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Abstract
We analyse an operator arising in the description of singular solutions to the
two-dimensional Keller-Segel problem. It corresponds to the linearised operator in
parabolic self-similar variables, close to a concentrated stationary state. This is a two-
scale problem, with a vanishing thin transition zone near the origin. Via rigorous
matched asymptotic expansions, we describe the eigenvalues and eigenfunctions pre-
cisely. We also show a stability result with respect to suitable perturbations, as well as
a coercivity estimate for the non-radial part. These results are used as key arguments
in a new rigorous proof of the existence and refined description of singular solutions
for the Keller–Segel problem by the authors [8]. The present paper extends the result
by Dejak, Lushnikov, Yu, Ovchinnikov and Sigal [11]. Two major difficulties arise in
the analysis: this is a singular limit problem, and a degeneracy causes corrections not
being polynomial but logarithmic with respect to the main parameter.

Keywords Keller–Segel system · Blowup solution · Blowup profile · Stability ·
Construction · Spectral analysis

B Van Tien Nguyen
Tien.Nguyen@nyu.edu

Charles Collot
cc5786@nyu.edu

Tej-Eddine Ghoul
teg6@nyu.edu

Nader Masmoudi
masmoudi@cims.nyu.edu

1 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,
NY 10003, USA

2 Department of Mathematics, New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188,
Abu Dhabi, United Arab Emirates

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40818-022-00118-5&domain=pdf
http://orcid.org/0000-0001-6963-0375


5 Page 2 of 74 C. Collot et al.

1 Introduction

We describe in this paper a detailed spectral analysis for the linear operator

L z f = � f −∇ · ( f∇�Uν +Uν∇� f )− β∇ · (z f ), z ∈ R
2, (1.1)

in the radial setting, and provide a coercivity estimate in the non-radial sector, where

� f = − 1

2π
log |z| ∗ f , Uν(z) = 8ν2

(ν2 + |z|2)2 , ∇�Uν (z) = −
4z

ν2 + |z|2 ,

β > 0 is a fixed constant and 0 < ν � 1 is the main parameter of the problem.

1.1 Origin of the Spectral Problem

The linear operator L z appears in the study of singularities of the following two
dimensional parabolic-elliptic Keller–Segel system:

{
∂t u = �u −∇ · (u∇�u

)
,

�u = − 1
2π log |x | ∗ u,

(x, t) ∈ R
2 × [0, T ), (1.2)

see [19–21, 25], and [17] for a survey of the problem. It is well known (see for example,
[2–5, 13, 18] and references therein) that the problem (1.2) exhibits finite time blowup
solutions if the initial datum satisfies u0 ≥ 0, some localisation assumptions and

M =
∫
R2

u0(x)dx > 8π.

The threshold 8π is related to the family of stationary solutions (Uη)η>0 of (1.2),
where

Uη(x) = 1

η2
U
( x
η

)
with U (x) = 8

(1+ |x |2)2 and
∫
R2

Uη(x)dx = 8π.

(1.3)

The parameter η is linked to the scaling symmetry of the problem: if u is a solution to
(1.2), then for any η > 0, uη defined by

uη(x, t) = 1

η2
u

(
x

η
,
t

η2

)
(1.4)

is a solution as well. As the mass M which is a conserved quantity for (1.2) is invariant
under the above transformation, the problem is called mass critical. A key issue in
understanding singular solutions is to analyse their asymptotic self-similarity. If a
solution u to (1.2) for t ∈ (−∞, 0) is invariant under the transformation (1.4), it is
of the form u(t, x) = (−t)−1W (x/

√−t) and W is called a self-similar profile; a
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blow-up with non-degenerate self-similarity then refers to a solution satisfying u ∼
(T − t)−1W (x/

√
T − t) for some function W . However, one of the remarkable facts

about finite time blowup solutions of (1.2) is that they present a degenerate self-
similarity. Precisely, they are of type II blowup (see Theorem 8.19 in [28] and Theorem
10 in [24] for such a statement) in the following sense. A solution u(t) of (1.2) exhibits
type I blowup at t = T if there exists a constant C > 0 such that

lim sup
t→T

(T − t)‖u(t)‖L∞(R2) ≤ C, (1.5)

otherwise, the blowup is of type II. Equivalently, in the parabolic self-similar variables

u(x, t) = 1

μ2w(z, τ ), �u(x, t) = �w(z, s), z = x

μ
,

dτ

dt
= 1

μ2 ,

μ(t) = √T − t, (1.6)

where w(z, τ ) solves the equation

∂τw = ∇ ·
(∇w − w∇�w

)− β∇ · (zw) with β = −μτ

μ
= 1

2
, (1.7)

u is a type II finite time blowup solution of (1.2) if and only if w is a global but
unbounded solution of (1.7). The mechanism of singularity formation then involves
crucially the above family of solutions Uη, see for example, [12, 14, 16, 27, 29–
31] and references therein. The key idea is that in equation (1.2) the time variation
∂t u is asymptotically of lower order compared with the other terms, the solution
approaches the family of stationary states u ∼ Uν

√
T−t and a scaling instability drives

the parameter ν to 0 as t → T . This motivates the study of a solution in the variables
(1.6) having the form

w(z, τ ) = Uν(z)+ ε(z, τ ),

where ν = ν(τ) is an unknown function to be determined, and ε is a lower order
perturbation solving the linearized equation:

∂τ ε = L zε −∇ · (ε∇�ε)+
(ντ

ν
− β

)
∇ · (zUν). (1.8)

Above, L z is precisely the operator introduced in (1.1). Its study we perform here
allows us in the companion article [8] to show the existence, for any � ≥ 1, of a
solution u� to (1.2) blowing up with:

u�(t, x) ≈ Uη�(t)(x),

η�(t) =
⎧⎨
⎩ 2e−

2+γ
2 (T − t)

1
2 e−

√
| ln T−t |

2 (1+ ot↑T (1)) for � = 1,

(T − t)
�
2 | ln(T − t)|− �

2(�−1) (C(u0)+ ot↑T (1)) for � ≥ 2,
(1.9)
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and to show that the dynamics for � = 1 is stable. The importance of the study ofL z

is motivated by the following. The first rigorous construction of a blow-up solution
(� = 1 in (1.9)) for (1.2) by Herrero and Velázquez [16] does not provide its stability,
which is formally obtained in [29]. The work [29] shows linear stability in the inner
zone |z| ∼ ν if the scaling term ∇.(zw) is neglected, and gives an expansion for
∂τ ε = L zε in the parabolic zone |z| ∼ 1 via formal series and matched asymptotics.
A rigorous radial stability result is given by Raphaël and Schweyer in [27] in which
the solution is studied in blow up variables y = z

ν
∼ 1 where a refined description

is obtained, but only η1(t) =
√
T − te−

√
| ln T−t |

2 +O(1) is showed. The description
involves parameters, and their evolution (the modulation laws) is computed based on
so called tail-dynamics, relying on suitable cancellations in the parabolic zone |z| ∼ 1.
The analysis of the tail-dynamics is however heavy, as it does not involve a refined
understanding of the solution in the parabolic zone |z| ∼ 1. Our precise spectral study
for the operator (1.1), however, gives a framework to control the solution accurately,
on both scales simultaneously, and the temporal evolution of the parameters is easily
related to the projection of the dynamics on its eigenmodes. The present paper is a
key result in this new approach to the construction of singular solutions to (1.2) that
is implemented in [8], and allows to obtain a refined description (see Remark 1.3) as
well as the new blow up rates � ≥ 2 in (1.9).
It is remarkable that in the radial setting, the nonlocal operator L z reduces to a local
one in terms of the partial mass

m f (ζ ) = 1

2π

∫
B(0,ζ )

f (z)zdz, ζ = |z|, (1.10)

where B(0, ζ ) is the ball centered at 0 of radius ζ . Indeed, if f is spherically symmetric,
then we have the relation

L z f (ζ ) = 1

ζ
∂ζ

(
A ζm f (ζ )

)
,

where A ζ is the linear operator defined by

A ζ = A ζ
0 − βζ∂ζ with A ζ

0 = ∂2ζ −
1

ζ
∂ζ + Qν

ζ
∂ζ + ∂ζ (Qν)

ζ
and

Qν(ζ ) = 4ζ 2

ζ 2 + ν2
. (1.11)

Hence, in the radial setting L z and A ζ share the same spectrum and if ϕ and φ are
the radial eigenfunctions of L z and A ζ respectively, we have the relation

ϕ(ζ ) = ∂ζ φ(ζ )

ζ
, �ϕ(ζ ) = −φ(ζ )

ζ
.
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Therefore, we are interested in the eigenproblem

A ζ φ(ζ ) = λφ(ζ ), ζ ∈ (0,∞) with the boundary condition φ(0) = 0,

(1.12)

(under this boundary condition solutions to (1.12) are unique up to a multiplication
by a constant, and we want to find the values of λ such that φ has algebraic growth at
infinity), in the regime

β ∼ 1, 0 < ν � 1. (1.13)

Note that the constant β is not necessarily close to 1, it can be any fixed positive
constant.

1.2 Main Results

Our first result concerns the spectrum ofL z in the radial setting. Its analysis has been
done by Dejak, Lushnikov, Yu, Ovchinnikov and Sigal [11] via matched asymptotic
expansions. Our approach, similar in spirit to [11], is inspired by the work of Collot,
Merle, and Raphaël [6] for the study of type II supercritical singularities of the semi-
linear heat equation ut = �u + |u|p−1u (see also [7, 15, 22] for related problems).
The strategy is to construct suitable eigenfunctions near the origin and away from
the origin, and to match them rigorously to produce a full eigenfunction. Differen-
tiating the matching condition then provides information on the dependence of the
eigenfunctions on the parameters. The current work extends this approach to a critical
problem, showing its robustness. Solving (1.12), though, is not just a mere adaptation
the techniques of [6] because of the following points.
This critical case displays two new degeneracies. First, this is a singular limit problem.
Indeed, from the explicit formula (1.11) forQν ,wenote that the operatorA ζ converges
to a limit operator pointwise outside the origin, namely that for any smooth function
f and at any fixed ζ > 0, we have

A ζ f (ζ )→ ∂2ζ f (ζ )+ 3

ζ
∂ζ f (ζ )− βζ∂ζ f (ζ ) as ν → 0.

The limit operator ∂2ζ + 3/ζ∂ζ − βζ∂ζ is well understood, its spectrum is
{0,−2β,−4β,−6β, ...} and its eigenfunctions are Hermite polynomials. However,
the limit ν → 0 for the problem (1.12) is a singular one. The problem involves two
scales: one is ζ ∼ 1 and the other is ζ ∼ ν. What happens at the latter actually pre-
vents the convergence to the aforementioned limit operator: the spectrum is shifted
by the constant 2β at the leading order as is shown in Proposition 1.1 below. This
in particular prevents the use of a bifurcation argument. Second, this problem also
presents another degeneracy from which most of the technical difficulty stems, since
next order corrections, instead of being polynomial in the parameter ν, are actually
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polynomial in 1/| log ν|. We then need to refine to higher order the description of both
the inner solution at ζ ∼ ν and the outer solution at ζ ∼ 1.
We provide a precise description of the eigenfunctions, relating them to the iterated
kernel (Ti )i∈N ofA0, the linearised operator near the stationary state, a rescaled version
of A ζ

0 via the change ζ = νr , i.e.

A0 = ∂2r −
1

r
∂r + ∂r (Q·)

r
with Q(r) = 4r2

1+ r2
, (1.14)

defined by

Tj+1(r) = −A −10 Tj (r) with T0(r) = r2

(1+ r2)2
= 1

8
r∂r Q, A0T0 = 0.

As r∂r Q is the direction of scaling instability for the stationary state, this description
allows to understand the rescaled blow-up dynamics (1.8). In addition, the properties
of Tj can be explicitly computed, such as its asymptotic behavior (see Lemma 2.2)

Tj (r) ∼ d̂ j r
2 j−2 ln r , as r →∞, d̂ j �= 0 a constant.

To state our results, we use the notation A � B to say that there exists a constant
C > 0 which is independent of the main parameter ν (but may depend on the other
fixed constants β∗, β∗, δ, N ) such that 0 ≤ A ≤ CB. Similarly, A ∼ B means that
there exist constants 0 < c < C such that cA ≤ B ≤ CA. We write 〈r〉 = √1+ r2,
and use the notation Dk

ζ for k ∈ N for k-th adapted derivative with respect to ζ defined
by

D2k
ζ =

(
ζ∂ζ (

∂ζ

ζ
)

)k

, D2k+1
ζ = ∂ζ D

2k .

We define the weight functions

ων(ζ ) = ν2

Uν(ζ )
e−

βζ2

2 = ν2

Uν(ζ )
ρ0(ζ ), ρ0(ζ ) = e−

βζ2

2 , (1.15)

and the weighted L2 space L2
ων
ζ

, where the scalar product and the associated norm are

defined by

〈 f , g〉L2
ων
ζ

=
∫ ∞
0

f gζ−1ωνdζ, ‖ f ‖2
L2

ων
ζ

= 〈 f , f 〉L2
ων
ζ

.

We also introduce the weighted Sobolev space

Hk
ων
ζ
= { f : R+ → R

∣∣ ‖ f ‖Hk
ων
ζ

:=
k∑

i=0
‖Di f ‖L2

ων
ζ

< +∞}.
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Our first main result is to describe in details spectral properties ofA ζ in the regime
(1.13).

Proposition 1.1 (Spectral properties of A ζ ) The linear operator A ζ : H2
ων/ζ →

L2
ων/ζ is self-adjoint with compact resolvent. Moreover, given any N ∈ N, 0 < β∗ <

β∗ and 0 < δ � 1, there exists a ν∗ > 0 such that the following holds for all
0 < ν ≤ ν∗ and β∗ ≤ β ≤ β∗.
(i) (Eigenvalues) The first N + 1 eigenvalues are given by

λn,ν = 2β
(
1− n + α̃n,ν

)
, for n = 0, 1, · · · , N , (1.16)

where

α̃n,ν = 1

2 ln ν
+ ᾱn,ν with |ᾱn,ν | +

∣∣ν∂να̃n,ν

∣∣ � 1

| ln ν|2 . (1.17)

In particular, we have the refinement of the first two eigenvalues with γ the Euler
constant:

∣∣∣∣α̃n,ν − 1

2 ln ν
− ln 2− γ − n − ln β

4| ln ν|2
∣∣∣∣ � 1

| ln ν|3 , for n = 0, 1.

(i i) (Eigenfunctions) There exist eigenfunctions φn,ν satisfying the following. There
holds the pointwise estimates1 for k = 0, 1, 2:

∣∣∣Dk
ζ φn,ν(ζ )

∣∣∣+
∣∣∣Dk

ζ β∂βφn,ν(ζ )

∣∣∣+
∣∣∣Dk

ζ ν∂νφn,ν(ζ )

∣∣∣
�
(

ζ

ν + ζ

)2−(k mod 2) 〈ζ 〉2n+δ
(
1+ ln

〈
ζ
ν

〉
δn≥1

)
(ζ + ν)2+k

. (1.18)

There holds in addition the refined identity:

φn,ν(ζ ) =
n∑
j=0

cn, jβ
jν2 j−2Tj

(ζ
ν

)+ φ̃n,ν(ζ ),

where the profiles Tj and the constants cn, j are defined in Lemma 2.2, with for k =
0, 1, 2:

∣∣∣Dk
ζ φ̃n,ν(ζ )

∣∣∣+ ∣∣∣Dk
ζ ν∂νφ̃n,ν(ζ )

∣∣∣+ ∣∣∣Dk
ζ β∂βφ̃n,ν(ζ )

∣∣∣
� min

(
ν2〈ζ

ν
〉2, 1

| ln ν|
)(

ζ

ν + ζ

)2−(k mod 2) 〈ζ 〉2n+δ

(ζ + ν)2+k
.

1 We use Kronecker’s notation δn≥1 = 0 for n = 0 and δn≥1 = 1 for n ≥ 1, and similarly δm=n = 1 if
m = n and δm=n = 0 if m �= n.
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5 Page 8 of 74 C. Collot et al.

There holds the L2
ων
ζ

estimates for all 0 ≤ m, n ≤ N:

〈φn,ν , φm,ν〉2L2
ων
ζ

= cnδm=n, c0 ∼ | ln ν|
8

,

c1 ∼ | ln ν|2
4

, c| ln ν|2 ≤ cn ≤ 1

c
| ln ν|2 for n ≥ 2, (1.19)

where c is some positive constant.
(i i i) (Spectral gap estimate) For any g ∈ L2

ων
ζ

with 〈g, φ j,ν〉L2
ων
ζ

= 0 for 0 ≤ j ≤ N,

one has

〈
g,A ζ g

〉
L2

ων
ζ

≤ λN+1,ν‖g‖2L2
ων
ζ

. (1.20)

Remark 1.2 We recover the same eigenvalues as [11]. Though our proof is similar
to [11] since relying on matched asymptotics, we here adopt the approach of [6],
yielding detailed information on the eigenfunctions and on the variations with respect
to the parameter ν. We also mention that the matching procedure performed in [11]
was formal as the analysis did not involve the matching of derivatives. To match the
derivatives, we found a degeneracy that forces us to expand both inner and outer
solutions to the next order, which renders the analysis much more involved.

Remark 1.3 Based on Proposition 1.1, we are able to construct for the problem (1.2)
finite time blowup solutions with a precise description of asymptotic dynamics as
t → T , see [8]. For any � ≥ 1, we construct a solution in the parabolic variables (1.7)
of the form

w(z, τ ) = 1

ν2
U
(ζ

ν

)
+ a�(τ )

1

ζ
∂ζ

[
φ�,ν(ζ )− φ0,ν(ζ )

]+ ε̃(z, τ ), (1.21)

where ε̃ is of lower order. The parameters ν and a� are then obtained by injecting
the decomposition (1.21) in the renormalised evolution equation (1.7) using Proposi-
tion 1.1, and by projecting on the eigenmodes ofA ζ . For � = 1, this gives to leading
order:

8ν2
(ντ

ν
− β

)
+ a1,τ − a1λ0,ν + a1

ln ν

ντ

ν
= 0, a1,τ − a1λ1,ν + a1

ln ν

ντ

ν
= 0.

Under the compatibility condition a1
4ν2
= −1 + 1

2 ln ν
+ ln 2−γ−1−ln β

4| ln ν|2 + O( 1
| ln ν|3 )

(which is satisfied up to choosing suitably the blow-up time T ) this gives to leading
order

1

β

ντ

ν
= − 1

2| ln ν| +
ln 2− γ − 1− ln β

4| ln ν|2 so ν(τ ) =
√

2

β
e−

γ+2
2 e−
√

τ
2
(
1+ oτ→∞(1)

)
.
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For � ≥ 2 a similar computation gives ν(τ) ∼ Ceβ(1−�)τ τ
�

2(1−�) . In original variables
this gives (1.9).

Remark 1.4 The rigorous analysis performed in [8] is simplified thanks to Proposi-
tion 1.1 in comparison with the one of [27] with respect to the following points:

– The approximate solution (1.21) we use is simpler and represented in terms of the
eigenfunctions, which avoids the use of a corrective radiation term as in [27]. In
particular, our approximate solution contains a detaileddescription inboth the inner
zone ζ ∼ ν and the outer zone z ∼ 1, from which we are able to obtain the precise

blowup dynamics � = 1 in (1.9), while only η(t) = √T − te−
√
| ln T−t |

2 +O(1) is
obtained in [27].

– The control of the remainder ε̃ in (1.21) is partly simplified. By taking into account
the scaling term ∇.(zw) in the linearized operator and obtaining the spectral gap
(1.20), an energy estimate at the linear level is straightforward in L2

ων/ζ . Due to the
criticality of the problem, handling this scaling term in [27] requires a complicated
treatment. Also, the analysis requires a L1 smallness assumption, whereas we do
not need it in our analysis.

Needless to say, we are indebted of many ideas developed in [27], and refer to [8] for
a detailed strategy of the proof.

Importantly, we believe that the precise description of the spectrum of A ζ is one
of the crucial steps toward the classification of all possibilities of blowup speeds for
(1.2) (at least in the radial setting) which is a challenging problem in the analysis of
blowup. Recently, Mizoguchi [23] has proved that any positive solution that blows up
in finite time is equal to the solution constructed in [8] corresponding to the stable
case � = 1.

Remark 1.5 The present result deals with the critical Keller–Segel system. We believe
that other critical problems can be studied with this approach, such as the harmonic
heat flow and the semilinear heat equation. Related spectral studies were performed in
the case of non-degenerate self-similar singularities for wave type equations, see for
example [9, 10] for the study of stability of self-similar wave maps. It is an interesting
direction to implement the present work to the hyperbolic setting.

Our second result aims at understanding under what kind of perturbations is Propo-
sition 1.1 stable. This is of a particular importance for the full nonlinear problem (1.2)
analysed in [8], and shows the robustness of our approach. As a direct consequence
of our construction, the spectral properties of A ζ stated in the previous proposition
still hold true for the following perturbed operator of the form

¯A ζ = A ζ + 1

ζ
∂ζ (P·) , (1.22)

where the perturbation P satisfies

|P(ζ )| + |ζ∂ζ P(ζ )| � ν2

| ln ν|
ζ 2

(ν2 + ζ 2)2
. (1.23)
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Proposition 1.6 Assume the bound (1.23) and the same hypotheses as in Proposi-
tion 1.1. Then, the operator ¯A ζ : H2

ω̄ν
ζ

→ L2
ω̄ν
ζ

is self-adjoint with compact resolvent,

where

ω̄ν(ζ ) = ων(ζ ) exp

(∫ ζ

0

P(ζ̃ )

ζ̃
d ζ̃

)
.

The first N + 1 eigenvalues {λ̄n,ν}0≤n≤N of ¯A ζ satisfy

|λ̄n,ν − λn,ν | ≤ C ′

| log ν|2 , (1.24)

and there exist associated eigenfunctions {φ̄n,ν}0≤n≤N satisfying

‖φ̄n,ν − φn,ν‖L2( ων
ζ

)

‖φn,ν‖L2( ων
ζ

)

≤ C ′√| log ν| . (1.25)

Remark 1.7 Note that Proposition 1.6 is not a direct consequence of Proposition 1.1
in the sense that a standard perturbation argument does not work here. Indeed, the
potential part ∂ζ P/ζ of the perturbation in (1.22) is of size ν−2 in L∞ (up to a
logarithmic accuracy), while the eigenvalues of the unperturbed operator A ζ are of
order 1. The crucial point is that the algebraic form of the perturbation, ∂ζ (P·)/ζ ,
ensures its orthogonality to the resonance of the operator A0 near the origin, see
Lemma 2.4 and its proof.

