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Nous établissons des estimations de régularité uniformes par rapport au nombre de
Mach pour le systéme de Navier-Stokes compressible isentropique dans les domaines
réguliers avec condition de Navier au bord dans le cas général de données initiales
mal préparées. Pour étre cohérent avec les effets de couche limite dus aux oscillations
rapides et & I’hypothése de données initiales mal préparées, nous prouvons des
estimations uniformes dans un cadre fonctionnel anisotrope avec une seule dérivée
normale proche du bord. Ceci permet de prouver l’existence locale d’une solution
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forte sur un intervalle de temps indépendant du nombre de Mach et de justifier la
limite incompressible par un argument de compacité simple.
© 2022 Elsevier Masson SAS. All rights reserved.

1. Introduction
In this paper, we consider the following scaled isentropic compressible Navier-Stokes system (CN.S).

Opp® + div (p°u®) =0,

P (4
O (ptu®) + div (p°uf @ uf) — div Lu® + VTE'O) =0, (t,z) e Ry x Q (1.1)

u|i=0 = ug, pli=o = 0>

where Q C R? is a smooth bounded domain, p*(¢,z) and u®(t,z) are the density and the velocity of the
fluid respectively, P is the pressure The viscous stress tensor takes the form:

1
Lu® =2uSu® + Mdiveld, Su® = E(Vu,e + Viue).

Here, p, A are viscosity parameters that are assumed to be constant and to satisfy the condition: p >
0,24 + 3X > 0. The parameter ¢ is the scaled Mach number which is assumed small, that is € € (0, 1].

Since we are considering the system in a domain with boundaries, we shall supplement the system (1.1)
with the Navier-slip boundary condition

u®-n=0, II(Sun)+allu®=0 on 09 (1.2)
where n is the unit outward normal vector and a is a constant related to a slip length (our analysis can be
easily extended to a a smooth section of T*0 ® TOC). We use the notation IIf for the tangential part of
a vector f, IIf¢ = f¢ — (f°-n)-n. Let us remark that Navier-slip boundary conditions can be expressed as
a non-homogeneous Dirichlet condition on curlu X n,

curlu x n = 2II(—au + Dn - u) on 9.

The special case curlu X n = 0 corresponds to the choice a = Dn.

The aim of this paper is to study the uniform regularity (with respect to ¢) and the low Mach number

limit of system (1.1). Formally, due to the stiff term V’Zg” E), the pressure (and hence the density p°) is

expected to tend to a constant state. One thus expects to obtain in the limit a solution to the following
incompressible Navier-Stokes system:

p(0u’ 4 div (v’ @ u?)) — Au’ + V7 =0,

divu® =0, (t,x) e Ry x Q
u0|t:0 = u87

u’-n=0, TI(Su’n)+allu’=0 (t,z)€ Ry x N

(1.3)

This limit process is therefore frequently referred to as the incompressible limit.

The rigorous justification of this limit process has been studied extensively in different contexts depending
on the generality of the system (isentropic or non-isentropic), the type of the system (Navier-Stokes or Euler),
the type of solutions (strong solutions or weak solutions), the properties of the domain (whole space, torus
or bounded domain with various boundary conditions), as well as the type of the initial data considered
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(well-prepared or ill-prepared). Roughly speaking, in the case of the compressible Euler system, one proves
first that the local strong solution exists on an interval of time independent of the Mach number, and then
compactness arguments are developed to pass to the limit. In the case of the compressible Navier-Stokes
system, one can either try to use the same approach as for the inviscid case (prove the existence of a strong
solution on an interval of time independent of the Mach number and then try to pass to the limit) or
try to pass to the limit directly from global weak solutions. Both approaches have been used in domains
without boundaries (whole space or torus), nevertheless when a boundary is present the question of uniform
regularity for general data is more subtle, as we shall see below, and has not been addressed.

