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Abstract—Objective: Objective evaluation of physiological re-
sponses using non-invasive methods for the assessment of vocal
performance and voice disorders has attracted great interest.
This paper, for the first time, aims to implement and evaluate
perilaryngeal-cranial functional muscle networks. The study
investigates the variations in topographical characteristics of
the network and the corresponding ability to differentiate vocal
tasks. Method: Twelve surface electromyography (SEMG) signals
were collected bilaterally from six perilaryngeal and cranial
muscles. Data were collected from eight subjects (four females)
without a known history of voice disorders. The proposed muscle
network is composed of pairwise coherence between SEMG
recordings. The network metrics include (a) network degree
and (b) weighted clustering coefficient (WCC). Results: The
varied phonation tasks showed the median degree, and WCC
of the muscle network ascend monotonically, with a high effect
size (|r.»| ~ 0.5). Pitch glide, singing, and speech tasks were
significantly distinguishable using degree and WCC (|r,| ~ 0.8).
Also, pitch glide had the highest degree and WCC among
all tasks (degree> 0.7, WCC> 0.75). In comparison, classic
spectrotemporal measures showed far less effectiveness (max
|rrs| = 0.12) in differentiating the vocal tasks. Conclusion:
Perilaryngeal-cranial functional muscle network was proposed in
this paper. The study showed that the functional muscle network
could robustly differentiate the vocal tasks while the classic
assessment of muscle activation fails to differentiate. Significance:
For the first time, we demonstrate the power of a perilaryngeal-
cranial muscle network as a neurophysiological window to vocal
performance. In addition, the study also discovers tasks with the
highest network involvement, which may be utilized in the future
to monitor voice disorders and rehabilitation.

Index Terms—voice disorder, intermuscular coherence, surface
electromyography, neurophysiology

I. INTRODUCTION

ORE than 17 million people in the United States are
estimated to suffer from dysphonia (a voice disorder)
each year [1], [2]. Excessive voice use and maladaptive
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compensatory muscle tension in response to underlying neu-
rological or physiological laryngeal disease are considered to
be potential roots for voice disorders such as muscle tension
dysphonia (MTD) [3]. The laryngeal muscles are internal to
the neck and require invasive access for direct examination.
However, it is suggested that the perilaryngeal, cervical and
cranial muscles may show activity alterations in subjects with
dysphonia [4], which can help with the diagnosis using surface
electromyography (SEMG).

The current methods for monitoring the function of laryn-
geal muscles include intramuscular EMG, external laryngeal
palpation, and laryngeal endoscopy [5], [6], [7], [8], [9], [10],
[11]. Although these methods have provided much information
about muscle activation and function during voicing, they are
invasive, uncomfortable, and subjective. Intramuscular EMG
requires inserting small wires into the muscle using a needle to
measure relative neuromuscular activity. Laryngeal endoscopy
involves placing a flexible endoscope through the nose or
a rigid endoscope through the mouth to visualize the gross
anatomy and movements of the vocal folds. It requires a
trained specialist to perform and subjectively interpret the
findings. Manual palpation of the larynx and perilaryngeal
musculature is easy to perform but does not provide any
quantitative or standardized measure of muscle tension. Ad-
ditionally, these evaluation methods can disturb the normal
function of the muscle during the examination (for example,
due to the pain), which can affect the accurate assessment.

Recording sEMG is a non-invasive technique that can
potentially provide objective information about perilaryngeal
muscle activity during voicing based on temporal and spectral
characteristics of the muscle signal measured at the skin
surface. It should be mentioned that discriminative differences
have been suggested in the classic literature [12], [4] when
comparing spectrotemporal features of SEMG for patients with
MTD and healthy controls, yet recent studies with larger
patient populations failed to show significant differences in the
classic spectrotemporal SEMG metrics [9], [13]. As a potential
reason for this inconsistency, Van Houtte et al. suggested
that the earlier studies may have included patients with other
comorbidities or with secondary illnesses affecting the results,
and that could be why in recent studies, when controlling
only for MTD, the discriminative power of classic features of
SEMG dropped [13]. This calls for more advanced functional
measures that can provide a holistic analysis of the distributed
motor control on perilaryngeal muscles.
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(a) Six sensors were placed on each side of the neck at Masseter, Superior Sternoclediomastoid (Superior SCM), Superior Infrahyoid, Inferior

Infrahyoid, Inferior Sternocleidomastoid (Inferior SCM) and Trapezius. (b) Subjects performed vocal tasks, classified as varied phonation, single repetition,
or reading. Varied phonation tasks involved intoning /a/ at defined loudness and pitch levels. Single repetition tasks included pitch glide, singing, and speech.
Reading tasks involved reading a passage at different loudness levels. (¢) SEMG was recorded using the wireless Trigno system (Delsys Inc., Natick, MA)
with eight Avanti and four Mini sensors (blue head). An exemplar recording from all perilaryngeal and cranial muscles is shown for the pitch glide task. Note
how the amplitude level increases as the task develops for the infrahyoid and SCM muscles in particular.