Remark 1.8 In [8], the use of Proposition 1.6 is essential to handle nonlinear terms,
where the precise control of the solution near the origin involves the rescaled stationary
state at a slightly different scale ν̃, and the corresponding perturbed linear operator is
(1.22) with the perturbation potential

P(ζ ) = Q ν̃ (ζ )− Qν(ζ )

2
,

∣∣∣∣ ν̃ν − 1

∣∣∣∣ � 1

| log ν| ,

and the corresponding weight function ω̄ν(ζ ) = νν̃√
UνUν̃

ρ(ζ ).

Our third and last result concerns the decay of the linearised dynamics associated
to L z for the nonradial part of the perturbation. The work [29] provides Lyapunov
functionals for the inner zone |z| ∼ ν, and [27] uses a suitable extension to a higher
regularity level of these Lyapunov functionals, inspired from [26]. Both results do not
include the scaling term in the functionals, making the control in the parabolic region
|z| ∼ 1 hard. We prove here a coercivity estimate that takes the scaling term into
account, for a modified version of the linearised operator, in which the source term
for the Poisson field is localised near the origin. Note that an analogue of the radial
spectral analysis of Proposition 1.1 is not straightforward. Indeed, while the operator
∇�−1 is an integral operator from the origin in the radial case, the integral involve the
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Spectral Analysis of a Linearized Operator... Page 11 of 74 5

behaviour of the function at infinity on higher order spherical harmonics, see (A.6) and
(A.8). In particular, it is not possible to make sense of ∇�−1 for nonradial functions
with strong polynomial growth at infinity.
On the one hand, at the |z| ∼ ν scale, there is a natural scalar product for the linearised
operatorwithout scaling term, coming from the free energy. The following corresponds
to [27], Lemma 2.1 and Proposition 2.3. The linearized operator at scale ν is written
as

L0u=�u − ∇ · (u∇�U )−∇ · (U∇�u)=∇ · (U∇M u) with M u= u

U
−�u,

(1.26)

The quadratic form
∫
uM vdy is symmetric. There hold the estimates if

∫
udy = 0:

∫
R2

U |M u|2dy �
∫
R2

u2

U
dy, (1.27)

the nonnegativity
∫
uM u ≥ 0 and, for some δ1,C > 0,

∫
R2

uM udy ≥ δ1

∫
R2

u2

U
dy − C

[
〈u,�U 〉2L2 + 〈u, ∂1U 〉2L2 + 〈u, ∂2U 〉2L2

]
,

(1.28)

where � is the scaling group infinitesimal generator:

�u = 2u + y.∇u.

For functions orthogonal to �U , ∂y1U , ∂y2U in the L2 sense, the norms defined

by
∫ u2

U dy and
∫
uM udy are then equivalent. On the other hand, at scale |z| ∼ 1,

from (1.3) and as ∂ζ �Uν = −4ζ/(ν2 + ζ 2) we get that L z converges pointwise to
� + 4/ζ∂ζ − β∇.(z·) as ν → 0. This operator is self adjoint in L2(ζ 4ρ0). We thus
introduce the “mixed” scalar product

〈u, v〉∗ := ν2
∫
R2

u
√

ρ0M
z(v
√

ρ0)dz, M z f = f

Uν

−� f . (1.29)

It matches to leading order the first scalar product at scale ν and the second at scale
1, and localises the Poisson field. It is equivalent to the L2

ων
scalar product under

the aforementioned orthogonality conditions. We localize the Poisson field in the
linearized operator accordingly,

L̃ zu := �u −∇ · (u∇�Uν )− ∇ · (Uν∇�̃u)− β∇ · (zu), �̃u := 1√
ρ0

(−�)−1(√ρ0u).

(1.30)
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5 Page 12 of 74 C. Collot et al.

We show that in the non-radial sector, the localised operator L̃ z is coercive for the
mixed scalar product 〈·, ·〉∗ under the natural orthogonality assumption to ∇Uν . Its
proof adapts the arguments of [27] for the above coercivity of L0 to the range 0 <

ν � 1.

Proposition 1.9 For any 0 < β∗ < β∗, there exists c,C > 0 and ν∗ > 0 such that
for all β∗ < β < β∗ and 0 < ν ≤ ν∗, if u satisfies ∇u ∈ L2

ων
and

∫
|z|=ζ

udz = 0 for
almost every ζ , then:

〈−L̃ zu, u〉∗ ≥ c‖∇u‖2L2
ων

− Cν6

((∫
R2

u∂z1Uν
√

ρ0dz

)2
+
(∫

R2
u∂z2Uν

√
ρ0dz

)2
)

.

(1.31)

Remark 1.10 The above Proposition holds for L̃ z instead ofL z : a part of the Poisson
field outside the origin has been neglected. However, in the singularity formation
studied in [8] the worst contribution to this field from the perturbation comes from the
origin, and the stationary states decays rapidly at infinity. The difference L z − L̃ z

can then be controlled from other norms, see [8].

The paper is organised as follows. Section 2 is devoted to the proof of Proposi-
tions 1.1 and 1.6. The proof of Proposition 1.9 is done in Section 3.

2 Proof of the Spectral Propositions 1.1 and 1.6

This section is devoted to the proof of Proposition 1.1. After the change of variable
ζ = νr , the problem (1.12) is equivalent to the following

(A0 − br∂r )φ = αφ, r ∈ (0,∞) with the boundary condition φ(0) = 0,

(2.1)

where A0 is introduced in (1.14) and

b = βν2, α = λν2.

We will solve the problem (2.1) in the regime 0 < b � 1 by means of matched
asymptotic expansions in the following sense. Let ζ0 and R0 be fixed as

0 < ζ0 � 1, R0 = ζ0√
b
� 1.

Relying on perturbation theory, we first solve (2.1) in the inner region r ≤ R0, and the
solution is named by φin, then in the outer region r ≥ R0 and the solution is named by
φex. The two solutions must coincide at r = R0 up to the first derivative from which
we determine the value of α by standard arguments based on the implicit function
theorem. Proposition 1.1 is a direct consequence of the following.
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Proposition 2.1 (Spectral properties of A = A0 − br∂r ) The linear operator A :
H2

ωb/r
→ L2

ωb/r
is self-adjoint with compact resolvent, where ωb = U−1e− br2

2 . Given
any N ∈ N, and 0 < δ � 1, there exists a b∗ > 0 such that the following holds for
all 0 < b ≤ b∗:
(i) (Eigenvalues) We have that the first N + 1 eigenvalues are given by:

αn = 2b
(
1− n + α̃n

)
, n = 0, ..., N , (2.2)

where

α̃n = 1

ln b
+ ᾱn with |ᾱn| +

∣∣b∂bα̃n
∣∣ � 1

| ln b|2 . (2.3)

In particular, we have a refinement of the first two eigenvalues, with γ the Euler
constant:

∣∣∣∣α̃n − 1

ln b
− ln 2− γ − n

| ln b|2
∣∣∣∣ � 1

| ln b|3 , for n = 0, 1. (2.4)

(i i) (Eigenfunctions) An eigenfunction φn is defined by (2.73) and the following
properties hold:

– (Sign-changing) On the interval (0,∞), φ0 has constant sign and φn vanishes
exactly n times for n ≥ 1.

– (Orthogonality) For some positive constants ēn there holds:

∀(m, n)∈N2, 〈φn, φm〉2L2
ωb
r

=cnδm,n, cn ∼
{
2−4| ln b|n+1 for n=0, 1,
ēn| ln b|2 for n ≥ 2.

(2.5)

– (Pointwise estimates) For k = 0, 1, 2,

∣∣∣Dk
r φn(r)

∣∣∣+
∣∣∣Dk

r b∂bφn(r)
∣∣∣ �

(
r

〈r〉
)2−(k mod 2)

〈r〉−2−k〈√br〉2n+δ(1+ 1{n≥1} ln〈r〉).
(2.6)

– (Refined pointwise estimates) There holds the refined identity:

φn(r) =
n∑
j=0

cn, j b
j Tj
(
r
)+ φ̃n(r), (2.7)
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5 Page 14 of 74 C. Collot et al.

where Tj and cn, j are defined in Lemma 2.2, with for k = 0, 1, 2:

∣∣∣Dk
r φ̃n(r)

∣∣∣+ ∣∣∣Dk
r b∂bφ̃n(r)

∣∣∣
� min

(
b〈r〉2, 1

| ln b|
)(

r

〈r〉
)2−(k mod 2)

〈r〉−2−k〈√br〉2n+δ. (2.8)

(i i i) (Spectral gap estimate) For any g ∈ L2
ωb
r

(R+) with 〈g, φ j 〉L2
ωb
r

= 0 for 0 ≤ j ≤
k, one has

〈g,A g〉2
L2

ωb
r

≤ αk+1‖g‖2L2
ωb
r

. (2.9)

Proof Since the computation of (αn, φn) through the matched asymptotic procedure
is long and technical, it is left to next subsections. In particular, the existence of the
N + 1 eigenvalues α0, ..., αN satisfying (2.2), (2.3) and (2.4), and the refined bound
(2.8), are proved in Lemma 2.8. It then remains to use them to prove all the other
results in Proposition 2.1.

Step 1 Self-adjointness and compactness of the resolvent: We first claim the following
inequality whose proof is relegated to Step 4: for all u ∈ H2

ωb/r
, there holds A u ∈

L2
ωb/r

and the inequalities

c‖u‖H2
ωb
r

≤ ‖u‖L2
ωb
r

+ ‖A u‖L2
ωb
r

≤ c−1‖u‖H2
ωb
r

for some c(b) > 0. (2.10)

For all u, v ∈ H2
ωb/r

, we have by an integration by parts

∫ ∞
0

A uv
ωb

r
dr = −

∫ ∞
0

∂r u∂rv
ωb

r
dr +

∫ ∞
0

uvU
ωb

r
dr = −B(u, v).

(2.11)

which shows that A : H2
ωb/r
→ L2

ωb/r
is symmetric. The above bilinear form B with

domain H1
ωb/r

satisfies the following inequality for C ≥ 1+ supr∈[0,∞) U (r) = 9,

B(u, u)+ C‖u‖2
L2

ωb
r

≥
∫ ∞
0
|∂r u|2ωb

r
dr +

∫ ∞
0

u2
ωb

r
dr = ‖u‖2

H1
ωb
r

. (2.12)

Hence, B is closed on L2
ωb/r

and we let ¯A : D( ¯A ) → L2
ωb/r

be the self-adjoint

operator associated to this closed form. By (2.10) and (2.11), we have H2
ωb/r
⊂ D( ¯A ),

and A and ¯A coincide on H2
ωb/r

.

We now show thatD( ¯A ) = H2
ωb/r

. Let T be the set of smooth compactly supported

functions ϕ on [0,∞) such that ϕ(0) = ∂rϕ(0) = 0. Let u ∈ D( ¯A ). By definition
of ¯A , we have that u ∈ H1

ωb/r
, and that the distribution A u (with T as a set for test
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functions) is a function in L2
ωb/r

. For χ a cut-off with χ = 1 on [0, 1] and χ = 0 on

[2,∞), let χn(r) = χ(r/n) and un = χnu. As u ∈ H1
ωb/r

and A u ∈ L2
ωb/r

, from the

formula for A we get D2u ∈ L2
ωb/r ,loc

, and so un ∈ H2
ωb/r

. Also,

A un = χnA u + 2∂rχn∂r u + ∂2r χnu − 1

r
∂rχnu + Q

r
∂rχnu − br∂rχnu.

(2.13)

Since A u ∈ L2
ωb/r

(in the distributional sense), u ∈ H1
ωb/r

and |∂ j
r χn| � n− j1(n ≤

r ≤ 2n), (2.13) implies that A un → A u in L2
ωb/r

as n→∞. Since also un → u in

L2
ωb/r

as n →∞, from (2.10) we get that un is a Cauchy sequence in H2
ωb/r

. Hence,

u ∈ H2
ωb/r

which concludes D( ¯A ) = H2
ωb/r

and A = ¯A . Therefore, A : H2
ωb/r
→

L2
ωb/r

is self-adjoint as ¯A is.

From (2.12), the Lax-Milgram Theorem and (2.10), we have for any f ∈ L2
ωb/r

and C ≥ 9, there exists a unique solution u = (−A + C)−1 f to (−A + C)u = f
with ‖u‖H2

ωb/r
≤ C(b)‖ f ‖L2

ωb/r
. From (A.5) with α = 2, we have ‖(1+ r)u‖L2

ωb/r
≤

C(b)‖u‖H1
ωb/r

, from which and the usual compactness of the Sobolev embedding

H1(I )→ L2(I ) on bounded intervals I , we deduce that H1
ωb/r

is compactly embedded

in L2
ωb/r

. Thus, the mapping (−A + C)−1 : L2
ωb/r
→ L2

ωb/r
is compact, hence, A

has compact resolvent.

Step 2 Uniqueness of the eigenvalues: We first prove the sign changing property
of (ii). This is a direct consequence of lemmas 2.3 and 2.6. In particular, we show
that on the interval (0, ζ0√

b
], φ0 does not vanish and φn has exactly one zero located at

r0 ∼ 1√
nb| log b| for n ≥ 1 (see page 20 for a detailed proof). On the interval ( ζ0√

b
,+∞),

the eigenfunction φn is a perturbation of a Kummer’s function (see Lemma 2.6 for a
proper definition) where it does not vanish for n = 0, 1 and possesses n − 1 zeros for
n ≥ 2.

We now rely on Sturm-Liouville theory to show that the N + 1 first eigenvalues of
A are those given by (2.2). We argue by contradiction and assume that there exists
α∗ ∈ (αn+1, αn) for some n ∈ N that is an eigenvalue of A . Denote by φ∗ the
eigenfunction corresponding to α∗, and byZ

[
f , (0,∞)

]
the number of zeros of f on

(0,∞). Sturm-Liouville theory asserts that

Z
[
φn+1, (0,∞)

]
> Z

[
φ∗, (0,∞)

]
> Z

[
φn, (0,∞)

]
,

which is a contradiction as the term on the left is n + 1 and that on the right is n from
Step 2. The case of an eigenvalue α∗ > α0 is ruled out similarly using that φ0 has no
zero on (0,∞). Note that the multiplicity of the eigenvalues of A has to be of one,
since from a direct check, the eigenfunction equation is an ODE that admits at least
one solution growing like rCebr

2/2 at infinity for some constant C , and thus which is
not in L2(ωb).

123



5 Page 16 of 74 C. Collot et al.

Step 3 Proof of remaining bounds: The spectral gap (iii) is an immediate consequence
of the fact that A is self-adjoint with purely discrete spectrum since it has compact
resolvent, that α0, ..., αN have multiplicity one, and that any other eigenvalues are
equal or smaller than αN+1.

To prove the pointwise estimate (2.6), we use the decomposition (2.7). The function
φ̃n satisfies the bound (2.6) because of the even sharper bound (2.8). The function∑n

j=0 cn, j b j Tj
(
r
)
satisfies also the bound (2.6) because of the estimates (2.19) and

(2.20). Hence φn satisfies (2.6).
To prove the L2(ωb) estimate (2.5), we use the decomposition (2.7) again. From

the bound (2.8) we infer that, using (rU )−1 �< r >3 and dividing the integral the

two zones r ≤ √b−1 and r ≤ √b−1:

∫ ∞
0
|φ̃n|2ωb �

∫ √b−1
0

〈r〉−4
| ln b|2 〈r〉

3dr +
∫ ∞
√
b
−1

r4n−4+2δb2n+δ

| ln b|2 r3e−
br2
2 dr � 1

| ln b| .

One then computes from (1.3), (2.16), (2.20) and (2.23) that for n = 0, 1 as b→ 0:

∫ ∞
0

T 2
0 (r)ωb(r) ∼ 1

8

∫ ∞
1

r−1e−
br2
2 dr ∼ | ln b|

16
,

∫ ∞
0

b2T 2
1 (r)ωb(r) ∼ 1

32

∫ ∞
1

b2r3| ln r |2e− br2
2 dr ∼ | ln b|

2

64
,

by using that
∫∞
0 ζ 3e−ζ 2/2dζ = 2. The three above identities, with the explicit values

(2.29) for ci, j , prove (2.5) for n = 0, 1. The general bound for n ≥ 2 follows similarly.

Step 4 (Proof of (2.10)): By density we restrict to the case of smooth and compactly
supported functions u with u(0) = u′(0) = 0. Let ˜A = ∂2r + (Q − 1)r−1∂r and use
integration by parts to compute

B′(u, u) =
∫ ∞
0

(( ˜A − br∂r )u)(( ˜A − br∂r )u)− C ′u)
ωb

r
dr =

∫ ∞
0
[( ˜A u)2

+(∂r u)2(C ′ + b(2− Q))]ωb

r
dr .

For C ′ large enough, one has C ′ + b(2 − Q) ≥ 1 so that B′(u, u) ≥ ‖ ˜A u‖2
L2

ωb/r
+

‖∂r u‖2L2
ωb/r

. Since ˜A u = D2u + Qr−1∂r u and |r Q| � 1, this gives B′(u, u) +
‖u‖2

L2
ωb/r

� ‖u‖2
H2

ωb/r
. Recall thatA u = ( ˜A −br∂r )u+Uu andU is bounded.We thus

have by Cauchy–Schwarz inequality B′(u, u) + ‖u‖2
L2

ωb/r
� ‖A u‖2

L2
ωb/r
+ ‖u‖2

L2
ωb/r

.

These two inequalities imply the first inequality in (2.10). The second inequality is a
direct consequence of (A.5) applied to v = r2〈r〉−2∂r u with α = 2. This concludes
the proof of (2.10). ��
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2.1 Analysis in the Inner Zone r ≤ R0

In this part, we solve equation (2.1) in the interval [0, R0]wherewe consider−br∂r−α

as a small perturbation ofA0. Let us recall somebasic properties ofA0 in the following.
We introduce the norms

‖ f ‖Xa
ı
:= sup

r∈[0,R0]
〈r〉2−a

r2
(
1+ ln 〈r〉 )ı | f (r)| for ı = 0, 1 and

‖ f ‖Xa−1 := sup
r∈[0,R0]

〈r〉2−a
r2
(
1+ 2 ln〈r〉

ln b

) | f (r)|

for any a ∈ R, and the function spaces for ı = −1, 0, 1,

Ia
ı :=

{
f : ‖ f ‖Ia

ı
� ‖ f ‖Xa

ı
+ ‖r∂r f ‖Xa

ı
+ ‖r2∂2r f ‖Xa

ı
<∞

}
. (2.14)

Lemma 2.2 (Properties of A0)

(i) (Inversion) For any f ∈ C(R+,R), a solution to A0u = f is given by:

A −10 f (r) := 1

2
ψ0(r)

∫ 1

r

ζ 4 + 4ζ 2 ln ζ − 1

ζ
f (ζ )dζ + 1

2
ψ̃0(r)

∫ r

0
ζ f (ζ )dζ,

(2.15)

where ψ0 and ψ̃0 are the two linearly independent solutions to A0ψ = 0 given
by

ψ0(r) = r2

〈r〉4 and ψ̃0(r) = r4 + 4r2 ln r − 1

〈r〉4 . (2.16)

(ii) (Continuity) Let ı ∈ {−1, 0, 1} and a > −2, then there holds the estimate:

‖A −10 f ‖Ia+2
ı

� ‖ f ‖Xa
ı
. (2.17)

(iii) (Iterative kernel of A0) There exists a family of smooth radial functions
{
Ti
}
i∈N

defined as

A0Ti+1 := −Ti , T0 := ψ0, (2.18)
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which admit the asymptotic estimates

∣∣∣(r∂r )pTi
∣∣∣ = O(r2) as r → 0, ∀p ∈ N, (2.19)

Ti = r2(i−1)
(
d̂i ln r + di

)
+O

(
r2(i−2) lni+1 r

)
as r →∞, (2.20)

r∂r Ti = r2(i−1)
[
2(i − 1)

(
d̂i ln r + di

)+ d̂i
]
+O

(
r2(i−2) lni+1 r

)
, (2.21)∣∣∣(r∂r )pTi

∣∣∣ = O(r2(i−1) ln r) as r →∞, ∀p ∈ N, (2.22)

where di ∈ R and

d̂1 = −1

2
, d1 = 1

4
, d̂i+1 = − d̂i

4i(i + 1)
,

di+1 = 1

8

(
d̂i − 2idi

i2
− d̂i − (2i + 2)di

(i + 1)2

)
. (2.23)

Proof (i) By the scaling invariance of the problem (1.2), we have d
dλ

[�Uλ −∇·
(∇Uλ)]λ=1 = 0, or L y�U = 0. Hence ψ0 = 1

8

∫ r
0 �U (x)xdx is the first funda-

mental solution toA0ψ = 0. The explicit formula of ψ̃0 follows from the integration
of the Wronskian relation, and the formula (2.15) is a standard way to solve linear
second order ODEs.

(i i) We denote u = A −10 f . We directly compute from (2.15) for r ≤ 1 that for
any a, ı :

|u(r)| �
∣∣∣∣ψ0(r)

∫ 1

r

ξ4 + 4ξ2 ln ξ − 1

ξ
f (ξ)dξ + ψ̃0(r)

∫ r

0
ξ f (ξ)dξ

∣∣∣∣
�
(

sup
0≤ξ≤2

ξ−2| f (ξ)|
)(

r2
∫ 1

r
ξdξ +

∫ r

0
ξ3dξ

)
� r4‖ f ‖Xa

ı
.

For 1 ≤ r ≤ R0, we use again formula (2.15) to compute for ı = 0, 1 and a > −2:

|u(r)| � |ψ0(r)|
∫ r

1
ξ3| f (ξ)|dξ + |ψ̃0(r)|

∫ r

0
ξ | f (ξ)|dξ

� r−2 sup
1≤ξ≤R0

ξ−a | f (ξ)|
(1+ ln〈ξ 〉)ı

∫ r

1
ξ3ξa(1+ ln〈ξ 〉)ı dξ

+ sup
0≤ξ≤R0

〈ξ 〉−a | f (ξ)|
(1+ ln〈ξ 〉)ı

∫ r

0
ξ 〈ξ 〉a(1+ ln〈ξ 〉)ı dξ

� ‖ f ‖Xa
ı
ra+2(1+ ln 〈r〉)ı

123



Spectral Analysis of a Linearized Operator... Page 19 of 74 5

For ı = −1 we first notice that the function 1 + 2 ln〈r〉
ln b is decreasing and satisfies for

any r ∈ [0, R0]:

1

| ln b| ≤
| ln ζ0|
| ln b| ≤ 1+ 2 ln 〈r〉

ln b
≤ 1,

so that for r ∈ [1, R0] and a > −1, with constants independent on b:
∫ r

0
〈ξ 〉a(1+ 2 ln〈ξ 〉

ln b
)dξ � 1+

∣∣∣∣
∫ r

2
ξa(1+ 2 ln ξ

ln b
)dξ

∣∣∣∣
� 1+

∣∣∣∣ra+1
(
1+ 2 ln r

ln b

)
− ra+1

ln b

∣∣∣∣ � ra+1
(
1+ 2 ln 〈r〉

ln b

)
. (2.24)

Hence for ı = −1 and a > −2, computing as above:

|u(r)| � r−2 sup
1≤ξ≤R0

ξ−a | f (ξ)|
1+ 2 ln〈ξ〉

ln b

∫ r

1
ξ3ξa(1+ 2 ln〈ξ 〉

ln b
)dξ

+ sup
0≤ξ≤R0

〈ξ 〉−a | f (ξ)|
1+ 2 ln〈ξ〉

ln b

∫ r

0
ξ 〈ξ 〉a(1+ 2 ln〈ξ 〉

ln b
)dξ

� ‖ f ‖Xa
ı
ra+2(1+ 2 ln 〈r〉

ln b
).