More precisely, the mathematical justification of the low Mach number limit was initiated by Ebin [14],
Klainerman-Majda [30,31] for local strong solutions of compressible fluids (Navier-Stokes or Euler), in the
whole space with well-prepared data (divu§ = O(e), VP = O(¢?)) and later, by Ukai [49] for ill-prepared
data (divul = O(1), VP = O(¢g)). In the latter case, there are acoustic waves of amplitude 1 and frequency
e~ ! in the system. These works were extended by several authors in different settings. For instance, one
can refer to [2,5,39,40] for the non-isentropic system and ill-prepared initial data whenever the domain is
the whole space or the torus, and also [29,44] for bounded domains with well-prepared initial data. Uniform
(in Mach number) regularity estimates for the non-isentropic Euler equations in a bounded domain are
established in [1]. The low Mach number limit of weak solutions for the viscous fluid system (1.1) was
studied by Lions and the first author [32], [33] where the convergence of the global weak solutions of the
isentropic Navier-Stokes system towards a solution of the incompressible system is established. The result
holds for ill-prepared initial data and several different domains (whole space, torus and bounded domain
with suitable boundary conditions). In general, for ill-prepared data, one can only obtain weak convergence
in time, nevertheless, by using the dispersion of acoustic waves in the whole space, Desjardins and Grenier
[11] could get local strong convergence. There are also many other related works, one can see for example
[2,4,6,8,10,15,19,23,26,34]. For more exhaustive information, one can refer for example to the well-written
survey papers by Alazard [3], Danchin [9], Feireisl [17], Gallagher [21], Jiang-Masmoudi [28], Schochet

Let us focus now more specifically on the study of the low Mach limit of the isentropic compressible
Navier-Stokes (CNS). system in domains with boundaries with ill-prepared initial data, which is more
related to the interest of the current paper. As mentioned above, Lions and Masmoudi [32] studied the
convergence of weak solutions to (CNS). in bounded domains with Navier-slip boundary condition. Later
on, for low Mach limit in bounded domains with Dirichlet boundary condition, the authors in [12,27] noticed
that, under some geometric assumption on the domain, the acoustic waves are damped in a boundary layer
so that local in time strong convergence (Lfm) holds. Recently, this result is extended by Feireisl et al.
[18] and Xiong [51] to the case of Navier-slip boundary conditions with a of the order e~2. In this case,
the boundary layer effect is comparable to the one in the Dirichlet case. One can also refer to [13,15,16]
for the justification of convergence in unbounded domains by using the local energy decay for the acoustic
system. Without one of the above properties of the domain, strong convergence does not hold for ill-prepared
data.

In the current paper, our aim is to obtain uniform (with respect to ¢) high order regularity estimates for
(CNS). in bounded domains with ill-prepared initial data, in order to get the existence of a local strong
solution on a time interval independent of e. There are only a few papers addressing this issue. In [42],
the authors establish uniform global (for small data) H? estimates under a (very) well-prepared initial data
assumption, namely the second time derivative of the velocity needs to be uniformly bounded initially. For
ill-prepared initial data, the situation is more subtle and a uniform H? estimate, even locally in time, cannot
be expected. Indeed, at leading order, after linearization and symmetrization, the system (1.1) becomes:

1 0 0 div
U® + &:LU (div u5> 0, L (V 0 ) , U=(0%u) e R xRY. (1.4)
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Due to the presence of the diffusion term as well as the singular linear term, a boundary layer correction
to the highly oscillating acoustic waves appear and create unbounded high order normal derivatives of the
velocity. Note that here, we do not start from a small viscosity problem, nevertheless, at the scale 7 = t/e
of the acoustic waves the system (1.4) behaves like a small viscosity perturbation of the acoustic system.
For example, in the easiest case where the boundary is flat (for example 2 = Ri), we expect the following
expansion of the solutions to (1.4) involving boundary layers
o (t,x) = o (L, t,x)+e20B (L t,z, \/_) e
t
t,x, 1.5
uE(t,x>—uo<ftm>+¢E< s f)>+eu2<tm,f>+ o

where © = (y,z), z > 0, which suggests that ||u,||z2q1, U]l 22, [|0°||L2 s can be uniformly bounded
whereas [|0; (0%, u®)|| 2 and H@EuiHLgl will blow up as € tends to 0.

