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Abstract

We analyse an operator arising in the description of singular solutions to the
two-dimensional Keller-Segel problem. It corresponds to the linearised operator in
parabolic self-similar variables, close to a concentrated stationary state. This is a two-
scale problem, with a vanishing thin transition zone near the origin. Via rigorous
matched asymptotic expansions, we describe the eigenvalues and eigenfunctions pre-
cisely. We also show a stability result with respect to suitable perturbations, as well as
a coercivity estimate for the non-radial part. These results are used as key arguments
in a new rigorous proof of the existence and refined description of singular solutions
for the Keller—Segel problem by the authors [8]. The present paper extends the result
by Dejak, Lushnikov, Yu, Ovchinnikov and Sigal [11]. Two major difficulties arise in
the analysis: this is a singular limit problem, and a degeneracy causes corrections not
being polynomial but logarithmic with respect to the main parameter.

Keywords Keller—Segel system - Blowup solution - Blowup profile - Stability -
Construction - Spectral analysis

B Van Tien Nguyen
Tien.Nguyen@nyu.edu

Charles Collot
cc5786@nyu.edu

Tej-Eddine Ghoul
tegb @nyu.edu

Nader Masmoudi
masmoudi @cims.nyu.edu
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,

NY 10003, USA

2 Department of Mathematics, New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188,
Abu Dhabi, United Arab Emirates

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40818-022-00118-5&domain=pdf
http://orcid.org/0000-0001-6963-0375

5 Page2of74 C. Collot et al.

1 Introduction

We describe in this paper a detailed spectral analysis for the linear operator
Lif=Af =V -(fVOy, + U, V) — BV - (zf), z€R? (1.1)

in the radial setting, and provide a coercivity estimate in the non-radial sector, where

82 4z

1
q)f:—glog|zl*f’ UV(Z)ZW’ Vq)UU(Z):_ms

B > 0is a fixed constant and 0 < v < 1 is the main parameter of the problem.

1.1 Origin of the Spectral Problem

The linear operator .Z* appears in the study of singularities of the following two
dimensional parabolic-elliptic Keller—Segel system:

{ ou=Au—V. (qu)u)’ (x,1) € Rz x [0, T), (1.2)

o, = —%log |x]| * u,

see [19-21,25], and [17] for a survey of the problem. It is well known (see for example,
[2-5, 13, 18] and references therein) that the problem (1.2) exhibits finite time blowup
solutions if the initial datum satisfies g > 0, some localisation assumptions and

M =/ ug(x)dx > 8m.
R2

The threshold 87 is related to the family of stationary solutions (U;)y=0 of (1.2),
where

1
Uyx) = <U(Z) with U) = and f Uy (x)dx = 8.
n n R2

(1.3)

(1 + |x[%)?

The parameter 7 is linked to the scaling symmetry of the problem: if u is a solution to
(1.2), then for any n > 0, u,; defined by

1 x t

uy(x,t) = —u <—,—> (1.4)
! 2 \n'n?

is a solution as well. As the mass M which is a conserved quantity for (1.2) is invariant

under the above transformation, the problem is called mass critical. A key issue in

understanding singular solutions is to analyse their asymptotic self-similarity. If a

solution u to (1.2) for t € (—o0, 0) is invariant under the transformation (1.4), it is
of the form u(t, x) = (—t)_lW(x/«/—t) and W is called a self-similar profile; a
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blow-up with non-degenerate self-similarity then refers to a solution satisfying u ~
(T —1)~'"W(x/+/T —1) for some function W. However, one of the remarkable facts
about finite time blowup solutions of (1.2) is that they present a degenerate self-
similarity. Precisely, they are of type II blowup (see Theorem 8.19 in [28] and Theorem
10 in [24] for such a statement) in the following sense. A solution u(¢) of (1.2) exhibits
type I blowup at ¢+ = T if there exists a constant C > 0 such that

lim sup(T — 1) (D) | oo g2y < C, (1.5)

t—T

otherwise, the blowup is of type II. Equivalently, in the parabolic self-similar variables

1 x drt 1
ulx,t) = Fw(z, ), D,(x,t) = Dyl(z,8), z=—, i F,
u() =T —t, (1.6)
where w(z, ) solves the equation
. e 1
dw=V-(Vw—wV®d,)— BV (zw) with g=—-"—"F= X (1.7)
"

u is a type II finite time blowup solution of (1.2) if and only if w is a global but
unbounded solution of (1.7). The mechanism of singularity formation then involves
crucially the above family of solutions U,, see for example, [12, 14, 16, 27, 29—
31] and references therein. The key idea is that in equation (1.2) the time variation
d;u is asymptotically of lower order compared with the other terms, the solution
approaches the family of stationary states u ~ U,, ;7—; and a scaling instability drives
the parameter v to 0 as t — 7. This motivates the study of a solution in the variables
(1.6) having the form

w(z, 1) = Uy(2) +e(z, 1),

where v = v(7) is an unknown function to be determined, and ¢ is a lower order
perturbation solving the linearized equation:

96 = L6 —V-(eVD,)+ (”7’ . ﬁ) V- (zUy). (1.8)

Above, 7 is precisely the operator introduced in (1.1). Its study we perform here
allows us in the companion article [8] to show the existence, for any £ > 1, of a
solution u, to (1.2) blowing up with:

ue(t, x) ~ Uy, (x),

_ [InT—]
2= (T —nte VT (I+our(l)  forf=1,

\ - (1.9)
(T =2 In(T —1)| 2@D(C(uo) + 0147 (1)) for £ > 2,

ne(t) =
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and to show that the dynamics for £ = 1 is stable. The importance of the study of £~
is motivated by the following. The first rigorous construction of a blow-up solution
(¢ = 11in (1.9)) for (1.2) by Herrero and Veldzquez [16] does not provide its stability,
which is formally obtained in [29]. The work [29] shows linear stability in the inner
zone |z| ~ v if the scaling term V.(zw) is neglected, and gives an expansion for
d-& = Z%¢ in the parabolic zone |z| ~ 1 via formal series and matched asymptotics.
A rigorous radial stability result is given by Raphaél and Schweyer in [27] in which
<

the solution is studied in blow up variables y = & ~ 1 where a refined description

is obtained, but only n1(t) = /T —te V “ng Ao is showed. The description
involves parameters, and their evolution (the modulation laws) is computed based on
so called tail-dynamics, relying on suitable cancellations in the parabolic zone |z| ~ 1.
The analysis of the tail-dynamics is however heavy, as it does not involve a refined
understanding of the solution in the parabolic zone |z| ~ 1. Our precise spectral study
for the operator (1.1), however, gives a framework to control the solution accurately,
on both scales simultaneously, and the temporal evolution of the parameters is easily
related to the projection of the dynamics on its eigenmodes. The present paper is a
key result in this new approach to the construction of singular solutions to (1.2) that
is implemented in [8], and allows to obtain a refined description (see Remark 1.3) as
well as the new blow up rates £ > 2 in (1.9).

It is remarkable that in the radial setting, the nonlocal operator .Z’* reduces to a local
one in terms of the partial mass

1
my(g) = 2—/ f@zdz, ¢ =zl (1.10)
7T JB0.2)

where B (0, ¢) is the ball centered at 0 of radius ¢ . Indeed, if f is spherically symmetric,
then we have the relation

L4 = (s 0).

where 27 is the linear operator defined by

1 Oy 9 (Qv)

o = = ped with off =0 = L9+ < P02 and
4c2
0,(¢) = m (1.11)

Hence, in the radial setting %% and .&/* share the same spectrum and if ¢ and ¢ are
the radial eigenfunctions of %% and /¢ respectively, we have the relation

)
0(0) = %@, D, (L) = —

¢)
o
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Therefore, we are interested in the eigenproblem

A5P() = rp(¢), ¢ € (0,00) with the boundary condition ¢(0) = 0,
(1.12)

(under this boundary condition solutions to (1.12) are unique up to a multiplication
by a constant, and we want to find the values of A such that ¢ has algebraic growth at
infinity), in the regime

B~1, 0<v<l. (1.13)

Note that the constant f is not necessarily close to 1, it can be any fixed positive
constant.

1.2 Main Results

Our first result concerns the spectrum of .Z’* in the radial setting. Its analysis has been
done by Dejak, Lushnikov, Yu, Ovchinnikov and Sigal [11] via matched asymptotic
expansions. Our approach, similar in spirit to [11], is inspired by the work of Collot,
Merle, and Raphaél [6] for the study of type II supercritical singularities of the semi-
linear heat equation u, = Au + lu|?~'u (see also [7, 15, 22] for related problems).
The strategy is to construct suitable eigenfunctions near the origin and away from
the origin, and to match them rigorously to produce a full eigenfunction. Differen-
tiating the matching condition then provides information on the dependence of the
eigenfunctions on the parameters. The current work extends this approach to a critical
problem, showing its robustness. Solving (1.12), though, is not just a mere adaptation
the techniques of [6] because of the following points.

This critical case displays two new degeneracies. First, this is a singular limit problem.
Indeed, from the explicit formula (1.11) for Q,, we note that the operator 7% converges
to a limit operator pointwise outside the origin, namely that for any smooth function
f and at any fixed ¢ > 0, we have

3
AEf@) = G f(@)+ %@ = pLacf@) asv 0.

The limit operator 8? + 3/¢0; — PO, is well understood, its spectrum is
{0, =28, —4B, —68, ...} and its eigenfunctions are Hermite polynomials. However,
the limit v — O for the problem (1.12) is a singular one. The problem involves two
scales: one is { ~ 1 and the other is ¢ ~ v. What happens at the latter actually pre-
vents the convergence to the aforementioned limit operator: the spectrum is shifted
by the constant 28 at the leading order as is shown in Proposition 1.1 below. This
in particular prevents the use of a bifurcation argument. Second, this problem also
presents another degeneracy from which most of the technical difficulty stems, since
next order corrections, instead of being polynomial in the parameter v, are actually
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polynomial in 1/|log v|. We then need to refine to higher order the description of both
the inner solution at ¢ ~ v and the outer solution at { ~ 1.

We provide a precise description of the eigenfunctions, relating them to the iterated
kernel (7;);en of @, the linearised operator near the stationary state, a rescaled version
of 42/0{ via the change ¢ = vr, i.e.

1 o (Q) . 4r?
— 52 r —
%_Br —;Br—l— . with Q(l")—m, (114)
defined by
{ 2
Tj1(r) = —; ' Tj(r) with To(r) = T rarQ, ATy = 0.

As rd, Q is the direction of scaling instability for the stationary state, this description
allows to understand the rescaled blow-up dynamics (1.8). In addition, the properties
of T can be explicitly computed, such as its asymptotic behavior (see Lemma 2.2)

Ti(r) ~ fijr2j_2 Inr, asr — oo, c?j # 0 a constant.

To state our results, we use the notation A < B to say that there exists a constant
C > 0 which is independent of the main parameter v (but may depend on the other
fixed constants By, 8%, 8, N) such that 0 < A < CB. Similarly, A ~ B means that
there exist constants 0 < ¢ < C such that cA < B < CA. We write (r) = ~/1 + r2,
and use the notation Déf for k € N for k-th adapted derivative with respect to ¢ defined
by

k
D% = (é‘ag(—)> . DI = 9. D%,

We define the weight functions

v g2 v2 g2
wu(C)=Uu(§)e 2 _Uu(g)m@)’ po(g) =e 72, (1.15)

and the weighted L2 space L s where the scalar product and the associated norm are
defined by

2 / fec 7 wvde, ST = e, -
7 T k3
We also introduce the weighted Sobolev space
k
How ={f iRy > R [ I fllyg, =D 1D fllys, < -+oo}.
T =0 T
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Our first main result is to describe in details spectral properties of .2* in the regime
(1.13).

Proposition 1.1 (Spectral properties of <7%) The linear operator </° : va/{ —

Liv /e is self-adjoint with compact resolvent. Moreover, given any N € N, 0 < B, <
B*and 0 < 8§ K 1, there exists a v* > 0 such that the following holds for all
O<v=<v*and B, <p <p*

(i) (Eigenvalues) The first N + 1 eigenvalues are given by

Dy = 2/3(1 —n+&,w), forn=0,1,--- N, (1.16)

where

1
2Inv

+ o with |an| + |V8v6ln,v| N 1.17)

o = E——
v [Inv|2

In particular, we have the refinement of the first two eigenvalues with y the Euler
constant:

T 4/Inv|?

- 1 In2—y —n—Inp 1
< , =0,1.
'Nllnv|3 forn

(i7) (Eigenfunctions) There exist eigenfunctions ¢y, , satisfying the following. There
holds the pointwise estimates' for k =0, 1, 2:

|DEdn ()| + | DEBBSG0 | + [ DEVDLBL 0|

<< 3 )2_(km°d2) ()2 (1 + In(5)8=1)
~\v+¢ (& + vy |

(1.18)

There holds in addition the refined identity:
- 2o (&
(@) =Y en i BV T () + (@),
j=0

where the profiles T; and the constants cy,; are defined in Lemma 2.2, with for k =
0,1,2:

|DEn ()] + | DEVDLG0 ()| + | DEBOsGn 1 0|

2—(k mod 2) 2n+8
i 2,802 1 ¢ (¢)
len( (V> ,|1HV|>(V+§> (§+U)2+k'

1 We use Kronecker’s notation Syp>1 =0forn =0and d,>1 = 1forn > 1, and similarly &;,=p, = 1 if
m =n and 8=, = 0if m # n.
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There holds the L%L, estimates for all0 <m,n < N:
7

|Inv|
(¢mw¢m,u>izﬂ}%=cn5m=nv co ™~ g
[1nv|? ) 1 )
c1 ~ 1 cllnv|* <¢, < —|Inv|” forn > 2, (1.19)
c

where c is some positive constant.

(iii) (Spectral gap estimate) For any g € L%)iv with (g, ¢jv);2 =0for0<j <N,
¢ ?
one has
¢ 2
(g, @ g)szV = An+1vllgllzs (1.20)
T 7

Remark 1.2 We recover the same eigenvalues as [11]. Though our proof is similar
to [11] since relying on matched asymptotics, we here adopt the approach of [6],
yielding detailed information on the eigenfunctions and on the variations with respect
to the parameter v. We also mention that the matching procedure performed in [11]
was formal as the analysis did not involve the matching of derivatives. To match the
derivatives, we found a degeneracy that forces us to expand both inner and outer
solutions to the next order, which renders the analysis much more involved.

Remark 1.3 Based on Proposition 1.1, we are able to construct for the problem (1.2)
finite time blowup solutions with a precise description of asymptotic dynamics as
t — T, see[8]. For any £ > 1, we construct a solution in the parabolic variables (1.7)
of the form

¢

_ ! U 18 g 1.21
we ) = U() +a® % [ba® —~ dou@] +EE . (12D

where ¢ is of lower order. The parameters v and a, are then obtained by injecting
the decomposition (1.21) in the renormalised evolution equation (1.7) using Proposi-
tion 1.1, and by projecting on the eigenmodes of .7 . For £ = 1, this gives to leading
order:

v ay v a v
8v? (-T—ﬂ)Jral,r —aihoy+ ——=0, ai;—ajry+——=0
v Inv v Inv v
Under the compatibility condition 4 = —1 4 L 4 m2=y=1-lnf , 5 1
p y v ZTnv AP [ v?

(which is satisfied up to choosing suitably the blow-up time T') this gives to leading
order

1 v, 1 In2—y—1—Ing 2 _ye2 -Jz
T = [= 2 2(1 Soo(l)).
BV = 2imy T Ao so v(r) = fge e (1+ om0 (D)
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J4
For £ > 2 a similar computation gives v(t) ~ Cef1=07¢ 200 In original variables
this gives (1.9).

Remark 1.4 The rigorous analysis performed in [8] is simplified thanks to Proposi-
tion 1.1 in comparison with the one of [27] with respect to the following points:

— The approximate solution (1.21) we use is simpler and represented in terms of the
eigenfunctions, which avoids the use of a corrective radiation term as in [27]. In
particular, our approximate solution contains a detailed description in both the inner
zone ¢ ~ v and the outer zone z ~ 1, from which we are able to obtain the precise

blowup dynamics £ = 1 in (1.9), while only n(t) = /T —te V o is
obtained in [27].

— The control of the remainder ¢ in (1.21) is partly simplified. By taking into account
the scaling term V.(zw) in the linearized operator and obtaining the spectral gap
(1.20), an energy estimate at the linear level is straightforward in L . Due to the
criticality of the problem, handling this scaling term in [27] requires a complicated
treatment. Also, the analysis requires a L' smallness assumption, whereas we do
not need it in our analysis.

Needless to say, we are indebted of many ideas developed in [27], and refer to [8] for
a detailed strategy of the proof.

Importantly, we believe that the precise description of the spectrum of 7% is one
of the crucial steps toward the classification of all possibilities of blowup speeds for
(1.2) (at least in the radial setting) which is a challenging problem in the analysis of
blowup. Recently, Mizoguchi [23] has proved that any positive solution that blows up
in finite time is equal to the solution constructed in [8] corresponding to the stable
case £ = 1.

