
Optimal Vertex Connectivity Oracles
Seth Pettie

pettie@umich.edu
University of Michigan

Ann Arbor, Michigan, USA

Thatchaphol Saranurak
thsa@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

Longhui Yin
ylh21@mails.tsinghua.edu.cn

Tsinghua University
Haidian, Beijing, China

ABSTRACT
A :-vertex connectivity oracle for undirected ⌧ is a data structure
that, givenD, E 2 + (⌧), reportsmin{:,^ (D, E)}, where ^ (D, E) is the
pairwise vertex connectivity between D, E . There are three main
measures of e�ciency: construction time, query time, and space.
Prior work of Izsak and Nutov [Inf. Process. Lett. 2012] shows
that a data structure of total size $ (:= log=), which can even be
encoded as a $ (: log3 =)-bit labeling scheme, can answer vertex-
connectivity queries in $ (: log=) time. The construction time is
polynomial, but unspeci�ed.

In this paper we address the top three complexity measures.
The �rst is the space consumption. We prove that any :-vertex

connectivity oracle requires ⌦(:=) bits of space. This answers a
long-standing question on the structural complexity of vertex con-
nectivity, and gives a strong separation between the complexity of
vertex- and edge-connectivity. Both Izsak and Nutov [Inf. Process.
Lett. 2012] and the data structure we will present in this work match
this lower bound up to polylogarithmic factors.

The second is the query time. We answer queries in $ (log=)
time, independent of : , improving on ⌦(: log=) time of Izsak and
Nutov [Inf. Process. Lett. 2012]. The main idea is to build instances
of SetIntersection data structures, with additional structure based
on a�ne planes. This structure allows for optimum query time that
is linear in the output size (This evades the general :1/2�> (1) and
:1�> (1) lower bounds on SetIntersection from the 3SUM or OMv
hypotheses, resp. Kopelowitz et al. [SODA 2016] and Henzinger et
al. [STOC 2015].)

The third is the construction time. We build the data structure in
time of roughly a max-�ow computation on a unit-capacity graph,
which is<4/3+> (1) using state-of-the-art algorithm by Tarun et al.
[FOCS 2020]. Max-�ow is a natural barrier for many problems that
have an all-pairs-min-cut �avor. The main technical contribution
here is a fast algorithm for computing a :-bounded version of a
Gomory-Hu tree for element connectivity, a notion that generalizes
edge and vertex connectivity.

CCS CONCEPTS
• Theory of computation! Data structures design and anal-
ysis; Graph algorithms analysis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
STOC ’22, June 20–24, 2022, Rome, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9264-8/22/06. . . $15.00
https://doi.org/10.1145/3519935.3519945

KEYWORDS
graph connectivity, space lower bounds, data structures

ACM Reference Format:
Seth Pettie, Thatchaphol Saranurak, and Longhui Yin. 2022. Optimal Vertex
Connectivity Oracles. In Proceedings of the 54th Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC ’22), June 20–24, 2022, Rome, Italy.ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3519935.3519945

1 INTRODUCTION
Most measures of graph connectivity can be computed in poly-
nomial time, and much of the recent work in graph algorithms
aims at reducing these complexities to some natural barrier, either
near-linear [26, 29, 30, 43, 44, 54, 60, 63], max-�ow-time [49, 50],
or matrix-multiplication-time [1, 13]. Graph connectivity has also
been extensively studied from a structural perspective, where the
aims are to understand the structure of some/all minimum cuts.
This genre includes Gomory-Hu trees [33], the cactus representa-
tion [17], block-trees, SPQR-trees, and extensions to higher vertex
connectivity [4, 15, 42, 58], and many others [6, 7, 18–23, 25, 31, 32,
35, 59].

In this paper we study the data structural approach to under-
standing graph connectivity, which incorporates elements of the
algorithmic and structural camps, but goes further in that we want
to be able to e�ciently query the connectivity, e.g., either ask for
the size of a min-cut or the min-cut itself.

Suppose we are given an undirected graph ⌧ and wish to be
able to answer pairwise edge- and vertex-connectivities up to some
threshold : . Let _(D, E) and ^ (D, E) be the maximum number of
edge-disjoint and internally vertex-disjoint paths, resp., between D
to E . By Menger’s theorem, these are equal to the minimum number
of edges and vertices, resp., necessary to disconnect D and E .1

e-conn(D, E) : Return min{_(D, E),:}.
e-cut(D, E) : If _(D, E) < : , return an edge-cut separating D, E

with size _(D, E).
v-conn(D, E) : Return min{^ (D, E),:}.
v-cut(D, E) : If ^ (D, E) < : , return a vertex-cut separating D, E

with size ^ (D, E).
The edge-connectivity problems are close to being solved. Gomory-
Hu tree) [33] (aka cut equivalent tree) is an edge-weighted tree
such that the bottleneck edge 4 between any D, E has weight _(D, E),
and the partition de�ned by) � {4} corresponds to a _(D, E)-edge
cut, which can be explicitly associated with 4 if we wish to also
answer e-cut queries. Bottleneck queries can be answered in $ (1)
time with $ (= log=) preprocessing and $ (=) space, or $ (U (=))

1If {D, E } 2 ⇢, then^ (D, E) represents the size of amixed cut separatingD, E consisting
of {D, E } and ^ (D, E) � 1 other vertices.

151

https://orcid.org/0000-0002-0495-3904
https://orcid.org/0000-0001-8386-7168
https://orcid.org/0000-0001-5696-5678
https://doi.org/10.1145/3519935.3519945
https://doi.org/10.1145/3519935.3519945

STOC ’22, June 20–24, 2022, Rome, Italy Seth Pe�ie, Thatchaphol Saranurak, Longhui Yin

time with $ (=) preprocessing and $ (=) space; see [9, 16, 57].2 The
time to compute the full Gomory-Hu tree is $̃ (<3/2=1/6) [2] and
there are faster $̃ (=2)-time algorithms on simple graphs [3, 52] or
$̃ (< + =:3)-time algorithms [36] for representing connectivity up
to : .

Thus, e-conn-queries can be answered in $ (1) time by a data
structure occupying space $ (=) It is a long-standing open prob-
lem whether a similar result is possible for v-conn-queries. In 1979
Schnorr [61] proposed a cut-equivalent tree for roundtrip �ow3 in
directed graphs, and in 1990 Gus�eld and Naor [34] used Schnorr’s
result to build a Gomory-Hu-type tree for vertex connectivity.
Benczur [5] found errors in Schnorr [61] and Gus�eld and Naor [34],
and proved more generally that there is no cut-equivalent tree for
vertex connectivity. Benczur [5, pp. 505-506] suggested a way to get
a �ow-equivalent tree for roundtrip �ow using a result of Cheng
and Hu [12], which would yield a Gomory-Hu-type tree suitable
for answering v-conn (but not v-cut) queries. This too, turned out
to be incorrect. Hassin and Levin [37] gave an example of a vertex-
capacitated graph (integer capacities in [1,=$ (1)]) that has ⌦(=2)
distinct pairwise vertex connectivities, which cannot be captured
by a Gomory-Hu-type tree representation.4

When the underlying graph has unit capacity, the counterexam-
ples of [5, 37] do not rule out a representation of vertex-connectivity
using, say, $̃ (1) trees, nor do they rule out some completely di�er-
ent $̃ (=)-space structure for answering v-conn-queries, indepen-
dent of : .

Most prior data structures supporting v-conn queries were actu-
ally labeling schemes.

I.e., a vertex labeling ✓ : + ! {0, 1}⇤ is created such that a
v-conn(D, E) query is answered by inspecting ✓ (D), ✓ (E). Katz, Katz,
Korman, and Peleg [46] initiated this line of research into labeling
for connectivity. They proved that the maximum label length to
answer v-conn queries is ⌦(: log(=/:3)) and $ (2: log=). To be
speci�c, they give a class of graphs for which a ⇥(1/:2)-fraction of
the vertices require ⌦(: log(=/:3))-bit labels. However, this does
not imply any non-trivial bound on the average/total label length.
Their upper bound was subsequently improved to $ (:3 log=) [48]
and then to $ (:2 log=) [39].5 Using a di�erent approach, Izsak
and Nutov [40] gave an $ (: log3 =)-bit labeling scheme for v-conn
queries. A centralized version of the data structure takes$ (:= log=)
total space6 and can be augmented to support v-cut queries with
$ (:2= log=) total space.

2These upper and lower bounds are in the comparison model. When⌧ is unweighted,
all min-cut values are integers in [1,=) , which can be sorted in linear time. In this
case$ (=) preprocesssing for$ (1)-time queries is possible.
3min{5 (D, E), 5 (E,D) }
4Hassin and Levin [37] pointed out that Benczur’s proposal yields a Gomory-Hu-type
tree representation for vertex “separations” in a capacitated graph⌧ = (+ ,⇢, 2 : + !
R+) . The minimum separation ofD, E is the minimum of 2 (D), 2 (E), and the minimum
2 () over all vertex cuts disconnecting D, E.
5The labeling schemes of Katz et al. [46], Korman [48], and Hsu and Lu [39] di�er-
entiate between ^ (D, E) � :0 and ^ (D, E) < :0 using labels of size $ (2:0 log=) ,
$ (:20 log=) , and$ (:0 log=) , respectively. They can be used to answer v-conn queries
by concatenating labels for all :0 = 1, 2, . . . ,: , thereby introducing an$ (:)-factor
overhead in [39, 48].
6Following convention, the space of centralized data structures is measured in
$ (log=)-bit words and labeling schemes are measured in bits.

The labeling schemes [39, 40, 46, 48] focus on label-length, and
do not discuss the construction time in detail, which is a large
polynomial.

1.1 New Results
We resolve the long-standing question concerning the space com-
plexity of representing vertex connectivity; cf. [5, 37]. In particular,
we prove that any data structure answering v-conn queries requires
space ⌦(:=/log=) (i.e., ⌦(:=) bits), and that the lower bound ex-
tends to threshold queries (decide whether ^ (D, E)  :), equality
queries (decide whether ^ (D, E) = :), and approximate queries (dis-
tinguish ^ (D, E) < : �

p
: from ^ (D, E) > : +

p
:). This implies

that Izsak and Nutov’s [40] centralized data structures are opti-
mal to within a log2 =-factor, and that even the average length of
their labeling scheme cannot be improved by more than a log3 =-
factor; cf. [46]. It also implies a strong separation between the space
complexity of storing all edge-connectivities ($ (=) space) and all
vertex-connectivities (⌦(=2/log=) space when : = =).