In neuroscience literature, coherence analysis has been used
in the context of brain connectivity to detect how different
regions of the brain are synchronized (or functionally coupled)
during different tasks, and this measure has been used for
detecting the degrees of several central nervous system condi-
tions, such as Parkinson’s Disease [14], [15]. More recently,
using coherence analysis, the fluency of corticomuscular con-
nectivity has also been investigated to understand how the
central nervous system communicates with the peripheral
nervous system [16], [17]. Similarly, the functional muscle
network is an emerging concept that uses simultaneous multi-
channel SEMG to decode how various muscle groups are syn-
ergistically synchronized during various motor tasks [18], [19],
[20]. Intermuscular coherence networks have been recently
used to holistically investigate the muscular system during
various gait tasks and uniquely discriminate subtle differences
in lower limb functions in non-disabled adults [21], [22].

To the best knowledge of the authors, the concept of
functional muscle networks has not been used at the per-
ilaryngeal and cranial levels. Some efforts have been con-
ducted to assess beta-band (15-35 Hz) coherence between two
anterior neck muscles during voicing, which showed some

discriminative power to indicate hyperfunction and differences
between control subjects and patients with vocal nodules [23],
[24]. Expanding from a single coherence measurement in
specific frequency bands to a wideband intermuscular coher-
ence network increases the possibility for monitoring motor
functions or impairments due to the wider spectral and spatial
distribution of the analysis. Thus, it is imperative to understand
the power of the perilaryngeal-cranial muscle network and the
corresponding relationship with various vocal functions.

The purpose of this study is to quantify the perilaryngeal-
cranial muscle network characteristics of a series of vocal tasks
for healthy subjects. We hypothesize that in non-disabled sub-
jects increasing the loudness and pitch (i.e., vocal frequency)
will change the network connectivity in a manner that can be
registered using topographical characteristics of the network,
such as degree and clustering coefficient. In this study, to
conduct a comparative analysis, the classical spectrotemporal
features are also quantified to determine if the tasks with
stronger muscle networks also consistently elicit statistically
distinguishable spectrotemporal muscle activity. We show that
the muscle network provides robust and statistically consistent
discrimination for increasing loudness and pitch, suggesting
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that the perilaryngeal-cranial muscle network can indeed be
used to detect subtle differences in vocal tasks, while the con-
ventional spectrotemporal features fail to function accordingly.

II. METHODS

Eight healthy subjects (four males, four females, 33.38
+ 9.32 years) participated in the study. The institutional
review board of the New York University Grossman School
of Medicine approved the study, and subjects provided their
written consent after they received the study description.
Subjects denied any history of dysphonia or neck and cervical-
related injuries.

A. Experimental Procedure

Subjects performed a series of vocal tasks, each of a
different type or while varying tonal parameters (Fig. 1b). The
first group of tasks involved making a maximally sustained
/al sound at a constant pitch and volume. With two levels
of loudness and two levels of pitch, in total, there were
four varied phonation (/a/ sound) tasks: 1) habitual loudness,
habitual pitch, 2) elevated loudness, habitual pitch, 3) habitual
loudness, high pitch and 4) elevated loudness, high pitch.
Subjects were instructed to sustain the /a/ sound for as long
as was comfortable. Subjects performed three trials of each
of loudness and pitch combinations before moving to the next
tasks. The second group of tasks included single repetition
vocal exercises, namely (i) pitch glide, (ii) spontaneous speech,
and (iii) singing. Pitch glide involved starting to intone at a low
pitch and smoothly increasing to a final high pitch [25]. The
spontaneous speech task involved responding to the prompt,
“tell me how to make a peanut butter and jelly sandwich,” in
a typical conversational voice, while the singing task involved
singing ‘Happy Birthday’ in a comfortable key chosen by
the participant. The third group of tasks involved reading the
first full paragraph of The Rainbow Passage [26], a standard
reading passage used to evaluate the voice, at three levels of
loudness: habitual, elevated, and whispering.

