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In this paper, we study the long-time behavior of the solution for the linearized ideal 
MHD around sheared velocity and magnetic field under Stern stability condition. 
We prove that the velocity and magnetic field will converge to sheared velocity and 
magnetic field as time approaches infinity. Moreover a new depletion phenomenon 
is proved: the horizontal velocity and magnetic field at the critical points will decay 
to 0 as time approaches infinity.
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r é s u m é

Dans cet article on étudie le comportement en temps long de la solution des 
équations de la MHD idéale linéarisées autour d’un champ de vitesses et d’un 
champ magnétique cisaillés avec la condition de stabilité de Stern. On démontre 
la convergence du champ des vitesses et celle du champ magnétique vers des états 
de cisaillement lorsque le temps tend vers l’infini. On découvre aussi un nouveau 
phénomène de deṕlétion : aux points critiques, les composantes horizontales du 
champ de vitesse et du champ magnétique décroissent vers 0, quand le temps tend 
vers l’infini.
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1. Introduction

The appearance of large coherent structures is an important phenomenon in the magnetic fluid. The 
study of the long-time behavior of MHD waves is a very active field in physics and mathematics [5,11,24].

1.1. The linearized MHD system

In this paper, we consider the magnetic fluid described by the two-dimensional incompressible ideal MHD 
equations on the periodic domain T 2 = {(x, y)|x ∈ T , y ∈ T}⎧⎪⎨⎪⎩

∂tU + U · ∇U − H · ∇H + ∇P = 0,

∂tH + U · ∇H − H · ∇U = 0,

∇ · U = 0, ∇ · H = 0,

(1)

with initial data U(0, x, y) and H(0, x, y). Here U = (U1, U2), H = (H1, H2) and P denote the velocity field, 
magnetic field, and the total pressure of the magnetic fluid, respectively.

System (1) has an equilibrium Us = (u(y), 0), Hs = (b(y), 0), Ps = const.. We shall focus on the 
asymptotic behavior of the linearized 2D MHD equations around this equilibrium, which take the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tU1 + u∂xU1 + ∂xp + u′U2 − b∂xH1 − b′H2 = 0,

∂tU2 + u∂xU2 + ∂yp − b∂xH2 = 0,

∂tH1 + u∂xH1 + b′U2 − b∂xU1 − u′H2 = 0,

∂tH2 + u∂xH2 − b∂xU2 = 0,

∇ · U = 0, ∇ · H = 0.

(2)

We introduce the vorticity ω = ∂xU2 − ∂yU1 and the current density j = ∂xH2 − ∂yH1 which satisfy the 
following equations:{

∂tω + u∂xω − b∂xj = u′′U2 − b′′H2,

∂tj + u∂xj − b∂xω = b′′U2 − u′′H2 + u′∂xH1 − u′∂yH2 + b′∂yU2 − b′∂xU1.
(3)

We further introduce the stream function ψ and the magnetic potential function φ, satisfying U =
(∂yψ, −∂xψ), ω = −Δψ and H = (∂yφ, −∂xφ), j = −Δφ, which allow us to derive the following system, 
satisfied by (ψ, φ):{

∂t(Δψ) + u∂x(Δψ) − b∂x(Δφ) = u′′∂xψ − b′′∂xφ,

∂t(Δφ) + u∂x(Δφ) − b∂x(Δψ) = b′′∂xψ − u′′∂xφ − 2u′∂x∂yφ + 2b′∂x∂yψ.
(4)

Taking the Fourier transform in x and inverting the operator (∂2
y − α2), we rewrite the system as

⎧⎪⎨⎪⎩
∂t

( ψ̂

φ̂

)
(t, α, y) = −iαMα

( ψ̂

φ̂

)
(t, α, y),

(Û1, Û2) = (∂yψ̂, −iαψ̂), (Ĥ1, Ĥ2) = (∂yφ̂, −iαφ̂),

(5)

where α �= 0 and

Mα = −Δ−1
α

[
u′′ − uΔα −b′′ + bΔα

bΔ + b′′ + 2b′∂ −uΔ − u′′ − 2u′∂

]
. (6)
α y α y
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For the homogeneous equilibrium u = 0, b(y) = const., Û2 and Ĥ2 satisfy a 1-D wave equation, which 
is stable but exhibits no decay. There are few rigorous mathematical results on the non-flowing plasma 
with inhomogeneous sheared magnetic field. In [18], Tataronis and Grossmann predicted that the vertical 
components of velocity and magnetic field may decay by phase mixing, to which a mathematically rigorous 
proof was given by Ren and Zhao in [15], under the condition that the magnetic field is positive and strictly 
monotone. If the positivity assumption on the magnetic field is removed, which allows the direction of 
the sheared magnetic field to change, then it turns out that magnetic reconnection occurs in infinite time, 
generating the magnetic island. This phenomenon was predicted by Hirota, Tatsuno and Yoshida [6] and 
later justified by Zhai, Zhang and Zhao [22]. For the flowing plasma u �= 0, fewer mathematical rigorous 
results are available. We refer to [6,14,22] for the long time behaviors of the solutions to the MHD equations 
linearized around a flowing plasma.
Notations: Let us specify the notations to be used throughout the paper. We denote by A � B an estimate 
of the form A ≤ CB and by A ∼ B an estimate of the form C−1B ≤ A ≤ CB, where C is a constant. Given 
a function f(x, y), we denote its Fourier transform in x-variable as f̂(α, y) = 1

2π

∫
T e−ixαf(x, y)dx, where α

is the wave number. We shall use the Japanese bracket notation 〈x〉 :=
√

|x|2 + 1.

1.2. Vertical damping and horizontal depletion

In this paper, we focus on the long time behavior of the solution to the linearized MHD equation (5).
Our first main result states as follows:

Theorem 1.1 (Vertical damping). Let u, b ∈ C3(T ) be such that b > |u| ≥ 0 and the critical points of 
(u ± b) are non-degenerate. Let α �= 0 be a fixed wave number and let 

(
ψ̂, φ̂

)
solve (5) with initial data (

ψ̂0, φ̂0

)
∈ (H3 × H3). Then the following space-time estimate holds:

∥∥∥(ψ̂, φ̂
)∥∥∥

H1
t L2

y

≤ Cα

∥∥∥(ψ̂0, φ̂0

)∥∥∥
H3

y

. (7)

In particular, lim
t→∞

∥∥∥(Û2, Ĥ2

)∥∥∥
L2

y

= 0.

Remark 1.2. The condition |u| < |b| is called Stern stability condition (see [16]).

Remark 1.3. Formally, the space-time estimate may indicate that 
∥∥∥(Û2, Ĥ2

)∥∥∥
L2

� 1
〈t〉β with β > 1

2 . The 

study of the precise decay rate shall be our forthcoming work.

Remark 1.4. For the case of flowing plasma with constant velocity or non-flowing plasma (u = const.), it 
holds that

‖U(t), H(t)‖Hk
x L2

y
∼ ‖U0, H0‖Hk

x L2
y
, k ≥ 0, (8)

which implies linear growth of vorticity and current density, i.e.,

‖ω(t), j(t)‖L2
x,y

� 〈t〉‖ω0, j0‖L2
x,y

.

The proof can be found in Appendix C. By (8), the total energy is almost conserved. Hence, the vertical 
damping in Theorem 1.1 shows that energy is transferred from the vertical direction to the horizontal 
direction. Whether similar energy conservation results are true for the flowing plasma with u �= const.
remains an open question.
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The vertical damping is induced by a certain mixing mechanism similar to the vorticity mixing that leads 
to inviscid damping for linearized Euler equations (see [9,10,19–21,23]). Readers may consult [2,4,7,8,12,13]
for recent progress in nonlinear inviscid damping.

To better illustrate the mixing mechanism, let us recall the system in terms of (U1, H1):{
∂tU1 + u∂xU1 − b∂xH1 = L1,

∂tH1 + u∂xH1 − b∂xU1 = L2,
(9)

where (L1, L2) :=
(
b′H2 − u′U2 − 2∂xΔ−1(b′∂xH2 − u′∂xU2), u′H2 − b′U2

)
can be seen as nonlocal forcing 

terms depending on U2 and H2.
By the incompressibility condition, we can check that

‖(∂xU1, ∂xH1)‖L2
xH−1

y
∼ ‖(U2, H2)‖L2

x,y
.

Then the mixing of (U1 ± H1) would lead to the linear damping of (U2, H2).
Let us consider a toy model, obtained by neglecting the nonlocal forcing terms (L1, L2) in the linearized 

system (9), i.e., {
∂tU1 + u∂xU1 − b∂xH1 = 0,

∂tH1 + u∂xH1 − b∂xU1 = 0.
(10)

It is then easy to see that the Elsässer variables Z±
1 := U1 ±H1 satisfy certain transport equations and then(

Û1 + Ĥ1

)
(t, α, y) = Ẑ+

1,in(α, y)e−iα(u−b)t,(
Û1 − Ĥ1

)
(t, α, y) = Ẑ−

1,in(α, y)e−iα(u+b)t,
(11)

with Ẑ±
1,in denoting the initial data.

Regarding the toy model (10), we have the following conclusions.

Lemma 1.5. Let u, b ∈ C3(T ) be such that u ± b have only non-degenerate critical points. Then the solution 
of (10) with initial data (U1,in, H1,in) satisfies

‖(∂xU1, ∂xH1)‖L2
xH−1

y
� 1

〈t〉 1
2

‖(U1,in, H1,in)‖
H

1
2

x H1
y

. (12)

Moreover, if the initial data (U1,in, H1,in) vanish at all the critical points of (u ± b), then it holds that

‖(∂xU1, ∂xH1)‖L2
xH−1

y
� 1

〈t〉‖(U1,in, H1,in)‖H−1
x H2

y
. (13)

The proof of (12) can be found in [20]; via the same dual method one can prove (13). In fact, the decay 
rate of t−1/2 for the toy model (10) is optimal, as we know, via the classical stationary phase approximation 
(see Chapter VIII of [17]), that there exists a class of initial data such that the corresponding solutions 
satisfy

‖(∂xU1, ∂xH1)‖L2
xH−1

y
∼ 1

〈t〉 1
2

.

The space-time estimate in Theorem (1.1), however, fails to hold for the toy model (10). Exploring 
the mechanisms behind the enhanced damping for the complete system (9), we found a new dynamical 
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phenomenon apart from velocity mixing: the depletion of horizontal velocity and magnetic field (U1, H1) at 
the critical points of u ± b. This leads to our second main result, which states as follows:

Theorem 1.6 (Horizontal depletion). Let u, b satisfy the same assumptions as in Theorem 1.1. Let y0 be a 

critical point of (u + b) or (u − b), i.e., u′(y0) = b′(y0) or u′(y0) = −b′(y0). Let 
(

Û1, Ĥ1

)
correspond to the 

solution to (5) with initial data 
(

ψ̂0, φ̂0

)
∈ (H3 × H3). Then it holds that

lim
t→∞

∣∣∣(Û1, Ĥ1

)
(t, α, y0)

∣∣∣ = 0.

Remark 1.7. From (11), we can see that the horizontal depletion in Theorem 1.6 is not true for the toy 
model (10).

For a more precise description of the long time behavior of the horizontal components, we conjecture 
that there exist some final states Z±

1,∞ and some κ > 0 such that

(
Û1 + Ĥ1

)
(t, α, y) ∼

(
Ẑ+

1,∞

)
(α, y)e−iα(u−b)t + O(t−κ),(

Û1 − Ĥ1

)
(t, α, y) ∼

(
Ẑ−

1,∞

)
(α, y)e−iα(u+b)t + O(t−κ).

(14)

Theorem 1.6 reveals that Ẑ±
1,∞ vanish at all the critical points of (u ±b). Our conjecture (14) shall imply the 

space-time estimate (7) and even a precise decay rate, provided that suitable regularity of the final states 
could be proven.

The parallel phenomenon exists in the realm of hydrodynamics. Vorticity depletion for the linearized 2D 
Euler equations around shear flows, first predicted by Bouchet and Morita in [3], was later mathematically 
proven in [20] by Wei, Zhang and Zhao. A similar vorticity depletion result for the 2D Euler equation 
linearized around a radially symmetric and strictly decreasing vorticity distribution is due to Bedrossian, 
Coti-Zelati and Vicol [1]. As far as we know, this is the first paper studying the depletion of the horizontal 
velocity and magnetic field for the linearized MHD equations.

Comparing the toy model (10) with the complete system (9), we observe at least three significant effects 
of the nonlocal terms L1 and L2:

1. Altering the final state, as Ẑ±
1,in on the right hand side of (11) are changed into some other final state 

Ẑ±
1,∞ on the right hand side of (14);

2. Causing Ẑ±
1,∞ to vanish at the critical points of (u ± b);

3. Enhancing the damping.

This demonstrates that the nonlocal terms L1 and L2 in (9) cannot simply be neglected or be regarded as 
mere perturbations on the toy model.

Remark 1.8. The significance of the nonlocal terms can also be seen from the resolvent estimate. In-
deed, if we consider the toy model (10) instead, the Sturmian equation (16) in Section 3 would become (
(u − c)2 − b2) ∂yΦ = F , which is much simpler and yields an obvious estimate

|∂yΦ| � |(u − c)2 − b2|−1
.

Yet, as we shall see in Section 3, at any critical point y0 of (u + b) or (u − b), the solution Φ to the actual 
Sturmian equation (16) enjoys a non-trivial estimate
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|∂yΦ(y0)| � |(u(y0) − c)2 − b(y0)2|− 3
4 .

This 1
4 -improvement, resulting from the effects of L1 and L2, is the key to the depletion result. For more 

details, we refer to Section 3 and 4.

We have the following comments on the results in Theorem 1.1 and Theorem 1.6.

Remark 1.9. The vertical damping and horizontal depletion results also hold for the case of finite channel 
under slip boundary condition, provided that the critical points do not appear at the boundary.

Remark 1.10. To highlight the differences among the long time behaviors of the solutions to the linearized 
MHD equations in various cases, we show the following table:

Conditions Results References
Monotonicity Uniform 

direction b > 0
Stern stability 
|u| ≤ |b|

Other conditions

Yes Yes Yes u ≡ 0 Damping [15]
Yes No Yes u(0) = b(0) = 0 Magnetic Island [22]
Yes No No u = k1y, b = k2y

k1 > k2 ≥ 0
Damping [14]

No Yes Yes |u| < b Non-degenerate 
critical points

Damping &
Depletion

This paper

Comparing the results listed above, we have the following observations:

1. The first result of this paper, in comparison with those in [15] and [22], indicates that the unidirection-
ality of the sheared magnetic field, rather than the monotonicity, is responsible for the damping.

2. The stability condition |u| < b in this paper seems to indicate magnetism-driven mechanisms, whilst 
the damping in [14] might be seen as fluid-driven.

1.3. Outline of the paper

The organization of the paper is as follows. In Section 2, we introduce the representation formula, which 
is a contour integral of the resolvent. The study of the resolvent is then reduced to that of the Sturmian 
equation. In Section 3, we study the Sturmian equation and establish a uniform estimate as well as the 
limiting absorption principle. This is the most technical part of the paper as our assumptions include rather 
general sheared velocity and magnetic field, which in turn results in a range of situations that need to 
be discussed separately from each other. A novelty here is the use of ODE techniques in dealing with the 
situation involving the critical points. In Section 4, we prove the main theorems by the resolvent estimate.