Although the Izsak-Nutov structure is space-optimal, its query
time of$ (: log=) and polynomial construction time can be substan-
tially improved. We design a version of this structure that allows for
$ (log=) query time independent of : . The key problem is to create
random instances of SetIntersection that are still structured enough
to answer intersection queries (8 \(9 optimally, in time$ (|(8 \(9 |).
Conditional lower bounds from 3SUM and OMv [38, 47] imply that
this should be impossible for worst-case instances of SetIntersec-
tion.

Turning to construction time, we prove that the vertex con-
nectivity oracle (or labeling scheme) can be constructed in time
)u�ow (<) · poly(:, log=), where)u�ow (<) is the time for one max-
�ow computation on unit-capacity graphs with< edges. The main
subproblem solved in the construction algorithm is computing a
Gomory-Hu tree for element connectivities up to : .

1.2 Organization
Section 2 covers some preliminary concepts such as vertex connec-
tivity, element connectivity, Gomory-Hu trees, and the (vertex-cut
version of) the isolating cuts lemma of [49, 50].

Section 3 presents the lower bound on representations of vertex
connectivity. Section 4 presents a space- and query-e�cient vertex
connectivity oracle based on Izsak and Nutov’s [40] labeling scheme.
In order to build this oracle e�ciently, we need to compute Gomory-
Hu trees that capture all element connectivities up to : . In Section 5
we show how to do this in)u�ow (<)poly(:, log=) time.

Section 6 concludes with some inspiring open problems.

2 PRELIMINARIES
2.1 Vertex Connectivity, Element Connectivity,

and Gomory-Hu Trees
De�ne ^⌧ (D, E) to be the vertex connectivity of D, E in ⌧ = (+ , ⇢),
i.e., the maximum number of internally vertex-disjoint paths be-
tween D and E . By Menger’s theorem [53], this is the size of the

152

Optimal Vertex Connectivity Oracles STOC ’22, June 20–24, 2022, Rome, Italy

Table 1: Ahistory of vertex-connectivity oracles. By convention, space for centralized data structures ismeasured in$ (log=)-bit words and space
for labeling schemes is measured in bits. With a couple exceptions, all data structures and lower bounds are for v-conn(D, E) = min{^ (D, E),: }
queries, where : is an arbitrary parameter. The constructions based on block trees, SPQR trees [4], and [42] only work for : 2 {2, 3, 4}, and
Pettie and Yin [58] only works when : = ^ (⌧) + 1 where ^ (⌧) is the global minimum vertex connectivity of⌧ . Nutov’s [56] data structure (¢)
determines whether ^ (D, E)  : and if so, returns a pointer to a cut of size at most : in$ (1) time. The ⌦ (: log(=/:3)) lower bound of Katz et
al. [46] is for the worst-case (longest) label length; it implies nothing on average length. The new ⌦ (=:)-bit lower bound is for the total size of
the data structure, and implies an ⌦ (:)-bit lower bound on the average length of any labeling scheme.

Citation Space (Words) Labeling (Bits) �ery Time Construction Time

Block-tree : = 2 $ (=) $ (1) $ (<)
Block-tree + SPQR-tree [4] : = 3 $ (=) $ (1) $ (<)
Block-tree + SPQR-tree + [42] : =
4

$ (=) $ (1) $ (< + =U (=))

[46]
$ (=2:) $ (2: log=) $ (2:) poly(=)

⌦(: log(=/:3)) any any
[48] $ (=:3) $ (:3 log=) $ (: log:) poly(=)
[39] $ (=:2) $ (:2 log=) $ (log:) poly(=)
[40] $ (=: log=) $ (: log3 =) $ (: log=) poly(=)
[1] $ (=2) $ (= log=) $ (1) $ (=:)l
[58] : = ^ (⌧) + 1 $ (=^ (⌧)) $ (^ (⌧) log=) $ (1) $̃ (< + = · poly(^ (⌧)))
[56] (¢) $ (=:2 + =2) $ (1) poly(=)

New
$ (=: log=) $ (: log3 =) $ (log=))u�ow (<) · poly(:, log=)
⌦(=:/log=) ⌦(:) avg. any any

smallest mixed cut ⇠ ⇢ (⇢ [(+ � {D, E})) whose removal discon-
nects D, E .7 Element connectivity is a useful generalization of vertex-
and edge-connectivity [10, 11, 14, 24, 27, 41]. Let* ✓ + be a set of
terminals. Then for D, E 2 * , ^ 0⌧,* (D, E) is the maximum number of
paths between D and E that are ⇢-disjoint and (+ �*)-disjoint.8
By duality, this is equivalently the size of the smallest mixed cut
⇠ ⇢ (⇢ [(+ �*)) whose removal disconnects D, E . Observe that
when* = + ,^ 0⌧,* (D, E) = _⌧ (D, E) is the same as edge-connectivity,
and when* = {D, E}, ^ 0⌧,* (D, E) = ^⌧ (D, E) captures vertex connec-
tivity. More generally we have Lemma 2.1, which follows directly
from the de�nitions.

Lemma 2.1. Fix an undirected graph ⌧ = (+ , ⇢) and a terminal
set * ✓ + . For any D, E 2 * , ^ 0⌧,* (D, E) � ^⌧ (D, E) with equality
if and only if there exists a mixed ^⌧ (D, E)-cut ⇠ disconnecting D, E
with ⇠ * = ;.

To shorten our notations, we add a de�nition:

De�nition 2.2. A terminal set* ✓ + captures D, E if there exists a
mixed ^⌧ (D, E)-cut ⇠ ✓ + [⇢ such that

* \ ({D, E} [⇠) = {D, E}.
Lemma 2.1 is then rephrased as: ^ 0⌧,* (D, E) � ^* (D, E) with

equality if and only if* captures D, E .
If ⇠ is a mixed cut, the connected components of ⌧ � ⇠ are

called sides of ⇠ . Note that minimum edge-cuts have two sides but
7Sometimes only “pure” vertex cuts⇠ ⇢ + � {D, E } are considered and ^⌧ (D, E) is
left unde�ned or arti�cially de�ned to be |+ | � 1 whenever D, E are adjacent in ⌧ .
This de�nition fails to distinguish highly connected and poorly connected pairs of
vertices that happen to be adjacent. Inserting a vertex into every edge can be a trivial
reduction that transforms “mixed cuts” into “pure cuts”, but this increases the number
of vertices to ⌦ (<) , so only used when the time bound is based to<. This explains
why we de�ne ^⌧ (D, E) in this way.
8Namely, these paths does not intersect at edges in ⇢, nor vertices in (+ �*) .

minimum vertex-cuts may have an unbounded number of sides.
For any � ⇢ + , m� is the set of vertices adjacent to � in ⌧ , but not
in �. Thus, m� is a vertex cut disconnecting � from + � (� [m�).

It is well known that Gomory-Hu trees exist for element connec-
tivity; see [11, 62]. We use the following general de�nition:

De�nition 2.3. A :-Gomory-Hu tree for element connectivity w.r.t.
graph ⌧ and terminal set* is a triple () , 5 ,⇠) satisfying

• (Flow equivalency)) = (+) , ⇢) ,F : ⇢) ! [1,:)) is a
weighted tree and 5 : * ! +) satis�es that, if 5 (D) = 5 (E)
then ^ 0⌧,* (D, E) � : ; and otherwise,
^ 0⌧,* (D, E) = min42) (5 (D),5 (E)) F (4), where) (G,~) is the
unique) -path between G and ~.

• (Cut equivalency) ⇠ : ⇢) ! 2⇢[(+�*) . For any edge 4 2
) (5 (D), 5 (E)),⇠ (4) is aF (4)-cut disconnectingD, E in⌧ . (Each
of the two connected components in) � 4 represents the union
of some subset of the sides of ⇠ (4).)

Note that 5 is unnecessary if : = 1 as in this case +) = * , and
that⇠ is unnecessary if we are only interested inmin{^ 0⌧,* (D, E),:}-
queries. This de�nition can be extended to (1 + n)-approximations
by relaxing the �rst criterion (�ow equivalency) to ^ 0⌧,* (D, E) 
min42) (5 (D),5 (E)) F (4)  (1 + n)^ 0⌧,* (D, E), with trivial 5 (+) = *
and 5 maps trivially), and the second criterion similarly.

2.2 Isolating Cut Lemma and Max-Flows
Li and Panigrahi’s [50] isolating cuts lemma �nds, for a terminal
set � , the minimum edge-cut separating D 2 � from � � {D} in time
proportional to $ (log |� |) max-�ows. It was generalized to vertex
connectivity in [49] and here we generalize this lemma slightly
further to be able to handle element connectivity.

153

STOC ’22, June 20–24, 2022, Rome, Italy Seth Pe�ie, Thatchaphol Saranurak, Longhui Yin

Lemma 2.4 (Isolating cuts, vertex version with forbidden termi-
nals). Let � [� be an independent set in graph ⌧ = (+ , ⇢), and
� \ � = ;. We want to �nd, for each E 2 � , a set (E ⇢ + such that (i)
(E \ � = {E} and (m(E) \ � = ;, (ii) it minimizes |m(E |, (iii) subject
to (ii), it minimizes |(E |. Then {(E}E2� can be computed with log |� |
calls to max-�ow on graphs with $ (<) edges, $ (<) vertices, and
capacities in {1,1}. If we do not care to minimize |m(E | if it is larger
than : , then the max-�ow instances can be unit-capacity multigraphs
with $ (< + : |� |) edges and vertices.

