
IEEE/ACM TRANSACTIONS ON NETWORKING

Virtual Filter for Non-Duplicate Sampling

With Network Applications

Chaoyi Ma , Graduate Student Member, IEEE, Haibo Wang , Graduate Student Member, IEEE,

Olufemi O. Odegbile, Shigang Chen , Fellow, IEEE, and Dimitrios Melissourgos

Abstract— Sampling is key to handling mismatch between the
line rate and the throughput of a network traffic measurement
module. Flow-spread measurement requires non-duplicate sam-
pling, which only samples the elements (carried in packet header
or payload) in each flow when they appear for the first time
and blocks them for subsequent appearances. The only prior
work for non-duplicate sampling incurs considerable overhead,
and has two practical limitations: It lacks a mechanism to
set an appropriate sampling probability under dynamic traffic
conditions, and it cannot efficiently handle multiple concurrent
sampling tasks. This paper proposes a virtual filter design for
non-duplicate sampling, which reduces the processing overhead
by about half and reduces the memory overhead by an order
of magnitude or more under some practical settings. It has a
mechanism to automatically adapt its sampling probability to
the traffic dynamics. It can be modified to handle sampling for
multiple independent tasks with different probabilities. We also
enhance the virtual filter for flow spread measurement and super
spreader detection with a large measurement period.

Index Terms— Non-duplicate sampling, traffic measurement,
flow spread.

I. INTRODUCTION

TRAFFIC measurement is a fundamental function that pro-

vides crucial information about communication activities
and network states for an array of core network functions such

as traffic engineering, resource provision, threat monitoring,

adaptive routing decision [2]–[4]. The widely used tools,
including NetFlow [5] and sFlow [6], employ sampling to

deal with mismatch between the packet forwarding line rate

and the throughput of the traffic measurement module at
a router. The reason for the rate mismatch is that packet

forwarding, as the key function of a router, is given top
priority in resource allocation (e.g., processing circuitry and

on-die memory), while the traffic measurement module, as a

supporting function, is of lower priority.

Manuscript received September 9, 2021; revised May 9, 2022; accepted
June 9, 2022; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor R. Lo Cigno. This work was supported by NSF under
Grant CSR 1909077 and Grant NeTS 1719222. A conference version of
this paper has been published in IEEE ICNP 2021 [1] [DOI: 10.1109/
ICNP52444.2021.9651974]. (Chaoyi Ma and Haibo Wang are co-first
authors.) (Corresponding author: Chaoyi Ma.)

Chaoyi Ma, Haibo Wang, Shigang Chen, and Dimitrios Melissourgos are
with the Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL 32611 USA (e-mail: ch.ma@ufl.edu;
wanghaibo@ufl.edu; sgchen@cise.ufl.edu; dmelissourgos@ufl.edu).

Olufemi O. Odegbile is with the Department of Computer Science, Clark
University, Worcester, MA 01610 USA (e-mail: oodegbile@clarku.edu).

Digital Object Identifier 10.1109/TNET.2022.3182694

NetFlow and sFlow measure per-flow statistics such as

flow size, i.e., the number of packets in each flow. Many
sketches have also been proposed to measure flow size with

better memory efficiency, including NitroSketch [7], Elastic

Sketch [8], SketchLearn [9], SketchVisor [10], UnivMon [11]
and many others [12]–[15]. When there is a mismatch between

the line rate and the throughput of a flow-size measurement

module, we simply sample each packet independently with a
certain probability p and only forward the sampled packets

to the measurement module. Sampling can be easily imple-
mented by taking a random number r from a certain range

[0, N), and a packet is sampled for further processing if

r ≤ pN . This approach is stateless, with negligible memory
overhead.

Flow Spread and Non-Duplicate Sampling: However,

more sophisticated traffic measurement will require sampling
to be done differently. Consider the problem of measuring

the flow spread, which is the number of distinct elements in

each flow [16]–[21], where elements may be chosen from the
packet-header fields or payload based on application need.

With the flow spread information, we can identify super

spreaders [22]–[26] or detect malicious activities [27]–[29].
As an example, we may define a flow as all packets to a certain

destination address, and define the element to be measured as

the source address of each packet. The spread of a flow is
the number of distinct sources that have contacted the same

destination. A flow with unusually large spread signals crowd
flush or DDoS attack, either of which requires immediate

attention from the system admin team.

The uniqueness of spread measurement is that each distinct
element in a flow is counted only once regardless of the

number of occurrences. That is, duplicates in the flow should

be removed. If there is a mismatch between the line rate
and the throughput of a flow-spread measurement module,

we need non-duplicate sampling, which is defined as follows:

If a packet carries an element that appears in the flow for the

first time, we sample it with a probability p; if a packet carries

an element that has appeared in the flow before, we ignore it.

Challenge and Prior Art: To implement non-duplicate
sampling, the key is to determine whether a received element

(carried in a received packet) is new or has been seen before.
A Bloom filter [30] is easy to come in mind, which records

all received elements in a bit array and checks whether a

newly received one has already been recorded. However, using
a Bloom filter is too expensive both in processing overhead

and in memory usage. Each received element requires mul-

tiple hash operations and takes multiple bits to record. This

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3572-0046
https://orcid.org/0000-0003-4809-4897
https://orcid.org/0000-0001-7867-7765
https://orcid.org/0000-0002-1040-5779

IEEE/ACM TRANSACTIONS ON NETWORKING

overhead happens on the packet-forwarding path of the data

plane where it is highly desired to keep processing as simple
as possible and keep on-die memory footprint as small as

possible.

The only prior work on non-duplicate sampling for traffic
measurement is a recent two-phase protocol [31]. Much more

efficient than a Bloom filter, it requires two hashes and uses

one bit to record each received element. However, its design
does not have a mechanism to handle dynamic traffic condi-

tions in real time, and therefore its performance will degrade

as traffic deviates from what its setting expects. It cannot
efficiently handle multiple sampling tasks and has to deal with

them individually, causing overhead to multiply. Moveover, its

sampling performance has significant room for improvement:
First, two hashes per packet are more expensive than gener-

ating a random number in traditional packet sampling. The

reason is that hashes in the two-phase protocol are required to
have good randomness in their outputs and therefore such a

hash could be used for generating a random number. Second,
the memory overhead of the two-phase protocol can be very

significant if there is a very large number of elements to be

recorded, as our experiments will show.
Contributions: First, this paper proposes a new virtual filter

algorithm that implements non-duplicate sampling with one

hash per packet and records only a fraction of the received
elements, with much smaller memory footprint than [31],

especially when the sampling probability is small. We prove

that our algorithm correctly implements non-duplicate filter-
ing. We formally derive the optimal parameters that minimize

the memory requirement under any given sampling probability.

We also design a new mechanism for the virtual filter to
adapt its sampling probability automatically in real time under

dynamic traffic conditions.
Second, we extend the virtual filter algorithm to do

non-duplicate sampling for multiple independent tasks with

different probabilities. This is practically useful as some
of the tasks may be interested only in large-spread flows

(small sampling probabilities), while others may be interested

in broad-scoped measurement (large sampling probabilities).
Instead of using one virtual filter for each task, we only utilize

a single virtual filter to perform non-duplicate sampling for

all tasks, which significantly improves memory efficiency and
reduces processing overhead.

Third, we apply the virtual filter algorithms to two mea-

surement tasks, flow spread measurement and super spreader
detection. Observing that the practical data streams are usually

skewed, we optimize our virtual filter algorithms to have a

large measurement period by saving the memory consumption
of large flows.

Fourth, we implement the new sampling algorithm and
evaluate it through trace-based experiments using real-world

packet streams. The experimental results show that the new

algorithm can operate at a line rate much higher than the
prior two-phase protocol, while using much smaller memory,

oftentimes, an order of magnitude smaller. As for sampling

for multiple tasks, the experimental results show a much
higher throughput and a much lower memory consumption

when compared to the basic approach that deploys one virtual

filter for each task. We also perform case studies of using
non-duplicate sampling to support flow spread measurement

and super spreader detection. With a novel optimized design,

Fig. 1. System model.

the measurement period of these two applications can be

extended. It greatly improves the measurement throughput and
surprisingly also improves measurement accuracy even when

less memory is allocated.

II. PRELIMINARIES

A. Problem Statement

We make the problem statement based on a generic data

stream model for general applicability. A data stream is a
continuous sequence of data items. Each item x may appear

in the stream for an arbitrary number of times, resulting in

duplicates. We will show how to map packets to data items in
this model shortly.

The problem of non-duplicate sampling is defined as fol-

lows: Given a sampling probability p, for the next received
item x, if it is the first time that x shows up in the stream,

we output x with probability p; otherwise, we ignore it.

Any algorithm that solves the above problem will need a
data structure to remember the data items that have been seen.

Any data structure will have a limited capacity: the expected

number of distinct items that it can record is determined by the
amount of memory allocated. We define a sampling period as

the expected number n of distinct items that an algorithm can
process before its data structure is so saturated that it can no

longer ensure non-duplicate sampling. After a period, we will

have to start a new period and initialize the data structure.
Therefore, non-duplicate sampling is achieved for data stream

within each period.

Beside correctness, the performance of a non-duplicate
sampling algorithm will be judged by three metrics: (1) Given

a period n, it should use as little on-die memory as possible;

(2) given a memory allocation, it should work for a period as
long as possible; (3) its processing overhead per item should

be as little as possible, so as to support a line rate as large as

possible.

B. Spread Measurement

We will apply non-duplicate sampling on network traffic
measurement, as illustrated in Figure 4. A non-duplicate sam-

pling module processes the arrival packet stream at line rate.
Its output, which is a sub-stream of sampled packets, is sent

to a traffic measurement module for spread measurement at a

reduced rate that the module can handle.
We can model network traffic as a data stream. Each packet

is abstracted as a data item x = hf, ei, where f is a flow label

and e is an element. We define a flow f as the set of packets
that carry the same flow label f , which may be TCP flow

identifier, source address (for per-source flow), destination

address (for per-destination flow), destination address/port (for
per-service flow), URL (for per-content flow considering http

traffic only), etc. We define an element e as a value or a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

MA et al.: VIRTUAL FILTER FOR NON-DUPLICATE SAMPLING WITH NETWORK APPLICATIONS

value combination from the packet headers or the payload.