In this work, sEMG signals were recorded from twelve
sensors, using the wireless Trigno SEMG system (Delsys Inc.,
Natick, MA), with a sampling frequency of 1259 Hz and an
on-board 2nd-order high-pass filter at 20 Hz (Fig. 1). Four
bipolar Trigno Mini sensors were used for the inner cervical
muscles (inferior and superior infrahyoid, bilaterally), while
eight bipolar Trigno Avanti sensors were used for Masseter,
Superior Sternocleidomastoid, Inferior Sternocleidomastoid,
and Trapezius. With regard to palpation, subjects were in-
structed to (i) clench their teeth to identify masseter, (ii) look
left and right to identify lower and upper sternocleidomastoid,
(iii) look up and down to identify the infrahyoid muscles,
(iv) move shoulders forwards and backward before staying a
neutral position to identify trapezius muscles. The skin surface
was thoroughly wiped prior to sensor placement. Sensors were
placed parallel to the direction of the muscles. In order to
minimize the noise content of the recorded signals, subjects
were instructed not to move their head during the task.

Following the recording, signals were pre-processed using
MATLAB R2020b (MathWorks Inc. Natick MA). The first

and last 1s of all trials were clipped out, and other trials
were clipped further in the case of a head movement at the
beginning or at the end. Afterward, the signals were filtered
with a high-pass filter at 20 Hz, a band-stop filter at 57.5-
62.5 Hz for power-line noise, and a low-pass filter at 100
Hz. All filters were Butterworth 4th order zero-phase. For all
of the analyses, we considered the 20-100 Hz range since
the frequency bands of interest for intermuscular coherence
networks generally include beta (14-30Hz) and gamma (30-
100 Hz) bands. Exemplar perilaryngeal and cranial muscle
signals during pitch glide are shown in Fig. 1.

B. Muscle Signal Analysis

Muscle networks were constructed for all tasks, using
coherence. Magnitude squared coherence, C, between two
signals x(t) and y(t) is:

vy = 1
W ey

where P, and P, are the power spectral densities (PSDs)
and P, is the cross power spectral density (CPSD). To com-
pute the coherence, Welch’s overlapped averaged periodogram
method [27] was utilized with a Hamming window of 2048
samples (1.63 ms) and 50% overlap. The maximum coherence
component in the was selected for each sensor pair. Using this
maximum coherence value, muscle networks were constructed
for each trial. Each node in the network represents a muscle,
and the width of each line illustrates the pairwise muscle
coherence. In the case of tasks that had multiple trials, the
median network across trials was computed.

The degree of each node, D;, is the average of all edges
connected to the node. If the muscle network is represented
by adjacency matrix A, D; is defined as:

) N
Di—(m) > Ay, 2

j=1,j#i

where N is the number of nodes. A node that has no
connectivity with other nodes will have a degree, D; = 0,
while a node that is perfectly connected to other nodes will
have D; = 1.

A node’s weighted clustering coefficient (W CC;) gives the
measure of how well that node is connected to its neighbors.
The weighted clustering coefficient is defined as:

D tir Dokt gk Aig AikAjk
D ji> 2okpirk AigAik

A node that is not connected to its neighbors will have a
weighted clustering coefficient, W C'C; = 0, while a node that
is very well connected to its neighbors will have WCC; = 1.

Global efficiency is directly proportional to how well the
network is connected overall. The efficiency (E) of a network
is defined as:

WCC; =

3

1 1
E=—— 5 — 4
N(N—l);Lij @
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where L;; is the shortest path between nodes i and j [28].
The efficiency (E£) is normalized by the ideal efficiency (£;4)
to give the global efficiency, GE:

E

Eiq’
which is bounded between O and 1. A network with perfect
connectivity will have GE = 1, while one with no connectivity
will have GE = 0.

In order to provide a comparison between the muscle co-
herence network and the conventional spectrotemporal metrics,
muscle activations were quantified in the time and frequency
domains. The time-domain activation was quantified by finding
the root mean square (RMS) value across the trial duration.
With regard to the spectral domain, PSD was computed using
Welch’s method [27] and the median PSD across 20-100
Hz was computed. Furthermore, the median frequency was
computed for each task. The median frequency is defined as
the frequency at which the area under the PSD graph is divided
in two. The median value across trials was used for PSD,
median frequency, and RMS when there were multiple trials.