P����. (sketch) The proof follows [49, Lemma 4.2]. The authors
called max-�ow instances to compute the isolating cuts. Our lemma
adds a new requirement, that m(E \ � = ;. This can be e�ected by
replacing E 2 � in the �ow networks with two vertices and an edge
Ein ! Eout with capacity1. (Or in the unit-capacity case, with : +1
parallel edges from Ein to Eout.) This ensures vertices in � never
appear in the cuts m(E we are interested in. ⇤

3 SPACE LOWER BOUND ON VERTEX
CONNECTIVITY ORACLES

Informal strategy and intuitions. We use an error-correcting-
code-type argument to derive an ⌦(=2)-bit lower bound in the
case that : = =. By taking the product of =/: copies of this con-
struction on ⇥(:)-vertex graphs, we derive the ⌦(:=)-bit lower
bound for general : 2 [1,=]. The idea is to show the existence of a
codebook T of = ⇥ = Boolean matrices with the following property.
Each) 2 T can be represented by a certain graph ⌧ [)] on $ (=)
vertices. Supposing there exists a 1-bit vertex connectivity oracle
for this graph, we query ^⌧ [)] (D, E) for all pairs D, E . From these
values we reconstruct a di�erent Boolean matrix)̃ <) , which is
within the decoding radius9 of T , and therefore lets us deduce the
identity of the original matrix) . In other words, it must be that
1 � log2 |T |. A key technical idea is to show that each) 2 T in
the codebook can, in a certain sense, be approximately factored as
the product of two rectangular Boolean matrices, with addition and
multiplication over Z.

The speci�cs of the construction are detailed in Theorem 3.1.

T������ 3.1. There exists a constant 2 � 5 and a subset T ✓
{0, 1}=⇥= of boolean matrices having the following properties.

(1) (Code Properties) |T | = 2=
2/3, each row of each) 2 T has

Hamming weight exactly =/2, and every two) ,) 0 2 T has
Hamming distance at least =2/3.

(2) (Matrix Decomposition) For every) 2 T , there exists � 2
{0, 1}=⇥2=,⌫ 2 {0, 1}2=⇥= such that ⇠ = �⌫ encodes) in the
following way. Let)̂ 2 {0, 1}=⇥= be such that

)̂ (8, 9) =
⇢

0 if ⇠ (8, 9) < 2=
1 if ⇠ (8, 9) � 2=

Then) ,)̂ have Hamming distance less than =2/6. Moreover,
⇠ (8, 9)  2.1= for all 8, 9 .

(3) (Vertex Connectivity) Let �,⌫ be the matrices corresponding
to) from Part 2. Let ⌧ [)] = (- [. [/ , ⇢) be an undirected
tripartite graph with |- | = |/ | = = and |. | = 2=, where
⇢ \ (- ⇥ .) encodes � and ⇢ \ (. ⇥ /) encodes ⌫.

9We de�ne the half of minimum Hamming distance between two di�erent matrices in
T as the decoding radius of T .

Let)̃ be such that

)̃ (8, 9) =
⇢

0 if ^ (G8 , I 9) < 4= � 2
1 if ^ (G8 , I 9) � 4= � 2

Then)̂ =)̃ so) ,)̃ have Hamming distance less than =2/6.

P����. For Part 1, a simple probabilistic construction shows
the existence of T . Pick a random codebook T0 containing (1 +
> (1))2=2/3 matrices and discard a negligible fraction of codewords
that are within distance (2/5)=2 of another codeword. Obtain T
from T0 as follows. Take each)0 2 T0 and see if it is within Ham-
ming distance $ (=3/2) of a matrix) , all of whose rows have Ham-
ming weight =/2. If so, include) 2 T as a representative of)0.
Only a negligible fraction of T0 matrices fail to satisfy this property.
Thus, T has the requisite size and each pair of matrices in T has
Hamming distance at least (2/5)=2 �$ (=3/2) > =2/3.

Turning to Part 2, the construction of �,⌫ is probabilistic. We
pick ⌫ uniformly at random such that each row has Hamming
weight =/2, then choose � depending on ⌫. We call (8,:) eligible if
the vector ⌫(:, ·) has an unusually high agreement with) (8, ·), in
particular, if

|{ 9 : ⌫(:, 9) =) (8, 9)}| � =/2 +
p
=.

For each row 8 , we set �(8,:) = 1 for the �rst 4= values of : for
which (8,:) is eligible. Since the probability of (8,:) being eligible
is some constant ? , it is possible to build � with high probability if
2 is su�ciently large, say 4?�1 + 1.

Suppose) (8, 9) = 1 and consider the random variable ⇠ (8, 9). By
the de�nition of eligibility and the fact that rows of ⌫ and) have
Hamming weight =/2,

Pr(⌫(:, 9) = 1 | (8,:) eligible) � 1/2(=/2 + p=)
=/2 =

1
2
+ 1p

=

Thus ⇠ (8, 9) is a random variable that dominates Binom(4=, 1/2 +
1/p=), hence E(⇠ (8, 9)) � 2= + 4

p
=. The case when) (8, 9) = 0 is

symmetric, in which case Binom(4=, 1/2� 1/p=) dominates⇠ (8, 9).
By a Cherno� bound, the probability that)̃ (8, 9) <) (8, 9) is the
probability that⇠ (8, 9) deviates from its expectation by at least 4

p
=,

which is at most exp(�2(4p=)2/4=) = exp(�8). The Hamming
distance between)̂ and) is therefore at most =2 exp(�8) < =2/6
in expectation.

Lastly, by a Cherno� bound, the probability that ⇠ (8, 9) deviates
from 2= by a constant factor is exponentially small. In particular,
we have ⇠ (8, 9)  2.1= for all 8, 9 with high probability. This proves
the existence of matrices �,⌫ for any) 2 T .

Part 3. Observe that ⇠ (8, 9) re�ects the maximum �ow from G8
to I 9 if ⌧ [)] were a unit-capacity network with all edges directed
from - ! . ! / . However, ⌧ [)] is undirected, and by Menger’s
theorem ^ (G8 , I 9) is the maximum number of internally vertex dis-
joint paths from G8 , I 9 . We consider paths of length 2 (corresponding
to ⇠ (8, 9)) and two types of paths of length 4.

For technical reasons we will modify the construction of � as
follows. For each row 8 , set �(8,:) = 1 for A = $ (2 log=) values
of : chosen uniformly at random, then set �(8,:) = 1 for 4= � A
additional values of : for which (8,:) is eligible. This changes the
expectation of ⇠ (8, 9) by $ (2 log=)/p= < 1 but does not otherwise
a�ect the analysis in Part 2.

154

Optimal Vertex Connectivity Oracles STOC ’22, June 20–24, 2022, Rome, Italy

We claim that with high probability, the vertex connectivity of
G8 , I 9 is exactly

^ (G8 , I 9) = min{⇠ (8, 9) + 2(= � 1), 4=}.
In particular there are ^ (G8 , I 9) paths % = %0 [%1 [%2, where
|%0 | = ⇠ (8, 9) are length-2 paths, %1 are=�1 paths internally disjoint
from %0 of the form G8 ! . ! - ! . ! I 9 and %2 are up to = � 1
paths disjoint from %0 [%1 of the form G8 ! . ! / ! . ! I 9 .

We construct %1 as follows. Choose.1,G to be any =�1 neighbors
of G8 that are not part of %0 paths, and .1,I to be any =�1 neighbors
of I 9 that are not part of %0 paths. Clearly .1,G \ .1,I = ;. Let
⌧1,G ,⌧1,I be the subgraphs of⌧ [)] induced by - � {G8 } [.1,G and
- � {G8 } [.1,I , respectively. These graphs contain many edges
of generated from �, but we only consider the A edges per vertex
generated randomly.10 Since A = ⇥(2 log=) and |. | = 2=, vertices in
both⌧1,G and⌧1,I have degree ⇥(log=) with high probability. It is
well known that such graphs have perfect matchings w.h.p. (see [8]
or [28]); call them"1,G ,"1,I . Together with G8 , I 9 , these form = � 1
paths %1 internally disjoint from %0. The construction of paths %2
is symmetric. Let .2,G be min{= � 1, 4= � |%0 | � |%1 |} neighbors of
G8 not already included in %0, %1, and .2,I be |.2,G | neighbors of
I 9 not included in %0, %1. Note that both .2,G and .2,I have size at
least 0.9= because |%0 |  2.1= and |%1 |  =. The graphs ⌧2,G ,⌧2,I
induced by / � {I 9 }[.2,G and / � {I 9 }[.2,I again contain perfect
matchings"2,G ,"2,I with high probability.11 Together with G8 and
I 9 these generate |.2,G | paths internally disjoint from %0, %1.

We conclude that with high probability, ⇠ (8, 9) < 2= if and only
if ^ (G8 , I 9) < 2= + 2(= � 1) and, from Part 2, that there exist �,⌫
such that)̃ ,) have Hamming distance less than =2/6. ⇤

Corollary 3.2. SupposeD (⌧,:) is a data structure for an undirected
=-vertex graph⌧ that can determine whether ^ (D, E) < : or ^ (D, E) �
: . Then D requires ⌦(:=) bits of space in the worst case.

P����. Pick any) 2 T , and let⌧ [)] be the (2+2)=-vertex graph
encoding of) from Theorem 3.1. Using D (⌧ [)],:) with : = 4=�2,
we can generate the matrix)̃ , and then deduce) since)̃ is within
its decoding radius =2/6. Thus, D requires at least log |T | = ⇥(=2)
bits of space. For general values of : , we can take ⇥(=/:) disjoint
copies of this construction, each having⇥(:) vertices and requiring
⇥(:2) space. ⇤

Remark 3.3. The lower bound of Corollary 3.2 also applies to
data structures D (⌧,:) that distinguish between ^ (D, E) = : and
^ (D, E) < : . For this case we would use the construction of Theo-
rem 3.1 with : = 4= and let)̃ (8, 9) = 1 i� ^ (G8 , I 9) = 4=.

Corollary 3.4. Suppose D (⌧,:, n) is a data structure for an undi-
rected =-vertex graph ⌧ that can distinguish between ^ (D, E) <
(1 � n): or ^ (D, E) > (1 + n): . Then D requires ⌦(=n�2) bits of
space for some n .

P����. The construction of Theorem 3.1 and Corollary 3.2 still
works when : = ⇥(=) and n = ⇥(1/p=). ⇤
10The edges included by the eligibility criterion have subtle dependencies, which
makes reasoning about them somewhat tricky. Including truly random edges in� is a
technical hack and surely not necessary.
11Note that⌧2,G ,⌧2,I correspond to submatrices of ⌫, which was chosen randomly
with density 1/2. Due to the Hamming weight restriction, the entries of ⌫ are slightly
negatively correlated, which only improves the chance of �nding perfect matchings.