Take a few examples: For per-source flows, we may measure
the number of distinct destination addresses in each flow,

which helps us track network reconnaissance activities, worm-

infected hosts, botnet communications and malicious scan-
ners [28], [29]. For per-destination flows, we may measure the

number of distinct source addresses in each flow, which helps

us track potential botnet-based denial-of-service or denial-
of-quality attacks, service hotspots, or congested network

activities [27], [32]. For per-URL flows, we may measure the

number of distinct source/port pairs, which shows the interest
in the content across the Internet.

We stress that, based on the generic data streaming model,

our non-duplicate sampling algorithm has broader applications
beyond the networking area. For example, consider an Internet

search engine and the stream of search requests (data items)

that it receives. We may use the new algorithm from this
paper to filter duplicate searches. In another example, consider

an e-commerce company and the web visits to its products.
We may use the algorithm to filter repeated visits of the same

product by the same user.

III. RELATED WORK

A. Sampling With Bloom Filter

A Bloom filter is a bitmap B of m bits, with two operations.
• Recording: We record an item x by hashing x to d bit

indexes, Hi(x) ∈ [0, m), 0 ≤ i < d, and setting those bits to

ones, i.e., B[Hi(x)] = 1.
• Look-up: Given a data item x, we check whether the d

bits, B[Hi(x)], 0 ≤ i < d, are all ones. If so, we claim that x
is in the filter; otherwise, we claim that x is not in the filter.

Each time when we receive a data item x, we first look

up in B to see if it is already recorded. If so, we ignore x.

Otherwise, we record x in B and pass x through as output.
This approach makes sure that any data item can pass the filter

only once and there will be no duplicate in the items that have

passed through. However, a Bloom filter has false positives,
which means that some data items may not pass the filter

even for their first appearances. The probability Pfp of false
positive increases as we record more and more items in the

filter — essentially, the sampling probability, 1−Pfp, changes

over time. It does not enforce a given, constant sampling
probability. Moreover, a Bloom filter has other disadvantages:

(1) Each arrival data item requires d hashes and O(d) memory

accesses (read and write); (2) it takes d bits to record an item
for duplicate filtering.

B. Two-Phase Protocol (TP)

Sun et al. proposed a two-phase protocol (TP) for

non-duplicate sampling [31]. It also uses a bitmap B of m
bits but records every received item x by setting a single bit,
B[h(x)], to one, where h(x) = H(x) mod m and H(x)
is a uniform hash function whose range is larger than m.

More specifically, each time when it receives a data item x,
its first phase is a traditional packet sampling of probability
m
z

p, where z is the current number of zeros in the bitmap.

Regardless of whether the item is sampled or not in the first
phase, the second phase will check if B[h(x)] is one. If so,

we ignore the item; otherwise, we set B[h(x)] = 1 and pass

x through the second phase. TP outputs x if it is sampled in

the first phase and is passed in the second phase.
For any item x that appears for the first time, the probability

for it to be sampled in the first phase is m
z

p, and the probability

to find B[h(x)] = 0 in the second phase is z
m

. Therefore,
the probability for the item to pass through as output is
m
z

p × z
m

= p. For any item x that appears for additional

times, because B[h(x)] = 1, those appearances will be
ignored.

TP records each item by setting one bit. While this is more

memory-efficient than a Bloom filter, it will still take a large
amount of space over an extended sampling period. We may

look at this issue from a different angle: Suppose that we are

given a fixed memory allocation of m bits. Loosely speaking
for intuition only, one bit per item allows a sampling period

to contain m distinct items. If a better sampling algorithm

somehow only requires to record a small percentage, say 10%,
of all items that have been seen, then the period can be

enlarged 10 folds, containing 10m distinct items, before the
m-bit memory is exhausted. Such an algorithm will be able to

perform non-duplicate sampling for a much larger data stream,

for example, 10m distinct items instead m items by TP in the
above example.

Moreover, TP takes one hash and one random number

generation to process each data item, one in each phase. If we
can reduce that number to one, we can potentially double the

line rate that the sampling module can maximally support.

TP lacks a mechanism to automatically adapt to the evolving
traffic dynamics in real time, which is a serious practical

limitation.

Finally TP does not consider non-duplicate distribution
sampling that operates with multiple sampling probabilities

at the same overhead, which our algorithm will consider
later.

A three-phase protocol [33] is extended from TP. Its objec-

tive is to improve memory efficiency of TP by adding an
extra hash operation for additional sampling, which however

increases its processing overhead and thus decreases the line

rate that it can support. Because the primary performance
objective of this work is to reduce the processing overhead to

one hash per packet, we will choose TP for comparative study

since it incurs less processing overhead than its extension.
Besides overhead, the three-phase protocol [33] has the same

limitations listed above as TP does, including lack of adapt-

ability to traffic dynamics and no consideration of multiple
sampling probabilities.

C. Other Related Work

Since non-duplicate sampling can be used for per-flow
spread measurement and super-spreader detection (detect flows

whose spread exceed an threshold), we briefly introduce some

state-of-art works on these two problems that we used as
benchmarks in the experimental evaluation.

vSkt(HLL) [17] and vHLL [16] utilized HLL [20], a single

flow spread estimator to do per-flow spread measurement.
A HLL estimator contains m HLL registers where each

element of the flow will be randomly recorded in one of them

using a uniform hash function. After recording, the spread
of the flow can be estimated from the values in all registers.

vHLL keeps an array of HLL registers of length l. The m

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

IEEE/ACM TRANSACTIONS ON NETWORKING

registers for a flow f are randomly selected from the array

using m independent hash functions. In this way, several flows
may share the same register, e.g., some elements from other

flows may be recorded in f ’ register which causes noise. vHLL

assumes that all elements except those of f are randomly
mapped in l registers and thus m

l
of them are the noise in f ’

registers. Therefore, the noise can be calculated if we can

estimate the total spread and this can be done by treating
the whole array as a HLL estimator. vSkt(HLL) is slightly

different from vHLL. It keeps m HLL register array and it

selects one register from each array to compose the HLL
estimator of a flow f .

CMH [22] and SpreadSketch [26] replace the counters

in CountMin [12] with single flow spread estimators such
as multi-resolution bitmap [34] for super spreader detection.

They keep d arrays of estimators, each flow is mapped to

d estimators, one in each array. All elements of a flow will
be recorded in all d estimators of it. After recording, the

estimate is the smallest value among the d estimators since
it contains the minimum noise. CMH uses a heap to store

the current top-q largest flows and their spread estimates.

Every time it records an element of a flow, it estimates its
spread and tries to update the heap. Since the estimating

operation is much slower than the recording operation, CMH

is not efficient. SpreadSketch improves CMH by maintaining
additional values for each estimator. It generates a geometric

hash value for each element and stores the flow label of the

element with the largest hash value in each estimator. Here the
geometric hash is a type of hash function that has an output of

i with a probability of 1
2i , i ≥ 1. After a measurement period,

it estimates spreads of all flows whose labels are stored and
reports the super spreaders.

Since the single flow spread estimators (e.g., HLL) is limited
in measurement accuracy and memory consumption, the above

algorithms built on top of the single flow spread estimators are

also limited for per-flow spread measurement or super spreader
detection. We will show these in Section VIII when comparing

them with our algorithm.

IV. NON-DUPLICATE SAMPLING WITH VIRTUAL FILTER

We first describe the proposed virtual filter algorithm for
non-duplicate sampling and then discuss how to adapt the

sampling probability during item recording.

A. Virtual Filter (VF)

We now present virtual filter algorithm (VF) for

non-duplicate sampling which performs exactly one hash per
data item and records only a fraction of all data items in

its memory. The operation of our virtual filter algorithm is

simple but we stress that this is an advantage, as the sampling
module that processes packet stream at line rate cannot afford

complicated computations.

• Data Structure and Algorithm: The main data structure
is a virtual filter, which is a bitmap B of m′ bits, but only its

first m bits are real. We call B[0] . . . B[m−1] the real part of

the filter and B[m] . . . B[m′ − 1] the virtual part of the filter.
Each time when we receive a data item x, we perform hash

h(x) = H(x) mod m′, where H(x) is a hash function whose

range is larger than m′. We do the following three steps:

Step 1: If h(x) ≥ m, it falls in the virtual part of the filter,

we ignore the data item, which does not cause any memory
overhead or any further processing overhead as recording does

not happen for this item. If h(x) < m, it falls in the real part

of the filter and we continue with the next step.
Step 2: If B[h(x)] is one, we do nothing further and the

item is blocked; otherwise, set B[h(x)] = 1 and move to the

next step.

Step 3: If h(x) < mm′p
z

where z is the number of zeros

in the real part of the filter before x is recorded, we pass x
through as output; otherwise, we block the item.

Step 1 is designed to avoid having to record every item
received, so as to save memory space. Step 2 is to filter

duplicates. Its sampling rate however changes over time as the

bits in the filter are set to ones. Step 3 is designed to counter
the rate change in Step 2 so that the overall sampling rate

remains the same over time. We will show that sampling is

actually performed at all steps, though for different purposes.
The trick is to implement them with a single hash operation

under progressive conditional probabilities, which together

ensure non-duplicate sampling with memory and processing
efficiencies.

Step 1 performs sampling with probability m
m′

. Only when

item x is hashed to the first m bits in the real part of the
filter, it passes onto Step 2. Otherwise, the item is ignored.

Therefore, a fraction m′−m
m′

of all distinct items will never be

recorded, which saves memory, in contrast to TP’s recording
of all items.

Under the condition that item x passes the previous step,

Step 2 checks the bit that x is hashed to. Even if x appears
for the first time, it may be hashed to a bit that is already

set to one by another item. In this case, x will be blocked.

Only when the bit is zero, x passes Step 2 and the bit is set to
one. Therefore, Step 2 does sampling too, with a probability

that decreases over time as fewer and fewer bits in the real
part remain zeros. The purpose of Step 2 is to filter duplicates

since subsequent appearances of x will all be hashed to the

same bit that is one. Its sampling with decreasing probability
is a by-product of the filtering design. We need to deal with

it in Step 3.

