
1674 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fast and Accurate Cardinality Estimation

by Self-Morphing Bitmaps

Haibo Wang , Graduate Student Member, IEEE, Chaoyi Ma , Graduate Student Member, IEEE,

Shigang Chen , Fellow, IEEE, and Yuanda Wang

Abstract— Estimating the cardinality of a data stream is a
fundamental problem underlying numerous applications such
as traffic monitoring in a network or a datacenter and query
optimization of Internet-scale P2P data networks. Existing solu-
tions suffer from high processing/query overhead or memory
in-efficiency, which prevents them from operating online for
data streams with very high arrival rates. This paper takes a
new solution path different from the prior art and proposes
a self-morphing bitmap, which combines operational simplicity
with structural dynamics, allowing the bitmap to be morphed
in a series of steps with an evolving sampling probability
that automatically adapts to different stream sizes. We fur-
ther generalize the design of self-morphing bitmap. We evalu-
ate the self-morphing bitmap theoretically and experimentally.
The results demonstrate that it significantly outperforms the
prior art.

Index Terms— Cardinality estimation, bitmap, morphing.

I. INTRODUCTION

C
ARDINALITY estimation is one of the fundamental

problems in the data steaming field [1]–[10]. A data

stream is a sequence of data items arriving at high rate. Its

cardinality is the number of distinct data items in the stream.

The term data item under different practical scenarios may

refer to an attribute (such as source address) of each packet

in an Internet traffic stream [11]–[15], node ID in wireless

sensor networks for in-network query aggregation [16], each

file (name) accessed by users in P2P networks [17], etc.

Cardinality estimation has many practical applications. Con-

sider Internet traffic received by a router and the application

of anomaly detection [18], [19]. We may treat all packets

sent from the same source address as a data stream. Each

packet carries a data item, which may be the destination

address in the packet header. The cardinality of a stream is

the number of destination addresses that the source address

has contacted. By measuring the cardinality for the packet

stream from each source, a cardinality estimation module

deployed at the gateway of an enterprise network can detect

Manuscript received 8 November 2021; accepted 23 January 2022;
approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
M. Caesar. Date of publication 10 February 2022; date of current version
18 August 2022. This work was supported by NSF under Grant CNS-1719222
and Grant CSR-1909077. (Corresponding author: Shigang Chen.)

The authors are with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611 USA
(e-mail: wanghaibo@ufl.edu; ch.ma@ufl.edu; sgchen@cise.ufl.edu;
yuandawang@ufl.edu).

Digital Object Identifier 10.1109/TNET.2022.3147204

external scanners, i.e., those that contact too many distinct

destination addresses. In another example, we may define

all packets sent to the same destination address as a data

stream, where the source address in the packet header as data

item. If we observe that the cardinality of a stream surges,

it may signal a DDoS attack as an abnormal number of

distinct sources access the service hosted at the destination

address.

The problem of cardinality estimation is challenging

because each item may appear in the stream multiple times

and we must filter out duplicate items, which will require us

to “remember” the items that have been counted. As a stream

may contain millions or even billions of different items, it can

be costly to remember all items and find out duplicates. This

paper studies efficient data structures and algorithms that can

estimate the cardinality of a stream with high accuracy, low

memory overhead, and low processing overhead. Consider a

modern router with a line rate of hundreds of gigabits or

even terabits per second. Use the previous example where all

packets from each source address form a stream. The number

of data streams (source addresses) observed by the router can

be in millions. While tracking distinct items in one stream

is already a challenge, simultaneously doing that for millions

of streams requires a significant amount of SRAM memory

on the data plane of the router that processes packets at line

rate. Therefore, we need to design the cardinality estimation

module both memory efficient and processing efficient in order

to record data items at high rate (also referred to as recording

throughput). As another justification, various data analysis

systems at Google [20], such as Sawzall [21], Dremel [22],

and PowerDrill [23], estimate the cardinalities of very large

data sets on a daily basis. As pointed out in the paper [20],

cardinality estimation over large datasets presents a challenge

in terms of computational resources, and memory in particular;

for the PowerDrill system, a non-negligible fraction of queries

historically could not be computed because they exceeded the

available memory.

Real-time applications need to perform cardinality queries

online as the data items are recorded. Ideally, in the example

of scan detection, for each arrival packet, as we record its

destination address for the stream of its source address, we also

query for whether the cardinality of the stream exceeds a

threshold. However, such per-packet query may not be feasible

if query overhead is much larger than recording overhead.

In this case, we can only perform queries for some packets

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4809-4897
https://orcid.org/0000-0002-3572-0046
https://orcid.org/0000-0001-7867-7765

WANG et al.: FAST AND ACCURATE CARDINALITY ESTIMATION BY SELF-MORPHING BITMAPS 1675

at a rate lower than the recording throughput. It is also our

goal to improve the rate at which queries can be made (also

referred to as query throughput).

Finding the exact cardinality of a data stream is extremely

memory/computation-hungry, especially for the current big

data streams. It requires either a synopsis size as large as

the data stream itself (e.g., sorting) or even more memory

(e.g., using hash table). Practically, users may relax the need

for an exact solution and may be interested in estimating the

cardinality approximately at a much smaller cost, which is

what this paper tries to study. There are three categories of

solutions to estimating the cardinality of a data stream. The

first category performs uniform hash on each data item, keeps

the k minimum hash values and produces cardinality estimate

based on the k-th minimum value [24], [25]. However, these

solutions suffer from high estimation variance and sometimes

produce estimates that deviate far from the real cardinality.

The second category includes FM [1], LogLog [26], Hyper-

LogLog (HLL) [27] and HyperLogLog++ (HLL++) [20],

which use a large number of registers, each providing a

coarse cardinality estimation. They take the average of the

numerous coarse estimations, trading memory overhead for

high accuracy; among them, HLL++ and its variants are

most accurate [28]. Their problem is high query overhead

and low query throughput, making them unsuitable for online

use. The third category is bitmap [2] and its variants, which

achieve high query throughput due to their relatively low query

overhead. Using bitmap to record data items is not memory-

efficient, resulting in small estimation range [2]. One approach

is to use sampling to reduce the number of items needed to

be recorded. However, the optimal sampling probability is a

function of the true cardinality of the stream, which we do not

know. The best solution in the literature, i.e., Multi-resolution

Bitmap (MRB) [3], [4], maintains multiple bitmaps, each with

a different sampling probability. When being queried, MRB

finds out which sampling probability is the best based on

the current content of all the bitmaps. It then uses only the

information stored under that sampling probability to perform

cardinality estimation. It wastes information recorded under

other sampling probabilities and the memory that is used to

record them.

Our goal is to design a new solution for cardinality esti-

mation that significantly outperforms the existing work. For

fair comparison, consider all solutions are assigned the same

amount of memory. Compared to HLL++ [20] which is

most accurate but has low query throughput, the new solution

should support much higher query (and recording) throughput,

making it suitable for online operations, yet without scarifying

accuracy, or even improving accuracy over HLL++. Com-

pared to MRB [3], [4] which is efficient in query throughput

but less accurate, the new solution should achieve much better

accuracy, yet without scarifying query throughput, or even

improving query (and recording) throughput over MRB.

The basic idea in our solution is to use a single self-

morphing bitmap (SMB) with a sampling probability that

changes over time as more and more data items are recorded.

We should use large sampling probabilities for small data

streams to ensure accuracy and small sampling probabil-

ities for large data streams to ensure memory efficiency.

SMB begins with a sampling probability of 100% and

progressively decreases it based on the number of items

recorded. In the meanwhile, it morphs the bitmap through

a series of steps in such a way that allows us to utilize all

recorded information (under different sampling probabilities)

for cardinality estimation. SMB uses a single bitmap and a

single sampling probability at any given time, whereas MRB

uses multiple bitmaps and multiple sampling probabilities.

SMB uses all recorded information, whereas MRB uses only

some for estimation.

We formally derive the estimation error bound of SMB

and evaluate its performance in comparison with the state

of the art. The experimental results demonstrate that SMB

outperforms in estimation accuracy, recording throughput, and

query throughput than the existing work, with significant

improvements: (1) It achieves 50% estimation error reduction,

comparing with MRB; moreover, its recording/query through-

put is higher than MRB. (2) It achieves at least an order

of magnitude higher throughput than HLL++; moreover, its

accuracy is better than HLL++.

II. BACKGROUND AND PRIOR ART

A. Problem Statement

A data stream D is a sequence of data items where any data

item d ∈ D may appear once or multiple times. The stream

cardinality is defined as the number of distinct data items in

the stream. For instance, consider D = {d1, d2, d1, d1}. Its

cardinality is 2 because there are two distinct data items, i.e.,

d1 and d2. The core issue of estimating stream cardinality is

to remember the recorded data items, such that duplicate data

items will not be counted multiple times. The problem is to

design a data structure called cardinality estimator that records

the data items of a stream and estimates the stream cardinality.

Consider the application of detecting DDoS attacks to a

certain internal server, where all packets to the server form a

data stream and each data item is distinguished by the source

address carried by the packet. If there are 10000 packets

from the same source address, the stream cardinality is 1.

If the 10000 packets each are sent from different sources

addresses, the stream cardinality is 10000. Estimating the

stream cardinality can help network reconnaissance against

potential DDoS attacks and enable system admin to take

further measures.

B. Prior Cardinality Estimators

Cardinality estimation is a classical problem and there are

many existing solutions. This subsection first describes the

prior cardinality estimators and then compares existing them in

terms of recording and query overheads and estimation accu-

racy. We consider two major computation-hungry operations,

i,e., hash and memory access, to assess the recording and query

overhead. Constant H represents the overhead for one hash and

A represents the average overhead for accessing one bit.

