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Abstract—There has been an accelerated surge in utilizing the
deep neural network to decode central and peripheral activations
of the human nervous system to boost the spatiotemporal resolu-
tion of neural interfaces used in human-centered robotic systems,
such as prosthetics, and exoskeletons. Deep learning methods are
proven to achieve high accuracy but are also challenged by their
assumption of having access to massive training samples. Objective:
In this letter, we propose Dilated Efficient CapsNet to improve
the predictive performance when the available individual data is
minimal and not enough to train an individualized network for
controlling a personalized robotic system. Method: We proposed
the concept of transfer learning for a new design of the dilated
efficient capsular neural network to relax the need of having access
to massive individual data and utilize the field knowledge which
can be learned from a group of participants. In addition, instead
of using complete sEMG signals, we only use the transient phase,
reducing the volume of training samples to 20% of the original
and maximizing the agility. Results: In experiments, we validate
the performance with various amounts of injected personalized
training data (from 25% to 100% of transient phase). The results
support the use of the proposed transfer learning approach based
on the dilated capsular neural network when the knowledge domain
learned on a small number of subjects can be utilized to minimize
the need for new data from new subjects. The model focuses only
on the transient phase which is a challenging neural interfacing
problem.

Index Terms—Human-centered robotics, neurorobotics, surface
electromyography, transfer learning.
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I. INTRODUCTION

IN THE U.S., nearly 2 million people are living with limb
loss [1], and by estimation, the total number of amputees will

approximately exceed 4 million within 30 years [2]. Among all
amputations, upper limb loss has a less frequent occurrence but is
reported to have a higher rejection rate on commercial prostheses
[3], [4]. For the hardware, the current design of the commercial
prostheses lacks functionality for Activities of Daily Living
(ADLs) and comfortability in wearing. For the software, gesture
detection from prostheses deviates from amputees’ perception
[5]. Periodic, long-duration data collection at designated clinics
for maintaining the performance of prostheses is also pushing
amputees back to conventional cable-driven, passive prostheses.
Thus there is an accelerated surge of research on designing new
neural interfaces that can provide more accurate detection of
amputees’ intended movements and a more agile response to
amputees’ muscle-activity signal.

In the literature, hand gesture classification through surface
electromyography (sEMG) signals [6]–[12] has been exten-
sively utilized with the ultimate goal of use in prosthetic con-
trol in a non-invasive manner. However, traditional machine-
learning algorithms [7]–[10], which are based on feature engi-
neering, can achieve relatively low accuracy when classifying
a large number of gestures. Recently, deep learning (DL) mod-
els [11]–[16] were introduced to improve the performance of
sEMG-based gesture recognition tasks. Among neural network
systems, Convolutional Neural Networks (CNNs) [11], [12] help
eliminate the need for manual feature extraction and improve
the model performance. Recurrent Neural Networks (RNN)
[13], [14] have also been considered due to their ability to
capture temporal dynamics. The hybrid models that incorporate
CNN and RNN are also applied to leverage the advantages
of both techniques [15]. However, deep learning methods can
only achieve high performance when trained on a substantial
amount of data. Also, it should be noted that by nature, the
neural drive to muscles is time-dependent and stochastic, and
the neural control strategies between different users vary. In
addition, the amputation conditions also cause variability [17].
Consequently, the models trained on specific subjects will not
perform well for another user. As a result, the existing models
are mainly trained in a user-specific manner, which means that
there is a need for large data collection and retraining for new
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users. Even for one subject, there will be the need for frequent
recalibration (data collection and retraining). Frequent retraining
and recalibration [18] is theoretically one way to compensate for
the issues; however, the inconvenience it brings also prompts the
high rejection rate in the upper limb neurorobotic systems. Due
to these reasons, the practicality of models which would require
a high volume of sEMG data is challenged, and there is a strong
desire to have models that can reduce the need for a high volume
of data, even if they support lower degrees of freedom.