Under the condition that item x passes the first two steps,
Step 3 performs another sampling, with a probability that

increases over time to compensate the sampling probability

that decreases over time in Step 2. Because h(x) < m

after passing Step 2, this probability is
mm′p

z

m
= m′p

z
, which

increases over time because z decreases over time as more

bits in the real part are set to ones by new arrival items. The

choice of such a probability is by design to make sure that
when we combine the three samplings over the three steps,

the final sampling probability is exactly p for any item when

it is received for the first time. This will be proved shortly.
We know that z ≤ m because the number of zeros in the

real part cannot be more than the number of bits there. The

value of z starts at m and decreases as bits in the real part are

set to ones, which in turn causes the bound mm′p
z

in Step 3
increases. Since h(x) < m after passing Step 1, for Step 3

to perform sampling, the bound should satisfy mm′p

z
< m.

The current sampling period will terminate when mm′p

z
= m,

i.e., z = m′p. This termination condition is needed for the
correctness of our sampling algorithm and for the proof of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

MA et al.: VIRTUAL FILTER FOR NON-DUPLICATE SAMPLING WITH NETWORK APPLICATIONS

Algorithm 1 Non-duplicate sampling using VF with proba-

bility p

1: Input: sampling probability p, number of distinct items

tend to process in a period: n, data stream

2: Action: perform non-duplicate sampling

3: // setting m, m′ according to Theorem 2

4: if p < 1
e

then

5: m = npe, m′ = n
6: else

7: m = − n
ln p

, m′ = − n
ln p

8: create a bitmap B of m bits, set z = m
9: for each data item x do

10: i = h(x) = H(x) mod m′

11: if i < m then

12: if B[i] = 0 then

13: B[i] = 1

14: if i < mm′p

z
then

15: x is sampled

16: z = z − 1
17: if z ≤ m′p then

18: break //end the period

Fig. 2. Among the items of the data stream, x2, x5 and x6 are hashed to
the real part of the filter. Other items are hashed to the virtual part and thus
blocked. The second appearance of x2 is blocked by Step 2 because the bit
it hashes to has been set to one by the first appearance of x2. The condition
in Step 3 means that only some of the items hashed to the real part can pass
this step.

theorems (to be given). Because z ≤ m, it implies a constraint

that m ≥ m′p when we set the optimal values of m and m′.

The pseudo-code of the algorithm is given in Alg. 1.
• Example: Consider a data stream in Fig. 2, whose first

10 distinct data items are x1 through x10 with x2 appearing

twice. The virtual filter consists of m bits in its real part and
m′ − m bits in its virtual part. Suppose p = 0.1. We set
m′

m
= 1

pe
≈ 3.6, which is optimal as our analytical results will

show shortly. That means the size of the virtual part is almost

2.6 times that of the real part. As items are hashed to the bits
in the filter uniformly at random in Step 1, about 28% of them

are hashed to the real part and 78% to the virtual part. In this

example, suppose that x2, x5 and x6 are hashed to the real
part and other items are hashed to the virtual part. Below we

walk through the example, item by item.
When x1 arrives, it is hashed in Step 1 to the virtual part

and is thus ignored without incurring further overhead. When

x2 arrives for the first time, it is hashed in Step 1 to a bit in the
real part. The bit is set in Step 2 from zero to one. Suppose it

passes the condition in Step 3. Then it passes the whole filter.

When x3 arrives, it is hashed in Step 1 to the virtual part.
When x2 arrives for the second time, it is hashed in Step 1

to the same bit that it was hashed to before. That bit is already

one, and thus the item is blocked.
For the rest of the stream, item x4 is hashed to the virtual

part; x5 and x6 are hashed to the real part, setting their bits to

ones but failing the condition in Step 3 to pass the filter; items

x7 through x10 are hashed to the virtual part. In the end, only
x2 passes the filter when it appears for the first time.

• Correctness Proof, Setting Optimal Parameter, and

Performance Comparison: For correctness, any data item
will pass the filter with probability p at its first appearance

and will be blocked for subsequent appearances, which is

proved in Theorem 1. For optimal parameter setting, given
the length of a sampling period (which is specified as the

expected number n of distinct items in the period), we show

what the minimum memory m′ is and how to set the value
of m in Theorem 2. Given an allocated memory m, we show

that what the maximum sampling period will be in Theorem 2.

The issue of setting the sampling probability under dynamic
traffic conditions will be addressed later in Section IV-B. For

performance, VF only requires one hash operation to process

each data item. The average number of memory accesses made
for each data item includes m

m′
reads and m

m′
writes, which

are both smaller than one as many items are hashed to the
virtual part of the filter and do not incur any actual memory

access. We compare VF with TP in Corollaries 1 and 3, which

show that VF will never perform worse than TP. It performs
better than the latter when p ≤ 1

e
, and the gap increases

when p decreases. Our numerical analysis demonstrates very

significant improvement when p is small.
Theorem 1: Any data item passes the filter with prob-

ability p at its first appearance. It is blocked for further

appearances.
Proof: For any item x that appears for the first time, the

probability for it to move through Step 1 to Step 2 is m
m′

.

The probability for it to move through Step 2 to Step 3 is z
m

.

For Step 3, because we already know that h(x) < m as it

passes Step 1, the probability to pass Step 3 is
mm′p

z

m
= m′p

z
.

Hence, the probability for x to pass through the filter is m
m′

×
z
m

× m′p
z

= p. For any item x that appears for additional

times, it will be blocked in the second step as B[h(x)] = 1.

Therefore, all those appearances will not pass the filter. �

Theorem 2: Let n be the expected number of distinct items
to be processed in each sampling period. The optimal para-

meter setting of VF is

m′ =

{

n, p < 1
e

− n
ln p

, 1
e
≤ p < 1

m =

{

npe, p < 1
e

− n
ln p

, 1
e
≤ p < 1

(1)

which minimizes the size m for the real part of the filter, under

a given non-duplicate sampling probability p.

Proof: Among the n distinct data items, the expected
number of items recorded in the real part is n m

m′
, when the

number of zeros in the real part of bitmap is z. According

to [18], the expected number of items recorded in the bitmap
is −m ln z

m
, under the assumption that n and m are sufficiently

large and n/m is close to an arbitrary constant. In this paper, n
and m satisfy this assumption as the number of distinct items
n and the number of bits m are usually very large and n/m is

a constant by (1). According to Alg. 1, a sampling period ends

when z = m′p. At that time, the expected number of items
recoded in the bitmap should not be less than n m

m′
. Therefore,

we have

n
m

m′
≤ −m ln

m′p

m
⇒ ln

m′p

m
≤ −

n

m′
⇒ m ≥ m′pe

n
m′ .

The minimum value of m is achieved when m = m′pe
n

m′ .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

IEEE/ACM TRANSACTIONS ON NETWORKING

Taking the first-order derivative on the right side, we have

dm

dm′
=

dm′pe
n

m′

dm′
= pe

n
m′ −

np

m′
e

n
m′ = e

n
m′ p(1 −

n

m′
).

Setting dm
dm′

= 0, we have m′ = n. Besides, when m′ < n,
dm
dm′

< 0; when m′ > n, dm
dm′

> 0. Therefore, the minimum

value of m, is npe which achieves when m′ = n. However,
since m ≤ m′, this parameter setting is valid only when p ≤ 1

e
.

For p > 1
e

, we always have m′ > n from (1) and dm
dm′

> 0,

which means the optimal setting is m′ = m. Under this
condition, we have

m′ = m = m′pe
n

m′ ⇒ 1 = pe
n

m′ ⇒ m′ = −n/ ln p.

In this case, we have m′ = − n
ln p

. �

Let Mv be the minimum number of bits required by VF to

perform non-duplicate sampling. Note that Mv is the size of

the real part of the virtual bitmap used by VF. Let Mt be the
minimum number of bits required by TP, which is the size of

the bitmap used in TP. The following corollary shows that Mv

is upper-bounded by Mt. More detailed analysis shows that
Mv is much smaller than Mt when the sampling probability

p is small.

Corollary 1: VF requires no more memory than TP, i.e.,
Mv ≤ Mt.

Proof: According to [31], the minimum size of the

bitmap for the two-phase protocol is Mt = −n/lnp, for any
non-duplicate sampling probability p. From Theorem 2, the

minimum size of the real part in the bitmap of VF is

Mv =

{

npe, p < 1
e

− n
ln p

, 1
e
≤ p < 1

(2)

Comparing Mt and Mv, we have Mv ≤ Mt. �

Note that when p ≥ 1
e

, VF takes the same memory as

TP does, i.e., Mv = Mt. When p < 1
e

, let’s consider their

ratio α = Mv/Mt = npe

− n
ln p

= −pe ln p. By computing

its first-order derivative with respect to p, we have dα
dp

=
−e(ln p + 1) > 0.

When p = 1
e

, the derivative is zero and α reaches its

maximum value 1. When p < 1
e

, the derivative is positive and
we must have α < 1, i.e., Mv < Mt. We plot α with respect

to p in Figure 3, which suggests that VF consumes much

less bits than TP, especially when p is small. For example,
when p = 0.01, α = 0.12, which means that TP’s memory

requirement is 8.3 times VF’s requirement for the same data

stream. (The value of β in the figure is related to the length
of the sampling period, which will be discussed shortly.)

Given the sampling probability p, the memory usage m and

the expected number of distinct items to be processed in VF,
i.e., n are a trade-off. Theorem 2 fixes n and explores how to

minimize the usage memory. Alternatively, we provide another
view on the maximum n given m by giving the following

corollaries.

Corollary 2: Given a non-duplicate sampling probability p
and a memory allocation of m bits, the maximum expected

number of distinct data items that can be recorded in VF before

starting the next sampling period is

Nv =

{

m
pe

, p < 1
e

−m ln p, 1
e
≤ p < 1,

(3)

Fig. 3. Value of α and β w.r.t. p in different ranges.

where the optimal setting for m′ is

m′ =

{

m
pe

, p < 1
e

m, 1
e
≤ p < 1

(4)

The proof is omitted as it is trivial and can be easily derived

from Theorem 2.
Corollary 3: Let p be the non-duplicate sampling probabil-

ity, m be the size of memory allocation, Nv be the expected

number of distinct data items that can be recorded by VF in
a sampling period, and Nt be the expected number of distinct

items that can be recorded by TP in a sampling period. It holds

true that Nv ≥ Nt.
Proof: For the two-phase protocol [31], Nt = −m ln p.

Comparing it with (3), we can find that for p ≥ 1
e

, Nv = Nt.