Bitmap. Bitmap [2] is an array B of m bits. Upon the

arrival of an item d, bitmap performs uniform hash operation

H(·) ∈ [0, m) on d and sets B[H(d)] to 1. The recording

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

1676 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

overhead per item is thus H+A. When being queried, bitmap

traverses all the bits and calculates the number of ones in the

array, denoted as U , resulting in the query overhead of mA.

The cardinality estimate n̂ by bitmap [2] is

n̂ = −m ln(1 − U/m). (1)

The maximum useful value of U is m − 1, which promises

the maximum estimate of m lnm. Bitmap provides the best

accuracy among all existing cardinality estimators under the

condition that there is sufficient memory space, which roughly

speaking can be linear to the cardinality and is far too large

to be kept in available memory in most applications [29].

Multi-resolution Bitmap (MRB). MRB [3], [4] employs

k > 1 bitmaps, denoted as B0, B1, . . . , Bk−1, each with a

distinct sampling probability pi, ∀0 ≤ i < k, to simultaneously

record a data stream and selects one of them for producing the

cardinality estimate. Given the total memory allocation of m
bits, each ith bitmap Bi is m

k (suppose it is integer) bits long.

Considering the convenience of implementation and estimation

accuracy, MRB recommends that pi = 1
2i , ∀0 ≤ i < k [3],

[4] and p0 > p1 > . . . > pk−1. For any data item d,

it gets sampled by Bi if pi > H0(d) (mod W)
W , where W is

a sufficiently large integer constant and H 0(·) is a uniform

hash function. Note that if the data item gets sampled by

Bi, it gets sampled by B0, . . . , Bi−1 as well. For any data

item that only gets sampled by B0, B1, . . . , Bi, instead of

setting Bj [H(d)] = 1, ∀0 ≤ j ≤ i with (i + 1) updates, MRB

only sets Bi[H(d)] = 1 with single update. Consequently,

B0, . . . , Bi−1 lose a portion of its bits which are covered by

Bi. Considering any bitmap Bi, it loses a portion of their bits

which are covered by Bi+1, . . . Bk−1 and will be recovered

later when producing the cardinality estimate. The recording

overhead per item is 2H + A. For query, MRB checks the

number of ones in Bi, denoted by Ui (excluding the bits

covered by Bi+1, . . . Bk−1), top-down, and find outs the first

Bi whose Ui ≥ T , where T is a predefined threshold. If no

Bi is found, i = 0. Bi is considered as the bitmap with most

suitable sampling probability. MRB collects the number of

sampled distinct data items under the sampling probability pi,

which are recorded in Bi, . . . Bj , . . . , Bk−1, ∀i ≤ j ≤ k − 1,

each with a cardinality estimate of −m
k ln(1−

Uj
m
k

). The query

overhead is thus up to mA. MRB calculates the sum of these

cardinality estimates as
∑k−1

j=i −m
k ln(1−

Uj

m/k), and divide it

by pi and produces the cardinality estimate n̂ as

n̂ = 2i
∑k−1

j=i
−

m

k
ln(1 −

Uj

m/k
) (2)

The maximum estimate is produced when i = k − 1 and

Uk−1 = m
k − 1, which is 2k−1 m

k ln(m
k). It is larger than the

maximum estimate produced by m-bit bitmap (m lnm) when

k > 2. Although MRB achieves highest query throughput

among the existing work, which will be validated in the

experiments, it abandons the information in the bitmap under

other sampling probabilities, making it less accurate. This

motivates our design of SMB, which will be elaborated shortly.

Before we explain the following thread of cardinality

estimators, we first define the geometric hash function.

Definition 1 (Geometric Hash Function): Function G(x) is

a geometric hash function of base 1
2 if G(x) is an integer and

G(x) = i, i ≥ 0, with the probability 2−(i+1).

In practice, G(x) can be performed by a uniform hash function

H(x), where G(x) = ρ(H(x)) and ρ(y) is the number of

leading zeros of y starting from the least significant digit.

FM, HLL++, HLL-TailC, etc. An FM register is a

bitset F with b bits, with the ith bit denoted as F [i], 0 ≤
i < b. For any item d, we calculate G(d) with G(d) < b
and set F [G(d)] = 1. Consider the cardinality estimate of

FM. Roughly speaking, any item is hashed to the ith bit

with probability 1
2i+1 and in turn, F [i] = 1 approximately

represents 2i+1 of distinct data items in the data stream.

Obviously, this probabilistic counting is too coarse, one-bit

fluctuation resulting in a totally different estimate, especially

for the significant bits. To this end, FM uses t registers,

F0, . . . , Ft, to improve the estimation accuracy. For an m-

bit FM, t = m
b (suppose it is an integer) and any data item is

mapped to H(d) mod tth register for recording. Totally, the

recording overhead is 2H+A. In practice, b is recommended

to be 32 to accommodate a sufficient large estimation range.

For query, FM traverses all the registers and produces the

cardinality estimate as

n̂ = t · 2

�t−1
i=0

zi

t /φ (3)

where zi is the number of consecutive ones of Fi starting from

the least significant bit, and φ is pre-computed constant that is

related to t. φ = 0.78 when t is large enough. Refer to [1] for

the value of φ under different t. The query overhead is mA.

An HLL++ register Y is a counter of b bits (for estimation

range up to 22b−1), which represents an integer of range

0 ≤ Y ≤ 2b − 1. The value of b is recommended as 5.

It is a compact version of the FM register. For any data

item d, we calculate G(d) with G(d) ≤ 30 and set Y =
max{Y, G(d) + 1}. It has the same estimation accuracy issue

as the FM register. Therefore, HLL++ also uses t registers.

For an m-bit HLL++, t = m
5 (suppose it is an integer). The

recording overhead per item is 2H+ 5A. For query, HLL++
produces cardinality estimate through arithmetic mean Ȳ of

Y0, . . . , Yt−1 as

n̂ = αt · t · Ȳ with Ȳ = t(
∑t−1

i=0
2−Yi)−1 (4)

where αt is a constant that can be calculated as αt =
0.7213/(1 + 1.079

t) when t ≥ 128. For value of αt under

different t, refer to [20], [27]. Since all the registers are

accessed, the query overhead is mA. Furthermore, HLL++
corrects the estimation bias when the cardinality n is very

small, up to m = 5t, using the solutions including the bitmap

algorithm. In fact, HLL++ is not proposed at one stroke but

belongs to a family of LogLog algorithms, including LogLog,

SuperLogLog and HLL, which use the same data structure

and recording operation but different estimation formulas. As a

result, the recording and query overhead are the same as those

of HLL++. We only describe HLL++ here as HLL++ is the

state of the art in the family.

There are some optimizations based on HLL++. HLL-

TailC reduces the size of each HLL++ register Yi from

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: FAST AND ACCURATE CARDINALITY ESTIMATION BY SELF-MORPHING BITMAPS 1677

5 bits to 4 bits. The new register Y 0
i stores the offset

value Y 0
i = Yi − B, where variable B is maintained and

is equal to the min0≤i<t Yi. If Y 0 overflows, Y 0
i = 15.

For query, HLL-TailC recovers Yi based on Y 0
i and B and

produces estimates with the formula for HLL++ in (4).

More aggressively, HLL-TailC+ reduces size of each LogLog

register Yi from 5 bits to 3 bits at the cost of expensive

query operations, which can only be done offline. Therefore,

HLL-TailC rather HLL-TailC+ is considered in this paper.

Refined HLL uses a different geometric hash function G0(x),
where G0(x) = 0, 1, 2, 3, . . . , j, . . . with the probabilities

of 1
4 , 1

4 (3
4)1, 1

4 (3
4)2, 1

4 (3
4)3, . . . , 1

4 (3
4)j , . . ., respectively. How-

ever, unlike HLL++ which has fixed coefficient αt, Refined

HLL needs to use a portion of the data stream to train a model

and derive the coefficient, making it impractical for online

cardinality estimation.

Usually, FM, HLL++ and HLL-TailC are equipped with

hundreds or thousands of registers. Producing cardinality

estimate needs to access all of them and calculate complex

formula such as (4) for HLL++, incurring low query through-

put.

MinCount, AKMV, etc. These solutions estimate stream

cardinality using k-th minimum hash value of all data items.

For each data item d, if we perform uniform hash H(.) ∈
[0, 1]. The expected distance between any neighboring hash

values is 1
n+1 ≈ 1

n by symmetry. Thus, the k-th minimum

value vk is expected to be E(vk) = k
n and we can estimate n

by n̂ = k
vk

. When allocated m bits of memory, these solutions

maintain m
32 (suppose it is integer) minimum hash values

(suppose each hash value is 32 bit). The recording overhead

for each data item is one hash and at least one comparison

with the minimum hash values, i.e., [32A, mA]. The query

overhead depends on the number of values these solutions

access. AKMV access only vk and lowers the estimation bias

by revising the formula to n̂ = k−1
vk

. Its query overhead is thus

32A. However, it suffers from large variance as its estimate

depends only on the vk. To reduce the variance, MinCount

divides the hash values into t buckets, each maintaining the

k-th minimum value to reduce the estimation vari-

ance. The query overhead is thus 32tA ∈ [32A, mA].
Kane et al. [30] proposed a cardinality estimator which

compresses O(t log log n) bits of the LogLog family and

O(t log n) bits of FM to O(t) bits, under the same accuracy

requirement. This from an information-theoretic point of view

is a progress. However, this effort from a practical perspective

is not successful as the actual memory consumption is not

reduced. Moreover, the algorithm has a probability (up to
1
32) to fail when recording and if so it will need to re-run

the algorithm, making it impractical for online cardinality

estimation.

