
Low-Overhead Deadlock Prediction
Yan Cai∗

State Key Laboratory of Computer
Science, Institute of Software, Chinese

Academy of Sciences
Beijing, China

ycai.mail@gmail.com

Ruijie Meng∗
State Key Laboratory of Computer

Science, Institute of Software, Chinese
Academy of Sciences, and University
of Chinese Academy of Sciences

Beijing, China
mengrj@ios.ac.cn

Jens Palsberg
University of California

Los Angeles, USA
palsberg@cs.ucla.edu

ABSTRACT
Multithreaded programs can have deadlocks, even after deployment,
so users may want to run deadlock tools on deployed programs.
However, current deadlock predictors such as M����L��� and
U�D��� have large overheads that make them impractical for end-
user deployment and con�ne their use to development time. Such
overhead stems from running an exponential-time algorithm on
a large execution trace. In this paper, we present the �rst low-
overhead deadlock predictor, called A��L���, that is �t for both
in-house testing and deployed programs.A��L���maintains a small
predictive lock reachability graph, searches the graph for cycles,
and runs an exponential-time algorithm only for each cycle. This
approach lets A��L��� �nd the same deadlocks as M����L��� and
U�D��� but with much less overhead because the number of cycles
is small in practice. Our experiments with real-world benchmarks
show that the average time overhead of A��L��� is 3.5%, which
is three orders of magnitude less than that of M����L��� and
U�D���. A��L���’s low overhead makes it suitable for use with
fuzz testers like AFL and on-the-�y after deployment.

CCS CONCEPTS
• Software and its engineering → Deadlocks.

KEYWORDS
Deadlock detection, multithreaded programs, lock reachability graph
ACM Reference Format:
Yan Cai, Ruijie Meng, and Jens Palsberg. 2020. Low-Overhead Deadlock
Prediction. In 42nd International Conference on Software Engineering (ICSE
’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3377811.3380367

1 INTRODUCTION
Multithreaded programs are error-prone due to unexpected thread
interleavings that can cause various concurrency bugs. One such
kind of bug is deadlocks that can happen because of incorrect
∗Co-�rst author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380367

synchronizations among multiple threads. A deadlock occurrence
prevents an execution from making further progress. A deadlock
occurs when a set of threads hold a set of locks and they mutually
wait for other locks held by the same set of threads [1, 3]. In this
paper, we focus on resource deadlocks only [6]; another kind of
deadlock is known as communication deadlocks [28].

Like other kinds of concurrency bugs, deadlocks are di�cult
to detect due to non-determinism of multithreaded executions. In
particular, even if a program has a reachable deadlock, the deadlock
may occur in just a small number of executions. However, unlike
other kinds of concurrency bugs, if a deadlock occurs, it can be
easily detected [2] at run time.

As deadlocks are caused by non-determinism of thread inter-
leavings, in-house testing is unlikely to detect all of them1. Even
after a multithreaded program is released, deadlocks can still occur.
Hence, it is still critical to detect deadlocks in released software, e.g.,
at end-users. In such scenarios, low overhead on-the-�y detectors
should be the �rst choice.

Unfortunately, to the best of our knowledge, existing deadlock
detection techniques are not suitable for on-the-�y detection. They
incur a large time overhead (that can be 100–1000x), which prevents
them from being applied by end-users as the maximum acceptable
time overhead there is usually less than 5% [4, 32, 36, 40].

In detail, a predictive tool analyzes an execution trace and pre-
dicts whether deadlocks may occur in alternative executions [1, 3, 6,
7, 29, 38]. As outlined in Figure 1, these approaches map an execu-
tion trace into a large data structure and apply an exponential-time
algorithm2 to it to detect cycles as deadlocks. The earliest work
is the G���L��� algorithm [3] that maps an execution trace into
a lock order graph where (1) locks are nodes, (2) lock orders are
edges, and (3) edge weights are thread identi�ers and other execu-
tion information. Next, G���L��� searches for cycles in the graph
as potential deadlocks.

G���L��� adopts the Depth-First Search (DFS) algorithm on the
lock order graph. During DFS, edge weights are frequently checked
against those of all edges in the current path to see if they satisfy the
deadlock de�nition. Its searching cost increases exponentially with
the increasing number of lock acquisitions. There have been several
works to improve the practical e�ciency of G���L���, such as
M��������SDK [38] and IG���L��� [29]. The two latest works are
M����L��� [6, 7] and U�D��� [54].M����L��� introduces several

1In theory, although model checking [13, 21] based techniques (and other synchro-
nization coverage ones [23, 45, 53]) can explore all thread interleavings, they usually
scale poorly to such programs as MySQL that have millions of lines of codes [12].
2Given a graph G = (V , E), it requires 2E operations to �nd all cycles in G in the
worst case (corresponding to 2E cycles) [27].

����

�����*&&&�"$.���OE�*OUFSOBUJPOBM�$POGFSFODF�PO�4PGUXBSF�&OHJOFFSJOH�	*$4&

https://doi.org/10.1145/3377811.3380367
https://doi.org/10.1145/3377811.3380367

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yan Cai, Ruijie Meng, and Jens Palsberg

Core of the Previous Algorithms
1. Map an execution trace to a large data structure;
2. Run an exponential-time algorithm on the data structure to �nd cycles

as deadlocks.

Core of the A��L���
1. Map an execution trace to a set of small data structures and a lock

reachability graph;
2. Run a polynomial-time algorithm on the reachability graph to report:

• either "an existence of some cycles" (a small percentage),
• or "an absence of any cycle" (a large percentage);

3. For the existence case, run an exponential-time algorithm on a small
subset of the reachability graph to �nd cycles and construct deadlocks
for each cycle.

Figure 1: The core algorithms of previous detectors andA���
L���.

strategies to prune locks and edges that cannot participate in any
cycles as well as identifying equivalent edges. U�D��� [54] is a
simpli�ed version of IG���L��� with some optimizations adopted
fromM����L��� (i.e., discarding equivalent edges [6] that compro-
mise the ability to detect concrete deadlocks). A di�erence among
them is that U�D��� tries to keep traces in memory so that it can
begin detection once an execution terminates, whereas the previ-
ous ones keep traces in external storage. Nevertheless, these works
target o�ine deadlock detection. They become ine�cient when
used for on-the-�y deadlock detection, as we show experimentally
in Section 5.

In this paper, we present a new deadlock detection algorithm,
called A��L���. It does on-the-�y (predictive) deadlock detection
with low overhead, and it can be applied to both in-house testing
by developers (e.g., in fuzzing testing) and deployed products.

The idea of A��L��� is to use an on-the-�y algorithm instead
of the o�ine algorithms in previous works. The core algorithm of
A��L��� is shown in Figure 1. It collects an execution trace into
a set of small data structures and a predictive lock reachability
graph that re�ects the relationship of every two locks (without any
execution information). Next, it runs a polynomial-time algorithm
on the reachability graph to conclude whether the trace has some
cycles. If so, it runs an exponential-time algorithm on a small subset
of its lock reachability graph to �nd all cycles and constructs all
deadlocks.

A��L��� is based on the following observations about large
benchmarks: (1) most pairs of locks are acquired in consistent orders
and they do not form any cycle and (2) only a few pairs of locks
are acquired in reversed orders which may cause deadlocks. Hence,
it is unnecessary to directly apply a heavy algorithm to a large
trace as done by existing works [6, 29, 54]. Instead, the strategy of
A��L��� is to identify the existence of cycles and then to detect
them. Additionally, A��L��� reduces the reachability graph on-
the-�y without missing any cycles. This design makes A��L��� a
low-overhead deadlock predictor.

We have implementedA��L��� on top of the Pin framework [37]
and evaluated it on a set of seven real-world benchmarks. These
benchmarks contain six unique deadlocks that are helpful for evalu-
ating the e�ectiveness of A��L���. We con�gured the benchmarks

with inputs that make them run for 10 to 60 seconds to evalu-
ate e�ciency. We also compared A��L��� with bothM����L���
and U�D���. The experimental results show that all three tools
reported the same predictive deadlocks. However, on e�ciency,
A��L��� only incurred an average of 3.5% time overhead; whereas,
M����L��� and U�D��� incurred an average of 31x and 371x
time overhead, respectively. To further evaluate the e�ciency of
A��L���, we con�gured it to detect cycles at di�erent frequencies
(i.e., every i seconds, 1  i  10) on two large-scale benchmarks
(MySQL and Firefox). The results show that, at any of these fre-
quencies, A��L��� incurred less than 6% time overhead. The results
demonstrate that A��L��� is an e�cient on-the-�y predictive dead-
lock detector, applicable for both in-housing testing and deployed
products at end-users.

The low overhead of A��L��� also makes it work well with fuzz
testers like AFL.

In summary, the contributions of this paper include:
• a novel on-the-�y predictive deadlock detection approach,
based on the insight that most lock acquisition orders do not
form any deadlock, which can be concluded by a polynomial-
time algorithm;

• the tool A��L��� that implements the above insight for on-
the-�y predictive deadlock detection;

• an evaluation of A��L��� that shows that A��L��� only
incurred on average 3.5% time overhead on large-scale pro-
grams. Even under frequent deadlock detection (per 1 or
more seconds), it only incurred less than 6% time overhead
(less than 5% time overhead when the detection period of
� 5 seconds).