Remark 1.5 The present result deals with the critical Keller—Segel system. We believe
that other critical problems can be studied with this approach, such as the harmonic
heat flow and the semilinear heat equation. Related spectral studies were performed in
the case of non-degenerate self-similar singularities for wave type equations, see for
example [9, 10] for the study of stability of self-similar wave maps. It is an interesting
direction to implement the present work to the hyperbolic setting.

Our second result aims at understanding under what kind of perturbations is Propo-
sition 1.1 stable. This is of a particular importance for the full nonlinear problem (1.2)
analysed in [8], and shows the robustness of our approach. As a direct consequence
of our construction, the spectral properties of 27¢ stated in the previous proposition
still hold true for the following perturbed operator of the form

- 1
g =5 + Ea{ (P, (1.22)
where the perturbation P satisfies

v2 §-2

PO+ RPOIS G T

(1.23)
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Proposition 1.6 Assume the bound (1.23) and the same hypotheses as in Proposi-

tion 1.1. Then, the operator ¢ H 3-)” — L%-JV is self-adjoint with compact resolvent,
B £

7
where

¢ P(F) -
cav@):wU(c)exp(/o %dc)

The first N + 1 eigenvalues {Xn,v}of,,flv of /¢ satisfy

/

Ry = dnp] < =5, (1.24)
|log v|
and there exist associated eigenfunctions {(}3,,,1,}05,1 <N satisfying
||(]an - ¢n,v||L2(‘LV) C/
< (1.25)

Ipnvllz2ceey VIogv[’

Remark 1.7 Note that Proposition 1.6 is not a direct consequence of Proposition 1.1
in the sense that a standard perturbation argument does not work here. Indeed, the
potential part d; P/¢ of the perturbation in (1.22) is of size v=2in L™ (up to a
logarithmic accuracy), while the eigenvalues of the unperturbed operator 27¢ are of
order 1. The crucial point is that the algebraic form of the perturbation, d; (P-)/¢,
ensures its orthogonality to the resonance of the operator .7 near the origin, see
Lemma 2.4 and its proof.

Remark 1.8 In [8], the use of Proposition 1.6 is essential to handle nonlinear terms,
where the precise control of the solution near the origin involves the rescaled stationary
state at a slightly different scale v, and the corresponding perturbed linear operator is
(1.22) with the perturbation potential

5(¢) — D 1
Py BO =@ [P | |
2 v |log v|
and the corresponding weight function @, (¢) = \/% p(g).

Our third and last result concerns the decay of the linearised dynamics associated
to £ for the nonradial part of the perturbation. The work [29] provides Lyapunov
functionals for the inner zone |z| ~ v, and [27] uses a suitable extension to a higher
regularity level of these Lyapunov functionals, inspired from [26]. Both results do not
include the scaling term in the functionals, making the control in the parabolic region
|z] ~ 1 hard. We prove here a coercivity estimate that takes the scaling term into
account, for a modified version of the linearised operator, in which the source term
for the Poisson field is localised near the origin. Note that an analogue of the radial
spectral analysis of Proposition 1.1 is not straightforward. Indeed, while the operator
V A~!is an integral operator from the origin in the radial case, the integral involve the
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behaviour of the function at infinity on higher order spherical harmonics, see (A.6) and
(A.8). In particular, it is not possible to make sense of VA~! for nonradial functions
with strong polynomial growth at infinity.

On the one hand, at the |z| ~ v scale, there is a natural scalar product for the linearised
operator without scaling term, coming from the free energy. The following corresponds
to [27], Lemma 2.1 and Proposition 2.3. The linearized operator at scale v is written
as

Gou=Au —V - (uVdy) — V - (UVD,)=V - (UV.#u) with .///u:% —®,,
(1.26)

The quadratic form [ u.# vdy is symmetric. There hold the estimates if [ udy = 0:

2
/ U|///u|2dy§f " ay, (1.27)
R2 R2 U

the nonnegativity [ u.Zu > 0 and, for some §;, C > 0,

2
u 2 2 2
fRz utMludy > 8, /Rz T - C[(u, AU, + (u, 0,02, + (u, 82U)L2],
(1.28)

where A is the scaling group infinitesimal generator:
Au =2u + y.Vu.

For functions orthogonal to AU, dy,U, 9y,U in the L? sense, the norms defined

by f %dy and f u#udy are then equivalent. On the other hand, at scale |z| ~ 1,
from (1.3) and as 9; @y, = —4z/(v? + %) we get that .£% converges pointwise to
A+4/td; — BV.(z-) as v — 0. This operator is self adjoint in L2(§4,00). We thus
introduce the “mixed” scalar product

(U, v)y = > /RZ u/po M (v/po)dz, M f = S d. (1.29)

v

It matches to leading order the first scalar product at scale v and the second at scale
1, and localises the Poisson field. It is equivalent to the LZ)V scalar product under
the aforementioned orthogonality conditions. We localize the Poisson field in the
linearized operator accordingly,

1

L= Au—V-uVdy,) -V - (U,VD,) — BV - (zu), D, : m(—A)*‘(mu).
(1.30)

@ Springer
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We show that in the non-radial sector, the localised operator %7 is coercive for the
mixed scalar product (-, -), under the natural orthogonality assumption to VU,,. Its
proof adapts the arguments of [27] for the above coercivity of % to the range 0 <
v 1.

Proposition 1.9 For any 0 < B, < B*, there exists ¢, C > 0 and v* > 0 such that
forall B, < B < B* and 0 < v < v*, ifu satisfies Vu € L¢2uv and flz\=§ udz = 0 for
almost every ¢, then:

2 2
<_jzu’ Uy > C”VM“?‘Z - Cl)6 ((/2 uazl Uv\%dz> + (/2 ”azz Uv«/%dz) ) .
v R R
(1.31)

Remark 1.10 The above Proposition holds for 2% instead of £%: a part of the Poisson
field outside the origin has been neglected. However, in the singularity formation
studied in [8] the worst contribution to this field from the perturbation comes from tlge
origin, and the stationary states decays rapidly at infinity. The difference .£* — Z*
can then be controlled from other norms, see [8].

The paper is organised as follows. Section 2 is devoted to the proof of Proposi-
tions 1.1 and 1.6. The proof of Proposition 1.9 is done in Section 3.

2 Proof of the Spectral Propositions 1.1 and 1.6

This section is devoted to the proof of Proposition 1.1. After the change of variable
¢ = vr, the problem (1.12) is equivalent to the following

(el — broy)¢p = ap, r € (0,00) with the boundary condition ¢(0) =0,
2.1

where . is introduced in (1.14) and
b= ,31)2, a = 2.

We will solve the problem (2.1) in the regime 0 < b < 1 by means of matched
asymptotic expansions in the following sense. Let ¢y and R be fixed as

0<¢ <1, Ro= - 1.

Vb

Relying on perturbation theory, we first solve (2.1) in the inner region r < Ry, and the
solution is named by ¢™, then in the outer region r > Rg and the solution is named by
¢®*. The two solutions must coincide at r = Rg up to the first derivative from which
we determine the value of o by standard arguments based on the implicit function
theorem. Proposition 1.1 is a direct consequence of the following.
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Proposition 2.1 (Spectral properties of &/ = @ — brd,) The linear operator <f :

2
Haz);,/r — LZ)h/r is self-adjoint with compact resolvent, where wp = U_le_bT. Given
any N € N, and 0 < § < 1, there exists a b* > 0 such that the following holds for
all0 < b < b*:

(i) (Eigenvalues) We have that the first N + 1 eigenvalues are given by:
0 =2b(1-n+&), n=0,..N 2.2)

where

1
Gn = — + & with 1@+ |bdpay

Inb 2.3)

|5
~ |Inb2

In particular, we have a refinement of the first two eigenvalues, with y the Euler
constant:

5 1 In2—y—n < 1
Oy — — — 3
" Inb [Inb]2 |~ |Inb)?

forn =0, 1. 2.4)

(ii) (Eigenfunctions) An eigenfunction ¢, is defined by (2.73) and the following
properties hold:

— (Sign-changing) On the interval (0, 00), ¢o has constant sign and ¢, vanishes
exactly n times forn > 1.
— (Orthogonality) For some positive constants e, there holds:

274 Inb"*t! forn=0,1,

2 2 N
Y(m,n)eN7, (¢na¢m>L2al—cn5m,nz Cn {5n|1nb|2 forn > 2.

T

2.5)
— (Pointwise estimates) Fork =0, 1, 2,

r

2—(k mod 2)
Digu()| + | DEbOsu ()| S (@) (1Y 2B (1 4 Ty Inr).
(2.6)
— (Refined pointwise estimates) There holds the refined identity:
n )
Gn(r) =Y cn b Tj(r) + éu(r). 2.7
=0
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where T; and c,_j are defined in Lemma 2.2, with for k = 0, 1, 2:
|DE@ ()| + | Db, ()

1 r 2—(k mod 2)
< min <b<r>2, m) (m) ()27 K br e (2.8)

(iii) (Spectral gap estimate) For any g € L%,l (R*) with (g, qu)szb =0for0<j <

T

k, one has

(& g)s < errillgls - 2.9)

7

Proof Since the computation of («,, ¢,) through the matched asymptotic procedure
is long and technical, it is left to next subsections. In particular, the existence of the
N + 1 eigenvalues «y, ..., oy satisfying (2.2), (2.3) and (2.4), and the refined bound
(2.8), are proved in Lemma 2.8. It then remains to use them to prove all the other
results in Proposition 2.1.

Step 1 Self-adjointness and compactness of the resolvent: We first claim the following

inequality whose proof is relegated to Step 4: for all u € H O%h = there holds «/u €
L2

o /r and the inequalities
c||u||sz < ||u||Lzb + ||427'u||Lzb < c_1||u||Hz for some c(b) > 0. (2.10)
op op op op

r r T

Forall u,v € H2, ., we have by an integration by parts

wp/r’
(0.¢] o (0.¢]
/ ﬁf/uv%dr = —/ Bruarvﬁdr +f uvU%dr = —B(u, v).
0 r 0 r 0 r
(2.11)
which shows that <7 : Hf)b s Lih /r is symmetric. The above bilinear form 5 with

domain H al)b Ir satisfies the following inequality for C > 1 + sup, ¢ o) U(r) =9,
o 1) o D)
B(u,u) + Clul?, = / 9pu? 2 dr +/ P=dr = ull?, . (2.12)
< 0 r 0 r %

Hence, B is closed on L2 , and we let & : D(«&/) — L% , be the self-adjoint

wp /1 wp/r

operator associated to this closed form. By (2.10) and (2.11), we have Haz)b/r c D(),
and .7 and <7 coincide on H?

~op/r
We now show that D(&) = Hi;,/r
functions ¢ on [0, 00) such that ¢(0) = 9,¢(0) = 0. Letu € D(;z{_). By definition

of &7, we have thatu € H al)b = and that the distribution .«/u (with 7 as a set for test

.Let 7 be the set of smooth compactly supported
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functions) is a function in L2 /1 For x a cut-off with x = 1 on [0, 1]and x = 0 on
[2,00), let x,(r) = x(r/n) and u, = x,u.Asu € H1 / and Zu € Lw I , from the

formula for o7 we get D%u € L? and so u, € Hwb/r. Also,

wp/r,loc?

1
Fuy = xpndu ~+ 20, xnoru + 8,2)(,114 — ;3anM + %8,)(,,14 — broy xpu.

(2.13)
Since «/u € L? o (in the distributional sense), u € H , and |8, Xl Snil(n <
r < 2n), (2.13) implies that &7u, — </u in Lib/r as n — oo. Since also u, — u in
LZ

oy AT —> 00, from (2.10) we get that uy is a Cauchy sequence in H oy/r- Hence,

u e Hw I which concludes D(«/) = w I and & = <. Therefore, o/ : H> wy)r >
L, ), is self-adjoint as o is.

From (2.12), the Lax-Milgram Theorem and (2.10), we have for any f € L2 o/
and C > 9, there exists a unique solution u = (—o/ + C) ™' f to (—/ + C)u = f
with ||u||H2 \ < C(b)||f||Lz . From (A.5) with @ = 2, we have ||(1 + r)uIILz

@p/r
CO)|ull Hl , from which and the usual compactness of the Sobolev embeddmg

H! (I ) — L2(I ) onbounded intervals I, we deduce that H | 1 e is compactly embedded

w;,/r Thus, the mapping (—</ + C)~!
has compact resolvent.

— L2, is compact, hence, o7

wb/r wp /T

Step 2 Uniqueness of the eigenvalues: We first prove the sign changing property
of (ii). This is a direct consequence of lemmas 2.3 and 2.6. In particular, we show
that on the interval (0, f ], ¢o does not vanish and ¢, has exactly one zero located at

ro ~ W forn > 1 (see page 20 for a detailed proof). On the interval (f/%, ~+00),
the eigenfunction ¢, is a perturbation of a Kummer’s function (see Lemma 2.6 for a
proper definition) where it does not vanish for n = 0, 1 and possesses n — 1 zeros for
n>2.

We now rely on Sturm-Liouville theory to show that the N 4 1 first eigenvalues of
o/ are those given by (2.2). We argue by contradiction and assume that there exists
a* € (apy1,0,) for some n € N that is an eigenvalue of <7. Denote by ¢* the
eigenfunction corresponding to «*, and by Z [ f, (O, oo)] the number of zeros of f on
(0, 00). Sturm-Liouville theory asserts that

Z[pnt1, (0, 00)] > Z[¢*, (0, 00)] > Z[¢hn, (0, 00)],

which is a contradiction as the term on the left is n 4+ 1 and that on the right is n from
Step 2. The case of an eigenvalue o™ > «y is ruled out similarly using that ¢y has no
zero on (0, 00). Note that the multiplicity of the eigenvalues of < has to be of one,
since from a direct check, the eigenfunction equation is an ODE that admits at least
one solution growing like rCeb*/2
not in L2 (wp).

at infinity for some constant C, and thus which is
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Step 3 Proof of remaining bounds: The spectral gap (iii) is an immediate consequence
of the fact that .o/ is self-adjoint with purely discrete spectrum since it has compact
resolvent, that oy, ..., @y have multiplicity one, and that any other eigenvalues are
equal or smaller than oy 1.

To prove the pointwise estimate (2.6), we use the decomposition (2.7). The function
‘7311 satisfies the bound (2.6) because of the even sharper bound (2.8). The function
> i—ocn, jb!T;(r) satisfies also the bound (2.6) because of the estimates (2.19) and
(2.20). Hence ¢, satisfies (2.6).

To prove the L?(wp) estimate (2.5), we use the decomposition (2.7) again. From
the bound (2.8) we infer that, using (rU)~' << r >3 and dividing the integral the

—1 -1
two zones r < \/E and r < Jb

0o B4 00 pAn—4+26p2n+8 2 1
/ |¢n|20)b ,S / tr) (r)3dr —i—/ r—r3efb7dr S .
0 0 |1nb|? N |1n b2 [Inb|

One then computes from (1.3), (2.16), (2.20) and (2.23) that forn =0, 1 as b — 0O:

rwp(r) ~ = r e r~ ,
, oNee 8/, 16

oo 1 e} hr2
/ P TE(rwp(r) ~ — / b 3| Inre” T dr ~
0 32 )y

|Inb|?
64

by using that fooo ¢ 3¢=¢%/2q ¢ = 2. The three above identities, with the explicit values
(2.29)for¢;, j, prove (2.5) forn = 0, 1. The general bound for n > 2 follows similarly.

Step 4 (Proof of (2.10)): By density we restrict to the case of smooth and compactly
supported functions u with u(0) = u’(0) = 0. Let & = 8,2 +(Q — r—19, and use
integration by parts to compute

B(u,u) = /w((d — brapu)(( — bro,)u) — C’u)%dr = /w[(du)2
0 0

+@u)X(C + b2 — Q))]%dr.

For C’ large enough, one has C’ + b(2 — Q) > 1 so that B'(u, u) > ||(527~u||iz +
wp /1
||aru||i2 K Since @/u = D*u + Qr~'9,u and |rQ| < 1, this gives B'(u, u) +
(Ub r

||u||i2 pe ||u||§12 .Recall that @7u = (,ng—brar)u—i-Uu and U is bounded. We thus

wp/r wp/r

have by Cauchy—Schwarz inequality B’ (u, u) + ||u||i2 < ||Mu||iz + ||u||i2
wp /1 wp 1 wp /1
These two inequalities imply the first inequality in (2.10). The second inequality is a

direct consequence of (A.5) applied to v = rz(r)’28ru with @« = 2. This concludes
the proof of (2.10). O
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2.1 Analysis in the Inner Zoner < Ry

In this part, we solve equation (2.1) in the interval [0, Ry] where we consider —br 9, —«
as a small perturbation of .o%). Let us recall some basic properties of .27 in the following.
We introduce the norms

r)?>—
Il flixa := sup ﬁlf(rﬂ for: =0, 1 and
ref0.Ro] r2(1 +1n (r))
11 T
xa = Sup r
U €0, R r2(1 + —2111‘1‘2”)
for any a € R, and the function spaces for: = —1,0, 1,

0= {2 1z 2 1 e + o, Fllxe + 17202 lxe < 00} . 2.14)

Lemma 2.2 (Properties of o))

(i) (Inversion) For any f € C(RT, R), a solution to <hyu = f is given by:

’In¢

3 1 Led g -1 1- r
A () = zwo(m/ %f@)dﬁrzxﬁo(ﬂfo ¢ F QL.