Summary of existing cardinality estimators and our

goal. Table I compares the recording and query overhead

of each cardinality estimator. As this paper focuses on the

online cardinality estimation, we highlight the query overhead.

Among existing solutions for streaming data, MRB achieves

lowest query overhead theoretically and experimentally (but

still higher than SMB, see Section VI). But its estimation

accuracy is not as high as HLL++. Moreover, an experimental

Fig. 1. Example of recording a small data stream in MRB. Only bits in
B0, B1, B2 are used to store the information. Memory space occupied by
other bitmaps, i.e., B3, . . . , Bk−1 are wasted.

Fig. 2. Example of recording a large data stream in MRB. Bits in
B0, . . . , Bi−1 are all set to ones, which cannot be used to produce cardinality
estimate.

survey [28] compared the estimation accuracy of LogLog,

SuperLogLog, HLL, HLL++, MinCount, AKMV, under tens

of datasets and drew the following conclusion. HLL++ is

the best among the LogLog family. MinCount and ARMV

perform worse than SuperLogLog, let along HLL and HLL+.

Thus, HLL++ and its optimization work HLL-TailC (HLL-

TailC is not evaluated in the survey) are the state of the

art. However, as we have explained, they have high query

overhead. Our goal is that SMB can simultaneously achieve

the best estimation accuracy and the lowest query overhead

(plus the lowest recording overhead), making it an efficient

solution for online cardinality estimation.

C. Other Related Work

Adaptive bitmap is a derived algorithm from MRB [3], [4]

for stream cardinality estimation. Assuming that the stream

cardinality in this interval is in the same order of magnitude

as that in the previous one (measured by a small MRB),

adaptive bitmap sets a suitable sampling probability p and

applies p to bitmap for precise estimation. However, when

the cardinality changes significantly from one interval to

the subsequent one, the value of p will be improperly set

and the cardinality estimate produced from bitmap will be

ruined.

There is some work that designs a compact data structure

(called sketch) for estimating cardinalities of multiple data

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

1678 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

TABLE I

PERFORMANCE COMPARISON OF THE PROPOSED SMB ALGORITHM AND EXISTING SOLUTIONS WHEN EACH SOLUTION IS ASSIGNED m BITS AND

THE STREAM CARDINALITY n IS UP TO THE MAGNITUDE OF 232 . NOTE THAT H REPRESENTS THE OVERHEAD FOR ONE HASH OPERATION

AND A REPRESENTS THE AVERAGE OVERHEAD OF ACCESSING 1-BIT MEMORY. WE USE THE NUMBER OF HASH OPERATIONS USED AND

THE MEMORY ACCESSED PER DATA ITEM TO ROUGHLY SHOW THE RECORDING AND QUERY OVERHEAD. p IS THE SAMPLING

PROBABILITY. THE ACCURACY RESULTS MOSTLY COME FROM THE EXPERIMENTAL SURVEY [28] ON A NUMBER OF

DATASETS. NOTE THAT BITMAP IS ONLY ACCURATE IN ITS SMALL ESTIMATION RANGE

Fig. 3. Illustration of the recording process in SMB. Initially, data items are
recorded in L0 (bitmap with m bits) with a sampling probability p0 = 1.
When T bits are set to one, the remaining m−T bits of zeros form a logical
bitmap L1, and the sampling probability changes to p1 =

1

2
. This morphing

process is imaginary and the process repeats each time the number of ones
in the logical bitmap reaches the threshold T .

streams [10], [11], [33]–[35]. These sketches all use the

cardinality estimators, e.g., bitmap, FM, HLL, and MRB,

as plug-ins, and allow different data streams to be recorded

in the same cardinality estimators. For instance, OpenS-

ketch [33] uses multiple arrays of bitmaps; bSketch [10]

is a generalized sketch framework that can be plugged in

bitmap, FM, and HLL; SpreadSketch [34] uses MRB to

identify superspreaders. They usually need to record/query

each data item in multiple cardinality estimators to reduce

the estimation error caused by the sharing of cardinality

estimators among data streams. Therefore, they benefit from

the improvement of estimation accuracy, memory efficiency,

and high recording/query throughput of the internal plug-

in cardinality estimators. We stress that SMB can also act

as plug-in for these sketches and the performance improve-

ment by our work can benefit these sketches accordingly.

There is also other works on cardinality estimation for

multiple data streams, including, AROMA [36], CSE [37],

vHLL [11], VF [9].

III. SELF-MORPHING BITMAP

In this section, we first explain our motivation for SMB.

After that, we present the design of SMB and prove its

properties.

A. Motivation

It is well known that the Bitmap estimator [2], [37] has a

limited estimation range of −m lnm [2], which is a serious

problem in practice for large date streams [11], whereas

FM, HLL++ and MRB have practically unlimited ranges

by extending their register sizes or using smaller sampling

probabilities.

As our experimental results will show, MRB achieves better

recording throughput and query throughput than FM and

HLL++, thanks to its simpler recording/querying operations.

In terms of estimation accuracy, HLL++ is better than MRB

and FM in most configurations. Overall, MRB achieves a

superior balance between throughput and accuracy.

This paper proposes a new design that achieves much better

recording throughput and query throughput than MRB and in

the meantime better accuracy than HLL++. To motivate for

our design, we examine MRB more closely and argue that it

does not fully utilize its memory space.

• For a small data stream, it is likely that MRB only

uses one or a few of its bitmaps (those with large sampling

probabilities such as B0). The memory space occupied by

other bitmaps (with small sampling probabilities) will be

wasted if no element is sampled for them and none of their bits

is set to one, as illustrated by the example in Figure 1. In this

case, had we used a single bitmap of all m bits, we would

improve estimation accuracy.

• For a large data stream, according to (2), some of its

bitmaps, B0 through Bi−1, are not used because too many

bits in them are set to ones, as illustrated by the example in

Figure 2 and such saturated bitmaps result in large estimation

error [2], [11]. To utilize B0 through Bi−1, we have to

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: FAST AND ACCURATE CARDINALITY ESTIMATION BY SELF-MORPHING BITMAPS 1679

somehow expand these bitmaps so that they are not saturated

with ones, yet we cannot increase the total number m of bits,

nor should we reduce k, which would reduce the estimation

range.

Moreover, after MRB determines that Bi has the most

appropriate sampling probability pi for this stream, it uses Bi

through Bk−1 in its estimation formula (2). However, Bi+1

through Bk−1 have used much smaller sampling probabilities

than pi, causing significant estimation error. We would achieve

much better accuracy, had we applied pi to Bi+1 through Bk−1

as well, which is however against the design structure of MRB.

Therefore, we need a new design to address the above

accuracy-related issues. In addition, we want the new design

to greatly improve recording throughput by reducing the

overhead of item recording and improve query throughput by

reducing the overhead of cardinality estimation. To achieve all

these goals, our idea is self-morphing bitmap (SMB), which

begins with a single bitmap L0 of all m bits and continuously

morphs itself through a series of steps as needed, with a

sampling probability that decreases as more and more items

are recorded.

We do not know the cardinality of the data stream

beforehand. Therefore, we begin with a sampling probability

p0 = 1 for L0. However, if the data stream turns out to be too

big for p0, which is indicated as the number of bits set to ones

in L0 reaches a threshold T , we need to adaptively reduce the

sampling probability one notch down to p1 = 1
2 and logically

prepare a new bitmap for sampling the rest of the stream by

p1. To do so, we first use formula (1) to estimate the number

of distinct elements that have been recorded so far in L0, and

then conceptually morph L0 to a new logical bitmap L1 by

removing the bits of ones. Morphing (i.e., removal of some

bits) is an “imaginary” operation and does not result in any

physical overhead. We simply treat the bits of zeros in L0 as a

logical bitmap L1 and our cardinality estimation formula will

account for the impact of conceptually removing the bits of

ones.

The above process repeats, as illustrated in Fig. 3:

∀0 ≤ i < k, if we find the number of bits set to ones

in Li reaches the threshold T , we will reduce the sampling

probability from pi = (1
2)i to pi+1 = (1

2)i+1. We then estimate

the number of distinct elements having been recorded in Li,

and finally treat the bits of zeros in Li as a new logical bitmap

Li+1 to record the remaining data stream. Our evaluation

shows that this design of SMB achieves an estimation accuracy

better than MRB, FM and HLL++.

Next we explain intuitively how SMB achieves an average

recording throughput much higher than MRB (which is in turn

higher than FM and HLL++). The design of SMB ensures

that at any time there is only one bitmap Li and one sampling

probability pi under operation. The fraction of arrival items

that will be sampled for recording is equal to pi. As an

example, if pi = (1
2)8, only one out of every 256 data items

is recorded on average. The recording overhead is amortized

over many items, which reduces the average overhead per

item. In contract, MRB operates k bitmaps at any time, which

together record a fraction p0 of all data items, incurring higher

overhead per item because p0 is typically set to one.

Fig. 4. Example for the recording operation of SMB. Note that in each round
r with r > 0, the logical bitmap Lr consists of bits of zeros in L0 (all the
rectangles with solid lines).

The recording throughput of SMB changes over time since

the sampling probability changes. In practice, when we have to

handle many small/large data streams together with different

arrival times, we shall allocate one self-morphing bitmap for

each data stream, with independently-changing sampling prob-

ability. While the recording throughput of individual streams

increases over time, the aggregate recording throughput of

all streams is more stable as new streams arrive and existing

streams terminate.

The proposed self-morphing bitmap also has a higher

query throughput than MRB, FM, and HLL++ because its

computation is simpler than (2), (3), and (4). When a query

on stream spread is made, we only need to calculate (7) for the

current bitmap and add the result to what the previous logical

bitmaps have recorded (which does not change over time and

is thus computed before we morph into the current bitmap).