4 VERTEX CONNECTIVITY ORACLES
Lemma 2.1 says that for any terminal set * , ^ 0⌧,* (D, E) never un-
derestimates the true value ^⌧ (D, E) and achieves the equality
^ 0⌧,* (D, E) = ^⌧ (D, E) if * captures D, E . This naturally induces
a design pattern for vertex connectivity oracles: �nd some (usually
random) terminal sets *8 , construct oracles for ^ 0⌧,*8

, and output
min8:{D,E }✓*8

^ 0⌧,*8
(D, E) to a query for ^⌧ (D, E); if with high prob-

ability at least one *8 captures D, E , we succeed. Furthermore, ^ 0⌧,*
can be succinctly represented as a Gomory-Hu tree (De�nition 2.3)
and queried via bottleneck edge queries [9, 16, 57] in $ (1) time.
This is the basic idea of how Izsak and Nutov’s [40] and our data
structure work.

At the �rst glance it seems a bit paradoxical because, Hassin
and Levin [37] have shown pairwise vertex connectivity cannot be
captured by a Gomory-Hu-type tree representation, while we are
constructing Gomory-Hu trees of element connectivity to answer
it, where element connectivity is a generalization of vertex connec-
tivity. However, there is no contradiction, because we maintain a
set of carefully designed terminal sets, each captures a subset of
pairs, and they together, captures all pairwise vertex connectivity.

Izsak and Nutov’s [40] ingenious algorithm proceeds by sam-
pling several terminal sets with probability 1/: . Each terminal set
includes both D and E with probability 1/:2 and avoids ⇠D,E with
constant probability if |⇠D,E |  : , hence $ (:2 log=) terminal sets
su�ce to accurately capture all vertex connectivities up to : with
high probability. The space for the centralized data structure is just
that of storing $ (:2 log=) Gomory-Hu trees and data structures
for answering bottleneck-edge queries. Each tree is on $ (=/:)
terminals, for a total of $ (:= log=) space. A query v-conn(D, E)
needs to examine all terminal sets containing both D and E . This
is a classic SetIntersection query. Each of D, E is in ⇥(: log=) sets,
and are jointly in ⇥(log=) sets. And their implementation requires
checking through ⇥(: log=) sets.

In this section we show how to build appropriate SetIntersection
instances such that queries are answered in (optimal)$ (log=) time.
(If minimum cuts are associated with edges in the Gomory-Hu tree,
a v-cut(D, E) query can be answered in $ (1) additional time be
returning a pointer to the appropriate cut. This increases the space
to $ (:2= log=).)

First, we show how to �nd$ (:2 log=) terminal sets that capture
all pairs in + 2 using a construction based on a�ne planes and
3-wise independent hash functions.

Lemma 4.1. There is an algorithm using$ (log2 =) random bits that
generates terminal sets U with the following properties.

• |U| = $ (:2 log=) and each* 2 U has |* | = $ (=/:).
• Given vertices D, E with ^ (D, E)  : we can �nd $ (log=) sets
1, . . . ,$ (log=) inU costing $ (log=) time, such that each,
independently, captures D, E with constant probability. As a
consequence, w.h.p.,U captures all of + 2.

P����. Let ?0 be the �rst prime larger than = = |+ | and ? be the
�rst prime larger than 2: . Let � = (%, !) be a subset of an a�ne
plane, de�ned as follows. % = {D8, 9 | 8 2 [d?0/?e], 9 2 [?]} is a set
of points arranged in a rectangular grid and ! = {✓B, 9 | B, 9 2 [?]}
is a set of lines, where ✓B, 9 = {DC , 9+BC mod ? | C 2 [d?0/?e]} is the
line with slope B passing through D0, 9 . We pick a hash function

155

STOC ’22, June 20–24, 2022, Rome, Italy Seth Pe�ie, Thatchaphol Saranurak, Longhui Yin

⌘ : + ! % of the form

⌘(G) = Db⌘̄ (G)/?c,⌘̄ (G) mod ? ,

where ⌘̄(G) = (0G2 + 1G + 2) mod ?0 with 0,1, 2 chosen uniformly
at random from [?0], then form the ?2 = ⇥(:2) terminal sets
U[⌘] = {*B, 9 } as follows.

*B, 9 = {E | ⌘(E) 2 ✓B, 9 }.
Now �x any two vertices D, E and a ^ (D, E) cut ⇠ with ^ (D, E) 
: . Then U[⌘] will capture D, E if (i) ⌘(D),⌘(E) di�er in their 1st
coordinates of the rectangular grid % , and, assuming this happens,
(ii) ⇠ *B, 9 = ; where ✓B, 9 is the unique line containing ⌘(D),⌘(E).
The probability of (i) is 1 � ?/?0 = 1 � ⇥(:/=) and the probability
of (ii) is

Pr(⇠ *B, 9 = ; | ⌘(D),⌘(E))

�1 �
’

G 2⇠\+
Pr(⌘(G) 2 ✓B, 9 | ⌘(D),⌘(E))

�1 � : d?0/?e /?0 � 1/2,
where the second last inequality is because |✓B, 9 |  d?0/?e, |⇠ |  : ,
and ⌘ is sampled from a 3-wise independent hash family.

Let U be the union of U[⌘1], . . . ,U[⌘$ (log=)] using indepen-
dent hash functions ⌘1, . . . ,⌘$ (log=) . Then, it follows that |U| =
$ (?2 log=) = $ (:2 log=).

Preprocessing a table of inverses modulo ? , given D, E with
^ (D, E)  : , we can clearly identify whether points ⌘8 (D),⌘8 (E)
di�ering in 1st coordinate, and when so, identify ✓B, 9 (and hence
*B, 9 2 U[⌘8]) containing them all in $ (1) time. Therefore, we can
identify *1, . . . ,*$ (log=) 2 U in $ (log=) time such that at least
one of these terminal sets captures D, E w.h.p.

We now turn to the load balancing condition |* | = $ (=/:). Note
that if the coe�cients of ⌘ satisfy (0,1, 2) < (0, 0, 2) then ⌘ is at
most a 2-to-1 function (as the polynomial de�ning ⌘ has degree
2), meaning that each * 2 U has |* | < 2 d?0/?e = $ (=/:). The
performance of the algorithm is clearly quite bad when 0 = 1 = 0
(each terminal set * is either ; or +) so we can remove these hash
functions from the hash family and only improve the probability of
success. ⇤

Remark 4.2. One way that U[⌘] can fail to capture D, E is if ⌘(D)
and ⌘(E) agree on their 1st coordinate. This could be recti�ed by
including the lines ;1, 9 = {D8,@ : 8 ⌘ 9 (mod ?),@ 2 [?]} for
9 2 [?], which occupies $ (=/:) points.

Now, by using the collection U of terminal sets with additional
structure from Lemma 4.1 instead of the $ (:2 log=) random termi-
nal sets generated independently as used in [40], we can speed up
the query time from $ (: log=) to $ (log=)12. Below, we state the
guarantee of our oracle formally.

T������ 4.3. Given an undirected graph ⌧ = (+ , ⇢) and : 2
[1,=], a data structure with size $ (:= log=) can be constructed in
$ (<) +)u�ow (=:)poly(:, log=) = $ (<) + =4/3+> (1)poly(:) time
such that v-conn(D, E) = min{^⌧ (D, E),:} queries can be answered
12Finding all*8 that contains D, E takes$ (log=) time, and each ^0⌧,*8

(D, E) takes
$ (1) time, so in totalmin8 :{D,E}✓*8 (D, E) takes$ (log=) time. And each*8 captures
D, E with constant probability, so at least one*8 capturesD, E, i.e., the output is correct,
with high probability.

in $ (log=) time. Using space $ (:2= log=), a v-cut(D, E) query can
be answered in$ (1) additional time; it returns a pointer to a^⌧ (D, E)-
size D-E cut whenever ^⌧ (D, E) < : .

The claims of Theorem 4.3 concerning construction time are
substantiated in Section 5. In the context of our vertex connectivity
oracle, note that we can assume that our original graph has $ (=:)
edges by applying Nagamochi-Ibaraki algorithm [55] with $ (<)
running time to reduce the number of edges to $ (:=). So the con-
struction time is =4/3+> (1)poly(:) using the max-�ow algorithm
for unit-capacity graphs by Kathuria, Liu, and Sidford [45].

5 GOMORY-HU TREES FOR ELEMENT
CONNECTIVITY

The goal in this section is to prove the following:

T������ 5.1. A :-Gomory-Hu tree for element connectivity w.r.t.
graph ⌧ and terminal set* can be constructed in $̃ (: ·)u�ow (< +
: |* |)) time.

Note that, given the above theorem, we can indeed conclude
Theorem 4.3 because there are $ (:2 log=) terminal sets in the
oracle construction and we just need to build a Gomory-Hu tree for
each terminal set by calling Theorem 5.1. As< = $ (=:) and |* | =
$ (=/:) by Lemma 4.1, this takes)u�ow (< +: |* |) =)u�ow ($ (=:))
for each terminal set.

Obstacles in Adapting Algorithms of [51] for Element Connectivity.
The proof of Theorem 5.1 is obtained by adapting the Gomory-Hu
tree construction for edge connectivity by Li and Panigrahi [51] to
work for element connectivity. Although we use the same high-level
approach, element connectivity introduces some extra complication
that we need to deal with.

For example, given an input graph ⌧ , all Gomory-Hu tree algo-
rithms for edge connectivity proceed by �nding a minimum edge
cut (�,⌫), contract one side, say ⌫, of the cut into a single vertex
1, and recurse on the contracted graph denoted by ⌧ 0. By submod-
ularity of edge cuts, we have that the edge connectivity between
any two vertices 01,02 2 � are preserved in ⌧ 0. This is crucial for
the correctness of the whole algorithm.

Unfortunately, the direct analog of this statement fails com-
pletely for element connectivity. For example, suppose ?,@ 8 ⌫ are
disconnected by an element cut ⇠ of graph ⌧ . Then in graph ⌧ 0,
⇠ 0 = {1} [(⇠ \ ⌫) becomes an element cut disconnecting ? and @.
As long as ⇠ contains more than one element in ⌫ (an edge, or a
non-terminal vertex), |⇠ 0 | < |⇠ |, so ^ 0(?,@) decreased.