(2.15)

where Vo and Vo are the two linearly independent solutions to iy = 0 given
by

Yo(r) = % and (1) = Nﬁ* (2.16)
(i1) (Continuity) Lett € {—1,0, 1} and a > —2, then there holds the estimate:
1ty Fllzaer S 1 llxe- (2.17)
(iii) (Iterative kernel of .<%y) There exists a family of smooth radial functions {T,- }ieN
defined as
Ty =T, To:= o, (2.18)
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which admit the asymptotic estimates

((ra,)”Ti) —O@?) as r—0, ¥peN, (2.19)
T, = rz(i_l)(c?i Inr + d,-) + O(rz(i_z) In‘*! r) as r — oo, (2.20)
ro, Ty =200 [26 = (A Inr + ) +d; |+ 02w y), 21

‘(r&),)pTi) — 002 Dinr) as r— oo, VpeN, (2.22)

where d; € R and

. 1 1 . d;
d = ——, d = —, d = =,
=7y 7 UMT TG
1 (di —2id; d; — (i +2)d;
diey = ~ - . 2.23
SRR ( i2 (i + 1)2 @23)

Proof (i) By the scaling invariance of the problem (1.2), we have L% [AU), — V-
(VU )1h=1 = 0, or LYAU = 0. Hence ¢y = %for AU (x)xdx is the first funda-
mental solution to 2%y = 0. The explicit formula of ¥ follows from the integration
of the Wronskian relation, and the formula (2.15) is a standard way to solve linear
second order ODEs.

(ii) We denote u = %71 f. We directly compute from (2.15) for » < 1 that for
any a, t:

lu(r)| <

1 &4 4 21 —1 B r
o) / %f@)dswo(r) /0 éf(é)dé‘

1 r
< ( sup s—2|f(s>|) (rzf sds+/ s3ds) S fllxe.
0<£<2 r 0

For 1 <r < Ry, we use again formula (2.15) to compute for: =0, l anda > —2:

lu(r)| S beo(r)l/l $3If(§)|dé+llﬁo(")|/ 11 ()|dE

ST R (e /5$<1+ln<s>) dé
w [[cerameya
+0<S;ERO (1 + In(€))! §(€)*(1+In(§))'d&

S fllxar® (1 + In (r))’
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For 1 = —1 we first notice that the function 1 4+ =~ 21“ is decreasing and satisfies for
any r € [0, Ryl

1 - [ In &o| <1 21n (r) <1,
[Inb| = |Inb| — Inb —

so that for r € [1, Rp] and a > —1, with constants independent on b:

/r<s>“<1+w>ds51+ /rs“(1+21“‘§)ds‘
0 nb 2 Inb

2Inr ratl 21n (r)
<1+ |ratt <rath( : 2.24
Sty <+lnb mb [~ LY 2:24)
Hence for: = —1 and a > —2, computing as above:

() S 2 sup 'ff)'/ 01+ 200 g

1<5<R0 I+ =55

) E)] / (S )
+ su 1+
OSESpRo + 2k SO
21n (r)
S lxar®t? (1 + ).
Inb
The estimates above imply for any @ > —2 and 1 = —1, 0, 1, with a constant inde-
pendent on b and &p:
ety Fllgesn S 1 Fllxo
To estimate the derivatives, we notice from (2.15) that
Vet 4 482ne — 1 1. (7
= —3 Vo Tf(é‘)dé + Efmﬁo A §f(§)ds.  (2.25)

Hence, with the very same computations that we do not repeat we obtain for: =
—1,0,1and a > —2:

ol yora < 11 fllxe-

Next, using that @%u = f and the definition of .27 yields

1 4 8
8r2u=f+<———r>8,u——u.

ron? (r)?
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so that forz = —1,0, 1 and a > —2, using the previous estimates for # and 79, u:

3 2

5 <12 4r 8r
I3l S 172 llgen + 1 (7 = 055 ) rallgen + 1 gl

S fllxe + 11 f lxe + 1 fllxe S IFllxe.

This concludes the proof of (2.17).
(iii) For r <« 1, we compute from (2.15)

1 r
ITi ()| + |ro-Ti ()] = O (ﬂ/ e 1g%qe +/ $$2d§> =0@F?) as r— 0.
r 0

We use o T) = —o and the definition (1.14) of 2 to estimate for k € N,

k
o) 2T )| = O | Y 1o T+ oyl | = 06 as -0,
j=0

Hence, the estimate (2.19) holds for i = 1. By induction, we assume that estimate
(2.19) holds for i > 1. We compute from (2.15) and the relation 71| = _%—1 T;,

1 r
| Tig1| + 178, i1 = O (r2f I +f se%) =00,
r 0

as r — 0. The estimate for higher derivative follows from the relation &/ T; | = —T;
and the definition (1.14) of ..

For 1 <« r < Ry, we prove (2.20) by induction. Fori = 1, we compute from (2.15)
and the relation 77 = —;2/0_11,00

1 Vg +48%2Ing — 1 1. (7
1) = 3% / %ws)duzvm /0 Eyo(E)de

(L+0(r—4)) (%r2+(9(ln2 r)> = <%+O(r_2 In r)> (inr+0072)

2r2

1 1 In?r
=——1 -40 ,
2T <r2>

which is (2.20) for i = 1. Assuming now that expansion (2.20) holds for some i > 1,
we use formula (2.15), the relation T; 4 = —%_1 T; and the elementary identity

r Ik + DInr — 1
/sklnsds:r [( )2r ] forall k € N,
0 (k+1)
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to compute

4 4 21 1- r
Tt = —wf %T@dwzvmfo ET)(6)de

1 4 d; di — (2i +2)d; o in
Inr— In’
<22+0(r )) |:(2i+2) nr i 122 +(9<r n r)
1 -2 2i ‘21‘ d —2’d —21.i+1
—(2—+OO 1nm>r [%lnr ( In )

+ O
=2 fdi In r~|—l d _.Zidi —dl Gl r? =2 [pit? r) ,
4i(i + 1) 8 i2 (i+1)2

which gives

P d; P 1 (d;—2id; di — (2i +2)d;
T Ty T i2 G +1)2 '

This concludes the proof of (2.20).

The proof of (2.21) follows similarly by induction. Indeed, assuming that (2.21)
holds for i € N, we compute from (2.15), the relation Tj11— = %717} and the
expansion (2.21) for | < r < Ry:

4 4 21 -1 B r
PO Tyt = 5o, 1//0/ wr(@ds + ga,wofo ET)(€)dE

A

_ (_r2i+0(r2i—2)) |:,d—ilnr B d; —.(2i+2)d,- Lo (r_2 2 r)i|

2i+2) (2i +2)2
In? r
co()

N —;5 di —2(i + 1d; =2 1
2i i ! ! 2i—21.0i4+2
= 1 O I .
r [Z(i—i—l) nr+ 16+ 1)2 ]+ (r n r)

Using the recursive definition of cfi and d;, i.e,

; d; » s

dit1 = —m, di = —4i(i + )di11 —2Q2i + Ddiy1, (2.26)
we have the simplification 2(7—1’1) = 2id; and
di—26+Dd; _ d d; i+1,
S T T 2y = ———4;
4G+ 1)2 42 g ! i
2i +1 4
+ div1 4 2idiy1 = diy1 + 2idigy.
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This concludes the proof of (2.21). The estimate (2.22) follows by induction from the
definition of 2%, the relation 2% T; 1 = —T; and the Leibniz rule. This completes the
proof of Lemma 2.2. O

In the following we show that the profiles 7; given in Lemma 2.2 are actually the
building blocks of the eigenfunction of the linear operator «f = o) — brd, on [0, Ry].
In particular, we have the following.

Lemma 2.3 (Inner eigenfunctions for the radial mode) Lern € N, 0 < {y < 1 and
0 < b < 1 be small enough. Then for any |a| < |ln b|~2 there exists a smooth
Sunction ¢ € C*°([0, Ro], R) satisfying

1
AP =2b(1 —n+a)py with &= VREL (2.27)

where ¢>il“ is of the form

n
. . 2 _
¢y (r) = ch,,‘b]T/ +b <——lan1 + 1(90)

j=0

n
+2a Y b (= e Tian + ;) + bR, (2.28)
=0

and the constants (cn, j) are given by

0<j=<n

n!

(n—pr

Cn,j =2/ Cnjrt =21 = j)cnjs Cno = 1. (2.29)

The corrective functions Ry, S; satisfy the following estimates for any n > 0:

181721 + b3S 1720 + 1981172 £ &5 (2.30)
IRallzo, + 163Rallzo + 10aRallzo, S 1, (231)

with the following refinements for n = 0:

o0
i.2i N < < _q <
Z(,H)'zz’” tog(r + 1)+ S0, 130llz2 + 13S0l 2 + 132 Soll 2 < b,
(2.32)

1 & 1 .
= —— — |21 H—-—vi@+2)— 1
ZZ: z+1)'2’ bir? {logb[ n(r+1) i+2—-vy]+ }—l—Ro,

IRollzo, + 1163 Rollzo, < [ogbl™".  [1%aRollz0, S 1. (2.33)
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and forn = 1:
R 1%71 pEpey g P (r+1) : W(i+2)—y [+1 LI )
= —= r n(r ——-—=V( - - ,
T a4 Gy log b i Y log b !
IRillzo, + 163 R1llz0, S 1oghl™", N3aRillzo, S 1. (2.34)
S = L éb”lrﬁ In(r + 1)+ 8
2 & (i + 1D)li2 ’

8]

I\Sollzg + 1169 Sollz2 + 19 Sollz2 < b, 1Sillzz + 16351172 + 18 Sill2 < 1.
(2.35)
where W = T"'/ T with T being the Gamma function.

Finally, on the interval (0, Ry, ¢ does not vanish and ¢,iln has exactly one zero for
n>1.

Proof The proof mainly relies on classical arguments based on the Banach fixed point
theorem to construct the corrective profiles R, and S; for 0 < j < n.

Step 1 Preliminary results: For j € N, we let
©;=ro.T;j —2(j — DT;, (2.36)
which admits the following slowly growing tail from (2.20) and (2.21),
100" =00, 10, =00>"D) for j>1, as r— oo. (2.37)

and for j > 1:

2
‘®,(F)+ —Tj(r)

< p2(r)20-2 (1 + %) ) (2.38)

We compute the following integral by integrating by parts:

o0
/ r®o(r)dr
0
R R R
= lim r®o(r)dr = lim (2 / rTo(r)dr + f rzarTo(r)dr>
R—o00 Jp R—o0 0 0

= lim R*Ty(R) = 1.
r—00

From this and (2.15), as |rd,Tp + 2Tp| < (1 + r)~* the following corrective term
satisfies as r — 00:

1 - [e%e]
7y ' Oo(r) = O(o(r) In(r) + O ~2) + Y0 fo ¢ f(¢)d¢
= % + O 2Inr),
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and hence:

2
—— T+, 'O
‘1b1+ 0

<r<>2<1+$>. (2.39)

These estimates show that
| 2 2(j-1) 2
151 (©; (r)+ T ) ) lixo, <& 1©; (r)+ T My 20 <,
I 2 T+ ' Oollo <1 (2.40)
mp 0 PO S '

Step 2 Equations satisfied by S; and R,: Plugging the decomposition (2.28) into
(2.27) and using @/ T; = —T;_; with the convention 7_; = 0 yields

n
[% —brd, —2b(1 —n+ L +&)] > en bl T;

Inb s
n—1 '
- ch,,-bﬁlrj[z(n — D42 -1 =20 — 1)]
j=0

—Zc,,,bf+ 0, —2<—+a>zcn,bf+

j=0
- 2
+1 +1
:—X%Cn,jb] <®j+lnb j> b@o——To—ZolZCanJ T,
J

and
[%—bra —2b(1—n+i+&)]b —iT1+szf/ Sh
" Inb Inb
B 2b 1 2 |
= b0+ — bTo—b[ra,+2(1—n+—l b—i—a)]b (——1 ST+ ®0>

and

[t = bro, —26(1 = n+a)| | 2a Xn:bf“ | = cniTjun + 5]

=0
n .
=2a Y b atS; = [bro, +26(1 =0 +@)|( = e Tjr +55) |
j=0
n .
+2a ) e bHT
j=0
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We then rewrite equation (2.27) as
0= [ — bro, —2b(1 = n +3) |4

a3 b ety —bfr 421 -0+ @)] (= T + )]
j=0

+b{%7€n—b[r3r+2(1—”+“] Xn:c"fb ( Inb j)

2
—[ror +2(1=n+a)p <—ET1 +%‘®0)} (2.41)
n
Step 3 Computation of (S;), -, From equation (2.41), we choose S to be the
solution of the equation o
S, =b[r8r+2(1 —n+&)](—cn,jT,-+1 +S,»). (2.42)

Note from part (iii) of Lemma 2.2 that Tj | € Iz ' for Jj=>0.We aim at proving that
for b and ¢o small enough, there exists a unique solution §; € I to equation (2.42)

via the Banach fixed point theorem. Let I' be the affine mapping acting on f € I 2]
defined as
r(f) = [ (ror +2(1 = n+&))( = e, Tj1 + f)] =T 0) + DI(f),
where %71 is defined as in (2.15) and
I (0) = bey, oy ([ra, +2(1—n+ a)] H])

DI(f) = bary " ([ra, +2(1—n+ &)]f) .

We estimate from (2.17),
IPOls < RIIT Ol g2 S RIBIT a1l S R S 55
and for all f € Z{ witha =2jora =2j +2,
IDP()lze S R IDT(Dligen = R3pliy " ([rde +2(1 = n+@)]f) oo
S & ror +200=n+@)]fllxe S 1 F - (2.43)

Since 0 < ¢o < 1 and I is an affine mapping, the above estimates imply that I is a

contraction on BIz i (0, C ;g) for some constant C > 0 independent of the problem.
1
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Therefore, there exists a unique fixed point S; = I'(S;) such that ||S j”IZj < ;Oz
1

so that the first estimate in (2.30) holds. Moreover, from the proof of Banach fixed

point Theorem, there holds the formula §; = lim;, . I'(0) = anO(DF)”F(O).

Since b +— I'(0) and b +— DT are differentiable with respect to b, in particular

we have from (2.27) and (2.18) the identities 9,I'(0) = b~ 'T'(0) — . % cn,jTiv2

and 3, DI = b~ 'DI" — mﬁf ', The bounds (2.43) and (2.17) imply that in these
formulas, for ¢y small enough the series §; = anO(DF)” I"'(0) is differentiable with

respect to b. The differentiation with respect to  is obtained similarly. Thus, the
mappings (b, @) — S; is differentiable with values in Ilzj and the following holds:

S; = DT (3S;) + (0T)(Sj), 03S; = DI'(3aS;) + (8aT")(S)),

where we have the following identities as bd,& = —1/(Inb)? and & = 1:
1
W) = [(ro, +2(1—n+ - g (- eni i + Nl e
%l (f) = bafy [ = en Ty + £ (2.45)

From (2.43), we see that ||DF||I;Z—>I§Z < ;g witha = 2j + 2 ora = 2j. Hence,
Id — DT is invertible, and the following holds

[0S | 2542 = | Ad = DD)Y @ TS 242 S [ @TIS) | 2542,

[9aS; ||Iz, = | @d - D)~ @I)(S; )”Iz, < [@a)(s; )||Iz,
We estimate from (2.17) and (2.44),
[ @) (S; )HIzJ+2 < IIT,+1||IzJ + IIS,+1IIsz S

Similarly, we estimate from (2.17) and (2.45),

[@ar)(Spl s S ORI(IT 1l 25 + ISi1ll 20 ) S 66

which concludes the proof of (2.30).
Refinement for n = 1. We do not give technical details are these are the very same
ones as above for the general case. For n = 1 the Sy equation is:

Sy = b[ra, + 2&]( T+ So).

As ||b(ro + 20)Ty ”18 < b from (2.20) and (2.27) we get ||SOIII(§ + ||b8bSOIII(§ +
[1b3g Sol 72 < {Ozb by the same strategy as above. The S| equation is:

S = b[rar + 2a]( 2Ty + sl).
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Let §; = D mbir% Inr, which produces (9, + % — brd,) S =

—@. Looking for a solution S| = 3‘1 +S 1 produces

r2lnr

S = b[rar +2&]§1 +b(
4r 4 5 8 3
_(<W_F> +W> .