GE = 5)

C. Statistical Analysis

In order to evaluate the statistical trends observed in co-
herence muscle networks, a coherence distribution was con-
structed for each task (as later will be discussed in Fig. 5).
Each distribution consisted of degree and weighted clustering
coefficient for all nodes across all subjects’ muscle networks,
giving n = #subjects X #nodes = 8 x 12 = 96. Similarly,
distributions were constructed for RMS, PSD, and median
frequency (n = 96 for all). The Kolmogorov-Smirnov test for
normality rejected the normal distribution hypothesis for the
coherence, RMS, PSD, and median frequency distributions.
Therefore, nonparametric statistical tests were used in our
analysis. The Friedman test was used to compare tasks in each
group (i.e., varied phonation, single-repetition, reading). The
Wilcoxon signed-rank test was used as a posthoc test if the
Friedman test revealed significance. The significance level, a,
for all tests was initially set at 0.05. To adjust for multiple
comparisons, the Bonferroni correction was applied, dividing
a by the number of comparisons.

Finally, by using the rank-biserial correlation, the effect
size of the non-normal distributions was quantified [29]. In
this regard, |r,,| was used for measuring the rank-biserial
correlation. A higher value means that the effect size is
larger. For example, as can be seen in Fig. 5b, the coherence
degree for single repetition tasks has a very high effect size
(Irrs] = 0.83), and the difference between tasks is even
visually clear. On the other hand, the coherence degree for
reading tasks has a low effect size (|r,5| = 0.1), as there is
not a clear relationship between coherence and reading task
loudness.

III. RESULTS
A. Coherence Networks

The median network across subjects displays a visible
difference between vocal tasks, e.g., between pitch glide and

speech (Fig. 2). Similarly, Fig. 3 shows that the mean degree of
the network changed by the task for all subjects. Interestingly,
the mean degree showed a monotonic increasing trend in
response to both raised loudness and pitch for the varied
phonation tasks, and pitch glide appears to have the highest
coherence of all 10 tasks (Fig. 3). Mean degree showed a
monotonically decreasing trend from pitch glide to singing to
speech. Looking at the adjacency matrices corresponding to
the intermuscular coherence networks confirms this observa-
tion and shows that there appears to be little difference in the
observed network for reading tasks with different loudnesses
(Fig. 4).

In order to support the initial observations of the coher-
ence network differences between the vocal tasks, coherence
distributions were constructed by including all nodes in the
subjects’ intermuscular network, measured using degree and
weighted clustering coefficient (Fig. 5). For the varied phona-
tion tasks, the task-wise network degree and weighted clus-
tering coefficient median were monotonically ascending with
increasing pitch and loudness, and all tasks were statistically
different from each other (Friedman Chi?3’285) > 136.62, p
< 0.05, posthoc Wilcoxon signed-rank test: all six pairwise
comparisons p < 0.001). The network’s global efficiency
showed a trend of monotonically increasing coherence with
pitch and loudness for 5 out of 8 subjects. Moreover, the
effect size of the network metrics indicated quite a high
value (degree: |rp| = 0.48, weighted clustering coefficient:
|rrs| = 0.5). For the single repetition tasks, the median
of network degree and weighted clustering coefficient was
decreasing monotonically, with the pitch-glide having the
highest network degree and weighted clustering coefficient
at both greater than 0.7 (Friedman Chi%2,190) > 186.18, p
< 0.05, post-hoc Wilcoxon signed-rank test for all three
pairwise comparisons, p < 0.001). Furthermore, the global
efficiency trend was consistent and decreasing across all eight
subjects. The rank biserial correlation of the network metrics
also indicated a very high effect size (degree: |r.;| = 0.83,
weighted clustering coefficient: |r,5| = 0.85). The degree
and weighted clustering coefficient of habitual were higher
than whispered reading ((Friedman Chi%z,wo) > 477, p <
0.05, post-hoc Wilcoxon signed-rank test: p < 0.008) while
the weighted clustering coefficient of habitual was higher
than loud reading (p = 0.001). However, other task pairs
failed to show significant differences for the post-hoc test.
Global efficiency did not indicate a consistent trend amongst
subjects for the reading tasks. Moreover, for the reading task
set, the effect size was low for the network metrics (degree:
|rr5| = 0.08, weighted clustering coefficient: |r,.5| = 0.1).