The detailed design of self-morphing bitmap is given next.

B. Self-Morphing Bitmap Design

SMB maintains one bitmap L0 with length of m. The

recording process consists of a series of rounds identified by

a round index r, which starts from zero and increases by one

each time after T bits are set to ones, where T is a pre-

specified threshold value. The ith round will have a sampling

probability pr = 1
2r . In the beginning, r = 0 and p0 = 1.

We use a variable v to keep track of the number of bits that

are set from zeros to ones set in the current round. When v
reaches T , we reset v = 0 and increase r by one to start the

next round.

Recording: Upon the arrival of an item d. We perform a

geometric hash operation G(d) (see Definition 1), and do the

following three steps.

Step 1: If G(d) ≥ r, go to next step; otherwise, ignore

the item. This step samples the item with the probability of

2−r, which we will prove shortly. Since r = 0 initially and r
will only increase during recording, the sampling probability

in this step will decrease from 1 to 1
21 , 1

22 …

Step 2: Perform uniform hash operation H(d) ∈ [0, m− 1].
If L0[H(d)] = 0, set L0[H(d)] = 1, increment v by 1, and

proceed to next step. Otherwise, do nothing.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

1680 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Step 3: If v ≥ T , we increment r by 1 and update

v = 0; otherwise, do nothing. The threshold T ≤ m
is a predefined parameter and we will theoretically give

the optimal setting. When the number of ones exceeds the

threshold, it means the cardinality of the data stream is

large enough and we should adjust the sampling proba-

bility to be smaller. We will prove that each item can

only be recorded by its first appearance and its subsequent

appearances will be ignored in next section. We give the

following example to facilitate understanding of the recording

process.

Example: We give an example shown in Figure 4 to illustrate

the recording operation of SMB, where m = 8, T = 2,

and the data stream D = {d0, d1, d0, d2, d3, d4, d5, d6, d7, d8}.

Initially r = 0, v = 0, and all bits in B are set as zeros. SMB

will process incoming items one by one and experience the

following three rounds of recording.

Round 0: for items d0 and d1, we first calculate their

geometric hash values, G(d0), G(d1). Since G(d0) = 1 ≥ r =
0 and G(d1) = 0 ≥ r = 0, d0 and d1 get sampled in Step 1

and proceed to Step 2. Let H(d0) = 3 and H(d1) = 5. SMB

sets L0[3] = 1 and L0[5] = 1. Accordingly, v is incremented

by one twice, i.e., v = 2. Since v ≥ T , we proceed to round

1 and update r = 1 and v = 0,.

Round 1: The logical bitmap L1 in round 1 consists of

all bits in L0 excluding L0[3] and L0[5]. As shown in the

figure, L1 contains all rectangles with solid lines in L0. For

the subsequent items d0, d2, d3, d4. d0 gets sampled by Step 1

as G(d0) = 1 ≥ r = 1. In Step 2, since L0[H(d0)] =
1, we do nothing. Next item d2 is sampled in Step 1 as

G(d2) = 2 ≥ r = 1, and we set L0[H(d2)] = L0[1] = 1 and

v = 1 in Step 2. d3 is dropped as G(d3) = 0 < r = 1.

As G(d4) = 1 ≥ r = 1, we set L0[H(d4)] = L0[7] = 1 and

v = 2. Since v ≥ T , we update r = 2 and v = 0, and go

to round 2.

Round 2: We morph L1 to L2 by treating all bits of zeros

in L1 as a new bitmap (rectangles with solid lines in round 2).

For the subsequent items d5, d6, d7, d8. As G(d5) = 2 ≥ r =
2 and L0[H(d5)] = L0[2] = 0, we set L0[H(d5)] = 1, and

update v = 1. The next data item d6 is dropped in Step 2 as

G(d6) ≥ r = 2 and L0[H(d6)] = L0[7] = 1. d7 and d8 are

dropped as they do not pass Step 1 (G(d7) = 1 < r = 2 and

G(d8) = 0 < r).

Querying: After the measurement period, the integer r
indicates SMB experiences r+1 rounds of recording. Consider

arbitrary round i, 0 ≤ i ≤ r. Step 1 of the recording operation

samples each data item with probability pi. We give the

following lemma to prove pi = 1
2i , 0 ≤ i ≤ r.

Lemma 1: For the ith round of recording with 0 ≤ i ≤ r,

we have pi = 2−i.

The proof can be easily derived and is thus omitted. After

passing Step 1, data items will be recorded in the (logical)

bitmap Li with mi bits, where mi = m − iT . Let Ui be the

number of ones set in Li, we have

Ui =

{

T, 0 ≤ i < r

v, i = r
(5)

Consider the estimate ni produced by Li in round i.
By applying the estimation formula of bitmap [2], we have

n̂i = −mi ln(1 − Ui/mi) (6)

From (5) and (6), we have

n̂i = −mi ln(1 − T/mi) 0 ≤ i < r

n̂r = −mr ln(1 − Ur/mr)

For round i with i > 0, bitmap Li is logical and all

its mi bits come from m bits in L0. Due to the uniform-

ness of the hash value, only mi/m items will be hashed

to Li. This will enlarge the estimate ni by m/mi folds.

Therefore, the total number of distinct items recorded by the

logical bitmaps, L0 through Lr−1, after sampling is accounted

for, is

Sr =

r−1
∑

i=0

1

pi

m

mi
n̂i =

r−1
∑

i=0

1

pi

m

mi
n̂i

=

r−1
∑

i=0

1

pi

m

mi
− mi ln(1 − T/mi)

=

r−1
∑

i=0

2i − m ln(1 − T/mi)

Because the value of Sr does not change during the rth

round (i.e., the current round), we can cache its value for use.

For a special case of r = 0, Sr = 0. To answer a query on

the current cardinality estimate n̂, we only need to compute

estimate in the current round, i.e.,

1

pr

m

mr
n̂r (7)

and add it to Sr.

n̂ = Sr +
1

pr

m

mr

n̂r = Sr − 2rm ln(1 −
v

m − rT
) (8)

Note that under the same memory allocation, if the length

of each bitmap in MRB is T , SMB’s maximum estimate is

larger than that of MRB. It can be proved by only considering

the maximum estimate produced in the last round of SMB

(n̂r). The maximum estimate of n̂r is produced when r =
m
T − 1 = k − 1 (suppose it is integer) and v = m− rT − 1 =
T −1, which is 2k−1m ln(T) and is larger than the maximum

estimate produced by MRB (2k−1 m
k ln(m

k) = 2k−1T ln(T)).

IV. GENERALIZED SELF-MORPHING BITMAP

The design of SMB in the above section employs a

series of specific sampling probabilities {p0, p1, p2, . . .} =
{1, 1

2 , 1
22 , . . .}, where the sampling probability decreases to a

portion p = 1
2 of the previous one every time we proceed

to the next round of recording. However, our experiments

under datasets with different stream cardinalities and various

memory allocation in Section VI reveal that setting p = 1
2

does not always promise the most accurate estimation. This

motivates us to generalize the design of SMB by allowing p
to be any constant in range of (0, 1).

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: FAST AND ACCURATE CARDINALITY ESTIMATION BY SELF-MORPHING BITMAPS 1681

The generalized SMB also maintains one bitmap L0 with

length of m. It inherits the terminologies, i.e., rounds, thresh-

old, and notations from the SMB in the previous section.

The difference is that the sampling probability for the ith
round of recording (in Step 1) is pi = pi with p ∈ (0, 1).
In the beginning, r = 0, v = 0 and p0 = 1. To implement

the sampling process for arbitrary p, we cannot employ the

geometric hash function G(·) in Definition 1 that is specially

designed for the case where p = 1
2 . Instead, we defined the

generalized geometric hash function as follows.

Definition 2: [Generalized geometric hash function] Func-

tion G∗(x) is a generalized geometric hash function of for

arbitrary base p ∈ (0, 1) if G∗(x) outputs integer i ≥ 0 with

the following probability

G∗(x) =

{

0, with probability 1 − p

i ≥ 1, with probability (1 − p)pi.
(9)

The above definition guarantees the following property of

G∗(x).
Lemma 2: For any constant p ∈ (0, 1) and integer i ≥ 0,

we have

Pr(G∗(x) ≥ i) = pi

∞
∑

i=0

Pr(G∗(x) = i) = 1 (10)

The above lemma can be easily proved and is thus omitted.

In practice, G∗(x) can be implemented by using a uniform

hash function H∗(x) whose output range is [0, 1). G∗(x)=i
if H∗(x) ∈ [1 − pi, 1 − pi + (1 − p)pi)=[1 − pi, 1 − pi+1).

Recording: Upon the arrival of an item d. We perform a

generalized geometric hash operation G∗(d) (see Definition 2),

and do the following three steps.

Step 1: If G∗(d) ≥ r, go to next step; otherwise, ignore

the item. This step samples the item with the probability of

pr = Pr(G∗(d) ≥ r) = pr, which is validated by Lemma 2.

Since r = 0 initially and r will only increase during recording,

the sampling probability in this step will decrease from 1 to

p, p2 …for any p ∈ (0, 1).
Steps 2 and 3 are the same as those of SMB in the previous

section.

The recording operation of SMB is described in

Algorithm 1. We will prove that each item can only be

recorded by its first appearance. Its subsequent appearances

will be ignored.