2 MOTIVATING EXAMPLE
In this section, we begin with introducing some notations that
we will use throughout the paper, and then we walk through an
example of how A��L��� predicts deadlocks.

2.1 Preliminaries
A multithreaded program has a set of threads and a set of locks.
During execution, a lock l can be acquired and released by at most
one thread t at a time, denoted as acq(l) and rel(l), respectively. A
thread can acquire additional locks before it releases any acquired
locks; and the set of all these locks held by a thread t is called a
lockset, denoted as LS(t). A lock l can be destroyed, denoted as des(l);
and the destroyed lock l cannot be acquired and released again.

To be consistent with previous works, we also adopt the concept
of the lock dependency in our analysis. A lock dependency [6, 29]
is a triple d = ht, l, LS(t)i, indicating that, during an execution, a
thread t acquires a lock l when it holds a set of locks in LS(t). A
trace is a set of dependencies. Notice that our notion of trace is
a set rather than a list; this is because a set is su�cient for our
purposes.

Two (ordered) locks have the following reachability relationship:
direct reachability (!) and indirect reachability (d). A lock
l1 directly reaches a lock l2 if there is a lock dependency ht , l2,LS(t)i
such that l1 2 LS(t); and we say that there is a direct edge from
lock l1 to lock l2, denoted as l1! l2. A lock l1 indirectly reaches a
lock lk if there are a sequence of locks l2, ..., lk�1 such that li !

����

Low-Overhead Deadlock Prediction ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Part I

Part III

Part II

An
 e

xe
cu

tio
n

Lo
ck

 a
cq

.
an

d
re

l.
Lo

ck
 d

es
.

Deadlocks

Reachability
Graph

Trace

Cycles

On demand

Detect
Cycles

Construct
DeadlocksMaintain

Reachability

Reduce
Reachability

Figure 2: An overview of A��L���.

li+1, for 1  i  k � 1; and we say there is an indirect edge from
lock l1 to lock lk , denoted as l1 d lk . For example, as shown in
Figure 3, when thread t1 calls function f (thd,open), it forms a direct
edge thd ! open. Similarly, thread t2 forms a direct edge open!
kern. Both direct edges {thd ! open, open! kern} together form
an indirect edge thd d kern. From above de�nition, we see that,
(1) there can be both direct and indirect edges between two locks,
(2) a dependency can produce multiple edges and an edge can be
represented as a lock dependency [29], and (3) the same edge can
be produced by di�erent lock dependencies.

We introduce two edge sets Fr and To to describe edges. Given
a lock l , Fr (l) denotes a set of locks that lock l directly or indi-
rectly reaches, and To(l) denotes a set of locks that can directly
or indirectly reach lock l . Obviously, given two locks l1 and l2, if
l2 2 Fr (l1), then we have l1 2 To(l2).

Now, we de�ne a predictive (lock) reachability graph over
a set of locks V to be R = hV ,Ei where E = {hl1, l2i 2 V ⇥V |l2 2
Fr (l1)}. Obviously, R is the transitive closure of the directed graph
Go = hV ,Eoi where Eo is the set of all direct edges.

In the above de�nition of indirect edge, if the lock lk also directly
reaches the lock l1, we say that the sequence of edges {l1! l2, ...,
lk�1 ! lk , lk ! l1} forms a direct cycle. An indirect cycle is
de�ned similarly except that, at least one edge is an indirect edge.
A simple cycle is de�ned to be a direct or an indirect cycle of two
locks.

Note, in the de�nition of cycles, we only consider the reachability
among locks, but exclude aspects such as their forming threads
and locksets. This is di�erent from the cycles de�ned in previous
works like [6, 54]. To restrict our approach to report exactly the
same (predictive) deadlocks as previous works, we follow the same
de�nition of deadlocks [6, 29]: a sequence ofm lock dependencies
hd0, ...,dm�1i (where di = hti , li ,LS(ti)i, for 0  i  m � 1) forms
a deadlock if:

• for 0  i  m � 1, li 2 LS(t(i+1 (mod m))), and
• for 0  i < j  m � 1, LS(ti) \ LS(tj) = ;.

The de�nition requires that each thread of the set should hold a
set of locks and mutually wait for another lock held by a di�erent
thread, and at the same time, no two threads hold the same lock.
Given a direct cycle, its corresponding set of deadlocks can be
constructed by �rst replacing each edgewith every lock dependency
that produces the edge and then check the set of lock dependencies
against the deadlock de�nition.

1 Function f (m, n){

2 acq(m); acq(n); rel(n); rel(m); Deadlocks:

3 //form a direct edge m n.

4
5

6

7
8

9

}

Program:

Thread t1: f (thd, open);

Thread t2: f (open, kern); des(open);

Thread t3: f (kern, thd);

thd

kern

t 1

t 3 t 2

open

Figure 3: A motivating program adapted from MySQL (Bug
ID: 62614).

2.2 Overview and Illustration
Figure 2 shows an overview of A��L���, consisting of three parallel
on-the-�y parts to detect deadlocks. Part I builds a reachability
graph on lock acquisitions, and it also records a trace. Part II detects
cycles from the lock reachability graph and constructs deadlocks
from the trace. And Part III reduces the lock reachability graphwhen
a lock is destroyed, and detects cycles involving the destroyed locks.

Figure 3 shows a motivating program adapted from a deadlock in
MySQL2 (Bug ID: 62614) which is one of our benchmark programs.
It has three threads (t1, t2, t3) and three locks (thd,open,kern). Each
thread calls function f () to acquire two locks, and thread t2 further
calls functiondes() to destroy lockopen. Note, originally inMySQL2,
the lock open is not destroyed at the end of thread t2 but at the pro-
gram exit point; we made the change to illustrate the correctness of
A��L���’s reduction. Suppose that the three threads are executed
in the order shown in the �rst column of Figure 4. The correspond-
ing execution trace is a set of three dependencies: ht1,open, {thd}i,
ht2,kern, {open}i, ht3, thd, {kern}i. Obviously, this example has a
deadlock where thread t1 holds lock thd and waits for lock open,
thread t2 holds lock open and waits for lock kern, and thread t3
holds lock kern and waits for lock thd , and no two threads hold the
same lock .

Figure 4 illustrates the on-the-�y deadlock detection process of
A��L���. The second major column shows the maintained lock
reachability graph (i.e., the edge sets Fr and To) which is also
depicted. Note, in each edge set, the elements before and after a
slash "/" are locks involved in direct and indirect edges, respectively.
For example, the value "{open/kern}" under Fr (thd) indicates two
edges: one direct edge thd ! open and one indirect edge thd d
kern. The last column shows edgesMoved from memory to disk
(as we will explain below). Assume that A��L��� is con�gured to
detect deadlocks at the program exit point.

Initially, after thread t1 executes, A��L��� produces one direct
edge thd!openwhich is re�ected under both sub-columns Fr (thd)
and To(open). Next, after thread t2 calls function f (open,kern), a
new direct edge open! kern is formed and is re�ected under both
sub-columns Fr (open) andTo(kern). Considering this edge and the
previous edge (i.e., thd ! open), they produce an indirect edge thd
d kern. So, A��L��� updates the reachability graph to re�ect this
indirect edge.

Next, after thread t2 destroys lock open, A��L��� �rst detects
cycles involving lock open on the current reachability graph but no
one is detected. It then deletes the lock from the reachbility graph.
However, now two particular kinds of locks exist (i.e., a lock thd

����

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yan Cai, Ruijie Meng, and Jens Palsberg

Execution
Order

Lock Reachability Graph Depicting
Graph Moved Edgesthd

Fr(thd) To(thd)
open

Fr(open) To(open)
kern

Fr(kern) To(kern)

t1: f (thd, open)
t2: f (open, kern)
t2: des(open)
t3: f (kern, thd)

{open/-}
{open/kern}

{-/kern}
{-/kern}

-
-
-

{kern/-}

-
{kern/-}

-
-

{thd/-}
{thd/-}

-
-

-
-
-

{thd/-}

-
{open/thd}
{-/thd}
{-/thd}

-
-

{thdoopen; openokern}
-

On Exit thd kern

thd open

thd open kern

thd kern

thd kern

thd open

kern

Figure 4: An illustration of A��L��� on the motivating program.

that reaches lock open and a lock kern that is reachable from lock
open); A��L��� moves these direct edges into an additional storage
(e.g., an external storage) as depicted, indicating that these edges
may participate in a cycle that is produced later.

Finally, after thread t3 executes f (kern, thd), a new direct edge
kern ! thd is produced and the reachability graph is updated
accordingly. However, no new indirect edge is produced because
there are no other locks except the two locks themselves that reach
lock kern or can be reached from locks thd .

At the execution exit point, A��L��� detects cycles on the reach-
ability graph, resulting in an indirect cycle {kern ! thd , thd d
kern}. Based on this indirect cycle, A��L��� performs a DFS search
of the edges that are only from and to lock thd and lock kern, in-
cluding the corresponding moved edges (in the column Moved
Edges). This results in a direct cycle of three locks {kern! thd ,
thd ! open, open! kern}. Based on the trace of the execution, a
predictive deadlock (with thread IDs and locksets) of the cycle is
reported.

3 OUR APPROACH: AIRLOCK
This section presents the three parts of A��L��� namely lock reach-
ability graph maintenance, cycle detection and deadlocks construc-
tion, and reachability graph reduction.