In order to get uniform high order estimates, we shall thus need to use a functional framework based on
conormal Sobolev spaces that minimize the use of normal derivatives close to the boundary in the spirit
of [35,36] (conormal Sobolev spaces have been widely used to study initial boundary value problems for
parabolic and hyperbolic equations, see for example [46], [25,48], [22,38,41]). Nevertheless, note that here
we have to handle simultaneously the fast oscillations in time and a boundary layer effect so that the
difficulties and the analysis will be different from the ones in [43,50] where compressible slightly viscous
fluids are considered. Indeed, the energy estimates for conormal derivatives cannot be easily obtained since
for example tangential vector fields do not commute with the singular part of the system, while in order to
include ill-prepared data, it will be impossible to get uniform estimates for high order time derivatives as it
is done in [43,50] in the study of the inviscid limit. We shall explain more these two difficulties below after
the introduction of the various norms used in this paper.

1.1. Conormal Sobolev spaces and notations

To define the conormal Sobolev norms, we take a finite set of generators of vector fields that are tangent
to the boundary of Q: Z;(1 < j < M). Due to the appearance in (1.5) of the ‘fast scale’ variable £, it is
also necessary to involve the scaled time derivative Zy = €0;. We set

Zh =750 207, I =(ag,a1, --ay) e NMH

Note that Z! contains not only spatial derivatives but also the scaled time derivative £9;. We introduce the
following Sobolev conormal spaces: for p = 2 or 400,

LYH = {f € LP([0,4], L*(Q)), Z" f € L?([0,1], L*()), 1| < m},
equipped with the norm:

| fllzrem = Z 1Z7 f1l Lo (0,1, 2292)) (1.6)

1[<m

where |I| = ag + - - - apr. For the space modeled on L, we shall use the following notation for the norm:

1 Mmoo = > 127 Fllzoe(po,11x0)- (1.7)

[I|<m

Since the number of time derivatives and spatial conormal derivatives need sometimes to be distinguished,
we shall also use the notation:
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| fllLpgin = Z 1Z" £l 2o 0.0, £2(2)) (1.8)

I=(k,I),k<j,|T|1<1

and to simplify, we will use H7 = H7°. To measure pointwise regularity at a given time ¢ (in particular also
with ¢ = 0), we shall use the semi-norms

1FOllag = > MEZ HO2@)ys 1FOllpoe = > 127 £ ()] L2 (1.9)
[1]<m I=(k,0),k<3,|T|<1

Finally, to measure regularity along the boundary, we use

[s]

| flupe00) = D (€00 FlLoo.0,m:-(00)- (1.10)
§=0

Let us recall, how the vector fields Z;, 1 < j < M can be defined. We consider 2 € R3 a smooth domain
(the following construction and our results are actually valid as long as the boundary of  can be covered
by a finite number of charts), therefore, there exists a covering such that:

QCQO U?Ll Qi, QQ @Q, Qﬂﬁ@Q#@, (111)

and Q; N Q is the graph of a smooth function z = ¢;(x1, z2).
In Qq, we just take the vector fields d, k = 1, 2, 3. To define appropriate vector fields near the boundary,
we use the local coordinates in each €2;:
P, : (—(Si, 51) X (O, Gi) — ;NN

(1.12)
(ya Z)t — (I)z(y7 Z) = (ya @1(y) + Z)t

and we define the vector fields (up to some smooth cut-off functions compactly supported in ;) as
Zi = ayk =0 + 8k§0i83, k=1,2 Zé = gb(z)(alcplﬁl + 82@162 — (93), (113)

where ¢(z) = l—i-Lz’ and Oy, k = 1,2, 3 are the derivations with respect to the original coordinates of R3. We

remark that if Q = Ri, the conormal vector fields can be defined globally due to the flat boundary:

z
1+ =z

Zy =01, Zy =0, Z3 = 0.