2. The Dunford integral and the Sturmian equation

The basic idea for the study of the long-time behavior of the solution to (5) is to acquire a precise formula 
of (ψ, φ), which requires understanding the spectral properties of the linearized operator Mα. Indeed, it is 
easy to check that the spectrum σ(Mα) = Ran (u + b) ∪ Ran (u − b). Then we have the Dunford integral

( ψ̂

φ̂

)
(t, α, y) = 1

2πi

∫
∂Ω

e−iαtc(cI − Mα)−1
( ψ̂

φ̂

)
(0, α, y)dc

= lim
ε→0+

1
2πi

∫
e−iαtc(cI − Mα)−1

( ψ̂

φ̂

)
(0, α, y)dc,

(15)
∂Ωε
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where Ω contains the spectrum σ(Mα) and Ωε is the ε-neighborhood of σ(Mα). Here the last equality holds 

due to the fact that for c /∈ σ(Mα), the resolvent (cI − Mα)−1
( ψ̂

φ̂

)
(0, α, y) is analytic in c. With the 

representation formula (15), we have reduced our problem to the study of the resolvent (cI − Mα)−1 and 
the limit of the contour integral.

Assume that

(
cI − Mα

)−1
( ψ̂0

φ̂0

)
(α, y) =

(Ψ1
Φ1

)
(α, y, c).

Then a direct calculation shows that (Ψ1, Φ1) solves the following system, for c /∈ σ(Mα):{
(u − c)ΔαΨ1 − u′′Ψ1 − bΔαΦ1 + b′′Φ1 = Δαψ̂0,

(u − c)Φ1 − bΨ1 = −φ̂0.

Here Δα = ∂2
y − α2. Let Φ1(α, y, c) = b(y)Φ(α, y, c), and then

Ψ1(α, y, c) = (u(y) − c)Φ(α, y, c) + φ̂0(α, y)/b(y).

Thus, we obtain

∂y

((
(u(y) − c)2 − b(y)2

)
∂yΦ(α, y, c)

)
− α2

(
(u(y) − c)2 − b(y)2

)
Φ(α, y, c)

= Δαψ̂0(α, y) −
(
u(y) − c

)
Δα

(
φ̂0(α, y)

b(y)

)
+ u′′(y) φ̂0(α, y)

b(y) := F (α, y, c).
(16)

This is the so-called Sturmian type equation.

3. Uniform estimates and limiting absorption principle

Let Ωε0 denote the ε0-neighborhood of Ran (u + b) ∪ Ran (u − b) in C. We shall study Equation (16) with 
c ∈ Ωε0 . We introduce the Elsässer variables Z± := u ± b. Hence, we can rewrite the equation of Φ(α, y, c)
as

∂y((Z− − c)(Z+ − c)∂yΦ) − α2(Z− − c)(Z+ − c)Φ = F. (17)

This section is devoted to the proofs of the following propositions, which are crucial to our main results.

Proposition 3.1. There exists ε0 > 0 such that for c ∈ (Ωε0 \ (Ran Z+ ∪ Ran Z−)), the solution to (17)
satisfies the following bound, uniform with respect to c

‖Φ(α, ·, c)‖L2 + ‖(Z− − c)(Z+ − c)∂yΦ(α, ·, c)‖H1 ≤ C‖F (α, ·, c)‖H1 .

The estimate on Φ can be continued (in c) up to the boundary Ran Z+ ∪ Ran Z−.

Proposition 3.2. For c ∈ (Ran Z+ ∪ Ran Z−), there exist Φ±(α, ·, c) ∈ L2 such that as ε → 0+, Φ(α, ·, c ±
iε) → Φ±(α, ·, c) in Lr with r ∈ (1, 2) and∥∥Φ±(α, ·, c)

∥∥
2 ≤ C‖F (α, ·, c)‖H1 .
L
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We shall prove Proposition 3.1 by contradiction. Suppose that the proposition is false, then there exists 
a sequence {cn, Φn, Fn}∞

n=1 satisfying the equation

∂y((Z− − cn)(Z+ − cn)∂yΦn) − α2(Z− − cn)(Z+ − cn)Φn = Fn, (18)

such that

• cn ∈
(
Ωε0 \

(
Ran Z+ ∪ Ran Z−

))
,

• ‖Φn‖L2 + ‖(Z− − cn)(Z+ − cn)∂yΦn‖H1 = 1,
• Fn → 0 in H1 as n → ∞.

For convenience, we shall use the notation qn := (Z− − cn)(Z+ − cn)∂yΦn from time to time in this section.
As |cn| ≤ C and ‖Φn‖L2 + ‖qn‖H1 = 1, we know that

• cn → c for some c ∈ Ωε0 up to a subsequence,
• Φn ⇀ Φ in L2 up to a subsequence,
• qn ⇀ q in H1 up to a subsequence, for some q ∈ H1.

(For convenience, we shall simply use the original cn and Φn to denote the elements in the subsequence.) 
Moreover, q = (Z− − c)(Z+ − c)∂yΦ, as seen from the identity

〈qn, f〉L2 =〈(Z− − cn)(Z+ − cn)∂yΦn, f〉L2

= − 〈Φn, Z ′
−(Z+ − cn)f + (Z− − cn)Z ′

+f + (Z− − cn)(Z+ − cn)f ′〉L2 , ∀ f ∈ C∞
0 .

We shall show in the following passages that

• the weak limit Φ ≡ 0,
• in fact, strong convergences hold true, i.e., Φn → 0 in L2 and qn → 0 in H1,

which contradict the very assumption that ‖Φn‖L2 + ‖(Z− − cn)(Z+ − cn)∂yΦn‖H1 = 1.
Formally, by performing integration by parts on the limiting equation

∂y((Z− − c)(Z+ − c)∂yΦ) − α2(Z− − c)(Z+ − c)Φ = 0, (19)

we can see that the weak limit Φ ≡ 0. To prove this, we have to show that Φ belongs to a space for which 
the operation is allowed.

The limit c belongs to either 
(
Ωε0 \ (Ran Z+ ∪ Ran Z−)

)
or (Ran Z+ ∪ Ran Z−).

Let us first consider the case when cn → c = Re c + iIm c /∈ (Ran Z+ ∪ Ran Z−). In this case, it’s 
straightforward to show that Φn → Φ in L2 and qn → q := (Z− − c)(Z+ − c)∂yΦ in H1, where Φ is the 
classical solution to (19). Taking the inner product with Φ, integrating by parts and separating the real and 
imaginary parts, we obtain∫

T

(
(u(y) − Re c)2 − (b(y))2 − (Im c)2

) (
|∂yΦ(y, c)|2 + α2|Φ(y, c)|2

)
dy = 0, (20)

and ∫
(u(y) − Re c)

(
|∂yΦ(y, c)|2 + α2|Φ(y, c)|2

)
dy = 0. (21)
T
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Multiplying (21) by 2Re c and adding it to (20) lead to∫
T

(
u(y)2 − b(y)2 − (Re c)2 − (Im c)2) (|∂yΦ(y, c)|2 + α2|Φ(y, c)|2

)
dy = 0.

The condition |u| < b then guarantees that Φ ≡ 0.
The difficult situation is when cn → c ∈ (Ran Z+ ∪ Ran Z−) as n → ∞, which renders Equation (18)

degenerate at the sets (Z+)−1(c) := {y ∈ T : Z+(y) = c} and (Z−)−1(c) := {y ∈ T : Z−(y) = c}. The con-
dition 0 < |u| < b ensures that Ran Z+ ∩ Ran Z− = ∅. Hence, if cn → c ∈ Ran Z+, then c /∈ Ran Z−, and 
vice versa. In this section, we will always provide detailed proofs only for the case that cn → c ∈ Ran Z+, 
as those for the case cn → c ∈ Ran Z− are essentially similar.

By our assumptions on (u ± b), the sets (Zs)−1(c), s = + or −, consist of two possible types of points:

1. points located in a monotone interval, i.e., {y ∈ T : Zs(y) = c and |Z ′
s(y)| > 0},

2. critical points, where Z ′
s = 0 and |Z ′′

s | > 0.

In our analysis, the two situations require separate treatments. To better distinguish between the two, we 
denote a critical point as y0.

3.1. Weak convergence of {Φn}∞
n=1 to 0

In this subsection, we establish several lemmas implying that Φn ⇀ Φ ≡ 0 as cn → c. As previously 
mentioned, to this end we need to prove that Φ is regular enough such that the desired integration by 
parts is justified. This is clear when y /∈ (Z−)−1(c) ∪ (Z+)−1(c), as Φ ∈ H3

loc

(
T \ (Z±)−1(c)

)
thanks to 

|(Z− − c)(Z+ − c)| > C > 0. Therefore, our consideration starts from the case when yc ∈ (Zs)−1(c) lies in 
a region where Zs is strictly monotone, s = + or −.

Lemma 3.3. Let {cn}∞
n=1 ⊂ (Ωε0 \ (Ran Z+ ∪ Ran Z−)) be such that cn → c as n → ∞ for a certain 

c ∈ (Ran Z+ ∪ Ran Z−). Let the triple {cn, Φn, Fn}∞
n=1 satisfy the equation (18) along with the following 

conditions

• Φn ⇀ Φ in L2 and (Z− − cn)(Z+ − cn)∂yΦn ⇀ (Z− − c)(Z+ − c)∂yΦ in H1 in I,
• Fn → F in H1 in I,

for some interval I := [y1, y2] ⊂ T such that there exists yc ∈ (Zs)−1(c) in I with |Z ′
s(yc)| > 0; 

Z ′
s(yc)Z ′

s(y) > 0, ∀ y ∈ I, where s = + or −.
Then Φn → Φ in L2(I) and (Z− − cn)(Z+ − cn)∂yΦn → (Z− − c)(Z+ − c)∂yΦ in H1(I).
In particular, if F ≡ 0, then Φ ∈ H1(I) and

−
∫
I

(Z− − c)(Z+ − c)∂yΦf ′ dy + α2
∫
I

(Z− − c)(Z+ − c)Φf dy = 0, ∀f ∈ H1
w,0(I), (22)

where H1
w,0 =

{
f ∈ L2 : ((y − yc)∂yf) ∈ L2 and f |y=y1 = f |y=y2 = 0

}
.

Proof. To facilitate the proof, let us assume that c ∈ Ran Z+. Then for ε < miny∈T b−‖u‖L∞
3 , there exists 

N > 0 such that for any n > N , |cn − c| < ε. Thus there exists C > 0 such that |Z− − cn| > C−1 > 0 for 
n > N . Without loss of generality, let us also assume that n > N and Im cn > 0. Thus, there exists ycn

∈ I
such that Z+(ycn

) = Re cn and ycn
→ yc as cn → c.



10 H. Liu et al. / J. Math. Pures Appl. 158 (2022) 1–41
We recall qn = (Z− − cn)(Z+ − cn)∂yΦn with cn ∈ Ωε0 \ (Ran Z+ ∪ Ran Z−). Dividing (18) by (Z− −
cn)(Z+ − cn) and differentiating, we see that qn solves the following equation

∂y

(
∂yqn

(Z− − cn)(Z+ − cn)

)
− α2

(
qn

(Z− − cn)(Z+ − cn)

)
= ∂y

(
Fn

(Z− − cn)(Z+ − cn)

)
. (23)

By Equation (18), qn also satisfies

q′
n = Fn + α2(Z− − cn)(Z+ − cn)Φn, (24)

q′′
n − α2qn = F ′

n + α2Z ′
−(Z+ − cn)Φn + α2(Z− − cn)Z ′

+Φn. (25)

From Equation (25) and the assumptions Φn ⇀ Φ in L2, qn ⇀ q := (Z− −c)(Z+ −c)∂yΦ in H1 and Fn → F

in H1, we can infer that

‖q′′
n‖L2 ≤ ‖F ′

n‖L2 + α2 (‖Φn‖L2 + ‖qn‖H1) , (26)

which, along with the assumption that qn ⇀ (Z− − c)(Z+ − c)∂yΦ in H1, implies strong convergence, i.e.,

(Z− − cn)(Z+ − cn)∂yΦn → (Z− − c)(Z+ − c)∂yΦ in H1.

By our assumption and Sobolev embedding, ‖qn‖L∞(I) ≤ ‖qn‖H1(I) < C, it is true that

‖(y − ycn
)∂yΦn‖Lp(I) < C, ∀ p < ∞.

Applying the compactness result from Appendix B, we have

Φn → Φ in L2.

Now we consider the particular case Fn → 0 in H1. As qn satisfies, for f ∈ C2
0 (I),

−
π∫

−π

(
q′

nf ′ + α2qnf
)

(y)
(Z− − cn)(Z+ − cn) dy =

π∫
−π

(Fnf ′)(y)
(Z− − cn)(Z+ − cn) dy. (27)

By the fact that

π∫
−π

Γ(y)
(Z− − cn)(Z+ − cn) dy =

π∫
−π

1
2b(y)

Γ(y)
Z− − cn

dy −
π∫

−π

1
2b(y)

Γ(y)
Z+ − cn

dy,

and

−
π∫

−π

Log (Z+(y) − cn) ∂y

(
Γ(y)

2b(y)Z ′
+(y)

)
dy =

π∫
−π

1
2b(y)

Γ(y)
Z+ − cn

dy,

we obtain that the right hand side of Equation (27) can be estimated as∣∣∣∣∣∣
π∫ (Fnf ′)(y)

(Z− − cn)(Z+ − cn) dy

∣∣∣∣∣∣ �
∣∣∣∣∣∣

π∫ 1
2b(y)

(Fnf ′)(y)
Z− − cn

dy

∣∣∣∣∣∣

−π −π
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+

∣∣∣∣∣∣
π∫

−π

Log (Z+(y) − cn) ∂y

(
(Fnf ′)(y)

2b(y)Z ′
+(y)

)
dy

∣∣∣∣∣∣ � ‖Fn‖H1 .

Passing to the limit as n → ∞, we can see that the right hand side of Equation (27) vanishes as Fn → 0 in 
H1, and we obtain

0 = −p.v.
π∫

−π

(
q′f ′ + α2qf

)
(y)

(Z− − c)(Z+ − c) dy + iπ

(
q′f ′ + α2qf

)
(yc)

2b(yc)Z ′
+(yc) , ∀f ∈ C1

0 (I). (28)

Let χ be a smooth cut-off function such that 0 ≤ χ ≤ 1, χ ≡ 1 near yλ and supp χ � I. Let 
us specify a test function f(y) = χ(y)q(y)b(yc)Z ′

+(yc). The imaginary part of Equation (28) then reads 
iπ
(
|q′(yc)|2 + α2|q(yc)|2

)
= 0, which in turn reveals that

q(yc) = q′(yc) = 0.

By the facts that ∂yΦ(y, c) = q(y,c)
(Z−−c)(Z+−c) ∼ q

y−yc
, q(yc) = 0 and Hardy’s inequality, we have

‖∂yΦ‖L2(I) ≤ C‖q′‖L2(I).

Thus, we conclude that Φ(·, c) ∈ H1(I).
Multiplying both sides of Equation (17) by f ∈ H1

w,0(I), passing to the limit as n → ∞ and integrating 
by parts, we obtain the identity in (22). �

We proceed to prove the analogue of Lemma 3.3 for y0 ∈ (Zs)−1(c) which is also a critical point of Zs, 
s = + or −. There are several scenarios depending on how cn approaches c.

(1) In the case that c = Zs(y0) and Z ′′
s (y0) (Re cn − c) ≥ 0, by the assumptions on u and b, the intersection 

of (Zs)−1(Re cn) with a sufficiently small neighborhood of y0 consists of two points y�
cn

and yr
cn

such that 
y�

cn
≤ y0 ≤ yr

cn
. (If c = Re cn, equality holds and the two points shrink into one.) Furthermore, it’s true 

that modulo subsequences either |Re cn − c| ≥ |Im cn| or |Re cn − c| ≤ |Im cn|, ∀n ∈ N.
(2) In the case Z ′′

s (y0) (Re cn − c) < 0, any small neighborhood of y0 no longer intersects (Zs)−1(Re cn). 
Instead, Re (Zs − cn) is sign-definite as Re (Zs − cn) = (Zs − c) + (c − Re cn).