To augment the performance, some researchers have lever-
aged the high spatio-temporal resolution of high-density surface
electromyography (HD-sEMG) collected from dense electrode
grids [19] to increase the amount of data collected and the
information rate in one data collection.

In this letter, we focus on using sparsely-located bipolar
sEMG (not high-density) and propose a novel transfer learning
algorithm. In the literature, transfer learning is known as a
method to deal with data deficiency while ensuring classification
accuracy [20], [21]. This letter proposes the use of transfer
learning to allow deep learning models pre-train on the sEMG
data from multiple users and capture the domain knowledge;
then, this pre-trained model will be partially frozen, leaving
only a small number of trainable parameters when calibrating on
an unseen user. In this way, transfer learning vastly reduces the
training samples needed and improves the model performance by
transferring the common domain knowledge gained in advance
to the calibration tasks for new users. There exists some work
on sEMG-based transfer learning using convolutional neural net-
works [20], [21]. Although it reduces the need for retraining and
recalibration, the use of a classic convolutional neural network
still needs a large amount of data to achieve high performance
and generalizability. Thus, our goal is to find a method that is
able to achieve high performance while giving a limited amount
of data for training.

In this letter, we conduct transfer learning on a specifically-
designed Dilated Efficient Capsule Neural Network, proposed
in this letter, as the model architecture. Instead of conventional
CNNs that only search for the appearance of learned features
from inputs, we use a capsular neural network (CapsNet) to
save learned features as vectors with both scalar values and
orientation, detecting hand gestures regardless of the “location
and orientation” of the associated neurophysiological features
in the sEMG data space. In this work, we propose “Dilated
Efficient CapsNet” (different from classic CapsNet). The pro-
posed Dilated Efficient CapsNet (a) removes the decoding block
that reconstructs the inputs, making the architecture very more
compact (reducing more than 89.57% trainable parameters,
which also helps with avoiding model overfitting); and (b) uses
dilation in each convolutional layer of the convolutional block
to enlarge the receptive field in gesture detection. In order to
evaluate the robustness and superiority of the proposed model,
a systematically-designed comparative study is conducted with
multiple conventional deep neural networks.

It should be noted that this letter focuses on utilizing only
the transient phase of the sEMG signals from each repetition to
reduce control delay. In this regard, it should be mentioned that
each repetition of gesture performance in commonly used sEMG

TABLE I
COMPARISON BETWEEN PROPOSED METHOD AND LITERATURE IN MODEL

ACCURACY AND PERCENTAGE OF TRAINING DATA

Note: All papers are based on Ninapro DB2 Exercise B.

databases can be divided into the transient phase, the steady-
state, and the descending phase. Transient data corresponds to
the bursts of myoelectric activity triggered by sudden motor unit
recruitments and indicates the movement intention. In most of
the existing literature [6]–[18], [20]–[23], a complete temporal
profile (including transient phase, steady-state, and descending
phase) or only temporally-dissected steady-state signals (asso-
ciated with the myoelectric signal during stable muscle con-
tractions) have been utilized for training and validating machine
learning models processing sEMG. Thus, transient phase signals
are often ignored due to their unstable appearance, even though it
plays a critical role in the responsiveness of the neural interfaces.
Nevertheless, transient phase signals are observed to possess a
unique structure [24], suggesting orderly recruitment of motor
units and the potential of including descriptive information of
intended movements [25]. In other words, although decoding
transient sEMG can be more technically challenging due to the
dynamicity of this temporal phase; however, it can significantly
improve the quality of the interface. As a result, in this letter,
we focus on transient phase sEMG. It should also be noted
that utilizing the transient signals reduces the available training
data (to at least 20% of the original amount), but it can be
used to “predict” the hand gesture before the stable temporal
phase. In this letter, gesture prediction is defined as gesture
recognition during the dynamic period of gesture performance
before the most stable temporal phase of muscle contractions,
reducing the control delay to make the interface as seamless as
possible. As the major achievement, it can be mentioned that
the proposed architecture in this letter requires five times less
amount of training data needed for a new subject when com-
pared with state-of-the-art literature [11], [12], [19], [23] while
achieving high-performance of about 80% on transient-phase
signals (see Table I). The main contributions of this work are as
follows:

Contribution 1: This letter proposes Dilated Capsule Con-
volutional Networks in sEMG-based hand gesture prediction
for the first time, evaluating the performance of the model for
various injections of the new data. By saving vectors instead of
scalars, the CapsNet structure can accurately detect unique un-
derlying physiological information associated with each gesture
without substantial training data.

