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ABSTRACT

Multithreaded programs can have deadlocks, even after deployment,
so users may want to run deadlock tools on deployed programs.
However, current deadlock predictors such as MagicLock and
UNDEAD have large overheads that make them impractical for end-
user deployment and confine their use to development time. Such
overhead stems from running an exponential-time algorithm on
a large execution trace. In this paper, we present the first low-
overhead deadlock predictor, called AIRLOCK, that is fit for both
in-house testing and deployed programs. AIRLock maintains a small
predictive lock reachability graph, searches the graph for cycles,
and runs an exponential-time algorithm only for each cycle. This
approach lets AIRLock find the same deadlocks as MaGicLock and
UNDEAD but with much less overhead because the number of cycles
is small in practice. Our experiments with real-world benchmarks
show that the average time overhead of AIRLocK is 3.5%, which
is three orders of magnitude less than that of MacicLock and
UNDEAD. AIRLock’s low overhead makes it suitable for use with
fuzz testers like AFL and on-the-fly after deployment.
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1 INTRODUCTION

Multithreaded programs are error-prone due to unexpected thread
interleavings that can cause various concurrency bugs. One such
kind of bug is deadlocks that can happen because of incorrect
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synchronizations among multiple threads. A deadlock occurrence
prevents an execution from making further progress. A deadlock
occurs when a set of threads hold a set of locks and they mutually
wait for other locks held by the same set of threads [1, 3]. In this
paper, we focus on resource deadlocks only [6]; another kind of
deadlock is known as communication deadlocks [28].

Like other kinds of concurrency bugs, deadlocks are difficult
to detect due to non-determinism of multithreaded executions. In
particular, even if a program has a reachable deadlock, the deadlock
may occur in just a small number of executions. However, unlike
other kinds of concurrency bugs, if a deadlock occurs, it can be
easily detected [2] at run time.

As deadlocks are caused by non-determinism of thread inter-
leavings, in-house testing is unlikely to detect all of them!. Even
after a multithreaded program is released, deadlocks can still occur.
Hence, it is still critical to detect deadlocks in released software, e.g.,
at end-users. In such scenarios, low overhead on-the-fly detectors
should be the first choice.

Unfortunately, to the best of our knowledge, existing deadlock
detection techniques are not suitable for on-the-fly detection. They
incur a large time overhead (that can be 100-1000x), which prevents
them from being applied by end-users as the maximum acceptable
time overhead there is usually less than 5% [4, 32, 36, 40].

In detail, a predictive tool analyzes an execution trace and pre-
dicts whether deadlocks may occur in alternative executions [1, 3, 6,
7, 29, 38]. As outlined in Figure 1, these approaches map an execu-
tion trace into a large data structure and apply an exponential-time
algorithm? to it to detect cycles as deadlocks. The earliest work
is the GoopLock algorithm [3] that maps an execution trace into
a lock order graph where (1) locks are nodes, (2) lock orders are
edges, and (3) edge weights are thread identifiers and other execu-
tion information. Next, GoopLock searches for cycles in the graph
as potential deadlocks.

GoopLock adopts the Depth-First Search (DFS) algorithm on the
lock order graph. During DFS, edge weights are frequently checked
against those of all edges in the current path to see if they satisfy the
deadlock definition. Its searching cost increases exponentially with
the increasing number of lock acquisitions. There have been several
works to improve the practical efficiency of GoopLock, such as
MutrticoreSDK [38] and IGoopLock [29]. The two latest works are
MagicLock [6, 7] and UNDEAD [54]. MaGicLock introduces several

!In theory, although model checking [13, 21] based techniques (and other synchro-
nization coverage ones [23, 45, 53]) can explore all thread interleavings, they usually
scale poorly to such programs as MySQL that have millions of lines of codes [12].
2Given a graph G = (V, E), it requires 2F operations to find all cycles in G in the
worst case (corresponding to 2F cycles) [27].
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Core of the Previous Algorithms

1. Map an execution trace to a large data structure;

2. Runan exponential-time algorithm on the data structure to find cycles
as deadlocks.

Core of the AIRLock

1. Map an execution trace to a set of small data structures and a lock
reachability graph;

2. Run a polynomial-time algorithm on the reachability graph to report:
o either "an existence of some cycles" (a small percentage),
e or "an absence of any cycle" (a large percentage);

3. For the existence case, run an exponential-time algorithm on a small
subset of the reachability graph to find cycles and construct deadlocks
for each cycle.

Figure 1: The core algorithms of previous detectors and AIRr-
Lock.

strategies to prune locks and edges that cannot participate in any
cycles as well as identifying equivalent edges. UNDEAD [54] is a
simplified version of IGoopLock with some optimizations adopted
from MagicLock (i.e., discarding equivalent edges [6] that compro-
mise the ability to detect concrete deadlocks). A difference among
them is that UNDEAD tries to keep traces in memory so that it can
begin detection once an execution terminates, whereas the previ-
ous ones keep traces in external storage. Nevertheless, these works
target offline deadlock detection. They become inefficient when
used for on-the-fly deadlock detection, as we show experimentally
in Section 5.

In this paper, we present a new deadlock detection algorithm,
called A1RLock. It does on-the-fly (predictive) deadlock detection
with low overhead, and it can be applied to both in-house testing
by developers (e.g., in fuzzing testing) and deployed products.

The idea of AIRLOCK is to use an on-the-fly algorithm instead
of the offline algorithms in previous works. The core algorithm of
A1rLock is shown in Figure 1. It collects an execution trace into
a set of small data structures and a predictive lock reachability
graph that reflects the relationship of every two locks (without any
execution information). Next, it runs a polynomial-time algorithm
on the reachability graph to conclude whether the trace has some
cycles. If so, it runs an exponential-time algorithm on a small subset
of its lock reachability graph to find all cycles and constructs all
deadlocks.

A1rLock is based on the following observations about large
benchmarks: (1) most pairs of locks are acquired in consistent orders
and they do not form any cycle and (2) only a few pairs of locks
are acquired in reversed orders which may cause deadlocks. Hence,
it is unnecessary to directly apply a heavy algorithm to a large
trace as done by existing works [6, 29, 54]. Instead, the strategy of
AIRLOCK is to identify the existence of cycles and then to detect
them. Additionally, AIRLock reduces the reachability graph on-
the-fly without missing any cycles. This design makes AIRLock a
low-overhead deadlock predictor.

We have implemented A1RLock on top of the Pin framework [37]
and evaluated it on a set of seven real-world benchmarks. These
benchmarks contain six unique deadlocks that are helpful for evalu-
ating the effectiveness of AIRLock. We configured the benchmarks
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with inputs that make them run for 10 to 60 seconds to evalu-
ate efficiency. We also compared A1rLock with both MaGicLock
and UNDEAD. The experimental results show that all three tools
reported the same predictive deadlocks. However, on efficiency,
ArrLock only incurred an average of 3.5% time overhead; whereas,
MagicLock and UNDEAD incurred an average of 31x and 371x
time overhead, respectively. To further evaluate the efficiency of
A1rLock, we configured it to detect cycles at different frequencies
(i-e., every i seconds, 1 < i < 10) on two large-scale benchmarks
(MySQL and Firefox). The results show that, at any of these fre-
quencies, AIRLock incurred less than 6% time overhead. The results
demonstrate that ATRLOCK is an efficient on-the-fly predictive dead-
lock detector, applicable for both in-housing testing and deployed
products at end-users.

The low overhead of AIrRLock also makes it work well with fuzz
testers like AFL.

In summary, the contributions of this paper include:

e anovel on-the-fly predictive deadlock detection approach,
based on the insight that most lock acquisition orders do not
form any deadlock, which can be concluded by a polynomial-
time algorithm;

o the tool AIrRLock that implements the above insight for on-
the-fly predictive deadlock detection;

e an evaluation of A1RLock that shows that AIRLock only
incurred on average 3.5% time overhead on large-scale pro-
grams. Even under frequent deadlock detection (per 1 or
more seconds), it only incurred less than 6% time overhead
(less than 5% time overhead when the detection period of
> 5 seconds).

2 MOTIVATING EXAMPLE

In this section, we begin with introducing some notations that
we will use throughout the paper, and then we walk through an
example of how AIRLock predicts deadlocks.

2.1 Preliminaries

A multithreaded program has a set of threads and a set of locks.
During execution, a lock ! can be acquired and released by at most
one thread t at a time, denoted as acq(l) and rel(l), respectively. A
thread can acquire additional locks before it releases any acquired
locks; and the set of all these locks held by a thread ¢ is called a
lockset, denoted as LS(t). A lock I can be destroyed, denoted as des(1);
and the destroyed lock I cannot be acquired and released again.