We first consider the case (2) together with the case (1) when |Re cn − c| ≤ |Im cn|, ∀n ∈ N.

Lemma 3.4. Let {cn}∞
n=1 ⊂ (Ωε0 \ (Ran Z+ ∪ Ran Z−)) be such that cn → c as n → ∞ for a certain 

c ∈ (Ran Z+ ∪ Ran Z−). Let the triple {cn, Φn, Fn}∞
n=1 solve (18) and satisfy

• Φn ⇀ Φ in L2 and (Z+ − cn)(Z− − cn)∂yΦn ⇀ (Z+ − c)(Z− − c)∂yΦ in L2 on I0,
• Fn → F in H1 on I0,

for some interval I0 := [y1, y2] ⊂ T such that for s = + or −, one of the following situations occurs:

1. There exists y0 ∈ (Zs)−1(c) in I0 at which Z ′
s(y0) = 0; Z ′′

s (y0)Z ′′
s (y) > 0, ∀y ∈ I0. For n sufficiently 

large, |Re cn − c| ≤ |Im cn| and Z ′′
s (y0) (Re cn − c) ≥ 0.

2. There exists y0 ∈ (Zs)−1(c) in I0 at which Z ′
s(y0) = 0; Z ′′

s (y0)Z ′′
s (y) > 0, ∀y ∈ I0. For n sufficiently 

large, Z ′′
s (y0) (Re cn − c) < 0.

Then for n sufficiently large,
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1. (y − y0)∂yΦn ∈ L2, (y − y0)∂yΦ ∈ L2 and

−
∫
I0

(Z+ − c)(Z− − c)
(
∂yΦf ′ + α2Φf

)
dy =

∫
I0

Ff dy, ∀f ∈ H1
w,0, (29)

where H1
w,0 =

{
f ∈ L2 : ((y − y0)∂yf) ∈ L2 and f |y=y1 = f |y=y2 = 0

}
;

2. there exists a constant C independent of cn such that

|Φn(y0)| ≤ C |(Z+(y0) − cn)(Z−(y0) − cn)|−
1
4 ; (30)

3. there exists a constant C independent of cn such that

|∂yΦn(y0)| ≤ C |(Z+(y0) − cn)(Z−(y0) − cn)|−
3
4 . (31)

Proof. We recall that we shall only prove the part of the lemma for Z+(y0) = c, as the proof when 
Z−(y0) = c is along the same lines. As Ran Z+ ∩ Ran Z− = ∅, we can find some constant C > 1 such that 
C−1 < (Re cn − Z−) < C, provided that n is sufficiently large. Without loss of generality, we may assume 
that Z ′′

+(y0) > 0, i.e., Z+(y0) is a local minimum.
We can choose h > 0 small enough independent of n so that I2h := [y0 − 2h, y0 + 2h] ⊂ I0. We also 

denote Ih := [y0 − h, y0 + h]. Let us introduce a cut-off function χ satisfying

1. χ ≡ 1 on Ih and χ ≡ 0 outside I2h,
2. χ ∈ C1 and 0 ≤ χ ≤ 1,

Integrating by parts, we have

∫
I0

ΦnΦnχ dy = −
∫
I0

(y − y0)Φn∂y

(
Φnχ

)
dy −

∫
I0

(y − y0)∂yΦnΦnχ dy,

which leads to

‖√
χΦn‖L2(I2h) ≤ 2‖(y − y0)∂yΦn

√
χ‖L2(I2h) + ‖Φn‖L2(I2h\Ih). (32)

Multiplying Equation (18) by Φnχ, integrating by parts and taking the real part and the imaginary part 
separately, we obtain the following identities

−
∫
I0

(
(Z+ − Re cn)(Z− − Re cn) − (Im cn)2) (|∂yΦn|2 + α2|Φn|2

)
χ dy

= Re 〈Fn, χΦn〉L2(I0) + Re
∫

I2h\Ih

(Z+ − cn)(Z− − cn)Φn∂yΦn χ′dy,

(33)

−
∫
I0

Im cn(Z+ + Z− − 2Re cn)
(
|∂yΦn|2 + α2|Φn|2

)
χ dy

= Im 〈Fn, χΦn〉L2(I0) + Im
∫

(Z+ − cn)(Z− − cn)Φn∂yΦnχ′ dy.

(34)
I2h\Ih
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To estimate (34), we note that for h small enough and for n large enough, it holds that

|Z+(y) − Re cn| ≤ Ch + dist(cn, Ran Z+) ≤ ε0 + Ch ≤ Ch, ∀y ∈ I2h,

which leads to the following bound:

Z+ + Z− − 2Re cn ≤Z−(y) − Re cn + |Z+ − Re cn| ≤ −C−1 + Ch ≤ − 1
2C−1 .

Hence, it follows from (34) that

|Im cn|
(

‖√
χ∂yΦn‖2

L2(I2h) + α2‖√
χΦn‖2

L2(I2h)

)
�
∫

I2h

∣∣FnχΦn

∣∣ dy + ‖(Z+ − cn)(Z− − cn)∂yΦn‖2
L2(I2h\Ih).

(35)

In particular, (35) shows that 
∥∥∥√|Im cn|∂yΦn

∥∥∥
L2(Ih)

< C.

As (Z+(y) − Re cn) = (Z+(y) − Z+(y0) + c − Re cn), we can write (33) as

∫
I2h

(Z+(y) − Z+(y0)) (Re cn − Z−)
(
|∂yΦn|2 + α2|Φn|2

)
χ dy

=Re 〈Fn, χΦn〉L2(I0) + Re
∫

I2h\Ih

(Z+ − cn)(Z− − cn)Φn∂yΦn χ′dy

+
∫

I2h

(
(Re cn − c) (Re cn − Z−) − |Im cn|2

) (
|∂yΦn|2 + α2|Φn|2

)
χ dy.

(36)

For the case |Re cn − c| ≤ |Im cn| and Z ′′
+(y0) (Re cn − c) ≥ 0, we notice that the term on right hand side 

of (36) containing (Re cn − c) can be dominated by the estimate of (34). Hence, we have

∫
I2h

(Z+(y) − Z+(y0)) (Re cn − Z−)|∂yΦn|2χ dy

�

∣∣∣∣∣∣Re
∫

I2h

FnΦndy

∣∣∣∣∣∣+

∣∣∣∣∣∣∣Re
∫

I2h\Ih

(Z+ − cn)(Z− − cn)Φn∂yΦn χ′dy

∣∣∣∣∣∣∣
+ |Im cn|

∫
I2h

(Re cn − Z−)
(
|∂yΦn|2 + α2|Φn|2

)
dy

�C

∫
I2h

∣∣FnχΦn

∣∣ dy + C

∫
I2h\Ih

∣∣(Z+ − cn)(Z− − cn)Φn∂yΦn

∣∣dy,

whereas in the case Z ′′
+(y0) (Re cn − c) < 0, (c − Re cn) has the same sign as (Z+(y) − c), from which we 

infer
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∫
I2h

(Z+(y) − Z+(y0)) (Re cn − Z−)|∂yΦn|2χ dy

≤
∫

I2h

∣∣χFnΦn

∣∣ dy +

∣∣∣∣∣∣∣
∫

I2h\Ih

(Z+ − cn)(Z− − cn)Φn∂yΦn χ′dy

∣∣∣∣∣∣∣ .
Using the fact that (Z+ − c) ∼ (y − y0)2 in I0, we have, by (32) and (33),

‖(y − y0)∂yΦn
√

χ‖2
L2(I2h) ≤C

(
‖Φn‖2

L2(I2h\Ih) + ‖(Z+ − cn)∂yΦn‖2
L2(I2h\Ih)

)
+ C‖Fn‖2

L2(I0).
(37)

Multiplying both sides of Equation (18) by f ∈ H1
0 (I0) and passing to the limit as n → ∞, we have

−
∫
I0

(Z+ − c)(Z− − c)
(
∂yΦf ′ + α2Φf

)
dy =

∫
I0

Ff dy, ∀f ∈ H1
0 (I0).

Estimate (37) ensures that (y − y0)∂yΦ ∈ L2 and

‖Φn‖L2(I0) � ‖(Z+ − cn)(Z− − cn)∂yΦn‖L2(I2h\Ih) + ‖Φn‖L2(I2h\Ih) + ‖Fn‖L2 . (38)

Thus, by the density of H1
0 (I0) in H1

0,w(I0), Equation (29) holds.
It follows from Gargliardo-Nirenberg inequality and the fact that 

∥∥√
Im cn∂yΦn

∥∥
L2 < C that

|Φn(y0)| ≤ ‖Φn‖L∞ � ‖∂yΦn‖
1
2
L2‖Φn‖

1
2
L2 � |Im cn|− 1

4 � |Z+(y0) − cn|− 1
4 .

Thus, Estimate (30) holds.
As for Estimate (31), we can infer from the fact that (y−y0)∂yΦn ∈ L2 the existence of ỹ ∈ [y0 −2δn, y0 −

δn] such that |∂yΦn(ỹ)| < Cδ
− 3

2
n . We further set δn =

√
|c − cn|.

Since qn ∈ H2, as shown in (26), and Fn ∈ H1, we can integrate (18) from ỹ to y0, which results in

(Z+(y0) − cn)(Z−(y0) − cn)∂yΦn(y0)

= ((Z+(ỹ) − c) + (c − cn)) (Z−(ỹ) − cn)∂yΦn(ỹ)

+
y0∫

ỹ

Fn(y) dy + α2
y0∫

ỹ

(Z+(y) − cn)(Z−(y) − cn)Φn(y) dy.

(39)

By Equation (39) and the fact that |Z+(ỹ) − c| ≤ Cδ2
n = C|c − cn|, we have

|∂yΦn(y0)| ≤ C
|c − cn|

|Z+(y0) − cn| δ
3
2
n

+ δn

|Z+(y0) − cn| ≤ C

|Z+(y0) − cn|
3
4

. � (40)

We then address the scenario when y0 ∈ (Zs)−1(c) with Z ′′
s (y0) (Re cn − c) ≥ 0, s = + or −, and 

|Re cn − c| ≥ |Im cn|. We recall that y�
cn

and yr
cn

are the two points in a sufficiently small neighborhood of 
y0 such that y�

cn
≤ y0 ≤ yr

cn
and Re cn = Zs

(
y�

cn

)
= Zs(yr

cn
).

Lemma 3.5. Let {cn}∞
n=1 ⊂ (Ωε0 \ (Ran Z+ ∪ Ran Z−)) be such that cn → c as n → ∞ for a certain 

c ∈ (Ran Z+ ∪ Ran Z−). Let the triple {cn, Φn, Fn}∞
n=1 solve (18) and satisfy
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• Φn ⇀ Φ in L2 and (Z+ − cn)(Z− − cn)∂yΦn ⇀ (Z+ − c)(Z− − c)∂yΦ in H1 on I0,
• Fn → F in H1 on I0,

for some interval I0 := [y1, y2] ⊂ T such that there exists y0 ∈ (Zs)−1(c) in I0 at which Z ′
s(y0) = 0; 

Z ′′
s (y0)Z ′′

s (y) > 0, ∀y ∈ I0; |Re cn − c| ≥ |Im cn| for sufficiently large n and Z ′′
s (y0) (Re cn − c) ≥ 0, where 

s = + or −.
Then (y − y0)∂yΦ ∈ L2 and

−
∫
I0

(Z+ − c)(Z− − c)
(
∂yΦf ′ + α2Φf

)
dy =

∫
I0

Ff dy, ∀f ∈ H1
w,0, (41)

where H1
w,0 =

{
f ∈ L2 : ((y − y0)∂yf) ∈ L2 and f |y=y1 = f |y=y2 = 0

}
.

Proof. As in Appendix A, we can construct a solution, which we denote by ϕ�
n (or ϕr

n), to the homogeneous 
equation

∂y((Z+ − cn)(Z− − cn)∂yϕ) − α2(Z+ − cn)(Z− − cn)ϕ = 0, (42)

ϕ
(
y�

cn

)
= 1, ∂yϕ

(
y�

cn

)
= 0

(
or ϕ

(
yr

cn

)
= 1, ∂yϕ

(
yr

cn

)
= 0

)
, (43)

on an interval [y1, y0] (or (y0, y2], respectively).
We note that yi

cn
→ y0 as cn → c, i = � or r. In turn, we denote by ϕ� (or ϕr) the solution to

∂y((Z+ − c)(Z− − c)∂yϕ) − α2(Z+ − c)(Z− − c)ϕ = 0,

ϕ (y0) = 1, ∂yϕ (y0) = 0,

on [y1, y0] (or [y0, y2], respectively).
We shall use the following properties of ϕi

n and ϕi, i = � or r, as proven in Appendix A:

1. ‖∂yϕi
n‖L∞ + ‖ϕi

n‖L∞ ≤ C and ‖∂yϕi‖L∞ + ‖ϕi‖L∞ ≤ C,
2.
∣∣ϕi

n

∣∣ ≥ 1
2 and ϕi ≥ 1,

3.
∣∣ϕi

n(y) − 1
∣∣ ≤ C

∣∣y − yi
cn

∣∣2 , y ∈ [y1, y�
cn

] (or [yr
cn

, y2], respectively),
and 

∣∣ϕi(y) − 1
∣∣ ≤ C |y − y0|2, y ∈ [y1, y0] (or [y0, y2], respectively),

4. lim
n→∞

ϕi
n = ϕi.

For y ∈ [y1, y�
cn

] we can solve the inhomogeneous equation (18) explicitly by

Φn(y) = ϕ�
n(y)

ϕ�
n(y1)Φn(y1) + μ�

nϕ�
n(y)

y∫
y1

1
((Z+ − cn)(Z− − cn)(ϕ�

n)2) (y′)dy′

+ ϕ�
n(y)

y∫
y1

∫ y′

y�
cn

(
Fnϕ�

n

)
(y′′)dy′′

((Z+ − cn)(Z− − cn)(ϕ�
n)2) (y′)dy′,

(44)

as (18) is equivalent to

∂y

(
(Z+ − cn)(Z− − cn)

(
ϕi

n

)2
∂y

(
Φn

i

))
= Fnϕi

n, i = � or r. (45)

ϕn
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Here the coefficient μ�
n is given by

μ�
n := (Z+(y1) − cn)(Z−(y1) − cn)

(
(ϕ�

nΦ′
n)(y1) −

((
ϕ�

n

)′ Φn

)
(y1)

)
−

y1∫
y�

cn

(
Fnϕ�

n

)
(y)dy.

We have for the last term in (44) that

∣∣∣∣∣∣ϕ�
n(y)

y∫
y1

∫ y′

y�
cn

(
Fnϕ�

n

)
(y′′)dy′′

((Z+ − cn)(Z− − cn)(ϕ�
n)2) (y′)dy′

∣∣∣∣∣∣ ≤C

∣∣∣∣∣∣
y∫

y1

1(
y′ + y�

cn

)dy′

∣∣∣∣∣∣
≤C ln

(
y + y�

cn

y1 + y�
cn

)
∈ L2(y1, y�

cn
).

(46)

For the second term on the right hand side of (44), we have the point-wise limit for y ∈ [y1, y0),

ϕ�
n(y)

y∫
y1

1
((Z+ − cn)(Z− − cn)(ϕ�

n)2) (y′)dy′ → ϕ�(y)
y∫

y1

1
((Z+ − c)(Z− − c)(ϕ�)2) (y′)dy′.