The source term above is of size 1 in Zg from (2.20) and (2.27) so that from the strategy
used above one obtains || S Iz + b3, Sy lzz + 1105 S Iz < .
Refinement for n = 0. For n = 0 the Sy equation is:

—2r, Tz) —4&T, + b2a S,

Ao = b[ra, +2(1+@)]( =T + ).

We look for a solution Sy = :§'0(r +1)+ %o with Sp = 1 37, mbirzi log(r).
As (3 + 28, — b(rd, +2))So = blogr, S solves

A0 = brd, +2(1+&)]3

~ 4r 1 3
—bQ2Ty +log(r + 1)) — b(rd, +2a)T1 — (| — — = — 3,
p

8 .
+— +bd, —2ba ) So(r + 1).
(ry*

The source term above is of size b in Ig from (2.20) and (2.27) so that from the
strategy used above ||SO||I§ + ||b8bSo||Ig + ||3&S0||Ilz < b§02.

Step 4 Computation of R,: From (2.41), we choose R, to be the solution of the

equation

n . 2
ARy = blrd +2(1 =0 +@) Ry + Y o 7 <®j + ETJ) :
j=1

2
+[ro, +2(1—n+a)]p <_ET1 + %—1(%) .
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where ©; is introduced in (2.36). The computation is similar to that for §;. We let I’
be the affine mapping I'(f) = I"'(0) 4+ DI'(f), where

- , 2
—1 _
L) = —bafy ' | Y ca b’ (@,» + ETf)

j=1

_[ra, +2(1-n +&)] (-%Tl + oy OOH

DI (f) = bey [ (ro, +2(1 - n+@)) /]

From (2.40) and (2.17) we obtain:

2
—1 1 °
bi- ((H)‘-l-fT‘)
e )|
; 2
1o, T,
1 ( ./+lnb ])

sz
j=

IT Oz,

2
bl (=T + 'O
31 + H 0 ( Inb 1 + 0 )

2
I—l

2
b|l-—Ti+ 'O
+ H mp T

<b.

0 0
I71 I,l

Using (2.17), we estimate for all f € 72,

IDT (N2, SDI(rdr +2(1 =n +&)) fllyo, S BRGNS Iz, S &1l
(2.46)

We then deduce that I'(f) is contraction on B2 1 (0, bC) for some constant C > 0,
hence, there exists a unique fixed point R, = I'(R,) satisfying |R, ||I2 < b. As

IR, ||Io <b™ 1||Rn||1—2 < 1 the first estimate in (2.31) holds. R, is dlfferentlable

with respect to b by the same reasoning as in Step 3 that we do not repeat here. For
the estimates of 9, R, and d;R,, we differentiate the relation R,, = I'(R,):

R = DT (Rn) + (3T)(Ry), 8aRn = DT (95Rx) + (3aT)(Rn),

where we have the identities since bd,& = —1/(Inb)? and 956 = 1,

n . 2 2
_ —1 YA . ) .
W»I(f) = 9 ;_1: cn,jb’ (1 (Q/ + lan") [Inb[? T/)

1 2 2
—dMNre, +2(1—n+a@ — —— T+ '
A [rr+ (1-n+a |lnb|2)]( mpht 0+|1 o7 ])

B o
. 1[(ra,+2(1 —n+a— W))f],

3l (f) = bty ' f +baty ! (—%Tl + .y ®o>
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We have derived from (2.46) that | DT|| 2,512, < g“g, hence, Id — DT is invertible

on ZEI. In particular, we have the estimates

18sRnliz2, = |0d = DY @BD) R[22 < (@) Ra) |72 -
18 Rallz2, = [(Ad = DI)™'(8aT)(Ra) [ 72 < [[(3aT) (R 12 -

Using (2.40), [ T; ||I(_)1 < 1, the estimate on R,,, we have by (2.17):

|logb\2
[(3T) R 72,
2 1
<Z<b1 ey ( )||12 + oy bF]WTJ”IEI)

1 2 2
-1 ~ 1
+ |l <r8r+2(l—n+ot—7llnb|2)]< nb T\ + <, O |1 b|2 ))”IZ

-1 ~ 1
+ [(ra, +2(l—n+a-— W))Rnllzg1

S1+IRallzo, S1+07 Rl S 1.

Similarly, we have by (2.17),

2
[@aT) R 2 < by ' Rullz2 + bl (‘ET‘ + ®o> Iz,

2
S I6Rallzo + bl = le + Ay ®o||10 IRnllz2, +b 5 b

Hence 105 Rallz0, S b~ 106 Rullz2, S 1.
Computation of R1 : For n = 1 a refinement is necessary. The equation for R is

) 2 _ 2 _
AR1 = b]rdy +2&] Ry +2b <r8rT1 + le> + [ror +2a]p <—ET1 + o 1®o> .

We look for a solution under the form R (r) = Ry,1(r) + Ri2(r + 1) + R where

o0

1 | Wil i 3 |
= —(= — E _b'rt 0, —0,—bro =—(1 - —)b.
s (2 21nb)i71 (2);i12 r ”+r r=broR ( lnb)
I d >,- s 1
Rir= b’ 21 ———‘~I’ 2
1,2 ~2logh ;1 i |: n(r) i+2)— }

3 b
2
(3r + ;8r — brar)Rl’z = —@(ZIOgr -1,
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[ (a+i)

@) where I' is the Gamma function. We then

and we used the notation (a); =
have the identity

—b(ro, + Za)Rl

2
LS D=1 +2b00,Ty + —T
( logb) +logb( og(r +1) = 1) +2b(rd, 1+10gb 1)

2
[ra, + 2a]b <_MT1 4 %‘1®0>

4r 4 5 8 R 4r 1 3 5
‘((W‘?)r*W) “‘((W‘?‘m)r

8
+—4 +bar Rl,z(l’ + 1)
(r)

+2ba(Ri,1 + Ria(r + 1)).

Each line in the right hand side above contains cancellations as r — oo: the first is
O(br~'logr) from (2.20), so is the second from the definition of Ri,1and Ry ». For
the last line, R, + RI’ZHIOI < 1 and |&| < |logh|~'. This shows that the right
hand side is of size | logb|~! in Z°,. So that ||7"21||IoI < |logb|™!, [|bay R, o, <

[logb|~" and 95 R1llpo S 1.
Computation of Rg : For n = 0 a refinement is also necessary. The equation for Ro
is

2
HRo = b[rd, +2(1+)|[Ro+ [rd, +2(1+a) b (—ETI + %—1&)) .
We look for a solution under the form Ro(r) = Ro,1(r) + Ro2(r + 1) + Ro where
e 1
Ro1 ==
01 =3 Z (2):2

e¢]

1 i 21 . _ §
Z(z) b 2log(r) — Wi +2) = 1, (O + S0y

. 3
s @+ 0 = b(rd +2)Ro1 = b

—
—_

210gb

2b
—b(rd, +2))Ror = —logr
’ logh

so that
HyRo — b(rd, + 2&)Ro

b log(r~|—1)~|-[r8 +2+2&]b —iT1+sz_1®0
log b " Inb 0

4r 4a 8 » 4r 1 3 ]
_<<W_?)’+W> “‘((W‘;‘m)r

= —bh—
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8
— +00, | R 1
+<r>4 + ) 12r +1)

+2b&(Ro.1 + Ro2(r +1)).

In the right hand side, the first line is Obr~! log r) from (2.20), and so is the second
from the definition of Rg,1 and Ro, . For the last line, || Ro,1 + Ro,2|l 7, < 1 and

|&| < |loghb|~!. Therefore the right hand side is of size |logb|~! in Igl, and we get
IRollzo, + 1163 Rollzo < | logb| " and 19aRollzo, < 1.

Step 5 Number of zeros: For the case n = 0, the identity (2.28) gives with (2.29),
(2.18) and (2.16):

: r2 2 _ _
By (r) = e +b (_E |+ ‘®0> +2ab< — T + So> + bRy.

(2.47)

From the pointwise bounds (2.39), (2.20), (2.32) and (2.33), and |&| < |In bl_2 we
infer:

2
P—

(r)*

2 7‘1 -
’b (—mn + o oo) + Zab( — T+ So> +bRo

on (0, Ro] for ¢y small enough and b small enough, so qb(i)“(r) has no zero. Forn > 1
one has that, from the identities (2.28) and (2.29), the bounds (2.39), (2.20), (2.30),
(2.31),(2.34), (2.35) and |@| < |In b|~2:

¢ = To(r) + 2nbTi (r) + $iM(r),  with [§I"()| + r|d,¢ (1) < bgr?(r)~*(In(r)),
(2.48)

where the bound is valid on [0, Ry]. We recall from (2.19):

1
To(r) + 2nbT(r) = - = bnlog(r) + OB + r73) asr —> oo, (2.49)
r
-2 bn 2 —4
O To(r) +2nbd, T1(r) = — — — + OW|Inr|r—=4+r"") asr — oo.
r r

(2.50)

From the above identities, we obtain that qbi“ vanishes exactly once on [0, Ry] at the
point ry,

ro = (140D, (2.51)

1
\/E/n|logb|
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and that there exists a constant ¢ > 0 such that

O gy < =D onirgl, P < gingy < LU0 onprg, Ryl
ror cror cror ror
(2.52)
O
Lemma 2.4 Let V be a smooth function satisfying |35V | < |Inb|~'r>=*(r)=* for

k =0, 1. Then for any fixed n, for £y small enough, there exists b* >0 such that for
all0 < b < b* and @ = O(|Inb|™"Y), there exists a solution d:n

d¢1n vV _ [ra +2(1 —n +(¥)] in, V —18 (V¢1n V)

on [0, Ro] which satisfies

1
in,V in
—_— 2.53
™" — &l 72 |lnb| (2.53)

Proof We only treat the case n > 1. Indeed, from Lemma 2.3, d)i“ vanishes once on
[0, Ro] for n > 1 at the point ry defined by (2.51), whereas for n = 0 it does not.
Reintegrating the Wronskian relation is then harder in the case n = 1, and the case
n = 0 can be treated with the very same ideas but simpler computations. We shall use
results on ¢™ proved in the “Number of zeros” part of the proof of Lemma 2.3.

Step 1 Uniform asymptotic for the second fundamental solution: We claim that there
exists I another linearly independent solution to

Al —b@rd, +2(1 —n+a)I' =0
on [0, Ro] such that:
()| < Cand |3,T'(r)| < Cr|Inr|(r)"*(Inr)~" on [0, Ro] (2.54)
with a constant C that is independent of b and «. Indeed, from standard arguments,

the Wronskian W = I¢i" — T’ ’11n/ is (fixing the integration constant without loss of
generality):

%o

r b

so the second fundamental solution is given by, reintegrating the Wronskian relation
(we again fix here an integration constant without loss of generality):

i W) i / b
r —_d
(}’) ¢ ( )‘/; ¢1n($)|2 E ¢ ( ) 1 (1 52)2|¢m($)|2 é
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The asymptotic near the origin follows from (2.28), (2.48) and (2.19), and direct
computations, so we only focus on the asymptotic of I" for r large. For 1 <r < rg
from (2.52):

(ro—rro [© &
rons P [ e s,

Next, for r > rp, we avoid the singularity in the integral by noticing that there exists
a constant C such that

W)

F C in in
(r) = Co"(r) + ¢ ()/0 6

|2$

To estimate C, one computes from the first formula for I and the asymptotic (2.52)
near rg of ¢™:

, . T WE W) »
(o) = lim ( 3, . d . —0eh.
o) ‘¢m< ¢ (”/1 IEGE “d»n(r)) o)

Similarly, we have

| e v
I'r0) = C@" (o) + lim <3,¢m(r) ®) ) )

w0 O T g
= C(¢™(r0)) + Oy M.

As 3,¢™(r0) = —2ry > (1 + O(1)) we obtain C = O(r3) = O(b~"|logh|~"). For all
ro <r < Ro we find from (2.52):

n [T WE) ‘ (r—ro)r fRo de
0 | ener . E—r0)%E "~
and
o) <2 O)Nl.
O}"

Hence |T'(r)| < 1 forrg < r < Rp as well. This proves (2.54) for I". The proof for
o, T is verbatim the same so that we skip it.

Step 2 Bound for the resolvent under orthogonality condition: Let a solution to
g = r~18,(V f) be given by

. Ro ro4in
u(r) = $"(r) / W(é))s %V +T0) [ ﬁv(f))s*‘agwf)@ds,
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then we claim the resolvent bound:
flu III 11b IIfIIX 2+ oy fllx—z (2.56)
~ |Inb]

We now prove this claim. From the hypothesis on V, (2.48) and (2.54), the first term
can be bounded by

() / P IE 3s(Vf)($)d$‘
 We

Ro
2 — -2 -1
S bl <<V> +b{r) ﬂn(r»)/f (ISI |f(§)|+|3gf(é‘)|> d&

£l + ol o
< I ( ) [ §© " nte)de

’
_ Il 2 + ||V3rf||x—2

~ |Inb|

< ”f”xrz + ”rarf”Xl*Z 5

r—r
~ | In b|

Ine)) + bir) " (in(r))?)

—4

For the second term, we use the decomposition (2.48), the identities (2.16) and (2.55),
the bound (2.54) and the bounds on V to get

Fin Gy / ‘@V(f)) lag(Vf)(f)dg‘

— M) / ( +bTy +¢m) 0 (V ) ()de

) (V(r)f(r)e—"ﬁ2 —/rbSer_#ds
0

r 4 —b; »
+ [ = (o) Bs(Vf)(E)d%')

€2

< (r‘2<r>‘4|f(r)|+b/ E3(6)7 F1de
nb] )

+b/0 EE) T (InEN (1 + §|3§f|)d5>

£y + 178, £l y— , ,
e ol (r4(r>_8+b/0 55<s>—8d5+bf0 s3<s>—6<ln<s>>ds)

|Inb|
< ”f”Xl_z + ”Varf”)(l—2 r2<r>74
~ Y]
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because » < b~!. Combining the above two bounds yields the following estimate on
[0, Rol,

”f”XTZ + ”rai’f”Xl*z 2

< —4
lu(r)| < o] re{r)
Differentiating the identity satisfied by u yields
- ooreE, TPNE)
du = 9" —& 0:(V d& +0,T 9 (V d&.
u=09"0) [ e @ +are [ e v e

Hence, computing the same way the integral terms as we just did, and using (2.48),
(2.50) and (2.54) we get

£l + 7o, fll g
|Inb|

EATGIS

Using the definition of <%, we write

r

Ou = (l - 9) o — Lo b b(rd, +2(1—n+ @+ 8V,
r r

from which and the hypotheses on V and the bounds on « and 9,u, we obtain

_ Il + 19 F
~ |nb|

2
192u|

The bounds on u, d,u and 8r2u imply (2.56).

Step 3 Fixed point: We look for a solution to [,Qfo — b, +2(1 —n + @) —
r=19,(V)]¢™Y = 0 under the form

¢in,V — ¢in +q§in,V.
Then, ¢™V solves

[ — bro, +2b6(1 —n+ @)™ =r~'. (Vo™ +r '3, (Ve™Y).
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We solve this using a fixed point argument in Z, 2 As | ”Ifz < 1 from Lemma 2.3,
as || - ”Ifz <|- ||I(;z from the very definition of these spaces, the bound (2.56) implies

[ — bro, + 260 —n+@)] ' ¢~ 0, (VF")l 2

< 1
~ |Inb|

. . 1 .

m B m B < _ - m B < -
(9™ g2 + 1739 2) S 9™ rea S
B e

72~ [Inb| ~  |Inb|

H%_brar +2b(1 —n—}—d)]_l(r—lar(vq;in,v))

Hence, the mapping which to ¢™" assigns
[ — bro + 2601 —n+ D] (10, (Vg™ +r 70, (vE™Y))

is acontractionin B;—(0, C|Inb|~ 1 for € large enough and then for b small enough.
Its unique fixed point is the desired solution, and satisfies the conclusion of the lemma.
O

2.2 Analysis in the Outer Zoner > Ry

In this part we solve problem (2.1) in the interval [R(, 0o) where the potential term
can be treated as a small perturbation. To this end, we rewrite equation (2.1) as

0+ ga,¢> —brirg —ag — iﬂ) "o+ +8r2)2¢> =0. (257
Introducing the change of variable
¢ (r) = q(z) with z = ?, (2.58)
yields the equation satisfied by ¢,
(Ko + Po)q(z) =0, z>2z0= §—°2 R (2.59)
2 2b
where Ky is a Kummer type operator defined by
Ko = 202 + (2 — 2)d, — 6, (2.60)
and Py is the potential
Py — 2b 4b 2.61)

— 3, + .
(b4+2z2) ° (b+22)?

@ Springer



Spectral Analysis of a Linearized Operator... Page370of74 5

We will treat the differential operator Py as a perturbation of Ky in the outer zone. We
first claim the following.

