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Abstract—Estimating the cardinality of a data stream is a
fundamental problem underlying numerous applications such
as traffic monitoring in a network or a datacenter and query
optimization of Internet-scale P2P data networks. Existing solu-
tions suffer from high processing/query overhead or memory
in-efficiency, which prevents them from operating online for
data streams with very high arrival rates. This paper takes a
new solution path different from the prior art and proposes
a self-morphing bitmap, which combines operational simplicity
with structural dynamics, allowing the bitmap to be morphed
in a series of steps with an evolving sampling probability
that automatically adapts to different stream sizes. We fur-
ther generalize the design of self-morphing bitmap. We evalu-
ate the self-morphing bitmap theoretically and experimentally.
The results demonstrate that it significantly outperforms the
prior art.

Index Terms— Cardinality estimation, bitmap, morphing.

I. INTRODUCTION

ARDINALITY estimation is one of the fundamental
problems in the data steaming field [1]-[10]. A data
stream is a sequence of data items arriving at high rate. Its
cardinality is the number of distinct data items in the stream.
The term data item under different practical scenarios may
refer to an attribute (such as source address) of each packet
in an Internet traffic stream [11]-[15], node ID in wireless
sensor networks for in-network query aggregation [16], each
file (name) accessed by users in P2P networks [17], etc.
Cardinality estimation has many practical applications. Con-
sider Internet traffic received by a router and the application
of anomaly detection [18], [19]. We may treat all packets
sent from the same source address as a data stream. Each
packet carries a data item, which may be the destination
address in the packet header. The cardinality of a stream is
the number of destination addresses that the source address
has contacted. By measuring the cardinality for the packet
stream from each source, a cardinality estimation module
deployed at the gateway of an enterprise network can detect
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external scanners, i.e., those that contact too many distinct
destination addresses. In another example, we may define
all packets sent to the same destination address as a data
stream, where the source address in the packet header as data
item. If we observe that the cardinality of a stream surges,
it may signal a DDoS attack as an abnormal number of
distinct sources access the service hosted at the destination
address.

The problem of cardinality estimation is challenging
because each item may appear in the stream multiple times
and we must filter out duplicate items, which will require us
to “remember” the items that have been counted. As a stream
may contain millions or even billions of different items, it can
be costly to remember all items and find out duplicates. This
paper studies efficient data structures and algorithms that can
estimate the cardinality of a stream with high accuracy, low
memory overhead, and low processing overhead. Consider a
modern router with a line rate of hundreds of gigabits or
even terabits per second. Use the previous example where all
packets from each source address form a stream. The number
of data streams (source addresses) observed by the router can
be in millions. While tracking distinct items in one stream
is already a challenge, simultaneously doing that for millions
of streams requires a significant amount of SRAM memory
on the data plane of the router that processes packets at line
rate. Therefore, we need to design the cardinality estimation
module both memory efficient and processing efficient in order
to record data items at high rate (also referred to as recording
throughput). As another justification, various data analysis
systems at Google [20], such as Sawzall [21], Dremel [22],
and PowerDrill [23], estimate the cardinalities of very large
data sets on a daily basis. As pointed out in the paper [20],
cardinality estimation over large datasets presents a challenge
in terms of computational resources, and memory in particular;
for the PowerDrill system, a non-negligible fraction of queries
historically could not be computed because they exceeded the
available memory.

Real-time applications need to perform cardinality queries
online as the data items are recorded. Ideally, in the example
of scan detection, for each arrival packet, as we record its
destination address for the stream of its source address, we also
query for whether the cardinality of the stream exceeds a
threshold. However, such per-packet query may not be feasible
if query overhead is much larger than recording overhead.
In this case, we can only perform queries for some packets
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at a rate lower than the recording throughput. It is also our
goal to improve the rate at which queries can be made (also
referred to as query throughput).

Finding the exact cardinality of a data stream is extremely
memory/computation-hungry, especially for the current big
data streams. It requires either a synopsis size as large as
the data stream itself (e.g., sorting) or even more memory
(e.g., using hash table). Practically, users may relax the need
for an exact solution and may be interested in estimating the
cardinality approximately at a much smaller cost, which is
what this paper tries to study. There are three categories of
solutions to estimating the cardinality of a data stream. The
first category performs uniform hash on each data item, keeps
the k£ minimum hash values and produces cardinality estimate
based on the k-th minimum value [24], [25]. However, these
solutions suffer from high estimation variance and sometimes
produce estimates that deviate far from the real cardinality.
The second category includes FM [1], LogLog [26], Hyper-
Loglog (HLL) [27] and HyperLoglLog++ (HLL++) [20],
which use a large number of registers, each providing a
coarse cardinality estimation. They take the average of the
numerous coarse estimations, trading memory overhead for
high accuracy; among them, HLL++4 and its variants are
most accurate [28]. Their problem is high query overhead
and low query throughput, making them unsuitable for online
use. The third category is bitmap [2] and its variants, which
achieve high query throughput due to their relatively low query
overhead. Using bitmap to record data items is not memory-
efficient, resulting in small estimation range [2]. One approach
is to use sampling to reduce the number of items needed to
be recorded. However, the optimal sampling probability is a
function of the true cardinality of the stream, which we do not
know. The best solution in the literature, i.e., Multi-resolution
Bitmap (MRB) [3], [4], maintains multiple bitmaps, each with
a different sampling probability. When being queried, MRB
finds out which sampling probability is the best based on
the current content of all the bitmaps. It then uses only the
information stored under that sampling probability to perform
cardinality estimation. It wastes information recorded under
other sampling probabilities and the memory that is used to
record them.

Our goal is to design a new solution for cardinality esti-
mation that significantly outperforms the existing work. For
fair comparison, consider all solutions are assigned the same
amount of memory. Compared to HLL++ [20] which is
most accurate but has low query throughput, the new solution
should support much higher query (and recording) throughput,
making it suitable for online operations, yet without scarifying
accuracy, or even improving accuracy over HLL+4+. Com-
pared to MRB [3], [4] which is efficient in query throughput
but less accurate, the new solution should achieve much better
accuracy, yet without scarifying query throughput, or even
improving query (and recording) throughput over MRB.

The basic idea in our solution is to use a single self-
morphing bitmap (SMB) with a sampling probability that
changes over time as more and more data items are recorded.
We should use large sampling probabilities for small data
streams to ensure accuracy and small sampling probabil-
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ities for large data streams to ensure memory efficiency.
SMB begins with a sampling probability of 100% and
progressively decreases it based on the number of items
recorded. In the meanwhile, it morphs the bitmap through
a series of steps in such a way that allows us to utilize all
recorded information (under different sampling probabilities)
for cardinality estimation. SMB uses a single bitmap and a
single sampling probability at any given time, whereas MRB
uses multiple bitmaps and multiple sampling probabilities.
SMB uses all recorded information, whereas MRB uses only
some for estimation.

We formally derive the estimation error bound of SMB
and evaluate its performance in comparison with the state
of the art. The experimental results demonstrate that SMB
outperforms in estimation accuracy, recording throughput, and
query throughput than the existing work, with significant
improvements: (1) It achieves 50% estimation error reduction,
comparing with MRB; moreover, its recording/query through-
put is higher than MRB. (2) It achieves at least an order
of magnitude higher throughput than HLL++; moreover, its
accuracy is better than HLL++.

II. BACKGROUND AND PRIOR ART
A. Problem Statement

A data stream D is a sequence of data items where any data
item d € D may appear once or multiple times. The stream
cardinality is defined as the number of distinct data items in
the stream. For instance, consider D = {di,da,d;,d;}. Its
cardinality is 2 because there are two distinct data items, i.e.,
d; and ds. The core issue of estimating stream cardinality is
to remember the recorded data items, such that duplicate data
items will not be counted multiple times. The problem is to
design a data structure called cardinality estimator that records
the data items of a stream and estimates the stream cardinality.

Consider the application of detecting DDoS attacks to a
certain internal server, where all packets to the server form a
data stream and each data item is distinguished by the source
address carried by the packet. If there are 10000 packets
from the same source address, the stream cardinality is 1.
If the 10000 packets each are sent from different sources
addresses, the stream cardinality is 10000. Estimating the
stream cardinality can help network reconnaissance against
potential DDoS attacks and enable system admin to take
further measures.

B. Prior Cardinality Estimators

Cardinality estimation is a classical problem and there are
many existing solutions. This subsection first describes the
prior cardinality estimators and then compares existing them in
terms of recording and query overheads and estimation accu-
racy. We consider two major computation-hungry operations,
i,e., hash and memory access, to assess the recording and query
overhead. Constant H represents the overhead for one hash and
A represents the average overhead for accessing one bit.