Contribution 2: Using different percentages of transient
phase signals as training data, we reduce the amount of the
training sample to less than 20% (as low as %5) of the original
need while significantly enhancing the agility and temporal
resolution.
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Fig. 1. Total 17 gestures in DB2, Exercise Set B.

Contribution 3: Applying transfer learning on Dilated Ef-
ficient CapsNet, we can achieve about 80% accuracy based
on transient-phase signals (only 20% of each repetition) when
predicting 17 gestures. Moreover, we train on even fewer data to
evaluate the performance robustness of the proposed method. As
a result, the proposed method can achieve about 70% accuracy
when given only 5% signals from each repetition, significantly
enhancing the agility and temporal resolution.

II. DATA

A. Data Acquisition

Ninapro [26] is an open-source project that aims to help
EMG prosthetics research through the publicly available sEMG
dataset. In this work, we leverage its second sub-database (DB2),
and use the section of “Exercise set B”. This dataset includes
the sEMG signals [27] of 40 subjects (all intact; 28 males,
12 females; 34 right-handed, 6 left-handed; age 29.9 ± 3.9
years) performing 17 hand gestures shown in Fig. 1 (8 isomet-
ric and isotonic hand configurations, and 9 basic movements
of the wrist). To collect the data, each subject was asked to
maintain the hand gesture for 5 seconds, followed by resting
for 3 seconds, and the experiment was repeated 6 times for
each gesture. In addition, the acquisition setup included 12
Delsys Trigno electrodes (8 electrodes were wrapped around
the radio-humeral joints, two around the biceps and triceps, and
two around the flexor and extensor digitorum superficialis). They
were designed to record hand kinematics, dynamics, and the
corresponding muscular activity, and the sensors were linked to
a laptop responsible for signal data acquisition sampled at 2k
Hz. Using such a benchmarked database allows us to ignore
various factors, including the experimental conditions which
could otherwise affect the recorded results.

B. Data Pre-Processing

The three phases of repetition of voluntary muscle contrac-
tion form a trapezoidal profile and are visualized using sEMG
accelerometer data. The upper base of the trapezoid is considered

Fig. 2. Illustration of transient phase signals: average root mean square of
accelerometer data across all subjects for (a) gesture 16, and (b) gesture 17. The
dotted line indicates that the transient phase ends at 1 s. Repetitions are denoted
by different colors.

the steady-state of contraction, and the first slant of the trapezoid
roughly outlines the transient phase. In this letter, we decide the
length of the transient phase by the root mean square (RMS)
of the accelerometer signals averaging across all subjects. As
shown in Fig. 2, it is observed that the average RMS of the
accelerometer data becomes steeper in the first 20% (1 second
on average) of the gesture repetition. This part can be considered
the transient phase, and thus, we extract the first 20% of each
repetition length to obtain the transient, discarding the remaining
part of the repetition.