Querying: After the measurement period, the integer r
indicates SMB experiences r+1 rounds of recording. Consider

arbitrary round i, 0 ≤ i ≤ r. Step 1 of the recording operation

samples each data item with probability pi = pi. After passing

Step 1, data items will be recorded in the (logical) bitmap Li

with mi bits, where mi = m − iT . Since Steps 2 and 3 are

the same as those in the previous section, we directly employ

the formula in (6) for ni that represents the number of distinct

items recorded in Li of the ith round. After the sampling is

accounted for, we can estimate the number of distinct items

recorded in the logical bitmaps, L0 through Lr−1 as

Sp,r =
∑r−1

i=0

n̂i

pi

m

mi
=

∑r−1

i=0
−

1

pi
m ln(1 −

T

mi
). (11)

Algorithm 1 Recording a Data Item in the Generalized SMB

1: Input: data item d, T
2: Action: record d, and update r and v
3: if G∗(d) ≥ r then

4: if L0[H(d)] = 0 then

5: L0[H(d)] = 1
6: v = v + 1
7: if v ≥ T then

8: r = r + 1
9: v = 0

10: end if

11: end if

12: end if

Algorithm 2 Querying on the Generalized SMB

1: Input: T, Sp

2: Output: the cardinality estimate of the data stream

3: return Sp[r] −
1
pr m ln(1 − v

m−rT)

Given p, Sp,r does not change during the rth round, i.e.,

the current round, we can pre-compute it and cache its value

for use. For the special case of r = 0, Sp,r = 0. To answer a

query on the current cardinality estimate n̂, we only need to

compute estimate in the current round and add it to Sp,r.

n̂ = Sp,r +
n̂r

pr

m

mr
= Sp,r −

1

pr
m ln(1 −

v

m − rT
) (12)

The query operation is described in Algorithm 2. Comparing

with the existing work HLL++ and HLL-TailC with query

overhead of mA, SMB only accesses two integer values, r
and v. For a stream cardinality in the magnitude of 232. r is

at most 32 and can be assigned 6 bits. v is at most T and

26 bits can make v up to 226 − 1, which is enough. Totally,

the query overhead is 32A. Comparing with MRB which

only uses the information in the bitmap with the best sam-

pling probability, SMB utilizes all the recorded information

(see (8)), making it more accurate. Our experiment will show

that SMB achieves the best performance in estimation accu-

racy, recording throughput and query throughput, compared to

existing state-of-the-art solutions.

Theorem 3: For any data item d, its first appearance may

be recorded by SMB. But its subsequent appearances will be

blocked.

Proof: We prove by contradiction. Let d0 and d00 be the

data item d of the first appearance and the second appear-

ance, respectively. Recall that the generalized geometric hash

function G∗(·) is built based on the uniform hash function.

Due to the pseudo-randomness of the hash function, we have

G∗(d0) = G∗(d00) = G∗(d). Assume that when processing

d00, there exist G∗(r) ≥ r and L0[H(d00)] = 0. Since d0

appears before d00 and the value of r will only increase.

Therefore, we know G∗(d0) ≥ r when recording d0 and d0

will pass Step 1. In Step 2, SMB will set L0[H(d0)] = 1,

which contradicts with the assumption that L0[H(d00)] = 0 as

H(d0) = H(d) = H(d00). Thus, the theorem holds. �

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

1682 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 5. (a) β w.r.t. δ for SMB when n = 1M, under memory allocations of
1000 bits, 2500 bits, 5000 bits and 10000 bits, respectively. (b) β w.r.t. δ for
SMB and MRB when n = 1M and m = 10000bits.

V. ANALYSIS AND PARAMETER SETTING

This section first presents a theorem to show the theoretical

estimation performance of SMB and interprets the theorem.

After that, we present the optimal setting for parameter T .

A. Estimation Error Bound

Theorem 4: Let n and n̂ be the actual cardinality and

estimated cardinality, respectively. The probability that the

relative error |n−n̂
n | is bounded by an arbitrary constant

δ ∈ (0, 1) must be larger than β, i.e.,

Pr(|
n − n̂

n
| ≤ δ) ≥ β = 1 − 2e−

(mr−Ur+1)pr

m

δ2n(1−δ)
2 , (13)

where r is the maximum integer value that satisfies n(1+δ) ≥
Sp,r and Ur ≤ T is the maximum integer value that satisfies

n(1+δ) ≥ Sp,r + m
pr (− ln mr−Ur

mr
) (but not larger than T) and

the value of array Spr
can be found in (11).

Proof: Let Xj
i be the number of distinct data items

processed (including the data items that are not sampled by

Step 1) to make Ui increase to j from j − 1 in the ith round

of recording. When Ui = j − 1 there are mi − (j − 1) bits

in L that are zero. Due to the uniformness of the hash value,

Xj
i is a geometric random variable and we have

E(Xj
i) =

m

(mi − j + 1)pi
=

m

(mi − j + 1)pi
. (14)

Totally, there are rT variables from the first r rounds

of recording, i.e., X1
0 , X2

0 , . . . , XT
0 , X1

1 , . . . , X1
r−1, . . . , X

T
r−1,

and Ur variables in the rth round of recording, i.e.,

X1
r , X2

r , . . . , XUr
r . These variables are mutually independent.

Denote

X =
∑

0≤i<r,1≤j≤T

Xj
i +

∑

1≤j≤Ur

Xj
r .

The recording process of the data item terminates after the

event XUr
r happens and before the event XUr+1

r happens.

Therefore, the actual stream cardinality locates between X and

X +XUr
r . We call the data stream whose recording terminates

when its last distinct data item exactly set a bit with value of

zero to one in L as the integer stream and other streams as

non-integer stream. We will show with the same Ur and r,

worst case happens to the integer stream. By considering the

worse case, we have

X = n, (15)

and the following property.

Lemma 5: limm→∞ E(X) = n̂.

Proof: Consider the ith round of recording with 0 ≤ i < r.

From (14), we know

E(
∑

1≤j≤T

Xj
i) =

∑

1≤j≤T
m

(mi−j+1)pi = m
pi (Hmi

− Hmi−T)

Note that Hx is the x-th harmonic number. Utilizing the

asymptotics of the harmonic numbers [38], we obtain

E(
∑

1≤j≤T

Xj
i) =

m

pi
(Hmi

− Hmi−T)

=
m

pi
(ln mi − ln(mi − T))

=
m

pi
ln(mi/(mi − T)) =

m

mipi
n̂i

Similarly, for the rth round of recording, we have

E(
∑

1≤j≤Ur
Xj

r) = m
mrpr n̂r Since the estimate in each

round of recording is equal to the actual expected number

of distinct data items processed in that round. We have

limm→∞ E(X) = n̂. �

Employing the upper bound for the sum of the geometric

random variables (Theorem 2.1 for the upper tail and Theorem

3.2 for the lower tail in [39]), we have

Pr(X ≥ (1 + δ)E(X)) ≤ e−
(mr−Ur+1)

2rm
E(X)(δ−ln(1+δ))

Pr(X ≤ (1 − δ)E(X)) ≤ e−
(mr−Ur+1)

2rm
E(X)(−δ−ln(1−δ)),

where δ ∈ (0, 1) and variable p∗ in paper [39] represents the

minimum success probability of all geometric variables, which

is
(mr−Ur+1)pr

m in the context of this proof. Usually, we bound

X by a small δ and hence we have ln(1+δ) = δ+δ2/2+o(δ2)
and ln(1 − δ) = −δ + δ2/2 + o(δ2). Therefore, the above

equations can be combined together as

Pr(|X − E(X)| ≥ δE(X)) ≤ 2e−
(mr−Ur+1)pr

m
E(X) δ2

2 . (16)

Since the number of bits in Li is usually sufficiently large,

e.g., 104, we have E(X) = n̂ (see Lemma 5). From (15), (16)

can be rewritten as

Pr(|n − n̂| ≥ δn̂) ≤ 2e−
(mr−Ur+1)

2rm
n̂ δ2

2

⇔ Pr(
|n − n̂|

n
≥ δ) ≤ 2e−

(mr−Ur+1)pr

m
δ2n2

2n̂

⇔ Pr(
|n − n̂|

n
≥ δ) ≤ 2e−

(mr−Ur+1)pr

m

δ2n(1−δ)
2

⇔ Pr(
|n − n̂|

n
≤ δ) ≤ 1 − 2e−

(mr−Ur+1)pr

m

δ2n(1−δ)
2 (17)

The last inequality shows that under the same value of Ur

and r, right part for the integer stream (with smaller n) is

smaller than that for the non-integer stream (with larger n).

This answers the previous argument that worst case happens

to the integer stream when Ur and r are the same.

The right part of the last inequality decreases as r and Ur

increases. Consider the maximum value of r. In this case

n̂ = n(1 + δ). We have n(1 + δ) = n̂ ≥ Sp,r, where r is

upper-bounded by the maximum integer value that makes the

inequality hold.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: FAST AND ACCURATE CARDINALITY ESTIMATION BY SELF-MORPHING BITMAPS 1683

Fig. 6. Comparison between the generalized SMB under p = p∗, denoted as SMB(p∗) and the SMB under p = 0.5 (designed in Section III and denoted
as SMB(0.5)), under different values of m and n = 1M. p∗ is the optimal setting for p and its values under given m and n are presented in Table II. All
the plots show that the generalized SMB can bound the estimation error by arbitrary δ with higher probability than SMB(0.5).