Since one of the secondary aims of this study is to suggest a
suitable candidate task(s) for monitoring the effect of therapy,
the tasks which had produced the highest network metrics
were identified. For this, three tasks were selected, which had
resulted in the highest response in Fig. 5, when compared
within their categories. The selected three tasks are (i) the
varied phonation task with elevated loudness and high pitch,
(i1) pitch glide, and (iii) reading at habitual loudness, and
results are given in Fig. 6. Both network degree and weighted
clustering coefficient were significantly different from each
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Fig. 2. Coherence muscle networks for each vocal task were created from twelve sSEMG sensors placed bilaterally on the neck area. The width of each line
denotes the pairwise coherence between the two connected muscles, which is equal to the maximum coherence component in the 20-100 Hz range. In the
case of tasks that had multiple trials, the median network across trials is shown. Each node radius is equal to the degree (mean of coherences involving that
node). The line widths and node radii seem largest for /a/ with elevated loudness, high pitch, and pitch glide tasks.
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Fig. 3. Network mean degree for each task. The bar depicts the median
value across subjects. Individual subject values are denoted by dots. For the
subject median, the mean degree shows an increasing trend starting from the
first task (habitual loudness, habitual pitch) and continuing incrementally until
pitch glide. Network connectivity then shows a decreasing trend from pitch
glide to singing to speech. Finally, reading tasks seem to have little difference
between each other.
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other for all comparisons (Friedman Chi%2 190y > 149.08, p <
0.05, post-hoc Wilcoxon signed-rank test: all) three pairwise
comparisons p < 0.001). Moreover, pitch glide had the highest
network degree (median value ~ 0.7) and weighted clustering
coefficient (median value ~ 0.75), even higher than the varied
phonation task with elevated loudness and high pitch (degree:
median value ~ 0.55, weighted clustering coefficient: ~ 0.6).
Reading at habitual loudness had a lower degree (median value
~ 0.21) and weighted clustering coefficient (median value

~ (.22) than the other two tasks. This suggests that pitch
glide generates the maximum response of the network, which
can be considered potentially the most responsive and suitable
task for identifying abnormalities.

B. Spectrotemporal Metrics

To compare the ability of spectrotemporal metrics to distin-
guish different tasks, statistical analyses on RMS, PSD, and
median frequency of sSEMG were conducted. Distributions for
each of the three aforementioned quantities were constructed
by considering all nodes across all subjects (n=#subjects x
#nodes = 96). The mean value across each distribution was
computed for network and spectrotemporal metrics to form the
comparative Table 1. The level of cervical muscle activation as
measured by RMS was low by sEMG standards, with a range
of 4 — 11,V for the task mean values (Fig. 7a, Table I).

For the varied phonation tasks, the median PSD of louder
tasks was higher than habitual loudness tasks (p < 0.008).
However, the overall effect size of varied phonation tasks
(RMS: |r.p| = 0.08, PSD: |r,p| = 0.07, median frequency:
|rrs] = 0.06) was quite small. For single repetition tasks,
RMS and PSD did not show a clear trend (Fig. 5b). However,
median frequency of pitch glide was higher than other tasks
(p < 0.001), || = 0.12. PSD and RMS showed increased
values for loud reading (Fig. S5c). All distributions were
different from each other (RMS: p < 0.015, PSD: p < 0.01)
but the rank biserial correlation, |r,,| = 0.12, suggests a weak
effect size.
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Fig. 4. The median intermuscular coherence network adjacency matrix (12 rows X 12 columns = 144 squares) across subjects was computed for each vocal
task. In the case of tasks that had multiple trials, the median adjacency matrix across trials was first computed. Each square represents the pairwise maximum
coherence between the two muscles from the corresponding row and column and the color is proportional to the pairwise coherence. Since the connectivity
is undirected, the adjacency matrix is symmetrical. The highest pairwise coherences are observed for the elevated loudness, high pitch and pitch glide tasks.

IV. DISCUSSION

The results show that the perilaryngeal-cranial intermuscular
coherence network can distinguish both changes in vocal
parameters (i.e., loudness and pitch) and different vocal tasks.
The muscle network quantifies the spectral synchrony and can
robustly capture small changes associated with vocal output.
The strong performance of the muscle network is demonstrated
initially by the network visualization, and then statistical

analysis using the network metrics (degree and weighted clus-
tering coefficient) confirmed the observed trends. With regard
to the vocal tasks, two important statistically robust trends
are identified as follows: (i) network degree and weighted
clustering coefficient increase monotonically with loudness
and pitch in the varied phonation tasks and (ii) network degree
and weighted clustering coefficient are both the highest for the
pitch glide task. The ability of the intermuscular coherence
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Statistical results for network metrics of the three groups of tasks. The coherence muscle network was constructed for each task, and produces 12