As for p < 1
e

, let β = Nv

Nt
, we have β = − 1

ep ln p
. Computing

its first-order derivative of p, we have dβ

dp
= ln p+1

ep2 ln2 p
. When

p < 1
e

, dβ
dp

< 0, and when p = 1
e

, β = 1. Therefore, when

p < 1
e

, we have Nv

Nt
= β > 1, which means Nv > Nt. �

We plot β with respect to p in Figure 3. It shows that Nv is

larger than Nt, especially when p is very small. For example,
when p = 0.01, β = 0.065, which means the number Nv

of distinct items that VF can sample before resetting for the

next period is 15.4 times that of TP, given the same amount
of memory allocation.

B. Sampling Probability Adaptation

How do we determine the value of the sampling prob-

ability p? That will be application-dependent. We provide
a mechanism and explain it through a network example as

shown in Figure 4, where an arrival packet stream is sampled

to avoid overrunning the processing capacity of the spread
measurement module. A data item is extracted from each

packet — the item may be a packet header field, a combination
of several fields or even data from packet payload. Suppose we

set an initial sampling probability empirically. Due to traffic

dynamics, the rate of sampled items that go into the module
may evolve over time as the arrival packet rate changes.

First, consider the case where the sampling probability

becomes too high. The consequence is that too many items are
sampled, beyond what the measurement module can process

in time. To deal with transient overloading, we place sampled

items in a queue, which will be reduced or even emptied when
the overloading condition eases. For persistent overloading,

however, the queue length will keep increasing. When it passes

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

MA et al.: VIRTUAL FILTER FOR NON-DUPLICATE SAMPLING WITH NETWORK APPLICATIONS

a threshold, we will need to reduce the sampling probability

to prevent overflow of the queue. 1

The design of VF can be modified to support real-time

decrease of sampling probability by always setting m and m′

to the powers of 2. With Theorem 2, we choose the expected
sampling period n to a power of 2, which makes m a power

of 2, assuming p < 1
e

. Even for p ≥ 1
e

, we can round m
down to the closest power of 2. Similarly, we round m′ up to
the closest power of 2. Such sub-optimal values of m and m′

can in fact support a larger period than n. While it requires

more bits (m) than the minimum specified in Theorem 2,
it can now support dynamic decrease of sampling probability

p as follows: Suppose m′ = 2l1 and m = 2l2 with l1 ≥ l2.

If we want to reduce the sampling probability from p to p
2 ,

we simply change m′ = 2l1+1 and change the condition

in Step 3 to h(x) < mm′p
2z

. The probabilities of passing

Steps 1, 2 and 3 are m
m′

, z
m

and
mm′p

2z

m
, respectively, and their

product is
p

2 , which is sampling probability of the whole filter.
The reason for m′ and m to be powers of 2 is to ensure

duplicate filtering upon change in the sampling probability:
Suppose that item x first appears before decrease of the

sampling probability. Its bit index, h(x) = H(x) mod m′,

is simply the last l1 bits of H(x). There are two cases:

1) If h(x) is in the virtual part, h(x) > m and item x
is filtered. Now consider a subsequent appearance of
x after decrease of the sampling probability, i.e., l1 is

increased by one, which adds a leading bit to h(x). Thus,

we still have h(x) > m. Item x remains filtered.
2) If h(x) is in the real part, its first l1 − l2 bits must be

zeros. For example, h(x) = 0001011 with l1 = 7 and
l2 = 4. Now consider a subsequent appearance of x after

decrease of the sampling probability, i.e., l1 is increased

by one. The increased bit may be 0 or 1. Following
the above example, h(x) is now 0001011 or 1001011.

If h(x) is 0001011, the index is in the real part and

we know that B[1011] is already set to one earlier due
to the first appearance of x. If h(x) is 1001011, the

index is in the virtual part. In both cases, this subsequent

appearance of x will be filtered out.

If cutting p by half does not stop the growth of the queue,
the above process of reducing the sampling probability is

repeated.

Second, consider the case where the sampling probability
becomes too small, which is signalled when the queue to the

measurement module remains empty. Unlike the previous case

of queue overflow (which needs to be handled immediately),
lower sampling rate does not cause any correctness problem

but may affect the measurement accuracy. VF may wait until

the next sampling period to increase the sampling probability.

V. NON-DUPLICATE SAMPLING FOR MULTIPLE TASKS

We consider a new scenario where we need to perform

independent non-duplicate sampling for multiple tasks simul-
taneously with different sampling probabilities. We are given

a series of k probabilities, pi, 1 ≤ i ≤ k, each for a task.

1Setting the threshold value is an empirical task: A larger threshold means
more memory requirement, but will be more capable of absorbing transient
overloading; whereas a smaller threshold uses less memory, but will be more
sensitive to flush crowd causing the reduction in the sampling probability.

Upon the arrival of any item x, if it is the first time that x
appears in the stream, we let x pass the filter for index i with
probability pi, 1 ≤ i ≤ k; if it is not the first time, we block x.

Note that these tasks are independent and the sampling should

also be independent for each task. For example, if k = 2,
p1 = 10% and p2 = 20%, at the first appearance of item x,

it has a probability of 10% to pass the filter with index 1 and

a probability of 20% to pass the filter with index 2. One item
can be sampled by any number of tasks. Below we first give

an application under this new scenario.

Consider a traffic measurement system where multiple
measurement tasks are implemented. Some of them, such

as super spreader detection [22], [26], [35], [36], only care

about flows with large spreads, and we can use low sampling
probabilities to feed into these tasks so as to reduce overhead.

Other measurement tasks may need information about flows

of medium or small spreads for broader-scoped studies, and
we use larger sampling probabilities. In this scenario, we have

multiple tasks with different sampling probabilities.
A straightforward way of doing non-duplicate sampling for

multiple tasks is deploying k independent virtual filters, each

for a task. This requires considerable computation and memory
access overhead. Instead of repeating the whole sampling

operation for each task, we can use a single virtual filter to

perform the non-duplicate sampling for multiple tasks. We give
the algorithm below.

Let m be the size of allocated memory and p1 ≤ p2 ≤ · · · ≤
pk. We set m′ to m

pke
if pk ≤ 1

e
, and to −m ln pk otherwise.

Steps 1 and 2 of the VF algorithm remain the same. Step 3

changes as follows.

Step 3: For an item which has already passed Step 1 and
Step 2, we generate k random number ri, 1 ≤ i ≤ k with

in range [0, 1). If ri < pim
′

z
, we let it pass for the ith task;

otherwise, we block it for the ith task.

Theorem 3: Any data item will have a probability of pi

to pass the filter for ith task at its first appearance, where
1 ≤ i ≤ k. It is blocked for further appearances.

Proof: The probability of an item x passing the first two
steps for its first appearance is z

m′
, where z is number of zero

bits in real part of bitmap in VF. Therefore, probability of x
being sampled for ith task is

z

m′
×

pim
′

z
= pi (5)

For the further appearances, it will be blocked by second step
since B[h(x)] has been set to 1. �

Our experimental results will confirm that, with the new

algorithm, we can achieve non-duplicate sampling for mul-
tiple tasks with different sampling probabilities and in the

meanwhile significantly reduce the processing overhead and

improve memory efficiency compared to the naive solution
that employing k VFs for k tasks.

Here we generate a random number for each sampling task

instead of directly replacing mm′p

z
with mm′pi

z
in Step 3

because we want to make sure that the samplings for each task

are independent. If we directly replace mm′p

z
with mm′pi

z
in

Step 3, then obviously a packet sampled by the jth task will be
sampled by the ith task if pi ≤ pj . This make the samplings

become dependent among different tasks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. Role of virtual filter: transforming complex super spreader detection
to easier heavy hitter identification.

VI. APPLICATIONS ON NON-DUPLICATE SAMPLING

A. Spread Measurement With Non-Duplicate Sampling

We now apply non-duplicate sampling to flow spread mea-

surement [16], [17], which produces the spread estimates for
each flow in the data stream. Note that our non-duplicate

sampling can remove duplicates while sampling on distinct
items with the same probability p. It can actually turn spread

measurement into size measurement. The size of a flow f after

our non-duplicate sampling is approximately p ∗ sf , where sf

is spread of f . Therefore, we can easily estimate flow spread

sf by measuring flow size after non-duplicate sampling using

any algorithm for flow size measurement. In experiments,
we choose Counter-Min with Conservative Update (CU) [13]

as the algorithm for flow size measurement because it is

accurate and memory/time efficient.
The data structure in CU is d counter arrays of length l,

denoted as Ci, 0 ≤ i < d. To record a sampled packet of

flow f , we use d independent hash functions Hi(·) to map
it to d counters Ci[Hi(f)] and increase the counters with the

minimum value by 1. The query operation produces spread
estimate of f as ŝf = min{Ci[Hi(f)], 0 ≤ i < d}/p.

Most existing algorithms, e.g, vHLL [37] and vSketch [17],

for flow spread measurement [16], [17] rely on specially
designed data structures like HLL [20] to remove duplicates,

which require more computations when recording and query-

ing. By comparison, CU only needs d hash functions for
recording and querying. We compare the performance of VF

combined with CU with existing flow spread measurement

solutions in Section VIII.

B. Super Spreader Detection

Super spreaders are defined as flows whose spreads exceed

a predefined threshold U1. Due to the difficulty of spread
measurement that we discussed before, the existing work on

super spreader detection is limited in terms of estimation,

throughput and memory efficiency. By comparison, an easier
problem is heavy hitter identification, which is to report

flows whose sizes exceed a pre-defined threshold U2. Through

non-duplicate sampling that is enabled by VF, we can apply
heavy hitter identification solutions to detecting super spread-

ers. Specifically, we put VF in the front of a heavy hitter
identification solution and set U2 = U1 ·p. The reported heavy

hitters are super spreaders.

This paper adopts an efficient heavy hitter identification
solution, CMH [22], which combines CountMin (CM) [22]

with a heap of size q. It is designed for finding top-q super

spreaders. To fit with threshold-based super spreader detection,
we replace the heap with a hash table. Every time we record a

packet in CM, we query its size. If its size exceeds U2, the flow

is a super spreader and we put the flow identifier into the hash
table. Our experimental results show that our algorithm is the

winner in detection accuracy and throughput when comparing

Fig. 5. A large flow f with spread sf could occupy a large portion of bits
(up to sf) in VF.

with existing work. Note that when the dataset is skewed,
we can also employ the new algorithm of VF in Section VII

for VF to save memory.