To bypass this complication, we actually exploit the generality of
element connectivity. When we recurse in a contracted graph, the
trick is to add the contracted node into a terminal set for element
connectivity. That is, the terminal set will change throughout the
recursion so that we can preserve element connectivity between
vertices inside the subject graph.

In the rest of this section, we formally prove Theorem 5.1.

156

Optimal Vertex Connectivity Oracles STOC ’22, June 20–24, 2022, Rome, Italy

5.1 The Approximate Element Connectivity
Gomory-Hu Tree Algorithm

Instead of proving Theorem 5.1 directly, it is more convenient
to prove the following (1 + n)-approximation version, which is
precisely the element connectivity analog of the result in [51].

T������ 5.2. A (1+n)-approximate Gomory-Hu tree for element
connectivity w.r.t. graph ⌧ and terminal set * can be computed in
$̃ (n�1)�ow (<)) time, where)�ow (<) is the time to compute max
�ow in an<-edge graph.

Theorem 5.1 almost follows from Theorem 5.2 just by setting
n = 1/: . However, there is some minor things to take care of, and
we give the formal proof in Section 5.2.

Before we give the proof of Theorem 5.2, observe that as a sim-
plifying assumption, Lemma 2.4 (isolating cuts with forbidden ter-
minals) required that � [� be an independent set. We can force
any instance to satisfy this property by subdividing all edges in
⇢ \ (� [�)2. As a consequence, from now we can assume that all
element cuts in the modi�ed graph consist solely of vertices.13

5.1.1 Algorithm. The precise algorithm for Theorem 5.2 is de-
scribed in Algorithm 1. For the reader to better understand, we
�rst brie�y explain how the algorithm works, how the input and
the output of the algorithm relate to De�nition 2.3.

The basic framework is a recursion. For a random set of terminals
'8 , we call Lemma 2.4 to compute its isolating cuts (8E . We select
those E such that (8E  (1 + n)_ and

��(8E * ��  |* | /2 into set '8sm.
Now m(8E is a (1 + n)-approximation to the minimum element cut
between (8E and + \ ((8E [m(8E), so we split the problem into sub-
graphs ⌧E generated by (8E for each E 2 '8sm and one large part,
which we call ⌧lg. We specify the new parameters added in the
algorithm.

As mentioned before, to avoid the sub-cases underestimate the
original element connectivity, we add a new parameter: the forbid-
den set � . The vertices in � are terminals counted when computing
the connectivity, but queries related to them are not supported.
Accordingly, the output) is a (1+n)-approximate Gomory-Hu tree,
that represents element connectivity in ⌧ with the terminal set
* [� , while the tree nodes only represent vertices from* .14 For
D, E 2 * , the bottleneck edge weight between 5 (D) and 5 (E) on) is
^ 0⌧,*[� (D, E). In the top-level call � is set to ;, but may accumulate
up to $ (|* |) vertices in the recursion.

As will be proved in Lemma 5.3, the element connectivity be-
tween vertices inside *lg are preserved exactly in the contracted
graph ⌧lg. For the small graphs ⌧E , by Lemma 5.4, we accept a
(1 + n)-factor approximation to element connectivity, which ac-
crues to (1 + n)log |* | as a vertex can only appear in the small
branch of the recursion log |* | times.

To link the sub-trees at correct nodes and to compute 5 , we
added a tool function 6 : + ! +) [{?} that maps vertices of ⌧
into tree nodes of) , or a symbol ?. 6 indicates at which tree nodes
we should link two sub-trees. Moreover, the algorithm ensures that
at the end, 6(E) < ? for every E 2 * . From the de�nition of 6, 6(E)
13If (G, ~) is subdivided into (G, EG~), (EG ,~ , ~) , then any vertex-only element cut
containing EG ,~ in the modi�ed instance contains (G, ~) in the original instance, and
vice-versa.
14I.e., 5 : * ! + ()) does not embed � in) .

with E 2 * satis�es the properties of the embedding function 5 in
De�nition 2.3.

To summarize, to compute (1+n)-approximate Gomory-Hu tree,
call Algorithm 1 with desired⌧,* , n, and � = ;. It outputs () ,6,⇠).
We set the embedding 5 (E) = 6(E) for all E 2 * , and then return
() , 5 ,⇠), which satis�es De�nition 2.3. At this point, every node
C 2) are in the range of 5 , because C is only created in the base
case, where 6 maps a vertex D 2 * to C .

Algorithm 1:A�����E���C���GHT���(⌧ (+ , ⇢),* , � , n)
input :The graph ⌧ = (+ , ⇢), the terminal set* , the

forbidden set � , the approximation accuracy n
output :A (1 + n)-approximate element-connectivity

Gomory-Hu tree () ,6,⇠)
1 if |* | = 1 then // The Base Case

2 Construct) with one node C , 6(D) C for all D 2 + (⌧)
and ⇠ an empty function

3 return () ,6,⇠)
4 end
5 Let _ the global minimum element connectivity // See

Remark 5.7

6 Call CutThresholdStep(⌧,* , � , (1 + n)_) and store its
output B, {' 9sm,' 9 , (9E }

7 Fix 8 2 {0, 1, · · · , blog |* |c} that maximizes���[E2'8sm ((8E *)
���.

8 foreach E 2 '8sm do
9 Let ⌧E the graph with + \ ((8E [m(8E) contracted into

a vertex GE .
10 Let*E (8E * .
11 Let ()E,6E,⇠E)

ApproxElemConnGHTree(⌧E,*E, � [{GE}, n).
12 end
13 Let ⌧lg the graph ⌧ with (8E contracted into a vertex ~E

for each E 2 '8sm.
14 Let*lg * \ [E2'8sm ((

8
E *).

15 Let ()lg,6lg,⇠lg)
ApproxElemConnGHTree(⌧lg,*lg, � [{~E | E 2 '8sm}, n).

16 Initialize))lg [([E2'8sm)E), and then add edges
(6E (GE),6lg (~E)) with weight

��m(8E ��. Let 6 inherit values
from 6lg or one of the {6E}. If the value for E is de�ned in
more than one such function, set 6(E) ?. Let ⇠ inherit
the assignment of ⇠lg and {⇠E}, and for the new edges set
⇠ ((6E (GE),6lg (~E))) m(8E .

17 return () ,6,⇠).

5.1.2 Correctness. We prove the results needed to show the cor-
rectness of Algorithm 1. Denote �lg = � [{~E |E 2 '8sm} and
�E = � [{GE}.

Lemma 5.3. For any two vertices ?,@ 2 *lg, we have

^ 0⌧lg,*lg[�lg (?,@) = ^ 0⌧,*[� (?,@) .

157

STOC ’22, June 20–24, 2022, Rome, Italy Seth Pe�ie, Thatchaphol Saranurak, Longhui Yin

Algorithm 2: C��T��������S���(⌧ = (+ , ⇢),* , �8=,,)
1 Set B a uniformly random vertex in* .
2 '0 * .
3 for 9 from 0 to blog |* |c do
4 Call Lemma 2.4 to compute sets {(9E : E 2 ' 9 }, with

� = ' 9 and � = (* \' 9) [�8= .
5 Let ' 9sm {E 2 ' 9 \ {B} :

���(9E *
���  |* | /2 and

���m(9E
��� 

, }.
6 ' 9+1 sampling each vertex of ' 9 with probability 1

2 ,
but B with probability 1.

7 end
8 return B and, for each 9 , {' 9sm, ' 9 , {(9E }E2' 9

sm
}.

P����. We �rst show that^ 0⌧lg,*lg[�lg (?,@) � ^ 0⌧,*[� (?,@). Sup-
pose⇠ is a minimum element cut disconnecting ? and @ in⌧lg with
terminal set*lg [�lg. Then ⇠ does not contain any ~E , so ⇠ is still
an element cut for ? and @ in ⌧ , and therefore ^ 0⌧lg,*lg[�lg (?,@) =
|⇠ | � ^ 0⌧,*[� (?,@).

It remains to show that ^ 0⌧lg,*lg[�lg (?,@)  ^ 0⌧,*[� (?,@). Sup-
pose ⇠ is a minimum element cut disconnecting ? and @ in ⌧ with
terminal set * [� , and let �,⌫ be the sides containing ?,@, respec-
tively. Every E 2 '8sm is by de�nition not in ⇠; let the side of ⇠
containing E be ⇡E .

Without loss of generality we assume E and @ are in di�erent
sides. For brevity, all the following unspeci�ed element cuts are
with respect to ⌧ and * [� . Let � = ⇡E [�, we have that m� is
a minimum element cut between {E, ?} and {@}, and m(� [(8E) is
an element cut between {E, ?} and {@}, so

��m(� [(8E)�� � |m� |. Now
that m(8E is also aminimum element cut between {E} and'8\{E}, and
m((8E \�) is also an element cut between {E} and '8 \ {E}, we have��m(� \ (8E)�� � ��m(8E ��. By the submodularity of element-connectivity,

|m� | +
��m(8E �� � ��m(� \ (8E)�� + ��m(� [(8E)�� .

Hence this inequality holds with equality, so
��m(� \ (8E)�� = ��m(8E ��.

But by Lemma 2.4, (8E is also minimum in size among minimum
isolating cuts, so � \ (8E = (8E , and therefore (8E ✓ � .

If ⇡E = �, we already have (8E ✓ ⇡E . If ⇡E < �, then noticing
that in ⌧ �⇠ , ⇡E is not connected to �, while (8E is connected to E ,
we know that (8E \� = ; and (8E ✓ ⇡E .

We have shown that (8E ✓ ⇡E . When contracting (8E into a
vertex GE , the cut ⇠ = m⇡E is not a�ected, so ⇠ is still an ele-
ment cut between ? and @ in ⌧lg with terminal set *lg [�lg, and
^ 0⌧lg,*lg[�lg (?,@)  |⇠ | = ^ 0⌧,*[� (?,@). ⇤

Lemma 5.4. For any two vertices ?,@ 2 *E , we have
^ 0⌧,*[� (?,@)  ^ 0⌧E ,*E[�E (?,@)  (1 + n)^ 0⌧,*[� (?,@).