The fact that Re (Z+ − c) ∼ (y − y0)2 implies that

ϕ�(y)
y∫

y1

1
((Z+ − c)(Z− − c)(ϕ�)2) (y′)dy′ ∼ 1

(y − y0) /∈ L2(y1, y0). (47)

On the other hand, from the facts that ‖Φn‖L2 ≤ C, ‖(Z+ −cn)(Z− −cn)∂yΦn‖H1 ≤ C and ‖Fn‖L∞ < C, 
we know that ‖(Z+ − cn)(Z− − cn)Φn‖H1 ≤ C and 

{
μ�

n

}∞
n=1 is bounded. Thus, we further infer that up to 

a subsequence lim
n→∞

μ�
n = μ� and that the second term on the right hand side of (44) converges pointwise. 

Similarly, we can confirm the pointwise convergence of the third term on the right hand side of (44). We 
can verify that the weak limit Φ can be written as

Φ(y) := ϕ�(y)
ϕ�(y1)Φ(y1) + μ�ϕ�(y)

y∫
y1

1
((Z+ − c)(Z− − c)(ϕ�)2) (y′)dy′

+ ϕ�(y)
y∫

y1

∫ y′

y0

(
Fϕ�

)
(y′′)dy′′

((Z+ − c)(Z− − c)(ϕ�)2) (y′)dy′, y < y0.

(48)

Moreover, the assumption Φn ⇀ Φ in L2 along with (46) indicates that the second term on the right 
hand side of (48) is uniformly bounded in L2. According to (47), it is therefore necessary that

μ� = 0, i.e., μ�
n → 0 up to a subsequence.
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Similarly, for y ∈ [yr
cn

, y2] we have

Φn(y) = ϕr
n(y)

ϕr
n(y2)Φn(y2) + μr

nϕr
n(y)

y∫
y2

1
((Z+ − cn)(Z− − cn)(ϕr

n)2) (y′)dy′

+ ϕr
n(y)

y∫
y2

∫ y′

yr
cn

(Fnϕr
n) (y′′)dy′′

((Z+ − cn)(Z− − cn)(ϕr
n)2) (y′)dy′,

with

μr
n := (Z+(y2) − cn)(Z−(y2) − cn)

(
(ϕr

nΦ′
n)(y2) −

(
(ϕr

n)′ Φn

)
(y2)

)
−

y2∫
yr

cn

(Fnϕr
n) (y)dy,

and we can show that μr
n → 0 up to a subsequence.

Thus, from the formula (48) and its analogue on [yr
cn

, y2], where μi ≡ 0 for i = � or r, we know that

|(y − y0)∂yΦ| �|Φ(y1)|‖∂yϕi(y)‖L∞ + ‖F‖L∞‖∂yϕi(y)‖L∞ |y − y0|(ln |y − y0| + 1)

+ ‖F‖L∞‖ϕi(y)‖L∞ .

As Φn ⇀ Φ in L2 and (Z+ − cn)(Z− − cn)∂yΦn ⇀ (Z+ − c)(Z− − c)∂yΦ in H1, multiplying Equation 
(18) by f ∈ H1

0 (I0) and passing to the limit as n → ∞, we have

−
∫
I0

(Z+ − c)(Z− − c)
(
∂yΦf ′ + α2Φf

)
dy =

∫
I0

Ff dy, ∀f ∈ H1
0 (I0).

The desired result (41) then follows from a density argument. �
In view of Lemma 3.3, Lemma 3.4 and Lemma 3.5, the use of sgn(Z+ − c)(Z− − c)Φ as a test function 

and integration by parts can be justified. As Fn → 0 in H1 as n → ∞, it is not difficult to see that

Φn ⇀ 0 in L2(T ) and (Z+ − cn)(Z− − cn)∂yΦn ⇀ 0 in H1(T ).

We shall rigorously prove this claim in Section 3.3. To complete the proof of Proposition 3.1, it re-
mains to be shown that {Φn}∞

n=1 and {(Z+ − cn)(Z− − cn)∂yΦn}∞
n=1 converges strongly in L2 and 

H1, respectively, throughout T , which amounts to proving the strong convergence of {Φn}∞
n=1 and 

{(Z+ − cn)(Z− − cn)∂yΦn}∞
n=1 near the critical points in (Z+)−1(c) ∪ (Z−)−1(c). Indeed, away from 

(Z+)−1(c) ∪ (Z−)−1(c), it is clear that

Φn → 0 in H1
loc

(
T \ ((Z+)−1(c) ∪ (Z−)−1(c))

)
, (49)

(Z+ − cn)(Z− − cn)∂yΦn → 0 in H1
loc

(
T \ ((Z+)−1(c) ∪ (Z−)−1(c))

)
, (50)

and the case of points in (Z±)−1(c) at which |Z ′
±| > 0 is already covered in Lemma 3.3.

3.2. Strong convergence of {Φn}∞
n=1 near y0

As for strong convergence of {Φn}∞
n=1 and {(Z+ − cn)(Z− − cn)∂yΦn}∞

n=1 when cn → c = Zs(y0) with 
Z ′

s(y0) = 0, s = + or −, we note that for the scenarios in Lemma 3.4, by (38) and (49), it is not difficult to 



18 H. Liu et al. / J. Math. Pures Appl. 158 (2022) 1–41
show that as Fn → 0 in H1, Φn → 0 and (Z+ − cn)(Z− − cn)∂yΦn → 0 in L2(I0) and H1(I0), respectively 
via integration by parts, while a more delicate analysis is needed for the scenario in Lemma 3.5, i.e., 
Z ′′

s (y0) (Re cn − c) ≥ 0, s = + or −, and |Re cn − c| ≥ |Im cn|. We shall postpone the proof for the scenarios 
in Lemma 3.4 to Section 3.3 and focus primarily on that for the scenario in Lemma 3.5.

We shall prove the following lemma.

Lemma 3.6. Let y0 ∈
(
(Z+)−1(c) ∪ (Z−)−1(c)

)
be a critical point, i.e., Z ′

s(y0) = 0, and the interval I0 :=
[y1, y2] be such that y0 ∈ I0 and Z ′′

s (y0)Z ′′
s (y) > 0, s = + or −. Let {(cn, Φn, Fn)}∞

n=1 and Φ satisfy the 
conditions as in Lemma 3.5, then Φn → Φ in L2 in I0. In addition, the following estimates hold

|Φn(y0)| ≤ C|(Z−(y0) − cn)(Z+(y0) − cn)|− 1
4 , (51)

|∂yΦn(y0)| ≤ C|(Z−(y0) − cn)(Z+(y0) − cn)|− 3
4 . (52)

To prove Lemma 3.6, we shall construct solutions to Equation (18) in I0 and obtain its explicit formula 
using ODE techniques.

Without loss of generality, we may assume that the critical point y0 = 0. Let I0 := [y1, y2] be such that 
Z+(y1) = Z+(y2) (or Z−(y1) = Z−(y2)) with y1 < 0 < y2. We shall rewrite Equation (18) by introducing

Φ∗
n(y) := Φn(y) − LΦn

(y) := Φn(y) − Φn(y2) − Φn(y1)
(y2 − y1) (y − y1) − Φn(y1),

which leads to {
∂y ((Z+ − cn)(Z− − cn)∂yΦ∗

n) − α2(Z+ − cn)(Z− − cn)Φ∗
n = F ∗

n ,

Φ∗
n(y1) = Φ∗

n(y2) = 0,
(53)

with

F ∗
n(y) =Fn(y) − Φn(y2) − Φn(y1)

(y2 − y1) (Z ′
+)(y)(Z−(y) − cn)

− Φn(y2) − Φn(y1)
(y2 − y1) (Z ′

−)(y)(Z+(y) − cn) + α2(Z+ − cn)(Z− − cn)LΦn
(y).

We can see that to study Equation (53) is to study an equation of the following type

{
∂y ((Z+ − c∗)(Z− − c∗)∂yΦ∗) − α2(Z+ − c∗)(Z− − c∗)Φ∗ = F∗,

Φ∗(y1) = Φ∗(y2) = 0.
(54)

Here c∗ ∈ (Ωε0 \ (Ran Z+ ∪ Ran Z−)) satisfies the conditions |Re c∗ − Z+(0)| ≥ |Im c∗| and Z ′′
+(0)(Re c∗ −

Z+(0)) ≥ 0 (or |Re c∗ − Z−(0)| ≥ |Im c∗| and Z ′′
−(0)(Re c∗ −Z−(0)) ≥ 0), while F∗ ∈ H1. For c∗ close enough 

to Z+(0) (or Z−(0)), we can find exactly two points yi
∗, i = � or r, in a sufficiently small neighborhood of 0

such that y�
∗ ≤ 0 ≤ yr

∗ and Z+
(
y�

∗
)

= Z+(yr
∗) = Re c∗ (or Z−

(
y�

∗
)

= Z+(yr
∗) = Re c∗). It turns out that the 

solution to Equation (54) enjoys the following estimate.

Lemma 3.7. Let Φ∗ be the solution to Equation (54). There exists some C > 0 independent of c∗ such that

‖Φ∗‖L2(y1,y2) ≤ C‖F∗‖L∞ .
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Before we prove Lemma 3.7, we make some preparations. Recall that here we assume that 0 is a critical 
point of Z+, i.e. Z ′

+(0) = 0 (or Z ′
−(0) = 0) and that we restrict ourselves to the case c∗ → Z+(0) with 

Im c∗ > 0, as the proofs for the other cases are along the same lines.
Without loss of generality, we may also assume that Z ′′

+(0) > 0, i.e., Z+(0) is a local minimum. We define 
σ(c∗) ∈ C, which satisfies (σ(c∗))2 = c∗ − Z+(0) with Im σ(c∗) > 0.

To this end, we proceed to introduce the notations. We define the function V (y) such that (V (y))2 =
Z+(y) − Z+(0), i.e.,

V (y) =
{

−
√

Z+(y) − Z+(0) on [y1, 0],√
Z+(y) − Z+(0) on [0, y2].

(55)

It can be verified via direct computations that V ∈ C2(I0) is monotone, and V ′(0) =
√

2Z′′
+(0)

2 .
Denoting the solution to Equation (54) on [y1, 0] by Φ�

∗ and that on [0, y2] by Φr
∗, we notice that Equation 

(54) is equivalent to

∂y

(
(Z− − c∗)(Z+ − c∗)

(
ϕj

∗
)2

∂y

(
Φj

∗

ϕj
∗

))
= F∗ϕj

∗, j = � or r, (56)

where ϕr
∗ and ϕ�

∗ are the solutions to the homogeneous equation

∂y ((Z− − c∗)(Z+ − c∗)∂yϕ∗) − α2(Z− − c∗)(Z+ − c∗)ϕ∗ = 0, (57)

ϕ∗
(
y�

∗
)

= 1, ∂yϕ∗
(
y�

∗
)

= 0, for y ∈ [y1, 0], (58)

or ϕ∗ (yr
∗) = 1, ∂yϕ∗ (yr

∗) = 0, for y ∈ [0, y2], (59)

with ϕr
∗ and ϕ�

∗ corresponding to condition (58) and corresponding to (59), respectively. The following 
properties of ϕj

∗, j = � or r, shall be useful –

1. |ϕj
∗| > 1

2 ,

2. |ϕj
∗(y) − 1| ≤ C

∣∣∣y − yj
∗

∣∣∣2 , y ∈ [y1, 0] (or [0, y2]),

3. |∂yϕj
∗(y)| ≤ C

∣∣∣y − yj
∗

∣∣∣ , y ∈ [y1, 0] (or [0, y2]).

We can integrate twice and obtain explicit solution formulae to Equation (54). On [0, y2], the solution to 
Equation (54) is given by

Φr
∗(y) =νr[F∗](c∗)ϕr

∗(y) + μr[F∗](c∗)ϕr
∗(y)

y∫
0

1
(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕr

∗(y′))2 dy′

+ ϕr
∗(y)

y∫
0

∫ y′

yr
∗
(F∗ϕr

∗)(z)dz

(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕr
∗(y′))2 dy′

=μ̃r[F∗](c∗)ϕr
∗(y)

y∫
y2

1
(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕr

∗(y′))2 dy′

+ ϕr
∗(y)

y∫ ∫ y′

yr
∗
(F∗ϕr

∗)(z)dz

(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕr
∗(y′))2 dy′,

(60)
y2
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while the solution to Equation (54) on [y1, 0] is given by

Φ�
∗(y) =ϕ�

∗(y)
y∫

y1

∫ y′

y�
∗
(F∗ϕ�

∗)(z)dz

(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕ�
∗(y′))2 dy′

+ μ̃�[F∗](c∗)ϕ�
∗(y)

y∫
y1

1
(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕ�

∗(y′))2 dy′

=μ�[F∗](c∗)ϕ�
∗(y)

y∫
0

1
(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕ�

∗(y′))2 dy′ + ν�[F∗](c∗)ϕ�
∗(y)

+ ϕ�
∗(y)

y∫
0

∫ y′

y�
∗
(F∗ϕ�

∗)(z)dz

(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕ�
∗(y′))2 dy′.

Here the coefficients μj [F∗](c∗), ̃μj [F∗](c∗) and νj [F∗](c∗), j = � or r, are determined by F∗ and c∗ in a way 
such that Φr

∗ and Φ�
∗ are well-defined and satisfy the conditions

{
Φ�

∗(y1) = 0, Φr
∗(y2) = 0,

Φ�
∗(0) = Φr

∗(0), ∂yΦ�
∗(0) = ∂yΦr

∗(0),
(61)

which gives us

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

μr[F∗](c∗) = μ̃r[F∗](c∗), μ�[F∗](c∗) = μ̃�[F∗](c∗),
Ir(c∗)μr[F∗](c∗) + νr[F∗](c∗) = −T r[F∗](c∗),
I�(c∗)μ�[F∗](c∗) − ν�[F∗](c∗) = T �[F∗](c∗),
ϕr

∗(0)νr[F∗](c∗) − ϕ�
∗(0)ν�[F∗](c∗) = 0,

ϕ�
∗(0)μr[F∗](c∗) − ϕr

∗(0)μ�[F∗](c∗) + (Z−(0) − c∗)(Z+(0) − c∗)(ϕ�
∗ϕr

∗∂yϕr
∗)(0)νr[F∗](c∗)

−(Z−(0) − c∗)(Z+(0) − c∗)(ϕr
∗ϕ�

∗∂yϕ�
∗)(0)ν�[F∗](c∗) = L[F∗](c∗).