Bitmap. Bitmap [2] is an array B of m bits. Upon the
arrival of an item d, bitmap performs uniform hash operation
H(-) € [0,m) on d and sets B[H(d)] to 1. The recording
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overhead per item is thus H + .4. When being queried, bitmap
traverses all the bits and calculates the number of ones in the
array, denoted as U, resulting in the query overhead of m.A.
The cardinality estimate n by bitmap [2] is
i=-mln(l—U/m). (1

The maximum useful value of U is m — 1, which promises
the maximum estimate of m Inm. Bitmap provides the best
accuracy among all existing cardinality estimators under the
condition that there is sufficient memory space, which roughly
speaking can be linear to the cardinality and is far too large
to be kept in available memory in most applications [29].

Multi-resolution Bitmap (MRB). MRB [3], [4] employs
k > 1 bitmaps, denoted as By, B1,...,Bi_1, each with a
distinct sampling probability p;, V0 < i < k, to simultaneously
record a data stream and selects one of them for producing the
cardinality estimate. Given the total memory allocation of m
bits, each ith bitmap B; is 7+ (suppose it is integer) bits long.
Considering the convenience of implementation and estimation
accuracy, MRB recommends that p; = 57 ,VO < i<k [3],
[4] and p9 > p1 > ... > pg—1. For any data item d,
. . H'(d) (mod W) .
it gets sampled by B; if p; > ———7——, where W is
a sufficiently large integer constant and H'(-) is a uniform
hash function. Note that if the data item gets sampled by
B;, it gets sampled by By,...,B;_; as well. For any data
item that only gets sampled by By, B1,..., B;, instead of
setting B;[H (d)] = 1,Y0 < j < i with (i + 1) updates, MRB
only sets B;[H(d)] = 1 with single update. Consequently,
By, ..., B;_1 lose a portion of its bits which are covered by
B;. Considering any bitmap B;, it loses a portion of their bits
which are covered by B, 1,...Br—1 and will be recovered
later when producing the cardinality estimate. The recording
overhead per item is 2H + A. For query, MRB checks the
number of ones in B;, denoted by U, (excluding the bits
covered by B;41,...By_1), top-down, and find outs the first
B; whose U; > T, where T is a predefined threshold. If no
B; is found, + = 0. B; is considered as the bitmap with most
suitable sampling probability. MRB collects the number of
sampled distinct data items under the sampling probability p;,
which are recorded in B;,...Bj,...,Br_1,Vi <j < k-1,
each with a cardinality estimate of —%* In(1 — UT) The query
overhead is thus up to m.A. MRB calculates the sum of these
cardinality estimates as Z;:zl — 72 In(1 - /k) and divide it
by p; and produces the cardinality estimate 7 as

. k=1 m
ﬁzyzjm_kl( /k:)

The maximum estimate is produced when ¢ = k — 1 and
Uk—1 = 2 — 1, which is 287122 In(Z2). It is larger than the
maximum estimate produced by m-bit bitmap (m Inm) when
k > 2. Although MRB achieves highest query throughput
among the existing work, which will be validated in the
experiments, it abandons the information in the bitmap under
other sampling probabilities, making it less accurate. This
motivates our design of SMB, which will be elaborated shortly.
Before we explain the following thread of cardinality
estimators, we first define the geometric hash function.

)
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Definition 1 (Geometric Hash Function): Function G(z) is
a geometric hash function of base 3 if G(x) is an integer and
G(z) =1, i > 0, with the probability 2=+,
In practice, G(x) can be performed by a uniform hash function
H(z), where G(x) = p(H(x)) and p(y) is the number of
leading zeros of y starting from the least significant digit.

FM, HLL+-+, HLL-TailC, etc. An FM register is a
bitset F with b bits, with the ith bit denoted as F[i], 0 <
i < b. For any item d, we calculate G(d) with G(d) < b
and set F[G(d)] = 1. Consider the cardinality estimate of
FM. Roughly speaking, any item is hashed to the ith bit
with probability 72— and in turn, F[i] = 1 approximately
represents 2¢71 of distinct data items in the data stream.
Obviously, this probabilistic counting is too coarse, one-bit
fluctuation resulting in a totally different estimate, especially
for the significant bits. To this end, FM uses ¢ registers,
Fy, ..., Fy, to improve the estimation accuracy. For an m-
bit FM, ¢ = 4 (suppose it is an integer) and any data item is
mapped to H(d) mod tth register for recording. Totally, the
recording overhead is 2H + A. In practice, b is recommended
to be 32 to accommodate a sufficient large estimation range.
For query, FM traverses all the registers and produces the
cardinality estimate as

3)

where z; is the number of consecutive ones of F; starting from
the least significant bit, and ¢ is pre-computed constant that is
related to t. ¢ = 0.78 when ¢ is large enough. Refer to [1] for
the value of ¢ under different ¢. The query overhead is m.A.

An HLL++ register Y is a counter of b bits (for estimation
range up to 22b_1), which represents an integer of range
0 <Y < 20 — 1. The value of b is recommended as 5.
It is a compact version of the FM register. For any data
item d, we calculate G(d) with G(d) < 30 and set ¥ =
max{Y, G(d) + 1}. It has the same estimation accuracy issue
as the FM register. Therefore, HLL++ also uses ¢ registers.
For an m-bit HLL++, ¢ = 72 (suppose it is an integer). The
recording overhead per item is 2H + 5.A. For query, HLL-++
produces cardinality estimate through arithmetic mean Y of
Yo,...,Ys—1 as

“)

where «o; is a constant that can be calculated as o; =
0.7213/(1 + 182) when ¢ > 128. For value of oy under
different ¢, refer to [20], [27]. Since all the registers are
accessed, the query overhead is m.4. Furthermore, HLL+-+
corrects the estimation bias when the cardinality n is very
small, up to m = 5t, using the solutions including the bitmap
algorithm. In fact, HLL++ is not proposed at one stroke but
belongs to a family of LogLog algorithms, including LogLog,
SuperLogl.og and HLL, which use the same data structure
and recording operation but different estimation formulas. As a
result, the recording and query overhead are the same as those
of HLL++. We only describe HLL++ here as HLL++ is the
state of the art in the family.

There are some optimizations based on HLL++. HLL-
TailC reduces the size of each HLL++ register Y; from

_ _ t—1
A= -t-Y withY = t(z_ 2~ Yiy~!

1=
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5 bits to 4 bits. The new register Y, stores the offset

7
value Y/ = Y; — B, where variable B is maintained and
is equal to the ming<;<;Y;. If Y’ overflows, ¥/ = 15.
For query, HLL-TailC recovers Y; based on Y/ and B and
produces estimates with the formula for HLL++ in (4).
More aggressively, HLL-TailC+ reduces size of each LogLog
register Y; from 5 bits to 3 bits at the cost of expensive
query operations, which can only be done offline. Therefore,
HLL-TailC rather HLL-TailC+ is considered in this paper.

Refined HLL uses a different geometric hash function G'(x),

where G'(z) = 0,1,2,3,...,4,... with the probabilities
of 2,2(2)1,1(2)2,1(2)3,...,1(3)9,. .., respectively. How-

ever, unlike HLL++ which has fixed coefficient «;, Refined
HLL needs to use a portion of the data stream to train a model
and derive the coefficient, making it impractical for online
cardinality estimation.

Usually, FM, HLL++ and HLL-TailC are equipped with
hundreds or thousands of registers. Producing cardinality
estimate needs to access all of them and calculate complex
formula such as (4) for HLL++, incurring low query through-
put.

MinCount, AKMYV, etc. These solutions estimate stream
cardinality using k-th minimum hash value of all data items.
For each data item d, if we perform uniform hash H(.) €
[0,1]. The expected distance between any neighboring hash
values is n+r1 ~ % by symmetry. Thus, the k-th minimum
value vy, is expected to be E(vg) = % and we can estimate n
by n = % When allocated m bits of memory, these solutions
maintain 55 (suppose it is integer) minimum hash values
(suppose each hash value is 32 bit). The recording overhead
for each data item is one hash and at least one comparison
with the minimum hash values, i.e., [32.4, mA]. The query
overhead depends on the number of values these solutions
access. AKMV access only v and lowers the estimation bias
by revising the formula to n = kv;kl Its query overhead is thus
32 A. However, it suffers from large variance as its estimate
depends only on the v;. To reduce the variance, MinCount
divides the hash values into ¢ buckets, each maintaining the
k-th minimum value to reduce the estimation vari-
ance. The query overhead is thus 32tA € [324,mAl.
Kane et al. [30] proposed a cardinality estimator which
compresses O(tloglogn) bits of the LogLog family and
O(tlogn) bits of FM to O(t) bits, under the same accuracy
requirement. This from an information-theoretic point of view
is a progress. However, this effort from a practical perspective
is not successful as the actual memory consumption is not
reduced. Moreover, the algorithm has a probability (up to
3%) to fail when recording and if so it will need to re-run
the algorithm, making it impractical for online cardinality
estimation.