To be consistent with previous works, we also adopt the concept
of the lock dependency in our analysis. A lock dependency [6, 29]
is a triple d = (t, I, LS(t)), indicating that, during an execution, a
thread t acquires a lock [ when it holds a set of locks in LS(t). A
trace is a set of dependencies. Notice that our notion of trace is
a set rather than a list; this is because a set is sufficient for our
purposes.

Two (ordered) locks have the following reachability relationship:
direct reachability (—) and indirect reachability (--»>). A lock
Iy directly reaches alock I, if there is a lock dependency (t, I2, LS(t))
such that [; € LS(t); and we say that there is a direct edge from
lock I3 to lock Iz, denoted as Iy — Iz. A lock I indirectly reaches a
lock I if there are a sequence of locks Iy, ..., [_; such that [; —
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liy1,for 1 < i < k — 1; and we say there is an indirect edge from
lock 1 to lock I, denoted as I --»> I.. For example, as shown in
Figure 3, when thread 1 calls function f(thd, open), it forms a direct
edge thd — open. Similarly, thread t; forms a direct edge open —
kern. Both direct edges {thd — open, open — kern} together form
an indirect edge thd --> kern. From above definition, we see that,
(1) there can be both direct and indirect edges between two locks,
(2) a dependency can produce multiple edges and an edge can be
represented as a lock dependency [29], and (3) the same edge can
be produced by different lock dependencies.

We introduce two edge sets Fr and To to describe edges. Given
a lock I, Fr(l) denotes a set of locks that lock [ directly or indi-
rectly reaches, and To(l) denotes a set of locks that can directly
or indirectly reach lock I. Obviously, given two locks /5 and Iy, if
Iy € Fr(ly), then we have [; € To(ly).

Now, we define a predictive (lock) reachability graph over
a set of locks V to be R = (V,E) where E = {{l1,I2) e VX V|ly €
Fr(l;)}. Obviously, R is the transitive closure of the directed graph
Go = (V, E,) where E, is the set of all direct edges.

In the above definition of indirect edge, if the lock I} also directly
reaches the lock /1, we say that the sequence of edges {l; — Iz, ...,
Iy = I, I — 11} forms a direct cycle. An indirect cycle is
defined similarly except that, at least one edge is an indirect edge.
A simple cycle is defined to be a direct or an indirect cycle of two
locks.

Note, in the definition of cycles, we only consider the reachability
among locks, but exclude aspects such as their forming threads
and locksets. This is different from the cycles defined in previous
works like [6, 54]. To restrict our approach to report exactly the
same (predictive) deadlocks as previous works, we follow the same
definition of deadlocks [6, 29]: a sequence of m lock dependencies
(do, ...,dm-1) (where d; = {t;,1;, LS(t;)), for 0 < i < m — 1) forms
a deadlock if:

e for0<i<m-11; € LS(t(i+1 (mod m)))’ and
o for0 <i<j<m-1,LS(t;) NLS(t;) = 0.

The definition requires that each thread of the set should hold a
set of locks and mutually wait for another lock held by a different
thread, and at the same time, no two threads hold the same lock.
Given a direct cycle, its corresponding set of deadlocks can be
constructed by first replacing each edge with every lock dependency
that produces the edge and then check the set of lock dependencies
against the deadlock definition.

, Part1 —
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Function f (m, n){

1

2 acq(m); acq(n); rel(n); rel(m); Deadlocks:

3 //form a direct edge m — n.

4y

S prosram: Cndd  Copew
gram:

7 Thread t;: f(thd, open); 13 5]

8 Thread t: f(open, kern); des(open); @

% Threadss: f(kern, thd);

Figure 3: A motivating program adapted from MySQL (Bug
ID: 62614).

2.2 Overview and Illustration

Figure 2 shows an overview of AIRLOCK, consisting of three parallel
on-the-fly parts to detect deadlocks. Part I builds a reachability
graph on lock acquisitions, and it also records a trace. Part II detects
cycles from the lock reachability graph and constructs deadlocks
from the trace. And Part Il reduces the lock reachability graph when
alock is destroyed, and detects cycles involving the destroyed locks.

Figure 3 shows a motivating program adapted from a deadlock in
MySQL2 (Bug ID: 62614) which is one of our benchmark programs.
It has three threads (¢1, t2, t3) and three locks (thd, open, kern). Each
thread calls function f() to acquire two locks, and thread ¢, further
calls function des() to destroy lock open. Note, originally in MySQL2,
the lock open is not destroyed at the end of thread ¢, but at the pro-
gram exit point; we made the change to illustrate the correctness of
A1rLock’s reduction. Suppose that the three threads are executed
in the order shown in the first column of Figure 4. The correspond-
ing execution trace is a set of three dependencies: (t1, open, {thd}),
(ta, kern, {open}), (t3, thd, {kern}). Obviously, this example has a
deadlock where thread t; holds lock thd and waits for lock open,
thread t; holds lock open and waits for lock kern, and thread 3
holds lock kern and waits for lock thd, and no two threads hold the
same lock .

Figure 4 illustrates the on-the-fly deadlock detection process of
A1rLock. The second major column shows the maintained lock
reachability graph (i.e., the edge sets Fr and To) which is also
depicted. Note, in each edge set, the elements before and after a
slash "/" are locks involved in direct and indirect edges, respectively.
For example, the value "{open/kern}" under Fr(thd) indicates two
edges: one direct edge thd — open and one indirect edge thd --»
kern. The last column shows edges Moved from memory to disk
(as we will explain below). Assume that AIRLOCK is configured to
detect deadlocks at the program exit point.

Initially, after thread #; executes, AIRLock produces one direct
edge thd — open which is reflected under both sub-columns Fr(thd)
and To(open). Next, after thread ¢, calls function f(open, kern), a
new direct edge open — kern is formed and is reflected under both
sub-columns Fr(open) and To(kern). Considering this edge and the
previous edge (i.e., thd — open), they produce an indirect edge thd
--> kern. So, AIRLock updates the reachability graph to reflect this
indirect edge.

Next, after thread t, destroys lock open, AIRLock first detects
cycles involving lock open on the current reachability graph but no
one is detected. It then deletes the lock from the reachbility graph.
However, now two particular kinds of locks exist (i.e., a lock thd



ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Yan Cai, Ruijie Meng, and Jens Palsberg

Lock Reachability Gra

h
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1,/ (thd, open) {open/-} ] - {hdsy - ; -
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t,: des(open) {-/kern} - - - - {-/thd} ____ [thd—mpen; 0pen—>kern}]
t;: f (kern, thd) (itkerny  therny - - {hdly {-lthd) -

On Exit

Figure 4: An illustration of AIRLock on the motivating program.

that reaches lock open and a lock kern that is reachable from lock
open); AIRLock moves these direct edges into an additional storage
(e.g., an external storage) as depicted, indicating that these edges
may participate in a cycle that is produced later.

Finally, after thread 3 executes f(kern, thd), a new direct edge
kern — thd is produced and the reachability graph is updated
accordingly. However, no new indirect edge is produced because
there are no other locks except the two locks themselves that reach
lock kern or can be reached from locks thd.

At the execution exit point, AIRLOCK detects cycles on the reach-
ability graph, resulting in an indirect cycle {kern — thd, thd -->
kern}. Based on this indirect cycle, AIRLock performs a DFS search
of the edges that are only from and to lock thd and lock kern, in-
cluding the corresponding moved edges (in the column Moved
Edges). This results in a direct cycle of three locks {kern — thd,
thd — open, open — kern}. Based on the trace of the execution, a
predictive deadlock (with thread IDs and locksets) of the cycle is
reported.

3 OUR APPROACH: AIRLOCK

This section presents the three parts of ATRLock namely lock reach-
ability graph maintenance, cycle detection and deadlocks construc-
tion, and reachability graph reduction.

3.1 Part I: Maintain Reachability Graph

Part I of A1rRLock tracks lock acquisitions and releases to maintain
alock reachability graph (i.e., to build Fr and To). The key here is to
ensure that the reachability graph precisely reflects all direct edges
and indirect edges. It requires to not only record the direct edges
produced on lock acquisitions but also compute all indirect edges
due to the insertion of the direct edges. We show Part I in Algorithm
1. Given a lock acquisition, AIRLock records dependencies in a
trace and records direct edges produced by the acquisition. Due
to the insertion of the new direct edges, AIRLOoCcKk propagates
reachability of any affected locks.

Note, the edge sets Fr and To consist of both direct edges and
indirect edges. To distinguish them, we introduce two functions
ColorDir(m) and ColorInd(m) to mark a lock m when it is added
into Fr(l) (or To(l)), indicating that the edge from I to m (or from
mto l) is a direct edge or an indirect edge.