The estimates above imply for any a > −2 and ı = −1, 0, 1, with a constant inde-
pendent on b and ζ0:

‖A −10 f ‖Xa+2
ı

� ‖ f ‖Xa
ı
.

To estimate the derivatives, we notice from (2.15) that

∂r u = 1

2
∂rψ0

∫ 1

r

ξ4 + 4ξ2 ln ξ − 1

ξ
f (ξ)dξ + 1

2
∂r ψ̃0

∫ r

0
ξ f (ξ)dξ. (2.25)

Hence, with the very same computations that we do not repeat we obtain for ı =
−1, 0, 1 and a > −2:

‖r∂r u‖Xa+2
ı

� ‖ f ‖Xa
ı
.

Next, using that A0u = f and the definition of A0 yields

∂2r u = f +
(
1

r
− 4r

〈r〉2
)

∂r u − 8

〈r〉4 u.
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so that for ı = −1, 0, 1 and a > −2, using the previous estimates for u and r∂r u:

‖r2∂rr u‖Xa+2
ı

� ‖r2 f ‖Xa+2
ı
+ ‖

(
r − 4r3

〈r〉2
)

∂r u‖Xa+2
ı
+ ‖ 8r

2

〈r〉4 u‖Xa+2
ı

� ‖ f ‖Xa
ı
+ ‖ f ‖Xa

ı
+ ‖ f ‖Xa

ı
� ‖ f ‖Xa

ı
.

This concludes the proof of (2.17).
(i i i) For r � 1, we compute from (2.15)

|T1(r)| + |r∂r T1(r)| = O
(
r2
∫ 1

r
ξ−1ξ2dξ +

∫ r

0
ξξ2dξ

)
= O(r2) as r → 0.

We use A0T1 = −ψ0 and the definition (1.14) of A0 to estimate for k ∈ N,

|(r∂r )k+2T1(r)| = O

⎛
⎝ k∑

j=0
|r j+1∂ j+1

r T1| + rk+2|∂kr ψ0|
⎞
⎠ = O(r2) as r → 0.

Hence, the estimate (2.19) holds for i = 1. By induction, we assume that estimate
(2.19) holds for i ≥ 1. We compute from (2.15) and the relation Ti+1 = −A −10 Ti ,

|Ti+1| + |r∂r Ti+1| = O
(
r2
∫ 1

r
ξ−1ξ2dξ +

∫ r

0
ξξ2dξ

)
= O(r2),

as r → 0. The estimate for higher derivative follows from the relationA Ti+1 = −Ti
and the definition (1.14) of A0.

For 1� r ≤ R0, we prove (2.20) by induction. For i = 1, we compute from (2.15)
and the relation T1 = −A −10 ψ0

T1(r) = 1

2
ψ0

∫ 1

r

ξ4 + 4ξ2 ln ξ − 1

ξ
ψ0(ξ)dξ + 1

2
ψ̃0

∫ r

0
ξψ0(ξ)dξ

=
(

1

2r2
+O(r−4)

)(
1

2
r2+O(ln2 r)

)
−
(
1

2
+O(r−2 ln r)

)(
ln r+O(r−2)

)

= −1

2
ln r + 1

4
+O

(
ln2 r

r2

)
,

which is (2.20) for i = 1. Assuming now that expansion (2.20) holds for some i ≥ 1,
we use formula (2.15), the relation Ti+1 = −A −10 Ti and the elementary identity

∫ r

0
sk ln s ds = rk+1

[
(k + 1) ln r − 1

]
(k + 1)2

for all k ∈ N,
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to compute

Ti+1 = 1

2
ψ0

∫ 1

r

ξ4 + 4ξ2 ln ξ − 1

ξ
Ti (ξ)dξ + 1

2
ψ̃0

∫ r

0
ξTi (ξ)dξ

=
(

1

2r2
+O(r−4)

)[
d̂i

(2i + 2)
ln r − d̂i − (2i + 2)di

(2i + 2)2
+O

(
r−2 lni+2 r

)]

−
(
1

2
+O(r−2 ln r)

)
r2i
[
d̂i
2i

ln r − d̂i − 2idi
4i2

+O
(
r−2 lni+1 r

)]

= r2i
[
−d̂i

4i(i + 1)
ln r+1

8

(
d̂i−2idi

i2
− d̂i−(2i+2)di

(i+1)2
)]
+O

(
r2i−2 lni+2 r

)
,

which gives

d̂i+1 = − d̂i
4i(i + 1)

, di+1 = 1

8

(
d̂i − 2idi

i2
− d̂i − (2i + 2)di

(i + 1)2

)
.

This concludes the proof of (2.20).
The proof of (2.21) follows similarly by induction. Indeed, assuming that (2.21)

holds for i ∈ N, we compute from (2.15), the relation Ti+1− = A −10 Ti and the
expansion (2.21) for 1� r ≤ R0:

r∂r Ti+1 = r

2
∂rψ0

∫ 1

r

ξ4 + 4ξ2 ln ξ − 1

ξ
Ti (ξ)dξ + r

2
∂r ψ̃0

∫ r

0
ξTi (ξ)dξ

=
(
−r2i+O(r2i−2)

)[ d̂i
(2i+2) ln r −

d̂i − (2i+2)di
(2i + 2)2

+O
(
r−2 lni+2 r

)]

+O
(
ln2 r

r2−2i

)

= r2i
[
−d̂i

2(i + 1)
ln r + d̂i − 2(i + 1)di

4(i + 1)2

]
+O

(
r2i−2 lni+2 r

)
.

Using the recursive definition of d̂i and di , i.e,

d̂i+1 = − d̂i
4i(i + 1)

, di = −4i(i + 1)di+1 − 2(2i + 1)d̂i+1, (2.26)

we have the simplification −d̂i
2(i+1) = 2i d̂i+1 and

d̂i − 2(i + 1)di
4(i + 1)2

= d̂i
4i2
− di

2i
− 2di+1 = − i + 1

i
d̂i+1

+ 2i + 1

i
d̂i+1 + 2idi+1 = d̂i+1 + 2idi+1.
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This concludes the proof of (2.21). The estimate (2.22) follows by induction from the
definition ofA0, the relationA0Ti+1 = −Ti and the Leibniz rule. This completes the
proof of Lemma 2.2. ��

In the following we show that the profiles Tj given in Lemma 2.2 are actually the
building blocks of the eigenfunction of the linear operatorA = A0−br∂r on [0, R0].
In particular, we have the following.

Lemma 2.3 (Inner eigenfunctions for the radial mode) Let n ∈ N, 0 < ζ0 � 1 and
0 < b � 1 be small enough. Then for any |ᾱ| � | ln b|−2 there exists a smooth
function φin

n ∈ C∞([0, R0],R) satisfying

A φin
n = 2b

(
1− n + α̃

)
φin
n with α̃ = 1

ln b
+ ᾱ, (2.27)

where φin
n is of the form

φin
n (r) =

n∑
j=0

cn, j b
j Tj + b

(
− 2

ln b
T1 +A −10 �0

)

+2ᾱ
n∑
j=0

b j+1(− cn, j Tj+1 + S j

)
+ bRn, (2.28)

and the constants
(
cn, j
)
0≤ j≤n are given by

cn, j = 2 j n!
(n − j)! , cn, j+1 = 2(n − j)cn, j , cn,0 = 1. (2.29)

The corrective functions Rn, S j satisfy the following estimates for any n ≥ 0:

‖S j‖I2 j
1
+ ‖b∂bS j‖I2 j

1
+ ‖∂ᾱS j‖I2 j

1
� ζ 2

0 , (2.30)

‖Rn‖I0−1
+ ‖b∂bRn‖I0−1

+ ‖∂ᾱRn‖I0−1
� 1, (2.31)

with the following refinements for n = 0:

S0 = 1

2

∞∑
i=1

1

(i + 1)!2i b
i r2i log(r + 1)+ S̃0, ‖S̃0‖I2

0
+ ‖b∂b S̃0‖I2

0
+ ‖∂ᾱ S̃0‖I2

0
� b,

(2.32)

R0 = −1

2

∞∑
i=1

1

(i + 1)!2i b
i r2i

{
1

log b

[
2 ln(r + 1)−�(i + 2)− γ

]+ 1

}
+ R̃0,

‖R̃0‖I0−1
+ ‖b∂bR̃0‖I0−1

� | log b|−1, ‖∂ᾱR̃0‖I0−1
� 1, (2.33)
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and for n = 1:

R1 = −1

2

∞∑
i=1

1

(i+1)!i2i b
i r2i

{
1

log b

[
2 ln(r+1)− 1

i
−�(i+2)−γ

]
+1− 1

log b

}
+ R̃1,

‖R̃1‖I0−1
+ ‖b∂bR̃1‖I0−1

� | log b|−1, ‖∂ᾱR̃1‖I0−1
� 1. (2.34)

S1 = −1

2

∞∑
i=2

1

(i + 1)!i2i b
i−1r2i ln(r + 1)+ S̃1,

‖S0‖I2
0
+ ‖b∂bS0‖I2

0
+ ‖∂ᾱS0‖I2

1
� b, ‖S̃1‖I2

0
+ ‖b∂b S̃1‖I2

0
+ ‖∂ᾱ S̃1‖I2

1
� 1,

(2.35)

where � = �′/� with � being the Gamma function.
Finally, on the interval (0, R0], φin

0 does not vanish and φin
n has exactly one zero for

n ≥ 1.

Proof The proof mainly relies on classical arguments based on the Banach fixed point
theorem to construct the corrective profiles Rn and S j for 0 ≤ j ≤ n.

Step 1 Preliminary results: For j ∈ N, we let

� j = r∂r Tj − 2( j − 1)Tj , (2.36)

which admits the following slowly growing tail from (2.20) and (2.21),

|�0(r)| = O(r−4), |� j (r)| = O(r2( j−1)) for j ≥ 1, as r →∞. (2.37)

and for j ≥ 1:

∣∣∣∣� j (r)+ 2

ln b
Tj (r)

∣∣∣∣ � r2〈r〉2( j−2)
(
1+ 2 ln(r + 1)

ln b

)
. (2.38)

We compute the following integral by integrating by parts:

∫ ∞
0

r�0(r)dr

= lim
R→∞

∫ R

0
r�0(r)dr = lim

R→∞

(
2
∫ R

0
rT0(r)dr +

∫ R

0
r2∂r T0(r)dr

)

= lim
r→∞ R2T0(R) = 1.

From this and (2.15), as |r∂r T0 + 2T0| � (1+ r)−4 the following corrective term
satisfies as r →∞:

A −10 �0(r) = O(ψ0(r) ln(r))+O(r−2)+ 1

2
ψ̃0(r)

∫ ∞
0

ζ f (ζ )dζ

= 1

2
+O(r−2 ln r),
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and hence:
∣∣∣∣− 2

ln b
T1 +A −10 �0

∣∣∣∣ � r2〈r〉−2
(
1+ 2 ln(r + 1)

ln b

)
. (2.39)

These estimates show that

‖b j−1
(

� j (r)+ 2

ln b
Tj (r)

)
‖X0−1

� ζ
2( j−1)
0 ‖� j (r)+ 2

ln b
Tj (r)‖X2( j−1)

−1
� 1,

‖ − 2

ln b
T1 +A −10 �0‖I0−1

� 1. (2.40)

Step 2 Equations satisfied by S j and Rn: Plugging the decomposition (2.28) into
(2.27) and using A0Tj = −Tj−1 with the convention T−1 = 0 yields

[
A0 − br∂r − 2b

(
1− n + 1

ln b
+ ᾱ

)] n∑
j=0

cn, j b
j Tj

= −
n−1∑
j=0

cn, j b
j+1Tj

[
2(n − j)+ 2( j − 1)− 2(n − 1)

]

−
n∑
j=0

cn, j b
j+1� j − 2

(
1

ln b
+ ᾱ

) n∑
j=0

cn, j b
j+1Tj

= −
n∑
j=1

cn, j b
j+1
(

� j + 2

ln b
Tj

)
− b�0 − 2b

ln b
T0 − 2ᾱ

n∑
j=0

cn, j b
j+1Tj ,

and

[
A0 − br∂r − 2b

(
1− n + 1

ln b
+ ᾱ

)]
b

(
− 2

ln b
T1 +A −10 �0

)

= b�0 + 2b

ln b
T0 − b

[
r∂r + 2

(
1− n + 1

ln b
+ ᾱ

)]
b

(
− 2

ln b
T1 +A −1�0

)

and

[
A0 − br∂r − 2b

(
1− n + α̃

)]
⎛
⎝2ᾱ

n∑
j=0

b j+1[− cn, j Tj+1 + S j

]⎞⎠

= 2ᾱ
n∑
j=0

b j+1 {A0S j −
[
br∂r + 2b

(
1− n + α̃

)](− cn, j Tj+1 + S j

)}

+ 2ᾱ
n∑
j=0

cn, j b
j+1Tj .
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We then rewrite equation (2.27) as

0 =
[
A0 − br∂r − 2b

(
1− n + α̃

)]
φin
n

= ᾱ

n∑
j=0

b j+1 {A0S j − b
[
r∂r + 2

(
1− n + α̃

)](− cn, j Tj+1 + S j

)}

+ b
{
A0Rn − b

[
r∂r + 2

(
1− n + α̃

)]
Rn −

n∑
j=1

cn, j b
j
(

� j + 2

ln b
Tj

)

−
[
r∂r + 2

(
1− n + α̃

)]
b

(
− 2

ln b
T1 +A −10 �0

)}
(2.41)

Step 3 Computation of
(
S j
)
0≤ j≤n: From equation (2.41), we choose S j to be the

solution of the equation

A0S j = b
[
r∂r + 2

(
1− n + α̃

)](− cn, j Tj+1 + S j

)
. (2.42)

Note from part (i i i) of Lemma 2.2 that Tj+1 ∈ I2 j
1 for j ≥ 0. We aim at proving that

for b and ζ0 small enough, there exists a unique solution S j ∈ I2 j
1 to equation (2.42)

via the Banach fixed point theorem. Let � be the affine mapping acting on f ∈ I2 j
1

defined as

�( f ) = A −10

[
b
(
r∂r + 2

(
1− n + α̃

))(− cn, j Tj+1 + f
)] = �(0)+ D�( f ),

where A −10 is defined as in (2.15) and

�(0) = bcn, jA
−1
0

([
r∂r + 2

(
1− n + α̃

)]
Tj+1

)
,

D�( f ) = bA −10

([
r∂r + 2

(
1− n + α̃

)]
f
)

.

We estimate from (2.17),

‖�(0)‖I2 j
1

� R2
0‖�(0)‖I2 j+2

1
� R2

0b‖Tj+1‖I2 j
1

� R2
0b � ζ 2

0 ,

and for all f ∈ Ia
1 with a = 2 j or a = 2 j + 2,

‖D�( f )‖Ia
1

� R−20 ‖D�( f )‖Ia+2
1
= R2

0b‖A −10

([
r∂r + 2

(
1− n + α̃

)]
f
)
‖Ia+2

1

� ζ 2
0 ‖
[
r∂r + 2

(
1− n + α̃

)]
f ‖Xa

1
� ζ 2

0 ‖ f ‖Ia
1
. (2.43)

Since 0 < ζ0 � 1 and � is an affine mapping, the above estimates imply that � is a
contraction on BI2 j

1
(0,Cζ 2

0 ) for some constant C > 0 independent of the problem.
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Therefore, there exists a unique fixed point S j = �(S j ) such that ‖S j‖I2 j
1

� ζ 2
0

so that the first estimate in (2.30) holds. Moreover, from the proof of Banach fixed
point Theorem, there holds the formula S j = limn→∞ �n(0) = ∑n≥0(D�)n�(0).
Since b �→ �(0) and b �→ D� are differentiable with respect to b, in particular
we have from (2.27) and (2.18) the identities ∂b�(0) = b−1�(0) − 2

ln2 b
cn, j Tj+2

and ∂bD� = b−1D� − 2
ln2 b

A −10 . The bounds (2.43) and (2.17) imply that in these
formulas, for ζ0 small enough the series S j =∑n≥0(D�)n�(0) is differentiable with
respect to b. The differentiation with respect to ᾱ is obtained similarly. Thus, the
mappings (b, ᾱ) �→ S j is differentiable with values in I2 j

1 and the following holds:

∂bS j = D�(∂bS j )+
(
∂b�
)
(S j ), ∂ᾱS j = D�(∂ᾱS j )+

(
∂ᾱ�

)
(S j ),

where we have the following identities as b∂bα̃ = −1/(ln b)2 and ∂ᾱα̃ = 1:

∂b�( f ) = A −10

[(
r∂r + 2

(
1− n + α̃ − 1

| ln b|2
))(− cn, j Tj+1 + f

)]
, (2.44)

∂ᾱ�( f ) = bA −10

[
− cn, j Tj+1 + f

]
. (2.45)

From (2.43), we see that ‖D�‖Ia
1→Ia

1
� ζ 2

0 with a = 2 j + 2 or a = 2 j . Hence,
I d − D� is invertible, and the following holds

∥∥∂bS j
∥∥I2 j+2

1
= ∥∥(Id− D�)−1(∂b�)(S j )

∥∥I2 j+2
1

�
∥∥(∂b�)(S j )

∥∥I2 j+2
1

,∥∥∂ᾱS j
∥∥I2 j

1
= ∥∥(Id− D�)−1(∂ᾱ�)(S j )

∥∥I2 j
1

�
∥∥(∂ᾱ�)(S j )

∥∥I2 j
1

.

We estimate from (2.17) and (2.44),

∥∥(∂b�)(S j )
∥∥I2 j+2

1
� ‖Tj+1‖I2 j

1
+ ‖S j+1‖I2 j

1
� 1.

Similarly, we estimate from (2.17) and (2.45),

∥∥(∂ᾱ�)(S j )
∥∥I2 j

1
� bR2

0

(
‖Tj+1‖I2 j

1
+ ‖S j+1‖I2 j

1

)
� ζ 2

0 ,

which concludes the proof of (2.30).
Refinement for n = 1. We do not give technical details are these are the very same
ones as above for the general case. For n = 1 the S0 equation is:

A0S0 = b
[
r∂r + 2α̃

](
− T1 + S0

)
.

As ‖b(r∂r + 2α̃)T1‖I0
0

� b from (2.20) and (2.27) we get ‖S0‖I2
0
+ ‖b∂bS0‖I2

0
+

‖b∂α̃S0‖I2
0

� ζ 2
0 b by the same strategy as above. The S1 equation is:

A0S1 = b
[
r∂r + 2α̃

](
− 2T2 + S1

)
.
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Let Ŝ1 = − 1
2

∑∞
i=2 1

(i+1)!i2i b
i r2i ln r , which produces

(
∂rr + 3

r − br∂r
)
Ŝ1 =

− br2 ln r
4 . Looking for a solution S1 = Ŝ1 + S̃1 produces

A0 S̃1 = b
[
r∂r + 2α̃

]
S̃1 + b

(
r2 ln r

4
− 2r∂r T2

)
− 4α̃T2 + b2α̃ Ŝ1

−
((

4r

〈r〉2 −
4

r

)
∂r + 8

〈r〉4
)
Ŝ1.

The source term above is of size 1 in I0
0 from (2.20) and (2.27) so that from the strategy

used above one obtains ‖S̃1‖I2
0
+ ‖b∂b S̃1‖I2

0
+ ‖∂ᾱ S̃1‖I2

1
� ζ 2

0 .
Refinement for n = 0. For n = 0 the S0 equation is:

A0S0 = b
[
r∂r + 2

(
1+ α̃

)](− T1 + S0
)
.

We look for a solution S0 = Ŝ0(r + 1) + S̃0 with Ŝ0 = 1
2

∑∞
i=1 1

(i+1)!2i b
i r2i log(r).

As (∂rr + 3
r ∂r − b(r∂r + 2))Ŝ0 = b log r , S̃0 solves

A0 S̃0 = b
[
r∂r + 2

(
1+ α̃

)]
S̃0

−b(2T1 + log(r + 1))− b(r∂r + 2α̃)T1 −
((

4r

〈r〉4 −
1

r
− 3

r + 1

)
∂r

+ 8

〈r〉4 + b∂r − 2bα̃

)
Ŝ0(r + 1).

The source term above is of size b in I0
0 from (2.20) and (2.27) so that from the

strategy used above ‖S̃0‖I2
0
+ ‖b∂b S̃0‖I2

0
+ ‖∂ᾱ S̃0‖I2

1
� bζ 2

0 .

Step 4 Computation of Rn : From (2.41), we choose Rn to be the solution of the
equation

A0Rn = b
[
r∂r + 2

(
1− n + α̃

)]
Rn +

n∑
j=1

cn, j b
j
(

� j + 2

ln b
Tj

)
,

+
[
r∂r + 2

(
1− n + α̃

)]
b

(
− 2

ln b
T1 +A −10 �0

)
.
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where � j is introduced in (2.36). The computation is similar to that for S j . We let �
be the affine mapping �( f ) = �(0)+ D�( f ), where

�(0) = −bA −10

⎡
⎣ n∑

j=1
cn, j b

j−1
(

� j + 2

ln b
Tj

)

−
[
r∂r + 2

(
1− n + α̃

)] (− 2

ln b
T1 +A −10 �0

)]
,

D�( f ) = bA −10

[(
r∂r + 2

(
1− n + α̃

))
f
]
.

From (2.40) and (2.17) we obtain:

‖�(0)‖I2−1
� b

n∑
j=1

∥∥∥∥A −10 b j−1
(

� j + 2

ln b
Tj

)∥∥∥∥I2−1
+ b

∥∥∥∥A −10 (− 2

ln b
T1 +A −10 �)

∥∥∥∥I2−1

� b
n∑
j=1

∥∥∥∥b j−1
(

� j + 2

ln b
Tj

)∥∥∥∥I0−1
+ b

∥∥∥∥− 2

ln b
T1 +A −10 �

∥∥∥∥I0−1
� b.

Using (2.17), we estimate for all f ∈ I2−1,

‖D�( f )‖I2−1
� b‖(r∂r + 2

(
1− n + α̃

))
f ‖X0−1

� bR2
0‖ f ‖I2−1

� ζ 2
0 ‖ f ‖I2−1

.