Summary of existing cardinality estimators and our
goal. Table I compares the recording and query overhead
of each cardinality estimator. As this paper focuses on the
online cardinality estimation, we highlight the query overhead.
Among existing solutions for streaming data, MRB achieves
lowest query overhead theoretically and experimentally (but
still higher than SMB, see Section VI). But its estimation
accuracy is not as high as HLL++-. Moreover, an experimental
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Fig. 1. Example of recording a small data stream in MRB. Only bits in

By, B1, B2 are used to store the information. Memory space occupied by
other bitmaps, i.e., B3, ..., By_1 are wasted.
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Fig. 2. Example of recording a large data stream in MRB. Bits in
By, ..., B;_1 are all set to ones, which cannot be used to produce cardinality
estimate.

survey [28] compared the estimation accuracy of Loglog,
SuperLoglog, HLL, HLL++, MinCount, AKMV, under tens
of datasets and drew the following conclusion. HLL++ is
the best among the Loglog family. MinCount and ARMV
perform worse than SuperLoglog, let along HLL and HLL+-.
Thus, HLL++ and its optimization work HLL-TailC (HLL-
TailC is not evaluated in the survey) are the state of the
art. However, as we have explained, they have high query
overhead. Our goal is that SMB can simultaneously achieve
the best estimation accuracy and the lowest query overhead
(plus the lowest recording overhead), making it an efficient
solution for online cardinality estimation.

C. Other Related Work

Adaptive bitmap is a derived algorithm from MRB [3], [4]
for stream cardinality estimation. Assuming that the stream
cardinality in this interval is in the same order of magnitude
as that in the previous one (measured by a small MRB),
adaptive bitmap sets a suitable sampling probability p and
applies p to bitmap for precise estimation. However, when
the cardinality changes significantly from one interval to
the subsequent one, the value of p will be improperly set
and the cardinality estimate produced from bitmap will be
ruined.

There is some work that designs a compact data structure
(called sketch) for estimating cardinalities of multiple data
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PERFORMANCE COMPARISON OF THE PROPOSED SMB ALGORITHM AND EXISTING SOLUTIONS WHEN EACH SOLUTION IS ASSIGNED m BITS AND
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TABLE I

THE STREAM CARDINALITY n IS UP TO THE MAGNITUDE OF 232. NOTE THAT H{ REPRESENTS THE OVERHEAD FOR ONE HASH OPERATION
AND A REPRESENTS THE AVERAGE OVERHEAD OF ACCESSING 1-BIT MEMORY. WE USE THE NUMBER OF HASH OPERATIONS USED AND
THE MEMORY ACCESSED PER DATA ITEM TO ROUGHLY SHOW THE RECORDING AND QUERY OVERHEAD. p IS THE SAMPLING
PROBABILITY. THE ACCURACY RESULTS MOSTLY COME FROM THE EXPERIMENTAL SURVEY [28] ON A NUMBER OF
DATASETS. NOTE THAT BITMAP IS ONLY ACCURATE IN ITS SMALL ESTIMATION RANGE

Solutions Data Structure Core Method Recording Overhead |Query Overhead Accuracy
Bitmap [2] Array of m bits Count number of 1s | H + A mA High
MRB [3], [4] 32 [ 2% |-bit bitmaps | Bitmap + sampling [2H 4+ A [32.4, m.A] Medium
M [1] | 55 | 32-bit registers | Count consecutive 1s | 2H + A mA Medium
LogLog [26] | = | 5-bit registers | Count leading Os 2H +5A mA Medium
SuperLogLog [26] | = | 5-bit registers | Count leading 0Os 2H +5A mA Medium
HLL [27] | = | 5-bit registers | Count leading Os 2H +5A mA High
HLL++ [20] | = | 5-bit registers | Count leading 0Os 2H +5A mA High
Refined HLL [6] | = | 5-bit registers | Count leading Os 2H +5A m.A + train overhead | High
HLL-TailC [30], [31] | |7 ] 4-bit registers | Count leading 0s 2H +4A mA High
HLL-TailC+ [30], [31] | [ 5 | 3-bit registers | Count leading Os 2H + 3A Offline High
Kane et al. [32] | = | 5-bit registers | k-th minimum value [ > (8% + 39 x 5A) 32A Medium
MinCount [24] | 55 | 32-bit registers | k-th minimum value | [H + 324, H + 32mAJ | [32A4, mA] Medium
AKMYV [25] | 55 | 32-bit registers | k-th minimum value | [H + 324, H + 32mAJ | 324 Low
SMB Array of m bits Bitmap+ sampling [ (1 + p)H + pA 324 High

Sampling rate
=121y, ! I

p=12 L o i
Pldatubulatats I C——— )

r—————== —— == Bl

P =12 L ! i

k m-T- >

po=1 Ly
< n >
Fig. 3. TIllustration of the recording process in SMB. Initially, data items are

recorded in Lo (bitmap with m bits) with a sampling probability pg = 1.
When T bits are set to one, the remaining m — 71" bits of zeros form a logical
bitmap L1, and the sampling probability changes to p1 = % This morphing
process is imaginary and the process repeats each time the number of ones
in the logical bitmap reaches the threshold 7'

streams [10], [11], [33]-[35]. These sketches all use the
cardinality estimators, e.g., bitmap, FM, HLL, and MRB,
as plug-ins, and allow different data streams to be recorded
in the same cardinality estimators. For instance, OpenS-
ketch [33] uses multiple arrays of bitmaps; bSketch [10]
is a generalized sketch framework that can be plugged in
bitmap, FM, and HLL; SpreadSketch [34] uses MRB to
identify superspreaders. They usually need to record/query
each data item in multiple cardinality estimators to reduce
the estimation error caused by the sharing of cardinality
estimators among data streams. Therefore, they benefit from
the improvement of estimation accuracy, memory efficiency,
and high recording/query throughput of the internal plug-
in cardinality estimators. We stress that SMB can also act
as plug-in for these sketches and the performance improve-
ment by our work can benefit these sketches accordingly.
There is also other works on cardinality estimation for
multiple data streams, including, AROMA [36], CSE [37],
vHLL [11], VF [9].

III. SELF-MORPHING BITMAP

In this section, we first explain our motivation for SMB.
After that, we present the design of SMB and prove its
properties.

A. Motivation

It is well known that the Bitmap estimator [2], [37] has a
limited estimation range of —m Inm [2], which is a serious
problem in practice for large date streams [11], whereas
FM, HLL++ and MRB have practically unlimited ranges
by extending their register sizes or using smaller sampling
probabilities.

As our experimental results will show, MRB achieves better
recording throughput and query throughput than FM and
HLL++, thanks to its simpler recording/querying operations.
In terms of estimation accuracy, HLL++ is better than MRB
and FM in most configurations. Overall, MRB achieves a
superior balance between throughput and accuracy.

This paper proposes a new design that achieves much better
recording throughput and query throughput than MRB and in
the meantime better accuracy than HLL++. To motivate for
our design, we examine MRB more closely and argue that it
does not fully utilize its memory space.

e For a small data stream, it is likely that MRB only
uses one or a few of its bitmaps (those with large sampling
probabilities such as Bj). The memory space occupied by
other bitmaps (with small sampling probabilities) will be
wasted if no element is sampled for them and none of their bits
is set to one, as illustrated by the example in Figure 1. In this
case, had we used a single bitmap of all m bits, we would
improve estimation accuracy.

e For a large data stream, according to (2), some of its
bitmaps, By through B;_i, are not used because too many
bits in them are set to ones, as illustrated by the example in
Figure 2 and such saturated bitmaps result in large estimation
error [2], [11]. To utilize By through B;_;, we have to
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somehow expand these bitmaps so that they are not saturated
with ones, yet we cannot increase the total number m of bits,
nor should we reduce k, which would reduce the estimation
range.

Moreover, after MRB determines that B; has the most
appropriate sampling probability p; for this stream, it uses B;
through Bj_; in its estimation formula (2). However, B,
through Bj_1 have used much smaller sampling probabilities
than p;, causing significant estimation error. We would achieve
much better accuracy, had we applied p; to B, through By,
as well, which is however against the design structure of MRB.

Therefore, we need a new design to address the above
accuracy-related issues. In addition, we want the new design
to greatly improve recording throughput by reducing the
overhead of item recording and improve query throughput by
reducing the overhead of cardinality estimation. To achieve all
these goals, our idea is self-morphing bitmap (SMB), which
begins with a single bitmap L of all m bits and continuously
morphs itself through a series of steps as needed, with a
sampling probability that decreases as more and more items
are recorded.