VII. EXTEND MEASUREMENT PERIOD OF VIRTUAL

FILTER FOR SPREAD MEASUREMENT AND SUPER

SPREADER DETECTION

With VF, non-duplicate sampling can be achieved within
a measurement period but the cross-period duplicates still

exist. Given a stream, the influence of cross-period duplicates
will be decreased if the measurement period increases. The

ideal way is to let the whole packet stream be processed

in one measurement period to remove duplicates. This goes
at the cost of nearly infinity memory considering a steam

with possibly infinite packets. Practically, we may relax the

requirement and expect to extend the measurement period in
order to minimize the influence. A straightforward way to

extend the measurement period, as Theorem 2 shows, is to

enlarge the memory of virtual filter. However, extra memory is
not always available, especially when the measurement module

as well as virtual filter is implemented on switches/routers with

limited on-chip memory. This section attempts to extend the
measurement period of virtual filter for spread measurement

and super spreader detection with no additional memory
consumption.

A large number of real-world data streams including net-

work traffic traces are highly skewed. A small number of
large flows contribute to the most total spread in the stream.

Recall that under the optimal parameter setting, VF requires

the number of bits that is linear to the number of distinct
data items in the stream when p is fixed (see Theorem 2). For

those data streams, large flows will take up a majority of the

bits in VF, illustrated in Fig. 5 where we consider a packet
stream and each packet is abstracted as hf, ei. This section

attempts to reduce the memory consumption of large flows

and furthermore extend the measurement period of VF under
given m and m′. To achieve this goal, we need to ensure that

the number of bits that any flow can be mapped to is not

larger than a pre-defined constant, ns. The value of ns can be
adjusted depending on the resource constraints and application

needs.
Our main idea is that for any flow f , we randomly

select ns bits from VF, denoted as B[r0(f)], B[r1(f)],
B[r2(f)], . . . , B[rns−1(f)]. These bits together will form an
imaginary bitmap Bf , with Bf [i] = B[ri(f)] ∀0 ≤ i < ns;

see Fig. 6. When flow f ’s packets are processed by VF in

Step 2, they can only be recorded in bits belonging to Bf .
The method is to construct an array S of ns seeds. For any

packet hf, ei, before we begin Step 1 in VF, we first select a

seed S[H∗(e) mod ns] in S for element e, where H∗(·) is
uniform hash function with a sufficient output range. We feed

hf, S[H∗(e) mod ns]i to VF instead of hf, ei.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

MA et al.: VIRTUAL FILTER FOR NON-DUPLICATE SAMPLING WITH NETWORK APPLICATIONS

Fig. 6. Any flow f with spread sf can occupy at most ns bits in VF even
if sf ≥ ns. ns is a pre-defined constant.

From Step 2, we know each flow f can only be mapped to

the following ns bits:

B[h(f, S[0])], B[h(f, S[1])], . . . , B[h(f, S[ns − 1])].

These ns bits form the imaginary bitmap Bf for flow f
mentioned in the main idea. The detailed packet recording

operation is described in Alg. 2.

Next, we consider how to estimate the spread for flow f . For
f ’s seed array S with length ns, if there has been at least one

elements in f that are hashed to S[i]. The bit S[i] is called
true bit, and false bit otherwise. Let Xu

f be the number of

distinct packets required to make the number of true bits in

S increase by 1 from u − 1 to u with 1 ≤ u ≤ ns. Due to
the uniformness of the hash value, Xu

f is a geometric random

variable, i.e.,

Xu
f ∼ Ge(

ns − u + 1

ns

) (6)

For any packet hf, ei consider its hashed bit S[j] in S. If it

is a false bit, it will be blocked and not be processed further

as hf, S[H∗(e) mod ns]i has already been processed by VF.
If S[j] a true bit, consider its hash value H(f, S[j]) mod m′.

There is a probability of m/m′ to pass Step 1. In Step 2, the

packet’s mapped bit in B, i.e., B[H(f, S[j]) mod m′] has
a probability of z/m to be zero due to the uniformness of

hash value H(·). If so the packet passes through Step 2. For

Step 3, as we already know H(f, S[j]) mod m′ < m as it
passes through Step 1, the probability to pass throughput this

step is mm′p

zm
= m′p

z
. Therefore, the packet pass through VF

with a overall probability of p.

Let Y v
f be the number of true bits in S required to make

f ’s packets pass through the non-duplicate sampling process

and eventually be recorded in CU for the vth time. Y v
f is a

geometric random variable, i.e., Y v
f ∼ Ge(p).

Let Vf be the total number of times that f ′ packets are

recorded in CU and Y be the total number of true bits in S
when the recording finished. We have

Y =

Vf
∑

v=1

Y v
f =

Vf

p
. (7)

Let X be the total number of distinct elements in f . We

have

X =

Y
∑

u=1

Xu
f .

Combining the above equation, (6) and (7), we have

E(X) = E(

Y
∑

u=1

Xu
f) = E(

Y
∑

u=1

ns

ns − u + 1
)

≈ ns(Hns
−Hns−E(Y)) = ns(Hns

−H
ns−

E(Vf)

p

)

Hi is the ith harmonic number with the asymptotics property

of lim
i→∞

Hi → ln i+ γ where γ is a sufficiently small constant

and can be neglected. For the special case of
E(Vf)

p
= ns,

we have H0 = 0.

CU will produce the estimate V̂f for Vf by replacing the

E(Vf) and E(X) by their observed values V̂f and X̂ . Since
E(Vf)

p
<= ns and should be integer, we set

V̂f

p
= ns if

V̂f

p
>

ns − 1, resulting in two cases for estimation formula.

X̂ =

{

−ns ln(1 − V̂f/(nsp)),
V̂f

p
≤ ns − 1;

ns ln(ns), otherwise.
(8)

The above formula indicates that the maximum supported

estimate (ns ln(ns)) is related to the value of ns. The estima-
tion range is enlarged if we use a larger ns, while the sampling

period will be extended more if we use a smaller ns (which

we will show in the next theorem). This is a trade-off and in
practice we may set ns ln(ns) to be slightly larger than the

spread of the largest flow.

Theorem 4: Given a non-duplicate sampling probability p
and a memory allocation of m bits, the maximum expected

number of distinct data items that can be recorded in VF before

starting the next sampling period is at least Nv +nL−vL×ns,
where vL is the number of flows whose spreads are larger than

ns, nL is the number of distinct items from all flows whose

spreads are larger than ns in the first Nv data items and

Nv =

{

m
pe

, p < 1
e

−m ln p, 1
e
≤ p < 1.

(9)

under the optimal setting for m′ as follows:

m′ =

{

m
pe

, p < 1
e

m, 1
e
≤ p < 1

(10)

Proof: Given a sampling probability p and a memory
allocation of m, the optimal setting of m′ that can maximum

the number of distinct items the filter can process is given

in Theorem 2. With the optimal setting, the filter can process
Nv distinct data items. In the new design, instead of hf, ei,
we feed hf, S[H∗[e]]i to the filter, where H∗(e) ∈ [0, ns).
This means for any flow f , at most ns distinct items will
be feeded to the filter. After we record Nv distinct items,

at most Nv −nL + vL ×ns items will be feeded to the filter.
Therefore, we can record at least Nv−(Nv−nL+vL×ns) =
nL − vL × ns more distinct items. As a result, we can record

at least Nv + nL − vL × ns distinct item in total. �

Note that n′ ≤ n as nL ≥ vL × ns, which means

our new design can enlarge the sampling period, e.g.,

process more distinct items under the same memory allo-
cation. We will experimentally evaluate how the optimiza-

tion in this subsection can enlarge the sampling period over

the solution to flow spread estimation in Section VI-A in
Section VIII-F.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 2 Recording of VF for spread measurement with

probability p

1: Input: sampling probability p, data stream

2: Action: perform non-duplicate sampling for spread mea-

surement

3: setting m, m′

4: create a bitmap B of m bits, set z = m
5: create a random seeds array S of length ns

6: create d counter array Ci, 0 ≤ i < d of length l
7: for each packet hf, ei do

8: j = H∗(e) mod ns

9: i = h(f, S[j]) = H(f, S[j]) mod m′

10: if i < m then

11: if B[i] = 0 then

12: B[i] = 1

13: if i < mm′p
z

then

14: mc = min{Ck[Hk(f)]|0 ≤ k < d}
15: for k = 0 to d − 1 do

16: if Ck[Hk(f)] = mc then

17: Ck[Hk(f)] = Ck[Hk(f)] + 1
18: z = z − 1

Algorithm 3 Querying of VF for Spread Measurement With

Probability p

1: Input: sampling probability p, flow label f , sub-flow

number ns, counter arrays Ci, 0 ≤ i < d
2: Output: spread estimate of flow f
3: V̂f = min{Ck[Hk(f)]|0 ≤ k < d}

4: ŝf = −ns ln(1 −
V̂f

nsp
)

5: return ŝf

Our new design for VF can also be applied to super spreader

detection, where we want to find out flows whose spreads

exceed a predefined threshold U1. Once the a flow’s spread
exceeds U1 during recording, the recording of the remaining

distinct elements is not our concern and thus should be limited
to extend measurement period under given memory. A simple

way to solve this problem is as follows: For each arrival

item hf, ei, we query the spread of f and only record the
item when the estimate is less than U1, e.g., it has not been

detected as a super spreader. According to Section VI-B,

we need to query hash table for each item, which requires
non-trivial extra computations. Employing the similar idea for

extending the measurement period for spread measurement,

we can easily limit the influence of large flows without extra
querying operations. The main idea is to set −ns ln 1

ns
> U1.

Since we only care about whether sf > U1, this ns is enough

to measure flows with a spread of U1. Any extra elements will
automatically be filter out since a flow can set at most ns bits

in the filter.

VIII. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed VF through

experiments based on real-word data traces. We also com-
pare VF with the only non-duplicate sampling work, TP.

In addition, we perform two application case studies on flow

TABLE I

THE COLUMNS OF MINIMUM AND MAXIMUM GIVE THE RANGE OF

ACTUAL SAMPLING RATES MEASURED IN THE EXPERIMENT, UNDER

DIFFERENT TARGET SAMPLING PROBABILITIES p. THE

DIFFERENCE BETWEEN ACTUAL SAMPLING RATES

AND p IS WITHIN 0.02p, WHEN p ≥ 0.1, AND

WITHIN 0.05p WHEN p = 0.01. ALL

MEASURED RESULTS ARE ROUNDED

TO FOUR DIGITS AFTER THE

DECIMAL POINT

Fig. 7. Maximum supported line rate of VF in comparison with TP, under
different sampling probabilities p. VF improves maximum supported line rate
by over 64%, compared to TP.

spread estimation and super spreader detection, respectively,
in comparison with the best prior art.