P����. We �rst show that ^ 0⌧E ,*E[�E (?,@) � ^ 0⌧,*[� (?,@). Sup-
pose⇠ is a minimum element cut disconnecting ? and @ in⌧E with
terminal set *E [�E . Then ⇠ does not contain GE , so ⇠ is still an
element cut disconnecting ? and @ in ⌧ , so ^ 0⌧,*[� (?,@)  |⇠ | =
^ 0⌧E ,*E[�E (?,@).

Next, we show that ^ 0⌧E ,*E[�E (?,@)  (1 + n)^ 0⌧,*[� (?,@). Sup-
pose ⇠ is a minimum element cut disconnecting ? and @ in ⌧ with
terminal set * [� and let �,⌫ be the sides of ?,@. Without loss of
generality, suppose� does not contain B . The following unspeci�ed
element cuts are with respect to ⌧ and* [� .

We have that m((8E [�) is an element cut disconnecting ? and
B . Therefore,

��m((8E [�)�� � _. Furthermore, by the de�nition of (8E ,��m(8E ��  (1 + n)_. Therefore, by the submodularity of element cuts,

(1 + n)_ + |m�| �
��m(8E �� + |m�|
�
��m((8E [�)�� + ��m((8E \�)�� � _ +

��m(8E \��� .
Now that (8E \� contains ? but not @, m((8E \�) is an element cut
disconnecting ? and @, and since it is contained in ⌧E , it is still
an element cut in ⌧E with terminal set *E [�E , so

��m((8E \�)�� �
^ 0⌧E ,*E[�E (?,@). And by de�nition |m�| = ^ 0⌧,*[� (?,@) � _.

Therefore,

^ 0⌧E ,*E[�E (?,@)  n_ + |m�|  (1 + n)^ 0⌧,*[� (?,@) .
⇤

Lemma 5.5. The assignment6(E) = ? occurs if and only if E appears
in ⇠ (4) for some edge. Therefore, 6 value of vertices in * [� never
equals ?.

P����. From the construction of⌧lg and⌧E , it can be seen that
only the vertices in m(8E = ⇠ ((6E (GE),6lg (~E))) are de�ned twice
(or more), so their 6-value are set to ?. These are all the vertices
such that 6(E) = ?. ⇤

Remark 5.6. From Lemma 5.3, Lemma 5.4 and Lemma 5.5, in line
17 of Algorithm 1, the 6-value of GE , ~E are not ?, so linking the
sub-trees would be successful. And 6(E) for E 2 * equals to ?.

Remark 5.7. As stated the algorithm computes the global element
connectivity _. In reality _ is a lower bound on this quantity, which
is increased once we are sure it has increased by a 1+n factor. As we
show in the proof of Theorem 5.2, with high probability, the global
element connectivity increases by a factor of 1 + n every $ (log3 =)
steps taken in the “⌧lg” branch of the recursion tree. Therefore, what
the algorithm actually does is initialize _ = 1, record the recursion
depth on the ⌧lg branch, and update _ (1 + n)_ whenever
this depth is a multiple of ⇥(log3 =). In this way, _ never exceeds
the global element connectivity w.h.p., which su�ces to establish
correctness.

5.1.3 Running Time Analysis. The running time analysis in this
section closely follows Li and Panigrahi [51].

Lemma 5.8. Keeping de�nitions of '8 ,'8sm, (8E as in line 4, 5, 6 of
Algorithm 2. Keeping de�nitions of⌧lg,*lg, �lg as in line 13, 14, 15 of
Algorithm 1. De�ne % ⇢ * 2 to be

% = {(D, E) : ^ 0⌧,*[� (D, E) , , and |� * |  |* |/2 where � is
the side of the minimum D-E element cut containing D}.

Similarly de�ne %lg with ⌧lg,*lg, �lg and, . Then

E(
��%lg��) 

✓
1 � ⌦

✓
1

log2 |* |

◆◆
|% | .

158

Optimal Vertex Connectivity Oracles STOC ’22, June 20–24, 2022, Rome, Italy

P����. We need to lower bound the size of & = %\%lg. De�ne
* 8sm = [E2'8sm ((

8
E *),*sm = [blog |* |c

8=1 * 8sm, and* ⇤ = {E | (E, B) 2
%}. We will show that E(|& |) � ⌦(1

log2 =
) |% | follows from the

following three claims.
(1) For each D 2 * ⇤, there are at least |* | /2 vertices E such that

(D, E) 2 % .
(2) E(|*sm |) � ⌦(|* ⇤ | /log |* |).
(3) For each (D, E) 2 % , D 2 * ⇤ with probability at least 1/2;
For Claim (1), consider the minimum element cut disconnecting

B and D 2 * ⇤. There are at least |* | /2 terminals E not in the same
side as D, and each (D, E) 2 % . Claim (2) is proved in Lemma 5.9.
Claim (3) holds because B is randomly chosen from* and there are
at least |* | � |* | /2 = |* | /2 terminals not in the side of D. When B
is such a terminal, D 2 * ⇤.

The algorithm �xes 8 2 {1, 2, · · · , blog |* |c} that maximizes��* 8sm��. Then,

E(|& |) � |* |
2
E(

��* 8sm��) � |* |
2 log |* |E(|*sm |)

� |* |
2 log |* |⌦

✓ |* ⇤ |
log |* |

◆
� ⌦

✓
1

log2 |* |

◆
|% | .

For the �rst inequality, Claim (1) implies that each E 2 * ⇤sm is
involved in |* | /2 pairs in % , all of which do not appear in %lg
whenever E 2 * 8sm. The second inequality follows from the choice of
8 . The third inequality follows from Claim (2). The fourth inequality
follows from Claim (3) and the following bound on the size of % .

|% | /2  E(
��{(D, E) 2 % : D 2 * ⇤}

��)  |* | ·
��* ⇤�� .

Note each D appears in at most |* | pairs of % . ⇤

Lemma 5.9 (Claim (2) restated). E(|*sm |) = ⌦(|* ⇤ | /log |* |).

P����. Root the element connectivity Gomory-Hu tree) at B .
For each vertex E 2 * , let*E be the set of terminals in the subtree
rooted at E . For a terminal E 2 * , we �nd the edge 4 (E) along
the path from B to E with minimum weight, and when not unique,
the one with maximum depth. Let A (E) be the deeper endpoint
of 4 (E). By the de�nition of * ⇤, a terminal E 2 * ⇤ if and only if
F (4 (E)) , and

��*A (E) ��  |* | /2.
We say that a vertex E 2 * ⇤ is active if E 2 '8 (E) where 8 (E) =

blog
��*A (E) ��c. In addition, if *A (E) \ '8 (E) = {E}, then we say that E

hits all of the vertices in*A (E) , including itself. For completeness,
we de�ne vertices in * * ⇤ to be inactive; they do not hit other
vertices. Now we show that

(a) each vertex that is hit is in *sm;
(b) the total number of pairs (D, E) for which E 2 * ⇤ hits D is

⌦(|* ⇤ |) in expectation;
(c) each vertex D is hit by at most $ (log |* |) vertices in E 2 * ⇤.
For (0), suppose D is hit by E . Then by de�nition,*A (E) \'8 (E) =

{E}. The isolating cut for E returned by Lemma 2.4 corresponds
to the edge joining A (E) to its parent, so all vertices in *A (E) are
on E ’s side of the cut, and appear in *sm, because E 2 '8sm, since���(8 (E)E *

��� = ��*A (E) ��  |* | /2 andF (4 (E)) , .

For (1), the probability that E 2 '8 (E) and E is the only such vertex
is (1�2�8 (E)) |*A (E) |�12�8 (E) = ⇥(1/28), and when it happens, it hits��*A (E) �� = ⌦(28 (E)) vertices, so the contribution in the expectation
is ⌦(1). Since each E 2 * ⇤ contributes ⌦(1) in expectation, their
sum is ⌦(|* ⇤ |).

For (2), we �rst show that for any di�erent vertices E,F 2 * ⇤
that both hitD, 8 (E) < 8 (F). SinceD 2 *A (E) andD 2 *A (F) , without
loss of generality we assume A (E) 2 *A (F) , so*A (E) ✓ *A (F) . From
the de�nition of '8 , '0 ✓ '1 ✓ · · ·' blog |* |c , so '8 (E) \ '8 (F) =
'max(8 (E),8 (F)) . Then,

; = {E} \ {F} = ('8 (E) *A (E)) \ ('8 (F) *A (F))
= 'max(8 (E),8 (F)) *A (E) ,

and because'8 (E)*A (E) = {E} < ;, we infer thatmax(8 (E), 8 (F)) >
8 (E), so 8 (E) < 8 (F). Then, since 8 (E) 2 [1, log |* |] has at most
$ (log |* |) kinds of choices, D is hit by at most $ (log |* |) vertices.

Finally, the proof follows from

E[*sm] � E[|{D : D is hit}|]

� E[|{(D, E) : E 2 *
⇤,D is hit by E}|]

$ (log |* |) � ⌦(E[*
⇤]

log |* |) .

The �rst inequality is because claim (a); the second inequality is
because claim (c); and the third inequality is because claim (b). ⇤

5.2 Proof of Theorem 5.2 and Theorem 5.1
Now we are ready to give the proof for Theorem 5.2 and Theo-
rem 5.1.

P���� �� T������ 5.2. The recursion makes progress in one
of two ways. In the “non-⌧lg” branches {⌧E}, each ⌧E contains at
most half the number of terminals. Suppose we follow the “⌧lg”
branch ⇥(log3 =) times, yielding ⌧ 0,* 0, � 0 and % 0. By Lemma 5.8,
with, = (1+n)_,E(|% 0 |)  (1�⌦(1/log2 =))⇥(log3 =) |% | = =�⌦ (1) ,
meaning % 0 = ; is empty w.h.p. and the global minimum element
cut of ⌧ 0,* 0 [� 0 has increased to at least (1 + n)_ and we can
update _ accordingly.

This implies the total depth of recursion is $ (n�1 log4 =) w.h.p.
The total size of all graphs on each layer of recursion is$ (<), hence
by Lemma 2.4, the total time is $ (n�1 log4 = ·)�ow (<) log=) =
$̃ (n�1)�ow (<)).