We do not know the cardinality of the data stream
beforehand. Therefore, we begin with a sampling probability
po = 1 for L. However, if the data stream turns out to be too
big for py, which is indicated as the number of bits set to ones
in Ly reaches a threshold 7', we need to adaptively reduce the
sampling probability one notch down to p; = % and logically
prepare a new bitmap for sampling the rest of the stream by
p1. To do so, we first use formula (1) to estimate the number
of distinct elements that have been recorded so far in L, and
then conceptually morph L( to a new logical bitmap L; by
removing the bits of ones. Morphing (i.e., removal of some
bits) is an “imaginary” operation and does not result in any
physical overhead. We simply treat the bits of zeros in L as a
logical bitmap L; and our cardinality estimation formula will
account for the impact of conceptually removing the bits of
ones.

The above process repeats, as illustrated in Fig. 3:
VO < ¢ < k, if we find the number of bits set to ones
in L; reaches the threshold 7', we will reduce the sampling
probability from p; = (3) to pi41 = (3)*"'. We then estimate
the number of distinct elements having been recorded in L;,
and finally treat the bits of zeros in L; as a new logical bitmap
Li+1 to record the remaining data stream. Our evaluation
shows that this design of SMB achieves an estimation accuracy
better than MRB, FM and HLL-++.

Next we explain intuitively how SMB achieves an average
recording throughput much higher than MRB (which is in turn
higher than FM and HLL++-). The design of SMB ensures
that at any time there is only one bitmap L, and one sampling
probability p; under operation. The fraction of arrival items
that will be sampled for recording is equal to p;. As an
example, if p; = (%)8, only one out of every 256 data items
is recorded on average. The recording overhead is amortized
over many items, which reduces the average overhead per
item. In contract, MRB operates & bitmaps at any time, which
together record a fraction py of all data items, incurring higher
overhead per item because p is typically set to one.

1679
. geometric
round data items hash value
dy d;
0 id G(dy)=1 v ~ N =0
odi Gay=ov Ll L T 121 121 T T
G(dy)=1+v d, dy d,
Gldy=2 v . )
\ dpdsdsd;  Gy=0x Lol [+ 12 2] [» |V:2
G(dy)=1 v
ds dy
G(ds)=2 v/ ~. S -
2 dsdsdds G(dg)=3 v L()l | 1 | 1 | 1 | | 1 | | 1 EVZI
G(dy)=1 %
G(dg)=0 %

Fig. 4. Example for the recording operation of SMB. Note that in each round
r with » > 0, the logical bitmap L, consists of bits of zeros in Lo (all the
rectangles with solid lines).

The recording throughput of SMB changes over time since
the sampling probability changes. In practice, when we have to
handle many small/large data streams together with different
arrival times, we shall allocate one self-morphing bitmap for
each data stream, with independently-changing sampling prob-
ability. While the recording throughput of individual streams
increases over time, the aggregate recording throughput of
all streams is more stable as new streams arrive and existing
streams terminate.

The proposed self-morphing bitmap also has a higher
query throughput than MRB, FM, and HLL++ because its
computation is simpler than (2), (3), and (4). When a query
on stream spread is made, we only need to calculate (7) for the
current bitmap and add the result to what the previous logical
bitmaps have recorded (which does not change over time and
is thus computed before we morph into the current bitmap).

The detailed design of self-morphing bitmap is given next.

B. Self-Morphing Bitmap Design

SMB maintains one bitmap Ly with length of m. The
recording process consists of a series of rounds identified by
a round index r, which starts from zero and increases by one
each time after 7' bits are set to ones, where 7' is a pre-
specified threshold value. The ¢th round will have a sampling
probability p, = Qi In the beginning, » = 0 and pg = 1.
We use a variable v to keep track of the number of bits that
are set from zeros to ones set in the current round. When v
reaches T', we reset v = 0 and increase r by one to start the
next round.

Recording: Upon the arrival of an item d. We perform a
geometric hash operation G(d) (see Definition 1), and do the
following three steps.

Step 1: If G(d) > r, go to next step; otherwise, ignore
the item. This step samples the item with the probability of
27", which we will prove shortly. Since » = 0 initially and r
will only increase during recording, the sampling probability
in this step will decrease from 1 to 2%, 2%

Step 2: Perform uniform hash operation H(d) € [0, m —1].
If Lo[H(d)] = 0, set Lo[H(d)] = 1, increment v by 1, and
proceed to next step. Otherwise, do nothing.
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Step 3: If v > T, we increment r by 1 and update
v = 0; otherwise, do nothing. The threshold 7" < m
is a predefined parameter and we will theoretically give
the optimal setting. When the number of ones exceeds the
threshold, it means the cardinality of the data stream is
large enough and we should adjust the sampling proba-
bility to be smaller. We will prove that each item can
only be recorded by its first appearance and its subsequent
appearances will be ignored in next section. We give the
following example to facilitate understanding of the recording
process.

Example: We give an example shown in Figure 4 to illustrate
the recording operation of SMB, where m = 8, T = 2,
and the data stream D = {do, d1,do, d2,ds,dy, d5, dg,d7,ds}.
Initially » = 0, v = 0, and all bits in B are set as zeros. SMB
will process incoming items one by one and experience the
following three rounds of recording.

Round 0: for items dy and dy, we first calculate their
geometric hash values, G(dy), G(dy). Since G(dp) =1 >r =
0 and G(d1) =0>r =0, dy and d; get sampled in Step 1
and proceed to Step 2. Let H(dy) =3 and H(d;) = 5. SMB
sets Lo[3] = 1 and Lo[5] = 1. Accordingly, v is incremented
by one twice, i.e., v = 2. Since v > T', we proceed to round
1 and update » = 1 and v = 0,.

Round 1: The logical bitmap L; in round 1 consists of
all bits in Lo excluding Lo[3] and Lg[5]. As shown in the
figure, L1 contains all rectangles with solid lines in Lg. For
the subsequent items dy, ds, d3, d4. do gets sampled by Step 1
as G(dp) = 1 > r = 1. In Step 2, since Lo[H(dp)] =
1, we do nothing. Next item ds is sampled in Step 1 as

G(d2) =2 >r =1, and we set Lo[H(d2)] = Lo[1] =1 and
v = 1 in Step 2. ds is dropped as G(d3) = 0 < r = 1.
As G(dy) =1 >r =1, we set Lo[H(d4)] = Lo[7] = 1 and

v = 2. Since v > T, we update »r = 2 and v = 0, and go
to round 2.

Round 2: We morph L; to Ly by treating all bits of zeros
in Ly as a new bitmap (rectangles with solid lines in round 2).
For the subsequent items ds, dg, d7,ds. As G(ds) =2 >r =
2 and Lo[H(ds5)] = Lo[2] = 0, we set Lo[H(ds)] = 1, and
update v = 1. The next data item dg is dropped in Step 2 as
G(dg) > r =2 and Lo[H(ds)] = Lo[7] = 1. d7 and dg are
dropped as they do not pass Step 1 (G(d7) =1 < r =2 and
G(dg) =0<nr).

Querying: After the measurement period, the integer r
indicates SMB experiences 7+ 1 rounds of recording. Consider
arbitrary round 4,0 <7 < r. Step 1 of the recording operation
samples each data item with probability pi- We give the
following lemma to prove p; = 2L ,0< i<,

Lemma 1: For the ith round of recording with 0 <7 < r,
we have p; = 27%

The proof can be easily derived and is thus omitted. After
passing Step 1, data items will be recorded in the (logical)
bitmap L; with m; bits, where m; = m — ¢T". Let U; be the
number of ones set in L;, we have

v, 1=r7

T, 0<i<r
Ui:{ )
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Consider the estimate n; produced by L; in round .
By applying the estimation formula of bitmap [2], we have

ﬁi = —my iIl(]. - Uz/ml) (6)
From (5) and (6), we have
g = —m;In(1 —T/m;) 0<i<r
A, = —m, In(1 — U, /m,)

For round ¢ with ¢ > 0, bitmap L, is logical and all
its m; bits come from m bits in Lg. Due to the uniform-
ness of the hash value, only m;/m items will be hashed
to L;. This will enlarge the estimate n; by m/m,; folds.
Therefore, the total number of distinct items recorded by the
logical bitmaps, Ly through L, _;, after sampling is accounted
for, is

r—1 m r—1
—f; =

1 m
—
— bim

>
o Pi
1 m
= —— —m;In(1 —T/m;
Z pim T ™ ( /mi)
221 —mln(l —T/m;)
=0
Because the value of S, does not change during the rth
round (i.e., the current round), we can cache its value for use.
For a special case of » = 0, S, = 0. To answer a query on

the current cardinality estimate n, we only need to compute
estimate in the current round, i.e.,

1 m

——1, (7
Pr My
and add it to S,..