3.1 Part I: Maintain Reachability Graph
Part I of A��L��� tracks lock acquisitions and releases to maintain
a lock reachability graph (i.e., to build Fr andTo). The key here is to
ensure that the reachability graph precisely re�ects all direct edges
and indirect edges. It requires to not only record the direct edges
produced on lock acquisitions but also compute all indirect edges
due to the insertion of the direct edges. We show Part I in Algorithm
1. Given a lock acquisition, A��L��� records dependencies in a
trace and records direct edges produced by the acquisition. Due
to the insertion of the new direct edges, A��L��� propagates
reachability of any a�ected locks.

Note, the edge sets Fr and To consist of both direct edges and
indirect edges. To distinguish them, we introduce two functions
ColorDir (m) and ColorInd(m) to mark a lockm when it is added
into Fr (l) (or To(l)), indicating that the edge from l tom (or from
m to l) is a direct edge or an indirect edge.

Record Dependencies. As outlined in core algorithm in Figure
1, A��L��� arranges a trace into a set of small data structures. In

Algorithm 1: Maintain a Lock Reachability Graph
1 LS maps a thread t to its lockset.
2 Tr maps an edgem ! l to a sequence of dependencies.
3 Fr and To are the two edge sets.
4 ColorDir and ColorInd : two functions that mark each lock

with di�erent colors.
5 Function O�ACQ(t , l)
6 foreachm 2 LS(t) do
7 Tr (m ! l) Tr (m ! l)[{t ,LS(t)\{m}} . Dependency
8 if ColorDir (l) < Fr (m) then
9 Fr (m) Fr (m) [{ColorDir (l)} . Direct edges

10 To(l) To(l) [{ColorDir (m)} . Direct edges
11 call P��������R����(m, l). . Propagate reachability

12 LS(t) LS(t) [{l}
13 Function O�REL(t , l)
14 LS(t) LS(t)\{l}
15 Function P��������R����(m, l)
16 . Update reachability graph dued to the direct edgem! l .
17 foreachm

0 2 To(m) do
18 Fr (m0) Fr (m0) [TransInd(Fr (l)) [{ColorInd(l)}
19 foreach l

0 2 Fr (l) do
20 To(l 0) To(l 0) [TransInd(To(m)) [{ColorInd(m)}
21 Fr (m) Fr (m) [TransInd(Fr (l))
22 To(l) To(l) [TransInd(To(m))

detail, it indexes a sequence of dependencies by an edge that can be
produced by any indexed dependency. Hence, in Algorithm 1, on
a lock acquisition O�ACQ(t , l), A��L��� records the dependency
into the map Tr (m ! l) (line 7). Our trace is di�erent from previ-
ous works that arrange dependencies of a trace to one set [29] or
multiple thread-speci�c sets [6, 54].

Record Direct Edges. Each lock acquisition O�ACQ(t , l) pro-
duces a set of direct edgesm ! l form 2 LS(t). All these direct
edges are added into the two edge sets Fr (m) and To(l) (line 9 and
10). And, the lockset of thread t is updated to include lock l (which
is excluded on the paired release O�REL(t , l)).

Propagate Reachability. When a new direct edge m ! l is
inserted to Fr and To, the reachability of locks from l and to m

has to be updated as illustrated in Figure 5. Considering that our
reachability graph is a transitive closure of a graph consisting of
all direct edges, the existing algorithms [26, 33, 43] for maintaining

����

Low-Overhead Deadlock Prediction ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

𝑚′ m l 𝑙′

New reachability

New reachability

∀𝑚ᇱ∈ 𝑇𝑜ሺ𝑚ሻ ∀𝑙ᇱ∈ 𝐹ݎሺ𝑙ሻ

Figure 5: Update reachability given a new direct edgem! l .

the transitive closure of a dynamic graph can be adapted. This is
implemented in P��������R����(m, l) in Algorithm 1, where we
introduce a function TransInd(Set) to copy all of the edges in Set

as indirect edges.

3.2 Part II: Detect Cycles and Construct
Deadlocks

Part II detects cycles from the lock reachability graph and con-
structs corresponding deadlocks. Instead of directly applying an
exponential-time searching algorithm on a large trace (as adapted in
previous works), A��L��� splits the cycle detection in two phases,
as outlined in Figure 1 (step 2 and step 3). First, it only iterates
on the reachability graph once, which is enough to identify all
simple cycles including both direct cycles and indirect cycles. This

Algorithm 2: Detect Cycles
1 C: a set to keep all direct cycles.
2 IndC�cleLocks: a set to keep locks in indirect simple cycles.
3 IndC�cleDirFr : a set to map a lock l to its directly reachable

locks, such that any lock in the mapped set indirectly reaches
lock l .

4 Function D�����C�����()
5 foreach lock l do
6 foreachm 2 Fr (l) do
7 if ColorDir (m) 2 Fr (l) ^ColorDir (l) 2 Fr (m)

then . A direct simple cycle: l !m,m ! l
8 C C [{hl !m,m ! li}.
9 if ColorDir (m) 2 Fr (l) ^ColorInd(l) 2 Fr (m)

then . An indirect simple cycle: l !m,m d l
10 IndC�cleDirFr (l) IndC�cleDirFr (l) [{m}
11 IndC�cleLocks IndC�cleLocks [{l}.

12 Visited(l) False , for each lock l 2 IndC�cleLocks
13 S ; . A stack structure for DFS
14 foreach lock l 2 IndC�cleLocks do
15 Visited[l] True; call DFS(l); Visited[l] False .

16 Function DFS(l)
17 if S[0] = l then . A direct cycle of three or more locks
18 C C [{hS[0]! S[1], ...,S[k � 1]! S[0]i}, k = |S |
19 return.
20 Push l into S .
21 form 2 IndC�cleDirFr (l) [ExternalFr (l) do
22 . Only traverse a direct edge: l !m.
23 if Visited[m] = False then
24 Visited[m] True; call DFS(m);
25 Visited[m] False .

26 Pop l from S .

concludes whether the trace contains cycles. For any indirect cycle,
A��L��� detects the corresponding direct cycles via a DFS al-
gorithm. It then constructs deadlocks for every direct cycle. We
present its detection algorithm (Algorithm 2) and then discuss the
bene�t of such a design.

Detect Simple Cycles. To detect all simple cycles, A��L���
only needs to traverse the edge set Fr once, as shown in lines
5–11. Given a lock l , it traverses all locks in Fr (l). For any m 2
Fr (l), if the lock l is also in Fr (m), a direct cycle {l ! m, m !
l} or a indirect cycle {l ! m, m d l} is detected. For e�ciency
purpose in the later detection, we introduce two data structures
IndC�cleDirFr and IndC�cleLocks for indirect cycles. The struc-
ture IndC�cleDirFr (l) (having the same structure as Fr) keeps all
identi�ed direct edges in indirect cycles (line 10, the edge l !m).
The structure IndC�cleLocks keeps all locks in indirect cycles (like
the keys of IndC�cleDirFr).

m � IndCycleDirFr(l)

l m l m

l1ln

(a) An indirect cycle. (b) A corresponding direct cycle.

Figure 6: An illustration on indirect Cycles.

Detect Corresponding Direct Cycles. For an indirect cycle,
there must exist a direct cycle as illustrated in Figure 6. Given a set
of indirect cycles as locks in IndC�cleDirFr and a set of all locks in
all indirect cycles, A��L��� searches a corresponding direct cycle
for each indirect cycle based on a DFS algorithm (lines 16–26). Note,
in line 21, Algorithm 2 also considers edges (ExternalFr (l)) kept in
disk (due to the reachability reduction, see Section 3.3).

ConstructDeadlocks.As explained in Section 2.1, a direct cycle
detected by A��L��� is di�erent from the one detected by previous
works (e.g. [6, 29]) where A��L��� only considers the reachability
of locks without any execution information (e.g., thread IDs and
lockset). However, A��L��� also records all dependencies as a trace
(i.e., Tr in Algorithm 1) for constructing all deadlocks, resulting in
exactly the same deadlocks as those reported by previous works.

In detail, given a direct cycle, A��L��� checks all sequences of
dependencies indexed by all edges of this cycle. A direct cycle will
correspond to a set of permutations (i.e., a set of dependencies,
one from each indexed trace). Each permutation will be checked
against the deadlock de�nition and the satis�ed ones are �nally
reported. This process is e�cient by taking the concept of Equiv-
alent dependencies [6] such that only permutations consisting of
non-equivalent dependencies from each indexed sequence of depen-
dencies are checked.

Discussion. Let E be the all edges in Fr . The time complexity
of the �rst phase (i.e., lines 5–11) is roughly a polynomial-time
complexity O(E2) as the algorithm implicitly checks every pair of
edges in Fr . The second phase (lines 12–26) is still an exponential-
time DFS algorithm. However, from line 21, the DFS algorithm
traverses all direct edges in indirect cycles. Considering our insight
that most of nested lock acquisitions do not participate in any cycle,
there will be a small number of simple cycles. This results in a much
smaller searching space than that by previous works [6, 29, 54],

����

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yan Cai, Ruijie Meng, and Jens Palsberg

which have to explore much more paths where most of them do not
�nally form cycles. Hence, Algorithm 2 is very e�cient in practice.