A. Experimental Setting

We have implemented (1) the proposed VF; (2) the only
prior work on non-duplicate sampling, TP [31]; (3) the state-

of-the-art prior work that performs flow spread estimation,

vHLL [37] and vSkt(HLL) [17]; and (4) the state-of-the-art
prior work that performs super spreader detection, SpreadS-

ketch (SS) [26]. vHLL and vSkt use HyperLogLog regis-

ters [38] and SS uses multi-resolution bitmaps [34], [39].
VF under different sampling probability p is denoted as VF(p).

The experiments are performed on a computer with Inter Core

Xeon W-2135 3.7GHz and 32 GB memory.
The data set used in our evaluation are real Internet traffic

traces downloaded from CAIDA [40]. We use 10 traces,

each containing around 20M packets. Flow label is defined
as destination address and element is the source address, both

carried in each packet’s header, which has the application of

DDoS detection. Flow spread is the number of distinct sources
that communicate with a destination. Packets will be distinct

if they possess different flow labels or elements. Each trace
contains around 430k distinct packets, i.e., n ≈ 430k.

The parameters of VF, i.e., m′ and m are set when n
and p given. n can be obtained from the real traffic traces
and p will be given in each specific figure. We stress that

m is the size of the real part of bitmap in VF, while m′ is

size of the whole bitmap in VF, including the virtual part.
Therefore, we use m to denote the memory allocation of VF.

We follow the parameter settings of TP, vHLL and vSkt(HLL)

in the original papers. Specifically, the bitmap length of TP
can be obtained according to the equations in the Performance

Analysis Section of [31] when n and p are given. The HLL

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

MA et al.: VIRTUAL FILTER FOR NON-DUPLICATE SAMPLING WITH NETWORK APPLICATIONS

TABLE II

RATIO OF MEMORY REQUIREMENT OF VF m(VF) OVER THAT OF TP m
(TP) UNDER DIFFERENT p, REGARDLESS OF n

register is 5bits and each flow is mapped to 128 registers for
vHLL and vSkt(HLL).

The evaluation is separated into six categories. The first

compares the sampling performance of VF with TP. The sec-
ond evaluates the performance of sampling probability adapta-

tion. The third demonstrates the performance of non-duplicate

distribution sampling of VF. The fourth compares the perfor-
mance of VF for flow spread measurement the with the state of

the art. The fifth compares the performance of our optimized

VF for flow spread measurement when extreme flows exist in
the dataset. Finally, the sixth compares the performance of VF

for super spreader detection with the best prior work.

B. Sampling Performance

To the best of our knowledge, TP is the only prior work
that can do non-duplicate sampling, which cannot be done

by traditional sampling methods. Therefore, we evaluate the
sampling performance of VF in comparison with TP. The

metrics are listed as follows.

• Actual sampling rate. We compare the actual sampling

rate with the given sampling probability p.

• Maximum supported line rate. We measure the maximum
line rate the non-duplicate sampling can catch up when

processing packet streams. The unit is million packets per

second, abbreviated as Mpps. Mpps is changed to Gbps
if multiplying the average packet size (kbits) in the trace

— if the average packet size is 1kbits, 1Mpps and 1Gbps

represent the same maximum supported line rate.
• Memory requirement. It is defined as the least memory

VF/TP need in order to support non-duplicate sampling
of p on traffic trace with n distinct packets.

• Maximum supported n. It is defined as the maximum

number of distinct packets VF/TP can support under
given sampling probability p and memory allocation m.

Large maximum n means longer sampling period.

Actual sampling rate: We take 5k packets with distinct

source-destination address pairs randomly from each traffic

traces, then perform non-duplicate sampling under a given
sampling probability p, and measure the actual sampling rate

to see if it is close to p. There are ten measurements from

the ten traces. Table I presents the minimum value and the
maximum value of the ten actual sampling rates, which are all

close to p under all different p values used in the experiment.
Maximum supported line rate: We compare VF with TP

and plot the results in Figure 7. VF achieves higher maximum

line rate, especially when p is small, e.g. 0.01. Compared to
TP, VF improves the maximum line rate by 64%-125% when

p decreases from 0.5 to 0.01.

Memory requirement and maximum supported n:

Table II shows the ratios of memory requirement of VF over

that of TP under different p. We stress that the ratios are

not affected by n. When p = 0.5 (≥1/e), VF and TP need
the same amount of memory. When p decreases, the ratio

decreases. Table III shows the ratio of the maximum n VF and

TABLE III

RATIO OF THE MAXIMUM SUPPORTED n OF VF AND TP UNDER

DIFFERENT SAMPLING PROBABILITY p. VF SUPPORTS MUCH LARGER

n COMPARED TO TP, ESPECIALLY WHEN p IS SMALL. ALL

MEASURED RESULTS ARE ROUNDED TO TWO DIGITS

AFTER THE DECIMAL POINT. THE RATIO

REMAINS THE SAME UNDER DIFFERENT

MEMORY ALLOCATIONS

TP can support under given sampling probability p. VF can
support sampling data streams with larger n, especially when p
is small. In practical scenarios, larger n means longer sampling

period.

C. Performance of Sampling Probability Adaptation

Recall that VF supports sampling probability adaptation,

which is described in Section IV-B. Specifically, VF can
decrease the sampling probability by half immediately, while

maintaining the non-duplicate sampling function. To evaluate

the sampling performance when the sampling probability is
cutting by half, we adopt the actual sampling rate as the metric.

In the experiment, every time the number of distinct processed

packets reaches a certain amount, i.e, 100k, VF adjusts the
sampling probability by half. The initial sampling probability

has been cut by half for three times. The measurement period

can be segmented to four rounds by the value of sampling
probability, i.e., round 0, round 1, round 2 and round 3. We list

the actual sampling probability of each round for VF under

different initial sampling probabilities in Table IV. As we can
see, VF can do sampling precisely for each round regardless

of the initial sampling probability.

D. Performance of Non-Duplicate Sampling

for Multiple Tasks

We evaluate the performance of the approach that uses a

single VF for multiple tasks (in Section V). The baseline
solution is to employ one VF for each task. To investigate the

sampling performance, we adopt the actual sampling rate, the

maximum supported line rate and the memory consumption
as metrics. The number of probabilities k is set as 5 and

the sampling probabilities are denoted as {p1, p2, p3, p4, p5},

respectively. In practice, each probability may vary and follow
different distributions. Here, we consider two distributions,

linear distribution and geometric distribution. Under linear

distribution, we have pi = ηi. Under geometric distribution,
we have pi = 2i−1η. We list the actual sampling probability of

each index for VF under different η in Table V. As we can see,
VF can do sampling precisely for each index of probability pi.

We also evaluate how using a single VF for multiple tasks

can help to reduce the processing overhead. The results on
the maximum supported line rates of these two approaches are

listed in Table VI, which shows that using a single VF, the

maximum supported line rate will be approximately 3 times
that when sampling operations are executed separately. For

the baseline solution, any packet will be processed by k VFs.

In contrast, using a single VF for multiple tasks can only
process any packet once in Step 1 and Step 2, significantly

reducing the processing overhead. Table VII shows that the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE IV

ACTUAL SAMPLING RATE p̂ VS. GIVEN SAMPLING PROBABILITY p FOR EACH ROUND OF CUTTING THE SAMPLING PROBABILITY BY HALF UNDER

DIFFERENT INITIAL SAMPLING PROBABILITIES. p̂ IN EACH ROUND IS VERY CLOSE TO p FOR EACH INITIAL SAMPLING PROBABILITY. ALL

MEASURED RESULTS ARE ROUNDED TO FOUR DIGITS AFTER THE DECIMAL POINT

TABLE V

ACTUAL SAMPLING RATE p̂ VS. GIVEN SAMPLING PROBABILITY p FOR EACH INDEX UNDER DIFFERENT DISTRIBUTIONS, p∗ AND k=5. THE ACTUAL

SAMPLING RATE FOR EACH INDEX i IS VERY CLOSE TO THE GIVEN SAMPLING PROBABILITY FOR EACH INDEX. ALL MEASURED RESULTS ARE

ROUNDED TO FIVE DIGITS AFTER THE DECIMAL POINT

TABLE VI

MAXIMUM SUPPORTED LINE RATE (MPPS) COMPARISON OF VF FOR

A GIVEN SERIES OF SAMPLING PROBABILITIES UNDER TWO

DIFFERENT APPROACHES. ONE IS THAT SAMPLING

OPERATIONS ARE EXECUTED USING k SEPARATE VFS

WHILE THE OTHER IS THAT SAMPLING OPERATIONS

ARE EXECUTED BY NON-DUPLICATE SAMPLING

FOR MULTIPLE TASKS USING A SINGLE VF.
ALL MEASURED RESULTS ARE ROUNDED

TO ONE DIGIT AFTER THE

DECIMAL POINT

TABLE VII

RATIO OF MEMORY REQUIREMENT OF THE APPROACH USING k VFS

OVER THAT USING A SINGLE VF FOR A GIVEN SERIES OF SAMPLING

PROBABILITIES. ALL MEASURED RESULTS ARE ROUNDED TO TWO

DIGITS AFTER THE DECIMAL POINT

baseline needs 1.88-3 times memory compared to the approach
using a single VF.

E. Case Study A: Flow Spread Estimation

We now expand the evaluation to a case study of flow spread

measurement. Since VF can remove duplicates, we only need
a sketch to store the flow size, which is simpler compared

to traditional sketches for spread measurement. Here, we use

the classical and accurate one, i.e, CU [13]. Without loss of
generality, we also abbreviate our method as VF or VF(p)

under a specific sampling probability p. The spread produced

by VF is the size stored in CU divided over p. Although TP
also does non-duplicate sampling, it uses a hashmap to store

the flow key and its size without memory limitation. Therefore,

Fig. 8. Estimation accuracy of VF(p), vHLL, and vSkt(HLL) when all
algorithms are allocated 2Mbits memory. The algorithm of VF(0.5) reduces
average relative error by up to 80% and 78%, respectively, compared to vHLL
and vSkt(HLL). When p is very small, the error of VF(p) becomes worse due
to its increasing sampling error.

we only compare VF with the best sketches for flow spread
measurement, i.e., vHLL [16] and vSkt(HLL) [17]. We adopt

the number of arrays d = 3 for CU. For VF itself, we take

p = 0.01,0.1,0.25,0.5 as representative sampling probabilities.
For fair comparison all the sketch data structures are allocated

the same memory. We use three metrics for evaluation.