Record Dependencies. As outlined in core algorithm in Figure
1, AIRLoCK arranges a trace into a set of small data structures. In
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Algorithm 1: Maintain a Lock Reachability Graph

LS maps a thread ¢ to its lockset.
Tr maps an edge m — [ to a sequence of dependencies.
Fr and To are the two edge sets.
ColorDir and ColorInd: two functions that mark each lock
with different colors.
Function ONACQ(t, I)
foreach m € LS(t) do
Tr(m — 1) « Tr(m — 1)U {t, LS(¢t)\{m}} » Dependency
if ColorDir(l) ¢ Fr(m) then
Fr(m) « Fr(m) U {ColorDir(l)}
To(l) « To(l) U {ColorDir(m)}
call PROPAGATEREACH(m, [). > Propagate reachability

| LS(t) « LS(t) U {I}
Function ONREL(t, [)

| LS(t) « LS\{}
Function PROPAGATEREACH(m, [)

> Update reachability graph dued to the direct edge m — [.

foreach m’ € To(m) do

| Fr(m’) « Fr(m’) U TransInd(Fr(l)) U {ColorInd(l)}
foreach !’ € Fr(l) do

| To(l") « To(l") U TransInd(To(m)) U {ColorInd(m)}
Fr(m) « Fr(m) U TransInd(Fr(l))
To(l) « To(l) U TransInd(To(m))

> Direct edges

> Direct edges

-
[

o

5
16
17
18
19
20
21
22

detail, it indexes a sequence of dependencies by an edge that can be
produced by any indexed dependency. Hence, in Algorithm 1, on
a lock acquisition ONACQ(t, I), AIRLocK records the dependency
into the map Tr(m — [) (line 7). Our trace is different from previ-
ous works that arrange dependencies of a trace to one set [29] or
multiple thread-specific sets [6, 54].

Record Direct Edges. Each lock acquisition ONACQ(¢, [) pro-
duces a set of direct edges m — [ for m € LS(t). All these direct
edges are added into the two edge sets Fr(m) and To(I) (line 9 and
10). And, the lockset of thread ¢ is updated to include lock ! (which
is excluded on the paired release ONREL(t, I)).

Propagate Reachability. When a new direct edge m — [ is
inserted to Fr and To, the reachability of locks from [ and to m
has to be updated as illustrated in Figure 5. Considering that our
reachability graph is a transitive closure of a graph consisting of
all direct edges, the existing algorithms [26, 33, 43] for maintaining
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Figure 5: Update reachability given a new direct edge m — .

the transitive closure of a dynamic graph can be adapted. This is
implemented in PROPAGATEREACH(m, [) in Algorithm 1, where we
introduce a function TransInd(Set) to copy all of the edges in Set
as indirect edges.

3.2 Part II: Detect Cycles and Construct
Deadlocks

Part II detects cycles from the lock reachability graph and con-
structs corresponding deadlocks. Instead of directly applying an
exponential-time searching algorithm on a large trace (as adapted in
previous works), AIRLock splits the cycle detection in two phases,
as outlined in Figure 1 (step 2 and step 3). First, it only iterates
on the reachability graph once, which is enough to identify all
simple cycles including both direct cycles and indirect cycles. This

Algorithm 2: Detect Cycles

1 C: a set to keep all direct cycles.

2 IndCycleLocks: a set to keep locks in indirect simple cycles.

3 IndCycleDirFr: a set to map a lock [ to its directly reachable
locks, such that any lock in the mapped set indirectly reaches
lock 1.

4 Function DETECTCYCLES()

5 foreach lock I do

6 foreach m € Fr(l) do

7 if ColorDir(m) € Fr(l) A ColorDir(l) € Fr(m)

then > A direct simple cycle: | — m, m — |

8 | C—CU{{l>mm— D}

9 if ColorDir(m) € Fr(l) A ColorInd(l) € Fr(m)

then

L

V;sited(l) « False, for each lock I € IndCycleLocks
S0 > A stack structure for DFS

foreach lock I € IndCycleLocks do
| Visited[l] « True; call DFS(l); Visited[l] < False.

> An indirect simple cycle: [ — m, m --» [
IndCycleDirFr(l) « IndCycleDirFr(l) U {m}
IndCycleLocks < IndCycleLocks U {1}.

10
11

12
13

14
15

Function DFS(l)

if S[0] = [ then > A direct cycle of three or more locks
C «— CU{(S[0o] — S[1],...,S[k — 1] — S[0])}, k = |S]

return.

16
17
18
19

ush [ into S.
for m € IndCycleDirFr(l) U ExternalFr(l) do
> Only traverse a direct edge: [ — m.
if Visited[m] = False then
Visited|[m] « True; call DFS(m);
L Visited|m] « False.
Pop I from S.

s

20
21
22
23
24
25

26
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concludes whether the trace contains cycles. For any indirect cycle,
A1rLock detects the corresponding direct cycles via a DFS al-
gorithm. It then constructs deadlocks for every direct cycle. We
present its detection algorithm (Algorithm 2) and then discuss the
benefit of such a design.

Detect Simple Cycles. To detect all simple cycles, AIRLOCK
only needs to traverse the edge set Fr once, as shown in lines
5-11. Given a lock [, it traverses all locks in Fr(l). For any m €
Fr(l), if the lock [ is also in Fr(m), a direct cycle {I —» m, m —
I} or a indirect cycle {I — m, m --> I} is detected. For efficiency
purpose in the later detection, we introduce two data structures
IndCycleDirFr and IndCycleLocks for indirect cycles. The struc-
ture IndCycleDirFr(l) (having the same structure as Fr) keeps all
identified direct edges in indirect cycles (line 10, the edge I — m).
The structure IndCycleLocks keeps all locks in indirect cycles (like
the keys of IndCycleDirFr).

m € IndCycleDirFr(l)
(a) An indirect cycle.

(b) A corresponding direct cycle.
Figure 6: An illustration on indirect Cycles.

Detect Corresponding Direct Cycles. For an indirect cycle,
there must exist a direct cycle as illustrated in Figure 6. Given a set
of indirect cycles as locks in IndCycleDirFr and a set of all locks in
all indirect cycles, AIRLock searches a corresponding direct cycle
for each indirect cycle based on a DFS algorithm (lines 16-26). Note,
in line 21, Algorithm 2 also considers edges (External Fr(l)) kept in
disk (due to the reachability reduction, see Section 3.3).

Construct Deadlocks. As explained in Section 2.1, a direct cycle
detected by AIrRLock is different from the one detected by previous
works (e.g. [6, 29]) where AIRLock only considers the reachability
of locks without any execution information (e.g., thread IDs and
lockset). However, AIRLock also records all dependencies as a trace
(i.e., Tr in Algorithm 1) for constructing all deadlocks, resulting in
exactly the same deadlocks as those reported by previous works.

In detail, given a direct cycle, AIRLock checks all sequences of
dependencies indexed by all edges of this cycle. A direct cycle will
correspond to a set of permutations (i.e., a set of dependencies,
one from each indexed trace). Each permutation will be checked
against the deadlock definition and the satisfied ones are finally
reported. This process is efficient by taking the concept of Equiv-
alent dependencies [6] such that only permutations consisting of
non-equivalent dependencies from each indexed sequence of depen-
dencies are checked.

Discussion. Let E be the all edges in Fr. The time complexity
of the first phase (i.e., lines 5-11) is roughly a polynomial-time
complexity O(E?) as the algorithm implicitly checks every pair of
edges in Fr. The second phase (lines 12-26) is still an exponential-
time DFS algorithm. However, from line 21, the DFS algorithm
traverses all direct edges in indirect cycles. Considering our insight
that most of nested lock acquisitions do not participate in any cycle,
there will be a small number of simple cycles. This results in a much
smaller searching space than that by previous works [6, 29, 54],
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which have to explore much more paths where most of them do not
finally form cycles. Hence, Algorithm 2 is very efficient in practice.

3.3 Part III: Reduce Reachability Graph

The first two parts work well in terms of detecting all direct cycles.
However, a multithreaded program usually creates numerous locks
and edges. During an execution, the cumulative number of locks
could be very large, bringing increasing memory and time con-
sumption. One straightforward solution is to remove all destroyed
locks and related edges during an execution. However, this brings
a challenge on how to guarantee the correctness (i.e., not to miss
any cycle) after reduction. It is because a destroyed lock may also
participate in a cycle that is formed later. For example, in our exam-
ple (Figure 4), when the lock open is destroyed, we delete all edges
involving the lock. Then, no cycle will be reported as the two edges
(formed by threads t; and t;) have been deleted.

We propose a reachability reduction algorithm with guarantees
on the reduction correctness as shown in Algorithm 3. Basically,
when a lock is destroyed, AIRLock tries to ensure its reduction
correctness. If the correctness cannot be immediately determined,
it splits all related edges from the reachability graph (e.g., to keep

Algorithm 3: Reduction and Cycle Detection

1 Function ONDEsTROYLOCK(])
2 if Indegree(l) = 0 A Outdegree(l) > 0 then > Case 2.1
3 foreach m € Fr(l) do

4 To(m) « To(m)\{ColorDir(l), ColorInd(l)}

5

| DeleteAllEdges(ColorDir(1), Color Dir(m)).