(2.46)

We then deduce that �( f ) is contraction on BI2−1
(0, bC) for some constant C > 0,

hence, there exists a unique fixed point Rn = �(Rn) satisfying ‖Rn‖I2−1
� b. As

‖Rn‖I0−1
� b−1‖Rn‖I2−1

� 1 the first estimate in (2.31) holds. Rn is differentiable
with respect to b by the same reasoning as in Step 3 that we do not repeat here. For
the estimates of ∂bRn and ∂ᾱRn , we differentiate the relationRn = �(Rn):

∂bRn = D�(∂bRn)+
(
∂b�
)
(Rn), ∂ᾱRn = D�(∂ᾱRn)+

(
∂ᾱ�

)
(Rn),

where we have the identities since b∂bα̃ = −1/(ln b)2 and ∂ᾱα̃ = 1,

∂b�( f ) = A −10

n∑
j=1

cn, j b
j−1
(
j

(
� j + 2

ln b
Tj

)
− 2

| ln b|2 Tj

)

−A −10

[
r∂r + 2

(
1− n + α̃ − 1

| ln b|2
)](− 2

ln b
T1 +A −10 �0 + 2

| ln b|2 Tj

)

+A −10

[(
r∂r + 2

(
1− n + α̃ − 1

| ln b|2
))

f
]
,

∂ᾱ�( f ) = bA −10 f + bA −10

(
− 2

ln b
T1 +A −10 �0

)
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We have derived from (2.46) that ‖D�‖I2−1→I2−1
� ζ 2

0 , hence, Id− D� is invertible

on I2−1. In particular, we have the estimates

‖∂bRn‖I2−1
= ∥∥(Id− D�)−1

(
∂b�
)
(Rn)

∥∥I2−1
�
∥∥(∂b�)(Rn)

∥∥I2−1
,

‖∂ᾱRn‖I2−1
= ∥∥(Id− D�)−1

(
∂ᾱ�

)
(Rn)

∥∥I2−1
�
∥∥(∂ᾱ�

)
(Rn)

∥∥I2−1
.

Using (2.40), ‖ b j−1
| log b|2 Tj‖I0−1

� 1, the estimate on Rn , we have by (2.17):

∥∥(∂b�)(Rn)
∥∥I2−1

≤
n∑
j=1

(
b j−1‖A −10

(
� j + 2

ln b
Tj

)
‖I2−1

+ ‖A −10 b j−1 1

| ln b|2 Tj‖I2−1

)

+ ‖A −10

(
r∂r + 2

(
1− n + α̃ − 1

| ln b|2
)](− 2

ln b
T1 +A −10 �0 + 2

| ln b|2 Tj

))
‖I2−1

+ ‖A −10

[(
r∂r + 2

(
1− n + α̃ − 1

| ln b|2
))Rn‖I2−1

� 1+ ‖Rn‖I0−1
� 1+ b−1‖Rn‖I2−1

� 1.

Similarly, we have by (2.17),

∥∥(∂ᾱ�
)
(Rn)

∥∥I2−1
≤ ‖bA −10 Rn‖I2−1

+ b‖A −10

(
− 2

ln b
T1 +A −10 �0

)
‖I2−1

� ‖bRn‖I0−1
+ b‖ − 2

ln b
T1 +A −10 �0‖I0−1

� ‖Rn‖I2−1
+ b � b.

Hence ‖∂ᾱRn‖I0−1
� b−1‖∂ᾱRn‖I2−1

� 1.

Computation of R1 : For n = 1 a refinement is necessary. The equation forR1 is

A0R1 = b
[
r∂r + 2α̃

]
R1 + 2b

(
r∂r T1 + 2

ln b
T1

)
+
[
r∂r + 2α̃

]
b

(
− 2

ln b
T1 +A −10 �0

)
.

We look for a solution under the form R1(r) = R1,1(r)+R1,2(r + 1)+ R̃ where

R1,1 = −(
1

2
− 1

2 ln b
)

∞∑
i=1

(1)i−1
(2)i i !2i b

i r2i , (∂rr+ 3

r
∂r−br∂r )R1,1=−(1− 1

ln b
)b.

R1,2 = − 1

2 log b

∞∑
i=1

(1)i−1
(2)i i !2i b

i r2i
[
2 ln(r)− 1

i
−�(i + 2)− γ

]
,

(
∂2r +

3

r
∂r − br∂r

)
R1,2 = − b

log b
(2 log r − 1),
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and we used the notation (a)i = �(a+i)
�(a)

, where � is the Gamma function. We then
have the identity

A0R̃1 − b(r∂r + 2α̃)R̃1

=
(
1− 1

log b

)
b + b

log b
(2 log(r + 1)− 1)+ 2b(r∂r T1 + 2

log b
T1)

+
[
r∂r + 2α̃

]
b

(
− 2

ln b
T1 +A −10 �0

)

−
((

4r

〈r〉4 −
4

r

)
∂r + 8

〈r〉4
)
R1,1 −

((
4r

〈r〉4 −
1

r
− 3

r + 1

)
∂r

+ 8

〈r〉4 + b∂r

)
R1,2(r + 1)

+ 2bα̃(R1,1 +R1,2(r + 1)).

Each line in the right hand side above contains cancellations as r → ∞: the first is
O(br−1 log r) from (2.20), so is the second from the definition ofR1,1 andR1,2. For
the last line, ‖R1,1 + R1,2‖I0−1

� 1 and |α̃| � | log b|−1. This shows that the right
hand side is of size | log b|−1 in I0−1. So that ‖R̃1‖I0−1

� | log b|−1, ‖b∂bR̃1‖I0−1
�

| log b|−1 and ‖∂ᾱR̃1‖I0−1
� 1.

Computation of R0 : For n = 0 a refinement is also necessary. The equation for R0
is

A0R0 = b
[
r∂r + 2

(
1+ α̃

)]
R0 +

[
r∂r + 2

(
1+ α̃

)]
b

(
− 2

ln b
T1 +A −10 �0

)
.

We look for a solution under the form R0(r) = R0,1(r)+R0,2(r + 1)+ R̃0 where

R0,1 = 1

2

∞∑
i=1

1

(2)i2i
bi r2i , (∂rr + 3

r
∂r − b(r∂r + 2))R0,1 = b

R0,2 = 1

2 log b

∞∑
i=1

1

(2)i2i
bi r2i [2 log(r)−�(i + 2)− γ ], (∂rr + 3

r
∂r

−b(r∂r + 2))R0,2 = 2b

log b
log r

so that

A0R̃0 − b(r∂r + 2α̃)R̃0

= −b − 2b

log b
log(r + 1)+

[
r∂r + 2+ 2α̃

]
b

(
− 2

ln b
T1 +A −10 �0

)

−
((

4r

〈r〉4 −
4

r

)
∂r + 8

〈r〉4
)
R1,1 −

((
4r

〈r〉4 −
1

r
− 3

r + 1

)
∂r
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+ 8

〈r〉4 + b∂r

)
R1,2(r + 1)

+ 2bα̃(R0,1 +R0,2(r + 1)).

In the right hand side, the first line is O(br−1 log r) from (2.20), and so is the second
from the definition of R0,1 and R0,2. For the last line, ‖R0,1 + R0,2‖I0−1

� 1 and

|α̃| � | log b|−1. Therefore the right hand side is of size | log b|−1 in I0−1, and we get

‖R̃0‖I0−1
+ ‖b∂bR̃0‖I0−1

� | log b|−1 and ‖∂ᾱR̃0‖I0−1
� 1.

Step 5 Number of zeros: For the case n = 0, the identity (2.28) gives with (2.29),
(2.18) and (2.16):

φin
0 (r) = r2

〈r〉4 + b

(
− 2

ln b
T1 +A −10 �0

)
+ 2ᾱb

(
− T1 + S0

)
+ bR0.

(2.47)

From the pointwise bounds (2.39), (2.20), (2.32) and (2.33), and |ᾱ| � | ln b|−2 we
infer:

∣∣∣∣b
(
− 2

ln b
T1 +A −10 �0

)
+ 2ᾱb

(
− T1 + S0

)
+ bR0

∣∣∣∣ < r2

〈r〉4

on (0, R0] for ζ0 small enough and b small enough, so φin
0 (r) has no zero. For n ≥ 1

one has that, from the identities (2.28) and (2.29), the bounds (2.39), (2.20), (2.30),
(2.31), (2.34), (2.35) and |ᾱ| � | ln b|−2:

φin
n = T0(r)+ 2nbT1(r)+ φ̃in

n (r), with |φ̃in
n (r)| + r |∂r φ̃in

n (r)| ≤ bζ 2
0 r

2〈r〉−2〈ln〈r〉〉,
(2.48)

where the bound is valid on [0, R0]. We recall from (2.19):

T0(r)+ 2nbT1(r) = 1

r2
− bn log(r)+O(b + r−3) as r →∞, (2.49)

∂r T0(r)+ 2nb∂r T1(r) = −2
r3
− bn

r
+O(b| ln r |r−2 + r−4) as r →∞.

(2.50)

From the above identities, we obtain that φin vanishes exactly once on [0, R0] at the
point r0,

r0 = 1√
b
√
n| log b| (1+O(ζ 2

0 ), (2.51)
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and that there exists a constant c > 0 such that

c(r0 − r)

r0r2
≤ φin

n (r) ≤ (r0 − r)

cr0r2
on [1, r0], (r0 − r)

cr0r2
≤ φin

n (r) ≤ c(r0 − r)

r0r2
on [r0, R0].

(2.52)

��
Lemma 2.4 Let V be a smooth function satisfying |∂kr V | � | ln b|−1r2−k〈r〉−4 for
k = 0, 1. Then for any fixed n, for ζ0 small enough, there exists b∗ > 0 such that for
all 0 < b < b∗ and α̃ = O(| ln b|−1), there exists a solution φ

in,V
n to

A0φ
in,V
n − b

[
r∂r + 2(1− n + α̃)

]
φin,V
n + r−1∂r (Vφin,V

n ) = 0

on [0, R0] which satisfies

‖φin,V
n − φin

n ‖I−20
� 1

| ln b| . (2.53)

Proof We only treat the case n ≥ 1. Indeed, from Lemma 2.3, φin vanishes once on
[0, R0] for n ≥ 1 at the point r0 defined by (2.51), whereas for n = 0 it does not.
Reintegrating the Wronskian relation is then harder in the case n = 1, and the case
n = 0 can be treated with the very same ideas but simpler computations. We shall use
results on φin proved in the “Number of zeros” part of the proof of Lemma 2.3.

Step 1 Uniform asymptotic for the second fundamental solution: We claim that there
exists � another linearly independent solution to

A0� − b(r∂r + 2(1− n + α̃))� = 0

on [0, R0] such that:

|�(r)| ≤ C and |∂r�(r)| ≤ Cr | ln r |〈r〉−2〈ln r〉−1 on [0, R0] (2.54)

with a constant C that is independent of b and α̃. Indeed, from standard arguments,
the Wronskian W = �′φin

n − �φin′
n is (fixing the integration constant without loss of

generality):

W = r

(1+ r2)2
eb

r2
2 (2.55)

so the second fundamental solution is given by, reintegrating the Wronskian relation
(we again fix here an integration constant without loss of generality):

�(r) = φin(r)
∫ r

1

W (ξ)

|φin(ξ)|2 dξ = φin(r)
∫ r

1

ξeb
ξ2

2

(1+ ξ2)2|φin(ξ)|2 dξ.
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The asymptotic near the origin follows from (2.28), (2.48) and (2.19), and direct
computations, so we only focus on the asymptotic of � for r large. For 1 ≤ r ≤ r0
from (2.52):

|�(r)| � (r0 − r)r0
r2

∫ r

1

ξ

(r0 − ξ)2
dξ � 1.

Next, for r ≥ r0, we avoid the singularity in the integral by noticing that there exists
a constant C such that

�(r) = Cφin(r)+ φin(r)
∫ r

R0

W (ξ)

|φin(ξ)|2 dξ.

To estimate C , one computes from the first formula for � and the asymptotic (2.52)
near r0 of φin:

�′(r0) = lim
r↑r0

(
∂rφ

in(r)
∫ r

1

W (ξ)

|φin(ξ)|2 dξ + W (r)

φin(r)

)
= O(r−10 ).

Similarly, we have

�′(r0) = C(φin(r0))
′ + lim

r↓r0

(
∂rφ

in(r)
∫ r

R0

W (ξ)

|φin(ξ)|2 dξ + W (r)

φin(r)

)

= C(φin(r0))
′ +O(r−10 ).

As ∂rφ
in(r0) = −2r−30 (1+O(1)) we obtain C = O(r20 ) = O(b−1| log b|−1). For all

r0 ≤ r ≤ R0 we find from (2.52):

∣∣∣∣φin(r)
∫ r

R0

W (ξ)

|φin(ξ)|2 dξ

∣∣∣∣ � (r − r0)r20
r

∫ R0

r

dξ

(ξ − r0)2ξ
� 1

and

|Cφin(r)| � r20
(r − r0)

r20r
−1 � 1.

Hence |�(r)| � 1 for r0 < r ≤ R0 as well. This proves (2.54) for �. The proof for
∂r� is verbatim the same so that we skip it.

Step 2 Bound for the resolvent under orthogonality condition: Let a solution to
Ab,α̃u = r−1∂r (V f ) be given by

u(r) = φin(r)
∫ R0

r

�(ξ)

W (ξ)
ξ−1∂ξ (V f )(ξ)dξ + �(r)

∫ r

0

φin(ξ)

W (ξ)
ξ−1∂ξ (V f )(ξ)dξ,
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then we claim the resolvent bound:

‖u‖I−20
� 1

| ln b|
(
‖ f ‖X−21

+ ‖r∂r f ‖X−21

)
. (2.56)

We now prove this claim. From the hypothesis on V , (2.48) and (2.54), the first term
can be bounded by

∣∣∣∣φin(r)
∫ R0

r

�(ξ)

W (ξ)
ξ−1∂ξ (V f )(ξ)dξ

∣∣∣∣
� 1

| ln b|r
2
(
〈r〉−4 + b〈r〉−2〈ln〈r〉〉

) ∫ R0

r

(
|ξ |−1| f (ξ)| + |∂ξ f (ξ)|

)
dξ

�
‖ f ‖X−21

+ ‖r∂r f ‖X−21

| ln b| r2
(
〈r〉−4 + b〈r〉−2〈ln〈r〉〉

) ∫ R0

r
ξ 〈ξ 〉−4〈ln〈ξ 〉〉dξ

�
‖ f ‖X−21

+ ‖r∂r f ‖X−21

| ln b| r2
(
〈r〉−6〈ln〈ξ 〉〉 + b〈r〉−4〈ln〈r〉〉2

)

�
‖ f ‖X−21

+ ‖r∂r f ‖X−21

| ln b| r2〈r〉−4.

For the second term, we use the decomposition (2.48), the identities (2.16) and (2.55),
the bound (2.54) and the bounds on V to get

∣∣∣∣�in(r)
∫ r

0

φin(ξ)

W (ξ)
ξ−1∂ξ (V f )(ξ)dξ

∣∣∣∣

=
∣∣∣∣∣∣�

in(r)
∫ r

0

〈ξ 〉4e−b r2
2

ξ2

(
ξ2

〈ξ 〉4 + bT1 + φ̃in
)

∂ξ (V f )(ξ)dξ

∣∣∣∣∣∣
=
∣∣∣∣�in(r)

(
V (r) f (r)e−

br2
2 −

∫ r

0
bξV f e−

bξ2

2 dξ

+
∫ r

0

〈ξ 〉4e−b r2
2

ξ2

(
bT1 + φ̃in

)
∂ξ (V f )(ξ)dξ

⎞
⎠
∣∣∣∣∣∣

� 1

| ln b|
(
r−2〈r〉−4| f (r)| + b

∫ r

0
ξ3〈ξ 〉−4| f |dξ

+b
∫ r

0
ξ 〈ξ 〉−2〈ln〈ξ 〉〉(| f | + ξ |∂ξ f |)dξ

)

�
‖ f ‖X−21

+ ‖r∂r f ‖X−21

| ln b|
(
r4〈r〉−8 + b

∫ r

0
ξ5〈ξ 〉−8dξ + b

∫ r

0
ξ3〈ξ 〉−6〈ln〈ξ 〉〉dξ

)

�
‖ f ‖X−21

+ ‖r∂r f ‖X−21

| ln b| r2〈r〉−4
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because r � b−1. Combining the above two bounds yields the following estimate on
[0, R0],

|u(r)| �
‖ f ‖X−21

+ ‖r∂r f ‖X−21

| ln b| r2〈r〉−4.

Differentiating the identity satisfied by u yields

∂r u = ∂rφ
in(r)

∫ R0

r

�(ξ)

W (ξ)
ξ−1∂ξ (V f )(ξ)dξ + ∂r�(r)

∫ r

0

φin(ξ)

W (ξ)
ξ−1∂ξ (V f )(ξ)dξ.

Hence, computing the same way the integral terms as we just did, and using (2.48),
(2.50) and (2.54) we get

|∂r u(r)| �
‖ f ‖X−21

+ ‖r∂r f ‖X−21

| ln b| r〈r〉−4.

Using the definition of A0, we write

∂2r u =
(
1

r
− Q

r

)
∂r u − ∂r Q

r
u + b(r∂r + 2(1− n + α̃))u + r−1∂r (V f ),

from which and the hypotheses on V and the bounds on u and ∂r u, we obtain

|∂2r u| �
‖ f ‖X−21

+ ‖r∂r f ‖X−21

| ln b| 〈r〉−4.

The bounds on u, ∂r u and ∂2r u imply (2.56).

Step 3 Fixed point: We look for a solution to
[
A0 − b(r∂r + 2(1 − n + α̃)) −

r−1∂r (V ·)
]
φin,V = 0 under the form

φin,V = φin + φ̃in,V .

Then, φ̃in,V solves

[
A0 − br∂r + 2b(1− n + α̃)

]
φ̃in,V = r−1∂r (Vφin)+ r−1∂r (V φ̃in,V ).
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We solve this using a fixed point argument in I−20 . As ‖φin‖I−21
� 1 from Lemma 2.3,

as ‖·‖I−21
� ‖·‖I−20

from the very definition of these spaces, the bound (2.56) implies

‖[A0 − br∂r + 2b(1− n + α̃)
]−1

(r−1∂r (V φ̃in))‖I−20

� 1

| ln b| (‖φ
in‖X−21

+ ‖r∂rφin‖X−21
) � 1

| ln b| ‖φ
in‖I−21

� 1

| ln b| ,
∥∥∥A0−br∂r+2b(1−n+α̃)

]−1
(r−1∂r (V φ̃in,V ))

∥∥∥I−20

�
‖φ̃in,V ‖I−21

| ln b| �
‖φ̃in,V ‖I−20

| ln b| .

Hence, the mapping which to φ̃in,V assigns

[
A0 − br∂r + 2b(1− n + α̃)

]−1 (
r−1∂r (Vφin)+ r−1∂r (V φ̃in,V )

)

is a contraction in BI−20
(0,C | ln b|−1) forC large enough and then for b small enough.

Its unique fixed point is the desired solution, and satisfies the conclusion of the lemma.
��

2.2 Analysis in the Outer Zone r ≥ R0

In this part we solve problem (2.1) in the interval [R0,∞) where the potential term
can be treated as a small perturbation. To this end, we rewrite equation (2.1) as

∂2r φ + 3

r
∂rφ − br∂rφ − αφ − 4

r(1+ r2)
∂rφ + 8

(1+ r2)2
φ = 0. (2.57)

Introducing the change of variable

φex(r) = q(z) with z = br2

2
, (2.58)

yields the equation satisfied by q,

(
Kθ + P0

)
q(z) = 0, z ≥ z0 = ζ 2

0

2
, θ = α

2b
, (2.59)

where Kθ is a Kummer type operator defined by

Kθ = z∂2z + (2− z)∂z − θ, (2.60)

and P0 is the potential

P0 = − 2b

(b + 2z)
∂z + 4b

(b + 2z)2
. (2.61)
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We will treat the differential operator P0 as a perturbation ofKθ in the outer zone. We
first claim the following.

Lemma 2.5 (Properties of Kθ )

(i) (Inversion) Assume that −θ /∈ N, then an explicit inversion of Kθ is given by

K−1θ f := hθ (z)
∫ z

z0
h̃θ (ξ) f (ξ)ξe−ξdξ + h̃θ (z)

∫ ∞
z

hθ (ξ) f (ξ)ξe−ξdξ, (2.62)

where hθ and h̃θ are the two linearly independent solutions to Kummer’s equation
Kθh = 0:

hθ (z) = 1

z�(θ)
+ 1

�(θ − 1)

∞∑
i=0

(θ)i

(2)i i ! z
i
[
ln z +�(θ + i)−�(1+ i)−�(2+ i)

]
,

(2.63)

h̃θ (z) =
∞∑
i=0

(θ)i

(2)i i ! z
i , (2.64)

where we recall (a)i = �(a+i)
�(a)

, � is the Gamma function, and � = �′/� is the
digamma function. Moreover, we have the asymptotic behavior as z→∞,

hθ (z) = z−θ
(
1+O(z−1)

)
, h̃θ (z) = �(2)

�(θ)
ezzθ−2

(
1+O(z−1)

)
. (2.65)

and for z0 ≤ z ≤ 2, for C dependent of z0 if n = 0 and independent if n ≥ 1:

|hθ (z)| + |h̃θ (z)| � C (2.66)

(ii) (Continuity) Let a ∈ R, and E p,a
0 be the Banach space of functions f : [z0,∞)→

R equipped with the norm

‖ f ‖Ea := sup
z≥z0
〈z〉−a(| f (z)| + |z∂z f (z)| + |z2∂2z f (z)|).

Then for any continuous function f : [z0,∞) → R, we have the estimate for
a > −θ :

‖K−1θ f ‖Ea � C(z0) sup
z0≤z<∞

〈z〉−a | f (z)|. (2.67)

Proof (i) See formulas 13.1.2, 13.1.6 and 13.1.22 in [1] for the definition of hθ , h̃θ

and the Wronskian W (hθ , h̃θ ) respectively. For the bound for z0 ≤ z ≤ 2, notice that
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from the Gamma function’s recurrence relation and the bound on ᾱ:

�(θ) = �(θ + n)

θ(θ + 1)...(θ + n − 1)
= �(1+ α̃)

(1− n + α̃)(2− n + α̃)...(−1+ α̃)α̃

∼ (−1)n
(n − 1)!α̃ +O(1) = O(| ln b|), (2.68)

for n ≥ 1, and �(θ) = �(1+ α̃) = O(1) for n = 0.
(i i) The proof follows from straightforward computations. Let

D = sup
z0≤z<∞

〈z〉−a | f (z)|,

From (2.65), we compute for z ≥ 2,

∣∣∣∣h̃θ (z)
∫ ∞
z

f hθ ξe
−ξdξ

∣∣∣∣ � Dzθ−2ez
∫ ∞
z

ξaξ−θ ξe−ξdξ � Dza−1,

and from (2.63), we compute for z ∈ [z0, 2],
∣∣∣∣h̃θ (z)

∫ ∞
z

f hθ ξe
−ξdξ

∣∣∣∣ �
∣∣∣∣h̃θ (z)

∫ 2

z
f hθ ξe

−ξdξ + h̃θ (z)
∫ ∞
2

f hθ ξe
−ξdξ

∣∣∣∣
� D

∫ 2

z
ξdξ + D

∫ ∞
2

ξa−θ+1e−ξdξ � D.