As for the correctness, by Lemma 5.3 the⌧lg-branch preserves
the exact value of ^ 0⌧,*[� , and all the non-⌧lg branches {⌧E} in-
troduce a (1 + n)-factor approximation to the element connectivity.
Since the depth of recursion in the non-⌧lg branches is at most
log |* |, the tree returned is a (1 + n)log |* | = 1 + n0 approximate
Gomory-Hu tree, for n = n0/log |* |. Expressed in terms of n0, the
running time is still $̃ (n�10)�ow (<)). ⇤

P���� �� T������ 5.1. The proof follows from the proof of
Theorem 5.2 by setting n = ⇥(1:), and we only address the di�er-
ence of :-Gomory-Hu tree.

To prove correctness, a new base case is added15: if _ > : , stop
recursion, construct) with one node C , set 6(D) C for all D 2 ⌧
and ⇠ an empty function and return () ,6,⇠). At the �nal output,
15It can be inserted between line 5 and 6 in Algorithm 1

159

STOC ’22, June 20–24, 2022, Rome, Italy Seth Pe�ie, Thatchaphol Saranurak, Longhui Yin

construct 5 as 5 (E) 6(E) for all E 2 * . Then () , 5 ,⇠) works
exactly as in De�nition 2.3.

To bound running time, since we are not concerned with cut-
values exceeding : , when calling Lemma 2.4 we can use any unit
capacity �ow algorithm, which runs in $ ()u�ow (< + : |* |)) time,
so the total time bound is $̃ (:)u�ow (< + : |* |)). ⇤

6 CONCLUSION
In this paper we proved that ⌦(:=/log=) space is necessary for
encoding vertex connectivity information up to : . This establishes
the optimality of several previous results. For example, Nagamochi-
Ibaraki [55] sparsi�ers encode all vertex connectivities up to : , but
their space cannot be improved much, even if the format of the rep-
resentation is not constrained to be a graph. It also implies that even
the average length of the Izsak-Nutov [40] labeling scheme cannot
be improved much. We improved [40] to have near-optimal query
time $ (log=), independent of : , and improved its the construction
time to nearly max-�ow time.

Here we highlight a few open problems.
• There is a trivial ⌦(:=) space lower bound for data struc-
tures answering v-cut queries. Our data structure (and Izsak-
Nutov [40]) can be augmented to support fast v-cut queries
with $ (:2= log=) space. Is this necessary? Note that if it is,
the lower bound cannot be purely information-theoretic; it
must hinge on the requirement that queries be answered
e�ciently.16

• A special case of the vertex connectivity oracle problem
is answering v-conn(D, E) queries when : = ^ (⌧) + 1. In
other words, decide whether D, E are separated by a globally
minimum cut. Globally minimum vertex cuts have plenty of
structure [15, 58], but it is still not clear whether ⌦̃(:=) bits
are necessary to answer such queries.

• Is there a (1+n)-approximate vertex connectivity oracle with
space $̃ (=/n2)? Our lower bounds still permit this possibility.

REFERENCES
[1] Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer,

Nikos Parotsidis, Ohad Trabelsi, Przemyslaw Uznanski, and Daniel Wolleb-Graf.
2019. Faster Algorithms for All-Pairs Bounded Min-Cuts. In 46th International
Colloquium on Automata, Languages, and Programming (ICALP 2019) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 132), Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi (Eds.). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 7:1–7:15. https://doi.org/
10.4230/LIPIcs.ICALP.2019.7

[2] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. 2020. Cut-Equivalent
Trees are Optimal for Min-Cut Queries. In Proceedings of the 61st IEEE Annual
Symposium on Foundations of Computer Science (FOCS). 105–118. https://doi.org/
10.1109/FOCS46700.2020.00019

[3] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. 2021. APMF < APSP?
Gomory-Hu Tree for Unweighted Graphs in Almost-Quadratic Time. Accepted
to FOCS’21 (2021). https://doi.org/10.48550/ARXIV.2106.02981 arXiv:2106.02981.

[4] G. Di Battista and R. Tamassia. 1996. On-line maintenance of triconnected
components with SPQR-Trees. Algorithmica 15 (1996), 302–318.

[5] A. A. Benczúr. 1995. Counterexamples for Directed and Node Capacitated Cut-
Trees. SIAM J. Comput. 24, 3 (1995), 505–510.

[6] A. A. Benczúr. 1995. A Representation of Cuts within 6/5 Times the Edge Con-
nectivity with Applications. In Proceedings 36th IEEE Symposium on Foundations
of Computer Science (FOCS). 92–102.

16There are two natural ways to answer v-cut queries “optimally,” either enumerate
their elements in$ (:) time, or return a pointer in$ (1) time to a pre-stored list of
elements. The latter model was recently advocated by Nutov [56] and seems to be
easier to characterize from a lower bound perspective.

[7] A. A. Benczúr and M. X. Goemans. 2008. Deformable polygon representation and
near-mincuts. In Building Bridges: Between Mathematics and Computer Science,
M. Grötschel and G. O. H. Katona (Eds.). Bolyai Society Mathematical Studies,
Vol. 19. Springer, 103–135.

[8] Béla Bollobás. 2011. Random Graphs, Second Edition. Cambridge Studies in
Advanced Mathematics, Vol. 73. Cambridge University Press. https://doi.org/10.
1017/CBO9780511814068

[9] B. Chazelle. 1987. Computing on a free tree via complexity-preserving mappings.
Algorithmica 2, 3 (1987), 337–361.

[10] Chandra Chekuri. 2015. Some open problems in element connectivity. (2015).
Unpublished Survey. Available at http://chekuri. cs. illinois. edu/papers/elem-
connectivity-open-probs. pdf.

[11] Chandra Chekuri, Thapanapong Rukkanchanunt, and Chao Xu. 2015. On element-
connectivity preserving graph simpli�cation. In Proceedings 29th Annual European
Symposium on Algorithms (ESA). 313–324.

[12] Chung-Kuan Cheng and T. C. Hu. 1991. Ancestor tree for arbitrary multi-terminal
cut functions. Ann. Oper. Res. 33, 3 (1991), 199–213. https://doi.org/10.1007/
BF02115755

[13] Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. 2013. Graph Connectivities,
Network Coding, and Expander Graphs. SIAM J. Comput. 42, 3 (2013), 733–751.
https://doi.org/10.1137/110844970

[14] Julia Chuzhoy and Sanjeev Khanna. 2012. An$ (:3 log=)-Approximation Algo-
rithm for Vertex-Connectivity Survivable Network Design. Theory Comput. 8, 1
(2012), 401–413. https://doi.org/10.4086/toc.2012.v008a018

[15] Robert F Cohen, Giuseppe Di Battista, Arkady Kanevsky, and Roberto Tamassia.
1993. Reinventing the wheel: an optimal data structure for connectivity queries
(extended abstract). In Proceedings of the 25th Annual ACM Symposium on Theory
of Computing (STOC). 194–200.

[16] Erik D. Demaine, Gad M. Landau, and Oren Weimann. 2009. On Cartesian
Trees and Range Minimum Queries. In Proceedings of the 36th International
Colloquium on Automata, Languages and Programming (ICALP). 341–353. https:
//doi.org/10.1007/978-3-642-02927-1_29

[17] E. A. Dinic, A. V. Karzanov, and M. V. Lomonosov. 1976. On the structure of the
system of minimum edge cuts in a graph. Studies in Discrete Optimization (1976),
290–306. (in Russian).

[18] Y. Dinitz and Z. Nutov. 1995. A 2-level cactus model for the system of mini-
mum and minimum+1 edge-cuts in a graph and its incremental maintenance. In
Proceedings 27th ACM Symposium on Theory of Computing (STOC). 509–518.

[19] Y. Dinitz and Z. Nutov. 1999. A 2-level cactus tree model for the system of
minimum and minimum+1 edge cuts of a graph and its incremental maintenance.
Part I: the odd case. (1999). Unpublished manuscript.

[20] Y. Dinitz and Z. Nutov. 1999. A 2-level cactus tree model for the system of
minimum and minimum+1 edge cuts of a graph and its incremental maintenance.
Part II: the even case. (1999). Unpublished manuscript.

[21] Ye�m Dinitz and Alek Vainshtein. 1994. The connectivity carcass of a vertex
subset in a graph and its incremental maintenance. In Proceedings of the 26th
Annual ACM Symposium on Theory of Computing (STOC). 716–725. https://doi.
org/10.1145/195058.195442

[22] Ye�m Dinitz and Alek Vainshtein. 1995. Locally Orientable Graphs, Cell Struc-
tures, and a New Algorithm for the Incremental Maintenance of Connectivity
Carcasses. In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 302–311. http://dl.acm.org/citation.cfm?id=313651.313711

[23] Ye�m Dinitz and Alek Vainshtein. 2000. The General Structure of Edge-
Connectivity of a Vertex Subset in a Graph and its Incremental Maintenance.
Odd Case. SIAM J. Comput. 30, 3 (2000), 753–808. https://doi.org/10.1137/
S0097539797330045

[24] Shimon Even, Gene Itkis, and Sergio Rajsbaum. 1998. On Mixed Connectivity
Certi�cates. Theor. Comput. Sci. 203, 2 (1998), 253–269. https://doi.org/10.1016/
S0304-3975(98)00023-1

[25] Donatella Firmani, Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and
Federico Santaroni. 2016. Strong Articulation Points and Strong Bridges in Large
Scale Graphs. Algorithmica 74, 3 (2016), 1123–1147. https://doi.org/10.1007/
s00453-015-9991-z

[26] Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and
Sorrachai Yingchareonthawornchai. 2020. Computing and Testing Small Con-
nectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms. In
Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA).
2046–2065. https://doi.org/10.1137/1.9781611975994.126

[27] András Frank, Toshihide Ibaraki, and Hiroshi Nagamochi. 1993. On Sparse
Subgraphs Preserving Connectivity Properties. J. Graph Theory 17, 3 (jul 1993),
275–281. https://doi.org/10.1002/jgt.3190170302

[28] Alan Frieze and Michał Karoński. 2016. Introduction to Random Graphs. Cam-
bridge University Press.