1

=S, 4 —
Pr My

. v

fip = Sp —2"mIn(1 — p— rT) ®)

Note that under the same memory allocation, if the length
of each bitmap in MRB is 7, SMB’s maximum estimate is
larger than that of MRB. It can be proved by only considering
the maximum estimate produced in the last round of SMB
(n,). The maximum estimate of 7, is produced when r =
7 — 1 =k —1 (suppose it is integer) and v = m — 7T — 1 =
T — 1, which is 2*~!m In(T') and is larger than the maximum
estimate produced by MRB (257122 In(%) = 2"~ 1T In(T)).

IV. GENERALIZED SELF-MORPHING BITMAP

The design of SMB in the above section employs a
series of specific sampling probabilities {po, p1,p2,...} =
{1,1 5 22 ,...}, where the sampling probability decreases to a
portion p = 5 of the previous one every time we proceed
to the next round of recording. However, our experiments
under datasets with different stream cardinalities and various
memory allocation in Section VI reveal that setting p = %
does not always promise the most accurate estimation. This
motivates us to generalize the design of SMB by allowing p

to be any constant in range of (0, 1).

N =
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The generalized SMB also maintains one bitmap Lo with
length of m. It inherits the terminologies, i.e., rounds, thresh-
old, and notations from the SMB in the previous section.
The difference is that the sampling probability for the :th
round of recording (in Step 1) is p; = p* with p € (0,1).
In the beginning, » = 0, v = 0 and py = 1. To implement
the sampling process for arbitrary p, we cannot employ the
geometric hash function G(-) in Definition 1 that is specially
designed for the case where p = % Instead, we defined the
generalized geometric hash function as follows.

Definition 2: [Generalized geometric hash function] Func-
tion G*(z) is a generalized geometric hash function of for
arbitrary base p € (0,1) if G*(z) outputs integer ¢ > 0 with
the following probability

N 0, with probability 1 —
G (x) = ©)
4> 1, with probability (1 — )p
The above defihition guarantees the followmg property of
G*(x).
Lemma 2: For any constant p € (0,1) and integer i > 0,
we have

Pr(G*(z) > i) = p'

ZPr (G*(z) =1i) =1 (10)

The above lemm&¢an be easily proved and is thus omitted.
In practice, G*(z) can be implemented by using a uniform
hash function H*(x) whose output range is [0,1). G*(z)=i
if H*(x) € [L—p",1—p'+ (1 —p)p')=[1-p", 1 -p*h).

Recording: Upon the arrival of an item d. We perform a
generalized geometric hash operation G*(d) (see Definition 2),
and do the following three steps.

Step 1: If G*(d) > r, go to next step; otherwise, ignore
the item. This step samples the item with the probability of
pr = Pr(G*(d) > r) = p", which is validated by Lemma 2.
Since = 0 initially and 7 will only increase during recording,
the sampling probability in this step will decrease from 1 to
p, p* ...for any p € (0,1).

Steps 2 and 3 are the same as those of SMB in the previous
section.

The recording operation of SMB is described in
Algorithm 1. We will prove that each item can only be
recorded by its first appearance. Its subsequent appearances
will be ignored.

Querying: After the measurement period, the integer r
indicates SMB experiences 7+ 1 rounds of recording. Consider
arbitrary round 7,0 < ¢ < r. Step 1 of the recording operation
samples each data item with probability p; = p’. After passing
Step 1, data items will be recorded in the (logical) bitmap L;
with m; bits, where m; = m — ¢T". Since Steps 2 and 3 are
the same as those in the previous section, we directly employ
the formula in (6) for n; that represents the number of distinct
items recorded in L; of the ¢th round. After the sampling is
accounted for, we can estimate the number of distinct items
recorded in the logical bitmaps, Ly through L,_; as

r— lfL,L T
Spr =D, e Zl 0 ——mln(l——). (11)

mg

1681

Algorithm 1 Recording a Data Item in the Generalized SMB

1: Input: data item d, T'
2: Action: record d, and update r and v
3. if G*(d) > r then

4: if Lo[H(d)] =0 then
5: Lo[H(d)] =1

6: v=v+1

7: if v > T then

8: r=r+1

9: v=20

10: end if

11:  end if

12: end if

Algorithm 2 Querying on the Generalized SMB

1: Input: T, 5,

2: Output: the cardinality estimate of the data stream
3: return Sy[r] — =mIn(1 -

m,—vrT)

Given p, S, , does not change during the rth round, i.e.,
the current round, we can pre-compute it and cache its value
for use. For the special case of » =0, S), , = 0. To answer a
query on the current cardinality estimate n, we only need to
compute estimate in the current round and add it to S, ..
s,

Pr My

n = Sp,T +

) (12)

1

—m In(1 ——T

The query operation is described in Algorithm 2. Comparing
with the existing work HLL+-+ and HLL-TailC with query
overhead of m.4, SMB only accesses two integer values, r
and v. For a stream cardinality in the magnitude of 232. r is
at most 32 and can be assigned 6 bits. v is at most 7" and
26 bits can make v up to 226 — 1, which is enough. Totally,
the query overhead is 32.4. Comparing with MRB which
only uses the information in the bitmap with the best sam-
pling probability, SMB utilizes all the recorded information
(see (8)), making it more accurate. Our experiment will show
that SMB achieves the best performance in estimation accu-
racy, recording throughput and query throughput, compared to
existing state-of-the-art solutions.

Theorem 3: For any data item d, its first appearance may
be recorded by SMB. But its subsequent appearances will be
blocked.

Proof: We prove by contradiction. Let d’ and d” be the
data item d of the first appearance and the second appear-
ance, respectively. Recall that the generalized geometric hash
function G*(-) is built based on the uniform hash function.
Due to the pseudo-randomness of the hash function, we have
G*(d'") = G*(d") = G*(d). Assume that when processing
d”, there exist G*(r) > r and Lo[H(d")] = 0. Since d’
appears before d” and the value of r will only increase.
Therefore, we know G*(d’) > r when recording d’ and d’

will pass Step 1. In Step 2, SMB will set Lo[H(d')] = 1
which contradicts with the assumption that Lo[H (d”)] = 0 as
H(d') = H(d) = H(d"). Thus, the theorem holds. O
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Fig. 5. (a) B w.r.t. 6 for SMB when n = 1M, under memory allocations of

1000 bits, 2500 bits, 5000 bits and 10000 bits, respectively. (b) 3 w.r.t. § for
SMB and MRB when n = 1M and m = 10000bits.

V. ANALYSIS AND PARAMETER SETTING

This section first presents a theorem to show the theoretical
estimation performance of SMB and interprets the theorem.
After that, we present the optimal setting for parameter 7.

A. Estimation Error Bound

Theorem 4: Let n and n be the actual cardinality and
estimated cardinality, respectively. The probability that the
relative error |“—"| is bounded by an arbitrary constant

d € (0,1) must be larger than 3, i.e.,

 (mp—Up4+1)p” §%2n(1-45)

n_n|§5)26:1_26 m 2 ,

Pr(| (13)

n
where 7 is the maximum integer value that satisfies n(1449) >
Sp.r and U, < T is the maximum integer value that satisfies
n(1+06) 2 Sp,+ (= In %) (but not larger than T") and
the value of array .S, can be found in (11).