Similarly, we have for z ≥ 2, as a > −θ

∣∣∣∣hθ (z)
∫ z

z0
f h̃θ ξe

−ξdξ

∣∣∣∣ � Dz−θ

∫ 2

z0
ξdξ + Dz−θ

∫ z

2
ξaξθ−2ξ1dξ � Dza .

and for z0 ≤ z ≤ 2,

∣∣∣∣
∫ z

z0
f h̃θ ξe

−ξdξ

∣∣∣∣ � D
∫ z

z0
ξdξ � D.

This proves the continuity bound (2.67) forK−1θ f .We now take derivatives. For z ≥ 2,
we estimate from (2.62), (2.65):

∣∣∣z∂zK−1θ f (z)
∣∣∣ �

∣∣∣∣z∂z h̃θ

∫ ∞
z

f hθ ξe
−ξdξ

∣∣∣∣+
∣∣∣∣z∂zhθ

∫ z

z0
f h̃θ ξe

−ξdξ

∣∣∣∣
� D

(
ezzθ−1za−θ+1e−z + z−θ za+θ

)
� Dza .
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For z ∈ [z0, 2], we estimate from (2.64):

∣∣∣z∂zK−1θ f (z)
∣∣∣ �

∣∣∣∣z∂z h̃θ

∫ ∞
z

f hθ ξe
−ξdξ

∣∣∣∣+
∣∣∣∣z∂zhθ

∫ z

z0
f h̃θ ξe

−ξdξ

∣∣∣∣
� D

( ∫ 2

z
ξdξ +

∫ ∞
2

ξa−θ+1e−ξdξ
)+ D

∫ z

z0
ξdξ � D.

Using KθK−1θ f = f and the definition of Kθ , we have the estimate for z ≥ 2,

|z∂2zK−1θ f (z)| � |z∂zK−1θ f (z)| + |K−1θ f (z)| � Dza,

and for z ∈ [z0, 2],

|z2∂2zK−1θ f (z)| � |z∂zK−1θ f (z)| + |zK−1θ f (z)| � D.

Collecting the above estimates yields the estimate (2.67). This concludes the proof of
Lemma 2.5. ��

We are now in the position of computing the solution q to equation (2.59) by a
perturbation argument.

Lemma 2.6 (Outer eigenfunctions for the radial mode) Fix n ∈ N, and θ = 1− n +
1/ ln b + ᾱ. For 0 < ζ0 � 1 and any small 0 < δ � 1, there exist b∗ > 0 such that
for all 0 < b ≤ b∗, for all ᾱ = O(| ln b|−2) there exists a smooth solution

q(b, ᾱ, z) = �(θ)hθ (z)+ G(b, ᾱ, z) (2.69)

to (2.59) on [z0,∞), where hθ is introduced in Lemma 2.5 andG satisfies the following
estimates for some universal C > 0:

‖G‖E−θ+δ � b| ln b|C , ‖b∂bG‖E−θ+δ � b| ln b|C , ‖∂θG‖E−θ+δ
0

� b| ln b|C .(2.70)

where the constants in the estimates depend on z0. Finally, on the interval [z0,∞), q
does not vanish for n = 0, 1, while for n ≥ 2 it possesses n − 1 zeros.

Lemma 2.7 Assume P0 is replaced by P0(q) + 1
2∂z(Ṽ q)/z where Ṽ satisfies |Ṽ | +

|z∂z Ṽ | � b| ln b|−1z−1 on [z0,∞). Then existence result of Lemma 2.6 of a solution
qV = �(θ)hθ (z)+ GV (b, ᾱ, z) and the first bound in (2.70) still hold true.

Proof of Lemma 2.6 From the bound on the Gamma function (2.68), we will simply
consider a solution of the form q(z) = hθ (z)+ G(b, ᾱ, z) (with the abuse of notation
of keeping the notation G), and prove the estimate (2.70) for G(b, ᾱ, z), which will
prove the Lemma upon multiplication by �(θ).

Step 1 Existence and bounds: Note that P0 has the form:

P0(q) = V1q + V2∂zq, with |V1| + |zV1| � bz−1. (2.71)
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Let us write from (2.69) the equation satisfied by G,

KθG + P0G + P0hθ = 0.

Let � the affine mapping defined as

�( f ) = −K−1θ

[
P0 f + P0hθ

] ≡ D�( f )+ D�(hθ ),

where

D�( f ) = −K−1θ

[
P0 f

]
,

and K−1θ is given by (2.62). We estimate from the definition (2.61) of P0 and (2.67),

‖D�(hθ )‖E−θ+δ � ‖K−1θ P0hθ‖E−θ+δ � sup
z∈[z0,∞)

〈z〉θ−δ |P0hθ | � b.

From (2.67), we estimate for all f ∈ E0,−θ+δ ,

‖D�( f )‖E−θ+δ � sup
z∈[z0,∞)

〈z〉θ−δ |P0 f (z)| � b‖ f ‖E−θ+δ . (2.72)

It follows that� is a contractionmapping on BE−θ+δ (0, Mb) for someM = M(ζ0) > 0
large enough. Hence, there exists a unique fixed point G with

G = �(G) with ‖G‖E−θ+δ � b.

Differentiating the above fixed point relation yields:

∂θG = D�(∂θG)+ (∂θ�)(G), ∂bG = D�(∂bG)+ (∂b�)(G).

Since P0 depends on b and not on θ , whereas hθ , h′θ and Kθ depend on θ and not on
b, we have the identities:

(∂θ�)(G) = −∂θ (K−1θ )(P0(G + hθ ))−K−1(P0∂θhθ ),

(∂b�)(G) = −K−1θ (∂b P0(G + hθ )).
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We compute from (2.63) that:

∂θhθ (z) = − �(θ)

z�(θ)
− �(θ − 1)

�(θ − 1)

∞∑
i=0

(θ)i

(2)i i ! z
i
[
ln z +�(θ + i)−�(1+ i)−�(2+ i)

]

+ 1

�(θ − 1)

∞∑
i=0

(θ)i

(2)i i ! z
i
[
ln z +� ′(θ + i)−�(1+ i)−�(2+ i)

]

+ 1

�(θ − 1)

∞∑
i=0

(θ)i (�(θ + i)−�(θ))

(2)i i ! zi
[
ln z

+�(θ + i)−�(1+ i)−�(2+ i)
]
.

Hence, we infer from |�(θ)| + |�(θ − 1)| � |α̃|−1 � | ln b|, |� ′(θ + i)| � |α̃|−2 �
| ln b|2 and |(θ)i (�(θ + i)−�(θ))| � 1 the rough upper bound on [z0,∞):

|∂θhθ (z)| � | ln b|2z−1 ln〈z〉〈z〉−θ ,

which extends to derivatives. Similarly, we have from (2.64)

∂θ h̃θ (z) =
∞∑
i=0

(θ)i (�(θ + i)−�(θ))

(2)i i ! zi ,

satisfies the rough upper bound |∂θ h̃θ (z)| � ln〈z〉〈z〉θ−2ez on [z0,∞). We get from
(2.62):

(∂θK−1θ ) f = (∂θhθ )(z)
∫ z

z0
h̃θ (ξ) f (ξ)ξ2e−ξdξ + hθ (z)

∫ z

z0
∂θ h̃θ (ξ) f (ξ)ξ2e−ξdξ

+∂θ (h̃θ )(z)
∫ ∞
z

hθ (ξ) f (ξ)ξ2e−ξdξ + h̃θ (z)
∫ ∞
z

∂θ (hθ )(ξ) f (ξ)ξ2e−ξdξ.

Hence, as from the above, the bounds for hθ and h̃θ still hold up to a logarithmic loss
in z and b and δ > 0, using the same argument as in the proof of Lemma 2.5 we get:

‖(∂θK−1θ ) f ‖E−θ+δ � | ln b|2 sup
z0≤z<∞

〈z〉θ− δ
2 | f (z)|

and from (2.67):

‖K−1(P0∂θhθ )‖E−θ+δ � ‖P0∂θhθ‖E−θ+δ � b| ln b|2.

Thus, as δ is small, from the definition of P0:

‖∂θ (K−1θ )(P0(G + hθ ))‖E−θ+δ

� | ln b|2‖P0(G + hθ )‖E−θ+ δ
2

� b| ln b|2‖G + hθ‖E−θ+δ � b| ln b|2.
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We proved above the continuity bound ‖D�‖C(E−θ+δ) � b and the identity,

∂θG = D�(∂θG)− ∂θ (K−1θ )(P0(G + hθ ))−K−1(P0∂θhθ ).

Hence one can invert the operator I d − D� for b small enough, with ‖I d +
D�‖C(E−θ+δ) � 1 and the above identity gives:

‖∂θG‖E−θ+δ = ‖(I d − D�)−1
(
∂θ (K−1θ )(P0(G + hθ ))+K−1(P0∂θhθ )

)
‖E−θ+δ

� b| ln b|2.

From the definition of P0 and (2.67) we find:

‖K−1θ (∂b P0(G + hθ ))‖E−θ+δ � ‖∂b P0(G + hθ )‖E−θ+δ � ‖G + hθ‖E−θ+δ � 1.

Hence we obtain similarly from the relation ∂bG = D�(∂bG)−K−1θ (∂b P0(G + hθ ))

the bound:

‖∂bG‖E−θ+δ � ‖(I d − D�)−1K−1θ (∂b P0(G + hθ ))‖E−θ+δ � 1.

Step 2 Number of zeros: This is a consequence of the well-known properties of Kum-
mer’s function hθ (see [1]). Since θ = 1− n+ 1

ln b +O
(| ln b|−2), hθ has no positive

zeros for n = 0 and possesses �θ� = n−1 zeros on the interval (0,+∞). The estimate
(2.70) and the asymptotic behavior (2.65) ensure that there exists z∗ > 0 such that
|q(z)| �= 0 and z∂zq(z) = −θ z−θ (1 + O(b)) �= 0 for z ≥ z∗. Thus, q(z) does not
change sign for z ≥ z∗. It remains to show that on the interval z ∈ (z0, z∗), q has the
same number of zeros than hθ . We consider two cases.
- If |hθ (z)| ≥ c0 for all z ∈ (z0, z∗) for some c0 > 0, then the estimate (2.70) implies
that |q(z)| > 0 as well on (z0, z∗) for b sufficiently small.
- If hθ (z) has n − 1 zeros on (z0, z∗), say h(z1) = h(z2) = · · · = h(zn−1) = 0 with
z1 < z2 < · · · < zn−1. By definition, we have |hθ (z)| ≥ δ0 on (z0, z∗) \∪n−1j=1Bz j (ε0)

for a fixed small constant 0 < ε0 � 1 and δ0 = δ0(ε0) > 0. Using (2.70) yields
|q(z)| > 0 for z ∈ (z0, z∗) \ ∪n−1j=1Bε0(z j ) for b small enough. Consider z j a zero of
hθ , namely that hθ (z j ) = 0. Since hθ is a non-zero solution of a second order dif-
ferential equation, necessarily |h′θ (z j )| > 0. We may assume that h′θ (z j ) > 0, which
infers that there are z−j ∈ (z j − ε0, z j ) and z+j ∈ (z j , z j + ε0) such that h(z−j ) < 0

and h(z+j ) > 0. We then use (2.70) and the intermediate value Theorem to conclude

that there is z̃ j ∈ (z−j , z+j ) for which q(z̃ j ) = 0. We also note that |h′θ (z j )| ≥ c1 > 0
for z ∈ Bε0(z j ), from which and (2.70), we deduce that |q ′(z)| �= 0 for z ∈ Bε0(z j ).
Hence, z̃ j is the only zero of q(z) in Bε0(z j ). This concludes the proof of Lemma 2.6.

��
Proof of Lemma 2.7 The decomposition (2.71) and the associated bounds still hold for
P0+ 1

2∂z(Ṽ ·)/z. This was the only information used on P0 in the proof of Lemma 2.6,
so the very same proof applies. ��
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2.3 Conclusion via matched asymptotic expansions, proof of Proposition 1.6

From Lemmas 2.3 and 2.6, we are now able to derive the full solution to the eigen-
problem (2.1). In particular we claim the following.

Lemma 2.8 (Matched eigenfunction for the radial mode) Fix n ∈ N. Then there exists
C > 0, such that for ζ0 small enough, there exists 0 < b∗ � 1 such that for all
0 < b ≤ b∗, there exists |ᾱn| ≤ C | ln b|−2 such that the following holds for the
function

φn(r) :=
{

φin
n (r) for r ≤ R0,

β0φ
ex
n (r) for r ≥ R0,

β0 = φin
n (R0)

φex
n (R0)

, R0 = ζ0√
b
, (2.73)

where φin
n = φin

n [b, ᾱ] and φex
n (r) = φex

n [b, ᾱ](r) = q[b, ᾱ]
(
br2
2

)
= q (z) are

described in Lemmas 2.3 and 2.6 respectively.

(i) The function φn is a smooth solution to the equation

(
A0 − br∂r

)
φn = 2b

(
1− n + 1

ln b
+ ᾱn

)
φn . (2.74)

(ii) The estimates (2.3) and (2.4) for αn hold true. The estimate (2.6) for φn holds true.

Corollary 2.9 For the perturbed operator A0φn − br∂rφn + r−1∂r (V ·) where V sat-
isfies |∂kr V | � | ln b|−1r2−k〈r〉−4 for k = 0, 1, then item (i) of Lemma 2.8 holds true
if the inner and outer eigenfunctions are those associated to the perturbed problems
described by Lemma 2.4 and 2.7 respectively.

Proof of Lemma 2.8 Recall from (2.60) the relation

θ = 1− n + α̃, α̃ = 1

ln b
+ ᾱ. (2.75)

Since the equation (2.74) is a second order ODE with smooth coefficients outside the
origin, it suffices to prove that the two functions and their first order derivatives agree
on both sides of R0, and (2.73) will then provide a global solution to (2.74) on (0,∞).
From the special choice of β0 this is equivalent to:

∂rφ
in
n (R0)

∂rφex
n (R0)

= β0 ⇐⇒ �(b, ᾱ) = (r∂r )φin
n (R0)

2φin
n (R0)

− (z∂z)q(z0)

q(z0)
= 0. (2.76)

Therefore, to prove the Lemma it suffices to prove that for b small enough there exists
ᾱ = ᾱn(b) such that �(b, ᾱ) = 0, and such that item (ii) holds true. We rely in a
standard way on implicit function theorem. The estimate for ∂bᾱn then follows by

∂bᾱn = − (∂b�)(b, ᾱn)

(∂ᾱn�)(b, ᾱn)
. (2.77)
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To ease the writing, we mention only the dependence in b and ᾱ at key locations in
what follows.

Step 1 The interior term: It is convenient to rewrite from (2.28) the expression of φin
n

as

φin
n [b, ᾱ](r) = Fn[b](r)+ ᾱbGn[b, ᾱ](r)+ En[b, ᾱ](r), (2.78)

where Fn and ᾱGn are leading order terms and En is a remainder:

Fn[b](r) =
n∑
j=0

cn, j b
j Tj (r), Gn[b, ᾱ]=

n∑
j=0

b j
(
− cn, j Tj+1(r)+S j [b, ᾱ](r)

)
,

En[b, ᾱ](r) = b

(
− 2

ln b
T1(r)+A −1�0(r)

)
+ bRn[b, ᾱ](r). (2.79)

We have the following estimates from (2.20), (2.40), (2.31), and assuming |ᾱ| �
| ln b|−2:

2∑
0≤k≤2, 0≤�+�′≤1

|((r∂r )k(b∂b)�∂�′
ᾱ En)(R0)| ≤ C(ζ0)

b

| ln b| , (2.80)

Fn(R0) = b

(
− ln b

2
Hn(ζ0)+ Kn(ζ0)

)
+O(b

3
2 ),

(r∂r Fn(R0))(R0) = b

(
− ln b

2
ζ∂ζ Hn(ζ0)+ ζ∂ζ Kn(ζ0)

)
+O(b

3
2 ),

(2.81)

where Hn and Gn are defined by:

Hn(ζ0) =
n∑

i=1
cn,i d̂iζ

2(i−1)
0 , Kn(ζ0) = 1

ζ 2
0

+
n∑

i=1
cn,iζ

2(i−1)
0

(
d̂i ln ζ0 + di

)
.

(2.82)

Notice for 0 < ζ0 � 1 small that |Hn(ζ0)| �= 0. Gathering all these estimates and
(2.30) we arrive at

φin
n (R0) = b

(
− ln b

2
Hn(ζ0)+ Kn(ζ0)+ ᾱGn(R0)+O(

1

| ln b| )
)

,

r∂rφin
n (R0) = b

(
− ln b

2
ζ∂ζ Hn(ζ0)+ ζ∂ζ Kn(ζ0)+ ᾱr∂r Gn(R0)+O(

1

| ln b| )
)

,

∂b

(
1

b ln b
φin
n (R0)

)
= − 1

b| ln b|2 (ζ ∂ζ Kn(ζ0)+ ᾱr∂r Gn(R0)+O(
1

| ln b| ))

+ 1

b ln b
(ᾱ∂bGn(R0)+ ∂bE(R0)) = O

(
1

b| ln b|2
)

,
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∂b

(
1

b ln b
r∂rφin

n (R0)

)
= − 1

b| ln b|2 (ζ ∂ζ Kn(ζ0)+ ᾱr∂r Gn(R0)+O(
1

| ln b| ))

+ 1

b ln b
(ᾱ∂br∂r Gn(R0)+ ∂br∂r E(R0)) = O

(
1

b| ln b|2
)

,

∂ᾱ(φin
n (R0)) = bGn(R0)+ ᾱb∂ᾱGn(R0)+ b∂ᾱEn(R0)

= bGn(R0)+ bO(| ln b|−2)O(ln b)+ bO(| ln b|−1)
= b

(
Gn(R0)+O(| ln b|−1)) ,

∂ᾱ(r∂rφ
in
n (R0)) = br∂r Gn(R0)+ ᾱb∂ᾱr∂r Gn(R0)+ b∂ᾱr∂r En(R0)

= br∂r Gn(R0)+ bO(| ln b|−2)O(ln b)+ bO(| ln b|−1)
= b

(
r∂r Gn(R0)+O(| ln b|−1)) . (2.83)

We compute that, from (2.30):

|r∂rGn(R0)| + |Gn(R0)| ≤ C(n)| ln b|, with C(n) independent of ζ0.

The collection of the above identities gives us the following leading order expression
for the quantity involving the inner solution in (2.76):

(r∂r )φin
n (R0)

φin
n (R0)

= −
ln b
2 ζ∂ζ Hn(ζ0)+ ζ∂ζ Kn(ζ0)+ ᾱr∂rGn(R0)+O( 1

| ln b| )
− ln b

2 Hn(ζ0)+ Kn(ζ0)+ ᾱGn(R0)+O( 1
| ln b| )

=
ζ∂ζ Hn(ζ0)− 2

ln b ζ∂ζ Kn(ζ0)− 2
ln b ᾱr∂rGn(R0)+O( 1

| ln b|2 )

Hn(ζ0)− 2
ln b Kn(ζ0)− 2

ln b ᾱGn(R0)+O( 1
| ln b|2 )

= ζ∂ζ Hn(ζ0)

Hn(ζ0)
+ 2

ln b

Kn(ζ0)ζ ∂ζ Hn(ζ0)− Hn(ζ0)ζ ∂ζ Kn(ζ0)

H2
n (ζ0)

+ 2

ln b
ᾱ
Gnζ∂ζ Hn(ζ0)− Hn(ζ0)ζ ∂ζGn

Hn(ζ0)2
+O(| ln b|−2)

= ζ∂ζ Hn(ζ0)

Hn(ζ0)
+ 2

ln b

Kn(ζ0)ζ ∂ζ Hn(ζ0)− Hn(ζ0)ζ ∂ζ Kn(ζ0)

H2
n (ζ0)

+ ᾱ
O(1)

Hn(ζ0)2
+O(| ln b|−2), (2.84)

and

∂b

(
(r∂r )φin

n (R0)

φin
n (R0)

)
= ∂b

(
(b ln b)−1(r∂r )φin

n (R0)

(b ln b)−1φin
n (R0)

)

= ∂b((b ln b)−1(r∂r )φin
n (R0))(b ln b)−1φin

n (R0)− ∂b(b ln b)−1φin
n (R0)b ln b)−1(r∂r )φin

n (R0)

((b ln b)−1φin
n (R0))2

= O(b−1| ln b|−2)
((b ln b)−1φin

n (R0))2
= O

(
1

b| ln b|2
)

, (2.85)
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and

∂ᾱ

(
(r∂r )φin

n (R0)

φin
n (R0)

)
= ∂ᾱr∂rφin

n (R0)φ
in
n (R0)− ∂ᾱφin

n (R0)∂rφ
in
n (R0)

|φin
n (R0)|2

=
(
ζ∂ζGn(R0)+O(| ln b|−1)) (− ln b

2 Hn(ζ0)+O(1)
)− (Gn(R0)+O(| ln b|−1)) (− ln b

2 ζ∂ζ Hn(ζ0)+O(1)
)

(− ln b
2 Hn(ζ0)+O(1)

)2
= 2

ln b

Gnζ∂ζ Hn(ζ0)− ζ∂ζGnHn(ζ0)

H2
n (ζ0)

= O(1) (2.86)

where the constant in the two O(1) above are independent of ζ0.
The case n = 1: Injecting ᾱ = e1/| log b|2 + α̂, |α̂| � | ln b|−3 in the refined asymp-
totics (2.34) and (2.35) gives

φin
1 (r) = F1(r)+ α̂bG1(r)+ E1(r),

where

F1(r) = T0(r)+ 2bT1(r)+ b

(
− 2

ln b
T1(r)+A −10 �0

)

+ 2e1
| ln b|2 (−bT1(r)− 2b2T2(r)− b2

2

∞∑
i=2

(1)i−1
(2)i i !2i b

i−1r2i ln(r + 1))

− b

2

∞∑
i=1

(1)i−1
(2)i i !2i b

i r2i
{

1

ln b

[
2 ln(r+1)− 1

i
−�(i+2)−γ

]
+1− 1

ln b

}
,

G1(r) = 2(−T1(r)+ S0(r)− 2bT2 + bS1(r)),

E1(r) = bR̃1(r)+ 2e1
| ln b|2 (bS0(r)+ b2 S̃1(r)).

