. o

Remark 5.6. From Lemma 5.3, Lemma 5.4 and Lemma 5.5, in line
17 of Algorithm 1, the g-value of x,, y, are not L, so linking the
sub-trees would be successful. And g(v) for v € U equals to L.

Remark 5.7. As stated the algorithm computes the global element
connectivity A. In reality A is a lower bound on this quantity, which
is increased once we are sure it has increased by a 1+¢€ factor. As we
show in the proof of Theorem 5.2, with high probability, the global
element connectivity increases by a factor of 1 + € every O(log® n)
steps taken in the “Gy,” branch of the recursion tree. Therefore, what
the algorithm actually does is initialize A = 1, record the recursion
depth on the Gy, branch, and update 1 « (1 + €)4 whenever
this depth is a multiple of ©(log® n). In this way, A never exceeds
the global element connectivity w.h.p., which suffices to establish
correctness.

5.1.3  Running Time Analysis. The running time analysis in this
section closely follows Li and Panigrahi [51].

Lemma 5.8. Keeping definitions of R\, RL,, S} as in line 4, 5, 6 of
Algorithm 2. Keeping definitions of Gig, Ulg, Fig as in line 13, 14, 15 of
Algorithm 1. Define P C U? to be
P={(u0): KIG,UUF(”’ v) < W,and |[ANU| < |U|/2 where A is
the side of the minimum u-v element cut containing u}.
Similarly define Pig with Gig, Uy, Fig and W. Then

1
E(|Py) < (1 -Q (m)) |P|.
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Proor. We need to lower bound the size of Q = P\Pj;. Define
Ul = Uyepr (S500), Usm = ULV NUE and U = (0 | (0,9) €
P}. We will show that E(|Q|) > Q(——) |P| follows from the

log® n

following three claims.

(1) For each u € U*, there are at least |U| /2 vertices v such that
(u,v) € P.

(2) E(|Usml) = Q(IU*| /log|U]).

(3) For each (u,v) € P, u € U* with probability at least 1/2;

For Claim (1), consider the minimum element cut disconnecting
sand u € U*. There are at least |U| /2 terminals v not in the same
side as u, and each (u,0) € P. Claim (2) is proved in Lemma 5.9.
Claim (3) holds because s is randomly chosen from U and there are
at least |U| — |U| /2 = |U| /2 terminals not in the side of u. When s
is such a terminal, u € U*.

The algorithm fixes i € {1,2,---,|log|U|]} that maximizes
|Us"m|4 Then,

1l
2

vl
—F—E(|U,
TTog oy 2(UmD

* 1
LR Y B
log® |U|

Ul
~ 2log|U| log |U|
For the first inequality, Claim (1) implies that each v € Uy, is
involved in |U| /2 pairs in P, all of which do not appear in Py,

v

E(|QI) E(|Uin)) =

whenever o € U}, . The second inequality follows from the choice of
i. The third inequality follows from Claim (2). The fourth inequality
follows from Claim (3) and the following bound on the size of P.

Pl /2 <E([{(w,0) e P:ueU*}) < |U|-|U*|.

Note each u appears in at most |U| pairs of P.
Lemma 5.9 (Claim (2) restated). E(|Usm|) = Q(|U*| /log|U]).

PRrROOF. Root the element connectivity Gomory-Hu tree T at s.
For each vertex v € U, let Uy be the set of terminals in the subtree
rooted at v. For a terminal v € U, we find the edge e(v) along
the path from s to v with minimum weight, and when not unique,
the one with maximum depth. Let r(v) be the deeper endpoint
of e(v). By the definition of U*, a terminal v € U* if and only if
w(e(v)) < W and |Uy(y)| < |U| /2.

We say that a vertex v € U™ is active if v € RI(®) where i(v) =
llog \Ur(v) |J. In addition, if U, (5) N RI(®) = {1}, then we say that v
hits all of the vertices in U, (,), including itself. For completeness,
we define vertices in U\U™ to be inactive; they do not hit other
vertices. Now we show that

(a) each vertex that is hit is in Ugp;

(b) the total number of pairs (u,v) for which v € U™ hits u is
Q(JU*|) in expectation;

(c) each vertex u is hit by at most O(log |U|) vertices in v € U*.

For (a), suppose u is hit by v. Then by definition, U, () N RI(®) =
{v}. The isolating cut for v returned by Lemma 2.4 corresponds
to the edge joining r(v) to its parent, so all vertices in U, (,) are

because v € R._, since

on v’s side of the cut, and appear in Usp, e

Szi,(v) NU| = |Ur(v)| < |U| /2 and w(e(v)) < W.
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For (b), the probability thatv € RI® andvis the only such vertex
is (1 —2”_(“))|U’(") |=15-i(0) = ©(1/2%), and when it happens, it hits
|Ur(0)| = Q(2!(?)) vertices, so the contribution in the expectation
is Q(1). Since each v € U* contributes Q(1) in expectation, their
sum is Q(|U*]).