Consider the maximum value of Ur with Ur ≤ T . Since

n̂ ≤ (1+δ)n, we can have the upper bound for Ur. n(1+δ) ≥
n̂ ≥ Sp,r + m

pr (− ln mr−Ur

mr
). �

Next, we interpret Theorem 4. According to (13), the error

bound is closely related to variable p, m, T and n. For ease

of understanding the error bound, we also give visual display

by plotting β with respect to δ when n = 1M. We choose four

representative values of m, i.e., m = 10k, 5k, 2.5k and 1k with

the unit of bit and T , p are optimally set. The setting of T and p
will be explained shortly in the following subsection. The error

bound is shown in Figure 5(a). As we can see, the estimation

error is bounded by small δ with high probability. For instance,

when m = 10000 bits and δ =0.1, β = 0.992. That means
|n−n̂|

n < 0.1 happens with the probability of ≥ 99.2%. Even

when m is small, i.e., 1000,
|n−n̂|

n < 0.30 happens with the

probability of ≥ 90.8%. Note that the results in Figure 5(a)

act as an example for n. When n varies, similar figures can

be drawn.

We compare SMB with MRB and HLL++ in terms of the

theoretical estimation error bound. The values of p and T are

optimally set. For a fair comparison, the length of each bitmap

in MRB is set as T . In the original paper for MRB [3], [4] and

for HLL++ [20], [27], the standard error |n−n̂
n | is given, from

which we can bound the relative error by δ with a probability β
using Chebyshev’s inequality. We plot β with respect to δ for

SMB, MRB and HLL++ when n = 1M and m = 10000 for

each algorithm in Figure 5(b), which shows under the same

δ, SMB’s β is larger than that of MRB and HLL++. That

means SMB is more likely to bound the estimation error with

an arbitrary constant δ than MRB and HLL++.

B. Parameter Setting for T and p

We first discuss how to set the value of T when p is

given. The SMB can support maximum m
T rounds of recording,

which should be larger than or equal to r+1, i.e., m
T ≥ r+1.

This constraint gives the upper bound of T . We consider

the optimal integer value of m/T , which should be large

enough to accommodate the stream cardinality and meanwhile

makes β maximized. Given a fixed p, we can always derive

the optimal value of T using numerical computing under the

values of m and n. By brute-force testing all the values of p
with a granularity of 1%, we can find out the optimal value

TABLE II

PARAMETER SETTING OF GENERALIZED SMB: OPTIMAL VALUE OF

p (DENOTED AS p∗), NUMBER OF BITMAPS k AND LENGTH

FOR EACH BITMAP m/k UNDER GIVEN n, m

of p that maximizes β, denoted as p∗. SMB under p = p∗

can bound the estimation error with the highest probability.

We provide the optimal setting of p, T under difference values

of m and n in Table II

In practical settings, when there is no knowledge of the real

cardinality of the data stream or we expect to assign identical

T for a number of data streams with different cardinalities,

we can choose the parameter setting of T under a large n
(that is safe enough to accommodate the data stream) or the

maximum streaming cardinality nm among all data streams.

It is because the optimal setting for n = nm can also be

applied for the case where n ∈ [0, nm]. From (13), we know

β is affected by
(mr−Ur+1)n

2rm , where 2rm
(mr−Ur+1) represents

the expected number of distinct data items required make v
increases from Ur − 1 to Ur. The ratio is O(1

T) and always

stays very large, meaning that β is guaranteed under when n
varies.

C. Theoretical Advantage of the Generalized SMB

We compare SMB under p = p∗ with SMB under

p = 0.5, denoted as SMB(p∗) and SMB(0.5), respectively.

Setting m = 10000, 5000, 2500, 1000, and n = 1M, we plot

the value of β with respect to δ in Figure 6. As we can see,

SMB(p∗) always bound the estimation error by the same δ

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

1684 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

with a higher probability. For instance, when m = 10000,

n = 1M, δ = 0.1, β of SMB(p∗) is 99.2% and that of

SMB(0.5) is 91.8%. When m = 5000, n = 1M, δ = 0.1,

β of SMB(p∗) is 74.1% and that of SMB(0.5) is 54.3%,

meaning that SMB(p∗) has 19.8% more probability to bound

the cardinality estimate by a relative error of within 10%

than SMB(0.5). This advantage of the generalized SMB over

SMB(0.5) is also guaranteed under other values of n and m.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed SMB through

experiments on a computer with Inter Core Xeon W-2135

3.7GHz and 32 GB memory. We also compare it with the

state-of-the-art, i.e., MRB, FM, HLL++ and HLL-TailC under

various performance metrics.

A. Experiment Setup

MRB, FM, HLL++, HLL-TailC and SMB all estimate the

cardinality of a data stream. The data stream under practical

scenarios can be of different types, such as a set of queries for

a keyword, a set of tags in RFID system, etc, which we stress

will not affect cardinality estimators’ performance. In our

experiments, the data stream contains randomly generated

strings within the length of 128, each acting as a data item.

The cardinality of the data stream, denoted as n, is the number

of distinct strings in the data stream. n varies and its maximum

value is 1M, which supports performance evaluation on data

streams with very large cardinalities.

Parameter settings for FM, HLL++ and HLL-TailC follow

the recommendation of [1], [31] and [20], [27] and can

be found in Table I. The parameter setting under different

n and m for MRB [3], [4] follows the recommendation

of the original paper. The sampling probability of each

bitmap in MRB [3], [4] is recommended as 1, 1
2 , 1

22 . . . for

high estimation accuracy. For SMB, the optimal values of

T and p are given in Table II under different n and m.

We evaluate the performance of MRB, FM, HLL++, HLL-

TailC and SMB under different values of m and n. m can

be 10000, 5000, 2500, and 1000. We employ four metrics:

1) Recording Throughput. The number of items recorded by

the measurement module per second. The unit is data items

per second (dps) or million data items per second (Mdps);

2) Query Throughput. For each arrival data item, we do

a query operation to obtain the cardinality estimate. Query

throughput represents the number of data items queried per

second; 3) Estimation Error. It is categorized into two groups,

absolute error and relative error. Let n̂ be the estimated stream

cardinality and n be the actual stream cardinality. The absolute

error is defined as |n̂ − n| and the relative error is defined as
|n̂−n|

n . The estimation error shows how the estimate deviates

from the actual cardinality; 4) Estimation Bias. It is evaluated

by the relative bias. The relative bias for a data stream is

defined as n̂−n
n . The estimation bias shows to what extent the

estimate is underestimated/overestimated.

B. Comparison Between SMB(0.5) and SMB(p∗)

Denote SMB(p) as SMB that decreases sampling probability

by p every time it proceeds to the next round. In particular,

Fig. 7. Estimation error comparison of SMB(0.5) and SMB(p∗) when
allocated 10000 bits. By plot(a), SMB(p∗) reduces the absolute error by up
to 18.5% compared to SMB(0.5).

Fig. 8. Estimation error comparison of SMB(0.5) and SMB(p∗) when
allocated 5000 bits. By plot(a), SMB(p∗) reduces the absolute error by up
to 22.5% compared to SMB(0.5).

TABLE III

RECORDING THROUGHPUT (MDPS) OF SMB(p∗) AND SMB(0.5)
FOR DIFFERENT STREAM CARDINALITIES

TABLE IV

QUERY THROUGHPUT (DPS) OF SMB(p∗) AND SMB(0.5). THE

RESULTS WILL NOT BE AFFECTED BY THE MEMORY SIZE

AND STREAM CARDINALITY

SMB(0.5) represents what Section III proposes. For the gen-

eralized SMB in Section IV, we derive the optimal setting

of p, denoted as p∗, under given n and m, according to the

analysis in Section V. The values of p∗ are given in Table II.

We compare SMB(0.5) and SMB(p∗) in terms of estimation

accuracy under n ∈ [105, 106] and m = 10000, 5000 bits,

respectively. The results are shown in Figures 7 and 8. As we

can see, the estimation error of SMB can be reduced by

up to 18.5% for m = 10000 and 22.5% for m = 5000,

by changing p from 0.5 to the optimal setting p∗. This

demonstrates the practical values of the generalized design of

SMB in Section IV. In the remaining of this section, we will

use SMB(p∗) as the representative of SMB to compare with

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: FAST AND ACCURATE CARDINALITY ESTIMATION BY SELF-MORPHING BITMAPS 1685

TABLE V

RECORDING THROUGHPUT (MDPS) OF SMB FOR DIFFERENT STREAM

CARDINALITIES IN COMPARISON WITH MRB, FM,
HLL++ AND HLL-TAILC

TABLE VI

QUERY THROUGHPUTS (DPS) OF MRB, FM, HLL++, HLL-TAILC
AND SMB UNDER DIFFERENT MEMORY ALLOCATION (BIT)

other cardinality estimation algorithms, i.e., FM, HLL++,

MRB, HLL-TailC and without confusion, SMB is SMB(p∗). We

also compare the recording and query throughputs of SMB(p∗)

and SMB(0.5). The results in Tables III and IV show that

both estimators have the similar throughput results. The reason

is that, for the recording throughput, the generalized SMB

only changes the geometric hash function to the generalized

geometric hash function. But both hash functions are imple-

mented by a uniform hash function, and thus they have similar

computing overhead. For the query throughput, the estimation

formulas for SMB(0.5) in (8) and for SMB(p∗) in (12) are

very similar.

C. Recording Throughput

The recording throughput results under different stream

cardinalities are listed in Table V. m = 5000 for all cardinality

estimators. We stress that the recording throughput is not

affected by m, as each cardinality estimator only operates on

one unit (register for FM, HLL++ and HLL-TailC, bit for

MRB and SMB). The results show that with the stream cardi-

nality increasing, the recording throughput of SMB increases

dramatically, while those of other cardinality estimators remain

stable. The reason is that MRB, FM, HLL++ and HLL-

TailC keep the same recording operation when the stream

cardinality increases, while SMB can adaptively adjust the

sampling probability. For data streams with large cardinalities,

on average, SMB samples items with a small sampling

probability. This explains why SMB can record more data

items per second, especially when the stream cardinality is

large. For instance, when the stream cardinality is 106, SMB

increases the recording throughput by 232%, 245%, 743%

and 758%, respectively, compared to MRB, FM, HLL++ and

HLL-TailC.