One has from (2.20), as d̂1 = −1/2, d1 = 1/4 and d̂2 = 1/16, e1 = ln 2− γ − 1 and
R0 = ζ0/

√
b:

F1(R0) = b

ζ 2
0

+ 2b

(
− ln ζ0 − ln b

2

2
+ 1

4

)
+ b

(
− 2

ln b

(
− ln ζ0 − ln b

2

2

)
+ 1

2

)

+ 2e1
| ln b|2

(
−b ln b

4
+ bζ 2

0 ln b

16
+ b ln b

4

∞∑
i=2

(1)i−1
(2)i i !2i ζ

2i
0

)

− b

2

∞∑
i=1

(1)i−1
(2)i i !2i ζ

2i
0

{
1

ln b

[
2 ln ζ0 − ln b − 1

i
−�(i + 2)− γ

]

+1− 1

ln b

}
+O

(
b

| ln b|2
)

,
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F1(R0) = b
[ ln b

2
+ 1

ζ 2
0

− ln ζ0 + 1

2
+ ln ζ0

ln b
+ e1

2 ln b

(
−1+

∞∑
i=1

(1)i−1
(2)i i !2i ζ

2i
0

)

− 1

2 ln b

∞∑
i=1

(1)i−1
(2)i i !2i ζ

2i
0

[
2 ln ζ0 − 1

i
−�(i + 2)− γ − 1

]]

= b

{
ln b

2
+ 1

ζ 2
0

− ln ζ0 + 1

2
+ ln ζ0

ln b
− e1

2 ln b

− 1

2 ln b

∞∑
i=1

(1)i−1
(2)i i !2i ζ

2i
0

[
2 ln ζ0 − ln 2− 1

i
−�(i + 2)

]}

+O
(

b

| ln b|2
)

, (2.87)

and similarly, we have

(r∂r F1)(R0) = −2b
ζ 2
0

− b + b

ln b
− b

2 ln b

∞∑
i=1

(1)i−1
(2)i i !2i ζ

2i
0 2i [2 ln ζ0 −�(i + 2)− ln 2]

+O
(

b

| ln b|2
)

.

From (2.34) and (2.35), we obtain

∑
0≤k≤2

((r∂r )
k E1)(R0)| ≤ C(ζ0)

b

| ln b|2 ,

Hence, asG1(R0) = O(| ln b|) and r∂rG1(R0) = O(| ln b|), we obtain from the above
identities

φin
1 (R0) = b

[
− ln b

2
H1(ζ0)+ K1(ζ0)+ 1

2 ln b
J1(ζ0)+ α̂bG1(R0)+O(

1

| ln b|2 )
]
,

r∂rφ
in
1 (R0) = b

[
ζ∂ζ K1 + 1

2 ln b
ζ∂ζ J1 + α̂r∂rG1(R0)+O

(
1

| ln b|2
)]

.

where we used (2.82), so that H1(ζ ) = 1 and K1(ζ ) = ζ−2 − ln ζ + 1/2 and

J1(ζ0) = 2 ln ζ0 − e1 −
∞∑
i=1

(1)i−1
(2)i i !2i ζ

2i
0

[
2 ln ζ0 − ln 2− 1

i
−�(i + 2)

]
.

(2.88)
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We finally obtain

r∂rφin
1 (R0)

φin
1 (R0)

=
ζ∂ζ K1 + 1

2 ln b ζ∂ζ J1 + α̂r∂r G1(R0)+O
(

1
| ln b|2

)
− ln b

2 H1(ζ0)+ K1(ζ0)+ 1
2 ln b J1(ζ0)+ α̂bG1(R0)+O( 1

| ln b|2 )

= − 2

ln b

ζ∂ζ K1 + 1
2 ln b ζ∂ζ J1 + α̂r∂r G1(R0)+ O

(
1

| ln b|2
)

H1(ζ0)− 2
ln b K1(ζ0)− 1

| ln b|2 J1(ζ0)− 2
ln b α̂bG1(R0)+O( 1

| ln b|3 )

= − 2

ln b

{
ζ∂ζ K1

H1
+ 1

ln b

ζ∂ζ J1H1 + 2K1ζ∂ζ K1

H2
1

+α̃
r∂r G1H1 + 2

ln b G1ζ∂ζ K1

H2
1

+O(| ln b|−2)
}

= − 2

ln b

ζ∂ζ K1

H1
− 2

ln b2
ζ∂ζ J1H1 + 2K1ζ∂ζ K1

H2
1

+ α̃
O(1)

H2
1

+O(| ln b|−3) (2.89)

where the constant in the O(1) is independent of ζ0.
The case n = 0 :We first use the refined asymptotics (2.33) and (2.32) to obtain:

φin
0 (r) = F0(r)+ ᾱbG0(r)+ E0(r),

where:

F0(r) = T0(r)+ b

(
− 2

ln b
T1(r)+A −10 �0

)

+ b

2

∞∑
i=1

1

(2)i2i
bi r2i

{
1

ln b

[
2 ln(r + 1)−�(i + 2)− γ

]+ 1

}
,

G0(r) = 2

(
−T1(r)+ 1

2

∞∑
i=1

1

(2)i2i
bi r2i ln(r + 1)

)
, E0(r) = bR̃0(r)+ 2ᾱbS̃0.

One has from (2.20), as d̂1 = −1/2, d1 = 1/4:

F0(R0) = b

ζ 2
0

+ b

(
− 2

ln b

(
− ln ζ0 − ln b

2

2
+ 1

4

)
+ 1

2

)

+ b

2

∞∑
i=1

1

(2)i2i
ζ 2i
0

{
1

ln b

[
2 ln ζ0 −�(i + 2)− γ

]}+O(b
3
2 )

= b

ζ 2
0

+ b ln ζ0

ln b
− b

2 ln b
+ b

2 ln b

∞∑
i=1

1

(2)i2i
ζ 2i
0 {2 ln ζ0 −�(i + 2)− γ } +O(b

3
2 ),
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and similarly, we have

(r∂r F0)(R0) = −2b
ζ 2
0

+ b

ln b
+ b

2 ln b

∞∑
i=1

1

(2)i2i
ζ 2i
0 2i

[
2 ln ζ0 + 1

i
−�(i + 2)− γ

]
+O

(
b

3
2

)

∂b(b
−1F0(R0)) = O

(
1

b| ln b|2
)

, ∂b(b
−1r∂r F0(R0)) = O

(
1

b| ln b|2
)

.

From (2.33), we obtain

∑
0≤k≤2, 0≤�+�′≤1

((b∂b)
�∂�′

ᾱ (r∂r )
k E0)(R0)| ≤ C(ζ0)

b

| ln b|2 .

One also has

G0(R0) = 2

(
−1

4
ln b − 1

4
ln b

∞∑
i=1

1

(2)i2i
ζ 2i
0

)
+O(1) = − ln b

2
G̃0(ζ0)

+O(1), ∂bG0(R0) = O
(
1

b

)
,

where

G̃0(ζ0) =
∞∑
i=0

1

(2)i2i
ζ 2i
0 , (2.90)

so that

r∂rG0(R0) = − ln b

2
ζ∂ζ G̃0(ζ0)+O(1), ∂br∂r G̃0(R0) = O

(
1

b

)
.

We obtain from the above identities

φin
0 (R0) = b

[ 1

ζ 2
0

+ 1

2 ln b
J0(ζ0)− ln b

2
ᾱG̃0(ζ0)+O(| ln b|−2)

]
,

r∂rφ
in
0 (R0) = b

[−2
ζ 2
0

+ 1

ln b
ζ∂ζ J0(ζ0)− ln b

2
ᾱr∂r G̃0(ζ0)+O(| ln b|−2)

]
,

where

J0(ζ0) = 2 ln ζ0 − 1+
∞∑
i=1

1

(2)i2i
ζ 2i
0

[
2 ln ζ0 −�(i + 2)− γ

]
, (2.91)
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and for ᾱ = O(| ln b|−2),

∂b

(
b−1φin

0 (R0)
)
= O

(
1

b| ln b|2
)

, ∂b

(
b−1r∂rφin

0 (R0)
)
= O

(
1

b| ln b|2
)

,

∂ᾱ

(
φin
0 (R0)

)
= −b ln b

2
G̃0(ζ0)+O (b) ,

∂ᾱ

(
r∂rφ

in
0 (R0)

)
= −b ln b

2
r∂r G̃0(ζ0)+O (b)

We finally obtain

r∂rφin
0 (R0)

φin
0 (R0)

=
−2
ζ 20
+ 1

2 ln b ζ∂ζ J0(ζ0)+ ᾱr∂rG0(R0)+O(| ln b|−2)
1
ζ 20
+ 1

2 ln b J0(ζ0)+ ᾱG0(R0)+O(| ln b|−2)

= −2+
ζ 20
ln b ζ∂ζ J0(ζ0)+ ζ 2

0 ᾱr∂rG0(R0)+O(| ln b|−2)
1+ ζ 20

2 ln b J0(ζ0)+ ᾱζ 2
0G0(R0)+O(| ln b|−2)

= −2+ 1

ln b
ζ 2
0 (

1

2
ζ∂ζ J0 + J0)− ln b

2
ᾱζ 2

0 (ζ ∂ζ G̃1(ζ0)+ 2G̃1(ζ0)

+O(| ln b|−1))+O(| ln b|−2), (2.92)

and

∂b

(
r∂rφin

0 (R0)

φin
0 (R0)

)
=∂b

(
b−1r∂rφin

0 (R0)

b−1φin
0 (R0)

)

= ∂b(b−1r∂rφin
0 (R0))b−1φin

0 (R0)−∂b(b−1φin
0 (R0))b−1r∂rφin

0 (R0)

b−1φin
0 (R0)

=O(
1

b| ln b|2 ), (2.93)

and

∂ᾱ

(
r∂rφin

0 (R0)

φin
0 (R0)

)
= − ln b

2
ζ 2
0 (ζ ∂ζ G̃1(ζ0)+ 2G̃1(ζ0)+O(| ln b|−1)), (2.94)

where the constant in the O(| ln b|−2) is independent of ᾱ.

Step 2: The exterior term. Recall the decomposition q[b, ᾱ](z) = �(θ)hθ (z) +
G[b, ᾱ](z) from (2.69). From the estimates (2.70) the second term is of lower order
and satisfies:

∑
0≤k+�≤1

|(b∂b)k∂�
ᾱ(G(z0))| + |(b∂b)k∂�

ᾱ(z∂zG(z0))| � b
1
2 . (2.95)
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We now investigate the formula giving hθ . From the recurrence relation of the Gamma
function and the identity ∂θ (θ)i = (θ)i (�(θ + i)−�(θ)):

�(θ)hθ (z) = 1

z
+ (θ − 1)

∞∑
i=0

(θ)i

(2)i i ! z
i
[
ln z +�(θ + i)−�(1+ i)−�(2+ i)

]
,

z∂z�(θ)hθ (z) = −1

z
+ (θ − 1)

∞∑
i=0

(θ)i

(2)i i ! z
i
[
i (ln z +�(θ + i)−�(1+ i)−�(2+ i))+ 1

]
,

∂θ�(θ)hθ (z) =
∞∑
i=0

(θ)i

(2)i i ! z
i
[(

ln z +�(θ + i)−�(1+ i)

−�(2+ i)
)(
1+ (θ − 1)(�(θ + i)−�(θ))

)
+(θ − 1)∂θ�(θ + i)

]
,

∂θ z∂z�(θ)hθ (z)

=
∞∑
i=0

(θ)i

(2)i i ! z
i
[
i
{
(ln z +�(θ + i)−�(1+ i)

−�(2+ i)
)(
1+ (θ − 1)(�(θ + i)−�(θ))

})
+i ((θ − 1)∂θ�(θ + i))+ 1

]
.

We now decompose all above expressions into leading order and lower terms. We
first collect some estimates on the coefficients. Note that for i ≥ n one has from the
recurrence relation of the Gamma function:

(θ)i = �(θ + i)

�(θ)
= (θ)(θ + 1)...(θ + i − 1) = (1− n + α̃)(2− n + α̃)

...(i − n + α̃) = O(|α̃|) (2.96)

because there is some 0 ≤ j ≤ i − 1 such that 1− n + j = 0. Moreover, for a large
enough argument the digamma function

�(θ + i) = �(1− n + i + α̃) = �(1− n + i)+O(α̃) = O(1) for i ≥ n

(2.97)

is non-singular since 1−n+ i > 1. We recall the recurrence relation for the digamma
function �(z + 1) = �(z)+ 1/z, with �(1) = −γ the Euler constant. Then, if k is
an integer:

�(k + 1) = 1

k
+�(k) = 1

k
+ 1

k − 1
+ ...+ 1

2
+ 1− γ.

Hence, refining (2.96) for i < n, we obtain

(θ)i = (1− n)i (1+ α̃(�(n − i)−�(n)))+O(α̃2)
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and

�(θ + i) = − 1

θ + i
+�(θ + i + 1) = − 1

1− n + i + α̃
− 1

2− n + i + α̃

− ...− 1

−1+ α̃
− 1

α̃
+�(1+ α̃)

= − 1

α̃
+�(n − i)+O(α̃), (2.98)

∂θ�(θ + i) = ∂α̃�(θ + i) = 1

α̃2 +O(1) for i < n. (2.99)

The coefficients that will appearing in the expansion are related to the inner expansion
the following way. Using the recurrence relations (2.26)-(2.29) and the initial values
for cn,1 and d̂1, there holds

− cn,i+1d̂i+1 = n
(1− n)i

(2)i i !2i , (2.100)

and similarly using the recurrence relations (2.26), there holds

− 2di+1
d̂i+1

= 2+ 2

2
+ 2

3
+ ...+ 2

i
+ 1

i + 1
= �(i + 2)+�(i + 1)+ 2γ. (2.101)

Hence, the strategy is the following. We first truncate the series (2.63) expressing hθ

for 0 < z � 1 using (2.97) and (2.96). Then, we expand it with respect to α̃. Finally, we
express the coefficients in function of those of the inner expansion via (2.100)-(2.101).
The result of this strategy is given by

�(�)hθ (z) = 1

z
+ (θ − 1)

∞∑
i=0

(θ)i

(2)i i ! z
i
[
ln z +�(θ + i)−�(1+ i)−�(2+ i)

]

= 1

z
+ (θ − 1)

n−1∑
i=0
[...] + (θ − 1)

∞∑
i=n
[...]

= 1

z
+ (θ − 1)

n−1∑
i=0

(θ)i

(2)i i ! z
i
[
ln z +�(θ + i)−�(1+ i)−�(2+ i)

]

+O(|α̃|).

�(�)hθ (z) = 1

z
+ (α̃ − n)

n−1∑
i=0

(1− n)i

(2)i i !
(
1+ α̃ (�(n − i)−�(n))+O(α̃2)

)
zi

×
[
ln z − 1

α̃
+�(n − i)+O(|α̃|)−�(1+ i)−�(2+ i)

]
+O(|α̃|)

= 1

z
+

n−1∑
i=0

n
(1− n)i

(2)i i ! zi (− ln z −�(n + 1)+�(i + 1)
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+�(i + 2)+ 1

α̃

)
+O(|α̃|)

= 1

z
+

n−1∑
i=0

n
(1− n)i

(2)i i ! zi (− ln z − ln 2+�(i + 1)+�(i + 2)

+2γ + en + 1

α̃

)
+O(|α̃|),

= 1

z
+

n∑
i=1

2i−1cn,i z
i−1
(
d̂i

(
ln z + ln 2− en − 1

α̃

)
+ 2di

)
+O(|α̃|).

(2.102)

Similarly, skipping the computations which are verbatim the same as the one above
yields

z∂z�(θ)hθ (z)

= −1

z
+ (θ − 1)

∞∑
i=0

(θ)i

(2)i i ! z
i
[
i (ln z +�(θ + i)−�(1+ i)−�(2+ i))+ 1

]

= −1

z
+

n∑
i=1

2i−1cn,i z
i−1[(i − 1)

(
d̂i

(
ln z + ln 2− en − 1

α̃

)
+ 2di

)
+ d̂i

]

+O(|α̃|) (2.103)

Then, using (2.96), (2.97), (2.98), (2.99) and ∂θ α̃ = 1, we compute

∂θ (�(θ)hθ (z))

=
∞∑
i=0

(θ)i

(2)i i ! z
i
[
(ln z+�(θ+i)−�(1+i)−�(2+i)) (1+(θ − 1)(�(θ+i)

−�(θ)))+ (θ − 1)∂θ�(θ + i)
]

= − n

α̃2

n−1∑
i=0

(1− n)i

(2)i i ! zi +O(1) = 1

α̃2

n∑
i=1

2i−1cn,i d̂i z
i−1 +O(1)

so that from (2.102):

∂θ (α̃�(θ)hθ (z)) = �(θ)hθ (z)+ α̃∂θ (�(θ)hθ (z))

= 1

z
+

n∑
i=1

2i−1cn,i z
i−1
(
d̂i

(
ln z + ln 2− en − 1

α̃

)
+ 2di

)

+O(|α̃|)+ 1

α̃

n∑
i=1

2i−1cn,i d̂i z
i−1 +O(|α̃|)
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= 1

z
+

n∑
i=1

2i−1cn,i z
i−1 (d̂i (ln z + ln 2− en)+ 2di

)
+O(|α̃|),

(2.104)

and similarly

∂θ (z∂z�(θ)hθ (z))

=
∞∑
i=0

(θ)i

(2)i i ! z
i
[
i ((ln z +�(θ + i)−�(1+ i)−�(2+ i)) (1

+(θ − 1)(�(θ + i)−�(θ)))+ (θ − 1)∂θ�(θ + i))+ 1
]

= − n

α̃2

n−1∑
i=0

(1− n)i i zi

(2)i i ! +O(1) = 1

α̃2

n∑
i=1

2i−1(i − 1)zi−1cn,i d̂i +O(1)

so that from (2.103), we get

∂θ (α̃z∂z�(θ)hθ (z))

= z∂z�(θ)hθ (z)+ α̃∂θ (z∂z�(θ)hθ (z))

= −1

z
+

n∑
i=1

2i−1cn,i z
i−1[(i − 1)

(
d̂i (ln z + ln 2− en)+ 2di

)
+ d̂i

]
+O(|α̃|).

(2.105)

Therefore we obtain from (2.102), (2.95), as z = ζ 2/2 and α̃ = 1/ ln b +
O(| ln b|−2):

q(z0) = 2

ζ 2
0

+
n∑

i=1
2i−1cn,i

ζ
2(i−1)
0

2i−1

(
d̂i

(
ln

(
ζ 2
0

2

)
+ ln 2− en − 1

α̃

)
+ 2di

)

+O(|α̃|)+O(b
1
2 )

= − 1

α̃
Hn(ζ0)+ 2Kn(ζ0)− enHn(ζ0)+O(|α̃|), (2.106)

where Hn and Gn are given by (2.82). Similarly, we compute from (2.103) and (2.95),

(z∂z)q(z0) = − 2

ζ 2
0

+
n∑

i=1
2i−1cn,i

(
ζ 2
0

2

)i−1 [
(i − 1)

(
d̂i

(
ln

(
ζ 2
0

2

)

+ ln 2− en − 1

α̃

)
+ 2di

)
+ d̂i

]

+O(|α̃|)+O(b
1
2 )

= − 1

2α̃
ζ ∂ζ Hn(ζ0)+ ζ∂ζ Kn(ζ0)− en

2
ζ∂ζ Hn(ζ0)+O(|α̃|).
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From (2.95), (2.104), (2.105), recalling that b and ᾱ are two independent parameters
for the moment, using the relations b∂bθ = −1/| ln b|2 = O(1/| ln b|2) and ∂ᾱ = ∂θ :

b∂b (α̃q(z0)) = O(
1

| ln b|2 )∂θ (α̃�(θ)h(θ)(z0))+O(b
3
2 ) = O(α̃2), (2.107)

b∂b (α̃z∂zq(z0)) = O(
1

| ln b|2 )∂θ (α̃z∂z�(θ)h(θ)(z0))+O(b
3
2 ) = O(α̃2), (2.108)

∂ᾱ (α̃q(z0))

= ∂θ (α̃q(z0))

= 2

ζ 2
0

+
n∑

i=1
2i−1cn,i (

ζ 2
0

2
)i−1

(
d̂i

(
ln(

ζ 2
0

2
)+ ln 2− en

)
+ 2di

)
+O(|α̃|)+O(b

1
2 )

= 2Kn(ζ0)− enHn(ζ0)+O(|α̃|), (2.109)

and

∂ᾱ (α̃z∂zq(z0))

= ∂θ (α̃z∂zq(z0))

= − 2

ζ 2
0

+
n∑

i=1
2i−1cn,i (

ζ 2
0

2
)i−1

[
(i − 1)

(
d̂i

(
ln(

ζ 2
0

2
)+ ln 2− en

)
+ 2di

)
+ d̂i

]
+O(|α̃|)

= ζ∂ζ Kn(ζ0)− en
2

ζ∂ζ Hn(ζ0)+O(|α̃|). (2.110)

We deduce that for n ≥ 2,

z∂zq(z0)

q(z0)
= −

1
2α̃ ζ ∂ζ Hn(ζ0)+ ζ∂ζ Kn(ζ0)− en

2 ζ∂ζ Hn(ζ0)+O(|α̃|)
− 1

α̃
Hn(ζ0)+ 2Kn(ζ0)− enHn(ζ0)+O(|α̃|)

= 1

2

ζ∂ζ Hn(ζ0)− 2α̃ζ ∂ζ Kn(ζ0)+ α̃enζ∂ζ Hn(ζ0)+O(|α̃|2)
Hn(ζ0)− 2α̃Kn(ζ0)+ α̃enHn(ζ0)+O(|α̃|2)

= 1

2

(
ζ∂ζ Hn(ζ0)

Hn(ζ0)
+ α̃

(enζ∂ζ Hn − 2ζ∂ζ Kn)Hn − (enHn − 2Kn)ζ ∂ζ Hn

H2
n (ζ0)

)

+O(α̃2)

= 1

2

ζ∂ζ Hn(ζ0)

Hn(ζ0)
+ α̃

Kn(ζ0)ζ ∂ζ Hn(ζ0)− ζ∂ζ Kn(ζ0)Hn(ζ0)

H2
n (ζ0)

+O(α̃2)

(2.111)

and similarly from (2.107), (2.109), (2.109) and (2.110),
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b∂b

(
z∂zq(z0)

q(z0)

)
= b∂b

(
α̃z∂zq(z0)

α̃q(z0)

)

= b∂b(α̃z∂zq(z0))α̃q(z0)− α̃z∂zq(z0)b∂b(α̃q(z0))

α̃2q(z0)2

= O(α̃2)

α̃2q(z0)2
= O(α̃2), (2.112)

∂α̃

(
z∂zq(z0)

q(z0)

)
= ∂α̃

(
α̃z∂zq(z0)

α̃q(z0)

)
= ∂α̃(α̃z∂zq(z0))α̃q(z0)− ∂α̃(q̃(z0))α̃z∂zq(z0)

α̃2q2(z0)

= Kn(ζ0)ζ ∂ζ Hn(ζ0)− ζ∂ζ K (ζ0)H(ζ0)

H2
n (ζ0)

+O(|α̃|). (2.113)

The case n = 1 : For n = 1, θ = α̃, so we refine further α̃ and take

α̃ = 1

ln b
+ e1
| ln b|2 + α̂, e1 = ln 2− γ − 1

= ln 2−�(2)− 2γ, α̂ = O(| ln b|−3).