• Absolute error. The average absolute error is defined as
∑

|sf − ŝf |/N , where ŝf and sf are the estimated and

actual spread of flow f , respectively, and N is the number
of flows in the flow set.

• Relative error. The average relative error is defined as
∑ |sf−ŝf |

Nsf
.

• Maximum supported line rate. It has been defined before.

Each experiment in this case study (or the next one) is

performed over all 10 traffic traces and we present the average
results.

Estimation Accuracy: We first present the absolute error

and relative error of all algorithms under 2Mbits memory,
shown in Figures 8(a) and 8(b), respectively. The flows are

placed in bins based on their actual spreads (which can be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

MA et al.: VIRTUAL FILTER FOR NON-DUPLICATE SAMPLING WITH NETWORK APPLICATIONS

Fig. 9. Estimation accuracy of VF(p), vHLL, and vSkt(HLL), when cutting
the memory of VF by half and keeping the memories of vHLL and vSkt(HLL)
as 2Mbits memory. The error of VF under 1 Mbits is very close to that under
2Mbits.

Fig. 10. Maximum supported line rate of VF(p) in comparison with CU,
vHLL and vSkt(HLL). The maximum supported line rate of CU is 50% larger
than vHLL and vSkt(HLL), and VF can improve the maximum supported line
rate by over 2.29 times on the basis of CU.

found directly from the traffic traces). The spread bins are
[2i, 2i+1), i ≥ 0. We average the absolute/relative error of

flows in each bin and plot a point in the figure. The results

show that the accuracy of VF(p) improves as we increase p
due to smaller sampling error. The average absolute error of

VF(p) is much smaller than that of vHLL or vSkt(HLL) when
p = 0.1, 0.25, 0.5. For example, VF(0.5) reduces average

relative error by up to 80% and 78%, respectively, compared

to vHLL and vSkt(HLL). The performances of vHLL and
vSkt(HLL) are generally comparable for small/medium flows.

Similar conclusions can be drawn from Figure 8(b), which

compares all the algorithms in terms of the average relative
errors.

We evaluate the impact of memory allocation on estimation

accuracy of VF, by cutting the memory of VF by half (1Mbits)
and keeping the memory of vHLL and vSkt(HLL) as 2Mbits.

The results in Figure 9 show that even if VF is allocated

1Mbits memory, its measurement accuracy is very similar to
that under 2Mbits. Therefore, similar conclusion can be drawn

here as well. The reason is that VF transforms flow spread

measurement to flow size measurement, which can be well
handled by CU even in a tight memory.

Maximum supported line rate: We compare maximum
supported line rates of VF(0.01), VF(0.1), VF(0.25), VF(0.5),

CU, vHLL and vSkt(HLL) in Figure 10. CU can only measure

flow size. It cannot measure flow spread. VF, vHLL and
vSkt(HLL) can measure flow spread. We stress that our VF

for flow spread measurement uses CU to process the sampled

packets. The results reveal two points. The first point is that
flow size measurement is simpler than flow spread measure-

ment. Specifically, the maximum supported line rate of CU is

much larger than vHLL and vSkt(HLL), which enhances our
motivation that we use VF to turn flow spread measurement to

flow size measurement by removing duplicate. The second is

TABLE VIII

MEMORY REQUIREMENT (MBITS) OF VF AND VF+

UNDER DIFFERENT VALUES OF p

that with the help of non-duplicate sampling done by VF, the

maximum supported line rate can be much improved further.

F. Flow Spread Estimation for Dataset With Large Flows

We simulate the scenario where there are several extreme

large flows in the dataset by injecting multiple artificial large

flows to the CAIDA dataset, which together consist of a new
dataset, called CAIDA+. Two algorithms are compared. One

is VF combined with CU for flow spread measurement method

(see Section VI-A), called VF with confusion and the other is
the optimized VF combined with CU to handle large flows (see

Section VII), called VF+. The estimation results are plotted
with scatter figure, where the x-axis is the actual spread and the

y-axis is the estimate. Each dot in the figure represents a flow.

We also plot the line y = x in the figure. The closer to the line
the dot is, the more accurate the estimate of the flow is. Both

VF and VF+ employ a CU sketch with 1Mbits memory to deal

with the sampled packets after the non-duplicate sampling. ns

is fixed as 7500 to accommodate the largest flow’ spread.

We first give the memory consumption of VF and VF+
under different sampling probabilities p = 0.5, 0.25, 0.1. The
results in Table VIII show that VF+ reduces 36% memory

consumption over VF, regardless of the sampling probability,

demonstrating that the advantage of VF+ over VF is that its

memory consumption is much smaller. This advantage ensures

that VF+ can support non-duplicated-sampling-enabled spread
estimation with longer period compared to VF. We also give

the results of maximum support n when memory allocation is

1Mbits. The results under different p in Table IX show that
VF+ can extend the period of non-duplicate sampling by 35%

compared to VF. This means that VF+ can remove duplicates

by a longer period.
The estimation accuracy results are plotted in

Figs. 12 and 13, respectively. Under the same sampling

probability, visually, VF and VF produce similar spread
estimates for flows. For statistically results, we divide the

flows into different sets by their actual spreads. The spread

ranges are [1, 10), [10, 102), [102, 103), [103, 104), [104,∞).
Tbls. X, XI and XII give the average relative error for

flows in different sets for VF and VF+ under the sampling

probabilities of 0.5, 0.25, 0.1, respectively. Statistically,
VF and VF+ have similar average absolute errors for

different sets of flows, especially when the flows’ spreads
are within 104. This ensures that VF+ can maintain high

accuracy as VF even with less memory.

G. Case Study B: Super Spreader Detection

We investigate how VF+ performs in detection super

spreaders in comparison with the state-of-the-art prior

work, SpreadSketch(SS) [26]. As we have discussed in
Section. VI-B, when detecting super spreaders, VF+ uses

CMH to process sampled packets. Without loss of generality,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. Experimental results of precision, recall and f1-score of VF with different p in comparison with SS, under different memory allocations. VF and
SS detect super spreaders accurately under large memory. Under tight memory, VF can maintain high detection accuracy, while SS cannot. The lines of VF
under different p start from different memory in the figure as VF has minimum memory requirement that is related to p.

Fig. 12. Estimation accuracy of VF+ with different sampling probabilities under the CAIDA+ dataset.

Fig. 13. Estimation accuracy of VF with different sampling probabilities under the CAIDA+ dataset.

TABLE IX

MAXIMUM SUPPORTED n OF VF AND VF+ UNDER

DIFFERENT VALUES OF p

TABLE X

AVERAGE RELATIVE ERROR OF VF AND VF+ FOR FLOWS IN

DIFFERENT SPREAD RANGES WITH p = 0.5

we also abbreviate it as VF+. The super spreader is defined as

flows whose spreads exceed the threshold that the user chooses

based on application need. In this experiment, we tune the
threshold for each trace to keep the number of super spreaders

in each trace as 100. The number of arrays for SS and CMH

TABLE XI

AVERAGE RELATIVE ERROR OF VF AND VF+ FOR FLOWS IN

DIFFERENT SPREAD RANGES WITH p = 0.25

TABLE XII

AVERAGE RELATIVE ERROR OF VF AND VF+ FOR FLOWS IN

DIFFERENT SPREAD RANGES WITH p = 0.1

are both set to 3 for fair comparison. We use the following

five metrics.

• Precision: The ratio of true super spreaders detected over

all true super spreaders existed.

• Recall: The ratio of true super spreaders detected over all
super spreaders reported.

• F1-score: The harmonic average of precision and recall.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

MA et al.: VIRTUAL FILTER FOR NON-DUPLICATE SAMPLING WITH NETWORK APPLICATIONS

Fig. 14. Maximum supported line rate of VF+(p) (p shown in x-scale),
in comparison with CMH and SS, for super spreader detection. CMH improves
the maximum supported line rate by 50% compared to SS, and VF+ can
improve the maximum line rate by over 178% compared to CMH.

• Relative error: It is defined in the previous subsection.

We measure the average relative error of super spreaders

reported by the algorithms.
• Maximum supported line rate. It has been defined before.

We conduct experiments under different memory allocation
ranging from 0.1Mbits to 100Mbits. The experimental results

are shown in Figure 11. Let memory be 16Mbits as an

example, VF+(0.5) is the best algorithm, achieving near 1 of
Precision, Recall and F1-score. SS can also maintain close-

to-1 performance in terms of Precision, Recall and F1-score.

Let’s see Figure 11(a). SS’s Precision is 0.43, which means
near six out of ten super spreaders reported by SS are fake.

In some scenarios, low Precision incurs a lot of additional false

alarms and takes extra time from system admin to investigate.
Figure 14 compares the maximum supported line rate of

each algorithm. The memory is 2Mbytes for each sketch.
We stress that CMH is for heavy hitter identification while

VF+(0.01), VF+(0.1), VF+(0.25), VF+(0.5) and SS are for

super spreader detection. As we can see, CMH can improve
the maximum supported line rate by 50% compared to SS.

It shows the necessity of turning super spreader detection to

heavy hitter identification. In addition, our VF+ can improve
the maximum supported line rate by over 178% further com-

pared to CMH.

IX. CONCLUSION AND FUTURE WORK

This paper proposes a new virtual filter algorithm that

supports non-duplicate sampling, which is substantially dif-

ferent from traditional sampling. It increases throughput by
around 100% and reduces memory requirement by more

than one magnitude when comparing with the only prior

non-duplicate sampling work, especially when the sampling
probability is small. We extend the basic algorithm for

non-duplicate sampling on multiple independent tasks with

different sampling probabilities. We apply virtual filter on flow
spread measurement and super spreader detection, and give

a new design that can extend the measurement period when
large flows. When compared with the state-of-the-art, we find

that our algorithm can perform better (higher accuracy, higher

throughput) even when the memory is much tighter.
Our experimental studies have been software-based so far.

Our future work will experiment with hardware implementa-

tion. VF only requires one hash operation and at most two
memory accesses to process each data item (or packet), which

makes it feasible for high-speed hardware implementation.