6 if Indegree(l) > 0 A Outdegree(l) = 0 then
7 foreach m € To(l) do

8 Fr(m) « Fr(m)\{ColorDir(l), ColorInd(l)}
9 DeleteAllEdges(ColorDir(m), ColorDir(l)).

> Case 2.2

if Indegree(l) > 0 A Outdegree(l) > 0 then
foreach m € Fr(l) do
To(m) < To(m)\{ColorDir(l), ColorInd(l)}
if ColorDir(m) € Fr(l) A ColorDir(l) € Fr(m)
then > A direct simple cycle: {I > m, m — I}
L C—CU{{l->mm—1l)}
if ColorDir(m) € Fr(l) A ColorInd(l) € Fr(m)
then > An indirect simple cycle: {I - m, m --> [}
IndCycleDirFr(l) « IndCycleDirFr(l) U {m}
IndCycleLocks < IndCycleLocks U {1}.
f(:reach m € To(l) do

Fr(m) « Fr(m)\{ColorDir(l), ColorInd(l)}
if ColorDir(m) € To(l) A ColorInd(m) € Fr(l)
then

> Only save direct edges in Fr(l) and To(l).
foreach ColorDir(m) € Fr(l) do
| ExternalFr(l) « ExternalFr(l) U {ColorDir(m)}

foreach ColorDir(m) € To(l) do
| ExternalFr(m) « ExternalFr(m) U {ColorDir(l)}

| Fr(l) = 0; To(l) := 0

10 > Case 3
11
12

13

14

15

16
17

18
19
20
> An indirect simple cycle: {m — I, [ --> m}
IndCycleDirFr(m) « IndCycleDirFr(m)U{l}
IndCycleLocks «— IndCycleLocks U {m}.

21
22

23
24
25

26
27

28
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into external disk) for later cycle detection. In such a way, the
reachability graph (e.g., in memory) is always for live locks. We
present our reduction algorithm and then give an informal analysis
on its correctness.

Reduction. On destroying lock /, there are three reduction cases
according to whether the indegree or/and the outdegree of this lock
is zero 3: (Case 1) both indegree and outdegree of lock I are zero,
(Case 2) only one of them is zero, and (Case 3) both of them are non-
zeros. For Case 1, nothing should be taken because this lock does
not reach any other locks and vice versa. For Case 2, obviously, this
lock is not involved in any cycle; hence, all its information should be
removed. Besides, if the indegree of lock [ is zero (Case 2.1), for any
other lock m (i.e., m € Fr(l)) that is directly or indirectly reachable
from lock I, we remove edge | — m as well as all dependencies in
the trace indexed by this edge (see line 3-6). If the outdegree of
lock I is zero (Case 2.2), we perform the similar action.

For Case 3, since there are locks both reachable from and to lock
I, lock I may be involved in some cycles. Hence, we first perform a
cycle detection. However, we only detect all simple cycles involving
lock I (lines 13-17 and 20-22). After that, we move all direct edges
(in Fr(l) and To(l)) into disk. These edges are known as External
Edges (i.e., ExternalFr in the Algorithm 3) and are searched during
detection of all direct cycles in Algorithm 2.

Reduction Correctness. We briefly show the correctness anal-
ysis based on the mathematical induction manner: before and after
reduction of k locks and all edges involving these locks, AIRLock

detects the same set of cycles.
é -’ 2 /C‘ @: Formed after
() () destroying lock 1.

Figure 7: Correctness illustration for Reduction.

Base case (i.e., k = 1): before and after reduction of the first lock,
say [, the above claim holds. Let’s analyze the three reduction cases:

e For Cases 1 and 2, obviously, the lock cannot participate
in any cycle. Hence, reducing the lock does not affect any
cycles to be detected. Our claim holds.

o Recall that Case 3 is: the lock [ has both incoming and out-
going edges. Before reduction, the lock can only participate
in two kinds of cycles: cycles already formed and cycles
formed later as shown in 7 (a) and (b), respectively. For al-
ready formed cycles, Algorithm 3 can detect them before
reducing the lock. For any cycles to be formed later, there
must exist two lock m; and my that form two edges my — [
and [ — my as shown in Figure 7(b), such that the edge m;
— my is formed after destroying lock I. Hence, there must
be an indirect edge my --> m; (see how Algorithm 1 updates
reachability). This results in that, after remove lock / and
edges my — [ and | — my, an indirect cycle {m; — my, my

3Note, we do not explicitly maintain either indegree or outdegree for each lock as we

only need to know whether the value is zero or not. This can be easily analyzed from
the keys of the edges sets Fr and To in implementation.
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--> my} can be detected after the edge m; — my is formed.
Besides, during reduction, Algorithm 3 also keeps all direct
edges from and to lock [ in disk (i.e., ExternalFr). When
detecting all direct cycles of the indirect cycle {m; — mg, my
--> my}, by searching edges in disk, Algorithm 2 can detect
the direct cycle involving lock I. (Note, the edges from my
to [, from [ to m1, and from mq to my can be either direct or
indirect ones, which does not affect the analysis.) Therefore,
for Case 3, after reducing lock [ and edges involving I, our
claim holds.

Now, assume that after reducing the first k locks and all edges
from/to them, the same set of cycles can be detected. Let’s show
that reducing the (k + l)th lock, our claim still holds. Note, the
(k +1)*" lock can have incoming or/and outgoing edges before
reducing some of the k locks. But here we only consider the current
state: whether any cycles can be missed by reducing the (k + 1)th
lock. Obviously, by repeating the steps in the base analysis, no cycle
can be missed from the current state by removing one lock and
edges involving in this lock. (A more detailed analysis can be done
by split the execution into two executions at the point right before
reducing the (k + l)th lock and apply base analysis on the second
execution.) Thus, we can see that our claim still holds by reducing
the (k + 1)”1 locks.

Combining the two analyses above, our claim holds. That is, our
reduction guarantees not to missing any cycle while reducing locks
and their corresponding edges.

3.4 Frequent Deadlock Detection

Existing predictive deadlock detectors [6, 29, 54] only detect dead-
locks after a program exits or is about to exit. They cannot imme-
diately report deadlocks whenever they are formed, especially for
long-running programs (e.g., server programs) or non-terminating
executions. Unlike these, AIRLOCK (i.e., Part II) can be configured to
run whenever there is a detection need (e.g., periodically or on user
demand). It can detect deadlocks at runtime. In our experiments
(Section 5.4), we show that ATRLOCK is scalable to detect deadlocks
per-second during runtime with less than 6% time overhead on two
programs running for 36 and 100 seconds, respectively.

4 DISCUSSION OF AIRLOCK

In this section, we briefly discuss AIRLock and other similar works
in terms of maximality and soundness on reported deadlocks.

Maximality. Given the same trace and the same deadlock defi-
nition (i.e., the one in the last paragraph of Section 2.1), AIRLock
can detect the same set of predictive deadlocks as that by previous
works including IGoopLock, MaGicLock, and UNDEAD. This set
of deadlocks is maximal with respect to the trace, because all ap-
proaches consider all permutations of lock acquisitions and filter
out those not satisfying the deadlock definition.

Soundness. All approaches above including AIRLock are un-
sound by reporting false positives. To the best of our knowledge,
Dirk [31] is the latest work on sound deadlock prediction. How-
ever, like sound data race prediction [24, 25], it needs to track
additional events and relies on constraint solvers, bringing heavy
performance challenges. These make them unsuitable for efficient
on-the-fly deadlock prediction.
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5 EXPERIMENTS

In this section, we present a set of experiments to demonstrate the
effectiveness and the efficiency of AIRLock as an on-the-fly predic-
tive deadlock detection tool, and its scalability on high frequency
deadlock detection. We also conducted a self-comparison on the
two strategies (i.e., cycle detection and reachability reduction) of
AIRLOCK.

5.1 Benchmarks

We collected a set of seven real-world C/C++ benchmarks includ-
ing HawkNL, SQLite, two different versions of MySQL database
servers, two browsers (Firefox and Chromium), and Thunderbird.
They contain six unique deadlocks that are similar in number to pre-
vious work [6, 54]. All these benchmarks and deadlocks have been
extensively studied in previous works [6, 7, 54]. We excluded one
benchmark MySQL-6.0.4 in the papers of MagicLock and UNDEAD,
because MySQL-6.0.4 uses customized synchronization primitives,
not standard Pthreads.