node values for each of degree and weighted clustering coefficient (WCC). For each distribution of degree and weighted clustering coefficient, all node values
for all subjects are included (12 nodes X 8 subjects = 96 data points). For global efficiency, a singular value was obtained for each subject’s muscle network.
(a) For varied phonation tasks, intermuscular network degree and weighted clustering coefficient increase monotonically with raised loudness and pitch, with
statistical significance (all six taskwise comparisons: p < 0.001). The adjusted significance level was o’ = 0.05/6 = 0.0833. The effect size (|r,;|) is quite
high for both degree (|r,.5| = 0.48) and weighted clustering coefficient (|r,-5| = 0.5). (b) For single repetition tasks, intermuscular network degree and
weighted clustering coefficient decrease monotonically from pitch glide, to singing, to speech, with statistical signficance (all three taskwise comparisons:
p < 0.001). The adjusted significance level was o/ = 0.05/3 = 0.0167. The effect size (|r,.;|) is very high for both degree (|r,,| = 0.83) and weighted
clustering coefficient (|r,.5| = 0.85). All eight subjects’ global efficiency bar plots follow the monotonically decreasing pattern from pitch glide to singing to
speech. (c¢) For reading tasks, there are no visible trends in degree, weighted clustering coefficient or subject-wise global efficiency. The degree and weighted
clustering coefficient were higher for habitual vs loud reading (p < 0.009). The adjusted significance level was o/ = 0.05/3 = 0.0167. For weighted
clustering coefficient, there is a significant difference between reading at habitual and elevated loudness (p = 0.001). Effect size for degree (|r,,| = 0.08)

and weighted clustering coefficient (|r.5| = 0.1) is low.

network to distinguish vocal parameters and tasks was far
superior to the conventional node-wise metrics for SEMG, such
as RMS and PSD. These results suggest that both the varied
phonation and single repetition tasks in combination with
the perilaryngeal-cranial myographic network are sensitive to
various vocal features and thus can be potentially considered
as candidates for measuring the efficacy of therapy for vocal
disorders. The current study showed very strong statistics

supporting the use of the proposed network measures while
the conventional spectrotemporal metrics fail to provide the
needed sensitivity to the vocal features.

Perilaryngeal-cranial intermuscular coherence ascends
monotonically with loudness and pitch in the varied
phonation tasks (Figs. 2, 3, 4 and 5a, Table I). The high
differentiation of the varied phonation and single repetition
group tasks with high to very high effect size (varied
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TABLE I
MEAN VALUES OF NETWORK (LEFT) AND SPECTOTEMPORAL (RIGHT) METRICS FOR EACH TASK
Metric Metric
Task Degree (a.u.) WCC (a.u.) GE (a.u.) | RMS (wvV) PSD (dB) MDF (Hz)
varied phonation
— loudness, — pitch | 0.27 0.28 0.29 3.97 -128.61 51.48
1 loudness, — pitch 0.32 0.34 0.35 4.64 -127.57 52.57
— loudness, T pitch 0.44 0.47 0.48 3.97 -128.72 50.58
1 loudness, T pitch 0.51 0.55 0.56 4.66 -127.59 51.22
single repetition
pitch glide 0.70 0.76 0.76 7.52 -125.10 55.45
singing 0.36 0.39 0.40 6.17 -124.75 51.80
speech 0.24 0.25 0.27 7.26 -123.66 52.02
reading
whisper 0.21 0.22 0.23 6.66 -124.79 51.85
normal 0.22 0.23 0.24 7.68 -123.96 52.67
loud 0.21 0.22 0.23 11.10 -121.61 53.81

— loudness = habitual loudness, 1 loudness = elevated loudness, — pitch = habitual pitch, T pitch = high pitch

n=296 r=0.71 r=0.73
p <0.001 p <0.001
p <0.001 p <0.001
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Fig. 6. Comparison of tasks with highest network metrics from each group:
1) Pitch glide has both the highest degree and weighted clustering coefficient
(WCC), followed by 2) varied phonation task with elevated loudness, high
pitch, followed by 3) habitual reading, and all tasks are different from
one another (for both degree and weighted clustering coefficient, all three
taskwise comparisons: p < 0.001). The adjusted significance level was
o’ =0.05/3 = 0.0167. Reading has ~ 1/3 the median degree and weighted
clustering coefficient of the varied phonation task and pitch glide.