A minimal preprocessing pipeline that includes normalization
and rectification is then processed on the data. It normalizes the
signals using z-score normalization with means and standard
deviations from the training data and rectifies the normalized
signals by taking the absolute values. Normalized and rectified
signals are windowed with 300 ms, and labels are assigned
to each window. The signal data after windowing will be in
the shape of 600 * 12. The 600 here represents the number
of timesteps (300 ms * 2 kHZ = 600), and 12 represents the
number of sensors or channels. Based on the literature, 300 ms
is the largest window size required for real-time control. We use a
window of size 300 ms [24] with an overlap of 10 ms to generate
the training and testing sets. Data in the DB2 dataset is already
Hampel filtered to remove 50 Hz powerline interference [28]. We
do not apply any extra lowpass filtering techniques to the signals
since it reduces the quality of the data. For the train-test split, we
leverage repetitions 1, 3, 4 and 6 for training the deep learning
model and repetitions 2,5 for validating the trained model [28].
Therefore, our proposed method only requires a total duration of
68 seconds (4 repetitions * 1 second per repetition * 17 gestures)
for each subject for training. The transient phase of the signals
being a small part of the data sample drastically reduces the time
required to train the model and results in a lower calibration
time.

III. MODEL ARCHITECTURE

We propose the concept of Dilated Efficient Capsule Network
in this letter for sEMG signals classification and apply transfer
learning to it to improve gesture-prediction accuracy and mini-
mize the needed data for training.

In the literature, Convolutional Neural networks (CNN) have
helped achieve remarkable results in problems including image
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Fig. 3. The Illustration of the model architecture of Dilated Eff-Caps. 1) We process the sEMG signals by windowing and make it the input of Dilated Eff-Caps.
2) The Dilated Eff-Caps consists of two blocks. The Convolutional block has four Conv layers, each having a 2D Convolutional Layer with a ReLU activation
function at the end of each layer. The Capsule block has a Primary Conv followed by a squash function, a Capsule layer to perform routing algorithms, and a
Lambda Function to generate the output. 3) The output of this model architecture is the probability of each signal classified as one of the 17 gestures. 4) The dashed
line denotes the only two trainable Conv layers of the Top5 Eff-Caps model when calibrating individually on the remaining 35 subjects.

classification [29]–[31] to object detection [32]–[34]. However,
translation invariance achieved by the CNN comes at the expense
of losing some information about the object’s location. This issue
has been addressed generically in the literature using capsular
neural network architectures. Capsules are vector representa-
tions of features. Moreover, each capsule involved in the network
dynamically describes how the entity is instantiated. Capsule
networks also leverage the concept of routing by agreement,
where the predictions of low-level capsules are routed to their
best match parent. This helps assess the reciprocal agreement
between groups of neurons to capture covariance and leads to a
compact model with fewer parameters and better capability to
generalize on new data.

The model architecture of the proposed Efficient CapsNet has
two basic building blocks as described in Fig. 3. The Convolu-
tional block involves four 2D convolutional layers, having 128,
128, 256, and 256 filters, respectively. Each 2D convolutional
layer is followed by a Dropout Layer and a Batch Normalization
Layer. We use the Dropout regularization technique to avoid the
possible case of over-fitting. The dropout rate in our model is set
to 0.5. We have the Convolutional block followed by a Capsule
block. The Capsule block involves a “Primary Convolutional”
layer that has a 2D convolutional layer followed by a squash
activation function to normalize the output vector rather than
the scalar elements themselves. The squash activation function
is defined as (1), where vj is the vector output of capsule j, and
sj is its total input.

vj =
‖sj‖2

1 + ‖sj‖2
sj

‖sj‖ (1)

It is necessary to ensure that the length of the vector lies in
the range from 0 to 1 because it represents the probability of
information routing from the current layer to the next capsule
layer. Hence a squash activation is used, which drives the length
of the large vector towards 1 and the small vector towards 0.
The Capsule layer in the Capsule block expands the output
of the neuron from a scalar to a vector. We use an iterative
dynamic routing algorithm that groups capsules to form a parent
capsule to compute the capsule’s output. The number of routing
iterations is 3. We define the “Margin” loss which is computed

for each class in the classification problem, given by (2).

Lk = Tk max
(
0,m+ − ‖vk‖

)2
︸ ︷︷ ︸

class present

+ λ (1− Tk)max
(
0, ‖vk‖ −m−)2

︸ ︷︷ ︸
class not present

(2)

Tk is assumed to be 1 if the gesture k is present or 0 otherwise.
The parameters m+ and m− are tuned so that the length of
the vector does not become extreme. The Lambda function
computes the length of each output vector from the Capsule
layer. These lengths represent the probability of each of the 17
gestures.