We rewrite the above set of equations in the form of matrix equation as

⎡⎢⎣
Ir 0 1 0
0 I� 0 −1
0 0 ϕr

∗(0) −ϕ�
∗(0)

ϕ�
∗(0) −ϕr

∗(0) H0(c∗)(ϕ�
∗ϕr

∗∂yϕr
∗)(0) −H0(c∗)(ϕr

∗ϕ�
∗∂yϕ�

∗)(0)

⎤⎥⎦
⎡⎢⎣μr[F∗]

μ�[F∗]
νr[F∗]
ν�[F∗]

⎤⎥⎦ =

⎡⎢⎣−T r[F∗]
T �[F∗]

0
L[F∗]

⎤⎥⎦ ,

where H0(c∗) := (Z−(0) − c∗)(Z+(0) − c∗) and

I�(c∗) :=
0∫

y1

1
(Z−(y) − c∗)(Z+(y) − c∗) (ϕ�

∗(y))2 dy, (62)

Ir(c∗) :=
y2∫

0

1
(Z−(y) − c∗)(Z+(y) − c∗) (ϕr

∗(y))2 dy, (63)

L[F∗](c∗) := ϕ�
∗(0)

yr
∗∫
(F∗ϕr

∗)(y)dy − ϕr
∗(0)

y�
∗∫
(F∗ϕ�

∗)(y)dy, (64)

0 0
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T �[F∗](c∗) :=
y1∫

0

∫ y

y�
∗
(F∗ϕ�

∗)(z)dz

(Z−(y) − c∗)(Z+(y) − c∗) (ϕ�
∗(y))2 dy, (65)

T r[F∗](c∗) :=
y2∫

0

∫ y

yr
∗
(F∗ϕr

∗)(z)dz

(Z−(y) − c∗)(Z+(y) − c∗) (ϕr
∗(y))2 dy. (66)

And hereafter, we denote

D(c∗) :=(Z−(0) − c∗)(Z+(0) − c∗)ϕr
∗(0)ϕ�

∗(0)
(
ϕ�

∗(0)∂yϕr
∗(0) − ϕr

∗(0)∂yϕ�
∗(0)

)
Ir(c∗)I�(c∗)

− (ϕr
∗(0))2

Ir(c∗) − (ϕ�
∗(0))2I�(c∗),

which is in fact the determinant of the matrix in the matrix equation above.
Continuing solving for the coefficients, we obtain

μr[F∗](c∗) = μ̃r[F∗](c∗)

:= 1
D(c∗) (Z−(0) − c∗)(Z+(0) − c∗)ϕr

∗(0)ϕ�
∗(0)

(
∂yϕ�

∗(0)ϕr
∗(0) − ∂yϕr

∗(0)ϕ�
∗(0)

)
T r[F∗](c∗)I�(c∗)

− 1
D(c∗)

(
ϕ�

∗(0)L[F∗](c∗)I�(c∗) + (ϕr
∗(0))2

T r[F∗](c∗)
)

− 1
D(c∗)

(
ϕr

∗(0)ϕ�
∗(0)T �[F∗](c∗)

)
,

(67)

μ�[F∗](c∗) = μ̃�[F∗](c∗)

:= 1
D(c∗) (Z−(0) − c∗)(Z+(0) − c∗)ϕr

∗(0)ϕ�
∗(0)

(
∂yϕ�

∗(0)ϕr
∗(0) − ∂yϕr

∗(0)ϕ�
∗(0)

)
T �[F∗](c∗)Ir(c∗)

+ 1
D(c∗)

(
ϕr

∗(0)L[F∗](c∗)Ir(c∗) −
(
ϕ�

∗(0)
)2

T �[F∗](c∗)
)

+ 1
D(c∗)

(
ϕr

∗(0)ϕ�
∗(0)T r[F∗](c∗)

)
,

(68)

νr[F∗](c∗) =: 1
D(c∗)

(
ϕ�

∗(0)L[F∗](c∗)Ir(c∗)I�(c∗) − ϕr
∗(0)ϕ�

∗(0)T �[F∗](c∗)Ir(c∗)
)

+ 1
D(c∗)

((
ϕ�

∗(0)
)2

T r[F∗](c∗)I�(c∗)
)

,

(69)

ν�[F∗](c∗) := 1
D(c∗)

(
ϕr

∗(0)L[F∗](c∗)Ir(c∗)I�(c∗) + ϕr
∗(0)ϕ�

∗(0)T r[F∗](c∗)I�(c∗)
)

+ 1
D(c∗)

(
(ϕr

∗(0))2
T �[F∗](c∗)Ir(c∗)

)
.

(70)

Thus, we can verify that

Φ∗(y, c∗) =
{

Φ�
∗(y, c∗) on [y1, 0],

Φr
∗(y, c∗) on [0, y2]

is well-defined and is the unique C1- solution to (54) on I0.
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To facilitate the estimation of Ik(c∗) for k = r or �, we introduce also the following quantities

Ir
1 (c∗) :=

y2∫
0

1
(Z−(y) − c∗)(Z+(y) − c∗)

(
1

(ϕr
∗(y))2 − 1

)
dy +

y2∫
0

1
2b(y)(Z−(y) − c∗)dy,

I�
1(c∗) :=

0∫
y1

1
(Z−(y) − c∗)(Z+(y) − c∗)

(
1

(ϕ�
∗(y))2 − 1

)
dy +

0∫
y1

1
2b(y)(Z−(y) − c∗)dy,

Ir
2 (σ(c∗)) := − 1

2b(y2)V ′(y2) ln
(

|V (y2) − σ(c∗)|
|V (y2) + σ(c∗)|

)
+ i

2b(y2)V ′(y2) arctan
(

Im σ(c∗)
|V (y2) − Re σ(c∗)|

)

+
y2∫

0

∂y

(
1

2b(y)V ′(y)

)
Log

(
V (y) − σ(c∗)
V (y) + σ(c∗)

)
dy

+ i

2b(y2)V ′(y2) arctan
(

Im σ(c∗)
|V (y2) + Re σ(c∗)|

)
,

I�
2(σ(c∗)) := 1

2b(y1)V ′(y1) ln
(

|V (y1) − σ(c∗)|
|V (y1) + σ(c∗)|

)
+

0∫
y1

∂y

(
1

2b(y)V ′(y)

)
Log

(
V (y) − σ(c∗)
V (y) + σ(c∗)

)
dy

+ i

2b(y1)V ′(y1) arctan
(

Im σ(c∗)
|V (y1) + Re σ(c∗)|

)
+ i

2b(y1)V ′(y1) arctan
(

Im σ(c∗)
|V (y1) − Re σ(c∗)|

)
− 2iπ

2b(y1)V ′(y1) + 2iπ

2b(0)V ′(0) ,

where Log is the complex logarithm with the principal value of the argument in (−π, π].
We shall prove the following auxiliary estimates on Ik(σ(c∗)), k = � or r and D(c∗) which will help us 

characterize the behaviors of the coefficients μk[F∗](c∗), ̃μk[F∗](c∗) and νk[F∗](c∗), k = � or r, in the solution 
formulae to Equation (54).

Lemma 3.8. Assume that Im c∗ > 0 and Im σ(c∗) > 0. It holds that

2σ(c∗)Ik(c∗) = − iπ

b(0)
√

2Z ′′
+(0)

+ 2σ(c∗)Ik
1 (c∗) + Ik

2 (σ(c∗)), k = � or r. (71)

Moreover, there exist some δ0 > 0 and a constant C depending only on α, such that if |σ(c∗)| < δ0, then 
the following estimates are true for k = � or r

|Ik
1 (c∗)| ≤ C, (72)

|Ik
2 (σ(c∗))| ≤ C|σ(c∗)| 1

4 , (73)

C−1 ≤ |2σ(c∗)Ik(c∗)| ≤ C. (74)

In particular,

lim
c →Z (0)

2σ(c∗)Ik(c∗) = − iπ√ ′′ , k = � or r.

∗ + b(0) 2Z+(0)
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Proof. Splitting the integral Ir(c∗) and utilizing the function V , we have

2σ(c∗)Ir(c∗) =2σ(c∗)
y2∫

0

1
(Z−(y) − c∗)(Z+(y) − c∗) (ϕr

∗(y))2 dy

=2σ(c∗)
y2∫

0

1
(Z−(y) − c∗)(Z+(y) − c∗)

(
1

(ϕr
∗(y))2 − 1

)
dy

+ 2σ(c∗)
y2∫

0

1
2b(y)(Z−(y) − c∗)dy − 2σ(c∗)

y2∫
0

1
2b(y)(Z+(y) − c∗)dy

=2σ(c∗)Ir
1 (c∗) −

y2∫
0

1
2b(y)(V (y) − σ(c∗))dy +

y2∫
0

1
2b(y)(V (y) + σ(c∗))dy

=2σ(c∗)Ir
1 (c∗) −

y2∫
0

1
2b(y)V ′(y)∂y (Log(V (y) − σ(c∗))) dy

+
y2∫

0

1
2b(y)V ′(y)∂y (Log(V (y) + σ(c∗))) dy.

Integration by parts yields

2σ(c∗)Ir(c∗) =2σ(c∗)Ir
1 (c∗) − Log(V (y) − σ(c∗))

2b(y)V ′(y)

∣∣∣y=y2

y=0
+ Log(V (y) + σ(c∗))

2b(y)V ′(y)

∣∣∣y=y2

y=0

+
y2∫

0

∂y

(
1

2b(y)V ′(y)

)
(Log (V (y) − σ(c∗)) − Log (V (y) + σ(c∗))) dy

=2σ(c∗)Ir
1 (c∗) − 1

2b(y2)V ′(y2) ln
(

|V (y2) − σ(c∗)|
|V (y2) + σ(c∗)|

)

+
y2∫

0

∂y

(
1

2b(y)V ′(y)

)
Log

(
V (y) − σ(c∗)
V (y) + σ(c∗)

)
dy

+ i

2b(y2)V ′(y2) arctan
(

Im σ(c∗)
|V (y2) + Re σ(c∗)|

)
+ i

2b(y2)V ′(y2) arctan
(

Im σ(c∗)
|V (y2) + Re σ(c∗)|

)
− iπ

2b(0)V ′(0)

=2σ(c∗)Ir
1 (c∗) − iπ

2b(0)V ′(0) + Ir
2 (σ(c∗)).

Similarly, we have

2σ(c∗)I�(c∗) =2σ(c∗)I�
1(c∗) −

0∫
y1

1
2b(y)(V (y) − σ(c∗))dy +

0∫
y1

1
2b(y)(V (y) + σ(c∗))dy

=2σ(c∗)I�
1(c∗) − Log(V (y) − σ(c∗))

′

∣∣∣y=0
2b(y)V (y) y=y1
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+
0∫

y1

∂y

(
1

2b(y)V ′(y)

)
Log(V (y) − σ(c∗))dy + Log(V (y) + σ(c∗))

2b(y)V ′(y)

∣∣∣y=0

y=y1

−
0∫

y1

∂y

(
1

2b(y)V ′(y)

)
Log(V (y) + σ(c∗))dy

=2σ(c∗)I�
1(c∗) + 1

2b(y1)V ′(y1) ln
(

|V (y1) − σ(c∗)|
|V (y1) + σ(c∗)|

)

+
0∫

y1

∂y

(
1

2b(y)V ′(y)

)
Log

(
V (y) − σ(c∗)
V (y) + σ(c∗)

)
dy

− i

2b(y1)V ′(y1)

(
2π − arctan Im σ(c∗)

|V (y1) + Re σ(c∗)| − arctan Imσ(c∗)
|V (y1) − Re σ(c∗)|

)
− i

2b(0)V ′(0)

(
−π + arctan Im σ(c∗)

|Re σ(c∗)| − arctan Im σ(c∗)
|Re σ(c∗)|

)
=2σ(c∗)I�

1(c∗) − iπ

2b(0)V ′(0) + I�
2(σ(c∗)).

We have thus shown (71).
We have the bound on Ik

1 (c∗), k = � or r, in (72) for |σ(c∗)| < δ0 � 1 by the fact that 
∣∣ϕk

∗
∣∣ ≥ 1

2 and ∣∣ϕk
∗(y) − 1

∣∣ ≤ C
∣∣y − yk

∗
∣∣2, k = � or r.

We proceed to prove (73). As |V ′(y2)| > 0, by taking |Im (σ(c∗))| � |Re(σ(c∗))| < δ0, we obtain the 
following ∣∣∣∣ i

2b(y2)V ′(y2)

(
arctan Im σ(c∗)

|V (y2) − Re σ(c∗)| + arctan Im σ(c∗)
|V (y2) + Re σ(c∗)|

)∣∣∣∣ ≤ C|σ(c∗)|. (75)

For sufficiently small δ0 and |σ(c∗)| < δ0, we have

1
2b(y2)V ′(y2) ln

(
|V (y2) − σ(c∗)|
|V (y2) + σ(c∗)|

)
≤ C|σ(c∗)|, (76)

as

1
2b(y2)V ′(y2) ln

(
|V (y2) − σ(c∗)|
|V (y2) + σ(c∗)|

)
= 1

2b(y2)V ′(y2) ln
(

1 − 2V (y2)Re σ(c∗)
|V (y2) + Re σ(c∗)|2 + |Im (σ(c∗))|2

)
.

We split the integral as follows –

y2∫
0

∂y

(
1

2b(y)V ′(y)

)
Log

(
V (y) − σ(c∗)
V (y) + σ(c∗)

)
dy

=
∫
E

∂y

( 1
2b(y)V ′(y)

)
Log

(
V (y) − σ(c∗)
V (y) + σ(c∗)

)
dy

+
∫

Ec

∂y

( 1
2b(y)V ′(y)

)
Log

(
V (y) − σ(c∗)
V (y) + σ(c∗)

)
dy

:= K1(σ(c∗)) + K2(σ(c∗)),
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where the set E is defined as E :=
{

y ∈ [0, y2] : V (y) < M
√

|σ(c∗)|
}

for sufficiently large M independent 

of σ(c∗), while Ec :=
{

y ∈ [0, y2] : V (y) ≥ M
√

|σ(c∗)|
}

.
For |σ(c∗)| < δ0 with sufficiently small δ0, we have the estimate

|K1(σ(c∗))| ≤ C 4
√

|σ(c∗)| + C
√

|σ(c∗)| ≤ C 4
√

|σ(c∗)|, (77)

as Log
(

V (y)−σ(c∗)
V (y)+σ(c∗)

)
∈ L2 in the set E, in particular,

Log
(

V (y) − σ(c∗)
V (y) + σ(c∗)

)
= ln

(
|V (y) − σ(c∗)|
|V (y) + σ(c∗)|

)
+ i arg(V (y) − σ(c∗)) − i arg(V (y) + σ(c∗)).

Meanwhile, in the set Ec, it holds that

Log
(

V (y) − σ(c∗)
V (y) + σ(c∗)

)
= ln

(
|V (y) − σ(c∗)|
|V (y) + σ(c∗)|

)
− i arctan

(
Im σ(c∗)

|V (y) − Re σ(c∗)|

)
− i arctan

(
Im σ(c∗)

|V (y) + Re σ(c∗)|

)
,

from which we infer that

|K2(σ(c∗))| ≤ C
√

|σ(c∗)|, (78)

when |σ(c∗)| < δ0 for small enough δ0.
Combining (75), (76), (77) and (78), we have

|Ir
2 (σ(c∗))| ≤ C

(
4
√

|σ(c∗)| + |σ(c∗)| + |σ(c∗)|
)

≤ C 4
√

|σ(c∗)|.

We note that the terms 1
2b(y1)V ′(y1) ln

(
|V (y1)−σ(c∗)|
|V (y1)+σ(c∗)|

)
and i

2b(y1)V ′(y1) arctan
(

Im (σ(c∗))
|V (y1)±Re (σ(c∗))|

)
enjoy es-

timates similar to (76) and (75), respectively.
Introducing the sets

E :=
{

y ∈ [y1, 0] : V (y) < M
√

|σ(c∗)|
}

and Ec :=
{

y ∈ [y1, 0] : V (y) ≥ M
√

|σ(c∗)|
}

,

where M is supposed to be large and independent of σ(c∗), we split the integral in I�
2(σ(c∗):

0∫
y1

∂y

(
1

2b(y)V ′(y)

)
Log

(
V (y) − σ(c∗)
V (y) + σ(c∗)

)
dy − 2iπ

2b(y1)V ′(y1) + 2iπ

2b(0)V ′(0) =: K1(σ(c∗)) + K2(σ(c∗)),

where

K1(σ(c∗)) :=
∫
E

∂y

(
1

2b(y)V ′(y)

)
Log

(
V (y) − σ(c∗)
V (y) + σ(c∗)

)
dy,

K2(σ(c∗)) :=
∫
Ec

∂y

(
1

2b(y)V ′(y)

)
Log

(
V (y) − σ(c∗)
V (y) + σ(c∗)

)
dy − 2iπ

2b(y1)V ′(y1) + 2iπ

2b(0)V ′(0) .
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On the set E , we have Log
(

V (y)−σ(c∗)
V (y)+σ(c∗)

)
∈ L2, as

Log
(

V (y) − σ(c∗)
V (y) + σ(c∗)

)
= ln

(
|V (y) − σ(c∗)|
|V (y) + σ(c∗)|

)
+ i arg(V (y) − σ(c∗)) − i arg(V (y) + σ(c∗)).