We then refine further �(θ)hθ by noticing that for i ≥ 1, (α̃)i = α̃�(i)+O(α̃2) and
�(α̃) = −α̃−1 − γ + π2α̃/6+O(α̃2),

�(�)hθ (z) = 1

z
+ (α̃ − 1)

∞∑
i=0

(α̃)i

(2)i i ! z
i
[
ln z +�(α̃ + i)−�(1+ i)−�(2+ i)

]

= 1

z
+ (α̃ − 1)

[
ln z +�(α̃)−�(1)−�(2)

]

− α̃

∞∑
i=1

�(i)

(2)i i ! z
i
[
ln z +�(i)−�(1+ i)−�(2+ i)

]
+O(α̃2)

= 1

z
+ (α̃ − 1)

[
ln z − 1

α̃
+ α̃

π2

6
−�(2)

]

− α̃

∞∑
i=1

�(i)

(2)i i ! z
i
[
ln z +�(i)−�(1+ i)−�(2+ i)

]
+O(α̃2)

= 1

α̃
+ 1

z
− [ln z + γ ]

+ α̃

(
ln z −�(2)− π2

6
−
∞∑
i=1

�(i)

(2)i i ! z
i
[
ln z +�(i)

−�(1+ i)−�(2+ i)
])
+O(α̃2).

With this, a further refinement of (2.96) with the same computation as above yields in
this case, using (2.88),
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q(z0) = − 1

α̃
H1(ζ0)+ 2K1(ζ0)− e1H1(ζ0)

+α̃(J1 − 2− π2

6
)(ζ0)+O(|α̃|2),

z∂zq(z0) = ζ∂ζ K1(ζ0)+ α̃

2
ζ∂ζ J1(ζ0)+O(α̃2),

∂ᾱ(z∂zq(z0)) = 1−
∞∑
i=1

�(i)i

(2)i i !2i ζ
2i
0 [2 ln ζ0 − ln 2−�(2+ i)] + O

(
1

| ln b|
)

.

Hence, combining these identities with the previous estimates, and using H1 =
ln b/2+O(1), we obtain

z∂zq(z0)

q(z0)
= ζ∂ζ Kn(ζ0)+ α̃ζ ∂ζ J1(ζ0)+O(α̃2)

− 1
α̃
H1(ζ0)+ 2K1(ζ0)− e1H1(ζ0)+ α̃(J1 − 2− π2

6 )(ζ0)+O(|α̃|2)

= α̃
ζ ∂ζ Kn(ζ0)+ α̃ζ ∂ζ J1(ζ0)+O(α̃2)

−H1(ζ0)+ 2α̃K1(ζ0)− α̃e1H1(ζ0)+ α̃2(J1 − 2− π2

6 )(ζ0)+O(|α̃|3)

= α̃

[
− ζ∂ζ K1(ζ0)

H1(ζ0)
+ α̃

ζ ∂ζ K1(ζ0)(e1H1(ζ0)− 2K1(ζ0))− ζ∂ζ J1(ζ0)H1(ζ0)

H2
1 (ζ0)

]

+O(α̃3).

We now use the expansion α̃ = 1/ ln b + e1/(ln b)2 + α̂ to derive

z∂zq(z0)

q(z0)
= − 1

ln b

ζ∂ζ K1

H1

− 1

| ln b|2
2ζ∂ζ K1(ζ0)K1(ζ0))+ ζ∂ζ J1(ζ0)H1(ζ0)

H2
1 (ζ0)

− α̂
ζ ∂ζ K1

H1
+O(| ln b|−3),

(2.114)

and

∂ᾱ

(
z∂zq(z0)

q(z0)

)
= −ζ∂ζ K1(ζ0)

H1(ζ0)
+O(α̃2), ∂b

(
z∂zq(z0)

q(z0)

)
= O(|α̃|2).

The case n = 0 : For n = 0, θ = 1+ α̃. We then refine further �(θ)hθ by noticing
that for i ≥ 0, (1+ α̃)i = (1)i +O(|α̃|) and �(1+ α̃ + i) = �(1+ i)+O(|α̃|),

�(�)hθ (z) = 1

z
+ α̃

∞∑
i=0

(1+ α̃)i

(2)i i ! zi
[
ln z +�(1+ α̃ + i)−�(1+ i)−�(2+ i)

]

= 1

z
+ α̃

∞∑
i=0

(1)i
(2)i i ! z

i
[
ln z −�(2+ i)

]
+O(|α̃|2)
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With this, performing the same computations as the previous ones and using α̃ =
1/ ln b +O(| ln b|−2), we obtain

q(z0) = 2

ζ 2
0

+ α̃
(
J0(ζ0)+ (γ − ln 2)G̃0(ζ0)

)
+O(α̃2),

z∂zq(z0) = − 2

ζ 2
0

+ α̃

2

(
ζ∂ζ J0(ζ0)+ (γ − ln 2)ζ ∂ζ G̃0(ζ0)

)
+O(α̃2),

where J0 and G̃0 are defined in (2.91) and (2.90), and

∂α̃(q(z0)) = J0(ζ0)− 1+ (γ − ln 2)G̃0(ζ0)+O(|α̃|),
∂α̃(z∂zq(z0)) = 1

2
ζ∂ζ J0(ζ0)+ γ − ln 2

2
ζ∂ζ G̃0(ζ0)+O(|α̃|2).

Hence, using ∂bα̃ = −1/b| ln b|2, we obtain

z∂zq(z0)

q(z0)
=
− 2

ζ 20
+ α̃

2

(
ζ∂ζ J0(ζ0)+ (γ − ln 2)ζ ∂ζ G̃0(ζ0)

)
+O(α̃2)

2
ζ 20
+ α̃

(
J0(ζ0)+ (γ − ln 2)G̃0(ζ0)

)
+O(α̃2)

= −1+ α̃ζ 2
0

(
1

4
ζ∂ζ J0 + γ − ln 2

4
ζ∂ζ G̃0(ζ0)+ 1

2
J0

+γ − ln 2

2
G̃1(ζ0)

)
+O(α̃2), (2.115)

∂ᾱ

(
z∂zq(z0)

q(z0)

)
= ζ 2

0

(
1

4
ζ∂ζ J0 + γ − ln 2

4
ζ∂ζ G̃0(ζ0)+ 1

2
J0 + γ − ln 2

2
G̃1(ζ0)

)
+O(|α̃|),

(2.116)

∂b

(
z∂zq(z0)

q(z0)

)
= O

(
1

| ln b|2
)

. (2.117)

Step 3 Existence of α̃n , proof of (2.3) and (2.4). We first prove the existence and the
bound for α̃n , and then prove a bound for ∂bα̃n . From (2.76), (2.84), (2.111) we arrive
at the following.
The case n ≥ 2. In this case, we have

�(b, ᾱ) = ζ∂ζ Hn(ζ0)

2Hn(ζ0)
+ 1

ln b

Kn(ζ0)ζ ∂ζ Hn(ζ0)− Hn(ζ0)ζ ∂ζ Kn(ζ0)

H2
n (ζ0)

+ ᾱ
O(1)

Hn(ζ0)2
+O(| ln b|−2)

− 1

2

ζ∂ζ Hn(ζ0)

Hn(ζ0)
− α̃

Kn(ζ0)ζ ∂ζ Hn(ζ0)− ζ∂ζ Kn(ζ0)Hn(ζ0)

H2
n (ζ0)

+O(α̃2)

= ᾱ
−Kn(ζ0)ζ ∂ζ Hn(ζ0)+ ζ∂ζ Kn(ζ0)Hn(ζ0)+O(1)

H2
n (ζ0)

+O(| ln b|−2)
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where the constant in theO(1) is independent of ζ0, and the constant in theO(| ln b|−2)
is independent of ᾱ. We compute for n ≥ 1 from (2.81) the nondegeneracy for ζ0 small
enough, as d̂1 = −1/2 and cn,1 = 2n:

− Knζ∂ζ Hn + ζ∂ζ KnHn

= −
(

1

ζ 2
0

+
n∑

i=1
cn,iζ

2(i−1)
0

(
d̂i ln ζ0 + di

))( n∑
i=1

2(i − 1)cn,i d̂iζ
2(i−1)
0

)

+
(
−2
ζ 2
0

+
n∑

i=1
cn,iζ

2(i−1)
0

(
2(i − 1)(d̂i ln ζ0 + di )+ d̂i

))( n∑
i=1

cn,i d̂iζ
2(i−1)
0

)

= −
(

1

ζ 2
0

+O(| ln ζ0|)
)(

O(ζ 2
0 )
)
+
(
−2
ζ 2
0

+O(1)

)(
−n +O(ζ 2

0 )
)

= 2n

ζ 2
0

+O(1). (2.118)

So that, as Hn(ζ0) = −n +O(ζ 2
0 ) we arrive at:

�(b, ᾱ) = ᾱ

(
2

nζ 2
0

+O(1)

)
+O(| ln b|−2).

An application of the intermediate value theorem then yields that there exists at least
one value ᾱ = ᾱn = O(| ln b|−2) such that �(b, ᾱ) = 0.
The case n = 1. We obtain from the refined identities (2.89) and (2.114):

� = − 1

ln b

ζ∂ζ K1

H1
− 1

ln b2
ζ∂ζ J1H1 + 2K1ζ∂ζ K1

H2
1

+ α̃
O(1)

H2
1

+O(| ln b|−3)

−
(
− 1

ln b

ζ∂ζ K1

H1
− 1

| ln b|2
2ζ∂ζ K1(ζ0)K1(ζ0))+ ζ∂ζ J1(ζ0)H1(ζ0)

H2
1 (ζ0)

−α̂
ζ ∂ζ K1

H1
+O(| ln b|−3)

)

= α̂
ζ ∂ζ K1 +O(1)

(H1)2
+ O

(
1

| ln b|3
)

.

From the nondegeneracy (2.118), an application of the intermediate value Theorem
yields that there exists at least one value α̂ = α̂1 = O(| ln b|−3) such that � = 0.
The case n = 0. We obtain from the identities (2.92) and (2.115), injecting α̃ =
1/ ln b + e0/(ln b)2 + α̂ with e0 = ln 2− γ and α̂ = O(| ln b|−3):

� = −1+ 1

2 ln b
ζ 2
0 (

1

2
ζ∂ζ J0 + J0)− ln b

4
ᾱζ 2

0 (ζ ∂ζ G̃0(ζ0)+ 2G̃0(ζ0)

+O(| ln b|−1))+O(| ln b|−2)
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−
(
−1+ α̃ζ 2

0

(
1

4
ζ∂ζ J0 + γ − ln 2

4
ζ∂ζ G̃0(ζ0)+ 1

2
J0 + γ − ln 2

2
G̃1(ζ0)

)
+O(α̃2)

)

= − ln b

4
ᾱζ 2

0 (ζ ∂ζ G̃0(ζ0)+ 2G̃0(ζ0)+O(| ln b|−1))+O(| ln b|−2)

+ ln 2− γ

4 ln b
ζ 2
0

(
ζ∂ζ G̃0(ζ0)+ 2G̃0(ζ0)

)

−
(

ᾱζ 2
0

(
1

4
ζ∂ζ J0 + γ − ln 2

4
ζ∂ζ G̃0(ζ0)+ 1

2
J0 + γ − ln 2

2
G̃0(ζ0)

))

= − ln b

4
α̂ζ 2

0 (ζ ∂ζ G̃0(ζ0)+ 2G̃0(ζ0)+O(| ln b|−1))+O(| ln b|−2).

Therefore, as ζ∂ζ G̃0(ζ0) + 2G̃0(ζ0) �= 0 for ζ0 small enough, an application of the
implicit function Theorem gives the existence of α̂ = α̂0 = O(| ln b|−3) such that
�(b, α̂0) = 0.
Estimate of ∂bα̃n : We estimate for n ≥ 1 from (2.85), (2.85), (2.112), (2.113) and
(2.118),

∂b� = ∂b

(
r∂rφin

n (R0))

2φin
n (R0)

)
− ∂b

(
z∂zq(z0)

q(z0)

)
= O(b−1| ln b|−2),

and

∂ᾱ� = ∂ᾱ

(
r∂rφin

n (R0))

2φin
n (R0)

)
− ∂ᾱ

(
z∂zq(z0)

q(z0)

)

= −Kn(ζ0)ζ ∂ζ Hn(ζ0)+ ζ∂ζ Kn(ζ0)Hn(ζ0)+O(1)

H2
n (ζ0)

= 2

nζ 2
0

+O(1).

Therefore, differentiating the fixed point relation �(b, ᾱ(b)) = 0 gives ∂bᾱ∂ᾱ� =
−∂b�, so |∂bᾱn| =

∣∣∣ ∂b�
∂α̃n�

∣∣∣ = O
(

1
b| ln b|

)
which concludes the proof of (2.3) for n ≥ 1.

For n = 0 the very same computation yields the same estimate, using (2.93), (2.94),
(2.116) and (2.117).

Step 4: Proof of the refined pointwise estimate (2.8). Recall φ̃n is defined by (2.7). By
(2.73), we estimate φ̃ in two zones, r ≤ R0 and r ≥ R0.
- For r ≤ R0, We write from (2.28):

φ̃n = b

(
− 2

ln b
T1 +A −10 �0

)
(r)+ 2ᾱ

n∑
j=0

b j+1(− cn, j Tj+1(r)+ S j (r)
)
+ bRn(r).

Then, the estimates (2.39), (2.20), (2.30), (2.32), (2.35), (2.31), (2.33) and (2.34) imply
that ‖φ̃n‖I0−1

� b which means that for r ≤ R0:

|φ̃n(r)| � br2〈r〉−2
(
1+ 2

ln(r + 1)

ln b

)
�
∣∣∣∣

1
| ln b|r

2〈r〉−4 on [0, R0],
br2〈r〉−2 on [0, R0] as well.(2.119)
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- For r ≥ R0, we switch to ζ = √br variables and write from (2.73) and (2.69):

φ̃n(
ζ√
b
) = β0

(
�(θ)hθn + G

)(ζ 2

4

)−
n∑
j=0

cn, j b
j Tj
( ζ√

b

)
, (2.120)

We first estimate the parameter β0, which from (2.76), (2.106) and (2.83) is:

β0 = φin
n (R0)

φex
n (R0)

= b
(− ln b

2 Hn + Kn + O
(| ln b|−1))

− 1
α̃
Hn + 2Kn − enHn + O(| ln b|−1)

We deduce from the above identity, using that α̃ = (ln b)−1 + O(| ln b|−2):

β0 = b

2
+ O

(
b

| ln b|
)

and
β0

α̃
= b ln b

2
− b

2
en + O

(
b

| ln b|2
)

.

The O(|α̃|) remainder in (2.102) can be bounded by an explicit weight on [z0,∞),
for example via the same perturbation argument as used in the proof of Lemma 2.6.
We do not repeat such an argument which shows that, since α̃ = O(| ln b|−1):

�(θ)hθ (z) = 1

z
+

n∑
i=1

2i−1cn,i z
i−1
(
d̂i

(
ln z + ln 2− en − 1

α̃

)
+ 2di

)

+O
(

1

| ln b| z
n−1+δ

)

for any δ > 0. The two above identities then imply the identity for the first term in
(2.120):

β0�(θ)hθn

(
ζ 2

2

)
= b

ζ 2 +
b

2

n∑
i=1

cn,iζ
2(i−1) (d̂i (2 ln ζ − ln b)+ 2di

)

+O
(

b

| ln b|ζ
2n−2+δ

)
.

Next we turn to the third term in (2.120), which from (2.20) is for ζ ≥ ζ0:

n∑
j=0

cn, j b
j Tj
( ζ√

b

) = b

ζ 2 + b
n∑

i=1
cn,iζ

2(i−1)
(
d̂i (ln ζ − ln b

2
)+ di

)

+O(b2| ln b|Cζ 2n−4| ln ζ |C )

for some constant C > 0. One thus has in (2.120) a cancellation for the leading order
terms, and combined with the estimate (2.70) for G this yields:

|φ̃n(
ζ√
b
)| � b

| ln b|ζ
2n−2+δ. (2.121)
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- Conclusion : Combining (2.120) and (2.121), recalling r = ζ√
b
we see that:

|φ̃n(r)| � 1

| ln b|r
2〈r〉−4〈√br〉2n+δ and |φ̃n(r)| � br2〈r〉−2〈√br〉2n+δ,

which is precisely the first bound in (2.8) with k = 0. The first bound in (2.8) for
k = 1, 2, and the second bound in (2.8) for k = 0, 1, 2 are proved the exact same way,
using that the bounds on the corrective terms (2.30) and (2.31), and (2.70) provide
the desired control for Dr , ∂b and ∂α derivatives, along with the estimate b∂bα̃ =
O(| ln b|−2) that was proved in Step 3. ��

Proof of Corollary 2.9 We claim that the same proof applies as for Lemma 2.8. Indeed,
notice that from Lemma 2.4 and the bound (2.4), the inner solution for the perturbed
problem is of the very same form as the original problem (2.78):

φin,V
n [b, ᾱ](r) = Fn[b](r)+ ᾱbGn[b, ᾱ](r)+ EV

n [b, ᾱ](r),

where EV
n = En + φin,V − φin satisfies the analogue of (2.80):

2∑
0≤k≤2

|((r∂r )k En)(R0)| ≤ C(ζ0)
b

| ln b| .

So all computations made for the inner solution of the original problem are also valid
for the perturbed problem. Notice similarly from Lemma 2.7 that the outer solution
for the perturbed problem is of the very same form as that of the original problem:

qVn [b, ᾱ](z) = �(θ)h(θ)+ GV
n [b, ᾱ](z)

where G satisfies the analogue of (2.95):

|GV
n (z0))| + |(z∂zGV

n (z0))| � b
1
2 .

So all computations made for the outer solution of the original problem are also valid
for the perturbed problem. Thematching procedure can thus be done verbatim the same
way. The only informations that we do not get in comparison with the original problem
are the estimates for the variation with respect to α̃ and b, and the next order | ln b|−2
term in the expansion of α̃ for n = 0, 1, but these informations are not required. This
concludes the proof of the Corollary. ��

Proof of Proposition 1.6 The existence part and the estimates on the eigenvalues are
direct consequences of Corollary 2.9. The bound (1.25) is a direct consequence of
(2.4) and (2.7). ��
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3 Coercivity in the non-radial sector, Proof of Proposition 1.9

Our argument takes place on the stationary state variables,

L u = �u − ∇ · (u∇�U )− ∇ · (U∇�u)− b∇ · (yu), 0 < b = ν2β � 1, y = z√
βν

.

The operator L can be written in two different divergence forms

L u = L0u − b∇ · (yu) or L u =H u − ∇U · ∇�u, (3.1)

whereL0 is defined in (1.26), andH u = (ω[b])−1∇ ·
(
ω[b]∇u

)
+ 2(U − b)u, with

the weight functions (we will often forget about the [b] dependance from now on in
this section)

ω = ω[b] = ρ[b]
U

, ρ[b](y) = e−
b|y|2
2 . (3.2)

In the first form in (3.1), the b∇ · (yu) term can be treated as a perturbation up to the
zone |y| ∼ 1/

√
b. In the second, the term ∇U · ∇�u formally scales like “|y|−4u” at

infinity due to the rapid decay of U and is expected to be of lower order there. The
mixed scalar product (1.29) is adapted to these two structures. We make a slight abuse
of notations and keep the same notation for it in y variables:

〈u, v〉∗ :=
∫
R2

u
√

ρM
(
v
√

ρ
)
dy =

∫
R2

uM̃ vρdy, (3.3)

where M̃ is the linear operator with a suitably truncated Poisson field:

M̃ = M̃ [b] : u �→ u

U
− �̃u, �̃u = �̃[b]u = − 1√

ρ

[
1

2π
ln(|y|) ∗ (u√ρ

)]
.

(3.4)

Note that M̃ v = √ρ−1M
(
v
√

ρ
)
so there holds in particular the relations:

−�
(
�̃u
√

ρ
)
= u
√

ρ and ��̃u = −u + by · ∇�̃u +
(
b + b2

4
|y|2
)

�̃u .

Weshall consider the operator L̃ which is the operator L̃ z defined by (1.30) expressed
in y variable:

L̃ u := �u − ∇ · (u∇�U )−∇ · (U∇�̃u)− b∇ · (yu),

To prove Proposition 1.9 is then equivalent to prove its analogue in y variables:
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Proposition 3.1 There exists c,C > 0 and b∗ > 0 such that for all 0 < b ≤ b∗, if
∇u ∈ L2

ω[b] satisfies
∫
|y|=r u = 0 for almost every r > 0, then:

〈−L̃ u, u〉∗ ≥ c‖∇u‖2L2
ω
− C

((∫
R2

u∂y1U
√

ρdy

)2

+
(∫

R2
u∂y2U

√
ρdy

)2
)

.

(3.5)

The proof is done in two parts: In the first part, we deal with the linear operator
L0 and derive its coercivity under some suitable orthogonality conditions. Then, we
extend this coercive property to the full linearized operator L̃ where the scaling term
∇ · (yu) is taken into account.

3.1 Coercivity ofL0 in Ḣ1

We recall that L0, at the L2 level, satisfies the continuity estimate (1.27) and the
coercivity (1.28) from [27]. We prove here a coercivity at the Ḣ1 level. While [27]
proves a similar estimate at the Ḣ2 level, we state and prove in an analogous way the
following result for the sake of completeness.

Lemma 3.2 Let u be such that
∫
|y|=r udy = 0 and ∇u ∈ L2(U−1). Then, we have for

some constants δ2 > 0 and C > 0:

∫
R2

U |∇(M u)|2dy ≥ δ2

∫
R2

|∇u|2
U

dy − C
[
〈u, ∂1U 〉2L2 + 〈u, ∂2U 〉2L2

]
. (3.6)

Proof We first prove that the projections are well-defined. This is a consequence of
the following Hardy-type inequality:

∫
R2

u2(1+ |y|2)dy �
∫
R2
|∇u|2(1+ |y|4)dy, (3.7)

and of the decay |U | � (1+ |y|)−4:

〈u, ∂iU 〉2L2 �
(∫

R2
|u|2(1+ |y|)2

) 1
2

�
(∫

R2
|∇u|2(1+ |y|)4

) 1
2

�
(∫

R2

|∇u|2
U

) 1
2

.