We shall denote by n the unit outward normal to the boundary. In each €;, we can extend it to €; by
setting

n(®;(y,2)) = W1|N7 N(®i(y, 2)) = (1pi(y), D2i(y), —1)".

In the same way, the projection on vector fields tangent to the boundary,
I=Id—n®n

can be extended in §2; by using the extension of n.
Let us observe that by identity

II(Ohu) = II((Vu)n) = 2II(Su) — II((Du)n)



N. Masmoudsi et al. / J. Math. Pures Appl. 161 (2022) 166-215 171

with [(Va)n]; = 322

i=110jui, [(Du)n]; = 2321 O;ujn;, the boundary conditions (1.2) can be reformulated

as:
u-nlgg =0, TI(hu) = T[-2au + (Dn)u) (1.14)

where [(Dn)u]; = 23:1 oin;u;.

1.2. Main results

Let us introduce the new unknown

where p is a positive constant state, we can rewrite the system (1.1) into the following form which is more
convenient to perform energy estimates:

div u®

1 (c) 01 + -0y + T g,
€
92 (£0%)(Oyu® + u® - Vu©) — div Lu® + V; =0, (t,x) e Ry x Q (1.15)
uli=0 = ug, 0 |1=0 = 0%,
where the scalar functions g1, go are defined by
g2(s) =p* =P (P +3s), gi(s) =(ngs)'(s); s>—P=—P(p) (1.16)

In order to establish uniform energy estimates, we shall use the following quantity
Nm,T(UEa us) = Sm,T(Usa UE) + ﬂm,T(O'E, us)

where &,, 7 contains L? (in space) type quantities
Emr(0°,0) = 1(0%, 0 + IV (0% 0 ) 2013 s

""5(”(‘75’“8)”L%°H;2 + Hv(oaaua)HL%ng"o’—l + ||V2U8HL%OH;§—2) +5||v20||L%°L27 (1.17)
and A, ¢ involves L™ (in space and time) type quantities

. 1
A (0%, u°) = |[|Vus|l0,00,7 + || (Vo©, div UE,€2VU)|H[MT—1],007T + |||(05,u€)|||[%]700j
FelVurlllpmsr) oo o +€lll(0, u )l mps) oo - (1.18)

Note that the norms involved in the above definitions are defined in (1.6)-(1.8). See also Remarks 1.4, 1.5
and 2.5 for the comments on the norms appearing in &, 7 and A, 7.

Before stating our main result, we introduce the following definition.

Definition 1 (Compatibility conditions). We say that (0§, u5) satisfy the compatibility conditions up to order
m if:

(68t)ju€‘tzo -n=0, II[S((e0,)’u®|s=0)n] = —all[(8;) ul—o] on 09,5 =0,1---m— 1.
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Note that the restriction of the time derivatives of the solution at the initial time can be expressed
inductively by using the equations. For example, we have

1
(eduf)(0) = E(—Eug - Vug + ediv Lug — Vog).
0

We thus define the admissible space for initial data as
Y, = {(0’8, u§) € H* ()4, Y (05, u5) < +o0, (05, u5) satisfy the compatibility conditions up to order m}

where

Yoo, ug) =: el (05, ug) | 20y + 110%, u¥)(O) [z + V(0 u%) (0) | pym
+ Y 1Z25(Ve*, V) (0) 1 o (1.19)

HISESS

by using our notation (1.9). Note that as explained above, by using inductively the equations to express the
time derivatives Y, (0§, ug) can indeed be expressed in terms of the initial data only.
The following is our main uniform regularity result:

Theorem 1.1 (Uniform estimates). Given an integer m > 6 and a C™ 2 smooth bounded domain 2. Consider
a family of initial data such that (0§, uf) € Yo, and

sup Y, (o5, u5) < 400,
e€(0,1]