For δ0 small enough, it holds that

|K1(σ(c∗))| ≤ C 4
√

|σ(c∗)| + C
√

|σ(c∗)| ≤ C 4
√

|σ(c∗)|.

On the Ec, we have

Log
(

V (y) − σ(c∗)
V (y) + σ(c∗)

)
= ln

(
|V (y) − σ(c∗)|
|V (y) + σ(c∗)|

)
− i arctan

(
Im (σ(c∗))

|V (y) − Re (σ(c∗))|

)
− i arctan

(
Im (σ(c∗))

|V (y) + Re (σ(c∗))|

)
− 2iπ,

from which we can deduce that for δ0 small enough

|K2(σ(c∗))| ≤ C
√

|σ(c∗)|.

It is then evident that

|I�
2(σ(c∗)) ≤ C 4

√
|σ(c∗)|.

By (72) and (73), we have (74). �
From Lemma 3.8, we can deduce the following corollary.

Corollary 3.9. It holds that for |σ(c∗)| < δ0 with δ0 > 0 small enough,

C−1

|σ(c∗)| ≤ |D(c∗)| ≤ C

|σ(c∗)| . (79)

In addition, if Im c∗ > 0, then

lim
c∗→Z+(0)

σ(c∗)D(c∗) = iπ

b(0)
√

2Z ′′
+(0)

.

Recalling (60) and its counterpart on [y1, 0], we are ready to prove Lemma 3.7
Proof of Lemma 3.7. It is easy to check that

|L[F∗](c∗)| ≤ C
(
|yr

∗| + |yl
∗|
)

‖F∗‖L∞ .

We also have the following estimate for T �[F∗](c∗),

∣∣T �[F∗](c∗)
∣∣ ≤

∣∣∣∣∣∣
y1∫

0

∫ y

y�
∗

F∗(z) dz

(Z−(y) − c∗)(Z+(y) − c∗)dy

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
y1∫

0

y∫
�

(
F∗(z)

(Z−(y) − c∗)(Z+(y) − c∗)

)(
ϕ�

∗(z)
ϕ�

∗(y)2 − 1
)

dz dy

∣∣∣∣∣∣∣
y∗
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≤C‖F∗‖L∞

⎛⎝ y1∫
0

1
|y| + |y�

∗|dy + 1

⎞⎠
≤C

(
1 +

∣∣ln (|y�
∗|
)∣∣) ‖F∗‖L∞ .

Similarly,

|T r[F∗](c∗)| ≤ C (1 + |ln(|yr
∗|)|) ‖F∗‖L∞ .

By Lemma 3.8, Corollary 3.9 and the fact that |yr
∗| ∼ |y�

∗|, we have the following bounds on the coefficients 
μj [F∗](c∗), ̃μj [F∗](c∗) and νj [F∗](c∗), j = � or r,

∣∣μj [F∗](c∗)
∣∣ ≤ C|σ(c∗)| (1 + |ln(|yr

∗|)|) ‖F∗‖L∞ , (80)∣∣μ̃j [F∗](c∗)
∣∣ ≤ C|σ(c∗)| (1 + |ln(|yr

∗|)|) ‖F∗‖L∞ , (81)∣∣νj [F∗](c∗)
∣∣ ≤ C (1 + |ln(|yr

∗|)|) ‖F∗‖L∞ . (82)

We recall the explicit formula of Φr
∗ given by (60)

Φr
∗(y) =νr[F∗](c∗)ϕr

∗(y) + μr[F∗](c∗)ϕr
∗(y)

y∫
0

1
(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕr

∗(y′))2 dy′

+ ϕr
∗(y)

y∫
0

∫ y′

yr
∗
(F∗ϕr

∗)(z)dz

(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕr
∗(y′))2 dy′ =: J1 + J2 + J3, for y ∈ (0, yr

∗);

and

Φr
∗(y) =μ̃r[F∗](c∗)ϕr

∗(y)
y∫

y2

1
(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕr

∗(y′))2 dy′

+ ϕr
∗(y)

y∫
y2

∫ y′

yr
∗
(F∗ϕr

∗)(z)dz

(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕr
∗(y′))2 dy′ =: J̃1 + J̃2, for y ∈ (yr

∗, y2).

From (82), it is clear that for y ∈ (0, yr
∗),

|J1| ≤ C (1 + |ln (|yr
∗|)|) ‖F∗‖L∞ ≤ C (1 + |ln (|y|)|) ‖F∗‖L∞ .

From (80) and the fact that (1 + |ln (|yr
∗|)|) � |σ(c∗)|−γ , 0 < γ < 1

4 , for c∗ close to Z+(0), we infer that

|J2| ≤C‖F∗‖L∞ |σ(c∗)|1−γ

∣∣∣∣∣∣
y∫

0

1
(|y′| + |σ(c∗)|)(y′ − yr

∗)dy′

∣∣∣∣∣∣
≤C‖F∗‖L∞ |σ(c∗)|γ

∣∣∣∣∣∣
y∫

0

1
|y′ − yr

∗|1+2γ
dy′

∣∣∣∣∣∣
≤C|σ(c∗)|γ‖F∗‖L∞

(
1

r 2γ
+ 1

)
,

(83)
|y − y∗|
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which shows that ‖J2‖L2 ≤ C‖F∗‖L∞ . In a similar way, we can show that ‖J̃1‖L2 ≤ C‖F∗‖L∞ .
The term J3 enjoys the following estimate∣∣∣∣∣∣

y∫
0

∫ y′

yr
∗
(F∗ϕr

∗)(z)dz

(Z−(y′) − c∗)(Z+(y′) − c∗) (ϕr
∗(y′))2 dy′

∣∣∣∣∣∣ ≤ ‖F∗‖L∞ (1 + |ln(|yr
∗| + |y|)|) ,

and the estimate for J̃2 is similar.
Therefore, it holds that

‖Φr
∗‖L2(0,y2) ≤ ‖J1‖L2(0,yr

∗) + ‖J2‖L2(0,yr
∗) + ‖J3‖L2(0,yr

∗) + ‖J̃1‖L2(yr
∗,y2) + ‖J̃2‖L2(yr

∗,y2)

≤ C‖F∗‖L∞ .

Similarly, we have ‖Φ�
∗‖L2(y1,0) ≤ C‖F∗‖L∞ , which concludes our proof. �

Remark 3.10. In the case that c∗ ∈ Ran Z− with Im c∗ > 0, without loss of generality, we may assume that 
Z ′

−(0) = 0 and Z ′′
−(0) > 0. We can instead let V (y)2 = Z−(y) − Z−(0) and (σ(c∗))2 = c∗ − Z−(0). Then by 

the same argument as in the proof of Lemma 3.8, we obtain

lim
c∗→Z−(0)

2σ(c∗)Ik(c∗) = iπ

b(0)
√

2Z ′′
−(0)

, k = � or r

and

lim
c∗→Z−(0)

σ(c∗)D(c∗) = − iπ

b(0)
√

2Z ′′
−(0)

.

Proof of Lemma 3.6. Recalling Lemma 3.3, which asserts the strong convergence

Φn → Φ in L2 and (Z− − cn)(Z+ − cn)∂yΦn → (Z− − c)(Z+ − c)∂yΦ in H1,

away from the critical points in Z−1
+ (c), along with Equation (53), we know that

F ∗
n → F ∗

∞ :=F (y) − Φ(y2) − Φ(y1)
(y2 − y1) Z ′

+(y)(Z−(y) − c)

− Φ(y2) − Φ(y1)
(y2 − y1) Z ′

−(y)(Z+(y) − c) + α2(Z+ − c)(Z− − c)LΦ(y)
(84)

in H1 from our assumption that Fn → F in H1 as n → ∞.
From Lemma 3.8 and Corollary 3.9, we know that as cn → c and F ∗

n → F ∗
∞ in H1,

μ̃r[F ∗
n ](cn)ϕr

∗(y)
y∫

y2

1
(Z− − cn)(Z+ − cn) (ϕr

∗(y′))2 dy′ → 0 in L2(0, y2),

whose analogues also hold for the terms corresponding to μ̃�[F ∗
n ](cn), μ�[F ∗

n ](cn) and μr[F ∗
n ](cn).

Therefore, we know from (60) that as cn → c = Z+(0) and F ∗
n → F ∗

∞ in H1,

Φ∗
n → Φ∗

∞ in L2(y1, y2), with Φ∗
∞(y) :=

⎧⎨⎩ϕ�(y)
∫ y

y1

∫ y′
0 (F ∗

∞ϕ�)(z)dz

(Z−−c)(Z+−c)(ϕ�(y′))2 dy′ on [y1, 0),

ϕr(y)
∫ y

∫ y′
0 (F ∗

∞ϕr)(z)dz
r ′ 2 dy′ on (0, y2],
y2 (Z−−c)(Z+−c)(ϕ (y ))
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where ϕ� and ϕr are the solutions to the corresponding homogeneous equation, as constructed in Ap-
pendix A. It is then evident that Φn → Φ in L2(I0).

It follows from (60) and (82) that

|Φ∗
n(0)| ≤ |νr[F ∗

n ](cn)| ≤ C
(

1 +
∣∣∣ln(√|(cn − Z+(0))(cn − Z−(0))|

)∣∣∣) ‖F ∗
n‖L∞

≤C|(Z+(0) − cn)(Z−(0) − cn)|− 1
4 .

Differentiating (60) with c∗ = cn at y = 0 yields

|∂yΦ∗
n(0)| = |∂yΦr

∗(0, cn)|

≤ |νr[F ∗
n ](cn)∂yϕr

∗(0)| +

∣∣∣∣∣∣∣
1

(Z−(0) − cn)(Z+(0) − cn)ϕr
∗(0)

⎛⎜⎝μr[F ∗
n ](cn) +

0∫
yr

∗

(F ∗
nϕr

∗)(z)dz

⎞⎟⎠
∣∣∣∣∣∣∣

≤ C (1 + |ln(|yr
∗|)|)

(
1

|(Z−(0) − cn)(Z+(0) − cn)|
1
2

+ 1
)

≤ C |(Z−(0) − cn)(Z+(0) − cn)|−
3
4 .

We note that |(Z− − cn)(Z+ − cn)| ≥ C−1 > 0 at y1 and y2 as the two points are far away enough from 
(Z+)−1(c). By the facts

(Z− − cn)(Z+ − cn)∂yΦn ∈ L∞ and Φn ∈ L2,

we know that |Φn(y1)| + |Φn(y2)| + |∂yΦn(y1)| + |∂yΦn(y2)| ≤ C. The estimates on Φ∗
n(y0) and ∂yΦ∗

n(y0)
then imply (51) and (52). �
3.3. Proofs of Proposition 3.1 and Proposition 3.2

As in previous proofs, we restrict ourselves to the case c ∈ Ran Z+. By our assumptions on u and b, given 
c ∈ Ran Z+, we can assume that

(Z+)−1(c) = {yc,1, yc,2, ..., yc,k; y0,1, y0,2, ..., y0,m} ,

where yc,i, i = 1, 2, ..., k are the points at which Z+ is monotone, i.e., |Z ′
+(yc,i)| > 0, whereas y0,i, i =

1, 2, ..., m are the critical points, where Z ′
+(y0,i) = 0 (and |Z ′′

+(y0,i)| �= 0).
For each yc,i, there exists an interval Ii such that yc,i ∈ Ii and Z ′

+(yc,i)Z ′
+(y) > 0, ∀y ∈ Ii, whereas for 

each critical point y0,j we may find an interval I0,j containing y0,j such that Z ′′
+(y0,j)Z ′′

+(y) > 0, ∀y ∈ I0,j . 
The rest of T , consisting of regions far away from the set (Z+)−1(c), can also be covered by finitely many 
intervals, which we denote as {Ia,i}ñ

i=1. The intervals Ii, i = 1, 2, ..., k, I0,i, i = 1, 2, ..., m, and Ia,i, 
i = 1, 2, ..., ̃n, can be chosen in the way such that

[−π, π] =
(
∪k

i=1Ii

)
∪ (∪m

i=1I0,i) ∪
(

∪ñ
i=1Ia,i

)
,

while each of the intervals overlaps only the ones next to it, with the size of the overlap not exceeding 
1

10 min1≤i≤k |Ii| and 1
10 min1≤i≤m |I0,i|.

We can then construct a family of cut-off functions {χj}m+k+ñ
j=1 forming a smooth partition of unity of T

such that each χj is supported in Ĩj , with Ĩj being one of the intervals from {Ii}k
i=1 ∪ {I0,i}m

i=1 ∪ {Ia,i}ñ
i=1. 

The choice of the intervals ensures that χj ≡ 1 near (Z+)−1(c).
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Fig. 1. Partition of [−π, π].

See Fig. 1 for the partition of [−π, π].
The proofs of the propositions are as follows.

Proof of Proposition 3.1 We note that on the intervals {Ia,i}ñ
i=1 we do not encounter any issue in integration 

by parts. As a consequence of Lemma 3.3, q(yc) = q′(yc) = 0 implies that ∂yΦ(yc) = 0, allowing us to set 
the test function to be f = sgn(Z+ − c)Φχj on Ĩj if Ĩj ∈ {Ii}k

i=1, while Lemma 3.4 and Lemma 3.5 have 
enabled us also to set ψ = sgn(Z+ − c)Φχj on Ĩj when Ĩj ∈ {I0,i}m

i=1.
Summing all of the integral identities and noticing that the terms containing χ′

j cancel each other, we 
have

π∫
−π

|Z+ − c|(Z− − c)
m+k∑
j=1

χj

(
|∂yΦ|2 + α2|Φ|2

)
dy = 0,

that is,

π∫
−π

|Z+ − c|(Z− − c)
(
|∂yΦ|2 + α2|Φ|2

)
dy = 0.

Hence, the fact that (Z− − c) is sign-definite implies that Φ ≡ 0, and Φn ⇀ 0 in L2.
It remains to be shown that {Φn}∞

n=1 and {(Z+ − cn)(Z− − cn)∂yΦn}∞
n=1 converge strongly in L2 and 

H1, respectively, which is clear outside the set (Z+)−1(c). Moreover, by Lemma 3.3 we already know that 
the desired strong convergence result holds outside the critical points y0,1, y0,2, ..., y0,k.

As for the critical points in (Z+)−1(c), i.e., y0,1, y0,2, ..., y0,k, if {Φn, cn, Fn}∞
n=1 satisfies the conditions in 

Lemma 3.4, then by (37) and (49),

Φn → Φ ≡ 0 in L2(I0).
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Recalling qn = (Z+ − cn)(Z− − cn)∂yΦn, which satisfies Equation (25), i.e.,

q′′
n − α2qn = F ′

n + α2 (Z ′
+(Z− − cn) + Z ′

−(Z+ − cn)
)

Φn,

we have, from our assumptions ‖Φn‖L2 + ‖qn‖H1 = 1 and Fn → 0 in H1, that

‖q′′
n‖L2 � ‖Φn‖L2 + ‖qn‖L2 + ‖Fn‖H1 ,

which together with the weak convergence qn ⇀ q implies qn → q in H1(I0), that is,

(Z+ − cn)(Z− − cn)∂yΦn → (Z+ − c)(Z− − c)∂yΦ ≡ 0 in H1(I0).