[29] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. 2020. Minimum Cut in
$ (< log2 =) Time. In Proceedings 47th International Colloquium on Automata,
Languages, and Programming (ICALP) (LIPIcs, Vol. 168). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 57:1–57:15. https://doi.org/10.4230/LIPIcs.ICALP.2020.
57

160

https://doi.org/10.4230/LIPIcs.ICALP.2019.7
https://doi.org/10.4230/LIPIcs.ICALP.2019.7
https://doi.org/10.1109/FOCS46700.2020.00019
https://doi.org/10.1109/FOCS46700.2020.00019
https://doi.org/10.48550/ARXIV.2106.02981
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1007/BF02115755
https://doi.org/10.1007/BF02115755
https://doi.org/10.1137/110844970
https://doi.org/10.4086/toc.2012.v008a018
https://doi.org/10.1007/978-3-642-02927-1_29
https://doi.org/10.1007/978-3-642-02927-1_29
https://doi.org/10.1145/195058.195442
https://doi.org/10.1145/195058.195442
http://dl.acm.org/citation.cfm?id=313651.313711
https://doi.org/10.1137/S0097539797330045
https://doi.org/10.1137/S0097539797330045
https://doi.org/10.1016/S0304-3975(98)00023-1
https://doi.org/10.1016/S0304-3975(98)00023-1
https://doi.org/10.1007/s00453-015-9991-z
https://doi.org/10.1007/s00453-015-9991-z
https://doi.org/10.1137/1.9781611975994.126
https://doi.org/10.1002/jgt.3190170302
https://doi.org/10.4230/LIPIcs.ICALP.2020.57
https://doi.org/10.4230/LIPIcs.ICALP.2020.57

Optimal Vertex Connectivity Oracles STOC ’22, June 20–24, 2022, Rome, Italy

[30] Pawel Gawrychowski, Shay Mozes, and OrenWeimann. 2021. A Note on a Recent
Algorithm for Minimum Cut. In Proceedings 4th SIAM Symposium on Simplicity
in Algorithms (SOSA). 74–79. https://doi.org/10.1137/1.9781611976496.8

[31] Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and Nikos Parotsidis. 2016.
2-Edge Connectivity in Directed Graphs. ACM Trans. Algorithms 13, 1 (2016),
9:1–9:24. https://doi.org/10.1145/2968448

[32] Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and Nikos Parotsidis. 2018.
2-vertex connectivity in directed graphs. Inf. Comput. 261 (2018), 248–264. https:
//doi.org/10.1016/j.ic.2018.02.007

[33] R. E. Gomory and T. C. Hu. 1961. Multi-terminal network �ows. J. Soc. Indust.
Appl. Math. 9 (1961).

[34] D. Gus�eld and D. Naor. 1990. E�cient Algorithms for Generalized Cut Trees. In
Proceedings First ACM-SIAM Symposium on Discrete Algorithms. 422–433.

[35] Dan Gus�eld and Dalit Naor. 1993. Extracting maximal information about sets
of minimum cuts. Algorithmica 10, 1 (1993), 64–89.

[36] Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. 2007. E�cient
algorithms for computing all low B-C edge connectivities and related problems.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA). 127–136. http://dl.acm.org/citation.cfm?id=1283383.1283398

[37] Refael Hassin and Asaf Levin. 2007. Flow trees for vertex-capacitated networks.
Discrete applied mathematics 155, 4 (2007), 572–578.

[38] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. 2015. Unifying
and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector
Multiplication Conjecture. In Proceedings 47th Annual ACM Symposium on Theory
of Computing (STOC). 21–30.

[39] Tai-Hsin Hsu and Hsueh-I Lu. 2009. An optimal labeling for node connectivity. In
Proceedings of the 20th International Symposium on Algorithms and Computation
(ISAAC). Springer, 303–310.

[40] Rani Izsak and Zeev Nutov. 2012. A Note on Labeling Schemes for Graph Con-
nectivity. Inf. Process. Lett. 112, 1–2 (2012), 39–43. https://doi.org/10.1016/j.ipl.
2011.10.001

[41] Kamal Jain, Ion I. Mandoiu, Vijay V. Vazirani, and David P. Williamson. 2002. A
primal-dual schema based approximation algorithm for the element connectivity
problem. J. Algorithms 45, 1 (2002), 1–15. https://doi.org/10.1016/S0196-6774(02)
00222-5

[42] A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. 1991. On-Line Mainte-
nance of the Four-Connected Components of a Graph. In Proceedings 32nd IEEE
Symposium on Foundations of Computer Science (FOCS). 793–801.

[43] D. R. Karger. 2000. Minimum cuts in near-linear time. J. ACM 47, 1 (2000), 46–76.
[44] David R. Karger and Debmalya Panigrahi. 2009. A near-linear time algorithm

for constructing a cactus representation of minimum cuts. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 246–255.
http://dl.acm.org/citation.cfm?id=1496770.1496798

[45] Tarun Kathuria, Yang P. Liu, and Aaron Sidford. 2020. Unit Capacity Max�ow in
Almost$ (<4/3) Time. In Proceedings 61st Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS). 119–130. https://doi.org/10.1109/FOCS46700.
2020.00020

[46] Michal Katz, Nir A Katz, Amos Korman, and David Peleg. 2004. Labeling schemes
for �ow and connectivity. SIAM J. Comput. 34, 1 (2004), 23–40.

[47] T. Kopelowitz, S. Pettie, and E. Porat. 2016. Higher Lower Bounds from the
3SUM Conjecture. In Proceedings 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 1272–1287. https://doi.org/10.1137/1.9781611974331.ch89

[48] A. Korman. 2010. Labeling schemes for vertex connectivity. ACM Trans. on
Algorithms 6, 2 (2010).

[49] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak,
and Sorrachai Yingchareonthawornchai. 2021. Vertex Connectivity in Poly-
logarithmic Max-�ows. In Proceedings of the 53rd ACM Symposium on Theory of
Computing (STOC).

[50] Jason Li and Debmalya Panigrahi. 2020. Deterministic Min-cut in Poly-
logarithmic Max-�ows. In Proceedings 61st IEEE Annual Symposium on Foun-
dations of Computer Science, (FOCS). 85–92. https://doi.org/10.1109/FOCS46700.
2020.00017

[51] Jason Li and Debmalya Panigrahi. 2021. Approximate Gomory–Hu Tree is Faster
than=˘1Max-Flows. In Proceedings of the 53rd Annual ACM Symposium on Theory
of Computing (STOC). 1738—-1748. https://doi.org/10.1145/3406325.3451112

[52] Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. 2021. A Nearly
Optimal All-Pairs Min-Cuts Algorithm in Simple Graphs. Accepted to FOCS’21
(2021). arXiv:2106.02233.

[53] Karl Menger. 1927. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae
10 (1927), 96–115.

[54] Sagnik Mukhopadhyay and Danupon Nanongkai. 2020. Weighted min-cut:
sequential, cut-query, and streaming algorithms. In Proccedings of the 52nd
Annual ACM Symposium on Theory of Computing (STOC). 496–509. https:
//doi.org/10.1145/3357713.3384334

[55] H. Nagamochi and T. Ibaraki. 1992. A Linear-Time Algorithm for Finding a Sparse
:-Connected Spanning Subgraph of a :-Connected Graph. Algorithmica 7, 5&6
(1992), 583–596.

[56] Zeev Nutov. 2021. Data structure for node connectivity queries. arXiv preprint
arXiv:2110.09102 (2021).

[57] Seth Pettie. 2006. An Inverse-Ackermann Type Lower Bound For Online
Minimum Spanning Tree Veri�cation. Combinatorica 26, 2 (2006), 207–230.
https://doi.org/10.1007/s00493-006-0014-1

[58] Seth Pettie and Longhui Yin. 2021. The Structure of Minimum Vertex Cuts.
In Proceedings 48th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP) (LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 105:1–105:20. https://doi.org/10.4230/LIPIcs.ICALP.2021.105

[59] J.-C. Picard and M. Queyranne. 1980. On the structure of all minimum cuts in
a network and applications. In Combinatorial Optimization II. Mathematical
Programming Studies, Vol. 13. Springer, 8–16.

[60] Thatchaphol Saranurak. 2021. A Simple Deterministic Algorithm for Edge Con-
nectivity. In Proceedings 4th SIAM Symposium on Simplicity in Algorithms, (SOSA).
80–85. https://doi.org/10.1137/1.9781611976496.9

[61] C.-P. Schnorr. 1979. Bottlenecks and Edge Connectivity in Unsymmetrical Net-
works. SIAM J. Comput. 8, 2 (1979), 265–274.

[62] Alexander Schrijver. 2003. Combinatorial Optimization - Polyhedra and E�ciency.
Springer.

[63] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron
Sidford, Zhao Song, and Di Wang. 2021. Minimum Cost Flows, MDPs, and ✓1-
Regression in Nearly Linear Time for Dense Instances. arXiv:2101.05719 [cs.DS]

161

https://doi.org/10.1137/1.9781611976496.8
https://doi.org/10.1145/2968448
https://doi.org/10.1016/j.ic.2018.02.007
https://doi.org/10.1016/j.ic.2018.02.007
http://dl.acm.org/citation.cfm?id=1283383.1283398
https://doi.org/10.1016/j.ipl.2011.10.001
https://doi.org/10.1016/j.ipl.2011.10.001
https://doi.org/10.1016/S0196-6774(02)00222-5
https://doi.org/10.1016/S0196-6774(02)00222-5
http://dl.acm.org/citation.cfm?id=1496770.1496798
https://doi.org/10.1109/FOCS46700.2020.00020
https://doi.org/10.1109/FOCS46700.2020.00020
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1109/FOCS46700.2020.00017
https://doi.org/10.1109/FOCS46700.2020.00017
https://doi.org/10.1145/3406325.3451112
https://doi.org/10.1145/3357713.3384334
https://doi.org/10.1145/3357713.3384334
https://doi.org/10.1007/s00493-006-0014-1
https://doi.org/10.4230/LIPIcs.ICALP.2021.105
https://doi.org/10.1137/1.9781611976496.9
https://arxiv.org/abs/2101.05719

	Abstract
	1 Introduction
	1.1 New Results
	1.2 Organization

	2 Preliminaries
	2.1 Vertex Connectivity, Element Connectivity, and Gomory-Hu Trees
	2.2 Isolating Cut Lemma and Max-Flows

	3 Space Lower Bound on Vertex Connectivity Oracles
	4 Vertex Connectivity Oracles
	5 Gomory-Hu Trees for Element Connectivity
	5.1 The Approximate Element Connectivity Gomory-Hu Tree Algorithm
	5.2 Proof of thm:constructapproxghtree and cor:constructkghtree

	6 Conclusion
	References