In Table 1, we show the statistics of these benchmarks, including
their names (versions), Bug ID, source lines of code (SLOC), NO. of
threads, NO. of locks ((total number of locks)/(max number of live
locks)), a summary of inputs or deadlock descriptions, the time cost
of their native executions, and the number of (predictive) deadlocks
reported by three techniques (all/unique/real). The last column
shows the number of locks in each direct cycle.

5.2 Implementation and Experimental Setup

A1rLock was implemented on top of the Pin framework [37] for
C/C++ programs with Pthread. It works under the Probe mode of
Pin which itself incurs almost zero overhead.

We have reviewed a list of tools on deadlock detection to identify
potential competitors for comparison. UNDEAD is the only online
predictive detector that we have found. MacicLock, Sherlock [18],
and WOLF [47] are listed as state-of-the-art deadlock detection
tools [14] published in 2019 where both Sherlock and WOLF focus
on soundness. ConLock [10] and ConLock+ [9] focus on triggering
real deadlocks reported by MagicLock. Dirk [31] is a heavy-weight
detector to detect sound deadlocks. Additionally, PickLock [49]
focuses on soundness and was evaluated on a set of small java
programs.

Finally, we selected the two representative deadlock detectors,
MagcicLock and UNDEAD for comparison purpose. Other predictive
tools like IGoopLock [29] and MurTicoreSDK [38] have been
compared with MAGICLOCK in previous works [6, 54] and UNDEAD
is also based on IGoopLock with additional dependency pruning
strategies.

For MagIicLock, we used its implementation (provided by the
author [6]). The original UNDEAD release is available online [54]; it
contains two parts: deadlock detection and deadlock tolerance. We
evaluated its detection part.

We conducted the experiments on a DELL Precision 5520 with
a 2.80 GHz i7-7700HQ processor, Ubuntu 16.04 (x64), and GCC
4.8. We ran each benchmark ten times to collect data and compute
averages. We set each execution time to be at most 10 hours.



ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Yan Cai, Ruijie Meng, and Jens Palsberg

Bug SLOC Native #Cycles (all/unique/real) #Locks in
Benchmarks 1D (k) #Thd  #Locks  Summary of Inputs Time UND]ZAD MAGICLO;IK AmrLock Cycles
Hawknl (1.6b3) n/a 9.3 401  603/202  Deadlock in nlshutdown() and nlclose() 10.1s  400/1/1 400/1/1  400/1/1 2
SQLite (3.25.2) 1672 268.9 17 15/14 Deadlock in sqlite3UnixEnterMutex() and sqlite3UnixLeaveMutex() ~ 56.3s  7075/5/1 7075/5/1 7075/5/1 2
MySQL1 (5.1.57) 60682 1146.7 314 1763/667  show innodb status deadlocks if LOCK_thd_data points LOCK_open 26.8s  101/2/2 101/2/2  101/2/2 2
MySQL2 (5.5.17) 62614 1282.7 50  287/121  PUGE BINARY LOG acquires two locks in the wrong order 20.1s  1100/2/2 1100/2/2 1100/2/2 2,3
FireFox (64.0) n/a 97354 115 41694/3787 Open 30 web pages 60.9s 0/0/0 0/0/0 0/0/0 0
Chromium (71.0) n/a 28146.2 37 261756/13055 Open 30 web pages 59.1s 0/0/0 0/0/0 0/0/0 0
Thunderbird (60.2.1) n/a  9822.9 76 17107/2525 Fetch 1000 e-mails from a Gmail.com account 42.8s 0/0/0 0/0/0 0/0/0 0

Table 1: Basic statistics of the benchmarks.

BOUNDEAD EBMAGICLOCK B AIRLOCK
15933.6% 294.5%  5801.1% 253.6% 3193.0%
291.?% 102349.9%  59103.6% ‘00913,7% 37145.6% 37121 1%
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Figure 8: Time overhead.
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Figure 9: Memory consumption (MegaBytes).

5.3 Effectiveness and Efficiency

5.3.1 Overall Analysis. From the penultimate column of Table 1,
we see that the three techniques detected the same number of
deadlocks.

Figures 8 and 9 show the time overhead and memory consump-
tion, respectively for each benchmark, as well as their averages.
Note, MAGIcLock is an offline technique and we collected its costs
on time and memory from its offline detection phase.

On time overhead, it is obvious that ATRLock significantly out-
performed both MagicLock and UNDEAD. It only incurred 1.4% to
4.9% overhead. However, UNDEAD incurred 14.4% to 28.5% overhead
on two benchmarks; on remaining benchmarks, it incurred 2.9x to
1023x overhead. Actually, UNDEAD did not finish on Firefox and
Chromium after running for 10 hours (i.e., our time limit). MAGI-
cLock incurred 19.3% to 29.3% overhead on three benchmarks. How-
ever, on remaining benchmarks, it incurred 2.5x to 159x overhead.
On average, AIRLock only incurred 3.5% overhead but UNDEAD
and MacicLock incurred 371x and 31x overhead, respectively. 4

4Variable system load can affect execution time, yet any system load affects both
A1rLock and the execution itself. We speculate that this may bring proportional
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The above results confirm that: analyzing and reducing the lock
reachability graph before detecting cycles and deadlocks leads to
efficient deadlock analysis. Besides, the optimization of MaGcicLock
may be effective on some benchmarks but may also be ineffective on
other benchmarks (e.g., MySQL2). However, considering the total
detection time of MAGICLOCK, it is acceptable as an offline deadlock
detector for development. UNDEAD is based on the IGoopLock
algorithm which has been shown to be inefficient [6].

On memory consumption, Figure 9 shows that there is no large
difference. > On average memory, MagicLock and AIRLock used
almost the same amount and UNDEAD took about twice.

HawkNL SQLite MySQL1 MySQL2 FireFox Chromium Thunderbird

Moved 0 0 0.34 0 3.2 4.3 0.28
AMem. 0 0 -14 0 -23.4 -50.1 -2.6
Traces 0.01 0.11 1.2 0.69 22.5 1.2 0.79

Table 2: External storage consumption and reduced memory
consumption by AIRLock (in MegaBytes).

A1rLock adopts the strategy that may move edges from mem-
ory to external disk when a lock is destroyed, besides tracking an
execution trace for deadlock construction. Therefore, we also col-
lected its external storage consumption for moved edges (Moved),
its reduction to memory consumption (AMem.), and the sizes of
traces (Traces), as shown in Table 2.

From the table, AIRLock consumed 0 to 4.3 MB external storage
and reduced 0 to 50.1 MB memory consumption. It seems that
moving edges into external storage can have little effect in terms
of memory consumption. We will present further analysis in the
next subsection. From the last row, we see that AIRLock kept an
acceptable size of execution traces for each execution.

5.3.2 Detailed Comparisons. Besides the overall comparison, we
introduced one more comparison point: the trend of runtime data,
including the number of edge sets for AIRLock and the numbers of
dependencies for UNDEAD and MacicLock. We collected such data
every two seconds during execution. For MAGIcLOCK, we saved a
copy of its trace every two seconds and calculated the data.

increases, resulting in an overhead percentage similar to what we reported. In effort to
deal with variations, we repeated our experiment 10 times and computed the average.
SFrom Figure 9, AIRLoCk consumed more memory than that by MacicLock. AIRLocK
keeps a trace in memory and has a steady memory consumption, which varies across
programs. In Figure 10 we see that the trend for the number of edges is increasing for
MaaicLock but steady for AIRLock. So, we estimate that for longer execution time,
A1rLock will consume less memory than MagIcLock.
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Figure 10: Trends on memory consumption in terms of the number of edges, dependencies and edge sets (where the x-axis
shows the execution time (X2 seconds) and the y-axis shows the numbers (X1, 000)).

To compare the three tools directly, we further converted the two
kinds of data to the number of edges as follows: we transformed
each edge set or each dependency into multiple direct edges accord-
ing to the size of each edge set or the size of the lockset in each
dependency. Note, AIRLock only keeps edge sets for live locks;
for any destroyed lock, its edge sets are deleted or moved out of
memory (see Algorithm 3); hence, the number of edge sets also
reflects the number of live locks. In each subfigure of Figure 10,
the x-axis shows the execution time (e.g., i stands for i X 2 seconds)
and the y-axis shows the number (X1, 000) of periodically collected
data.

Figure 10 clearly shows that AIRLock maintained a stable num-
ber of edges and a stable number of edge sets after executing for
several seconds; however, both UNDEAD and MaGicLock incurred
obvious increasing numbers of edges and dependencies. This con-
firms the insight behind the design of AIrRLock: most locks are
dynamically created and destroyed, and the total number of live
locks (i.e., the number of edge sets) keeps stable during executions.

Summary. From the overall results in Table 1 and in Figures 8
and 9, as well as the detailed data in Figure 10, AIRLocK is applicable
to on-the-fly deadlock detection while MaGicLock is acceptable
for offline deadlock detection for development.