D. Query Throughput

We evaluate the query throughputs of MRB, FM, HLL++,

HLL-TailC and SMB. In our experiments, MRB maintains a

TABLE VII

QUERY THROUGHPUT (DPS) OF SMB FOR DIFFERENT STREAM

CARDINALITIES USING MEMORY OF 5000 BITS, IN COMPARISON

WITH MRB, FM, HLL++ AND HLL-TAILC

counter array to keep the number of ones for each bitmap.

Our additional maintenance of counters will not affect the

accuracy but dramatically improve the query throughput

of MRB.

The query throughputs of five cardinality estimators when

m is 10000, 5000, 2500, and 1000 are listed in Table VI. n
is set as 105 and we will evaluate the impacts of n shortly.

The results show that the query throughputs of FM, HLL++
and HLL-TailC are affected by memory allocation, while those

of MRB and SMB are not. The reason is that FM, HLL++
and HLL-TailC need to collect the information in all registers

for producing the cardinality estimate, while MRB needs to

query an array of counters and SMB only needs to access two

counters, i.e., r and v. This also explains why SMB stands out

among all cardinality estimators in terms of query throughput.

The results show that SMB’ query throughput can be 130M

per second, while HLL++ and HLL-TailC can only reach

the query throughput by less than 0.1M per second. SMB

improves the query throughput by at least 1500 times faster,

making SMB suitable for online cardinality estimation. SMB

also improves the query throughput a lot compared to MRB

that has highest query throughput among existing work. The

results show that The fast query supported by SMB allows

instant identification of anomalies of cardinality and enables

service administrator to respond to the anomaly in real-time.

We also investigate the impact of stream cardinality n on

the query throughput which is presented in Table VII. Only

MRB’s query throughput is affected by the value of n. When n
increases, the query throughput increases as well. The reason

is that, MRB with k bitmaps needs to determine the most

suitable sampling probability pi with 0 ≤ i < k. When n
is large, pi is small, i.e,. i → k − 1. Consequently, MRB

will query fewer counters. Although MRB’s query throughput

increases when n is large, it is still much smaller than that of

SMB. MRB can only query less than 5% of items that SMB

can query at the same time.

E. Estimation Error

The estimation error performances of all cardinality estima-

tors when m is 10000 and 5000 are presented in Figures 9-10

where we plot the absolute error and relative error distribution

with respect to the actual stream cardinality. Each point in

the figure represents the average experimental result under

100 data streams with the same cardinality. The results show

that SMB is the winner in terms of the estimation error, outper-

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

1686 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 9. Estimation error comparison of MRB, FM, HLL++, HLL-TailC and
SMB when allocated 10000 bits. By plot(a), SMB reduces the absolute error
by up to 74.0%, 73.1%, 61.1% and 52.9%, respectively, compared to MRB,
FM, HLL++ and HLL-TailC.

Fig. 10. Estimation error comparison of MRB, FM, HLL++, HLL-TailC
and SMB when allocated 5000 bits. By plot(a), SMB reduces the absolute
error by up to 70.9%, 71.6%, 45.6% and 42.6%, respectively, compared to
MRB, FM, HLL++ and HLL-TailC.

forming the most accurate solutions, HLL++ and HLL-TailC.

Besides, consider the estimation error of MRB. Its estimation

errors for data streams with different cardinalities vary a

lot, even if we use the average results among 100 data

streams for each point. For instance, in Figure 9(a), when

stream cardinality is 4×105, the absolute error of MRB is

54233. By comparison, when stream cardinality is 5×105,

the absolute error of MRB is 10406. The result validate our

argument that utilizing all the recorded information (SMB)

promises a more accurate estimate compared to only using

the information in the bitmap with the most sampling

probability (MRB).

F. Estimation Bias

The relative bias performances of MRB, FM, HLL++,

HLL-TailC and SMB when m is 10000 and 5000 are shown

in Figure 11. We also plot function y = 0 to show the zero-

bias line. Our findings are, SMB can produce the cardinality

estimate with almost zero bias. The relative biases of data

streams with different cardinalities produced by SMB are

all within [−0.01, 0.01]. By comparison, FM and HLL++
produce positively biased stream cardinality estimates. For

instance, the average relative biases of FM, HLL++ and HLL-

TailC are around 0.03 under different memory allocations.

MRB also produces biased cardinality estimates.

Fig. 11. Relative bias of MRB, FM, HLL++, HLL-TailC and SMB w.r.t.
actual cardinality under 10000-bit and 5000-bit memory allocation. SMB
produces near non-biased cardinality estimation. FM’s, HLL++’s and HLL-
TailC’s estimates are positively biased. The relative bias of MRB is up to
0.04 when allocated 5000 bits.

TABLE VIII

RECORDING THROUGHPUTS (MDPS) OF MRB, FM, HLL++,
HLL-TAILC AND SMB UNDER THE CAIDA DATASET

TABLE IX

RECORDING THROUGHPUT (MDPS) OF SMB FOR DATA STREAMS

OF THE CAIDA DATASET IN DIFFERENT CARDINALITY RANGES

TABLE X

QUERY THROUGHPUTS (DPS) OF MRB, FM, HLL++,
HLL-TAILC AND SMB UNDER THE CAIDA DATASET

TABLE XI

AVERAGE ABSOLUTE ERRORS OF MRB, FM, HLL++, HLL-TAILC
AND SMB FOR DATA STREAMS WITH CARDINALITIES ≤ 1000,

UNDER DIFFERENT MEMORY ALLOCATION (BIT)

G. Results Under CAIDA Dataset

This subsection investigates their overall performance under

a certain stream cardinality distribution, where each data

stream is allocated with a cardinality estimator. We conduct

experiments using real Internet traffic trace downloaded from

CAIDA [40]. The traffic trace lasts for 10mins and contains

around 200M packets. The packet in the traffic trace is the data

item in the data stream model. We categorize the packets into

different data streams by their destination addresses. That is,

packets with the same destination address form a data stream.

In each data stream, the packet is distinguished by the source

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: FAST AND ACCURATE CARDINALITY ESTIMATION BY SELF-MORPHING BITMAPS 1687

Fig. 12. Estimation error w.r.t. m in comparison with MRB, FM, HLL++,
HLL-TailC and SMB.

address carried by the packet header. The stream cardinality is

the number of distinct source addresses that contact the same

destination address. By this categorization, the CAIDA dataset

contains around 400k data streams and the largest cardinality

among all data streams is around 80k.

Recording throughput: m is 5000 and the results are

shown in Table VIII. SMB improves the recording throughput

by 23.0%, 34.1%, 371.6% and 397.5%, respectively, com-

pared to MRB, FM, HLL++ and HLl-TailC. We stress that

SMB adaptively decreases the sampling probability during the

recording of the data stream. When the stream cardinality is

very large, its sampling probability becomes very small, which

can dramatically increase the recording throughput. Therefore,

the recording throughput of SMB is affected by the distribution

of data streams in the dataset. Most data streams in the CAIDA

dataset are with small cardinalities, which makes the recording

throughput smaller. For more details, we present Table IX to

show the recording throughput of SMB for data streams in

different cardinality ranges. The results show when recording

data streams with large cardinalities, the recording throughput

increases dramatically.

Query throughput: The query throughputs of MRB, FM,

HLL++, HLL-TailC and SMB are shown in Table X. m is

5000 for each cardinality estimator. As we can see, SMB

improves the query throughput by 39.7 times, 72.3 times,

7314 times, and 8799 times, respectively, compared to MRB,

FM, HLL++ and HLL-TailC.

Estimation error: We divide the data streams in the CAIDA

dataset into two groups. One contains all data streams whose

cardinalities are ≤1000. The other contains all data streams

whose cardinalities are >1000. The reason is that, when the

stream cardinality is small, FM, HLL++ and HLL-TailC are

usually reduced to bitmap, and the sampling probabilities of

MRB and SMB are 1 or close to 1. Therefore, their cardi-

nality estimates are similar and very accurate. Specifically,

FM reduces the 32-bit register to a bit. If all bits in the FM

are zero, the register is reduced to a bit of zero; otherwise,

the register is reduced to a bit of one. An FM with t FM

registers is reduced to a bitmap with t bits. HLL++ and

HLL-TailC follows the same reduction processing. m varies

from 1000 to 10000, and the corresponding values of T for

SMB follow the optimal setting in Table II. Table XI presents

results for data streams whose cardinalities are ≤1000. The

average absolute errors of all cardinality estimators are less

than 1, regardless of the memory allocation.

The experimental results for data streams whose cardi-

nalities are >1000 are shown in Figure 12. SMB is the

most accurate cardinality estimator, regardless of the memory

allocation. SMB reduces the average absolute error by up to

44.6%, 79.8%, 49.1% and 45.1%, respectively, compared to

MRB, FM, HLL++ and HLL-TailC.

VII. CONCLUSION

This paper proposes a new design for online cardinality

estimation in data streaming. It progressively decreases the

sampling probability from 100% as data items are recorded,

enabling sampling large-cardinality data streams with small

probability and small-cardinality ones with large probability.

We theoretically derive the estimation error bound and show

that the estimation error is usually very small by illustra-

tions. We also implement the proposed design and conduct

experiments using two datasets. The experimental results show

SMB is the best in all performance metrics and can achieve

tremendous performance improvement (50% estimation error

reduction, an order of magnitude higher throughput) in at least

one metrics under the same memory allocation, compared to

the best prior work.