—¢P < eo§(x) < PJe, VxeQec(0,1],

where 0 < ¢ < 1/4 is a fived constant, P = P(p). There exist ¢ € (0,1] and Ty > 0, such that, for any
0 < e < eq, the system (1.15), (1.2) has a unique solution (c°,u®) which satisfies:

—2¢P < eo®(t,x) <2P/¢, Y(t,x) €[0,Ty) x Q, (1.20)
and
sup N1, (0%,u°) < 4o00. (1.21)
e€(0,e0]

Let us begin with a few comments about the above assumptions and our result.
Remark 1.2. In view of (1.20), there exists ¢y € (0, 1], such that:
co < p°(t,x) = galeo) < 1/cy VY(t,x) € [0,Tp] x Q
Moreover, as a consequence of (1.21), the following uniform estimates hold:

sSup (H(UE;UE)HL%O HIS'ALZ HT + HV(JEaUE)HL%O HZ 2002, HI ! + |||V(O'€,’LLE)H|O’OO¢) < +o0,
€€(0,e0] 0 0 e 0 0

in particular, we have a uniform estimate for ||V (0%, u®)| £ ([0,75]x)-
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Remark 1.3. Because of the compatibility conditions, the assumption sup,¢ o1 Yim (05, u§) < +0o0 imposes
that the data are prepared (in the sense that it may depend on ¢) on the boundary. Nevertheless, this is
compatible with the fact that

(divu®, Vo) = 0(1)

in the domain and thus ill-prepared data in the usual sense. Indeed, note that Y,, clearly contains smooth
functions which vanish identically near the boundary. This kind of compatibility conditions also appears in
the study of the incompressible limit of the Euler system in bounded domains [1].

Remark 1.4. The control of the weighted time derivatives (¢;)* up to highest order k = m : ||(0%, u®) | Lo pm
is available since time derivation commutes with the space derivation. Moreover,

||(‘7€au€)||L%cHz?flﬁL§Hg S Emr(0®,u). (1.22)

In other words, we can control the highest number of derivatives in the L?L2 norm but lose the uniform
control of the highest space conormal derivatives in L{°L2. This is due to the bad commutation properties
of the space conormal derivatives with the singular part of the system.

Remark 1.5. The solution constructed in Theorem 1.1 is a strong solution in the sense that for € > 0 fixed
(0f,uf) € L>=([0,Tp], H' x H?), u® € L?([0,Ty], H?). Note that we further have a uniform control of the
L H™ 1N L?H™ norms in every compact set in the interior of the domain. Nevertheless, due to boundary
layer effects (see (1.5)), we cannot expect uniform estimates for higher order normal derivatives near the

boundary.

To prove Theorem 1.1, the crucial step is to show the following uniform a priori estimate which is the
heart of this paper:

Proposition 1.6. Let ¢o € (0,1] be such that:
Vs € [ =3cP,3P/c], co < gi(s) < 1/co, i =1,2, [(g1,92)|cm([—scp3P/a)) < 1/co (1.23)
where € is such that for some T € (0,1] the following assumption holds:
—3¢P < eo(t,x) <3P/c  VY(t,x) €[0,T] x Q,Ve € [0,1]. (1.24)

Then, there exist C(1/co) > 0 and a polynomial Ay (whose coefficients are independent of €), such that, for
any € € (0,1], we have for a smooth enough solution of (1.15) on [0,T] the following estimate:

1 101 e e
N (%) < C(Z) Y (6, ug) + (T + &) Ao (s N (0%, ), (1.25)
where Yy, (0§, u5) is defined in (1.19).
This proposition is the consequence of Proposition 2.1 and 3.1, which will be established in Section 2 and
Section 3 respectively.