Step 1 Subcoercivity estimate: We use Young’s inequality ab ≤ a2/4+ b2 to obtain:

∫
R2

U |∇(M u)|2 =
∫
R2

U

(∣∣∣∇ ( u
U

)∣∣∣2 + 2∇
( u
U

)
· ∇�u + |∇�u |2

)

≥ 1

2

∫
R2

U
∣∣∣∇ ( u

U

)∣∣∣2 −
∫
R2

U |∇�u |2 .

From the algebraic identity
∫
R2 U

∣∣∇ ( uU )
∣∣2 = ∫

R2
|∇u|2
U − ∫

R2 Uu2, the control of the
Poisson field (A.9)

∫
R2 U |∇�u |2 �

∫
u2, and the decayU (y) � (1+|y|)−4, one gets
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the following subcoercive estimate for some C > 0:

∫
R2

U |∇(M u)|2 ≥ 1

2

∫
R2

|∇u|2
U
− C

∫
R2
|u|2. (3.8)

Step 2 Coercivity estimate: We apply a standard minimisation technique. Assume
by contradiction (3.6) is false. Then there exists a sequence of functions (un)n∈N ∈
Ḣ1((1+ |y|)4dy) without radial component such that

∫
R2

|∇un|2
U

= 1,
∫
R2

un∂yiU = 0 for i = 1, 2,
∫
R2

U |∇(M un)|2 → 0.

(3.9)

Up to a subsequence there exists a limit u∞ of un in H1
loc. Moreover, from the lower

semi-continuity and the weak continuity, we have

∫
R2

|∇u∞|2
U

≤ 1,
∫
R2

u∞∂yiU = 0 for i = 1, 2.

We now write

∫
R2

U |∇(M un)|2 =
∫
R2

|∇un|2
U

−
∫
R2

Uu2n .

Above, ∇unU converges weakly in L2(U dy). We remark that

∫
R2

u2n(1+ |y|2) �
∫
R2

|∇un|2
U

.

From this and from the compactness of the embedding of H1(�) in L2(�) for� com-
pact, un converges strongly in L2(dy). Hence, from (3.9) and lower semi-continuity:

∫
R2

U |∇(M u∞)|2 =
∫
R2

|∇u∞|2
U

−
∫
R2

Uu2∞ � 0.

Therefore,∇M u∞ = 0. Since u∞ is without radial component, one obtainsM u∞ =
0. Hence, u∞ belongs to the Kernel ofM intersected with L2((1+|y|)2dy), which is
Span(∂y1U , ∂y2U ). From the orthogonality condition (3.9), one gets that necessarily
u∞ = 0. From the subcoercivity estimate (3.8),

∫
R2
|un|2 ≥ 1

C

(
1

2

∫
R2

|∇un|2
U

−
∫
R2

U |∇(M un)|2
)

,
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and hence from (3.9): lim inf
∫
R2 |un|2 ≥ 1

C > 0. As un converges strongly in L2(dy),

this implies
∫
R2
|u∞|2 �= 0 which contradicts u∞ = 0. This concludes the proof of

Lemma 3.2. ��

3.2 Coercivity of L̃ , Proof of Proposition 3.1

We are now in the position to conclude the proof of Proposition 3.1 thanks to

Lemma 3.2. By noting that �u − ∇�U · ∇u + uU = ∇ ·
[
U∇

( u
U

)]
and

Uu −∇U · ∇�̃u = −∇ ·
(
U∇�̃u

)
− bUy · ∇�̃u −

(
b + b2

4
|y|2
)
U�̃u,

we rewrite the linear operator L̃ in terms of M̃ as follows:

L̃ u = ∇ ·
(
U∇M̃ u − byu

)
− bUy · ∇�̃u −

(
b + b2

4
|y|2
)
U�̃u .

One has the identity

−
∫
∇ ·
(
U∇M̃ u − byu

)
M̃ vρdy

=
∫

U∇M̃ u · ∇M̃ vρ + b
∫

y.∇�UuM̃ v
√

ρ + b
∫

Uy · ∇�̃uM̃ vρdy

+ 2b
∫

uM̃ vρ.

This leads to the following almost self-adjointness of L̃ :

〈−L̃ u, v〉∗ = F(u, v)+ G(u, v)+ 2b〈u, v〉∗, (3.10)

where F is the leading order part given by

F(u, v) :=
∫
R2

U∇M̃ u · ∇M̃ vρdy + b
∫
R2

y · ∇�UuM̃ v
√

ρ,

and G contains lower order terms,

G(u, v) :=
∫
R2

(
2bUy · ∇�̃u +

(
b + b2

4
|y|2
)
U�̃u

)
M̃ vρdy.
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Proof of Proposition 3.1 To prove (3.5) we proceed in two steps:

Step 1 Subcoercivity estimate: We claim that for u ∈ Ḣ1
ω:

F(u, u)+ G(u, u)

= ‖∇u‖2L2
ω
+O

(
‖∇u‖L2

ω

∥∥∥ u

1+ |y| 32
∥∥∥
L2

ω

+
∥∥∥ u

1+ |y| 32
∥∥∥2
L2

ω

+ b
1
4 ‖∇u‖2L2

ω

)
,

(3.11)

where the constant in theO(·) does not depend on b. Let us begin with the form F by
writing

F(u, u) =
∫
R2

U
∣∣∣∇ ( u

U

)∣∣∣2 ρ + b
∫
R2

y · ∇�U

U
u2ρ

−2
∫
R2

U∇
( u
U

)
· ∇�̃uρ +

∫
R2

U |∇�̃u |2ρ.

The first line gathers the leading order terms at infinity. We compute

∫
R2

U
∣∣∣∇ ( u

U

)∣∣∣2 ρ + b
∫
R2

y · ∇�U

U
u2ρ

=
∫
R2

|∇u|2
U

ρ − 2
∫
R2

u

U
∇u · ∇�Uρ +

∫
R2

u2|∇�U |2
U

ρ + b
∫
R2

y · ∇�U

U
u2ρ

=
∫
R2

|∇u|2
U

ρ +
∫
R2

u2∇ ·
(∇�U

U

)
ρ +

∫
R2

u2|∇�U |2
U

ρ=‖∇u‖2L2
ω
−
∫
R2

u2ρ.

Thus, we have

F(u, u) = ‖∇u‖2L2
ω
−
∫
R2

u2ρ − 2
∫
R2

U∇
( u
U

)
· ∇�̃uρ +

∫
R2

U |∇�̃u |2ρ.

(3.12)

From (A.9) with α = 7/4, and (A.5) with α = 1/2 we get:

b
3
4 |�̃u(y)|2 � ρ−1(1+ |y|)− 3

2 b
3
4

∫
R2
|u|2(1+ |y|) 7

2 e−
b|y|2
2 dy � ρ−1(1+ |y|)− 3

2 ‖u‖2
Ḣ1

ω
.

(3.13)

As ∇�̃u = ∇(ρ−1/2�ρ1/2u), using the above inequality, and (A.9) with α = 1/2, we
obtain:

|∇�̃u(y)|2 � ρ−1(1+ |y|)−1(1+ 1(|y| ≤ 1) ln |y|)
∫
R2

u2(1+ |y|)ρ

+b 5
4 ρ−1(1+ |y|) 1

2 ‖u‖2
Ḣ1

ω
. (3.14)
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From the above estimate and the decay |U (y)| � (1+ |y|)−4, we obtain
∫
R2

U |∇�̃u |2ρdy �
∫
R2

u2(1+ |y|)ρdy + b
5
4 ‖u‖2

Ḣ1
ω
.

Using again the Hardy inequality (A.4), one gets

∫
R2

U
∣∣∣∇ ( u

U

)∣∣∣2 ρ ≤ C‖u‖2
Ḣ1

ω
.

We finally arrive at the subcoercivity estimate for F :

F(u, u) = ‖∇u‖2L2
ω
+O

(
‖∇u‖L2

ω

∥∥∥ u

1+ |y| 32
∥∥∥
L2

ω

+
∥∥∥ u

1+ |y| 32
∥∥∥2
L2

ω

+ b
5
8 ‖∇u‖2L2

ω

)
.

We now turn to the terms in G. From (3.13), (3.14), (A.4) and |U | � (1 + |y|)4, we
get

√
ρ

∣∣∣∣2bUy · ∇�̃u +
(
b + b2

4
|y|2
)
U�̃u

∣∣∣∣
� ‖∇u‖L2

ω

(
b(1+ |y|)− 7

2 + b
13
8 (1+ |y|)− 11

4 + b
5
8 (1+ |y|)− 19

4

)
. (3.15)

Using |U |−1 � (1 + |y|)4 and Cauchy-Schwarz, we obtain for the two first terms
below from (A.5) with α = 3/2, and for the third with (A.5) with α = 3/4:

∫
R2

b(1+ |y|)− 7
2
u

U

√
ρ

� b
1
4

(
b

3
2

∫
R2

u2(1+ |y|5)ρ
) 1

2
(∫

R2
(1+ |y|)−4

)
� b

1
4 ‖∇u‖L2

ω
,

∫
R2

b
13
8 (1+ |y|)− 11

4
u

U

√
ρ

� b
7
8

(
b

3
2

∫
R2

u2(1+ |y|5)ρ
) 1

2
(∫

R2
(1+ |y|)− 5

2

)
� b

7
8 ‖∇u‖L2

ω
,

∫
R2

b
5
8 (1+ |y|)− 19

4
u

U

� b
1
4

(
b

3
4

∫
R2
|u|2(1+ |y|) 7

2 ρdy

) 1
2
(∫

R2
(1+ |y|)−5

)
� b

1
4 ‖∇u‖L2

ω
,

from which we obtain the bound

∫
R2

∣∣∣∣2bUy · ∇�̃u +
(
b + b24

4
|y|2
)
U�̃u

∣∣∣∣ uU ρ � b
1
4 ‖∇u‖2L2

ω
.
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By using the estimate (A.9) with α = 1 and (A.4) we get:

√
ρ|�̃u | � (1+ |y|) 1

2
(
1+ 1|y|≤1| ln |y||

) ∥∥∥∇u∥∥∥
L2

ω

,

and hence from (3.15) one gets

∫
R2

∣∣∣∣2bUy · ∇�̃u +
(
b + b2

4
|y|2
)
U�̃u

∣∣∣∣ �̃uρ � b
5
8 ‖∇u‖2L2

ω
.

We then arrive at the estimate for G:

|G(u, u)| =
∣∣∣∣
∫
R2

(
2bUy · ∇�̃u +

(
b + b2

4
|y|2
)
U�̃u

)
M̃ uρdy

∣∣∣∣ � b
1
4 ‖∇u‖2L2

ω
.

(3.16)

The estimates for F and G above yield the desired subcoercivity estimate (3.11).

Step 2 Asymptotic problem and rigidity: First note that the third term in (3.10) is
signed, and already satisfies that, from (3.3) and (1.28) applied to u

√
ρ, if u is without

radial component, then:

〈u, u〉∗ =
∫
R2

u
√

ρM
(
u
√

ρ
)
dy

≥ δ1

∫
R2

(
√

ρu)2

U
dy−C

[
〈√ρu,�U 〉2L2+〈√ρu, ∂1U 〉2L2+〈√ρu, ∂2U 〉2L2

]

= δ1‖u‖2L2
ω
− C

((∫
R2

u∂y1U
√

ρdy

)2

+
(∫

R2
u∂y2U

√
ρdy

)2
)

as �U is radial. Therefore, if one assumes by contradiction that (3.5) does not hold,
then

m := lim inf
b→0

inf
u∈Ḣ1

ω[b], 〈u,
√

ρ∇U 〉L2=0
F[b](u, u)+ G[b](u, u)

‖∇u‖L2
ω[b]

≤ 0 with

ω[b] = ρ[b]
U

, ρ[b] = e−
b|y|2
2 .

From the subcoercivity estimate (3.11) and (A.4), we infer that −∞ < m ≤ 0. Let
bn → 0 and un be sequences such that, without loss of generality, ‖∇un‖L2

ω[bn ]
= 1,

〈un,√ρ∇U 〉 = 0 and

F[bn](un, un)+ G[bn](un, un)→ 0.
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The above limit, with (3.11) and ‖∇un‖L2
ω[bn ]
= 1, imply that there exists c > 0 such

that for all n:
∫
R2

u2n(1+ |y|)ρ[bn]dy ≥ c.

The sequence fn = un
√

ρ[bn] is then uniformly bounded in Ḣ1((1+ |y|4)dy) from
(A.3), with

∫
R2 f 2n (1+ |y|) ≥ c. Since also

∫
f 2n (1+ |y|2) is uniformly bounded by

(A.4), there exist R, c′ > 0 such that, up to a subsequence,

∫
|y|≤R

| fn|2dy ≥ c′.

We pass to the limit: there exists f∞ ∈ Ḣ1((1+ |y|4)dy) that is the weak limit in this
space of fn . Moreover, by compactness of H1 in L2 on bounded sets, the convergence
is strong in L2((1+ |y|)dy), so that f∞ �= 0 from the above inequality. Let us write

√
ρ[b]∇�̃u = ∇�u

√
ρ[b] −

by

4
�u
√

ρ[b].

From (A.9), we infer that the first term, i.e. the mapping
√

ρ[b]u �→ ∇�u
√

ρ[b],
is continuous from L2(1 + |y|) into L2((1 + |y|)−4). Similarly, the second term is
controlled by

∥∥∥by
2

�u
√

ρ[b]
∥∥∥
L2((1+|y|)−4) �

√
b‖u‖Ḣ1

ω[b]
→ 0 as b→ 0.

Therefore,
√

ρ[bn]∇�̃un converges strongly to ∇� f∞ in L2((1 + |y|)−4). Conse-
quently, one has the continuity at the limit,

−
∫
R2

u2nρ[bn] − 2
∫
R2

U∇
(un
U

)
· ∇�̃unρ[bn] +

∫
R2

U |∇�̃un |2ρ[bn]

−→
n→∞ −

∫
R2

f 2∞ − 2
∫
R2

U∇
(

f∞
U

)
· ∇� f∞ +

∫
R2

U
∣∣∣∇� f∞

∣∣∣2.
Together with the continuity estimate for G (3.16), which implies its asymptotic

vanishing, and lower-semicontinuity, we deduce

0 = lim
n→∞ F[bn](un, un)+ G[bn](un, un)

≥
∫
R2

|∇ f∞|2
U

−
∫
R2

f 2∞ − 2
∫
R2

U∇
(

f∞
U

)
· ∇� f∞ +

∫
R2

U |∇� f∞|2

However,

∫
R2

|∇ f∞|2
U

−
∫
R2

f 2∞ − 2
∫
R2

U∇
(

f∞
U

)
· ∇� f∞ +

∫
R2

U |∇� f∞|2 =
∫
R2

U |∇M f∞|2.
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Hence, as f∞ is without radial component we deduce thatM f∞ = 0 and hence that
f∞ = c1∂y1U + c2∂y1U , with one coefficient being non zero since f∞ �= 0. On the
other hand, the orthogonality 〈un,√ρ∇U 〉 passes to the limit, yielding 〈 f∞,∇U 〉 = 0
so that c1 = c2 = 0 which is a contradiction. This concludes the proof of Proposi-
tion 1.9. ��
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Appendix A: Estimates on the Poisson Field

We first recall estimates relative to the weight e−|z|2/2 with polynomial corrections.
First, there holds the bound for any k ≥ 0 for any function without radial component

∫
v2|z|2k(1+ |z|2)e− |z|

2

2 dz �
∫
|∇v|2|z|2ke− |z|

2

2 dz. (A.1)

By a scaling argument, this implies that for 0 < b ≤ 1:

∫
b2(|y|2 + |y|6)|u|2e− b|y|2

2 �
∫

(1+ |y|4)|∇u|2e− b|y|2
2 (A.2)

with constant independent on b. Therefore:

∫
(1+ |y|4)|∇(ue−

b|y|2
4 )|2 ≤ C

∫
(1+ |y|4)|∇u|2e− b|y|2

2 . (A.3)

Applying (3.7) one obtains from the above inequality the Hardy-type inequality with
weight e−b|z|2/2:

∫
(1+ |y|2)u2e− b|y|2

2 �
∫

(1+ |y|4)|∇u|2e− b|y|2
2 , (A.4)

with constant independent on b. Interpolating between the above inequality and (A.2)
we obtain that for any 0 ≤ α ≤ 2:

bα

∫
R2
|u|2(1+ |y|2+2α)e−

b|y|2
2 dy �

∫
|∇u|2(1+ |y|4)e− b|y|2

2 dy. (A.5)

For u localised on a single spherical harmonics Y (k,i) with

Y (k,i)(y) =
⎧⎨
⎩
cosk

(
y
|y|
)

if i = 1,

sink
(

y
|y|
)

if i = 2,
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where we identify y/|y|with its angle on the unit circle, the Laplace operator is written
as

�u(x) = �(k)(u(k,i))(r)Y (k,i)
(

y

|y|
)

, �(k) = ∂rr + 1

r
∂r − k2

r2
.

The fundamental solutions to �(k) f = 0 are ln(r) and 1 for k = 0, and rk and r−k
for k ≥ 1, with Wronskian relations:

W (0) = d

dr
ln(r) = r−1 and W (k) = d

dr
(rk)r−k − rk

d

dr
(r−k) = 2kr−1 for k ≥ 1.

The solution to −��u = u given by �u = −(2π)−1 ln(|x |) ∗ u is then given on
spherical harmonics by:

�(0,0)
u (r) = − ln(r)

∫ r

0
u(0,0)(r̃)r̃dr̃ −

∫ ∞
r

u(0,0)(r̃) ln(r̃)r̃dr̃ ,

∇�(0,0)
u (x) = − x

|x |2
∫ |x |
0

u(0,0)(r̃)r̃dr̃ , (A.6)

�(k,i)
u (r) = rk

2k

∫ ∞
r

u(k,i)(r̃)r̃1−kdr̃ + r−k

2k

∫ r

0
u(k,i)(r̃)r̃1+kdr̃ , (A.7)

∂r�
(k,i)
u (r) = rk−1

2

∫ ∞
r

u(k,i)(r̃)r̃1−kdr̃ − r−k−1

2

∫ r

0
u(k,i)(r̃)r̃1+kdr̃ .

(A.8)

Lemma A.1 If u is without radial component, for any 0 < α < 2:

|�u |2 + |y|2|∇�u |2 � |y|2(1+ |y|)−2α (1+ 1|y|≤1| ln |y||
) ∫

R2
|u|2(1+ |y|)2αdy.

(A.9)

Proof We decompose �u in spherical harmonics. Note that �
(0,0)
u = 0 as u has no

radial component. Applying Cauchy-Schwartz inequality in both terms in (A.8) one
gets for k ≥ 1, as 0 < α < 2:

∣∣∣∣
∫ ∞
r

u(k,i)(r̃)r̃1−kdr̃
∣∣∣∣ �

(∫ ∞
r
|u(k,i)|2(1+ r)2α r̃dr̃

) 1
2
(∫ ∞

r
(1+ r)−2α r̃1−2kdr̃

) 1
2

� r1−k(1+ r)−α
(
1+ 1r≤1| ln r |

) (∫ ∞
0
|u(k,i)|2(1+ r)2α r̃dr̃

) 1
2

,

∣∣∣∣
∫ r

0
u(k,i)(r̃)r̃1+kdr̃

∣∣∣∣ �
(∫ r

0
|u(k,i)|2(1+ r)2α r̃dr̃

) 1
2
(∫ r

0
(1+ r)−2α r̃1+2kdr̃

) 1
2
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� r1+k(1+ r)−α

(∫ ∞
0
|u(k,i)|2(1+ r)2α r̃dr̃

) 1
2

.

The two above inequalities, injected in (A.7), (A.8) produce:

|�(k,i)
u (r)| � 1

k
r1
(
1+ 1r≤1| ln r |

)
(1+ r)−α

(∫ ∞
0
|u(k,i)|2(1+ r)2α r̃dr̃

) 1
2

,

|∂r�(k,i)
u (r)| � (1+ 1r≤1| ln r |

)
(1+ r)−α

(∫ ∞
0
|u(k,i)|2(1+ r)2α r̃dr̃

) 1
2

.

On each spherical harmonic we thus have:

∣∣∣�(k,i)
u Y (k,i)

∣∣∣2 + r2
∣∣∣∇ (�(k,i)

u Y (k,i)
)∣∣∣2

� r2(1+ r)−2α
(
1+ 1r≤1| ln r |

) ∫ ∞
0
|u(k,i)|2(1+ r)2α r̃dr̃ .

The constant in the inequality above is independent on k, i , so by summing we obtain
(A.9). ��
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10. Costin, O., Donninger, R., Glogić, I.: Mode stability of self-similar wave maps in higher dimensions.
Commun. Math. Phys. 351(3), 959–972 (2017). https://doi.org/10.1007/s00220-016-2776-7

11. Dejak, S.I., Lushnikov, P.M., Ovchinnikov, Yu.N., Sigal, I.M.: On spectra of linearized operators for
Keller–Segel models of chemotaxis. Physica D 241(15), 1245–1254 (2012). https://doi.org/10.1016/
j.physd.2012.04.003

123

https://doi.org/10.1016/j.jfa.2011.12.012
https://doi.org/10.1016/j.jfa.2011.12.012
https://doi.org/10.1007/978-3-642-45589-6_6
https://doi.org/10.1016/0025-5564(81)90055-9
https://doi.org/10.1090/jams/941
https://doi.org/10.1090/memo/1255
https://doi.org/10.1002/cpa.21988
https://doi.org/10.1002/cpa.21988
https://doi.org/10.1088/0951-7715/29/8/2451
https://doi.org/10.1007/s00220-016-2776-7
https://doi.org/10.1016/j.physd.2012.04.003
https://doi.org/10.1016/j.physd.2012.04.003


5 Page 74 of 74 C. Collot et al.

12. Dejak, S.I., Egli, D., Lushnikov, P.M., Sigal, I.M.: On blowup dynamics in the Keller–Segel model of
chemotaxis. Algebra i Analiz 25(4), 47–84 (2013). https://doi.org/10.1090/S1061-0022-2014-01306-
4

13. Diaz, J.I., Nagai, T., Rakotoson, J.-M.: Symmetrization techniques on unbounded domains: application
to a chemotaxis system on RN . J. Differ. Equ. 145(1), 156–183 (1998). https://doi.org/10.1006/jdeq.
1997.3389

14. Dyachenko, SergeyA., Lushnikov, PavelM., Vladimirova, Natalia: Logarithmic scaling of the collapse
in the critical Keller–Segel equation. Nonlinearity 26(11), 3011–3041 (2013). https://doi.org/10.1088/
0951-7715/26/11/3011
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