Current PISA programmable switches use packet processing
pipeline architecture where a function is split into several

pipeline stages. While the number of stages, memory accesses

and arithmetic operations is limited [41], VF can be imple-

mented on a PISA programmable switch using only 2 pipeline
stages. Step 1 and Step 2 can be combined into the first

stage and Step 3 will be the second stage. The first stage

has a hash operation, a modulus operation and two memory
accesses (one read and one write). The hash operation and

the memory accesses are well-supported by programming

languages such as P4. In practice, if we set m′ to power
of 2, the modulus operation (h(x) = H(x) mod m′) can be

simplified as bit shifting. The comparison in the second stage

is equivalent to h(x) × z < mm′p, where the left side is an
integer multiplication and the right side can be pre-computed.

Therefore, VF will be suitable for implementation on a PISA

programmable switch.

REFERENCES

[1] C. Ma, H. Wang, O. O. Odegbile, and S. Chen, “Virtual filter for non-
duplicate sampling,” in Proc. IEEE 29th Int. Conf. Netw. Protocols

(ICNP), Nov. 2021, pp. 1–11.
[2] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained

traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.

Exp. Technol., 2011, pp. 1–12.
[3] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford,

and F. True, “Deriving traffic demands for operational IP networks:
Methodology and experience,” IEEE/ACM Trans. Netw., vol. 9, no. 3,
pp. 265–279, Jun. 2001.

[4] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang, “Worm
origin identification using random moonwalks,” in Proc. IEEE Symp.

Secur. Privacy, May 2005, pp. 242–256.
[5] Cisco. Cisco IOS NetFlow. Accessed: 2022. [Online]. Available:

http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/
index.html

[6] Inmon Corporation. sFlow Accuracy and Billing. Accessed: 2022.
[Online]. Available: https://inmon.com/technology/

[7] Z. Liu et al., “Nitrosketch: Robust and general sketch-based monitoring
in software switches,” in Proc. ACM Special Interest Group Data
Commun., Aug. 2019, pp. 334–350.

[8] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. ACM SIGCOMM, Aug. 2018, pp. 561–575.

[9] Q. Huang, P. P. C. Lee, and Y. Bao, “SketchLearn: Relieving user bur-
dens in approximate measurement with automated statistical inference,”
in Proc. SIGCOMM, Aug. 2018, pp. 576–590.

[10] Q. Huang et al., “SketchVisor: Robust network measurement for
software packet processing,” in Proc. ACM SIGCOMM, Aug. 2017,
pp. 113–126.

[11] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM Conf., Aug. 2016, pp. 101–114.

[12] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: The count-min sketch and its applications,” Proc. LATIN, 2004,
pp. 29–38.

[13] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proc. ACM SIGCOMM, Aug. 2002, pp. 323–336.

[14] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in
data streams,” in Proc. Int. Colloq. Automata, Lang., Program. (ICALP),
Jul. 2002, pp. 693–703.

[15] C. Ma, H. Wang, O. Odegbile, and S. Chen, “Noise measurement and
removal for data streaming algorithms with network applications,” in
Proc. IFIP Netw. Conf. (IFIP Networking), 2021, pp. 1–9.

[16] Q. Xiao, S. Chen, M. Chen, and Y. Ling, “Hyper-compact virtual
estimators for big network data based on register sharing,” in Proc.

ACM SIGMETRICS, Jun. 2015, pp. 417–428.
[17] Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized

sketch families for network traffic measurement,” Proc. ACM Meas.

Anal. Comput. Syst., vol. 3, no. 3, pp. 1–34, Dec. 2019.
[18] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time

probabilistic counting algorithm for database applications,” ACM Trans.

Database Syst., vol. 15, no. 2, pp. 208–229, Jun. 1990.
[19] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for

database applications,” J. Comput. Syst. Sci., vol. 31, pp. 182–209,
Sep. 1985.

[20] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog: The
analysis of a near-optimal cardinality estimation algorithm,” in Proc.

AOFA, 2007, pp. 127–146.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

IEEE/ACM TRANSACTIONS ON NETWORKING

[21] H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Randomized
error removal for online spread estimation in data streaming,” Proc.

VLDB Endowment, vol. 14, no. 6, pp. 1040–1052, Feb. 2021.
[22] G. Cormode and S. Muthukrishnan, “Space efficient mining of multi-

graph streams,” in Proc. ACM PODS, Jun. 2005, pp. 271–282.
[23] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani, “Streaming

algorithms for robust, real-time detection of DDoS attacks,” in Proc.

27th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2007, p. 4.
[24] W. Liu, W. Qu, J. Gong, and K. Li, “Detection of superpoints using a

vector Bloom filter,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 3,
pp. 514–527, Mar. 2016.

[25] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
opensketch,” in Proc. USENIX Symp. Netw. Syst. Design Implement.,
2013, pp. 29–42.

[26] L. Tang, Q. Huang, and P. P. C. Lee, “SpreadSketch: Toward invertible
and network-wide detection of superspreaders,” in Proc. IEEE Conf.

Comput. Commun. (IEEE INFOCOM), Jul. 2020, pp. 1608–1617.
[27] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible and

elastic DDOS defense,” in Proc. 24th USENIX Secur. Symp. (USENIX

Security), 2015, pp. 817–832.
[28] Z. Durumeric, M. Bailey, and J. A. Halderman, “An internet-wide

view of internet-wide scanning,” in Proc. 23rd USENIX Secur. Symp.

(USENIX Security), 2014, pp. 65–78.
[29] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm

fingerprinting,” in Proc. OSDI, vol. 4, p. 4, 2004.
[30] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[31] Y.-E. Sun, H. Huang, C. Ma, S. Chen, Y. Du, and Q. Xiao, “Online

spread estimation with non-duplicate sampling,” in Proc. IEEE Conf.

Comput. Commun. (IEEE INFOCOM), Jul. 2020, pp. 2440–2448.
[32] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large net-

works,” in Proc. 2nd ACM SIGCOMM Workshop Internet Measurment,
2002, pp. 137–150.

[33] H. Huang et al., “Spread estimation with non-duplicate sampling
in high-speed networks,” IEEE/ACM Trans. Netw., vol. 29, no. 5,
pp. 2073–2086, Oct. 2021.

[34] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” in Proc. ACM SIGCOMM Conf.

Internet Meas., 2003, pp. 153–166.
[35] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum, “New streaming

algorithms for fast detection of superspreaders,” in Proc. NDSS, 2005,
pp. 1–18.

[36] Y. Liu, W. Chen, and Y. Guan, “Identifying high-cardinality hosts from
network-wide traffic measurements,” IEEE Trans. Depend. Sec. Comput.,
vol. 13, no. 5, pp. 547–558, Sep./Oct. 2016.

[37] Q. Xiao et al., “Cardinality estimation for elephant flows: A compact
solution based on virtual register sharing,” IEEE/ACM Trans. Netw.,
vol. 25, no. 6, pp. 3738–3752, Dec. 2017.

[38] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in practice:
Algorithmic engineering of a state of the art cardinality estimation
algorithm,” in Proc. EDBT, 2013, pp. 683–692.

[39] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high-speed links,” IEEE/ACM Trans. Netw., vol. 14,
no. 5, pp. 925–937, Oct. 2006.

[40] UCSD. (2015). CAIDA UCSD Anonymized 2015 Internet Traces on

Jan. 17. [Online]. Available: http://www.caida.org/data/passive/passive
_2015_dataset.xml

[41] R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Efficient
measurement on programmable switches using probabilistic recircula-
tion,” in Proc. IEEE 26th Int. Conf. Netw. Protocols (ICNP), Sep. 2018,
pp. 313–323.

Chaoyi Ma (Graduate Student Member, IEEE)
received the B.S. degree in computer information
security from the University of Science and Technol-
ogy of China in 2018. He is currently pursuing the
Ph.D. degree in computer and information science
and engineering with the University of Florida. His
advisor is Prof. Shigang Chen. His research interests
include big data, networks traffic measurement, com-
puter networks security, and data privacy in machine
learning. His work received the IEEE ICNP2021
Best Paper Award.

Haibo Wang (Graduate Student Member, IEEE)
received the B.E. degree in nuclear science and
the master’s degree in computer science from the
University of Science and Technology of China
in 2016 and 2019, respectively. He is currently
pursuing the Ph.D. degree with the Department of
Computer and Information Science and Engineering,
University of Florida. His main research interests
are internet traffic measurement, software defined
networks, and optical circuit scheduling. His work
received the IEEE ICNP2021 Best Paper Award.

Olufemi O. Odegbile received the B.S. degree in
mathematics from the University of Ibadan, Nigeria,
the master’s degree in computer science from Boston
University, USA, and the Ph.D. degree in computer
science from the University of Florida. He is an
Assistant Professor with the Department of Com-
puter Science, Clark University, Worcester, USA.
His research interests include computer networks,
networks security, networks traffic measurement,
and RFID Technology.

Shigang Chen (Fellow, IEEE) received the B.S.
degree in computer science from the University
of Science and Technology of China in 1993 and
the M.S. and Ph.D. degrees in computer science
from the University of Illinois at Urbana–Champaign
in 1996 and 1999, respectively. After graduation,
he had worked with Cisco Systems for three years
before joining the University of Florida in 2002,
where he is a Professor with the Department of
Computer and Information Science and Engineer-
ing. He held the University of Florida Research

Foundation Professorship and the University of Florida Term Professorship.
He has published over 200 peer-reviewed journals/conference papers. He holds
13 U.S. patents, and many of them were used in software products. His
research interests include the Internet of Things, big data, cybersecurity, data
privacy, edge-cloud computing, intelligent cyber-transportation systems, and
wireless systems. He is an Distinguished Scientist of ACM. He received
the NSF CAREER Award and several best paper awards. He served in
various chair positions or as a committee member for numerous conferences.
He served as an Associate Editor for IEEE TRANSACTIONS ON MOBILE

COMPUTING, IEEE/ACM TRANSACTIONS ON NETWORKING, and a number
of other journals.

Dimitrios Melissourgos received the B.E. degree
from the Department of Computer Engineering and
Informatics, University of Patras, and the master’s
degree in computer science from the Department of
Computer and Information Science and Engineering,
University of Florida, where he is currently pursuing
the Ph.D. degree. His main research interests are net-
works traffic measurement and distributed machine
learning privacy.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:16:01 UTC from IEEE Xplore. Restrictions apply.