Proof: Let X] be the number of distinct data items
processed (including the data items that are not sampled by
Step 1) to make U; increase to j from j — 1 in the ¢th round
of recording. When U; = j — 1 there are m; — (j — 1) bits
in L that are zero. Due to the uniformness of the hash value,

X7 is a geometric random variable and we have

m B m

(m; —j+1pi  (m; —j+1)p*
Totally, there are 71 variables from the first » rounds
of recording, i.e., X§, X3, ..., X , X{,..., X} LXT

r—1s-- r—1»

E(X]) =

(14)

and U, variables in the rth round of recording, i.e.,
X! X2 ..., XUr. These variables are mutually independent.
Denote
_ J j
Xx= Y X+ Y W
0<i<r,1<;<T 1<j<U-

The recording process of the data item terminates after the
event XY~ happens and before the event XUr! happens.
Therefore, the actual stream cardinality locates between X and
X +XUr. We call the data stream whose recording terminates
when its last distinct data item exactly set a bit with value of
zero to one in L as the integer stream and other streams as
non-integer stream. We will show with the same U, and r,
worst case happens to the integer stream. By considering the
worse case, we have

X =n, (15)
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and the following property.
Lemma 5: lim,, . E(X) = 7.
Proof: Consider the ith round of recording with 0 <7 < r.
From (14), we know

B( > X)) =Yiger (e sy
1<G<T

;%(HWM - Hmi,_T)

Note that H, is the z-th harmonic number. Utilizing the
asymptotics of the harmonic numbers [38], we obtain

3

E( Z ij) - _i(H"H — Hpn,—)
15G<T p
= g(ln m; —In(m; —T))
m mo .
= ]? ln(mz/(mz - T)) = szm

Similarly, for the rth round of recording, we have
E(Xi<j<u, X)) = oy Since the estimate in each
round of recording is equal to the actual expected number
of distinct data items processed in that round. We have
limy, 00 E(X) = 7. O

Employing the upper bound for the sum of the geometric
random variables (Theorem 2.1 for the upper tail and Theorem
3.2 for the lower tail in [39]), we have

Pr(X > (1+ 0)E(X)) < e L EX)@—In(1+9))

Pr(X < (1 — 0)E(X)) < e ™z DE)(=0-In(1=0))

where d € (0,1) and variable p, in paper [39] represents the
minimum success probability of all geometric variables, which
is (me=Urt P i the context of this proof. Usually, we bound
X by a small § and hence we have In(1+§) = §+62/2+0(5?)
and In(1 — §) = —6 + 6/2 + 0(6?). Therefore, the above
equations can be combined together as

_ (my—Up+1)p” E(X)%

Pr(|X — E(X)| > 0E(X)) < 2¢ (16)

Since the number of bits in L; is usually sufficiently large,
e.g., 10%, we have E(X) = 7 (see Lemma 5). From (15), (16)
can be rewritten as

_(mr—Upt1) 5 52
2T m 2

Pr(|n —n| > dn) < 2e

(:)Pr('n_n Z(S) SQe,%W%
n
— " my—Up p" 82n(1—
<:>Pr(| il >4) < 9p— r—trtle S nCd)
n
— 1 my —Up " 52n(1—
@Pr(u S(S) < 1_26_( l;’n+1)p 5 (21 5) a7
n

The last inequality shows that under the same value of U,
and 7, right part for the integer stream (with smaller n) is
smaller than that for the non-integer stream (with larger n).
This answers the previous argument that worst case happens
to the integer stream when U, and r are the same.

The right part of the last inequality decreases as r and U,
increases. Consider the maximum value of 7. In this case
7 = n(l+ J). We have n(l +6) = 7 > S,,, where r is
upper-bounded by the maximum integer value that makes the
inequality hold.
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Fig. 6.

Comparison between the generalized SMB under p = p*, denoted as SMB(p*) and the SMB under p = 0.5 (designed in Section III and denoted

as SMB(0.5)), under different values of m and n = 1M. p* is the optimal setting for p and its values under given m and n are presented in Table II. All
the plots show that the generalized SMB can bound the estimation error by arbitrary § with higher probability than SMB(0.5).

Consider the maximum value of U, with U, < T. Since
7 < (146)n, we can have the upper bound for U,.. n(1+4) >
= Spr+ k(= 1nm’m—U"). O

Next, we 1nterpret Theorem 4. According to (13), the error
bound is closely related to variable p, m, T' and n. For ease
of understanding the error bound, we also give visual display
by plotting § with respect to § when n = 1M. We choose four
representative values of m, i.e., m = 10k, 5k, 2.5k and 1k with
the unit of bit and 7', p are optimally set. The setting of 7" and p
will be explained shortly in the following subsection. The error
bound is shown in Figure 5(a). As we can see, the estimation
error is bounded by small ¢ with high probability. For instance,
when m = 10000 bits and § =0.1, 3 = 0.992. That means
In=n] ”l < 0.1 happens with the probability of > 99.2%. Even
when m is small, i.e., 1000, 2=2l < 0.30 happens with the
probability of > 90.8%. Note that the results in Figure 5(a)
act as an example for n. When n varies, similar figures can
be drawn.

We compare SMB with MRB and HLL++ in terms of the
theoretical estimation error bound. The values of p and T are
optimally set. For a fair comparison, the length of each bitmap
in MRB is set as 7. In the original paper for MRB [3], [4] and
for HLL++ [20], [27], the standard error |*== "| is given, from
which we can bound the relative error by § w1th a probability (3
using Chebyshev’s inequality. We plot § with respect to § for
SMB, MRB and HLL++ when n = 1M and m = 10000 for
each algorithm in Figure 5(b), which shows under the same
0, SMB’s [ is larger than that of MRB and HLL++. That
means SMB is more likely to bound the estimation error with
an arbitrary constant § than MRB and HLL++.

B. Parameter Setting for T' and p

We first discuss how to set the value of 7" when p is
given. The SMB can support maximum 7% rounds of recording,
which should be larger than or equal to 7+ 1, i.e., 7= > 7+ 1.
This constraint gives the upper bound of 7. We consider
the optimal integer value of m/T, which should be large
enough to accommodate the stream cardinality and meanwhile
makes (§ maximized. Given a fixed p, we can always derive
the optimal value of 7" using numerical computing under the
values of m and n. By brute-force testing all the values of p
with a granularity of 1%, we can find out the optimal value

TABLE I

PARAMETER SETTING OF GENERALIZED SMB: OPTIMAL VALUE OF
p (DENOTED AS p*), NUMBER OF BITMAPS k AND LENGTH
FOR EACH BITMAP m/k UNDER GIVEN n, m

NG 10k 5k 2.5k 1k

- p" [m/E[ k| p" Im/E[E| p™ [m/k[ k| p" [m/k[k
1M 0.40(1000(10|0.53| 416 (12|0.42| 277 | 9 |0.42| 76 |13
900k [0.43[1111] 9 [0.44] 500 [10]0.43] 208 |12]0.48| 76 [13
800k 0.41]1428| 7 |0.45| 500 |[10]0.50| 192 [13]0.40| 90 |11
700k |0.42]|1428] 7 |0.46| 500 |10{0.41| 250 |10|0.48| 71 |14
600k [0.44]1000[10]0.41] 555 | 9 [0.42] 250 [10[0.40] 83 [12
500k [0.41|1250] 8 [0.40| 500 [10{0.53| 208 |12(0.41| 83 |12
400k [0.43|1250( 8 |0.41| 714 | 7 |0.45] 250 |10(0.44| 90 |11
300k [0.42]1666] 6 [0.44] 500 [10]0.47] 250 |10]0.44| 83 |12
200k [0.47|1666| 6 [0.43| 625 | 8 [0.41] 357 | 7 [0.51] 76 |13
100k [0.45[2000] 5 [0.47] 833 | 6 [0.43] 312 | 8 [0.40] 100 |10
80k  [0.49]2000[ 5 [0.50] 625 | 8 [0.41] 416 | 6 [0.44] 111 | 9

of p that maximizes (3, denoted as p*. SMB under p = p*
can bound the estimation error with the highest probability.
We provide the optimal setting of p, T under difference values
of m and n in Table II

In practical settings, when there is no knowledge of the real
cardinality of the data stream or we expect to assign identical
T for a number of data streams with different cardinalities,
we can choose the parameter setting of 7" under a large n
(that is safe enough to accommodate the data stream) or the
maximum streaming cardinality n,, among all data streams.
It is because the optimal setting for n = n,, can also be
applied for the case where n € [0, n,,]. From (13), we know
[ is affected by W where m represents
the expected number of distinct data items required make v
increases from U, — 1 to U,. The ratio is O() and always
stays very large, meaning that 3 is guaranteed under when n
varies.

C. Theoretical Advantage of the Generalized SMB

We compare SMB under p p* with SMB under
p = 0.5, denoted as SMB(p*) and SMB(0.5), respectively.
Setting m = 10000, 5000, 2500, 1000, and n = 1M, we plot
the value of [ with respect to § in Figure 6. As we can see,
SMB(p*) always bound the estimation error by the same o
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with a higher probability. For instance, when m = 10000,
n = 1M, 6 = 0.1, 8 of SMB(p*) is 99.2% and that of
SMB(0.5) is 91.8%. When m = 5000, n = 1M, § = 0.1,
£ of SMB(p*) is 74.1% and that of SMB(0.5) is 54.3%,
meaning that SMB(p*) has 19.8% more probability to bound
the cardinality estimate by a relative error of within 10%
than SMB(0.5). This advantage of the generalized SMB over
SMB(0.5) is also guaranteed under other values of n and m.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed SMB through
experiments on a computer with Inter Core Xeon W-2135
3.7GHz and 32 GB memory. We also compare it with the
state-of-the-art, i.e., MRB, FM, HLL+-+ and HLL-TailC under
various performance metrics.