The proposed Dilated Efficient CapsNet is an improvement
of the currently existing CapsNet model in literature [35]. The
original CapsNet had 16.3M trainable parameters in comparison
to the proposed Dilated Efficient CapsNet, which has 1.7M
trainable parameters. The primary difference between the two
models is their architecture. The original CapsNet has a single
convolutional layer in the convolutional block in comparison
to the Efficient CapsNet, which has four convolutional layers,
each with a large number of filters. To avoid the complexity
of the original CapsNet model, the Efficient implementation
removes the reconstruction/decoding block of the CapsNet. This
reduces the number of trainable parameters and training time
significantly. Removing the decoder part does not affect the
model’s performance because we currently use minimal pre-
processed windowed data as the input to the model. To improve
the performance of the model, we make use of dilation to expand
the area of reach without pooling. We use a dilation rate of (2, 2)
in the 2nd convolutional layer followed by (4, 4) in the 3rd layer
and (8, 8) in the last layer of the convolutional block. The total
number of trainable parameters for the Dilated Efficient CapsNet
becomes 3.7M, however, the additional padding incorporated
with dilation allows the center of the kernel to pass over the edge
channels, providing additional useful information. The training
process in a real-life situation can be quite time-consuming.

To solve the data hunger problem of DL-based gesture recog-
nition for decoding multichannel sEMG, we leverage the con-
cept of Transfer Learning and apply it in our proposed Dilated
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Efficient CapsNet (Dilated Eff-Caps) model. The Transfer learn-
ing model uses the pre-knowledge from other users and has a
reduced number of trainable parameters when calibrating on an
unseen user. The quality of data used to train the pre-trained
model for transfer learning affects the representativeness and
generalizability of the pre-trained model when calibrating on
new users. Hence, a poor subset would not accurately represent
the inter-subject variance and would not be very useful. In our
study, the proposed Dilated Eff-Caps model is initially trained
on each of the 40 subjects in the dataset, and the corresponding
performances were recorded to derive the top-5 performing
subjects from the dataset for transfer learning. Then, we pre-train
the Dilated Eff-Caps on the data from the top-5 performing
subjects together, leaving only the first two convolutional layers
(see the dashed area in Fig. 3) of the pre-trained Dilated Eff-Caps
trainable. With the common knowledge of the 5 best-performing
subjects, the calibrated model continuously learns from and
tailors to a new user when there is fresh information coming
in. In this way, we reduce the negative impact of less training
data and improve training efficiency.

IV. EXPERIMENTS AND RESULTS

A set of experiments are conducted to validate our proposed
model architecture and the segmentation scheme of the tran-
sient phase. We quantify the advantages of transfer learning
(see Appendix A) and trade-offs presented through the use
of the transient signals (see Appendix B) before comparing
the performance of the Dilated Eff-Caps and Top5 Eff-Caps
with a multi-layer perceptron (MLP), 2D CNN, and RNN-CNN
Hybrid [23]. Evaluation of the predictive accuracy is carried out
through the use of different transient segmentation schemes with
different data volumes.

The Hybrid model architecture, for comparison, was inspired
by [23]. The hybrid model has three components: the LSTM
block composed of four LSTM layers, each with 128 units; the
CNN block with seven convolutional layers with the filters of
32, 64, 64, 128, 128, 256, respectively and the dilation rate on
CNN layers two through six of 2, 2, 4, 8, 8, 8; and the classifier
block, three fully connected dense layers with units 64, 32, 17.
The size of the MLP and 2D CNN network was created to be
comparable to the number of trainable parameters in the Hybrid
model 1.7M. The MLP architecture used is a simple five-layer
network with the following number of units per layer: 256, 128,
64, 32, 17. The 2D CNN was composed of four 2D convolutional
layers with filters of 32, 32, 64, and 64. The convolutional block
was then followed by a small classifier block of two dense layers
with 32 and 17 units.