5.4 Scalability under High Frequency Detection

AIrRLock is designed as an on-the-fly deadlock detector whose
detection can be frequently conducted. To evaluate this feature,
we conducted another experiment. We selected two benchmarks
MySQL1 and Firefox where we are able to increase the sizes of in-
puts such that they can run for a longer time. In detail, for MySQL1,
we configured a stress testing tool Sysbench ¢ to send 108 SQL
queries to it; for Firefox, we configured it to open 60 pages (note,
these workloads are different from those used to measure native
time in Table 1). Under the two configurations, MySQL1 was able

Shttps://github.com/akopytov/sysbench
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Native UNDEAD MAGICLOCK AIRLOCK
MySQL1 36.8s  >10 Hours 39.0s (106.1%)  1.1s(3.1%)
Firefox  100.4s >10 Hours  324.7s(323.4%)  3.0s (3.1%)

(a) Overall results (time and overhead) of three techniques

6% 6%
5% 5%
4% 4%
3% 3%

123456728910
Period (seconds)

(b) Overhead of AIRLOCK on
Firefox with periodical detections

123456728910
Period (seconds)
(c) Overhead of AIRLOCK on
MySQL1 with periodical detections

Figure 11: Scalability of AIRLock

to run for >36 seconds and Firefox was able to run for >100 sec-
onds. During their executions, we configured AIRLock to detect
deadlocks periodically. We set 10 different periods from 1 second to
10 seconds. That is, for every period of i seconds, AIRLock detects
deadlocks once. For each configuration, we collected the overall
time overhead. For comparison, we also run A1RLock (with the
default configuration, i.e., one deadlock detection at the execution
exit point), and UNDEAD and MagicLock under the same inputs
on two benchmarks.

Figure 11 shows the overall results. In Figure 11(a), we show the
detailed data on two benchmarks, including their native execution
time, the time cost of each technique as well as the corresponding
overhead. In Figures 11(b) and (c), we show the time overhead of
A1rLock with different deadlock detection periods (from 1 second
to 10 seconds).

Figure 11(a) shows the similar result on time overhead as the
previous one in Figure 8. That is, when both benchmarks run for
about 36.8 or 100.4 seconds, both UNDEAD and MaGIicLock incurred
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Figure 12: Evaluation on efficiency of AIRLOCK’s strategies
(the y-axis is the time overhead of AIRLock and its three
variants AL1, AL2, and AL3).

larger overhead than AIRLock. In details, UNDEAD failed to fin-
ish detection in 10 hours; MAGicLock incurred >1x to >3x time
overhead. AIRLock incurred at most 3.1% time overhead.

For AIrLock, as shown in Figure 11(b) and (c), even with a
detection period of 1 second, it incurred less than 6% time overhead.
With the increasing detection period from 1 second to 10 seconds,
its time overhead decreased gradually. When the detection period
is > 5 seconds, AIrRLock incurred less than 5.0% time overhead
on both benchmarks. In practice, such detection period is already
highly frequent for long-running programs.

Summary. From the above analysis, AIRLOCK can scale up to
intensive deadlock detection on-the-fly. This makes it applicable
to be integrated with multithreaded programs to provide anytime
deadlock detection service.

5.5 Self-Comparison of AIRLock

AIRLOCK consists of three parallel parts where Parts IT and III im-
plement efficient cycle detection including two strategies: detecting
simple cycles (lines 5-11 in Algorithm 2) first before a DFS search
and reduce the reachability graph (in Algorithm 3). We built three
tools AL1, AL2, and AL3, and conducted an additional experiment
to answer what extent the two strategies accelerate cycle detection.
AL1 is based on AIrRLoCK by disabling its detection of simple cycles
(i.e., to directly use DFS for cycle detection among all edges); AL2
is based on AIrLock by disabling the reachability reduction; and
ALS3 is based on A1rLock by disabling both. All three tools were
configured to detect deadlocks once at the execution exit point. The
result is shown in Figure 12 where we also show the overhead of
A1rLock from Figure 8 for comparison purpose.

From the figure, we see that on three benchmarks (HawKNL,
SQLite, and MySQL2), AIRLock compromised its overhead by less
than 20%. However, on the remaining four benchmarks, the over-
head is compromised significantly by 0.6x to 676x. Such an overhead
is even much larger than that by MacicLock and UNDEAD.

Besides, we also collected the data on the ratio of inconsistent
lock acquisition orders out of all. It shows that, only 0.4% (0.11% on
average) of lock acquisitions exhibit inconsistent lock orders. The
exception is MySQL2, for which the percentage is 4%.
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This above result further confirms the efficiency of the strategies
in AIRLOCK.

6 RELATED WORKS
6.1 Deadlock Detection

Besides dynamic approaches, deadlocks can also be detected by
static approaches [16, 44, 51]. Like dynamic approaches, static
ones can analyze program code to construct lock order graphs.
They are scalable to the whole program and do not suffer heavy
overhead. However, they usually report many false positives [51]
due to imprecise static analysis techniques as well as lack of run-
time information such as happens-before relation [35]. There are
some sound static deadlock analyses, which are usually restricted
to certain languages, for example, for C# programs [48], for C pro-
grams [34], or for barrier synchronizations [15]. They may rely
on other techniques to guarantee soundness (e.g., pointer analysis
[22, 52]).

Predictive deadlock detection usually produces false positives.
There are two kinds of approaches to isolate real deadlocks. One is
to trigger real deadlocks out of all detected ones. DeadlockFuzzer
[29] adopts a straightforward scheduling (i.e., pause a thread right
before it acquires its second lock and waits for all other threads to
go into the same state) to trigger deadlock occurrences. It is known
that such a scheduling can produce thrashing as pausing a thread
may prevent other threads from making progress, resulting in a
low probability to trigger deadlock occurrences. There are already
a sequence of works trying to improve the probability [8-10, 46]
by identifying a set of constraints and satisfy these constraints.
Our A1rLock focuses on predictive deadlock detection, it can be
integrated with these tools to isolate real deadlocks.

Another kind of works aims to directly detect real deadlocks
(i.e., without producing false positives during detection). The most
recent one is the DIRk [31] where the similar idea is also adopted in
RVPredict [25] on sound data race detection. This approach, unlike
many previous deadlock detection tools, further monitors memory
accesses and then extracts various constraints (from memory ac-
cesses and from synchronizations). By solving these constraints, it
detects deadlocks that are deemed to really occur if all constraints
are satisfied. AIRLock focuses on on-the-fly predictive deadlock
detection; it is challenging to analyze memory accesses on-the-fly
without incurring heavy time overhead.

A1rLocCK is an on-the-fly predictive deadlock detector. There are
works on detecting deadlocks with a subsequent deadlock pre-
vention/healing [30, 50, 54]. Gadara [50] statically inserts code
to prevent deadlocks. Dimmunix [30] tries to bring deadlock im-
munity to a software product. It detects deadlock occurrences and
prevents their second occurrences in later executions. UNDEAD
[54] (as discussed in this paper) further tries to detect predictive
deadlocks and to fix both real deadlocks and predictive deadlocks.
Both Dimmunix and UNDEAD may report false positives; UNDEAD
may further introduce other concurrency bugs due to its incom-
plete fixing strategy [54]. There are also some works targeting on
preventing deadlocks in certain types of applications, e.g., database
applications [20].

Deadlocks occur under certain thread interleaving and certain
concurrent test cases. There are works that schedule threads [46]
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and generate additional concurrent test cases [18, 42]. AIRLOCK can
be integrated into them to detect deadlocks efficiently.

6.2 Lightweight Online Data Race Detection

Predictive deadlock detection was not suitable for on-the-fly detec-
tion before AIRLock. However, there are several works aiming at
on-the-fly data race detection. Data race occurrences involve mem-
ory accesses and their detection usually incurs heavy overhead (e.g.,
up to 100x on C/C++ programs [41]). FastTrack [19] introduces the
Epoch concept, together with optimization, it reduces overhead to
8x for Java programs. However, this overhead level is still high.

There are different kinds of works on reducing overhead for
data race detection. The first kind is based on the crowd-sourced
approach. RaceMob [32] adopts static analysis to firstly identify all
potential data races (even with false positives). It distributes a small
set of potential data races to each end-user, aiming at confirming
the reality of them. As it requires that only one potential data race
can be confirmed in each execution, its overhead is extremely low.

The second kind is based on sampling. By sampling a small set
of memory accesses per execution, one can reduce overhead per
execution. LiteRace [39] is based on a cold-region hypothesis: data
races are more likely to exist in cold region. It adaptively samples
cold regions (functions) only, removing overhead on monitoring
hot regions. Pacer [5] is based on a short-distance hypothesis. It
periodically samples an execution and fully tracks memory accesses
in sampled periods. During non-sampled periods, it only checks for
data race occurrences without updating tracking data. Pacer incurs
an overhead proportional to a sampling rate.