3.3 Part III: Reduce Reachability Graph
The �rst two parts work well in terms of detecting all direct cycles.
However, a multithreaded program usually creates numerous locks
and edges. During an execution, the cumulative number of locks
could be very large, bringing increasing memory and time con-
sumption. One straightforward solution is to remove all destroyed
locks and related edges during an execution. However, this brings
a challenge on how to guarantee the correctness (i.e., not to miss
any cycle) after reduction. It is because a destroyed lock may also
participate in a cycle that is formed later. For example, in our exam-
ple (Figure 4), when the lock open is destroyed, we delete all edges
involving the lock. Then, no cycle will be reported as the two edges
(formed by threads t1 and t2) have been deleted.

We propose a reachability reduction algorithm with guarantees
on the reduction correctness as shown in Algorithm 3. Basically,
when a lock is destroyed, A��L��� tries to ensure its reduction
correctness. If the correctness cannot be immediately determined,
it splits all related edges from the reachability graph (e.g., to keep

Algorithm 3: Reduction and Cycle Detection
1 Function O�D������L���(l)
2 if Inde�ree(l) = 0 ^Outde�ree(l) > 0 then . Case 2.1
3 foreachm 2 Fr (l) do
4 To(m) To(m)\{ColorDir (l),ColorInd(l)}
5 DeleteAllEd�es(ColorDir (l),ColorDir (m)).

6 if Inde�ree(l) > 0 ^Outde�ree(l) = 0 then . Case 2.2
7 foreachm 2 To(l) do
8 Fr (m) Fr (m)\{ColorDir (l),ColorInd(l)}
9 DeleteAllEd�es(ColorDir (m),ColorDir (l)).

10 if Inde�ree(l) > 0 ^Outde�ree(l) > 0 then . Case 3
11 foreachm 2 Fr (l) do
12 To(m) To(m)\{ColorDir (l),ColorInd(l)}
13 if ColorDir (m) 2 Fr (l) ^ColorDir (l) 2 Fr (m)

then . A direct simple cycle: {l !m,m ! l }
14 C C [{hl !m,m! l i}.
15 if ColorDir (m) 2 Fr (l) ^ColorInd(l) 2 Fr (m)

then . An indirect simple cycle: {l !m,m d l }
16 IndC�cleDirFr (l) IndC�cleDirFr (l) [{m}
17 IndC�cleLocks IndC�cleLocks [{l}.
18 foreachm 2 To(l) do
19 Fr (m) Fr (m)\{ColorDir (l),ColorInd(l)}
20 if ColorDir (m) 2 To(l) ^ColorInd(m) 2 Fr (l)

then . An indirect simple cycle: {m! l , l dm }
21 IndC�cleDirFr (m) IndC�cleDirFr (m)[{l}
22 IndC�cleLocks IndC�cleLocks [{m}.

23 . Only save direct edges in Fr (l) and To(l).
24 foreach ColorDir (m) 2 Fr (l) do
25 ExternalFr (l) ExternalFr (l) [{ColorDir (m)}
26 foreach ColorDir (m) 2 To(l) do
27 ExternalFr (m) ExternalFr (m) [{ColorDir (l)}
28 Fr (l) := ;; To(l) := ;

into external disk) for later cycle detection. In such a way, the
reachability graph (e.g., in memory) is always for live locks. We
present our reduction algorithm and then give an informal analysis
on its correctness.

Reduction.On destroying lock l , there are three reduction cases
according to whether the indegree or/and the outdegree of this lock
is zero 3: (Case 1) both indegree and outdegree of lock l are zero,
(Case 2) only one of them is zero, and (Case 3) both of them are non-
zeros. For Case 1, nothing should be taken because this lock does
not reach any other locks and vice versa. For Case 2, obviously, this
lock is not involved in any cycle; hence, all its information should be
removed. Besides, if the indegree of lock l is zero (Case 2.1), for any
other lockm (i.e.,m 2 Fr (l)) that is directly or indirectly reachable
from lock l , we remove edge l !m as well as all dependencies in
the trace indexed by this edge (see line 3–6). If the outdegree of
lock l is zero (Case 2.2), we perform the similar action.

For Case 3, since there are locks both reachable from and to lock
l , lock l may be involved in some cycles. Hence, we �rst perform a
cycle detection. However, we only detect all simple cycles involving
lock l (lines 13–17 and 20–22). After that, we move all direct edges
(in Fr (l) and To(l)) into disk. These edges are known as External
Edges (i.e., ExternalFr in the Algorithm 3) and are searched during
detection of all direct cycles in Algorithm 2.

Reduction Correctness.We brie�y show the correctness anal-
ysis based on the mathematical induction manner: before and after
reduction of k locks and all edges involving these locks, A��L���
detects the same set of cycles.

l m l m
Formed after

destroying lock l.

l
m1

m2

(b)

m1

m2

(a)

Figure 7: Correctness illustration for Reduction.

Base case (i.e., k = 1): before and after reduction of the �rst lock,
say l , the above claim holds. Let’s analyze the three reduction cases:

• For Cases 1 and 2, obviously, the lock cannot participate
in any cycle. Hence, reducing the lock does not a�ect any
cycles to be detected. Our claim holds.

• Recall that Case 3 is: the lock l has both incoming and out-
going edges. Before reduction, the lock can only participate
in two kinds of cycles: cycles already formed and cycles
formed later as shown in 7 (a) and (b), respectively. For al-
ready formed cycles, Algorithm 3 can detect them before
reducing the lock. For any cycles to be formed later, there
must exist two lockm1 andm2 that form two edgesm2! l

and l !m1 as shown in Figure 7(b), such that the edgem1
!m2 is formed after destroying lock l . Hence, there must
be an indirect edgem2 dm1 (see how Algorithm 1 updates
reachability). This results in that, after remove lock l and
edgesm2! l and l !m1, an indirect cycle {m1!m2,m2

3Note, we do not explicitly maintain either indegree or outdegree for each lock as we
only need to know whether the value is zero or not. This can be easily analyzed from
the keys of the edges sets Fr and To in implementation.

����

Low-Overhead Deadlock Prediction ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

d m1} can be detected after the edgem1 !m2 is formed.
Besides, during reduction, Algorithm 3 also keeps all direct
edges from and to lock l in disk (i.e., ExternalFr). When
detecting all direct cycles of the indirect cycle {m1!m2,m2
dm1}, by searching edges in disk, Algorithm 2 can detect
the direct cycle involving lock l . (Note, the edges fromm2
to l , from l tom1, and fromm1 tom2 can be either direct or
indirect ones, which does not a�ect the analysis.) Therefore,
for Case 3, after reducing lock l and edges involving l , our
claim holds.

Now, assume that after reducing the �rst k locks and all edges
from/to them, the same set of cycles can be detected. Let’s show
that reducing the (k + 1)th lock, our claim still holds. Note, the
(k + 1)th lock can have incoming or/and outgoing edges before
reducing some of the k locks. But here we only consider the current
state: whether any cycles can be missed by reducing the (k + 1)th
lock. Obviously, by repeating the steps in the base analysis, no cycle
can be missed from the current state by removing one lock and
edges involving in this lock. (A more detailed analysis can be done
by split the execution into two executions at the point right before
reducing the (k + 1)th lock and apply base analysis on the second
execution.) Thus, we can see that our claim still holds by reducing
the (k + 1)th locks.

Combining the two analyses above, our claim holds. That is, our
reduction guarantees not to missing any cycle while reducing locks
and their corresponding edges.

3.4 Frequent Deadlock Detection
Existing predictive deadlock detectors [6, 29, 54] only detect dead-
locks after a program exits or is about to exit. They cannot imme-
diately report deadlocks whenever they are formed, especially for
long-running programs (e.g., server programs) or non-terminating
executions. Unlike these, A��L��� (i.e., Part II) can be con�gured to
run whenever there is a detection need (e.g., periodically or on user
demand). It can detect deadlocks at runtime. In our experiments
(Section 5.4), we show that A��L��� is scalable to detect deadlocks
per-second during runtime with less than 6% time overhead on two
programs running for 36 and 100 seconds, respectively.

4 DISCUSSION OF AIRLOCK
In this section, we brie�y discuss A��L��� and other similar works
in terms of maximality and soundness on reported deadlocks.

Maximality. Given the same trace and the same deadlock de�-
nition (i.e., the one in the last paragraph of Section 2.1), A��L���
can detect the same set of predictive deadlocks as that by previous
works including IG���L���,M����L���, and U�D���. This set
of deadlocks is maximal with respect to the trace, because all ap-
proaches consider all permutations of lock acquisitions and �lter
out those not satisfying the deadlock de�nition.

Soundness. All approaches above including A��L��� are un-
sound by reporting false positives. To the best of our knowledge,
D��� [31] is the latest work on sound deadlock prediction. How-
ever, like sound data race prediction [24, 25], it needs to track
additional events and relies on constraint solvers, bringing heavy
performance challenges. These make them unsuitable for e�cient
on-the-�y deadlock prediction.

5 EXPERIMENTS
In this section, we present a set of experiments to demonstrate the
e�ectiveness and the e�ciency of A��L��� as an on-the-�y predic-
tive deadlock detection tool, and its scalability on high frequency
deadlock detection. We also conducted a self-comparison on the
two strategies (i.e., cycle detection and reachability reduction) of
A��L���.