For (c), we first show that for any different vertices v, w € U*
that both hit u, i(v) # i(w). Since u € U, () and u € U, (,,), without
loss of generality we assume r(v) € Uy (), 80 Ur(4) S Up(sy). From
the definition of R!, R ¢ R! C -..RUeglUll so RI(0) A Ri(w) =
Rmax(i(u),i(w)). Then,

0= {0} N {w} = (R N U ) 0 (R N Up(y)
_ Rmax(i(v),i(w)) n Ur(z))’

and because Ri(”)ﬂU,(U> = {v} # 0, we infer that max(i(v), i(w)) >

i(v), so i(v) < i(w). Then, since i(v) € [1,1og|U|] has at most

O(log|U]|) kinds of choices, u is hit by at most O(log |U|) vertices.
Finally, the proof follows from

E[Usm] = E[|{u : u is hit}|]
S E[|{(u,0) : v € U*,uis hit by v}|] E[U*]
- O(log |U]) log U]

The first inequality is because claim (a); the second inequality is
because claim (c); and the third inequality is because claim (b). O

> Q( ).

5.2 Proof of Theorem 5.2 and Theorem 5.1

Now we are ready to give the proof for Theorem 5.2 and Theo-
rem 5.1.

Proor oF THEOREM 5.2. The recursion makes progress in one
of two ways. In the “non-Gy,” branches {Gy}, each G, contains at
most half the number of terminals. Suppose we follow the “Gj;”
branch ©(log® n) times, yielding G’, U’, F’ and P’. By Lemma 5.8,
with W = (1+€)A, E(|P’]) < (1-Q(1/log? n))® g’ ) |p| = n=2(1),
meaning P’ = () is empty w.h.p. and the global minimum element
cut of G’,U’ U F’ has increased to at least (1 + €)1 and we can
update A accordingly.

This implies the total depth of recursion is O(e~! log* n) w.h.p.
The total size of all graphs on each layer of recursion is O(m), hence
by Lemma 2.4, the total time is O(e™! log* n - Tjow(m) logn) =
O(e_lTﬂow(m))-

As for the correctness, by Lemma 5.3 the Gjg-branch preserves
the exact value of Ké’UU > and all the non-Gj, branches {G,} in-
troduce a (1 + €)-factor approximation to the element connectivity.
Since the depth of recursion in the non-Gj, branches is at most
log U], the tree returned is a (1 + €)1Vl = 1 4 ¢; approximate
Gomory-Hu tree, for € = €p/log |U|. Expressed in terms of €, the
running time is still 6(68 M Thow (M)). o

Proor oF THEOREM 5.1. The proof follows from the proof of
Theorem 5.2 by setting € = O( %), and we only address the differ-
ence of k-Gomory-Hu tree.

To prove correctness, a new base case is added!®: if 1 > k, stop
recursion, construct T with one node ¢, set g(u) « t forallu € G
and C an empty function and return (7T, g, C). At the final output,

151t can be inserted between line 5 and 6 in Algorithm 1
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construct f as f(v) « g(v) for all v € U. Then (T, f,C) works
exactly as in Definition 2.3.

To bound running time, since we are not concerned with cut-
values exceeding k, when calling Lemma 2.4 we can use any unit
capacity flow algorithm, which runs in O(T,gow (m + k |U])) time,
so the total time bound is O(kT, o (m + k [U])). O

6 CONCLUSION

In this paper we proved that Q(kn/logn) space is necessary for
encoding vertex connectivity information up to k. This establishes
the optimality of several previous results. For example, Nagamochi-
Ibaraki [55] sparsifiers encode all vertex connectivities up to k, but
their space cannot be improved much, even if the format of the rep-
resentation is not constrained to be a graph. It also implies that even
the average length of the Izsak-Nutov [40] labeling scheme cannot
be improved much. We improved [40] to have near-optimal query
time O(log n), independent of k, and improved its the construction
time to nearly max-flow time.
Here we highlight a few open problems.

e There is a trivial Q(kn) space lower bound for data struc-
tures answering v-cut queries. Our data structure (and Izsak-
Nutov [40]) can be augmented to support fast v-cut queries
with O(k?nlog n) space. Is this necessary? Note that if it is,
the lower bound cannot be purely information-theoretic; it
must hinge on the requirement that queries be answered
efficiently.'

e A special case of the vertex connectivity oracle problem
is answering v-conn(u,v) queries when k = x(G) + 1. In
other words, decide whether u, v are separated by a globally
minimum cut. Globally minimum vertex cuts have plenty of
structure [15, 58], but it is still not clear whether Q(kn) bits
are necessary to answer such queries.

o Is there a (1+€)-approximate vertex connectivity oracle with
space O(n/€e?)? Our lower bounds still permit this possibility.
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