The third kind is based on hardware. DataCollider [17] takes
full advantage of data breakpoints. It samples a first memory access
and then traps a second one by setting a data breakpoint on the
same memory address. CRSampler [11] proposes clock race which
can be sampled via data breakpoints (like DataCollider) but does
not need to pause any thread (unlike DataCollider) to trap a second
memory access.

Compared with these sampling approaches, AIRLock fully tracks
executions and does not miss any deadlock while incurring low
overhead.

7 CONCLUSION

This paper presents a novel low-overhead on-the-fly predictive
deadlock detection approach AirRLock. The main novelty is that,
A1rLock maintains the lock reachability graph involving locks
only and efficiently detects cycles on it. For each detected cycle, it
then constructs a predictive deadlock. The experiments on seven
real-world programs demonstrated that AIRLock was significantly
more efficient than existing works by incurring about 3.5% time
overhead on average, making it suitable for on-the-fly deadlock de-
tection, even under high frequency (e.g., per five seconds) deadlock
detection.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for helpful sugges-
tions and insights for improving the paper. This work is supported
in part by the National Key Research and Development Program of
China (No. 2018YFB1403400), National Natural Science Foundation

1308

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

of China (NSFC) (Grant No. 61932012), the Key Research Program
of Frontier Sciences, CAS (Grant No. ZDBS-LY-7006 and QYZD]J-
SSW-JSC036), the Youth Innovation Promotion Association of the
Chinese Academy of Sciences (YICAS) (Grant No. 2017151), and
the Young Elite Scientists Sponsorship Program by CAST (Grant
No. 2017QNRC001).

REFERENCES

[1] R. Agarwal, S. Bensalem, E. Farchi, K. Havelund, Y. Nir-Buchbinder, S. D. Stoller,
S. Ur, and L. Wang. 2010. Detection of Deadlock Potentials in Multithreaded
Programs. IBM J. Res. Dev. 54, 5 (Sept. 2010), 520-534. https://doi.org/10.1147/
JRD.2010.2060276

Rahul Agarwal, Ligiang Wang, and Scott D. Stoller. 2006. Detecting Potential
Deadlocks with Static Analysis and Run-time Monitoring. In Proceedings of the
First Haifa International Conference on Hardware and Software Verification and
Testing (HVC’05). Springer-Verlag, Berlin, Heidelberg, 191-207. https://doi.org/
10.1007/11678779_14

Saddek Bensalem and Klaus Havelund. 2006. Dynamic Deadlock Analysis of
Multi-threaded Programs. In Proceedings of the First Haifa International Conference
on Hardware and Software Verification and Testing (HVC’05). Springer-Verlag,
Berlin, Heidelberg, 208-223. https://doi.org/10.1007/11678779_15

Swarnendu Biswas, Man Cao, Minjia Zhang, Michael D. Bond, and Benjamin P.
Wood. 2017. Lightweight Data Race Detection for Production Runs. In Proceedings
of the 26th International Conference on Compiler Construction (CC 2017). ACM,
New York, NY, USA, 11-21. https://doi.org/10.1145/3033019.3033020

Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010. PACER:
Proportional Detection of Data Races. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’10).
ACM, New York, NY, USA, 255-268. https://doi.org/10.1145/1806596.1806626
Yan Cai and WK. Chan. 2014. Magiclock: Scalable Detection of Potential Dead-
locks in Large-Scale Multithreaded Programs. IEEE Transactions on Software En-
gineering 40, 3 (March 2014), 266-281. https://doi.org/10.1109/TSE.2014.2301725
Yan Cai and W. K. Chan. 2012. MagicFuzzer: Scalable Deadlock Detection for
Large-scale Applications. In Proceedings of the 34th International Conference
on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 606-616.
http://dl.acm.org/citation.cfm?id=2337223.2337294

Y. Cai, C. Jia, S. Wu, K. Zhai, and W. K. Chan. 2015. ASN: A Dynamic Barrier-
Based Approach to Confirmation of Deadlocks from Warnings for Large-Scale
Multithreaded Programs. IEEE Transactions on Parallel and Distributed Systems
26, 1 (Jan 2015), 13-23. https://doi.org/10.1109/TPDS.2014.2307864

Y. Cai and Q. Lu. 2016. Dynamic Testing for Deadlocks via Constraints. IEEE
Transactions on Software Engineering 42, 9 (Sep. 2016), 825-842. https://doi.org/
10.1109/TSE.2016.2537335

Yan Cai, Shangru Wu, and W. K. Chan. 2014. ConLock: A Constraint-based
Approach to Dynamic Checking on Deadlocks in Multithreaded Programs. In
Proceedings of the 36th International Conference on Software Engineering (ICSE
2014). ACM, New York, NY, USA, 491-502. https://doi.org/10.1145/2568225.
2568312

Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. 2016. A Deployable Sampling
Strategy for Data Race Detection. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016). ACM,
New York, NY, USA, 810-821. https://doi.org/10.1145/2950290.2950310

Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, and George Candea. 2009.
Selective symbolic execution. In Proceedings of the 5th Workshop on Hot Topics in
System Dependability (HotDep).

Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. 2018. Model checking. MIT press.

Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida. 2018.
Dynamic Deadlock Verification for General Barrier Synchronisation. ACM Trans.
Program. Lang. Syst. 41, 1, Article Article 1 (Dec. 2018), 38 pages. https://doi.org/
10.1145/3229060

Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida. 2018.
Dynamic Deadlock Verification for General Barrier Synchronisation. ACM Trans.
Program. Lang. Syst. 41, 1, Article 1 (Dec. 2018), 38 pages. https://doi.org/10.
1145/3229060

Jyotirmoy Deshmukh, E. Allen Emerson, and Sriram Sankaranarayanan. 2009.
Symbolic Deadlock Analysis in Concurrent Libraries and Their Clients. In Pro-
ceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering (ASE 09). IEEE Computer Society, Washington, DC, USA, 480-491.
https://doi.org/10.1109/ASE.2009.14

John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.
2010. Effective Data-race Detection for the Kernel. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, Berkeley, CA, USA, 151-162. http://dl.acm.org/citation.
cfm?id=1924943.1924954

[2]

[10

[11

=
&

[13

[14

[15

[16]

[17]


https://doi.org/10.1147/JRD.2010.2060276
https://doi.org/10.1147/JRD.2010.2060276
https://doi.org/10.1007/11678779_14
https://doi.org/10.1007/11678779_14
https://doi.org/10.1007/11678779_15
https://doi.org/10.1145/3033019.3033020
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1109/TSE.2014.2301725
http://dl.acm.org/citation.cfm?id=2337223.2337294
https://doi.org/10.1109/TPDS.2014.2307864
https://doi.org/10.1109/TSE.2016.2537335
https://doi.org/10.1109/TSE.2016.2537335
https://doi.org/10.1145/2568225.2568312
https://doi.org/10.1145/2568225.2568312
https://doi.org/10.1145/2950290.2950310
https://doi.org/10.1145/3229060
https://doi.org/10.1145/3229060
https://doi.org/10.1145/3229060
https://doi.org/10.1145/3229060
https://doi.org/10.1109/ASE.2009.14
http://dl.acm.org/citation.cfm?id=1924943.1924954
http://dl.acm.org/citation.cfm?id=1924943.1924954