Lemma 2.5 (Properties of KCy)

(1) (Inversion) Assume that —6 ¢ N, then an explicit inversion of Ky is given by
G = ho@) [ @ F@etde o) [ ha(@ f @ s, 262)
20 z

where hg and hg are the two linearly independent solutions to Kummer’s equation
Kgh = 0:

oo

_ 1 1 ®i o o .
@ = o T ; Gy id e WO D =W D)~ w4 ]|
(2.63)
N N
ho(z) = g 2l (2.64)
where we recall (a); = Fl(fl(:)i), T is the Gamma function, and ¥ = T’/ T is the

digamma function. Moreover, we have the asymptotic behavior as 7 — oo,

re
( )ezZ(-)fZ

ho(@) =27 (14+0G™D). ko) = 7

(1+0@:™h). (.65

and for zo < z < 2, for C dependent of zo if n = 0 and independent if n > 1:
lho ()| + lhe (2)] S C (2.66)

(ii) (Continuity) Leta € R, and 56’ *“ be the Banach space of functions f : [zo, 00) —
R equipped with the norm

I fllga := sup(z) ™ (1 f ()| + |28, f ()| + 12282 £ (2)]).

7220

Then for any continuous function f : [z9,00) — R, we have the estimate for
a> —6:

1Ky " fllea S Czo) sup ()7 1f (). (2.67)

Z0=<2<00

Proof (i) See formulas 13.}.2, 13.1.6 and 13.1.22 in [1] for the definition of Ay, fzg
and the Wronskian W (hg, hg) respectively. For the bound for zg < z < 2, notice that
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from the Gamma function’s recurrence relation and the bound on «:

@) = L@ +n) B r+a)
TR0+ D)...0+n—-1) d-—n4+a)Q2—-n+a)..(—1+a&a
i +0O() =0O(1nb)), (2.68)
(n—1Dla

forn>1,andT(0) =T +a) = O() forn = 0.
(ii) The proof follows from straightforward computations. Let

D= sup (2)"“|f(2)l,

70=<Z<00

From (2.65), we compute for z > 2,

ho(2) f h fhese—fds‘ < D2 / h g6 ket de < D,

and from (2.63), we compute for z € [z, 2],

2 B e’}
ho(2) / fhoEe SdE + hy(2) /2 fhgée_gdé‘

o (2) / fheée—fds‘ <

2 o)
< D/ £dE + D/ g0 e=5gg < D.
4 2

Similarly, we have for z > 2,asa > —6

z 2 4
ho(2) / fﬁese—fds‘ <D / £ds + Dz ° f £969-21 < D2
20 20 2

and forzop <z <2,

/Z fflaéfe_sdé‘ < D/stg <p.

This proves the continuity bound (2.67) for ICG_ ! f. We now take derivatives. Forz > 2,
we estimate from (2.62), (2.65):

<0k 1 )] S

o0
zaZhQ/ fhggesdg‘ +
z

Z0.hg / Zfﬁeéeédé&‘

<D (ezze—lza—e-i-le—z +Z—eza+9> < Dz
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For z € [z, 2], we estimate from (2.64):

‘zazlcglf(z)‘ <

o0
2dchg / fhese—fds‘ +
Z

20 hg /Z ffzeée_gdé'

2 o) z
< D(/ £dE +/ g0 5 ) +D/ £de < D.
b4 2 20

Using Ko ICyy ! f = f and the definition of /Cy, we have the estimate for z > 2,
202K5 " ()] S 120:K5 " f @) + K5 f )] S D,

and for z € [zo, 2],
202K @] S 120:K5" f @) + 12K f @) < D.

Collecting the above estimates yields the estimate (2.67). This concludes the proof of
Lemma 2.5. O

We are now in the position of computing the solution g to equation (2.59) by a
perturbation argument.

Lemma 2.6 (Outer eigenfunctions for the radial mode) Fixn € N, and6 =1 —n +
1/Inb 4+ @. For 0 < ¢y < 1 and any small 0 < § <K 1, there exist b* > 0 such that
forall 0 < b < b*, forall @ = O(|Inb|~?) there exists a smooth solution

qb,a,z) =T(O)he(z) +G(b,a,z) (2.69)

to (2.59) on [z, 00), where hg is introduced in Lemma 2.5 and G satisfies the following
estimates for some universal C > 0:

IGllg-0+s < BIMBIC,  [1b8pGllg-0+s < BIBIS, (136G o5 < bIInb|(270)

where the constants in the estimates depend on zg. Finally, on the interval [z(, 00), ¢q
does not vanish for n = 0, 1, while for n > 2 it possesses n — 1 zeros.

Lemma 2.7 Assume Py is replaced by Py(q) + %31(\711)/1 where V satisfies |\7| +

|z8217| < b| Inb|~'z71 on [z, 00). Then existence result of Lemma 2.6 of a solution
qV =T (@)hg(z) + G" (b, @, z) and the first bound in (2.70) still hold true.

Proof of Lemma 2.6 From the bound on the Gamma function (2.68), we will simply
consider a solution of the form ¢ (z) = hg(z) + G(b, @, z) (with the abuse of notation
of keeping the notation G), and prove the estimate (2.70) for G(b, &, z), which will
prove the Lemma upon multiplication by I"(9).

Step 1 Existence and bounds: Note that Py has the form:

Po(g) = Vig + Vadzq. with |Vi| + |zVi| S bz (2.71)
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Let us write from (2.69) the equation satisfied by G,
KoG + PoG + Pohy = 0.
Let I" the affine mapping defined as
L(f) = =K '[Pof + Pohg] = DT(f) + DT (hg),
where
DI (f) = —Kg'[Pof],
and C;; Uis given by (2.62). We estimate from the definition (2.61) of Py and (2.67),

IDT (ho)llg-o+s S I, Pohgllig-ovs S sup  (2)7% | Pohg| < b.

z€[z0,00)
From (2.67), we estimate for all f € £%~0+3,

IDT(P)llg-o+s S sup ()2 [Py f (@) SbIfllg-o+s. (2.72)

z€[z0,00)

It follows that I is a contraction mapping on Bg-s+5 (0, M b) for some M = M (o) > 0
large enough. Hence, there exists a unique fixed point G with

G=T(G) with [Gllgows Sb.
Differentiating the above fixed point relation yields:
990G = DI'(999) + (3e1)(9), G = DI'(8p9) + (3pI")(9).

Since Py depends on b and not on 6, whereas hy, hg and /Cg depend on 6 and not on
b, we have the identities:

(3T)G) = =39 (Ky ) (Po(G + hg)) — K™ (Podghe),
@0)G) = Ky ' @y Po (G + hp)).
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We compute from (2.63) that:

_ YO vO-D ¢ O . . .
Yho () = =~ Te T ; it [Inz+w@+0)-wd+i)-ve+i)]

I ())¥
+r(9 -1 2; (2);i!

=l

zi[lnz+\1ﬂ(9+i) —\IJ(1+i)—\IJ(2+i)]

1 K Oi(WO+i)— V)
tre- ; )i ¢ [lnz

FWO +i) — W +i) - W+ i)].

Hence, we infer from |W(0)| + W@ — )| < &' < |Inb|, (W' @ +i)| < a2 <
|1nb|2 and [(0); (W0 + i) — W ())| < 1 the rough upper bound on [zg, 00):

19076 (2)| < b2z~ In(z)(z) 77,

which extends to derivatives. Similarly, we have from (2.64)

- E0) (VO +i)—W(O))
dohg(2) = Z( e (W (;_)_li)' ( ))z’,
i=0 e

satisfies the rough upper bound |9gho (2)] < In(z)(z)? 2% on [z, 00). We get from
(2.62):

@I, ) f = (dho)(2) / () fE)E2eEdE + ho(2) / doho(§) f(£)E%e 5 dE
20 20

+3(i0) ) / ho () £ (€)62¢ 5 dE + g (2) [ 39 (ho) (&) f (€182 dE.

Hence, as from the above, the bounds for /2y and fzg still hold up to a logarithmic loss
in z and b and § > 0, using the same argument as in the proof of Lemma 2.5 we get:

16K, ") fllg-oes < |2 sup ()72 | £(2)]

20=<7<00

and from (2.67):
1K~ (Podoho)llg-o+s < Il Podehallg-o+s < blInb|*.
Thus, as § is small, from the definition of Py:

196 (K ) (Po(G + ho))llg-o+s
SImbPIPG +ho)l g5 S bIMBIEIG +hgllg-oes S bIInbJ.
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We proved above the continuity bound || DT'[|¢(g-6+sy < b and the identity,

%G = DT'(3G) — d (I, ) (Po(G + he)) — K™ (Podohe).

Hence one can invert the operator /d — DI" for b small enough, with |Id +
DT'||¢g-0+sy < 1 and the above identity gives:

186Gl g-o+s = [I(Id — DT)~! (30 Ky (Po(G + o)) + /C_I(Pofiehe)) g0+

< b|Inb|?.
From the definition of Py and (2.67) we find:
1Ky @ Po(G + ho))le—ovs S 136 Po(G + ho)llg—ovs S NIG + hollgoss S 1.

Hence we obtain similarly from the relation 9,G = DI'(3,G) — K/ Y0, Po(G + hy))
the bound:

185Gl g-6+5 S I(Id — DTY K, (8 Po(G + o)) llg—oss S 1.

Step 2 Number of zeros: This is a consequence of the well-known properties of Kum-
mer’s function hg (see [1]). Since =1 —n + ﬁ +O (| 1nb|_2), hg has no positive
zeros for n = 0 and possesses |0 | = n— 1 zeros on the interval (0, +00). The estimate
(2.70) and the asymptotic behavior (2.65) ensure that there exists z, > 0 such that
lg(z)| # 0 and z3.q(z) = —0z~%(1 + O(b)) # 0 for z > z,. Thus, ¢(z) does not
change sign for z > z,. It remains to show that on the interval z € (29, z4), g has the
same number of zeros than sg. We consider two cases.
-If |ho(2)| = co for all z € (zo, zx) for some ¢y > 0, then the estimate (2.70) implies
that |g(z)| > 0 as well on (zo, zx) for b sufficiently small.
- If hg(z) has n — 1 zeros on (2o, z«), say h(z1) = h(zz) = -+ = h(zy,—1) = 0 with
71 < 22 < +-- < Zy—1. By definition, we have |hy(z)| > 8o on (20, zx) \ U?;}BZJ. (€9)
for a fixed small constant 0 < ¢y < 1 and §9 = Jo(€p) > 0. Using (2.70) yields
lg(z)| > 0 for z € (20, z+) \ U’};%BEO (zj) for b small enough. Consider z; a zero of
hg, namely that hg(z;) = 0. Since hg is a non-zero solution of a second order dif-
ferential equation, necessarily |hj (z;)| > 0. We may assume that /j(z;) > 0, which
infers that there are z; € (zj — €0, zj) and zj € (2, zj + €p) such that h(z;) <0
and h(zj‘) > (. We then use (2.70) and the intermediate value Theorem to conclude
that there is Z; € (Z;, z;r) for which ¢(Z;) = 0. We also note that |y (z;)| > ¢ > 0
for z € Be,(z;), from which and (2.70), we deduce that lg’(z)| # 0 for z € Bq, (z).
Hence, Z; is the only zero of g (z) in Be,(z ;). This concludes the proof of Lemma 2.6.
O

Proof of Lemma 2.7 The decomposition (2.71) and the associated bounds still hold for
Po+ %82 (V+)/z. This was the only information used on Py in the proof of Lemma 2.6,
so the very same proof applies. O
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2.3 Conclusion via matched asymptotic expansions, proof of Proposition 1.6

From Lemmas 2.3 and 2.6, we are now able to derive the full solution to the eigen-
problem (2.1). In particular we claim the following.

Lemma 2.8 (Matched eigenfunction for the radial mode) Fixn € N. Then there exists
C > 0, such that for ¢y small enough, there exists 0 < b* < 1 such that for all
0 < b < b* there exists |@,| < C|Inb|™? such that the following holds for the
function

$in(r) for r < Ro, , _ én'(Ro) %
PopX(r) for r > Ry, 0= ¢SX(RO)7 Ro = \/E’ (2.73)

Qu(r) = {

where " = $i"[b, &) and $(r) = ¢SX[b,&1(r) = qlb, ] (%) = g () are
described in Lemmas 2.3 and 2.6 respectively.

(i) The function ¢, is a smooth solution to the equation

(o — brd,)n = 2b(1 —n + ﬁ + @) - (2.74)

(ii) The estimates (2.3) and (2.4) for a, hold true. The estimate (2.6) for ¢,, holds true.

Corollary 2.9 For the perturbed operator yp, — brd, ¢, +r~—'9,(V-) where V sat-
isfies |8fV| <|In b2 % (r)y=* for k = 0, 1, then item (i) of Lemma 2.8 holds true
if the inner and outer eigenfunctions are those associated to the perturbed problems
described by Lemma 2.4 and 2.7 respectively.

Proof of Lemma 2.8 Recall from (2.60) the relation
0=1—-n+a, a=—+a. (2.75)

Since the equation (2.74) is a second order ODE with smooth coefficients outside the
origin, it suffices to prove that the two functions and their first order derivatives agree
on both sides of Ry, and (2.73) will then provide a global solution to (2.74) on (0, 00).
From the special choice of Sy this is equivalent to:

3¢ (Ro) _ (rd)ei™Ry)  (20:)q(z0)
— Y = <— O(, = - — =0. 2.76
5,05 (Ry) 0 (00 = 3 5m (ko) 7(z0) (2.76)

Therefore, to prove the Lemma it suffices to prove that for b small enough there exists
a = a,(b) such that ®(b, @) = 0, and such that item (ii) holds true. We rely in a
standard way on implicit function theorem. The estimate for d,,, then follows by

(0,0) (b, an)

" 00,0 by an) @77)

8},5{” =
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To ease the writing, we mention only the dependence in b and & at key locations in
what follows.

Step 1 The interior term: It is convenient to rewrite from (2.28) the expression of ¢,i1“
as

iln[b, al(r) = Fulbl(r) + abG,[b, al(r) + E,[b, a](r), (2.78)

where F;, and aG,, are leading order terms and E,, is a remainder:

n

F,[b1(r) = Zc,,,jbij(r), Gnlb, &]:be(— cn, i Tin (r)+S;[b, &](r)),

j=0 j=0

2 1
E,[b,a](r) =0 (—nTl r)+ o/~ ®o(r)> + DRy [b, al(r). (2.79)

We have the following estimates from (2.20), (2.40), (2.31), and assuming |&| <
|Inb|~2:

2
b
Y ) by 9L Ex)(Ro)| < CL0)—— (2.80)

|nb|’
0<k<2, 0<t+£'<1

Inb
Fu(Ro) = b (—%Hn(m + Kn(r;o)> +O0?),

Inb
(rd, F(Ro))(Ro) = b <—HTC3; H, (o) + CaqKn(§0)> + O(b%),
2.81)

where H, and G, are defined by:

Hy(50) = ch,dcz“ V. K, <c>—§—+ch,;2<‘ U (dingo+di).

0 i=1
(2.82)

Notice for 0 < ¢y < 1 small that |H, ({p)| # 0. Gathering all these estimates and
(2.30) we arrive at

Inb
¢ (Ro) = b (—THn((o) + K (5o) + @ Gn(Ro) +O(W)>

A Inb
rargi(Ry) = b (‘HTcag Hy (20) + €9 Kn(C0) + &by G (Ro) + O 00 b|)>

in 1 1
(m%( 0)) “ i blz(é“a;K 2(20) + ard, Gy, (Ro)-l—@(‘l b|))

1 1
0 0p G (R, WERY))=0(—),
+blnb(a bGn(Ro) + 9y E(Ro)) (bllnb|2)
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L orgin(Ry)) = ——— ; e
dp <mr8r¢n (Ro)> = T hnbP (¢ 0¢ Kn(Z0) + ard-Gn(Ro) + O( Inb| )

1 1
—— (@3prd,Gn(R E(R)=0(—]),
+blnb(a3br3 Gu(Ro) + 970y E(R0)) O<b|lnb|2>

3 (@ (Ro)) = bG,(Ro) + @bda G, (Ro) + bdg En(Ro)
= bG,(Ro) + bO(Inb|"2HO(nb) + bO(|Inb|™h)
= b (Ga(Ro) + O(|Inb| ™)),
3 (rd, oM (Ro)) = brd, G,(Ro) + abdard, G, (Ro) + bdzrd, En(Ro)
= brd,G,(Ro) + bO(|Inb|~>)O(nb) + bO(|Inb|™h)
= b (r8,Gu(Ro) + O(|Inb| ™). (2.83)

We compute that, from (2.30):
|r0,G,(Ro)| + |Gn(Ro)| < C(n)|Inb|, with C(n) independent of .