5.1 Benchmarks
We collected a set of seven real-world C/C++ benchmarks includ-
ing HawkNL, SQLite, two di�erent versions of MySQL database
servers, two browsers (Firefox and Chromium), and Thunderbird.
They contain six unique deadlocks that are similar in number to pre-
vious work [6, 54]. All these benchmarks and deadlocks have been
extensively studied in previous works [6, 7, 54]. We excluded one
benchmark MySQL-6.0.4 in the papers ofM����L��� and U�D���,
because MySQL-6.0.4 uses customized synchronization primitives,
not standard Pthreads.

In Table 1, we show the statistics of these benchmarks, including
their names (versions), Bug ID, source lines of code (SLOC), NO. of
threads, NO. of locks ((total number of locks)/(max number of live
locks)), a summary of inputs or deadlock descriptions, the time cost
of their native executions, and the number of (predictive) deadlocks
reported by three techniques (all/unique/real). The last column
shows the number of locks in each direct cycle.

5.2 Implementation and Experimental Setup
A��L��� was implemented on top of the Pin framework [37] for
C/C++ programs with Pthread. It works under the Probe mode of
Pin which itself incurs almost zero overhead.

We have reviewed a list of tools on deadlock detection to identify
potential competitors for comparison. U�D��� is the only online
predictive detector that we have found. M����L���, Sherlock [18],
and WOLF [47] are listed as state-of-the-art deadlock detection
tools [14] published in 2019 where both Sherlock and WOLF focus
on soundness. ConLock [10] and ConLock+ [9] focus on triggering
real deadlocks reported byM����L���. Dirk [31] is a heavy-weight
detector to detect sound deadlocks. Additionally, PickLock [49]
focuses on soundness and was evaluated on a set of small java
programs.

Finally, we selected the two representative deadlock detectors,
M����L��� and U�D��� for comparison purpose. Other predictive
tools like IG���L��� [29] and M��������SDK [38] have been
compared with M����L��� in previous works [6, 54] and U�D���
is also based on IG���L��� with additional dependency pruning
strategies.

For M����L���, we used its implementation (provided by the
author [6]). The original U�D��� release is available online [54]; it
contains two parts: deadlock detection and deadlock tolerance. We
evaluated its detection part.

We conducted the experiments on a DELL Precision 5520 with
a 2.80 GHz i7-7700HQ processor, Ubuntu 16.04 (x64), and GCC
4.8. We ran each benchmark ten times to collect data and compute
averages. We set each execution time to be at most 10 hours.

����

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yan Cai, Ruijie Meng, and Jens Palsberg

Benchmarks
Bug
ID

SLOC
(k) #Thd #Locks Summary of Inputs Native

Time
#Cycles (all/unique/real) #Locks in

CyclesU�D��� M����L��� A��L���
Hawknl (1.6b3) n/a 9.3 401 603/202 Deadlock in nlshutdown() and nlclose() 10.1s 400/1/1 400/1/1 400/1/1 2
SQLite (3.25.2) 1672 268.9 17 15/14 Deadlock in sqlite3UnixEnterMutex() and sqlite3UnixLeaveMutex() 56.3s 7075/5/1 7075/5/1 7075/5/1 2
MySQL1 (5.1.57) 60682 1146.7 314 1763/667 show innodb status deadlocks if LOCK_thd_data points LOCK_open 26.8s 101/2/2 101/2/2 101/2/2 2
MySQL2 (5.5.17) 62614 1282.7 50 287/121 PUGE BINARY LOG acquires two locks in the wrong order 20.1s 1100/2/2 1100/2/2 1100/2/2 2,3
FireFox (64.0) n/a 9735.4 115 41694/3787 Open 30 web pages 60.9s 0/0/0 0/0/0 0/0/0 0
Chromium (71.0) n/a 28146.2 37 261756/13055 Open 30 web pages 59.1s 0/0/0 0/0/0 0/0/0 0
Thunderbird (60.2.1) n/a 9822.9 76 17107/2525 Fetch 1000 e-mails from a Gmail.com account 42.8s 0/0/0 0/0/0 0/0/0 0

Table 1: Basic statistics of the benchmarks.

28.5%

14.4%

29.3%
19.3% 19.7%

1.4% 3.6% 4.8% 1.5% 4.3% 4.9% 4.3% 3.5%

0%

10%

20%

30%

40%

50%

UNDEAD MAGICLOCK AIRLOCK

15933.6% 294.5% 5801.1% 253.6% 3193.0%
291.9% 102349.9% 59103.6% 60913.7% 37145.6% 37121.1%

Figure 8: Time overhead.

0
50

100
150
200
250
300

UNDEAD MAGICLOCK AIRLOCK
780.9 376.8

Figure 9: Memory consumption (MegaBytes).

5.3 E�ectiveness and E�ciency
5.3.1 Overall Analysis. From the penultimate column of Table 1,
we see that the three techniques detected the same number of
deadlocks.

Figures 8 and 9 show the time overhead and memory consump-
tion, respectively for each benchmark, as well as their averages.
Note, M����L��� is an o�ine technique and we collected its costs
on time and memory from its o�ine detection phase.

On time overhead, it is obvious that A��L��� signi�cantly out-
performed both M����L��� and U�D���. It only incurred 1.4% to
4.9% overhead. However, U�D��� incurred 14.4% to 28.5% overhead
on two benchmarks; on remaining benchmarks, it incurred 2.9x to
1023x overhead. Actually, U�D��� did not �nish on Firefox and
Chromium after running for 10 hours (i.e., our time limit).M����
�L��� incurred 19.3% to 29.3% overhead on three benchmarks. How-
ever, on remaining benchmarks, it incurred 2.5x to 159x overhead.
On average, A��L��� only incurred 3.5% overhead but U�D���
andM����L��� incurred 371x and 31x overhead, respectively. 4

4Variable system load can a�ect execution time, yet any system load a�ects both
A��L��� and the execution itself. We speculate that this may bring proportional

The above results con�rm that: analyzing and reducing the lock
reachability graph before detecting cycles and deadlocks leads to
e�cient deadlock analysis. Besides, the optimization ofM����L���
may be e�ective on some benchmarks but may also be ine�ective on
other benchmarks (e.g., MySQL2). However, considering the total
detection time ofM����L���, it is acceptable as an o�ine deadlock
detector for development. U�D��� is based on the IG���L���
algorithm which has been shown to be ine�cient [6].

On memory consumption, Figure 9 shows that there is no large
di�erence. 5 On average memory,M����L��� and A��L��� used
almost the same amount and U�D��� took about twice.

HawkNLSQLiteMySQL1MySQL2FireFoxChromiumThunderbird

Mo�ed 0 0 0.34 0 3.2 4.3 0.28
�Mem . 0 0 -1.4 0 -23.4 -50.1 -2.6
T races 0.01 0.11 1.2 0.69 22.5 1.2 0.79

Table 2: External storage consumption and reducedmemory
consumption by A��L��� (in MegaBytes).

A��L��� adopts the strategy that may move edges from mem-
ory to external disk when a lock is destroyed, besides tracking an
execution trace for deadlock construction. Therefore, we also col-
lected its external storage consumption for moved edges (Mo�ed),
its reduction to memory consumption (�Mem.), and the sizes of
traces (Traces), as shown in Table 2.

From the table, A��L��� consumed 0 to 4.3 MB external storage
and reduced 0 to 50.1 MB memory consumption. It seems that
moving edges into external storage can have little e�ect in terms
of memory consumption. We will present further analysis in the
next subsection. From the last row, we see that A��L��� kept an
acceptable size of execution traces for each execution.

5.3.2 Detailed Comparisons. Besides the overall comparison, we
introduced one more comparison point: the trend of runtime data,
including the number of edge sets for A��L��� and the numbers of
dependencies for U�D��� andM����L���. We collected such data
every two seconds during execution. ForM����L���, we saved a
copy of its trace every two seconds and calculated the data.

increases, resulting in an overhead percentage similar to what we reported. In e�ort to
deal with variations, we repeated our experiment 10 times and computed the average.
5From Figure 9, A��L��� consumed more memory than that by M����L���. A��L���
keeps a trace in memory and has a steady memory consumption, which varies across
programs. In Figure 10 we see that the trend for the number of edges is increasing for
M����L��� but steady for A��L���. So, we estimate that for longer execution time,
A��L��� will consume less memory than M����L���.

����

Low-Overhead Deadlock Prediction ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

HawkNL SQLite MySQL1 MySQL2 Firefox Chromium Thunderbird

U
N

D
E

A
D

M
A

G
IC

L
O

C
K

A
IR

L
O

C
K

0

1

2

1 15

#Edges #Depedencies

0

0.2

1 30

#Edges #EdgeSets #Direct Edges

0

0.03

1 6
0

0.05

1 30
0

1

1 14
0

0.06

1 10
0

6

1 30
0

20

1 30

0

5

1 22

0

2

1 6
0

1

1 30
0

40

1 14
0

0.06

1 10
0

6

1 30
0

70

1 30
0

4

1 22

0

2

1 6
0

60

1 14
0

0.5

1 10
0

80

1 30
0

400

1 30
0

20

1 22
0

2

1 30

0

1

2

1 15

#Edges #Depedencies

Figure 10: Trends on memory consumption in terms of the number of edges, dependencies and edge sets (where the x-axis
shows the execution time (⇥2 seconds) and the �-axis shows the numbers (⇥1, 000)).