Regarding the data segmentation scheme, we propose (a)
temporal segmentation, and (b) repetition segmentation. As
shown in Fig. 4, we split sEMG signals by repetition 1, 3, 4,
6 and repetition 2, 5. Purple repetitions 1, 3, 4, 6 are fed into the
models as training samples, and red repetitions 2, 5 are served
as the testing data. To validate the proposed model’s ability to
achieve high predictive accuracy with much less training data,
we extract different percentages of transient signals as model
input. Temporal segmentation extracts signals via horizontal

Fig. 4. The illustration of data segmentation scheme: temporal segmentation
and repetition segmentation. Repetitions in purple are training samples, and
repetitions in red are testing samples. We extract different percentage of the
transient phase via the direction of arrow.

TABLE II
TEMPORAL SEGMENTATION (AVERAGE ACCURACY)

TABLE III
REPETITION SEGMENTATION (AVERAGE ACCURACY)

chronological order. In contrast, repetition segmentation sees
each repetition as 25% of the training transient signals and
extracts a various number of repetitions based on experimental
need via vertical order.

The comparative average model performance of temporal
segmentation is included in Table II, and repetition segmen-
tation model comparison is included in Table III. Both tables
correspond with a box plot to visualize the accuracy distribution
of the 35 tested subjects from all models. A two-sided Mann-
Whitney-Wilcoxon test was applied with Bonferroni correction.
We set the p-value to be 0.05. Significance is indicated on results
using the following significance markers: corrected p-values
between 0.05 and 1 are considered to be not significant (ns);
corrected p-values between 0.01 and 0.05 are marked by *;
corrected p-values between 0.001 and 0.01 are marked by **;
corrected p-values between 0.0001 and 0.001 are marked by ***,
and corrected p-values smaller than 0.0001 are marked by ****.
The statistical significance test and p-value annotations apply
to all model comparisons in the letter, including the Appendix
section.

Overall, we can notice a higher predictive accuracy of tem-
poral segmentation experiments than repetition segmentation
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Fig. 5. Temporal segmentation performance comparison with statistical sig-
nificance tests across selected models.

Fig. 6. Repetition segmentation performance comparison with statistical sig-
nificance tests across selected models.

experiments. All models’ predictive accuracy of repetition seg-
mentation tasks is highly correlated to the amount of data fed
as training samples, while in temporal segmentation, Dilated
Eff-Caps and Top5 Eff-Caps can still achieve high accuracy with
much fewer data. It can be observed by comparing Figs. 5 and
6 that our proposed method (Top5 Eff-Caps) can achieve as
higher as more than 30% (69.4%–36.7%) accuracy in temporal
segmentation than in repetition segmentation when given the
same amount of training data (25% of transient data or 5% of
complete data). This observation matches our expectation be-
cause, the fewer data required from each repetition, the lower the
control delay. Based on temporal segmentation, Top5 Eff-Caps
can achieve 69.4% predictive accuracy with only 25% of the
transient (5% of the complete signals), and achieve 74%, 77.7%,
78.3% with 50%, 75%, and 100% percentage data respectively.
The Top5 Eff-Caps net outperforms any other model architecture
in terms of the predictive accuracy with any transient percentage.
At most, it can achieve 43.4% higher accuracy with 25% of

transient data compared to MLP; at least, it can achieve 10%
higher accuracy with 75% of transient data compared to the
Hybrid model. It can be seen that although the Top5 Eff-Caps is
not significantly better than its non-transfer-learning counterpart
when using over 50% of the transient signals and is not signif-
icantly better than the hybrid model when using 100% of the
transient signals, Top5 Eff-Caps outperforms the other models
when using only 25% of the transient signals.