REFERENCES

[1] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182–209,
Oct. 1985.

[2] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time
probabilistic counting algorithm for database applications,” ACM Trans.

Database Syst., vol. 15, no. 2, pp. 208–229, Jun. 1990.

[3] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” in Proc. 3rd ACM SIGCOMM Conf.

Internet Meas. (IMC), 2003, pp. 153–166.

[4] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high-speed links,” IEEE/ACM Trans. Netw., vol. 14,
no. 5, pp. 925–937, Oct. 2006.

[5] C. Qian, H. Ngan, Y. Liu, and L. M. Ni, “Cardinality estimation for
large-scale RFID systems,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 9, pp. 1441–1454, Sep. 2011.

[6] L. Wang et al., “Fine-grained probability counting for cardinality esti-
mation of data streams,” World Wide Web, vol. 22, no. 5, pp. 2065–2081,
Sep. 2019.

[7] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM Conf., 2016, pp. 101–114.

[8] J. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Special Interest Group Data Commun.,
2018, pp. 561–575.

[9] C. Ma, H. Wang, O. O. Odegbile, and S. Chen, “Virtual filter for non-
duplicate sampling,” in Proc. IEEE 29th Int. Conf. Netw. Protocols

(ICNP), Nov. 2021, pp. 1–10.

[10] Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
sketch families for network traffic measurement,” Proc. ACM Meas.

Anal. Comput. Syst., vol. 3, no. 3, pp. 1–34, Dec. 2019.

[11] Q. Xiao, S. Chen, M. Chen, and Y. Ling, “Hyper-compact virtual
estimators for big network data based on register sharing,” in Proc.

ACM SIGMETRICS Int. Conf. Meas. Modeling Comput. Syst., Jun. 2015,
pp. 417–428.

[12] H. Dai, M. Li, and A. Liu, “Finding persistent items in distrib-
uted datasets,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2018, pp. 1403–1411.

[13] H. Dai, M. Li, A. X. Liu, J. Zheng, and G. Chen, “Finding persistent
items in distributed datasets,” IEEE/ACM Trans. Netw., vol. 28, no. 1,
pp. 1–14, Feb. 2020.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

1688 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

[14] C. Ma, H. Wang, O. Odegbile, and S. Chen, “Noise measurement and
removal for data streaming algorithms with network applications,” in
Proc. IFIP Netw. Conf. (IFIP Networking), Jun. 2021, pp. 1–9.

[15] C. Ma, S. Chen, Y. Zhang, Q. Xiao, and O. O. Odegbile, “Super spreader
identification using geometric-min filter,” IEEE/ACM Trans. Netw., early
access, Aug. 31, 2021, doi: 10.1109/TNET.2021.3108033.

[16] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson, “Synopsis diffusion
for robust aggregation in sensor networks,” ACM Trans. Sensor Netw.,
vol. 4, no. 2, pp. 1–40, Mar. 2008.

[17] N. Ntarmos, P. Triantafillou, and G. Weikum, “Counting at large:
Efficient cardinality estimation in internet-scale data networks,” in Proc.

22nd Int. Conf. Data Eng. (ICDE), Apr. 2006, p. 40.

[18] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani, “Streaming
algorithms for robust, real-time detection of DDoS attacks,” in Proc.

27th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2007, p. 4.

[19] N. Zhao et al., “Automatically and adaptively identifying severe alerts
for online service systems,” in Proc. IEEE Conf. Comput. Com-

mun. (INFOCOM), Jul. 2020, pp. 2420–2429.

[20] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: Algorith-
mic engineering of a state of the art cardinality estimation algorithm,” in
Proc. 16th Int. Conf. Extending Database Technol., 2013, pp. 683–692.

[21] P. Rob, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
data: Parallel analysis with Sawzall,” Sci. Program., vol. 13, no. 4,
pp. 277–298, 2005.

[22] S. Melnik et al., “Dremel: Interactive analysis of web-scale datasets,”
Proc. VLDB Endowment, vol. 3, nos. 1–2, pp. 330–339, Sep. 2010.

[23] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and M. Nunkesser,
“Processing a trillion cells per mouse click,” Proc. VLDB Endowment,
vol. 5, no. 11, pp. 1436–1446, Jul. 2012.

[24] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan,
“Counting distinct elements in a data stream,” in Proc. Int. Workshop

Randomization Approximation Techn. Comput. Sci. Berlin, Germany:
Springer, 2002, pp. 1–10.

[25] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla,
“On synopses for distinct-value estimation under multiset operations,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), 2007,
pp. 199–210.

[26] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,”
in Proc. Eur. Symp. Algorithms. Berlin, Germany: Springer, 2003,
pp. 605–617.

[27] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,” in Proc. Int.

Conf. Anal. Algorithms, Nancy, France, 2007, pp. 137–156.

[28] H. Harmouch and F. Naumann, “Cardinality estimation: An experi-
mental survey,” Proc. VLDB Endowment, vol. 11, no. 4, pp. 499–512,
Dec. 2017.

[29] A. Metwally, D. Agrawal, and A. E. Abbadi, “Why go logarithmic if
we can go linear? Towards effective distinct counting of search traffic,”
in Proc. 11th Int. Conf. Extending Database Technol., Adv. Database

Technol., 2008, pp. 618–629.

[30] D. M. Kane, J. Nelson, and D. P. Woodruff, “An optimal algorithm for
the distinct elements problem,” in Proc. 29th ACM SIGMOD-SIGACT-

SIGART Symp. Princ. Database Syst. Data (PODS), 2010, pp. 41–52.

[31] Q. Xiao, Y. Zhou, and S. Chen, “Better with fewer bits: Improving the
performance of cardinality estimation of large data streams,” in Proc.

IEEE Conf. Comput. Commun. (INFOCOM), May 2017, pp. 1–9.

[32] Q. Xiao, S. Chen, Y. Zhou, and J. Luo, “Estimating cardinality
for arbitrarily large data stream with improved memory efficiency,”
IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 433–446, Apr. 2020.

[33] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
opensketch,” Presented at the 10th USENIX Symp. Networked Syst.
Design Implement. (NSDI), 2013.

[34] L. Tang, Q. Huang, and P. Lee, “SpreadSketch: Toward invertible and
network-wide detection of superspreaders,” in Proc. IEEE Conf. Comput.

Commun. (INFOCOM), Toronto, ON, Canada, 2020, pp. 1608–1617.

[35] H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Randomized
error removal for online spread estimation in data streaming,” Proc.

VLDB Endowment, vol. 14, no. 6, pp. 1040–1052, Feb. 2021.

[36] R. B. Basat, X. Chen, G. Einziger, S. L. Feibish, D. Raz, and M. Yu,
“Routing oblivious measurement analytics,” in Proc. IFIP Netw. Conf.

(Networking), Jun. 2020, pp. 449–457.

[37] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a compact spread estimator
in small high-speed memory,” IEEE/ACM Trans. Netw., vol. 19, no. 5,
pp. 1253–1264, Oct. 2011.

[38] M. Goemans. (2021). Harmonic Number, Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Harmonic_number

[39] S. Janson, “Tail bounds for sums of geometric and exponential vari-
ables,” Statist. Probab. Lett., vol. 135, pp. 1–6, Apr. 2018.

[40] UCSD. (2015). Caida UCSD Anonymized 2015 Internet Traces

on Jan. 17. [Online]. Available: https://www.caida.org/data/passive/
passive_2015_dataset.xml

Haibo Wang (Graduate Student Member, IEEE)
received the B.E. degree in nuclear science and
the master’s degree in computer science from the
University of Science and Technology of China,
China, in 2016 and 2019, respectively. He is
currently pursuing the Ph.D. degree with the
Department of Computer and Information Science
and Engineering, University of Florida. His main
research interests include internet traffic measure-
ment, software-defined networking, and optical cir-
cuit scheduling.

Chaoyi Ma (Graduate Student Member, IEEE)
received the B.S. degree in computer information
security from the University of Science and Technol-
ogy of China in 2018. He is currently pursuing the
Ph.D. degree in computer and information science
and engineering with the University of Florida. His
advisor is Prof. Shigang Chen. His research interests
include big data, network traffic measurement, com-
puter network security, and data privacy in machine
learning.

Shigang Chen (Fellow, IEEE) received the B.S.
degree in computer science from the University of
Science and Technology of China in 1993 and the
M.S. and Ph.D. degrees in computer science from
the University of Illinois at Urbana–Champaign,
Champaign, IL, USA, in 1996 and 1999, respec-
tively. After graduation, he had worked with Cisco
Systems for three years before joining the University
of Florida in 2002. He is currently a Professor
with the Department of Computer and Information
Science and Engineering, University of Florida.

He holds 13 U.S. patents, and many of them were used in software products.
He has published over 200 peer-reviewed journals/conference papers. His
research interests include big data, the Internet of Things, cybersecurity,
RFID technologies, and intelligent cyber-transportation systems. He received
the NSF CAREER Award and several best paper awards. He served as
an Associate Editor for IEEE TRANSACTIONS ON MOBILE COMPUTING,
IEEE/ACM TRANSACTIONS ON NETWORKING, and a number of other
journals. He served in various chair positions or a committee members for
numerous conferences. He is an ACM Distinguished Scientist.

Yuanda Wang received the master’s degree in
computer science from NYU in 2015. He is currently
pursuing the Ph.D. degree with the Department
of Computer and Information Science and Engi-
neering, University of Florida. His main research
interests include edge computing and internet traffic
measurement.

Authorized licensed use limited to: University of Florida. Downloaded on October 03,2022 at 02:17:30 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNET.2021.3108033