To compare the three tools directly, we further converted the two
kinds of data to the number of edges as follows: we transformed
each edge set or each dependency into multiple direct edges accord-
ing to the size of each edge set or the size of the lockset in each
dependency. Note, A��L��� only keeps edge sets for live locks;
for any destroyed lock, its edge sets are deleted or moved out of
memory (see Algorithm 3); hence, the number of edge sets also
re�ects the number of live locks. In each sub�gure of Figure 10 ,
the x-axis shows the execution time (e.g., i stands for i ⇥ 2 seconds)
and the y-axis shows the number (⇥1, 000) of periodically collected
data.

Figure 10 clearly shows that A��L��� maintained a stable num-
ber of edges and a stable number of edge sets after executing for
several seconds; however, both U�D��� and M����L��� incurred
obvious increasing numbers of edges and dependencies. This con-
�rms the insight behind the design of A��L���: most locks are
dynamically created and destroyed, and the total number of live
locks (i.e., the number of edge sets) keeps stable during executions.

Summary. From the overall results in Table 1 and in Figures 8
and 9, as well as the detailed data in Figure 10,A��L��� is applicable
to on-the-�y deadlock detection while M����L��� is acceptable
for o�ine deadlock detection for development.

5.4 Scalability under High Frequency Detection
A��L��� is designed as an on-the-�y deadlock detector whose
detection can be frequently conducted. To evaluate this feature,
we conducted another experiment. We selected two benchmarks
MySQL1 and Firefox where we are able to increase the sizes of in-
puts such that they can run for a longer time. In detail, for MySQL1,
we con�gured a stress testing tool Sysbench 6 to send 108 SQL
queries to it; for Firefox, we con�gured it to open 60 pages (note,
these workloads are di�erent from those used to measure native
time in Table 1). Under the two con�gurations, MySQL1 was able

6https://github.com/akopytov/sysbench

Native UNDEAD MAGICLOCK AIRLOCK
MySQL1 36.8s >10 Hours 39.0s (106.1%) 1.1s (3.1%)
Firefox 100.4s >10 Hours 324.7s (323.4%) 3.0s (3.1%)

(b) Overhead of AIRLOCK on
Firefox with periodical detections

(a) Overall results (time and overhead) of three techniques

(c) Overhead of AIRLOCK on
MySQL1 with periodical detections

2%

3%

4%

5%

6%

1 2 3 4 5 6 7 8 9 10

Period (seconds)

2%

3%

4%

5%

6%

1 2 3 4 5 6 7 8 9 10

Period (seconds)

Figure 11: Scalability of A��L���

to run for >36 seconds and Firefox was able to run for >100 sec-
onds. During their executions, we con�gured A��L��� to detect
deadlocks periodically. We set 10 di�erent periods from 1 second to
10 seconds. That is, for every period of i seconds, A��L��� detects
deadlocks once. For each con�guration, we collected the overall
time overhead. For comparison, we also run A��L��� (with the
default con�guration, i.e., one deadlock detection at the execution
exit point), and U�D��� and M����L��� under the same inputs
on two benchmarks.

Figure 11 shows the overall results. In Figure 11(a), we show the
detailed data on two benchmarks, including their native execution
time, the time cost of each technique as well as the corresponding
overhead. In Figures 11(b) and (c), we show the time overhead of
A��L��� with di�erent deadlock detection periods (from 1 second
to 10 seconds).

Figure 11(a) shows the similar result on time overhead as the
previous one in Figure 8. That is, when both benchmarks run for
about 36.8 or 100.4 seconds, bothU�D��� andM����L��� incurred

����

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yan Cai, Ruijie Meng, and Jens Palsberg

0%

20%

40%

60%

80%

100%

HawkNL SQLite MySQL1 MySQL2 Firefox Chromium Thunderbird

AIRLOCK AL1 AL2 AL3

Figure 12: Evaluation on e�ciency of A��L���’s strategies
(the y-axis is the time overhead of A��L��� and its three
variants AL1, AL2, and AL3).

larger overhead than A��L���. In details, U�D��� failed to �n-
ish detection in 10 hours; M����L��� incurred >1x to >3x time
overhead. A��L��� incurred at most 3.1% time overhead.

For A��L���, as shown in Figure 11(b) and (c), even with a
detection period of 1 second, it incurred less than 6% time overhead.
With the increasing detection period from 1 second to 10 seconds,
its time overhead decreased gradually. When the detection period
is � 5 seconds, A��L��� incurred less than 5.0% time overhead
on both benchmarks. In practice, such detection period is already
highly frequent for long-running programs.

Summary. From the above analysis, A��L��� can scale up to
intensive deadlock detection on-the-�y. This makes it applicable
to be integrated with multithreaded programs to provide anytime
deadlock detection service.

5.5 Self-Comparison of A��L���
A��L��� consists of three parallel parts where Parts II and III im-
plement e�cient cycle detection including two strategies: detecting
simple cycles (lines 5–11 in Algorithm 2) �rst before a DFS search
and reduce the reachability graph (in Algorithm 3). We built three
tools AL1, AL2, and AL3, and conducted an additional experiment
to answer what extent the two strategies accelerate cycle detection.
AL1 is based on A��L��� by disabling its detection of simple cycles
(i.e., to directly use DFS for cycle detection among all edges); AL2
is based on A��L��� by disabling the reachability reduction; and
AL3 is based on A��L��� by disabling both. All three tools were
con�gured to detect deadlocks once at the execution exit point. The
result is shown in Figure 12 where we also show the overhead of
A��L��� from Figure 8 for comparison purpose.

From the �gure, we see that on three benchmarks (HawKNL,
SQLite, and MySQL2), A��L��� compromised its overhead by less
than 20%. However, on the remaining four benchmarks, the over-
head is compromised signi�cantly by 0.6x to 676x. Such an overhead
is even much larger than that by M����L��� and U�D���.

Besides, we also collected the data on the ratio of inconsistent
lock acquisition orders out of all. It shows that, only 0.4% (0.11% on
average) of lock acquisitions exhibit inconsistent lock orders. The
exception is MySQL2, for which the percentage is 4%.

This above result further con�rms the e�ciency of the strategies
in A��L���.

6 RELATEDWORKS
6.1 Deadlock Detection
Besides dynamic approaches, deadlocks can also be detected by
static approaches [16, 44, 51]. Like dynamic approaches, static
ones can analyze program code to construct lock order graphs.
They are scalable to the whole program and do not su�er heavy
overhead. However, they usually report many false positives [51]
due to imprecise static analysis techniques as well as lack of run-
time information such as happens-before relation [35]. There are
some sound static deadlock analyses, which are usually restricted
to certain languages, for example, for C# programs [48], for C pro-
grams [34], or for barrier synchronizations [15]. They may rely
on other techniques to guarantee soundness (e.g., pointer analysis
[22, 52]).

Predictive deadlock detection usually produces false positives.
There are two kinds of approaches to isolate real deadlocks. One is
to trigger real deadlocks out of all detected ones. DeadlockFuzzer
[29] adopts a straightforward scheduling (i.e., pause a thread right
before it acquires its second lock and waits for all other threads to
go into the same state) to trigger deadlock occurrences. It is known
that such a scheduling can produce thrashing as pausing a thread
may prevent other threads from making progress, resulting in a
low probability to trigger deadlock occurrences. There are already
a sequence of works trying to improve the probability [8–10, 46]
by identifying a set of constraints and satisfy these constraints.
Our A��L��� focuses on predictive deadlock detection, it can be
integrated with these tools to isolate real deadlocks.

Another kind of works aims to directly detect real deadlocks
(i.e., without producing false positives during detection). The most
recent one is the D��� [31] where the similar idea is also adopted in
RVPredict [25] on sound data race detection. This approach, unlike
many previous deadlock detection tools, further monitors memory
accesses and then extracts various constraints (from memory ac-
cesses and from synchronizations). By solving these constraints, it
detects deadlocks that are deemed to really occur if all constraints
are satis�ed. A��L��� focuses on on-the-�y predictive deadlock
detection; it is challenging to analyze memory accesses on-the-�y
without incurring heavy time overhead.

A��L��� is an on-the-�y predictive deadlock detector. There are
works on detecting deadlocks with a subsequent deadlock pre-
vention/healing [30, 50, 54]. Gadara [50] statically inserts code
to prevent deadlocks. Dimmunix [30] tries to bring deadlock im-
munity to a software product. It detects deadlock occurrences and
prevents their second occurrences in later executions. U�D���
[54] (as discussed in this paper) further tries to detect predictive
deadlocks and to �x both real deadlocks and predictive deadlocks.
Both Dimmunix and U�D��� may report false positives; U�D���
may further introduce other concurrency bugs due to its incom-
plete �xing strategy [54]. There are also some works targeting on
preventing deadlocks in certain types of applications, e.g., database
applications [20].

Deadlocks occur under certain thread interleaving and certain
concurrent test cases. There are works that schedule threads [46]

����

Low-Overhead Deadlock Prediction ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

and generate additional concurrent test cases [18, 42]. A��L��� can
be integrated into them to detect deadlocks e�ciently.

6.2 Lightweight Online Data Race Detection
Predictive deadlock detection was not suitable for on-the-�y detec-
tion before A��L���. However, there are several works aiming at
on-the-�y data race detection. Data race occurrences involve mem-
ory accesses and their detection usually incurs heavy overhead (e.g.,
up to 100x on C/C++ programs [41]). FastTrack [19] introduces the
Epoch concept, together with optimization, it reduces overhead to
8x for Java programs. However, this overhead level is still high.