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

[18] Mahdi Eslamimehr and Jens Palsberg. 2014. Sherlock: Scalable Deadlock Detec-
tion for Concurrent Programs. In Proceedings of the 22Nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (FSE 2014). ACM, New
York, NY, USA, 353-365. https://doi.org/10.1145/2635868.2635918
Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI "09). ACM, New York,
NY, USA, 121-133. https://doi.org/10.1145/1542476.1542490
[20] Mark Grechanik, B. M. Mainul Hossain, Ugo Buy, and Haisheng Wang. 2013.
Preventing Database Deadlocks in Applications. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013). ACM, New
York, NY, USA, 356-366. https://doi.org/10.1145/2491411.2491412
Klaus Havelund and Thomas Pressburger. 2000. Model checking java programs
using java pathfinder. International Journal on Software Tools for Technology
Transfer 2, 4 (2000), 366—-381.
[22] Michael Hind. 2001. Pointer Analysis: Haven'T We Solved This Problem Yet?. In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE "01). ACM, New York, NY, USA, 54-61.
https://doi.org/10.1145/379605.379665
Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, and Mary Jean Har-
rold. 2012. Testing Concurrent Programs to Achieve High Synchronization
Coverage. In Proceedings of the 2012 International Symposium on Software Test-
ing and Analysis (ISSTA 2012). ACM, New York, NY, USA, 210-220. https:
//doi.org/10.1145/2338965.2336779
[24] Jeff Huang, Qingzhou Luo, and Grigore Rosu. 2015. GPredict: Generic predictive
concurrency analysis. In 2015 [EEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 847-857.
[25] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound
Predictive Race Detection with Control Flow Abstraction. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’14). ACM, New York, NY, USA, 337-348. https://doi.org/10.1145/
2594291.2594315
Yannis E Ioannidis, Raghu Ramakrishnan, et al. 1988. Efficient Transitive Closure
Algorithms.. In VLDB, Vol. 88. 382-394.
[27] Donald B Johnson. 1975. Finding all the elementary circuits of a directed graph.
SIAM . Comput. 4, 1 (1975), 77-84.
Pallavi Joshi, Mayur Naik, Koushik Sen, and David Gay. 2010. An Effective
Dynamic Analysis for Detecting Generalized Deadlocks. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE '10). ACM, New York, NY, USA, 327-336. https://doi.org/10.
1145/1882291.1882339
Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. 2009. A Random-
ized Dynamic Program Analysis Technique for Detecting Real Deadlocks. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI °09). ACM, New York, NY, USA, 110-120.
https://doi.org/10.1145/1542476.1542489
Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. 2008.
Deadlock Immunity: Enabling Systems to Defend Against Deadlocks. In Pro-
ceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI'08). USENIX Association, Berkeley, CA, USA, 295-308. http:
//dl.acm.org/citation.cfm?id=1855741.1855762
Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction.
Proc. ACM Program. Lang. 2, OOPSLA, Article 146 (Oct. 2018), 29 pages. https:
//doi.org/10.1145/3276516
[32] Baris Kasikei, Cristian Zamfir, and George Candea. 2013. RaceMob: Crowdsourced
Data Race Detection. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP ’13). ACM, New York, NY, USA, 406-422.
https://doi.org/10.1145/2517349.2522736
[33] Valerie King and Garry Sagert. 2002. A fully dynamic algorithm for maintaining
the transitive closure. J. Comput. System Sci. 65, 1 (2002), 150-167.
Daniel Kroening, Daniel Poetzl, Peter Schrammel, and Bjérn Wachter. 2016. Sound
Static Deadlock Analysis for C/Pthreads. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016). ACM,
New York, NY, USA, 379-390. https://doi.org/10.1145/2970276.2970309
[35] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558-565. https://doi.org/10.1145/
359545.359563
Brandon Lucia and Luis Ceze. 2013. Cooperative Empirical Failure Avoidance for
Multithreaded Programs. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’13). ACM, New York, NY, USA, 39-50. https://doi.org/10.1145/2451116.
2451121
[37] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI "05). ACM, New York, NY, USA, 190-200. https:
//doi.org/10.1145/1065010.1065034

[19

[21

[23

[26

[28

™~
o

[30

(31

[34

W
&

Yan Cai, Ruijie Meng, and Jens Palsberg

Zhi Da Luo, Raja Das, and Yao Qi. 2011. Multicore SDK: A Practical and Efficient
Deadlock Detector for Real-World Applications. In Proceedings of the 2011 Fourth
IEEE International Conference on Software Testing, Verification and Validation
(ICST ’11). IEEE Computer Society, Washington, DC, USA, 309-318. https:
//doi.org/10.1109/ICST.2011.22

Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009. LiteRace:
Effective Sampling for Lightweight Data-race Detection. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI °09). ACM, New York, NY, USA, 134-143. https://doi.org/10.1145/1542476.
1542491

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding and Reproducing
Heisenbugs in Concurrent Programs. , 14 pages. http://dl.acm.org/citation.cfm?
1d=1855741.1855760

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan notices, Vol. 42. ACM,
89-100.

Michael Pradel and Thomas R. Gross. 2012. Fully Automatic and Precise Detection
of Thread Safety Violations. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’12). ACM, New
York, NY, USA, 521-530. https://doi.org/10.1145/2254064.2254126

Paul Purdom. 1970. A transitive closure algorithm. BIT Numerical Mathematics
10, 1 (1970), 76-94.

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
2012. Scalable and Precise Dynamic Datarace Detection for Structured Parallelism.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’12). ACM, New York, NY, USA, 531-542. https:
//doi.org/10.1145/2254064.2254127

Neha Rungta, Eric G. Mercer, and Willem Visser. 2009. Efficient Testing of Concur-
rent Programs with Abstraction-Guided Symbolic Execution. In Proceedings of the
16th International SPIN Workshop on Model Checking Software. Springer-Verlag,
Berlin, Heidelberg, 174-191. https://doi.org/10.1007/978-3-642-02652-2_16
Malavika Samak and Murali Krishna Ramanathan. 2014. Multithreaded Test
Synthesis for Deadlock Detection. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA ’14). ACM, New York, NY, USA, 473-489. https://doi.org/10.1145/
2660193.2660238

Malavika Samak and Murali Krishna Ramanathan. 2014. Trace Driven Dynamic
Deadlock Detection and Reproduction. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP GAZ14).
Association for Computing Machinery, New York, NY, USA, 29aAS42. https:
//doi.org/10.1145/2555243.2555262

Anirudh Santhiar and Aditya Kanade. 2017. Static Deadlock Detection for Asyn-
chronous C# Programs. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2017). ACM, New York,
NY, USA, 292-305. https://doi.org/10.1145/3062341.3062361

Francesco Sorrentino. 2015. PickLock: A Deadlock Prediction Approach under
Nested Locking. In Proceedings of the 22nd International Symposium on Model
Checking Software - Volume 9232 (SPIN 2015). Springer-Verlag, Berlin, Heidelberg,
1794A$199. https://doi.org/10.1007/978-3-319-23404-5_13

Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane Lafortune, and Scott
Mahlke. 2008. Gadara: Dynamic Deadlock Avoidance for Multithreaded Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI'08). USENIX Association, Berkeley, CA, USA, 281-294.
http://dl.acm.org/citation.cfm?id=1855741.1855761

Amy Williams, William Thies, and Michael D. Ernst. 2005. Static Deadlock
Detection for Java Libraries. In Proceedings of the 19th European Conference on
Object-Oriented Programming (ECOOP’05). Springer-Verlag, Berlin, Heidelberg,
602-629. https://doi.org/10.1007/11531142_26

Robert P. Wilson and Monica S. Lam. 1995. Efficient Context-sensitive Pointer
Analysis for C Programs. In Proceedings of the ACM SIGPLAN 1995 Conference on
Programming Language Design and Implementation (PLDI *95). ACM, New York,
NY, USA, 1-12. https://doi.org/10.1145/207110.207111

Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012. Maple:
A Coverage-driven Testing Tool for Multithreaded Programs. In Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’12). ACM, New York, NY, USA, 485-502.
https://doi.org/10.1145/2384616.2384651

Jinpeng Zhou, Sam Silvestro, Hongyu Liu, Yan Cai, and Tongping Liu. 2017.
UNDEAD: Detecting and Preventing Deadlocks in Production Software. In Pro-
ceedings of the 32Nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 729-740. http:
//dl.acm.org/citation.cfm?id=3155562.3155654


https://doi.org/10.1145/2635868.2635918
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/2491411.2491412
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/2338965.2336779
https://doi.org/10.1145/2338965.2336779
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1145/1882291.1882339
https://doi.org/10.1145/1882291.1882339
https://doi.org/10.1145/1542476.1542489
http://dl.acm.org/citation.cfm?id=1855741.1855762
http://dl.acm.org/citation.cfm?id=1855741.1855762
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3276516
https://doi.org/10.1145/2517349.2522736
https://doi.org/10.1145/2970276.2970309
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2451116.2451121
https://doi.org/10.1145/2451116.2451121
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/ICST.2011.22
https://doi.org/10.1109/ICST.2011.22
https://doi.org/10.1145/1542476.1542491
https://doi.org/10.1145/1542476.1542491
http://dl.acm.org/citation.cfm?id=1855741.1855760
http://dl.acm.org/citation.cfm?id=1855741.1855760
https://doi.org/10.1145/2254064.2254126
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1007/978-3-642-02652-2_16
https://doi.org/10.1145/2660193.2660238
https://doi.org/10.1145/2660193.2660238
https://doi.org/10.1145/2555243.2555262
https://doi.org/10.1145/2555243.2555262
https://doi.org/10.1145/3062341.3062361
https://doi.org/10.1007/978-3-319-23404-5_13
http://dl.acm.org/citation.cfm?id=1855741.1855761
https://doi.org/10.1007/11531142_26
https://doi.org/10.1145/207110.207111
https://doi.org/10.1145/2384616.2384651
http://dl.acm.org/citation.cfm?id=3155562.3155654
http://dl.acm.org/citation.cfm?id=3155562.3155654