Based on repetition segmentation, the effectiveness of transfer
learning is not as dominant as in the case of temporal segmen-
tation. The statistical significance test highlights this relative
reduction in superiority. The Top5 Eff-Caps model at the 25%
and 75% repetition segmentation levels obtains lower accuracies
than the non-transfer-learning Dilated Eff-Caps model. How-
ever, our proposed models, Dilated Eff-Caps and Top5 Eff-Caps
net, outperform all other comparative models, validating the
effectiveness of the architecture in this letter.

In order to further evaluate the results of each segmentation
method, the variance in the accuracy for all models was checked.
The variances of Top5 Eff-Caps model are the lowest given
any amount of training data in temporal segmentation, with an
average variance of 7.47%. For repetition-based segmentation,
the variances of the Top5 Eff-Caps net model is the lowest
given all amounts of training data except 25%, with an average
variance of 5.67%. These results further support the benefit of
transfer learning and the performance of the proposed algorithm.

V. CONCLUSION

This letter proposes transfer learning for a new Dilated Ef-
ficient CapsNet, designed in this letter, to optimize the gesture
prediction accuracy with much fewer data provided compared
to conventional studies. Instead of using complete sEMG signal
repetitions, this work utilizes only the transient phase as the
training samples. In this way, we reduce the training data to at
least 20% of the original and transform the traditional classifica-
tion problem into prediction. Utilizing only transient signals can
eventually augment the predictive agility of neurorobotics. The
inherent capsular characteristics of saving features as vectors of
the proposed Dilated Capsule Neural Network helps to capture
the correlated information within signals and across repetitions.
It ensures the performance of the proposed model architecture
with a very small amount of data compared to conventional deep
learning methods applied to the sEMG decoding problem. The
results showed that the implemented transfer learning approach
for the proposed Dilated Efficient CapsNet can achieve an aver-
age predictive accuracy of 78.3% across 35 subjects on transient
signals (20% of the complete signal repetitions). Even with 25%
of the transient (5% of the complete signal repetitions), it can
still achieve an accuracy of about 70%.

In this work, we also examine two different data segmentation
schemes by comparing the performance of various models under
these two circumstances: temporal segmentation and repetition
segmentation. By processing these two segmentation schemes,
we can check the feasibility of further reducing the training data
by 25%, 50%, and 75% of its original. A superiority of temporal
segmentation over repetition segmentation is observed, and the
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effectiveness of transfer learning under temporal segmentation
is larger than that under repetition segmentation. Although we
use much fewer data than in previous research, it is noteworthy to
mention that the data used in this letter had been collected from
able-bodied subjects. The neurophysiology of a healthy popula-
tion can hardly reflect amputees’ bio-electrical conditions, and
various amputations would also lead to greater challenges of
training only on transient signals of non-intact subjects. This is
a limitation of the current study. As a future line of research,
we will collect the sEMG data from amputees and validate our
model architecture in more practical applications. One of the
lines of our future work is to investigate adaptive and iterative
model learning that reduces the need for periodic retraining and
recalibration. This is not within the scope of the current letter.
Another future line of our research is to propose a systematic
method (e.g., Markov Decision Process) to distinguish the tran-
sient phase and steady-state phase when given a repetition of
sEMG signal.

APPENDIX

METHOD VERIFICATION

In this section, we describe and discuss the additional ex-
periments that help us come to the conclusion of having Top5
Eff-Caps as our best proposed model. These experiments an-
swer questions, including 1) “what are the benefits of applying
transfer learning to Dilated Eff-Caps?”, 2) “what and how many
subjects should be used in a pre-trained model?”, and 3) “what
is the trade-off between high model performance (when training
on steady-state or complete data) and low control delay (when
training only on the transient data)?”. The detailed experiments
and observations can be found in the following subsections.