There are di�erent kinds of works on reducing overhead for
data race detection. The �rst kind is based on the crowd-sourced
approach. RaceMob [32] adopts static analysis to �rstly identify all
potential data races (even with false positives). It distributes a small
set of potential data races to each end-user, aiming at con�rming
the reality of them. As it requires that only one potential data race
can be con�rmed in each execution, its overhead is extremely low.

The second kind is based on sampling. By sampling a small set
of memory accesses per execution, one can reduce overhead per
execution. LiteRace [39] is based on a cold-region hypothesis: data
races are more likely to exist in cold region. It adaptively samples
cold regions (functions) only, removing overhead on monitoring
hot regions. Pacer [5] is based on a short-distance hypothesis. It
periodically samples an execution and fully tracks memory accesses
in sampled periods. During non-sampled periods, it only checks for
data race occurrences without updating tracking data. Pacer incurs
an overhead proportional to a sampling rate.

The third kind is based on hardware. DataCollider [17] takes
full advantage of data breakpoints. It samples a �rst memory access
and then traps a second one by setting a data breakpoint on the
same memory address. CRSampler [11] proposes clock race which
can be sampled via data breakpoints (like DataCollider) but does
not need to pause any thread (unlike DataCollider) to trap a second
memory access.

Compared with these sampling approaches,A��L��� fully tracks
executions and does not miss any deadlock while incurring low
overhead.

7 CONCLUSION
This paper presents a novel low-overhead on-the-�y predictive
deadlock detection approach A��L���. The main novelty is that,
A��L��� maintains the lock reachability graph involving locks
only and e�ciently detects cycles on it. For each detected cycle, it
then constructs a predictive deadlock. The experiments on seven
real-world programs demonstrated that A��L��� was signi�cantly
more e�cient than existing works by incurring about 3.5% time
overhead on average, making it suitable for on-the-�y deadlock de-
tection, even under high frequency (e.g., per �ve seconds) deadlock
detection.

ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for helpful sugges-
tions and insights for improving the paper. This work is supported
in part by the National Key Research and Development Program of
China (No. 2018YFB1403400), National Natural Science Foundation

of China (NSFC) (Grant No. 61932012), the Key Research Program
of Frontier Sciences, CAS (Grant No. ZDBS-LY-7006 and QYZDJ-
SSW-JSC036), the Youth Innovation Promotion Association of the
Chinese Academy of Sciences (YICAS) (Grant No. 2017151), and
the Young Elite Scientists Sponsorship Program by CAST (Grant
No. 2017QNRC001).

REFERENCES
[1] R. Agarwal, S. Bensalem, E. Farchi, K. Havelund, Y. Nir-Buchbinder, S. D. Stoller,

S. Ur, and L. Wang. 2010. Detection of Deadlock Potentials in Multithreaded
Programs. IBM J. Res. Dev. 54, 5 (Sept. 2010), 520–534. https://doi.org/10.1147/
JRD.2010.2060276

[2] Rahul Agarwal, Liqiang Wang, and Scott D. Stoller. 2006. Detecting Potential
Deadlocks with Static Analysis and Run-time Monitoring. In Proceedings of the
First Haifa International Conference on Hardware and Software Veri�cation and
Testing (HVC’05). Springer-Verlag, Berlin, Heidelberg, 191–207. https://doi.org/
10.1007/11678779_14

[3] Saddek Bensalem and Klaus Havelund. 2006. Dynamic Deadlock Analysis of
Multi-threaded Programs. In Proceedings of the First Haifa International Conference
on Hardware and Software Veri�cation and Testing (HVC’05). Springer-Verlag,
Berlin, Heidelberg, 208–223. https://doi.org/10.1007/11678779_15

[4] Swarnendu Biswas, Man Cao, Minjia Zhang, Michael D. Bond, and Benjamin P.
Wood. 2017. Lightweight Data Race Detection for Production Runs. In Proceedings
of the 26th International Conference on Compiler Construction (CC 2017). ACM,
New York, NY, USA, 11–21. https://doi.org/10.1145/3033019.3033020

[5] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010. PACER:
Proportional Detection of Data Races. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’10).
ACM, New York, NY, USA, 255–268. https://doi.org/10.1145/1806596.1806626

[6] Yan Cai and W.K. Chan. 2014. Magiclock: Scalable Detection of Potential Dead-
locks in Large-Scale Multithreaded Programs. IEEE Transactions on Software En-
gineering 40, 3 (March 2014), 266–281. https://doi.org/10.1109/TSE.2014.2301725

[7] Yan Cai and W. K. Chan. 2012. MagicFuzzer: Scalable Deadlock Detection for
Large-scale Applications. In Proceedings of the 34th International Conference
on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 606–616.
http://dl.acm.org/citation.cfm?id=2337223.2337294

[8] Y. Cai, C. Jia, S. Wu, K. Zhai, and W. K. Chan. 2015. ASN: A Dynamic Barrier-
Based Approach to Con�rmation of Deadlocks from Warnings for Large-Scale
Multithreaded Programs. IEEE Transactions on Parallel and Distributed Systems
26, 1 (Jan 2015), 13–23. https://doi.org/10.1109/TPDS.2014.2307864

[9] Y. Cai and Q. Lu. 2016. Dynamic Testing for Deadlocks via Constraints. IEEE
Transactions on Software Engineering 42, 9 (Sep. 2016), 825–842. https://doi.org/
10.1109/TSE.2016.2537335

[10] Yan Cai, Shangru Wu, and W. K. Chan. 2014. ConLock: A Constraint-based
Approach to Dynamic Checking on Deadlocks in Multithreaded Programs. In
Proceedings of the 36th International Conference on Software Engineering (ICSE
2014). ACM, New York, NY, USA, 491–502. https://doi.org/10.1145/2568225.
2568312

[11] Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. 2016. A Deployable Sampling
Strategy for Data Race Detection. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016). ACM,
New York, NY, USA, 810–821. https://doi.org/10.1145/2950290.2950310

[12] Vitaly Chipounov, Vlad Georgescu, Cristian Zam�r, and George Candea. 2009.
Selective symbolic execution. In Proceedings of the 5th Workshop on Hot Topics in
System Dependability (HotDep).

[13] EdmundM Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. 2018. Model checking. MIT press.

[14] Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida. 2018.
Dynamic Deadlock Veri�cation for General Barrier Synchronisation. ACM Trans.
Program. Lang. Syst. 41, 1, Article Article 1 (Dec. 2018), 38 pages. https://doi.org/
10.1145/3229060

[15] Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida. 2018.
Dynamic Deadlock Veri�cation for General Barrier Synchronisation. ACM Trans.
Program. Lang. Syst. 41, 1, Article 1 (Dec. 2018), 38 pages. https://doi.org/10.
1145/3229060

[16] Jyotirmoy Deshmukh, E. Allen Emerson, and Sriram Sankaranarayanan. 2009.
Symbolic Deadlock Analysis in Concurrent Libraries and Their Clients. In Pro-
ceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering (ASE ’09). IEEE Computer Society, Washington, DC, USA, 480–491.
https://doi.org/10.1109/ASE.2009.14

[17] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.
2010. E�ective Data-race Detection for the Kernel. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, Berkeley, CA, USA, 151–162. http://dl.acm.org/citation.
cfm?id=1924943.1924954

����

https://doi.org/10.1147/JRD.2010.2060276
https://doi.org/10.1147/JRD.2010.2060276
https://doi.org/10.1007/11678779_14
https://doi.org/10.1007/11678779_14
https://doi.org/10.1007/11678779_15
https://doi.org/10.1145/3033019.3033020
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1109/TSE.2014.2301725
http://dl.acm.org/citation.cfm?id=2337223.2337294
https://doi.org/10.1109/TPDS.2014.2307864
https://doi.org/10.1109/TSE.2016.2537335
https://doi.org/10.1109/TSE.2016.2537335
https://doi.org/10.1145/2568225.2568312
https://doi.org/10.1145/2568225.2568312
https://doi.org/10.1145/2950290.2950310
https://doi.org/10.1145/3229060
https://doi.org/10.1145/3229060
https://doi.org/10.1145/3229060
https://doi.org/10.1145/3229060
https://doi.org/10.1109/ASE.2009.14
http://dl.acm.org/citation.cfm?id=1924943.1924954
http://dl.acm.org/citation.cfm?id=1924943.1924954

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yan Cai, Ruijie Meng, and Jens Palsberg

[18] Mahdi Eslamimehr and Jens Palsberg. 2014. Sherlock: Scalable Deadlock Detec-
tion for Concurrent Programs. In Proceedings of the 22Nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (FSE 2014). ACM, New
York, NY, USA, 353–365. https://doi.org/10.1145/2635868.2635918

[19] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: E�cient and Precise
Dynamic Race Detection. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’09). ACM, New York,
NY, USA, 121–133. https://doi.org/10.1145/1542476.1542490

[20] Mark Grechanik, B. M. Mainul Hossain, Ugo Buy, and Haisheng Wang. 2013.
Preventing Database Deadlocks in Applications. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013). ACM, New
York, NY, USA, 356–366. https://doi.org/10.1145/2491411.2491412

[21] Klaus Havelund and Thomas Pressburger. 2000. Model checking java programs
using java path�nder. International Journal on Software Tools for Technology
Transfer 2, 4 (2000), 366–381.