phonation: |r,p| ~ 0.5, single repetition: |r.;| ~ 0.8)
robustly supports the hypothesis that perilaryngeal-cranial
intermuscular coherence is generally proportional to loudness
and pitch. To the best of the authors’ knowledge, this is
the first study that shows perilaryngeal-cranial intermuscular
coherence is conclusively correlated to loudness and pitch.
In contrast to the coherence network, conventional node-
wise metrics such as RMS, PSD, and median frequency
failed to efficiently discriminate varied phonation tasks (Fig.
5a). Although there were some differences between louder
and habitual loudness tasks, the effect size (|r,|) was much
smaller for these metrics than for coherence (RMS: 0.08, PSD:
0.07, versus network degree: 0.48 and weighted clustering
coefficient: 0.5), i.e., the average difference between the task
pairs was less pronounced compared to the median of the
tasks. Despite inconclusive shifts in low cervical muscle
activations (Table I, Fig. 7), significant relative changes from
task to task were captured by network metrics (Figs 5a,
5b). The superior performance of coherence over node-wise
metrics may arise from the fact that network analysis allows
us to conduct a holistic neurophysiological analysis of the
functional synchrony and synergistic co-modulation of the
muscles needed for successful conduction of the tasks. Thus, in

the context of voice, the authors believe that the synchronous
behavior of the muscles has higher discriminative power (for
separating vocal features) and potentially higher diagnostic
value than isolated individual muscle recordings.

Overall, the single repetition tasks provided the most dif-
ferentiable network degree and weighted clustering coefficient,
which both decrease monotonically from pitch glide to singing
to speech with very high effect size (degree: |r,,| = 0.83,
weighted clustering coefficient: |r,,| = 0.85) (Fig. 5). The
effect is even greater for the single repetition than varied
phonation tasks. Moreover, it should be highlighted that all
subjects followed the group trend for network global efficiency
of the single repetition tasks, emphasizing robust separabil-
ity. This suggests that vocal tasks of different nature (pitch
glide, singing, and speech) provide the greatest diversity and
objectivity of muscle network performance which can be
easily differentiated by the network metrics. The fact that
pitch glide has the highest degree and weighted clustering
coefficient among all tasks (Fig. 6) suggests that the smooth
transition of the voice through octaves is assisted by very
synchronous perilaryngeal-cranial muscle activity. Indeed, it
is notable that singing had higher network coherence than
regular speech. Using the results that (i) higher pitch led to
increased network coherence for /a/ tasks and (ii) pitch glide
has the maximum network coherence of all tasks, both the
higher average pitch and the larger number of pitch changes
for singing versus speech are consistent with singing having
higher network coherence. This result is in contrast to a previ-
ous result with beta-band coherence between two muscles [23],
which found that speech had higher beta-band coherence than
singing. This difference might be due to benefiting from an
intermuscular coherence network with 12 nodes and 66 edges
in this study versus only two nodes and one edge coherence
in the previous study. This work also considers a much wider
frequency range (20-100 Hz) than the previous beta-band
coherence [23]. Despite the higher expected pitch for singing
vs. speech, neither median frequency nor PSD succeeded in
detecting a difference, highlighting the superiority of muscle
network coherence over node-wise methods in responding to
quantifiably small physiological changes of external muscles
related to vocal output.
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Fig. 7. RMS, PSD and median frequency of the three groups of tasks. Quan-
tifying the muscle activity with RMS, median PSD, and median frequency
produces 12 node values for each metric. All node values for all subjects are
included in each distribution (12 nodes X 8 subjects = 96 data points). (a) For
varied phonation tasks, median PSD shows increases in response to raised
loudness. Louder tasks have higher median PSD (p < 0.008) than habitual
loudness tasks. RMS increases with elevated loudness for the high pitch task
(p < 0.002). The adjusted significance level was o/ = 0.05/6 = 0.0833.
However, overall effect size of varied phonation tasks is still low (RMS:
|rrp| = 0.08, PSD: |r.p| = 0.07). No consistent patterns were observed
for median frequency. (b) For single repetition tasks, pitch glide had a
significantly higher median frequency than the two other tasks (p < 0.001).
The adjusted significance level was o/ = 0.05/3 = 0.0167. No substantial
trends were observed for RMS or PSD. (¢) For reading tasks, RMS and
median PSD show increases in response to elevated reading loudness. The
adjusted significance level was o/ = 0.05/3 = 0.0167. However, the effect
size is weak (RMS and PSD: |rp| = 0.12).