The collection of the above identities gives us the following leading order expression
for the quantity involving the inner solution in (2.76):

ro)$M(Ro)  — 3280 Ha(50) + &3¢ Kn(§0) + @rdr Gu(Ro) + O(pgy)
OP(R) —BEH,(6) + Ka(50) + @Ga(Ro) + Oy
£0c Hy(50) — 156 9 K (60) — 157 9 G (Ro) + O ()
T Ha0) — Z5Ka(0) — ZaGa(Ro) + Ok
_ $0cHu(0) | 2 Kn(50)$3c H(50) — Hn(80)5 9 Kn(50)

Hy(¢)  Inb H; (%)
i _ Gné‘a;‘ H, (;0) - H, (;O){a{ Gy _2
+ A o +O(Inb|™%
_ §0:Hu (%) n 2 Ku(50)¢ 9 Hy(80) — Hu(50)¢ 9 K (0)
Hy(to)  Inb H; (%)
_ o )
a—Hn(CO)Z +O(Inb|™), (2.84)

and

" ((rarmi,"(Ro)) _ 3, ((b In b>*1<rar)¢;“<ko>>
9} (Ro) (bInb)~19} (Ro)
0 (610 b))~ (r,)3 (Ro)) (b Inb) "' §31 (Ro) — 0y (b In b) "' ¢! (Ro)b In b))~ ()3 (Ro)
((bInb)~ 9 (Ro))?

R 1
T ((bInb)"gin(Ry)? © (b| 1an2> ’ 285)
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and

5 ((ra,)d;"(Ro)) _ ard (R0 (Ro) — dady (Ro)3, 9" (Ro)
“\ iR e
_ (£8:Gu(R)+O(Inb|™h) (=12 H, (20)+O(1)) = (G (Ro)+O(|Inb|™")) (=182 ¢ 8, H, (50)+O(1))
(=12 H, () +0M)

_ i G,,{a; H, (;O) - {8{ Gn H, (;O) _
=17 1) =0() (2.86)

where the constant in the two (1) above are independent of .
The case n = 1: Injecting & = /| logh|* + &, |&| < |Inb|~3 in the refined asymp-
totics (2.34) and (2.35) gives

¢ (r) = Fi(r) +abG1(r) + E1(r),

where

2
Fi(r) =To(r) +20T1(r) + b <_mTl(r) + %1(90)

2e1 2 P Dist i

|1H b|2 (_le(r) 2b T2( ) Z (2) 1‘21 ll'l(r+ 1))
b (Dist oo ] 1 1

2;(2)ii!2ibr {1 b[ﬂn(’"ﬂ) W(i+2)— )/:|+1 = b}

Gi(r) =2(=Ti(r) + So(r) — 2bT2 + bS\(r)),

~ 2 -
Ei(r) = bR, (r) + ﬁ(b&)(r) +525,()).

One has from (2.20), as dj = —1/2,d; = 1/4andd> = 1/16,e; =In2 —y — 1 and
Ro = ¢o//b:

b Ingo— 82 2 ( Ing— lnb 1
F(R)=—+2b|-———2 4+ |+ [ —2 )+ =
1(Ro) Cz"' ( 5 +4 + D 3 +3

0
2e) bInb biglnb  blnb n (1)i—1
+|1nb|2 <_ 1 T T2 ;(Z)ii!zi%

(Di-1 2 1 1 .
—-2(2)1'21 {m[Zlngo—lnb—l—,—\IJ(l+2)—yi|

1 b
11— — -
+ In b}+0(|lnb|2)’
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Inb 1 1 Ing Mzt o
Fl(Ro)zb[T 7 —Ingo+ = +ﬁ+2mb< +Z(2>u2!2)

I o Di1 o L
21nb;(2) 121 0 [2]‘1{0 A ( ]H

Inb 1 In e
=b1 >+ —ld+y L
50

Inb 2Inb

" 2Inb &~ (2);i12
b
ol—), 2.87
" <|1nb|2) =87

and similarly, we have

L Z Wit o [zm;o_lnz—l—\wwz)“
l

—2b b b
ey N Z ()1 1
2 Inb  2Inb = (2);i2

b
O<|lnb|2>'

From (2.34) and (2.35), we obtain

(rd, F1)(Ro) = ¢32i[2Ingo — W(i +2) — In2]

> () EN(Ro) = C0)

R
0<k<2 |1 b'

Hence, as G1(Rg) = O(|Inb])and rd,G1(Ry) = O(| Inb|), we obtain from the above
identities

Inb 1 1
P (Ro) = b — 57 Hi(€0) + K1 Go) + 37 J1(00) + GG (Ro) + O],

1
ro, ' (Ro)—b[§3§K1+ T80 +ard, Gl(ROHO(Han)]'

2Inb

where we used (2.82), so that H;(¢) = 1 and K((¢) = {‘2 —1In¢ +1/2 and

o0 ; ) 1
J1(%0) =2Ingo — ey — Z ((2)) '211 I [21n;0—1n2— S +2)]

(2.88)
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We finally obtain
ro ¢ (Ro) £0cK1 + 535891 +Grd- Gi(Ro) + O (\1nb\2>
PM(Ro)  —MEH (5o) + K1(50) + g /1 (80) + @bG1(Ro) + O(\Inb\z)
2 C0cK1 + 535800 1 + Grdy Gl(RO)+0<\lnb\2)

Inb Hy(50) — 2 K1(60) — oz 1100) — 25bG1(Ro) + O(hr)

2 0 Ky LC3§J1H1+2K1{8;K1
“Inb | H O Inb Hf

1a roy, G1H1+lnhG1{3;K1
Hl
2 oKy 2 o¢JJ1H +2K150: Ky O(l)

R 7 i + Ol %) (2.89)

+(’)(lnb|_2)}

where the constant in the O(1) is independent of .
The case n = 0 : We first use the refined asymptotics (2.33) and (2.32) to obtain:

g (r) = Fo(r) + abGo(r) + Eo(r),

where:

Fo(r)=To(r)+b <—iTl(I’) + %_l@)o)
Inb

o0

b 1

i 20 .
zzlmbr {lb[Zln(r—f-l) V(i +2) — ]+1},

o0

1 - ~
Go(r)=2 ( Ti(r) + = Z (2) i —— b In(r + 1)) Eo(r) =bRy(r) +2abSy.

One has from (2.20), as 52’1 =-1/2,dy1 = 1/4:

LAY Ing—"12 1\ 1
0( 0)—%"‘ _m f‘i‘z +§

ben 1 5[ 1 . 3
+5;(2)[2i;0 {m[Zln{O—\D(z-i-Z)—y]}+O(b2)

b blng b b 1
_g+1nb 21b+2lnbz(2)2'

(2 (2Ing) — Wi +2) — v} + Ob?),
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and similarly, we have

—2b
(roy Fo)(Ro) = —5
5

b b N ! s
2 2 |21 S Wi +2 o (b’
+lnb+21an(2)2’§0 ’[ néo + +2)- ]+ ( )

—1 _ # -1 = #
By (b Fo(Ro))—O(bllnblz)’ % (b ’arFO(RO))_O(buan)'

From (2.33), we obtain

Y (@) 0L (rd)* Eo)(Ro)| < C(Zo)

5
0<k<2, 0<t+e<1 [Inb|
One also has
1 1o 1y nb -~
Go(Rp) =2|—~Inb— —Inb )+ o) = -—G
0(Ro) ( gInb—7In ;(2)i2’€0)+ )] 5 Go(%)
1
+O(), 3hG0(R0)=O(E>,
where
Goto) =y 7 &' (2.90)
i=0 !
so that

Inb ~ -
ro,Go(Ro) = —743;G0(§0) +01), 03pro,Go(Ry) =0 <—> .
We obtain from the above identities
1 nb >
8 (R = b =+ e = 02 &Gt + O]

0,0 (Ro) = b = + —— o J 0 ra,G O(Inb| 2
r.9}(Ro) = [C ¥ do(@) — T2 ard,Goteo) + O bl )],

where

Jo (o) =

(2)2 & [2Ingo — WG +2) —y], (2.91)

@ Springer



5 Page500f74 C.Collot etal.

and for@ = O(|Inb|72),

—1 4in _ 1 -1 in — 1
0 (670 (ko)) = 0 (b|1nb|2>’ o (b7 rorgl (ko)) = 0 (b|1nb|2>’

- blnb -
% (48'(R0)) = =Z=Go(0) + O ).

blnb -
2219, Go(Zo) + O (b)

0 (ol (Ro)) = —

We finally obtain

: 2, 1 - B
rordg' (Ro) _ @ + 5158 0: Jo(C0) + @rd, Go(Ro) + O(|Inb|~2)
9 (Ro) &+ 205 0(60) + &Go(Ro) + O(|Inb]|2)
2
~2 4 £ £, Jo(Lo) + £3ard, Go(Ro) + O(|Inb|~2)
2
1+ 305 Jo(80) + @t Go(Ro) + O Inb|=2)

R S NS P S RIS S LY P I 26
= - +m§o(§§ cJo + 0)—701{0(4“ :G1(%0) +2G1(2o)
+O(Inb| ™) + O(Inb|72), (2.92)

and
5. [ 79r98' (Ro) b™'rd, ¢ (Ro)
b\ ———— :3[7 —_—
#y' (Ro) b=1¢i (Ro)
_ (07 rd, ¢ (Ro)b™ ' (Ro) — 0y (b~ ' 87 (Ro))b™ ' rd- ' (Ro)
b4 (Ro)

1

=O(b|lnb|2)’

(2.93)

and

9, (R Inb - - _
0 M =—n—éé(CB;Gl(fo)JrzGl(;“o)+0(|1an N, (294
¢0 (Ro) 2

where the constant in the O(] In b|~2) is independent of «.

Step 2: The exterior term. Recall the decomposition ¢[b, @](z) = T'(@)he(z) +
g[b, @](z) from (2.69). From the estimates (2.70) the second term is of lower order
and satisfies:

3 B3 0L G oD + (b3 8 (20.G(z0))| S b (2.95)
0<k+£<1
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We now investigate the formula giving /4. From the recurrence relation of the Gamma
function and the identity 9y (0); = (6); (W (0 + i) — ¥V (0)):

[(0)ho(2) = % +O-DY ((29)3;!5[1“ WO i) = (A +i) — W2 +D)],
i=0

1 — @i i, , , ,
23, ' (0)hg(2) = —z +0@-1 ;:O Diil” [z (Inz+ WO +i)— VA +i)—VQR+i)+ 1]
%N@M@ﬁ:;(m%{wM+ww+o—wa+n
(2);i!

i=0
-V(2+ i))(l + @ —-DHYEO+i)— ‘P(Q)))
(6 — Dagw (@ +i)],

0920, (0)hg (2)

o O i, . A
= ; (2)ii!Z [l{ (Inz+ WO +i)— W +1i)
_\y(2+i))(1+(‘9_1)(\11(94-1')—\11(9))})

+i (0 — 1)89\D(9+i))+1].

We now decompose all above expressions into leading order and lower terms. We
first collect some estimates on the coefficients. Note that for i > n one has from the
recurrence relation of the Gamma function:

L@ +i) . ) )
@ = —1g = OO+ DO +i-D=(-n+HQ-n+d)
i —n+a@) = 0(lal) (2.96)

because there is some 0 < j <i — | such that | —n 4 j = 0. Moreover, for a large
enough argument the digamma function

WO+ =V —-n+i+a)=V1—-n+i)+0@G =0O() fori>n
(2.97)

is non-singular since 1 —n +i > 1. We recall the recurrence relation for the digamma

function W(z 4+ 1) = W(z) 4+ 1/z, with W (1) = —y the Euler constant. Then, if k is
an integer:

1 1 1 1
\I‘(k+1)=%+\p(k)=;+m+...+z+l—y.

Hence, refining (2.96) for i < n, we obtain

@) =0 —n) (1+aWn—i)—¥®n)) +0@G)
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and
v +i)= ! +VvO+i+1)= ! !
V=TT ! T l—n+it+a 2-n+i+a
1 ]
- S tw(+a
Tira YUt
1
=—=4+V¥n—-i)+ 0@, (2.98)
o
|
00w (O +1) = 3W(0 +1) = — +O() fori <n. (2.99)
o

The coefficients that will appearing in the expansion are related to the inner expansion
the followingA way. Using the recurrence relations (2.26)-(2.29) and the initial values
for ¢,,1 and dj, there holds

(I —=n);

—cnitidiy1 =n i (2.100)
and similarly using the recurrence relations (2.26), there holds
2d; 41 2 2 2 1
— o =2t s gt b S WA YA+ D +2y. (210D
dit1 23 i+1

Hence, the strategy is the following. We first truncate the series (2.63) expressing &g
for0 < z < 1using (2.97) and (2.96). Then, we expand it with respect to ¢&. Finally, we
express the coefficients in function of those of the inner expansion via (2.100)-(2.101).
The result of this strategy is given by

©);
— ()i

1 n—1 o)
=+ O =D [I+O -1 [.]
i=0 i=n

[(®)he(z) =

z"[lnz+\y(9+i) Wl +i) — \D(2+i)]

1 = o) . . .
=Z+(9_”§mz [lnz—l—‘lf(G—l—l)—\If(1+1)—\I/(2+z)]

+ O(la).

| L= n);
[(©)he() = —+ @ —n) > (Z)i”l
i=0

(1 +a(Wn—i)—V®n) + O(&2)> Z

xpm—i+wm—o+mm»&m+o—wa+ﬂ+omn
—1

(I =n); Z .
2(; (2)” —Inz—V@m+1)+W@E+1)
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1
WG +2) + 5) +03al)

_1 — (1 )ll : /
_Z+Z D (=Inz—In2+ WG+ 1)+ VY0 +2)

=

1
2y +en + 7) + O(la)),

1
:_+Zzl Leniz'™ < <lnz+ln2—en—E)+2d>+@(|d|).

(2.102)

Similarly, skipping the computations which are verbatim the same as the one above
yields

20:I'(0) g (2)

1 — ()i . . . .
=—Z+(9—1)§mz[l(lnz—i-\lf(@—i-l)—\If(l+l)—\IJ(2+l))+1]

1 LI . 1 R
=——+ ZZ’flcn,,-z“l[(i -1 ( <lnz +In2—e, — —) + 2d> +di]
Z
i=1
+ O(al)) (2.103)
Then, using (2.96), (2.97), (2.98), (2.99) and dga = 1, we compute

96 (I'(0)ho (2))

_ ()
= @ii!

—WO)) + O — DA e +1)

zi[(1nz+w(9+i)—\y(1+i)—w(2+i)) (140 — DY@ +i)

_ n — n)l z i—1 i—1
—_52(; o L oW = ~221:2 cnidiz' ™'+ O(1)

so that from (2.102):

9o (@' (0)he(2)) = T'(0)ho(2) + ade (T'(0)ho(2))

1
:——1-22’ ]c,“z < (lnz+1n2—e,z—§)+2d,-)

I (A 5 _
+0(ah + = Y 2 e diz ™ + O(lal)
ai:l
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1 "o . . .
=+ 2 ! (4 nz+1n2 = ) +24 ) + O(aD,

(2.104)
and similarly
3 (20.T (0)ho (2))
— @i L. . . .
=Z—,z I:l((ll‘lz—l—\l/(@—i—l)—\l/(]—}-l)—\y(z—i—l))(l
— (2!
+O = DO +D) = VO) + O — oW +D) +1]
n—1 . n
__nydomid _ LSt e,
= Z Ll o +O(1)_&QZ:2 (i — Dz eyidi +O1)

so that from (2.103), we get

dp (@20, T"(0)he (2))
= 20.T'(0)ho(2) + @3 (z0.T" (0)ho(2))

1 n ) ) R R y
=——+ Zzlflcn,,.zlfl[(i -1 (di (Inz+1In2—e,) + 2d,~> + di] + O(la.
i=1
(2.105)

Therefore we obtain from (2.102), (2.95), as z = 52/2 and @ = 1/Inb +
O(|Inb|™?):

;2(’ 1) ¢ 1
q(z0) = —+Zzl Len.i ‘;, 1 (d,- (m( 0>+ln2—en—5>+2d,~>

+0(la) + Ob?)

1
= _an(CO) + 2K, (¢0) — en H, (50) + O(la)), (2.100)

where H, and G, are given by (2.82). Similarly, we compute from (2.103) and (2.95),

2\ 2
(297)q(z0) = ——+§ 2i1e (0) [(i—l) (&i (m <30>
+ln2—en—l)+2d> &]
o

+O(a)) + 0b?)