Finally, if {Φn, cn, Fn}∞
n=1 satisfies the conditions in Lemma 3.5 instead, we recall Equation (53), in which 

both y1, y2 /∈ (Z+)−1(c) ∪ (Z−)−1(c) are chosen uniform in n. Then by (49), we obtain that as n → ∞, 
|Φn(y1)| + |Φn(y2)| → 0, and thus ‖F ∗

n‖L∞ → 0. Lemma 3.7 then ensures that Φn → 0 in L2(I0). By the 
same argument as above, we obtain that qn → q in H1(I0).

Thus, we have shown that Φn → 0 in L2 and (Z+ − cn)(Z− − cn)∂yΦn → 0 in H1, which contradicts the 
assumption that ‖Φn‖L2 + ‖(Z+ − cn)(Z− − cn)∂yΦn‖H1 = 1. As the same argument applies to the case 
c ∈ Ran (Z−), it must be that the uniform estimate

‖Φ(·, c)‖L2 + ‖(Z+ − c)(Z− − c)∂yΦ(·, c)‖H1 ≤ C‖F (·, c)‖H1

holds true for c ∈ (Ωε0 \ (Ran Z+ ∪ Ran Z+)). �
Proof of Proposition 3.2 Suppose that there exists some c ∈ Ran Z+ for which the limit Φ+(y, c) do not exist, 
then we can find two sequences {cn,1}∞

n=1 and {cn,2}∞
n=1 such that Im cn,j > 0 and Re cn,j = c, j =, 1, 2, 

|cn,1 − cn,2| → 0 as n → ∞, while there exists some δ > 0 such that

‖Φ(·, cn,1) − Φ(·, cn,2)‖Lr ≥ δ, 1 < r < 2, ∀n ∈ N.

Up to a subsequence, cn,j → c ∈ Ran Z+. By virtue of Proposition 3.1,

‖Φ(·, cn,j)‖L2 + ‖(Z+ − cn,j)(Z− − cn,j)∂yΦ(·, cn,j)‖H1 ≤ ‖F (·, cn,j)‖H1 < C,

from which we know by (25) that

(Z+ − cn,j)(Z− − cn,j)∂yΦ(·, cn,j) ∈ H2,

and that there exist Φc,j ∈ L2 with ((Z+ − c)(Z− − c)∂yΦc,j) ∈ H2, j = 1, 2, such that up to a subsequence,

Φ(·, cn,j) ⇀ Φc,j(·) in L2, j = 1, 2.

As before, the situation at points in the monotone regions and that at the critical points have to be 
discussed separately.

As for yc ∈ (Z+)−1(c) at which Z+ is strictly monotone, from the proof of Lemma 3.3 we have, for 
∀f ∈ C1

0 (I) and j = 1, 2, that

− p.v.
∫
I

(
q′

c,jf ′ + α2qc,jf
)

(y)
(Z+(y) − c)(Z−(y) − c)dy + iπ

(
q′

c,jf ′ + αqc,jf
)

(yc)
2b(yc)Z ′

+(yc)

= −p.v.
∫

F (y, c)f ′(y)
(Z+(y) − c)(Z−(y) − c)dy + iπ

F (yc, c)f ′(yc)
2b(yc)Z ′

+(yc) ,
I
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where qc,j := (Z− − c)(Z+ − c)∂yΦc,j , j = 1, 2. Subtracting, we have

−p.v.
∫ (

(q′
c,1 − q′

c,2)f ′ + α2(qc,1 − qc,2)f
)

(y)
(Z+(y) − c)(Z−(y) − c) dy + iπ

(
(q′

c,1 − q′
c,2)f ′ + α2(qc,1 − qc,2)f

)
(yc)

2b(yc)Z ′
+(yc) = 0,

whose imaginary part ensures that

(q1 − q2) (yc) = (q′
1 − q′

2) (yc) = 0.

By Hardy’s inequality, we know that ∂y(Φc,1 − Φc,2) ∈ L2(I).
In the case of a critical point y0 ∈ I0, from Lemma 3.4 and Lemma 3.5 we know that (y − y0)∂y(Φc,1 −

Φc,2) ∈ L2(I0) and

−
∫
I0

(Z+ − c)(Z− − c)
(
∂yΦc,jf ′ + α2Φc,jf

)
dy =

∫
I0

Ffdy, ∀f ∈ H1
0,w(I0), j = 1, 2,

which implies that

−
∫
I0

(Z+ − c)(Z− − c)
(
(∂yΦc,1 − ∂yΦc,2)f ′ + α2(Φc,1 − Φc,2)f

)
dy = 0, ∀f ∈ H1

0,w(I0).

By setting f = sgn ((Z+ − c)(Z− − c)) (Φc,1 − Φc,2) and integrating by parts, similar to the procedure in 
the proof of Proposition 3.1, we can then conclude that Φc,1 − Φc,2 ≡ 0 and

(Φ(·, cn,1) − Φ(·, cn,2)) ⇀ 0 in L2.

We then aim to show that the weak convergence mentioned above is in fact strong. Away from the critical 
points in (Z+)−1(c), this is ensured by Lemma 3.3.

Near y0, which can be any of the critical points y0,1, y0,2, ..., y0,k, the situation resembles those covered 
in Lemma 3.4, i.e., |Im cn,j | > |Re cn,j − c| for j = 1, 2. (Note here Re cn,j = c.) Therefore, by Lemma 3.4, 
we have

(y − y0)∂yΦ(y, cn,j) ∈ L2, j = 1 or 2,

which by the compactness result in Appendix B, yields the strong convergence locally near y0 in this case, 
i.e.

Φ(·, cn,j) → Φc,j(·) in Lr, 1 < r < 2, j = 1, 2.

Thus in both cases we have Φ(·, cn,1) − Φ(·, cn,2) → Φc,1(·) − Φc,2(·) = 0 in Lr, which leads to a contra-
diction. �
4. Linear damping and depletion

Recalling that Ψ1 = (u − c)Φ + φ̂0
b and Φ1 = bΦ we have, by the formula in (15) and Proposition 3.1, 

that
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(
ψ̂

φ̂

)
(t, α, y) = lim

ε→0+

1
2πi

∫
∂Ωε

e−iαtc

(
Ψ1
Φ1

)
(α, y, c) dc

= lim
ε→0+

1
2πi

( ∫
Ran (u+b)∪Ran (u−b)

e−iαt(c−iε)
(

u − (c − iε)
b

)
Φ(α, y, c − iε) dc

−
∫

Ran (u+b)∪Ran (u−b)

e−iαt(c+iε)
(

u − (c + iε)
b

)
Φ(α, y, c + iε) dc

)
.

For c ∈ (Ran (u + b) ∪ Ran (u − b)), we denote cε := c + iε with −ε0 < ε < ε0. We recall that Φ(α, y, cε)
solves

∂y

((
(u − cε)2 − b2) ∂yΦ(α, y, cε)

)
− α2 ((u − cε)2 − b2)Φ(α, y, cε) = F (α, y, cε), (85)

which can also be written as

∂y ((Z+ − cε)(Z− − cε)∂yΦ(α, y, cε)) − α2(Z+ − cε)(Z− − cε)Φ(α, y, cε) = F (α, y, cε).

Let Φ±(α, y, c) = lim
ε→0+

Φ(α, y, c ± iε), as defined in Proposition 3.2. For convenience, let us denote 

Φ̃(α, y, c) := Φ−(α, y, c) − Φ+(α, y, c). Then by Proposition 3.1 and Proposition 3.2, we have(
ψ̂

φ̂

)
(t, α, y) = lim

ε→0+

1
2πi

∫
∂Ωε

e−iαtc

(
Ψ1
Φ1

)
(α, y, c) dc

= 1
2πi

∫
Ran (u+b)∪Ran (u−b)

e−iαtc

(
(u − c)Φ̃

bΦ̃

)
(α, y, c) dc.

(86)

Proof of Theorem 1.1 Differentiating (86) in t yields

∂t

(
ψ̂

φ̂

)
(t, α, y) = 1

2πi

∫
Ran (u+b)∪Ran (u−b)

iαce−iαtc

(
(c − u)Φ̃

−bΦ̃

)
(α, y, c) dc. (87)

By Plancherel’s theorem, we have the following estimates –

∥∥∥∥( ψ̂

φ̂

)∥∥∥∥2

L2
t L2

y

+
∥∥∥∥∂t

(
ψ̂

φ̂

)∥∥∥∥2

L2
t L2

y

=
∫
T

∞∫
−∞

(∣∣∣∣( ψ̂

φ̂

)∣∣∣∣2 +
∣∣∣∣∂t

(
ψ̂

φ̂

)∣∣∣∣2
)

(t, α, y) dt dy

=
∫
T

∫
Ran (u+b)∪Ran (u−b)

(1 + (αc)2)
∣∣∣∣((u − c)Φ̃

bΦ̃

)
(α, y, c)

∣∣∣∣2 dc dy.

Invoking Proposition 3.2 and the boundedness of b, we have

∥∥∥∥( ψ̂

φ̂

)∥∥∥∥2

L2
t L2

y

+
∥∥∥∥∂t

(
ψ̂

φ̂

)∥∥∥∥2

L2
t L2

y

≤Cα

∫
Ran (u+b)∪Ran (u−b)

‖Φ̃(α, ·, c)‖2
L2

y
dc

≤Cα‖F‖2
H1

y
�
∥∥∥∥( ψ̂0

φ̂0

)∥∥∥∥2

3

. �
(88)
Hy
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Proof of Theorem 1.6 Let y0 be any critical point of u + b or u − b. By the conclusion of Lemma 3.4, for 
c ∈ Ran (u + b) ∪ Ran (u − b), it holds that

|Φ(α, y0, c ± iε)| ≤ C
∣∣ ((u + b)(y0) − (c ± iε)) ((u − b)(y0) − (c ± iε))

∣∣− 1
4 ,

|∂yΦ(α, y0, c ± iε)| ≤ C
∣∣ ((u + b)(y0) − (c ± iε)) ((u − b)(y0) − (c ± iε))

∣∣− 3
4 ,

which implies uniform bounds on both Φ(α, y0, · ±iε0) in Lρ
c , ρ ∈ [1, 4) and ∂yΦ(α, y0, · ±iε) in Lp

c , p ∈ [1, 43 ). 
Thus, there exists a subsequence εn → 0+ as well as Λ± ∈ Lρ

c and Θ± ∈ Lp
c such that as εn → 0+,

Φ(α, y0, · ± iεn) ⇀ Λ±(α, y0, ·),

∂yΦ(α, y0, · ± iεn) ⇀ Θ±(α, y0, ·).

By (86), we have

(
Û1
Ĥ1

)
(t, α, y0) =∂y

(
ψ̂

φ̂

)
(t, α, y0)

= lim
εn→0+

1
2πi

∫
∂Ωεn

e−iαtc∂y

(
Ψ1
Φ1

)
(α, y0, c) dc

= lim
εn→0+

1
2πi

∫
∂Ωεn

e−iαtc

(
(u − c)∂yΦ + u′Φ

b∂yΦ + b′Φ

)
(α, y0, c) dc

= 1
2πi

∫
Ran (u+b)∪Ran (u−b)

e−iαtc

(
(u − c)(Θ− − Θ+)

b(Θ− − Θ+)

)
(α, y0, c) dc

+ 1
2πi

∫
Ran (u+b)∪Ran (u−b)

e−iαtc

(
u′(Λ− − Λ+)
b′(Λ− − Λ+)

)
(α, y0, c) dc.

The desired conclusion follows from Riemann-Lebesgue lemma, as (Θ− − Θ+)(α, y0, ·) ∈ L1
c and (Λ− −

Λ+)(α, y0, ·) ∈ L1
c . �

Appendix A. The homogeneous Sturmian equation

In this section, we shall first construct a regular solution to the homogeneous Sturmian equation on 
[y1, y2] which contains only one critical point y0, i.e. y1 < y0 < y2:

∂y

(
(Z− − c)(Z+ − c)∂yϕ

)
− α2(Z− − c)(Z+ − c)ϕ = 0, (A.1)

for c in an ε0-strip Sε0 containing Z+(y0):

Sε0 =
{

cr + iε : cr ∈
[

min{Z+(y0), Z+(y1)}, max{Z+(y0), Z+(y1)}
]
, |ε| < ε0

}
with Z ′

+(y0) = 0 and Z+(y1) = Z+(y2).
One may follow the same argument and construct a regular solution for the case c in an ε0-strip Sε0

containing Z−(y0) with Z ′
−(y0) = 0. We omit the details here.



H. Liu et al. / J. Math. Pures Appl. 158 (2022) 1–41 35
We note that Z+(y) ≥ C−1 > 0 > −C−1 ≥ Z−(y), Z+(y1) = Z+(y2), Z ′
+(y0) = 0 for the critical point 

y0 ∈ (y1, y2) and |Z ′
+(y)| > 0 for y �= y0. Let

D0 := {c ∈ [min{Z+(y0), Z+(y1)}, max{Z+(y0), Z+(y1)}]}

and

Dε0 := {c = cr + iε, cr ∈ [min{Z+(y0), Z+(y1)}, max{Z+(y0), Z+(y1)}], 0 < |ε| < ε0} .

Then Sε0 = D0 ∪ Dε0 .
Given cr ∈ [min{Z+(y0), Z+(y1)}, max{Z+(y0), Z+(y1)}], when restricted to [y0, y2], we can find yr ∈

[y0, y2] such that Z+(yr) = cr. And when restricted to [y1, y0], we can find y� ∈ [y1, y0] such that Z+(y�) = cr.

Proposition Appendix A.1. 1. For c ∈ Sε0 , there exists a solution ϕr(y, c) ∈ C([y0, y2] ×Sε0) of the Sturmian 
equation (A.5) and ∂yϕr(y, c) ∈ C([y0, y2] × Sε0). Moreover, there exists ε1 > 0 such that for any ε0 ∈ [0, ε1)
and (y, c) ∈ [y0, y2] × Sε0 ,

|ϕr(y, c)| ≥ 1
2 , |ϕr(y, c) − 1| ≤ C|y − yr|2,

where the constants ε1, C may depend on α.
2. For c ∈ D0, for any y ∈ [y0, y2], there is a constant C (depends on α) such that,

ϕr(y, c) ≥ ϕr(y′, c) ≥ 1, for y0 ≤ yr ≤ y′ ≤ y ≤ y2 or y0 ≤ y ≤ y′ ≤ yr ≤ y2.

Proposition Appendix A.2. 1. For c ∈ Sε0 , there exists a solution ϕ�(y, c) ∈ C([y1, y0] ×Sε0) of the Sturmian 
equation (A.5) and ∂yϕ�(y, c) ∈ C([y1, y0] × Sε0). Moreover, there exists ε1 > 0 such that for any ε0 ∈ [0, ε1)
and (y, c) ∈ [y1, y0] × Sε0 ,

|ϕ�(y, c)| ≥ 1
2 , |ϕ�(y, c) − 1| ≤ C|y − y�|2,

where the constants ε1, C may depend on α.
2. For c ∈ D0, for any y ∈ [y1, y0], there is a constant C (depends on α) such that,

ϕ�(y, c) ≥ ϕ�(y′, c) ≥ 1, for y1 ≤ y� ≤ y′ ≤ y ≤ y0 or y1 ≤ y ≤ y′ ≤ y� ≤ y0.

In the following, we only give the proof of Proposition Appendix A.1 and Proposition Appendix A.2 can 
be similarly proved. To prove the existence result for Equation (A.1), we introduce the following adapted 
norms.

Definition Appendix A.3. For a function f(y, c) on [y0, y2] × Sε0 , we define

‖f‖X0 := sup
(y,c)∈[y0,y2]×Sε0

∣∣∣∣ f(y, c)
cosh(A(y − yr))

∣∣∣∣ , ‖f‖Y0 := ‖f‖X0 + 1
A

‖∂yf‖X0 .