Tasks with a higher pitch component produced a more
synchronous network, and varying the pitch led to clearer
network responses. Both the varied phonation (/a/) high pitch
and pitch glide tasks were shown to have at least 3 X the
network degree or weighted clustering coefficient of a reading
task (Fig. 6), highlighting the ability of tasks with a high
pitch component to produce the most pronounced network
output. Moreover, the pitch-varying task sets showed clear
responses to vocal parameter changes. The varied phonation
tasks showed a gradually increasing response (Fig. 5a) from a
median network degree ~ 0.25 for habitual loudness, habitual

pitch to ~ 0.55 for elevated loudness, high pitch. The single
repetition tasks showed a sharper decrease from pitch glide
to singing than from singing to speech. For both varied
phonation and single repetition tasks, the network metrics
showed a distinctive response to each task; the effect size
was large (weighted clustering coefficient: |r.5| > 0.5) and
the null hypothesis was rejected with the highest significance
level (p < 0.001) for all task-wise comparisons. Tasks that
produce the most responsive network behavior would be the
most appropriate candidates in vocal therapy assessment, as
the responsiveness of the perilaryngeal-cranial intermuscular
coherence network should be high to maximize the sensitivity
of detecting signs of dysphonia or improvements made by the
therapy. Since the muscle network was most responsive to
tasks with a higher pitch component and pitch-varying task
sets, such tasks promise the best chance of success when
monitoring patient progress during vocal therapy.

Our results demonstrate the efficacy and sensitivity of
the intermuscular coherence network analysis in reflecting
quantifiably small modulations in vocal output (Table I), such
as detecting changes in vocal parameters and discriminating
single repetition tasks, with a robustly high effect size.

Taking inspiration from brain connectivity networks that can
detect functional changes, this is the first work that shows
topographical features of the intermuscular coherence network
can detect changes to indicate functional vocal characteristics.
Since vocal impairments and aging also create significant
changes in vocal parameters [30], [31], the outcomes of
this research can be potentially translated into characterizing
vocal disorders. This will be investigated in our future work.
Our study showed that the high functional synchronicity of
the perilaryngeal-cranial muscles produced a strong network
response during pitch glide, suggesting that the laryngeal
performance can be measured by the perilaryngeal-cranial
network, which needs to function in synchrony to conduct
the corresponding tasks. With such a high sensitivity, other
vocal disorders could be potentially detected and monitored by
our suggested configuration. Given the high range of muscles
recorded, in addition to the wide frequency range covered,
the perilaryngeal-cranial muscle network is a great candidate
for an objective, digital method of detecting and monitoring a
wide range of vocal disorders, using smart wearable clinical
technologies, such as a smart EMG necklace. A further clinical
application of the strong correlation between perilaryngeal-
cranial muscle network features and vocal output lies in an
EMG-based electrolarynx device [32], [33]. Regarding patients
who have lost their vocal cords due to cancer, the muscle
network features of healthy cervical muscle activity could be
used to drive a laryngeal prosthesis, capable of distinct levels
of output pitch and loudness.

Some limitations of this study include that the effect of
vocal fatigue was not controlled and the order of the tasks was
not randomized. It should be noted that the vocal experiment
procedure for each subject required a total of ~ 9 minutes of
vocal effort, which is significantly lower than the effort needed
for fatiguing a subject (which is ~ 60 minutes for vocal fatigue
with comfortable reading loudness or intermittent loud reading
tasks for several hours [34], [35]). Even though the duration of
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each task was very limited in this study and would not trigger
vocal fatigue or any major change in the neurophysiological
status of the muscles, this study does not randomize the tasks
to maximize protocol adherence, in terms of production of the
targeted vocal tasks. The authors would like to highlight that
this study was limited in terms of inclusion of older adults
and patients with voice disabilities and degradation. These
topics will form our future work. It should be noted that cross-
talk can always affect SEMG recordings with densely-placed
electrodes, including the one used in this paper. However,
the robust effect size of the features of the intermuscular
coherence network reported in this paper, the use of Delsys
Mini sensors, and bipolar sSEMG suggest that cross-talk has
had minimum-to-no effects on the main aim of this study.
The resiliency of the network to potential cross-talk can be
specifically investigated in our future work.

V. CONCLUSION

For the first time, this work shows that the perilaryngeal-
cranial functional muscle network can detect subtle changes in
distinguishing vocal tasks. The network-based metrics showed
a robust effect size for changes in loudness and pitch in the
set of varied phonation tasks and an even more robust effect
size amongst the single repetition tasks, which included a pitch
glide, singing, and a short speech. The network outperformed
conventional spectrotemporal node-wise metrics (RMS, PSD,
and median frequency) regarding sensitivity to changes in
vocal output. This robustness suggests that the perilaryngeal-
cranial functional muscle network is a promising method to
differentiate physiological abnormalities and may be used
in the future to assess voice disorders and optimize vocal
rehabilitation. The future direction of this study includes data
collection from a more diverse control population and inclu-
sion of the patient population to (a) enhance the robustness
of the made observations and (b) evaluate the power of the
proposed method as a potential diagnostic biomarker.
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