1 n ~
= 32 £0c o (80) + £0c K G0) — S50 Ha(Go) + O(Ia).
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From (2.95), (2.104), (2.105), recalling that b and « are two independent parameters
for the moment, using the relations b3,0 = —1/|Inb|> = O(1/|Inb|?) and 35 = 9s:

1

W)ﬁe @r©h®) o) +0bi) = 0@, (2.107)

by (aq(z0)) = O(

by (@29:q(20)) = O(ﬁ)ae(&zazr(@hw)(zo)) +0b?) = 0@, (2.108)

da (2q(20))
= 0 (ag(z0))

n 2 2
- % 4 ;zf*'cn,m%“)“‘ <n?,~ <1n<§2°> 2 en) +2d,-) +0al) + Obh)

= 2K, (50) — en Hy (50) + O(lal), (2.109)

and

05 (@z9,q(z0))
= 0 (@z0:9(z0))

:_3+2n:2"*‘c «(ﬁ)i’l[(i—l) d; ln(ﬁ)—i—an—e +2d; +J]+O(|&|)
;()2 P n,i 2 1 2 n 1 1

= {0 Ku(80) = 550 Hy () + O, (2.110)
We deduce that forn > 2,

20.9(z20) _ — 250 Hn(C0) + £0: Kn(£0) — 30 Hu(G0) + O(1a])
q(z0) — 1 H,(20) + 2K, (80) — en Hn(20) + O(|&))
_ 1 £0; Hy(50) — 208 9; K (80) + Gent d Hu(S0) + O(&%)
2 Hu(0) —2aKa(C0) + GenHa(C0) + O(laf?)
_1 (ga;Hn@o) g len8 9 Hy — 250 Ki) Hy — (enHy — 2Kn>;a;Hn>
2

H,(%o) H2(%o)
+0@%
1¢0:Hy(50) . Kn(C0)¢0: Hy(So) — ¢ 08¢ K ($0) Hy (80) )
== +0
2 Hiw) | C H2(Z0) @)
@2.111)

and similarly from (2.107), (2.109), (2.109) and (2.110),
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by (zazq(zo)) — by (552;31‘1(10))
q(z0) aq(zo)

_ bdp(@z0:4(20))@q(z0) — @224 (20)b3 (@4 (20))

a2q(z0)?
O@?) 5
29 _ 0@, 2.112
(02 @) ( )
9 (zazq(zo)) Yy (dzazq(zo)) _ 9a(@20:4(20))@q (20) — 95(q(20))&2924 (20)
“\ 4(z0) aq(z0) @24 (z0)
_ Kn(fo)iaan(to;— $9; K (o) H (¢0) + OxaD. 2.113)
Hi; (¢o)

The case n =1 : Forn = 1, § = @, so we refine further & and take

1 + el p
—_— —_— a’
Inb  |Inb|?
=In2—-WQ) -2y, &=0(nb).

o= ep1=In2—y—1

We then refine further I'(6)hg by noticing that for i > 1, (&); = aI'(i) + O(&?*) and
V(@) =—-a!—y+nr2a/6+ 0@,

(@)
(2);1!

T(®)hy(z) = % +@-ndy. zf[lnz WG +i) — Wl +i) — \If(2+i)]
’ i=0

1
= +@- 1)[lnz+\ll(&) —w() — \y(z)]

_¢§

=1

1 . 1 72
= z+(oz—1)[1nz—5+ozF —\1/(2)]

& TG . | | ~
_(x; B [lnz-f-‘l’(l)—‘lf(l—i-l) —\IJ(2+1)] L o@)
1 1
==+ -—[lnz+y]
a z
. 2 KX T6) .
Ta (hlz—\II(Z) v ;—(z)ii!z [lnz—i-\lf(z)

W i) W2+ i)]) +O@).

With this, a further refinement of (2.96) with the same computation as above yields in
this case, using (2.88),
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1
q(z0) = —5H1(§0) +2K1(%o) — e1 H1(¢o)

2
a2 — %)(;o) +0(aP),

20:9(z0) = £ K1 (Z0) + gca; J120) + 0@,

© 1
35(20,9(z0)) = 1 — Z (2)(1)'121 '2Ing —In2 - V2 +i)]+ 0 <|1 b|)

Hence, combining these identities with the previous estimates, and using H; =
Inb/2 + O(1), we obtain

28:4(z0) _ £ Kn(%0) + @0 1 (S0) + O@?)
9G0)  —LH (Go) +2K1 (o) — er Hi(§0) + &(J1 — 2 — Z)(%0) + O(1& )
£ 8 Kn(§0) + @83 J1(S0) + O@>)
—Hi () + 26K (o) — Ger Hi (%0) + & (J1 — 2 — Z)(¢o) + O(la )
[_ £0cK1Go) | - E0c K1 Go) (e H §o) — 2K (G0)) — £ (Go) Hh (§o)i|
Hi (%) H} (%)
+0@).

Il
j=}1

=3}

We now use the expansion @ = 1/1Inb + e;/(Inb)*> + & to derive

20:9(z0) _ 1 ¢9: K,
q(zo)  Inb H
1 2¢0:K1(20)K1(0)) + ¢ J1(50) Hi (Zo) ACB:Kl
- In
[in b2 H2 (@) o HOmers
(2.114)
and

Zaz‘](ZO)> ¢0: K1(20) -2 <13ZCI(ZO)> p
g = — O , |l —————) =0 .
( 7(z0) Hico 0@ T (a1

The case n = 0 : Forn = 0,0 = 1 4+ &. We then refine further I"(6)/y by noticing
thatfori >0, (1 +&); = (1); + O(l@]) and W (1 +a +i) = V(1 +i) + O(|a]),

[(©)ho(2) = —+ Z(l(;;“)’ Tz + W +a+0) - Wl +i) - W@ +)]

:%+&th [lnz—\Il(2+l)]+O(|Ol| )
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With this, performing the same computations as the previous ones and using @ =
1/1nb + O(]Inb|~?), we obtain

2 ~
90 = 2+ (D) + (7 =D Goe)) + 0@,
0
a

2 ~
20.(z0) = == + 5 (£9cJo(Go) + (v = In2)60: Go (o)) + O@),
3" 2

where Jy and éo are defined in (2.91) and (2.90), and

35(q(20)) = Jo(%0) — 1 + (¥ —In2)Go (&) + O(al),

1 y —1In2 ~ -
05(20,9(z0)) = 5@“34]0(4“0) + 5 ¢3:Go(%o) + O(lal?).

Hence, using dp& = —1/b|In b|2, we obtain

=2+ % (c0:JoGo) + (7 = In 220 Go(Go) ) + O@)

20,q(z0) _ &
9(z0) 2+ (Jol) + (7 = m2Go) + 0@)
— va(teapr L2206 iy
=—-1+af ZZ;O‘F 7 ¢o; 0({0)+50
—In2 ~
+Y 2“ G1(¢o>)+0(&2), 2.115)

y —In2
2

y —In2

~ 1
8 —
7 ¢ ;Go(§0)+210+

d; -
3 (Z ~‘J(ZL)) G|(§o)> +O(lal),
q(z0)
(2.116)

) zazq(ZO)) < 1 )
9 -0 . 2117
v ( 4(z0) |Inb[2 @117)

Step 3 Existence of &, proof of (2.3) and (2.4). We first prove the existence and the
bound for &,,, and then prove a bound for d,&,,. From (2.76), (2.84), (2.111) we arrive
at the following.

The case n > 2. In this case, we have

o2 l;aJJr
0 | 7400

Ob, &) = §3§ Hy (¢o) + L K (0)¢ a; Hy (S0) — Hn(0)¢ 8{ Ky (¢o)

2H,(%o)  Inb H2 (%)
_ o )
aHn(§O)2 + O(Inb|™)
. l é‘a{ H, (;0) _a Ky (;O)é‘ 8§ H, (40)2_ {84' Ky (o) Hy (;0) + O(&z)
2 Hy(%o) H; (%0)
—a -K, (;0)§8£ Hn({O) + gag‘Kn ({O)Hn({O) + O(l) + O(l lnb|_2)
H;(%0)
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where the constant in the O(1) is independent of ¢, and the constant in the O(| In b| =)
is independent of @. We compute for n > 1 from (2.81) the nondegeneracy for ¢o small
enough, asd; = —1/2 and ¢,,1 = 2n:

— K. Hy +§a;1< H,

( + ch lfz(i_l) ((;'l In g() + dl)> <Z 2([ — 1)Cn td ;2(1 1))

i=1 i=1

+ (;—§+z ety (26 - 1@ ln;o+di>+cz,-)> (ch,d;2(’ 1>)
0 i=1
_ 1 ) ) ,
=— (g +O(|In §0|)> (O(Co)) + (? + O(l)) (—n + 0 ))

0
= 2—" +0(). (2.118)
&

So that, as H,(Zg) = —n + (9(§‘ ) we arrive at:

Ok, a)=a (% + (9(1)) +O(|Inb|7?).

An application of the intermediate value theorem then yields that there exists at least
one value & = @, = O(| Inb|~2) such that © (b, &) = 0.
The case n = 1. We obtain from the refined identities (2.89) and (2.114):

1 ¢ K1 1 o JiHy +2Ki100: K1 . O(1)

_ _ -3
©= Inb H, In b2 H? +o 1?2 +O(|Inb|™7)
(1K1 200:Ki1(50)K1(60)) + ¢ J1(50) Hi(So)

b Hi[inbP HE()
_ACBCKl -3
H, + O(|Inb|™ ))
_ ;50K +0M) 0( 1 )
(Hp)? |Inb?

From the nondegeneracy (2.118), an application of the intermediate value Theorem
yields that there exists at least one value & = &@; = O(|Inb|~3) such that ® = 0.
The case n = 0. We obtain from the identities (2.92) and (2.115), injecting & =
1/Inb + eg/(Inb)? + & witheg = In2 — y and @ = O(|Inb|3):

0 =-1+ m(o( ¢d¢Jo + Jo) — 70‘{0 (CafGO(CO) +2Go (%)

+0(Inb|™h) + O(|Inb|?)
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Y=

s Y - 1 n2 . -2
—(—l+a§0< $ocJo + §3;G0(§0)+ Jo+ G1(§o))+(’)(a ))

Inb_ , ~ = —1 -2
=—TCX{o({?’;Go({o)+2Go(§o)+(9(llﬂb| )+ O(Inb|™)

In2—vy
n2 -~
Go({o)))

41nd
Inb, , = ~ -1 -2
=~ %4 (§9:Go(%o) +2Go(¢o) + O(lInbI™)) + O( Inb| 7).

+ & (¢ éo(;o) n 2éo(co>)

C3;G0(§0) + - Jo +2

- (&Coz ( cocdo+ L

Therefore, as ¢ o, Go (o) + 2Go(Zo) # O for ¢y small enough, an application of the
implicit function Theorem gives the existence of & = &y = O(|In b|~3) such that
O(b, ap) = 0.

Estimate of 0,0, : We estimate for n > 1 from (2.85), (2.85), (2.112), (2.113) and
(2.118),

r oy i,“(Ro))) _3a (ZazCI(Zo)

%O = 3”( 26;"(Ro) q(z0)

) =00b " Inb|™?),

and

350 = 9 (rar ”‘(Ro))> % (Zasz(Zo)>
2¢"(Ro) q(z0)

—Kn(£0)$0¢ Hy(80) + £ 0 Kn(§0) Ha(0) + O(1) 2
- — =+ o).

Therefore, differentiating the fixed point relation ® (b, (b)) = 0 gives 0px ;O =

aaf % =0 ( D] ) which concludes the proof of (2.3) forn > 1.
For n = 0 the very same computation yields the same estimate, using (2.93), (2.94),

(2.116) and (2.117).

— 30,50 |3pdn| =

Step 4: Proof of the refined pointwise estimate (2.8). Recall by is defined by (2.7). By
(2.73), we estimate ¢ in two zones, r < Ry and r > Ry.
- For r < Rgy, We write from (2.28):

~ 2
¢n=b< T+ @o)<r>+2a2bf+ (= i Tyt () + S5 ) + bRy ().
j=0

Then, the estimates (2.39), (2.20), (2.30), (2.32), (2.35), (2.31), (2.33) and (2.34) imply
that ||¢, ||IQI < b which means that for r < Ry:

mp )™ on [0, Rol,

11
br?(r)=>  on [0, Ro] aswelf 7

|n ()] S br?(r) > <1 + 21“(’—“)) <
Inb
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- Forr > Ry, we switchto ¢ = br variables and write from (2.73) and (2.69):

¢

¢(f

) = Bo(T(O)he, +G)( ch]b Ti( f (2.120)

We first estimate the parameter Sy, which from (2.76), (2.106) and (2.83) is:

n(Ry)  b(- Wb H, + K, + O (|Inb|™"))
¢X(Ro))  —1H,+2K, —e,Hy+ O(Inb|~")

Bo =

We deduce from the above identity, using that @ = (In b1+ 0( |In b|_2):

b0t g Po_bmb b (b
=— an - = - = — ).
0= 3 |Inb)| & 2 2 |In b2

The O(|a|) remainder in (2.102) can be bounded by an explicit weight on [zg, 00),
for example via the same perturbation argument as used in the proof of Lemma 2.6.
We do not repeat such an argument which shows that, since @ = O(|Inb|™!):

1
T'(0)ho(z) = —+Zzll niZ 1( (lnz+ln2—en—:>+2d,~>
o

1
O n—1+6
+ <|1nb|Z

for any § > 0. The two above identities then imply the identity for the first term in
(2.120):

2
BoT (0)ha, (§> =+ Zc 20D (ci,-(zln;—lnb)ud,.)

b
O 2n—2+48 ]
<|1nb|§
Next we turn to the third term in (2.120), which from (2.20) is for ¢ > &o:
n n
. e b 2y [ A Inb
en b’ Ti(==) == +bY cp;?V(di(ing — =) +d;
jgo n,j ](\/E) é_2 ; n,i 1 2 1
+OB*[Inb|“¢*Hn¢|9)

for some constant C > 0. One thus has in (2.120) a cancellation for the leading order
terms, and combined with the estimate (2.70) for G this yields:

)N S b (2.121)

|¢n(\/— ]
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- Conclusion : Combining (2.120) and (2.121), recalling r = \% we see that:

|n (M) S P2 T VB and (@ ()| < br(r) T2 (Vbr) 2,

|1nb|

which is precisely the first bound in (2.8) with & = 0. The first bound in (2.8) for
k = 1,2, and the second bound in (2.8) for k = 0, 1, 2 are proved the exact same way,
using that the bounds on the corrective terms (2.30) and (2.31), and (2.70) provide
the desired control for D,, d; and 9, derivatives, along with the estimate bdpa =
O(|Inb|~2) that was proved in Step 3. O

Proof of Corollary 2.9 We claim that the same proof applies as for Lemma 2.8. Indeed,

notice that from Lemma 2.4 and the bound (2.4), the inner solution for the perturbed
problem is of the very same form as the original problem (2.78):

™V b, @1(r) = Fulbl(r) + @&bG,[b, al(r) + EY [b, @)(r).

where EY = E, + ¢™V — ¢ satisfies the analogue of (2.80):

2
k b
Y 18 En(Ro)| < C(60) ——.

0<k<2 |Inb|

So all computations made for the inner solution of the original problem are also valid
for the perturbed problem. Notice similarly from Lemma 2.7 that the outer solution
for the perturbed problem is of the very same form as that of the original problem:

g, b, @1(z) = T(O)h(6) + G, [b, @] (2)

where G satisfies the analogue of (2.95):

1GY o)l + 1(z0:GY (z0))] < b2

So all computations made for the outer solution of the original problem are also valid
for the perturbed problem. The matching procedure can thus be done verbatim the same
way. The only informations that we do not get in comparison with the original problem
are the estimates for the variation with respect to & and b, and the next order | In b| -2
term in the expansion of @ for n = 0, 1, but these informations are not required. This
concludes the proof of the Corollary. O

Proof of Proposition 1.6 The existence part and the estimates on the eigenvalues are

direct consequences of Corollary 2.9. The bound (1.25) is a direct consequence of
(2.4) and (2.7). O
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3 Coercivity in the non-radial sector, Proof of Proposition 1.9

Our argument takes place on the stationary state variables,

Zu=Au—-V-uVdy) -V -(UVD,) —bV - (yu), O<b=v2ﬂ<<1, y =

B’

The operator . can be written in two different divergence forms

Lu=%u—bV-(yu) or Lu=xu—-VU- -V, 3.1

where % is defined in (1.26), and #u = (w[b])~'V - (a)[b]Vu) +2(U — b)u, with
the weight functions (we will often forget about the [»] dependance from now on in
this section)

© = wlb] = %b] PlbIy) = e 4

(3.2)

In the first form in (3.1), the bV - (yu) term can be treated as a perturbation up to the
zone |y| ~ 1/\/5. In the second, the term VU - V&, formally scales like “|y|_4u” at
infinity due to the rapid decay of U and is expected to be of lower order there. The
mixed scalar product (1.29) is adapted to these two structures. We make a slight abuse
of notations and keep the same notation for it in y variables:

(U, v)y 1= / uﬁ///(vﬁ)dy :/ uMvpdy, 3.3)
R2 R2
where ./ is the linear operator with a suitably truncated Poisson field:
- ~ u ~ ~ 1 1
%:%[b]u'_) E_q)ua (bu:q)[b]u:_ﬁ [Elnﬂy')*(u\/ﬁ)}
(3.4

Note that ./ v = JP s (vﬁ) so there holds in particular the relations:

- - - b 5\ =
—A(@uﬁ)zu p and Ad, =—u-+by -Vo,+ b+Z|y| D,.