In order to give the solution formula, we introduce the following integral operators.

Definition Appendix A.4. Let y ∈ [y0, y2]. The Sturmian integral operator S is defined by

Sf(y, c) := S0 ◦ S1f(y, c) =
y∫

r

∫ y′

yr (Z−(y′′) − c)(Z+(y′′) − c)f(y′′, c)dy′′

(Z−(y′) − c)(Z+(y′) − c) dy′,
y
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where

S0f(y, c) :=
y∫

yr

f(y′, r)dy′, S1f(y, c) :=
∫ y

yr (Z−(y′′) − c)(Z+(y′′) − c)f(y′′, c)dy′′

(Z−(y) − c)(Z+(y) − c) .

Lemma Appendix A.5. There exists a constant C independent of A such that

‖S0f‖X0 ≤ C

A
‖f‖X0 , ‖S1f‖X0 ≤ C

A
‖f‖X0 , ‖Sf‖X0 ≤ C

A2 ‖f‖X0 .

Furthermore, there holds

‖Sf‖Y0 ≤ C

A2 ‖f‖Y0 .

Proof. For c ∈ D0, we shall only prove the part of the lemma for Z+(y0) = c, as the proof when Z−(y0) = c is 
along the same lines. As Ran Z+∩Ran Z− = ∅, we can find some positive C such that C−1 < |Z−(y) −c| < C

for y ∈ [y0, y2]. Firstly, by definition, we have

‖S0f‖X0 = sup
(y,c)∈[y0,y2]×D0

∣∣∣∣∣∣ 1
cosh(A(y − yr))

y∫
yr

cosh(A(y′ − yr)) f(y′, c)
cosh(A(y − yr))dy′

∣∣∣∣∣∣
≤ sup

(y,c)∈[y0,y2]×D0

∣∣∣∣∣∣ 1
cosh(A(y − yr))

y∫
yr

cosh(A(y′ − yr))dy′

∣∣∣∣∣∣ ‖f‖X0

≤C

A
‖f‖X0 .

(A.2)

And due to |Z+(y′′) − c| ≤ |Z+(y) − c| for y0 ≤ y′′ ≤ y ≤ y2,

‖S1f‖X0 ≤ sup
(y,c)∈[y0,y2]×D0

∣∣∣∣∣∣ 1
cosh(A(y − yr))

y∫
yr

cosh(A(z − yr)) f(y′′, c)
cosh(A(z − yr))dy′′

∣∣∣∣∣∣
≤C

A
‖f‖X0 .

(A.3)

Composing inequalities (A.2) and (A.3), we have

‖Sf‖X0 ≤ C

A2 ‖f‖X0 . (A.4)

On the other hand, direct calculation shows ∂ySf = S1f . By (A.3), we have

‖∂ySf‖X0 ≤ C

A
‖f‖X0 ,

and then, combining with (A.4), it holds

‖Sf‖Y0 ≤ C

A2 ‖f‖Y0 .

In similar ways we can prove the inequalities for c ∈ Dε0 . �
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Proof of Proposition Appendix A.1. For c ∈ Sε0 , we can solve the homogeneous Sturmian equation on 
[y0, y2]:

{ ∂y

(
(Z− − c)(Z+ − c)∂yϕr

)
= α2(Z− − c)(Z+ − c)ϕr,

ϕr(yr, c) = 1, ∂yϕr(yr, c) = 0,
(A.5)

where Z+(yr) = cr, as previously defined. Integrating twice yields ϕr = 1 + α2Sϕr. We choose A so that 
Cα2

A2 ≤ 1
2 < 1. Since ‖Sf‖Y0 ≤ C

A2 ‖f‖Y0 , the operator 
(
I − α2S

)
is invertible in the adapted space Y0 and the 

solution to equation (A.5) is given by ϕr =
(
I − α2S

)−1 1. As ‖ϕr‖Y0 ≤ ‖1‖Y0 +α2‖Sϕr‖Y0 ≤ C + 1
2‖ϕr‖Y0 , 

it holds that ‖ϕr‖Y0 < C.
We can rewrite S as

Sf(y, c) = |y − yr|2
1∫

0

1∫
0

f(yr + (y − yr)st)K0(s, t, y, c)dsdt,

where

K0(s, t, y, c) = t
(Z−(yr + (y − yr)st) − c)(Z+(yr + (y − yr)st) − c)
(Z−(yr + (y − yr)t) − c)(Z+(yr + (y − yr)t) − c) .

Since |K0| ≤ t and K0 ∈ C ([y0, y2] × Sε0), S maps C([y0, y2] × Sε0) to C ([y0, y2] × Sε0). Thus, we can 

deduce that ϕr(y, c) ∈ C([y0, y2] × Sε0) from the formula ϕr(y, c) =
∞∑

k=0
α2kSk1 for c ∈ Sε0 and the uniform 

convergence of the series.
Since S is a positive operator, ϕr(y, c) ≥ 1 for c ∈ Sε0 . By the continuity of ϕr(y, c), there exists some 

ε ∈ (0, ε0] such that for c belonging to Sε0 , it holds that

|ϕr(y, c)| >
1
2 .

From the integral formula of S, we have

|ϕr(y, c) − 1| ≤α2
y∫

yr

y′∫
yr

|ϕr(z, c)|
∣∣∣∣ (Z−(y′′) − c)(Z+(y′′) − c)

(Z−(y′) − c)(Z+(y′) − c)

∣∣∣∣ dy′′dy′

≤C
(

α, ‖ϕr‖L∞([y0,y2]×Sε0 )

)
|y − yr|2.

Appendix B. A compactness lemma

We prove a useful compactness result.

Lemma Appendix B.1. Let {yn}∞
n=1 ⊂ I := [a, b] be such that yn → a+b

2 . Let {fn}∞
n=1 be a family of 

functions defined on I satisfying the uniform bound

‖fn‖Lr + ‖(y − yn)∂yfn‖Lp ≤ C, 1 < r < p < ∞,

then there exist f∞ ∈ Lp and a subsequence {fnj
}∞

j=1 such that as j → ∞,

fnj
→ f∞ in Lr, 1 < r < p.
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Proof. By virtue of Kolmogorov-Riesz theorem, the proof of the above compactness result amounts to 
showing that the family {fn}∞

n=1 is equicontinuous in Lr. Let Ih := [yn−h, yn+h] and I2h := [yn−2h, yn+2h]
(Note that I2h ⊂ I for sufficiently small h.) We have

‖fn(x + h) − fn(x)‖r
Lr =

∫
I\Ih

∣∣∣∣∣∣
x+h∫
x

f ′
n(x′) dx′

∣∣∣∣∣∣
r

dx +
∫
Ih

|fn(x + h) − fn(x)|r dx

:=I∗ + I∗∗.

Noticing that |x − yn| ≥ h for x ∈ I \ Ih, we use Hardy-Littlewood maximal inequality to estimate I∗ as 
follows –

I∗ =
∫

I\Ih

hr

∣∣∣∣∣∣ 1h
x+h∫
x

(x′ − yn)f ′
n(x′) ·

(
1

x′ − yn

)
dx′

∣∣∣∣∣∣
r

dx

≤Cp

∫
I\Ih

(h‖(x − yn)fn‖Lp)r
h− r

p dx ≤ Ch
r
(

1− 1
p

)
.

As for I∗∗, we let χ be a smooth cut-off function such that χ ≡ 1 on I2h. Integration by parts yields the 
following identity –∫

I

|fn|pχ dy = −
∫
I

(y − yn)|fn|pχ′ dy − p

2

∫
I

χ(y − yn)
(

f ′
n|fn|pf−1

n + ∂yfn|fn|pfn
−1) dy,

which, along with Sobolev inequality ‖fn‖L∞(I\Ih) ≤ C‖fn‖W 1,q(I\Ih), q > 1, leads to

‖fn‖p
Lp(Ih) ≤ Cp‖(y − yn)∂yfn‖p

Lp + Ch‖fn‖p
Lp(I\Ih) ≤ C.

Hence, we can simply estimate I∗∗ by Hölder’s inequality –

I∗∗ ≤
∫
Ih

(|fn(x + h)|r + |fn(x)|r) dx ≤ 2‖fn‖r
Lp(I2h)h

p−r
p ≤ Ch1− r

p .

Therefore, the desired compactness result is true. �
Appendix C. Proof of Remark 1.4

For u = 0, taking the Fourier transform in x, we get for α �= 0,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tÛ1 + iαp̂ − iαbĤ1 − b′Ĥ2 = 0,

∂tÛ2 + ∂yp̂ − iαbĤ2 = 0,

∂tĤ1 + b′Û2 − iαbÛ1 = 0,

∂tĤ2 − iαbÛ2 = 0,

iαÛ1 + ∂yÛ2 = 0, iαĤ1 + ∂yĤ2 = 0.

(C.1)

And we can diagonalize it to obtain {
∂ttÛ2 + α2AαÛ2 = 0,

∂tt(Ĥ2/b) + α2Aα(Ĥ2/b) = 0,
(C.2)
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where Aα = (∂2
y − α2)−1(b2(∂2

y − α2) + 2bb′∂y

)
, and the details can be seen in [15]. In order to prove the 

energy conservation law, we only need to prove the energy conservation on each frequency.
At first, we can show that

‖αkÛ1‖2
L2

y
+ ‖αkÛ2‖2

L2
y

+ ‖αkĤ2‖2
L2

y
+ ‖αk(Ĥ1 − i(αb)−1b′Ĥ2)‖2

L2
y

= ‖αkÛ1,in‖2
L2

y
+ ‖αkÛ2,in‖2

L2
y

+ ‖αkĤ2,in‖2
L2

y
+ ‖αk(Ĥ1,in − i(αb)−1b′Ĥ2,in)‖2

L2
y
. (C.3)

Indeed, taking L2 inner product of (C.2)2 with α2k∂t(∂2
y − α2)(Ĥ2/b), integrating by part, taking the real 

part, we obtain

Re
∫
T

αk∂tt(Ĥ2/b)αk∂t(∂2
y − α2)(Ĥ2/b)dy

= −Re
(∫

T

αk∂tt∂y(Ĥ2/b)αk∂t∂y(Ĥ2/b)dy + α2+2k

∫
T

∂tt(Ĥ2/b)∂t(Ĥ2/b)dy
)

= −1
2

d
dt

‖αk∂t∂y(Ĥ2/b)‖2
L2

y
− 1

2
d
dt

‖α1+k∂t(Ĥ2/b)‖2
L2

y

and

Re
∫
T

Aα(Ĥ2/b)α2k∂t(∂2
y − α2)(Ĥ2/b)dy

= Re
∫
T

(b2(∂2
y − α2) + 2bb′∂y)(Ĥ2/b)α2k∂t(Ĥ2/b)dy

= −Re
(∫

T

αkb2∂y(Ĥ2/b)αk∂t∂y(Ĥ2/b)dy + α2k+2
∫
T

Ĥ2∂tĤ2dy
)

= −1
2

d
dt

‖αk∂y(Ĥ2/b)‖2
L2

y
− 1

2
d
dt

‖α1+kĤ2‖2
L2

y
,

and then

d
dt

(
‖αk∂t∂y(Ĥ2/b)‖2

L2
y

+ ‖α1+k∂t(Ĥ2/b)‖2
L2

y
+ ‖α1+k∂y(Ĥ2/b)‖2

L2
y

+ ‖α1+kĤ2‖2
L2

y

)
= 0.

By (C.1), we get (C.3) for α �= 0. Finally, we prove that for some constant C > 0 independent of t, α,

C−1‖Ĥ1‖L2
y

≤ ‖Ĥ1 − i(αb)−1b′Ĥ2‖L2
y

≤ C‖Ĥ1‖L2
y
.

By the condition that Ĥ2(t, α, y1) = Ĥ2(t, α, y2) = 0, we have ‖Ĥ2‖L2
y

≤ C‖∂yĤ2‖L2
y

≤ C‖αĤ1‖L2
y
. Thus,

‖α−1+k∂y(Ĥ2/b)‖L2
y

≤ C‖α−1+k∂yĤ2‖L2
y

+ C‖α−1+kĤ2‖L2
y

≤ C‖αkĤ1‖L2
y
.

And on the other hand,

‖αkĤ1‖L2
y

≤ ‖αk(Ĥ1 − i(αb)−1b′Ĥ2)‖2
L2

y
+ ‖αk(αb)−1b′Ĥ2‖2

L2
y

≤ C‖α−1+k∂y(Ĥ2/b)‖L2
y

≤ ‖αk(Ĥ1 − i(αb)−1b′Ĥ2)‖2
L2

y
,
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where we used the fact that −iαb∂y(Ĥ2/b) = Ĥ1 −i(αb)−1b′Ĥ2 in the last inequality. Since C is independent 
of t and α, we obtain the proof of Remark 1.4 by Plancherel identity.

For the vorticity and current density, we have that by taking Fourier transform in x,{
∂tω̂ = iαbĵ − b′′Ĥ2,

∂tĵ = iαbω̂ − 2iαb′Û1 + b′′Û2.
(C.4)

By taking L2 inner product of (C.4)1 with ŵ and (C.4)2 with ĵ, and taking the real part, we obtain that

1
2

d
dt

(
‖ω̂‖2

L2
y

+ ‖ĵ‖2
L2

y

)
= Re

(
−
∫
T

b′′Ĥ2ω̂dy −
∫
T

2iαb′Û1ĵdy +
∫
T

b′′Û2ĵdy
)

≤ ‖b′′Ĥ2‖L2
y
‖ω̂‖L2

y
+ ‖2αb′Û1‖L2

y
‖ĵ‖L2

y
+ ‖b′′Û2‖L2

y
‖ĵ‖L2

y
.

And then, we get

d
dt

(
‖ω̂‖L2

y
+ ‖ĵ‖L2

y

)
≤ C

(
‖Ĥ2‖L2

y
+ ‖αÛ1‖L2

y
+ ‖Û2‖L2

y

)
,

by integrating in time, it holds

‖ω̂‖L2
y

+ ‖ĵ‖L2
y

≤
(

‖ω̂0‖L2
y

+ ‖ĵ0‖L2
y

)
+ C

t∫
0

(
‖Ĥ2‖L2

y
+ ‖αÛ1‖L2

y
+ ‖Û2‖L2

y

)
dτ.

Thus by using (C.3), we obtain the linear growth result of vorticity and current density.
Note that when considering the non-flowing plasma case, the system can be diagonalized to one with a 

self-adjoint operator Aα.
For general case with constant background velocity (u = const.), we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tÛ1 + iαuÛ1 + iαp̂ − iαbĤ1 − b′Ĥ2 = 0,

∂tÛ2 + iαuÛ2 + ∂yp̂ − iαbĤ2 = 0,

∂tĤ1 + iαuĤ1 + b′Û2 − iαbÛ1 = 0,

∂tĤ2 + iαuĤ2 − iαbÛ2 = 0,

iαÛ1 + ∂yÛ2 = 0, iαĤ1 + ∂yĤ2 = 0.

Let us introduce ̂̃U = eiαutÛ , ̂̃H = eiαutĤ, ̂̃p = eiαutp̂ and ̂̃ω = eiαutω̂, ̂̃j = eiαutĵ, then ( ̂̃U, ̂̃H, ̂p̃) solves 
(C.1) and (̂̃ω, ̂̃j) solves (C.2).

Thus Remark 1.4 follows from the fact that∥∥∥( ̂̃U, ̂̃H, ̂̃ω, ̂̃j)
∥∥∥

L2
y

=
∥∥∥(Û , Ĥ, ω̂, ĵ)

∥∥∥
L2

y

.
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