[22] Michael Hind. 2001. Pointer Analysis: Haven’T We Solved This Problem Yet?. In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE ’01). ACM, New York, NY, USA, 54–61.
https://doi.org/10.1145/379605.379665

[23] Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, and Mary Jean Har-
rold. 2012. Testing Concurrent Programs to Achieve High Synchronization
Coverage. In Proceedings of the 2012 International Symposium on Software Test-
ing and Analysis (ISSTA 2012). ACM, New York, NY, USA, 210–220. https:
//doi.org/10.1145/2338965.2336779

[24] Je� Huang, Qingzhou Luo, and Grigore Rosu. 2015. GPredict: Generic predictive
concurrency analysis. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 847–857.

[25] Je� Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound
Predictive Race Detection with Control Flow Abstraction. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’14). ACM, New York, NY, USA, 337–348. https://doi.org/10.1145/
2594291.2594315

[26] Yannis E Ioannidis, Raghu Ramakrishnan, et al. 1988. E�cient Transitive Closure
Algorithms.. In VLDB, Vol. 88. 382–394.

[27] Donald B Johnson. 1975. Finding all the elementary circuits of a directed graph.
SIAM J. Comput. 4, 1 (1975), 77–84.

[28] Pallavi Joshi, Mayur Naik, Koushik Sen, and David Gay. 2010. An E�ective
Dynamic Analysis for Detecting Generalized Deadlocks. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE ’10). ACM, New York, NY, USA, 327–336. https://doi.org/10.
1145/1882291.1882339

[29] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. 2009. A Random-
ized Dynamic Program Analysis Technique for Detecting Real Deadlocks. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’09). ACM, New York, NY, USA, 110–120.
https://doi.org/10.1145/1542476.1542489

[30] Horatiu Jula, Daniel Tralamazza, Cristian Zam�r, and George Candea. 2008.
Deadlock Immunity: Enabling Systems to Defend Against Deadlocks. In Pro-
ceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’08). USENIX Association, Berkeley, CA, USA, 295–308. http:
//dl.acm.org/citation.cfm?id=1855741.1855762

[31] Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction.
Proc. ACM Program. Lang. 2, OOPSLA, Article 146 (Oct. 2018), 29 pages. https:
//doi.org/10.1145/3276516

[32] Baris Kasikci, Cristian Zam�r, and George Candea. 2013. RaceMob: Crowdsourced
Data Race Detection. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP ’13). ACM, New York, NY, USA, 406–422.
https://doi.org/10.1145/2517349.2522736

[33] Valerie King and Garry Sagert. 2002. A fully dynamic algorithm for maintaining
the transitive closure. J. Comput. System Sci. 65, 1 (2002), 150–167.

[34] Daniel Kroening, Daniel Poetzl, Peter Schrammel, and BjörnWachter. 2016. Sound
Static Deadlock Analysis for C/Pthreads. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016). ACM,
New York, NY, USA, 379–390. https://doi.org/10.1145/2970276.2970309

[35] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/
359545.359563

[36] Brandon Lucia and Luis Ceze. 2013. Cooperative Empirical Failure Avoidance for
Multithreaded Programs. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’13). ACM, New York, NY, USA, 39–50. https://doi.org/10.1145/2451116.
2451121

[37] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geo�
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). ACM, New York, NY, USA, 190–200. https:
//doi.org/10.1145/1065010.1065034

[38] Zhi Da Luo, Raja Das, and Yao Qi. 2011. Multicore SDK: A Practical and E�cient
Deadlock Detector for Real-World Applications. In Proceedings of the 2011 Fourth
IEEE International Conference on Software Testing, Veri�cation and Validation
(ICST ’11). IEEE Computer Society, Washington, DC, USA, 309–318. https:
//doi.org/10.1109/ICST.2011.22

[39] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009. LiteRace:
E�ective Sampling for Lightweight Data-race Detection. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’09). ACM, New York, NY, USA, 134–143. https://doi.org/10.1145/1542476.
1542491

[40] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagamArumugaNainar, and IulianNeamtiu. 2008. Finding and Reproducing
Heisenbugs in Concurrent Programs. , 14 pages. http://dl.acm.org/citation.cfm?
id=1855741.1855760

[41] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan notices, Vol. 42. ACM,
89–100.

[42] Michael Pradel and Thomas R. Gross. 2012. Fully Automatic and Precise Detection
of Thread Safety Violations. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’12). ACM, New
York, NY, USA, 521–530. https://doi.org/10.1145/2254064.2254126

[43] Paul Purdom. 1970. A transitive closure algorithm. BIT Numerical Mathematics
10, 1 (1970), 76–94.

[44] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
2012. Scalable and Precise Dynamic Datarace Detection for Structured Parallelism.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’12). ACM, New York, NY, USA, 531–542. https:
//doi.org/10.1145/2254064.2254127

[45] Neha Rungta, Eric G. Mercer, andWillem Visser. 2009. E�cient Testing of Concur-
rent Programs with Abstraction-Guided Symbolic Execution. In Proceedings of the
16th International SPIN Workshop on Model Checking Software. Springer-Verlag,
Berlin, Heidelberg, 174–191. https://doi.org/10.1007/978-3-642-02652-2_16

[46] Malavika Samak and Murali Krishna Ramanathan. 2014. Multithreaded Test
Synthesis for Deadlock Detection. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA ’14). ACM, New York, NY, USA, 473–489. https://doi.org/10.1145/
2660193.2660238

[47] Malavika Samak and Murali Krishna Ramanathan. 2014. Trace Driven Dynamic
Deadlock Detection and Reproduction. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP âĂŹ14).
Association for Computing Machinery, New York, NY, USA, 29âĂŞ42. https:
//doi.org/10.1145/2555243.2555262

[48] Anirudh Santhiar and Aditya Kanade. 2017. Static Deadlock Detection for Asyn-
chronous C# Programs. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2017). ACM, New York,
NY, USA, 292–305. https://doi.org/10.1145/3062341.3062361

[49] Francesco Sorrentino. 2015. PickLock: A Deadlock Prediction Approach under
Nested Locking. In Proceedings of the 22nd International Symposium on Model
Checking Software - Volume 9232 (SPIN 2015). Springer-Verlag, Berlin, Heidelberg,
179âĂŞ199. https://doi.org/10.1007/978-3-319-23404-5_13

[50] Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane Lafortune, and Scott
Mahlke. 2008. Gadara: Dynamic Deadlock Avoidance for Multithreaded Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 281–294.
http://dl.acm.org/citation.cfm?id=1855741.1855761

[51] Amy Williams, William Thies, and Michael D. Ernst. 2005. Static Deadlock
Detection for Java Libraries. In Proceedings of the 19th European Conference on
Object-Oriented Programming (ECOOP’05). Springer-Verlag, Berlin, Heidelberg,
602–629. https://doi.org/10.1007/11531142_26

[52] Robert P. Wilson and Monica S. Lam. 1995. E�cient Context-sensitive Pointer
Analysis for C Programs. In Proceedings of the ACM SIGPLAN 1995 Conference on
Programming Language Design and Implementation (PLDI ’95). ACM, New York,
NY, USA, 1–12. https://doi.org/10.1145/207110.207111

[53] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012. Maple:
A Coverage-driven Testing Tool for Multithreaded Programs. In Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’12). ACM, New York, NY, USA, 485–502.
https://doi.org/10.1145/2384616.2384651

[54] Jinpeng Zhou, Sam Silvestro, Hongyu Liu, Yan Cai, and Tongping Liu. 2017.
UNDEAD: Detecting and Preventing Deadlocks in Production Software. In Pro-
ceedings of the 32Nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 729–740. http:
//dl.acm.org/citation.cfm?id=3155562.3155654

����

https://doi.org/10.1145/2635868.2635918
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/2491411.2491412
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/2338965.2336779
https://doi.org/10.1145/2338965.2336779
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1145/1882291.1882339
https://doi.org/10.1145/1882291.1882339
https://doi.org/10.1145/1542476.1542489
http://dl.acm.org/citation.cfm?id=1855741.1855762
http://dl.acm.org/citation.cfm?id=1855741.1855762
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3276516
https://doi.org/10.1145/2517349.2522736
https://doi.org/10.1145/2970276.2970309
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2451116.2451121
https://doi.org/10.1145/2451116.2451121
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/ICST.2011.22
https://doi.org/10.1109/ICST.2011.22
https://doi.org/10.1145/1542476.1542491
https://doi.org/10.1145/1542476.1542491
http://dl.acm.org/citation.cfm?id=1855741.1855760
http://dl.acm.org/citation.cfm?id=1855741.1855760
https://doi.org/10.1145/2254064.2254126
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1007/978-3-642-02652-2_16
https://doi.org/10.1145/2660193.2660238
https://doi.org/10.1145/2660193.2660238
https://doi.org/10.1145/2555243.2555262
https://doi.org/10.1145/2555243.2555262
https://doi.org/10.1145/3062341.3062361
https://doi.org/10.1007/978-3-319-23404-5_13
http://dl.acm.org/citation.cfm?id=1855741.1855761
https://doi.org/10.1007/11531142_26
https://doi.org/10.1145/207110.207111
https://doi.org/10.1145/2384616.2384651
http://dl.acm.org/citation.cfm?id=3155562.3155654
http://dl.acm.org/citation.cfm?id=3155562.3155654