We shall consider the operator % whichis the operator Z* defined by (1.30) expressed
in y variable:

Lu=Au—V-wVdy)—V-(UVD,) — bV - (yu),
To prove Proposition 1.9 is then equivalent to prove its analogue in y variables:
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Proposition 3.1 There exists ¢, C > 0 and b* > 0 such that for all 0 < b < b*, if

Vu e Li[b] satisfies f|y\=r u = 0 for almost every r > 0, then:

2 2
(—Lu,u)s > cl|Vul?, — C <<f ualeﬁdy) + (/ uayzUﬁdy) )
[} R2 R2
(3.5)

The proof is done in two parts: In the first part, we deal with the linear operator
£ and derive its coercivity under some suitable orthogonality conditions. Then, we
extend this coercive property to the full linearized operator 2 where the scaling term
V - (yu) is taken into account.

3.1 Coercivity of % in H'

We recall that %, at the L? level, satisfies the continuity estimate (1.27) and the
coercivity (1.28) from [27]. We prove here a coercivity at the H'! level. While [27]
proves a similar estimate at the H2 level, we state and prove in an analogous way the
following result for the sake of completeness.

Lemma 3.2 Let u be such that |, udy = 0and Vu € L>(U™"). Then, we have for

ly|=r
some constants 5y > 0 and C > 0:

Vul|?
f U|V(///u)|2dyz<szf | 'dy—C[w,alU)iz+<u,azu>§z]. (3.6)
R2 R2 U

Proof We first prove that the projections are well-defined. This is a consequence of
the following Hardy-type inequality:

fu2(1+|y|2)dy5f IVul>(1+ |y|Hdy, (3.7)
R2 R2

and of the decay |U| < (1 + [y~

1 1 1
W, U2, < (f |u|2<1+|y|)2)2 < (/ |W|2<1+|y|>4)2 < (/ [Vul ) -
RZ RZ RZ U

Step 1 Subcoercivity estimate: We use Young’s inequality ab < a?/4 + b to obtain:
/ U ‘v(”)]2+2v<”) Vo, + |V,
R2 U U ! !
1 u\|? 5
- U‘V(—)‘ — | uve,?.
2 R2 U R2

From the algebraic identity [, U |V (%) |2 = [p WU“‘Z — [z Uu?, the control of the

Poisson field (A.9) [z2 U|V®,|* < [ u?, and the decay U(y) < (1+|y[)™*, one gets

/ UV (M)
]RZ

v
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the following subcoercive estimate for some C > 0:

\V/ 2
/ U|V((///u)|221/ [Vl —Cf 2. (3.8)
R2 2 R2 U R2

Step 2 Coercivity estimate: We apply a standard minimisation technique. Assume
by contradiction (3.6) is false. Then there exists a sequence of functions (u,),eN €
HY((1 + |y)*dy) without radial component such that

|Vitn|? . 5
=1, u,dy, U =0 fori =1,2, U|\V(AHu,)|” — 0.
R2 U R2 - R2
3.9

Up to a subsequence there exists a limit us, of u,, in H;! . Moreover, from the lower

loc
semi-continuity and the weak continuity, we have

|Vitoo|* .
<1, Uody, U =0 fori=1,2.
R2 U R2

We now write

\v4 2
/ U|V(///un)|2=/ ﬂ—/ Uu?.
R2 R2 U R2

Above, Vg" converges weakly in L2(U dy). We remark that

2
2 2 [V,

1 < -
/Rzun( +|y|)N/l;{2 U

From this and from the compactness of the embedding of H'(£2) in L?(2) for Q com-
pact, u,, converges strongly in L?(dy). Hence, from (3.9) and lower semi-continuity:

|Vitool? / )
UV 2 = — | vuk <.
/Rz V(M o) /ﬂ; Tl UL

Therefore, V.Z us = 0. Since u is without radial component, one obtains .#Zu~, =
0. Hence, 1, belongs to the Kernel of ./ intersected with L>((1+ |y|)2dy), which is
Span(dy, U, dy,U). From the orthogonality condition (3.9), one gets that necessarily
U = 0. From the subcoercivity estimate (3.8),

1 (1 [ |Vuu?
2 n 2
i ot Ulv ,
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and hence from (3.9): lim inf fR2 lun|? > é > 0. As u,, converges strongly in L2(dy),
this implies / ltoo|? # 0 which contradicts us, = 0. This concludes the proof of
2

R
Lemma 3.2. O

3.2 Coercivity of .,SZ, Proof of Proposition 3.1

We are now in the position to conclude the proof of Proposition 3.1 thanks to
Lemma 3.2. By noting that Au — V®y - Vu +ulU =V - [UV(%)] and

- - - b2 -
Uu—VU -V, = -V . (UVcbu) —bUy -V, — (b + Z|y|2> Ud,,
we rewrite the linear operator Z in terms of .4 as follows:
. . - b? -
Pu=Vv. (UV///u _ byu) —bUy -V, — (b + Z|y|2) Ud,.
One has the identity

—/V . (UV//Zu —byu) //Zv,ody
=/Uv//iu-v//ivp+bfy.vq>uu//ivﬁ+bf(]y-véu//ivpdy

+2b/u///~vp.

This leads to the following almost self-adjointness of Z:
(=L, vy = Fu, v) + G(u, v) + 2b{u, v)s, (3.10)

where F is the leading order part given by
Fu,v) := / UV AMu-VAHvopdy + b/ y - Voyudvp,
R2 R2

and G contains lower order terms,

- b2 - .
G(u,v) := / (2bUy Vo, + (b + Z|y|2> Ucbu) Mvpdy.
RZ
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Proof of Proposition 3.1 To prove (3.5) we proceed in two steps:

Step 1 Subcoercivity estimate: We claim that for u € Hal)
Fu,u)+ G(u,u)
; L bVul

u

R e )

Py 18 g gyp el g
(3.11)

= IVulz, +0O (nwnLgu

where the constant in the O(-) does not depend on b. Let us begin with the form F by

writing
2 -Vo
F(u,u) =/ U‘V(i)) ,0+b/ y—Uuz,o
R2 U R2 U
—2/ Uv (i)-véuﬁf UV, p.
R2 U R2
The first line gathers the leading order terms at infinity. We compute
2 .Vd
[ U)V(iﬂ p+b/ Y Y22,
R2 U R2 U

Vul? 2|V |? VO
=/ [Vul p_2/ ivu.vqup_;_/ up+b/ y—Uu2p
R2 U RZU R2 U R2 U

|Vul? / o (VOyu / u?|Voy|? ) / >
= V. —— o= |Vul?, - .
./]RZ T Rzu g )Pt - g P IVully2 Rzup

Thus, we have

u - -
F =19uly, — [ wo=2 [ U9 (5)- Yoo+ [ Uvd.Lp.
2} R2 R2 U R2
(3.12)

From (A.9) with ¢ = 7/4, and (A.5) with @ = 1/2 we get:
~ )12
bHEP £ o7 1+ H6E [ P+ e ay S o7+ D iy,
(3.13)

AsVD, = V(p~'2® 12,), using the above inequality, and (A.9) with @ = 1/2, we
obtain:

VB, S o A+ D+ 1051 = DIyl [ P e

5 1
+b3pT (A IyD2 el (3.14)
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From the above estimate and the decay |U ()| < (1 + | y[)~*, we obtain
5 12 2 112
f UIV®, 2 pdy 5/ W2(1+ [yDpdy + b3 ul%,.
R2 R2 3
Using again the Hardy inequality (A.4), one gets
Lol (@ o =cras
— ull%, -
R2 U L= Ha])

We finally arrive at the subcoercivity estimate for F':

2

3

-
B gy

3 2
L TORIVulp, ).

Fu,u) = |Vul}, + O (nwn% 5
g 1+1yl2

We now turn to the terms in G. From (3.13), (3.14), (A.4) and |U| < (1 + |y])*, we

get

- b2 -
ﬁ‘ZbUy VO, + (b + Z|y|2) Ud,

_7 13 i 3 _n
SIVullg (B + D72 +65 A+ D% +bFA+D7F).  G15)

Using |U|7! < (1 4+ yD* and Cauchy-Schwarz, we obtain for the two first terms
below from (A.5) with « = 3/2, and for the third with (A.5) with o = 3/4:

_1u
/ b1+ )3 B
]RZ U
1
2
< bi (lﬁ/ u2(1+|y|5>p) </ <1+|y|>4>§binwan,
R2 R2 @

13 11 u
bs (1 -7 —
[e¥asm ¥ i
7
< bH IVl

< bk (bif u2<1+|y|5>p)2</ <1+|y|)—3)N
R2 R2
19

[ pasmn s
R2 Y U

%
1 3 A — 1
S bt (b4/2|u|2(1+|y|>2pdy) <f2(1+|y|> 5) S b¥IVullg,
R R

from which we obtain the bound

J.

- b4 5\, - |u 1 2
26Uy - VOu + b+ —=IyI° ) UPu| 550 S DH Va5
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By using the estimate (A.9) with « = 1 and (A.4) we get:

4 1
VOIS A+ 13D (14 Lyt Inlyll) | Vul

57
L(A}

and hence from (3.15) one gets

J.

We then arrive at the estimate for G:

- b? ~ | = 5
2bUy -V, + <b+ Z|y|2> U, | Dyp 5 b§||vu||2Lz

- b2 - ~
|G (u, u)| = sz (ZbUy SV, + <b + Z|y|2> U<I>u) ///u,ody‘ < b3 ||W||§£.
(3.16)

The estimates for F and G above yield the desired subcoercivity estimate (3.11).

Step 2 Asymptotic problem and rigidity: First note that the third term in (3.10) is
signed, and already satisfies that, from (3.3) and (1.28) applied to u,/p, if u is without
radial component, then:

(u, )y = / uﬁ///(uﬁ)dy
R2

2
= /R Wf]”) dy=C[(/pu, AU+, U2+ (i, 020)3, |

2 2
=81 lul?, - C ((/R uay.Uﬁdy) + (A% uayzyﬁdy> )

as AU is radial. Therefore, if one assumes by contradiction that (3.5) does not hold,
then

FIb1u, ) + GIblu, u) _

m :=liminf inf 0 with
b=>0" weh) . (u/oVU) =0 IVull2,
b by
olb) = 20 b=

From the subcoercivity estimate (3.11) and (A.4), we infer that —co < m < 0. Let
b, — 0 and u, be sequences such that, without loss of generality, || Vu,|| 2, = 1,

(un, /pVU) =0 and

Flby(up, up) + Glby1(up, uy) — 0.
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The above limit, with (3.11) and || Vu,|| 2, = 1, imply that there exists ¢ > 0 such
that for all n: !

/Rz uz (1 + |yDplbaldy = c.

The sequence f, = u,+/p[b,] is then uniformly bounded in H'((1 + |y|*)dy) from
(A.3), with [go f2(1 + |y]) > c. Since also [ £2(1 + |y|?) is uniformly bounded by
(A.4), there exist R, ¢’ > 0 such that, up to a subsequence,

/ | ful?dy > ¢
[yISR

We pass to the limit: there exists f € HY((+] y|*)dy) that is the weak limit in this
space of f,,. Moreover, by compactness of H' in L? on bounded sets, the convergence
is strong in L2((1 + |y|)dy), so that f, 0 from the above inequality. Let us write

~ by
plpIVP, = Vun«/,o[b] - IqDMm‘

From (A.9), we infer that the first term, i.e. the mapping +/p[blu +— V@MW,

is continuous from L2(1 + |y]) into L2((1 + |y|)_4). Similarly, the second term is
controlled by

by
— ‘ <Jb ;1 — 0 as b— 0.
H 2 PV Lo ypyy ~ VI,

Therefore, ./,o[bn]V&)un converges strongly to V@, in L2((1 + |y|)_4). Conse-
quently, one has the continuity at the limit,

u ~ ~
~ [ ot =2 [ 0v(5) Vo, e+ [ U1vE, it
R2 R2 U R2

2
Y P (S R
R2 R2 U R?

n—oo

Together with the continuity estimate for G (3.16), which implies its asymptotic
vanishing, and lower-semicontinuity, we deduce

0= nhm Flbpl(up, up) + Glby(uy, uy)

L s s () v e

However,

/}RZ |V fol? / foo—ZfR Uv(foo>.v%+[RZU\v¢fO¢|2=/RZU|Vﬂfm|2-
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Hence, as fo is without radial component we deduce that .# f, = 0 and hence that
foo = €10y, U + 20y, U, with one coefficient being non zero since fo, # 0. On the
other hand, the orthogonality (u,, /0 VU) passes to the limit, yielding ( foo, VU) = 0
so that ¢y = ¢p = 0 which is a contradiction. This concludes the proof of Proposi-
tion 1.9. O
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Appendix A: Estimates on the Poisson Field

We first recall estimates relative to the weight e~ I/2 with polynomial corrections.
First, there holds the bound for any k > 0 for any function without radial component

Iz lz|?
/U2|Z|2k(1+|Z|2)€_TdZ§fIVvlzlzlzke_sz. (A1)
By a scaling argument, this implies that for 0 < b < 1:
201412 6y, 2, — L 4 2, by
bE(yI” + IyPlul"e™ 27 < | (L +[y[)IVul7e™ 2 (A2)

with constant independent on b. Therefore:

_bb? _bly?
/<1+|y|4)|V<ue 1 >|256f<1+|y|4)|w|2e ca (A3)
Applying (3.7) one obtains from the above inequality the Hardy-type inequality with
weight ebIP /2,

Iy12

b bly?
/(1 + P < /(1 Iy VaPe (A4)

with constant independent on b. Interpolating between the above inequality and (A.2)
we obtain that for any 0 < o < 2:

blyl? by
b“fz|u|2(1+|y|2+2°‘)e‘7dy5f|W|2<1+|y|4>e— Tdy.  (AS)
R

For u localised on a single spherical harmonics ¥ %! with

k(. es
Y(k’i)(y): CoS (w) if i 1,
sin <|§_|) ifi =2,
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where we identify y/|y| with its angle on the unit circle, the Laplace operator is written
as

*) ¢, (ki) Wiy (Y *) 1 K?
Au(x) = AW @)(r)Y™ — ), A =0y + -0 — —.
[yl r r?

The fundamental solutions to A®) f =0areln(r) and 1 for k = 0, and r* and r*
for k > 1, with Wronskian relations:

d d d
WO = "ZIn@e)=r""and W% = = 5% —rF =5 = 2kr~! fork > 1.
dr dr dr

The solution to —A®P,, = u given by ¢, = —Qm) Y n(|x]) * u is then given on
spherical harmonics by:

r oo
") = —In(r) /0 u®0 (F)rdi — / u @0 (7) In(F)FdF,

r

x|
VOO0 (x) = —ﬁ /0 w00 #)rdr, (A.6)

) rk 00 ) ’,.—k r )
kD) = _/ u<’<~”(f)fl—’<df+—/ u®D i RaE, (AT)
2k J, 2k Jo

) pk=1 poo ) Fok=1 pr )
3 0% (r) = _/ u®D 7k dF — —f u®D FF' R ar.
2, 2 Jo

(A.8)

Lemma A.1 If u is without radial component, for any 0 < o < 2:

1Dul® + 1Y PIVUl S IyP A+ Iy (1+ Ly Inyl1) /R (1 + 1yD)**dy.
(A9)
Proof We decompose ®,, in spherical harmonics. Note that CD,(,O’O) = 0 as u has no

radial component. Applying Cauchy-Schwartz inequality in both terms in (A.8) one
getsfork > 1,as 0 < o < 2:

1

o0 . % 00 1
< (/ |u(k,l)|2(1+r)2a;d;) (/ (1+r)72a’7172kd;>
r r

1

© . 2
<R+ )T (14 1< In ) (/ u®D12(1 +r)2“fdf> :
0

1 1
r . i , 1
< </ Iu(k,z)|2(1 —|—r)2a7d7) (/ 1+ r)_Z“FH'deF)
0 0

0 .
/ u®D F =k ar

r

r .
‘/ M(k’l)(;)fH_de
0
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1
R . 2
Stk 4 (/ |u<k~')|2(1+r)2“7d7> :
0

The two above inequalities, injected in (A.7), (A.8) produce:

, 1 o0 ) 2
|o*D ()| < Erl (1+L<ilInr]) A +r)" (/ lu®0 121 +r)2“FdF) :
0

1
. oo . 2
19, 2% () < (1+ Ly<t|Inr|) (1 +7r)7¢ (/ lu®D12(1 + r)z"fdf> .
0

On each spherical harmonic we thus have:

‘cpitk,i)y(k,i) 2 + 2 ‘V (q)’gk,i)y(k,i)ﬂz

oo
S+ (1+ 1,51|lnr|)f D12 (1 + r)*FdF.
0

The constant in the inequality above is independent on k, i, so by summing we obtain
(A.9). O
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