APPENDIX A
PERFORMANCE COMPARISON WITH AND WITHOUT TRANSFER

LEARNING

In order to exemplify the benefit of transfer learning with
our proposed model architecture, we have provided the fol-
lowing comparison displaying the per-gesture accuracy across
30 subjects’ transient data for the Dilated Eff-Caps model and
two transfer learning variants, i.e., the Top5 Eff-Caps and the
Top5-Rand5 Eff-Caps. Top5-Rand5 Eff-Caps is very similar to
Top5 Eff-Caps, but in addition to using the top 5 subjects’ data
for pre-training, data from five additional randomly selected sub-
jects were included. The Top5-Rand5 Eff-Caps were considered
to see whether adding additional data for pre-training without
discretion would result in higher user-specific performance for
the remaining subjects.

Fig. 7 indicates that without transfer learning, the model has
a lower performance accuracy overall and is less robust, as seen
by its larger variance. Gestures 1, 3, 8, and 12 exemplify these
poorer qualities of the non-transfer learning model. Additionally,
the plot portrays the importance of subject data selection as it
pertains to model generalizability when implementing transfer
learning. Observing the inclusion of the random five subjects in
our Top5-Rand5 Eff-Caps model, there is a subtle decrease in
performance, evidenced by a slight reduction in overall accuracy

Fig. 7. The box plot on the left side shows the per-gesture accuracy across
30 subjects for each model. The box plot to the right side displays the average
accuracy across all gestures for each model.

and an increase in variance. This reduction in performance is
reasonable as pretraining was performed with mixed quality
subject data, and most of the model layers remained frozen
during retraining. The slight reduction in performance is because
the larger-scale feature representations found through hierarchi-
cal convolutions of multiple layers are not as clear and cleanly
defined as those found in the Top5 Eff-Caps.

The model performances from worst to best are non-transfer
learning Dilated Eff-Caps with an accuracy of 80.5% and a
subject variance of 2.42%; Top5-Rand5 Eff-Caps with an accu-
racy of 81.3% and a subject variance of 2.28%; Top 5 Eff-Caps
with an accuracy of 81.1% and a subject variance of 1.99%.
It can be noted that even though the comparing three models
similarly perform when given 100% transient data, applying
transfer learning on the proposed dilated Eff-Caps enhances
the generalizability of a pre-trained model and reduces the
discrepancy in user-specific accuracies of the tested 35 subjects.

APPENDIX B
PERFORMANCE CONTROL DELAY TRADE-OFF ANALYSIS

In subsection B, we analyze the trade-off between low control
delay using only the transient-phase signals and the relatively
high performance using the steady-state-phase or complete sig-
nals. Considering the desired profile of gesture performance
is an isosceles trapezoid, in accordance with the observations
on the accelerometer signals (see Fig. 2), we consider the first
20% (one second in average) data as transient-phase signals, the
next 60% (three seconds in average) data as steady-state-phase
signals, and the remaining 20% (one second in average) data as
descending-phase signals from each repetition. In this appendix,
the model performance of the proposed method (Top5 Eff-Caps)
is evaluated in these three phases resulting in 78.1% on transient-
phase data, 81.9% on steady-state-phase data, and 81.5% on
complete data (see Fig. 8). When implementing the statistical
significance test (two-sided Mann-Whitney-Wilcoxon test with
Bonferroni correction), we observe no significant difference
between the model performance on transient data and the model
performance on either steady-state-phase data or complete data.
The use of the transient signal provides a substantial improve-
ment in control time while here we show the performance is
statically not different. Achieving an accuracy near 80% across
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Fig. 8. Top5 Eff-Caps performance when training and testing on different
signal portions. The average accuracies across 35 subjects 78.1% based on
transient data, 81.9% based on steady-state data, and 81.5% based on complete
data.

17 different gestures while using only the transient signal is a sig-
nificant achievement considering the data limiting constraints.
The model performance (∼80%) based on transient-phase data is
comparable to the literature, where models were trained based on
complete signals from the same data set (Ninapro DB2 Exercise
B). Accordingly, it can be said that the proposed method in this
letter outperforms the conventional deep learning methods by at
least 7% when using minimal data (see Tables II and III).
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