A. Experiment Setup

MRB, FM, HLL++, HLL-TailC and SMB all estimate the
cardinality of a data stream. The data stream under practical
scenarios can be of different types, such as a set of queries for
a keyword, a set of tags in RFID system, etc, which we stress
will not affect cardinality estimators’ performance. In our
experiments, the data stream contains randomly generated
strings within the length of 128, each acting as a data item.
The cardinality of the data stream, denoted as n, is the number
of distinct strings in the data stream. n varies and its maximum
value is 1M, which supports performance evaluation on data
streams with very large cardinalities.

Parameter settings for FM, HLL++ and HLL-TailC follow
the recommendation of [1], [31] and [20], [27] and can
be found in Table I. The parameter setting under different
n and m for MRB [3], [4] follows the recommendation
of the original paper. The sampling probability of each
bitmap in MRB [3], [4] is recommended as 1, %, 2% ... for
high estimation accuracy. For SMB, the optimal values of
T and p are given in Table II under different n and m.
We evaluate the performance of MRB, FM, HLL++, HLL-
TailC and SMB under different values of m and n. m can
be 10000, 5000, 2500, and 1000. We employ four metrics:
1) Recording Throughput. The number of items recorded by
the measurement module per second. The unit is data items
per second (dps) or million data items per second (Mdps);
2) Query Throughput. For each arrival data item, we do
a query operation to obtain the cardinality estimate. Query
throughput represents the number of data items queried per
second; 3) Estimation Error. It is categorized into two groups,
absolute error and relative error. Let 7 be the estimated stream
cardinality and n be the actual stream cardinality. The absolute
error is defined as |2 — n| and the relative error is defined as
@ The estimation error shows how the estimate deviates
from the actual cardinality; 4) Estimation Bias. It is evaluated
by the relative bias. The relative bias for a data stream is
defined as % The estimation bias shows to what extent the
estimate is underestimated/overestimated.

B. Comparison Between SMB(0.5) and SMB(p*)

Denote SMB(p) as SMB that decreases sampling probability
by p every time it proceeds to the next round. In particular,
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Fig. 7.  Estimation error comparison of SMB(0.5) and SMB(p*) when

allocated 10000 bits. By plot(a), SMB(p*) reduces the absolute error by up
to 18.5% compared to SMB(0.5).
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Fig. 8.  Estimation error comparison of SMB(0.5) and SMB(p*) when

allocated 5000 bits. By plot(a), SMB(p*) reduces the absolute error by up
to 22.5% compared to SMB(0.5).

TABLE III

RECORDING THROUGHPUT (MDPS) OF SMB(p*) AND SMB(0.5)
FOR DIFFERENT STREAM CARDINALITIES

Cardinality | SMB(p*) | SMB(0.5)
102 18.1 19.2
10° 15.3 26.7
10% 423 445
10° 58.6 60.9
10° 69.5 73.3

TABLE IV

QUERY THROUGHPUT (DPS) OF SMB(p*) AND SMB(0.5). THE
RESULTS WILL NOT BE AFFECTED BY THE MEMORY SIZE
AND STREAM CARDINALITY

SMB(p")
1.34x108

SMB(0.5)
1.34x108

Throughput

SMB(0.5) represents what Section III proposes. For the gen-
eralized SMB in Section IV, we derive the optimal setting
of p, denoted as p*, under given n and m, according to the
analysis in Section V. The values of p* are given in Table II.
We compare SMB(0.5) and SMB(p*) in terms of estimation
accuracy under n € [10°,10° and m = 10000, 5000 bits,
respectively. The results are shown in Figures 7 and 8. As we
can see, the estimation error of SMB can be reduced by
up to 18.5% for m = 10000 and 22.5% for m = 5000,
by changing p from 0.5 to the optimal setting p*. This
demonstrates the practical values of the generalized design of
SMB in Section IV. In the remaining of this section, we will
use SMB(p*) as the representative of SMB to compare with
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TABLE V

RECORDING THROUGHPUT (MDPS) OF SMB FOR DIFFERENT STREAM
CARDINALITIES IN COMPARISON WITH MRB, FM,
HLL-++ AND HLL-TAILC

Cardinality | MRB | FM [HLL++ | HLL-TailC | SMB
10° 19.2 119.3] 8.11 7.92 18.1
10° 19.1 [19.2] 8.01 7.99 15.3
10% 19.3 119.7] 8.26 8.11 423
10° 20.2 [20.2] 8.38 7.96 58.6
10° 209 [20.1] 8.24 8.10 69.5

TABLE VI

QUERY THROUGHPUTS (DPS) OF MRB, FM, HLL-++, HLL-TAILC
AND SMB UNDER DIFFERENT MEMORY ALLOCATION (BIT)

Memory | MRB M HLL++ |HLL-TailC| SMB
10000 [3.95x10%|1.01x10%[0.91x10%| 0.78x10% [1.34x10°%
5000 |[3.81x10°[1.77x10°[1.70x10%| 1.50x10% |[1.31x10®
2500 |[3.71x10°[4.33x10° [4.42x10%| 3.89x10% [1.30x10®
1000 [4.14x10°[7.01x10°%(8.70x10%*| 7.83x10% [1.31x10%

other cardinality estimation algorithms, ie., FM, HLL++,
MRB, HLL-TailC and without confusion, SMB is SMB(p*). We
also compare the recording and query throughputs of SMB(p*)
and SMB(0.5). The results in Tables III and IV show that
both estimators have the similar throughput results. The reason
is that, for the recording throughput, the generalized SMB
only changes the geometric hash function to the generalized
geometric hash function. But both hash functions are imple-
mented by a uniform hash function, and thus they have similar
computing overhead. For the query throughput, the estimation
formulas for SMB(0.5) in (8) and for SMB(p*) in (12) are
very similar.

C. Recording Throughput

The recording throughput results under different stream
cardinalities are listed in Table V. m = 5000 for all cardinality
estimators. We stress that the recording throughput is not
affected by m, as each cardinality estimator only operates on
one unit (register for FM, HLL++ and HLL-TailC, bit for
MRB and SMB). The results show that with the stream cardi-
nality increasing, the recording throughput of SMB increases
dramatically, while those of other cardinality estimators remain
stable. The reason is that MRB, FM, HLL++ and HLL-
TailC keep the same recording operation when the stream
cardinality increases, while SMB can adaptively adjust the
sampling probability. For data streams with large cardinalities,
on average, SMB samples items with a small sampling
probability. This explains why SMB can record more data
items per second, especially when the stream cardinality is
large. For instance, when the stream cardinality is 109, SMB
increases the recording throughput by 232%, 245%, 743%
and 758%, respectively, compared to MRB, FM, HLL++ and
HLL-TailC.

D. Query Throughput

We evaluate the query throughputs of MRB, FM, HLL++,
HLL-TailC and SMB. In our experiments, MRB maintains a
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TABLE VII

QUERY THROUGHPUT (DPS) OF SMB FOR DIFFERENT STREAM
CARDINALITIES USING MEMORY OF 5000 BITS, IN COMPARISON
WiTH MRB, FM, HLL++ AND HLL-TAILC

Card. MRB M HLL++ |HLL-TailC|] SMB
107 [2.34x10°[1.71x10% [1.76x10* | 1.50x10% [1.34x10°
10° [2.46x10°[1.76x10% [1.78x10* | 1.53x10% [1.30x10°
107 [2.96x10°[1.78x10°% [1.74x10* | 1.48x10% [1.30x10
10> [3.81x10°%[1.77x10°[1.70x10% | 1.46x10* [1.31x10®

5 x 10° [5.02x10% [1.76x10° [ 1.68x10% | 1.51x10* [1.35x10%
10° [5.63x10°[1.77x10°% [1.80x10* | 1.55%x10% [1.29x10°%

counter array to keep the number of ones for each bitmap.
Our additional maintenance of counters will not affect the
accuracy but dramatically improve the query throughput
of MRB.

The query throughputs of five cardinality estimators when
m is 10000, 5000, 2500, and 1000 are listed in Table VI. n
is set as 10° and we will evaluate the impacts of n shortly.
The results show that the query throughputs of FM, HLL++
and HLL-TailC are affected by memory allocation, while those
of MRB and SMB are not. The reason is that FM, HLL++
and HLL-TailC need to collect the information in all registers
for producing the cardinality estimate, while MRB needs to
query an array of counters and SMB only needs to access two
counters, i.e.,  and v. This also explains why SMB stands out
among all cardinality estimators in terms of query throughput.
The results show that SMB’ query throughput can be 130M
per second, while HLL++ and HLL-TailC can only reach
the query throughput by less than 0.IM per second. SMB
improves the query throughput by at least 1500 times faster,
making SMB suitable for online cardinality estimation. SMB
also improves the query throughput a lot compared to MRB
that has highest query throughput among existing work. The
results show that The fast query supported by SMB allows
instant identification of anomalies of cardinality and enables
service administrator to respond to the anomaly in real-time.

We also investigate the impact of stream cardinality n on
the query throughput which is presented in Table VII. Only
MRB’s query throughput is affected by the value of n. When n
increases, the query throughput increases as well. The reason
is that, MRB with k& bitmaps needs to determine the most
suitable sampling probability p; with 0 < ¢ < k. When n
is large, p; is small, i.e,. ¢ — k — 1. Consequently, MRB
will query fewer counters. Although MRB’s query throughput
increases when n is large, it is still much smaller than that of
SMB. MRB can only query less than 5% of items that SMB
can query at the same time.

E. Estimation Error

The estimation error performances of all cardinality estima-
tors when m is 10000 and 5000 are presented in Figures 9-10
where we plot the absolute error and relative error distribution
with respect to the actual stream cardinality. Each point in
the figure represents the average experimental result under
100 data streams with the same cardinality. The results show
that SMB is the winner in terms of the estimation error, outper-
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Fig. 9. Estimation error comparison of MRB, FM, HLL++, HLL-TailC and
SMB when allocated 10000 bits. By plot(a), SMB reduces the absolute error
by up to 74.0%, 73.1%, 61.1% and 52.9%, respectively, compared to MRB,
FM, HLL++ and HLL-TailC.
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Fig. 10. Estimation error comparison of MRB, FM, HLL4-+, HLL-TailC
and SMB when allocated 5000 bits. By plot(a), SMB reduces the absolute
error by up to 70.9%, 71.6%, 45.6% and 42.6%, respectively, compared to
MRB, FM, HLL++ and HLL-TailC.

forming the most accurate solutions, HLL.++ and HLL-TailC.
Besides, consider the estimation error of MRB. Its estimation
errors for data streams with different cardinalities vary a
lot, even if we use the average results among 100 data
streams for each point. For instance, in Figure 9(a), when
stream cardinality is 4x105, the absolute error of MRB is
54233. By comparison, when stream cardinality is 5x10°,
the absolute error of MRB is 10406. The result validate our
argument that utilizing all the recorded information (SMB)
promises a more accurate estimate compared to only using
the information in the bitmap with the most sampling
probability (MRB).

F. Estimation Bias

The relative bias performances of MRB, FM, HLL++,
HLL-TailC and SMB when m is 10000 and 5000 are shown
in Figure 11. We also plot function y = 0 to show the zero-
bias line. Our findings are, SMB can produce the cardinality
estimate with almost zero bias. The relative biases of data
streams with different cardinalities produced by SMB are
all within [—0.01, 0.01]. By comparison, FM and HLL+-+
produce positively biased stream cardinality estimates. For
instance, the average relative biases of FM, HLL++ and HLL-
TailC are around 0.03 under different memory allocations.
MRB also produces biased cardinality estimates.
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Fig. 11. Relative bias of MRB, FM, HLL++-, HLL-TailC and SMB w.r.t.
actual cardinality under 10000-bit and 5000-bit memory allocation. SMB
produces near non-biased cardinality estimation. FM’s, HLL++’s and HLL-
TailC’s estimates are positively biased. The relative bias of MRB is up to
0.04 when allocated 5000 bits.

TABLE VIII

RECORDING THROUGHPUTS (MDPS) OF MRB, FM, HLL++,
HLL-TAILC AND SMB UNDER THE CAIDA DATASET

Solutions | MRB | FM | HLL++ | HLL-TailC | SMB
Throughput | 24.3 [22.3| 6.34 6.01 29.9
TABLE IX

RECORDING THROUGHPUT (MDPS) OF SMB FOR DATA STREAMS
OF THE CAIDA DATASET IN DIFFERENT CARDINALITY RANGES

Cardinality [ >1 [>10°][>5 x 10°[> 10" [ > 5 x 10"
Throughput [29.9| 34.2 455 48.7 65.3
TABLE X

QUERY THROUGHPUTS (DPS) OF MRB, FM, HLL++,
HLL-TAILC AND SMB UNDER THE CAIDA DATASET

HLL-TailC
1.50x10%

SMB
1.32x108

Solutions MRB ™M HLL++
Throughput|3.24 x 10%/1.80x 10°%]1.78 x 10%

TABLE XI

AVERAGE ABSOLUTE ERRORS OF MRB, FM, HLL++, HLL-TAILC
AND SMB FOR DATA STREAMS WITH CARDINALITIES < 1000,
UNDER DIFFERENT MEMORY ALLOCATION (BIT)

Memory | MRB | FM | HLL++ | HLL-TailC | SMB
10000 ]0.039{0.10| 0.03 0.02 0.01
5000 0.03 |0.16| 0.04 0.03 0.01
2500 0.0510.24| 0.07 0.06 0.03
1000 {0.115|0.41| 0.13 0.12 0.06

G. Results Under CAIDA Dataset

This subsection investigates their overall performance under
a certain stream cardinality distribution, where each data
stream is allocated with a cardinality estimator. We conduct
experiments using real Internet traffic trace downloaded from
CAIDA [40]. The traffic trace lasts for 10mins and contains
around 200M packets. The packet in the traffic trace is the data
item in the data stream model. We categorize the packets into
different data streams by their destination addresses. That is,
packets with the same destination address form a data stream.
In each data stream, the packet is distinguished by the source
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Fig. 12. Estimation error w.r.t. m in comparison with MRB, FM, HLL++4-,
HLL-TailC and SMB.

address carried by the packet header. The stream cardinality is
the number of distinct source addresses that contact the same
destination address. By this categorization, the CAIDA dataset
contains around 400k data streams and the largest cardinality
among all data streams is around 80k.

Recording throughput: m is 5000 and the results are
shown in Table VIII. SMB improves the recording throughput
by 23.0%, 34.1%, 371.6% and 397.5%, respectively, com-
pared to MRB, FM, HLL++ and HLI-TailC. We stress that
SMB adaptively decreases the sampling probability during the
recording of the data stream. When the stream cardinality is
very large, its sampling probability becomes very small, which
can dramatically increase the recording throughput. Therefore,
the recording throughput of SMB is affected by the distribution
of data streams in the dataset. Most data streams in the CAIDA
dataset are with small cardinalities, which makes the recording
throughput smaller. For more details, we present Table IX to
show the recording throughput of SMB for data streams in
different cardinality ranges. The results show when recording
data streams with large cardinalities, the recording throughput
increases dramatically.

Query throughput: The query throughputs of MRB, FM,
HLL++, HLL-TailC and SMB are shown in Table X. m is
5000 for each cardinality estimator. As we can see, SMB
improves the query throughput by 39.7 times, 72.3 times,
7314 times, and 8799 times, respectively, compared to MRB,
FM, HLL++ and HLL-TailC.

Estimation error: We divide the data streams in the CAIDA
dataset into two groups. One contains all data streams whose
cardinalities are <1000. The other contains all data streams
whose cardinalities are >1000. The reason is that, when the
stream cardinality is small, FM, HLL++ and HLL-TailC are
usually reduced to bitmap, and the sampling probabilities of
MRB and SMB are 1 or close to 1. Therefore, their cardi-
nality estimates are similar and very accurate. Specifically,
FM reduces the 32-bit register to a bit. If all bits in the FM
are zero, the register is reduced to a bit of zero; otherwise,
the register is reduced to a bit of one. An FM with ¢ FM
registers is reduced to a bitmap with ¢ bits. HLL++ and
HLL-TailC follows the same reduction processing. m varies
from 1000 to 10000, and the corresponding values of T" for
SMB follow the optimal setting in Table II. Table XI presents
results for data streams whose cardinalities are <1000. The
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average absolute errors of all cardinality estimators are less
than 1, regardless of the memory allocation.

The experimental results for data streams whose cardi-
nalities are >1000 are shown in Figure 12. SMB is the
most accurate cardinality estimator, regardless of the memory
allocation. SMB reduces the average absolute error by up to
44.6%, 79.8%, 49.1% and 45.1%, respectively, compared to
MRB, FM, HLL++ and HLL-TailC.

VII. CONCLUSION

This paper proposes a new design for online cardinality
estimation in data streaming. It progressively decreases the
sampling probability from 100% as data items are recorded,
enabling sampling large-cardinality data streams with small
probability and small-cardinality ones with large probability.
We theoretically derive the estimation error bound and show
that the estimation error is usually very small by illustra-
tions. We also implement the proposed design and conduct
experiments using two datasets. The experimental results show
SMB is the best in all performance metrics and can achieve
tremendous performance improvement (50% estimation error
reduction, an order of magnitude higher throughput) in at least
one metrics under the same memory allocation, compared to
the best prior work.
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