By combining the uniform estimates (1.21) stated in Theorem 1.1 with a compactness argument, we get
the following convergence result:
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Theorem 1.7 (Convergence). Under the assumptions of Theorem 1.1, let (o¢,u®) the solution defined on
[0,Ty] given by Theorem 1.1 and assume that uf converges strongly in L*(Q) to some u) when € tends to
zero. Then, as € tends to zero, p° (defined by (1.16)) converges to p in L*(]0,Tp] x ) and u® converges in
L2 ([0, To], L*(Q)) (weak convergence in time) to u® such that

u® € LEHO™ N LY, HO™, VUl € L, HO™ 1N L([0, To] x Q). (1.26)

Moreover, u® is the (unique in this class) weak solution to the incompressible Navier-Stokes system with
Navier boundary condition (1.3).

Note that LQTO'HO’m is defined in (1.8) and involves only spatial conormal derivatives.

Remark 1.8. Due to the absence of uniform estimate for the second order normal derivatives and thus also
for the strong trace of the normal derivative, u° has to be interpreted as the weak solution to (1.3) in the
following usual sense: for any ¢ € C°°([0,Ty] x Q) with divi = 0, -n|sq = 0, the following identity holds:
for every 0 < t < Ty,

p| W)t de+p || VU -V deds +p [ (u¥ - V) -4 deds
fie o J

Qt Qt
. (1.27)
= ﬁ/(ug-w)(0,~) da:—l—ﬁ//uo-&tw dxd8+u//H(—2au0+ (Dn)u®) -+ dS,ds,
Qt

Q 0 oQ

where Q; = [0,t] x Q and dS, denotes the surface measure of €.

Remark 1.9. The convergence is weak in the time variable due to the lack of uniform estimate for 9,(c¢, u®).
This cannot be improved since in our bounded domain setting, there is no large time dispersion effect for
the acoustic waves, and since because of our Navier boundary conditions with fixed slip length, there is no
damping in the boundary layers of the acoustic waves. Nevertheless, if €2 is changed into an exterior domain,
the strong convergence in time can be shown by using the RAGE Theorem [15,20], see Section 6 for this
aspect.

Note that when € tends to zero, we have convergence of the whole family 4* and not only of subsequences
due to the uniqueness for the limit system at this level of regularity.

1.3. Difficulties and strategies

We shall now explain the main difficulties and the main strategies in order to prove Proposition 1.6.
As already mentioned the main feature of our problem is the presence of both fast time oscillations and a
boundary layer in space. These two aspects are well-understood when they occur separately, but in order
to handle them simultaneously some new ideas will be needed.

On the one hand, concerning the inviscid limit problem, one controls [35,43,50] the high order tangential
derivatives by direct energy estimates, and then uses the vorticity to control the normal derivatives. Never-
theless, for the system with low Mach number, even the tangential derivative estimates are not easy to get,
since the spatial tangential derivatives do not commute with V,div, defined with the standard derivations
in R3, and thus create singular commutators. Without this a priori knowledge on the tangential derivatives,
the estimate of the vorticity cannot be performed as in [35] [36] because of the consequent lack of information
on its trace on the boundary. On the other hand, for the compressible Euler system with low Mach number,
uniform high regularity estimates are established for example in [1]. One can get uniform H*(s > 5/2) es-
timates by using first €0; derivatives and then recover space derivatives by using the equations to estimate
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the divergence of the velocity and the gradient of the pressure and a direct energy estimates for the vorticity
which solves a transport equation with a characteristic vector field. Here, in the case of viscous fluids, we
face again the fact that the estimates of the vorticity are challenging due to the lack of information on its
trace on the boundary at this stage.

In order to get the missing information, we shall first use the Leray projection (the precise definition
(2.2) is in Section 3) to split the velocity into a compressible part and an incompressible part: u® =
VU< + 0. On the one hand, the compressible part VW€ of the velocity can be controlled by div u® thanks to
standard elliptic theory and hence by using the mass conservation equation and the energy estimates for 0,
derivatives. On the other hand, the incompressible part v¢ solves, up to the control of non-local commutators,
a convection-diffusion equation without oscillations, and thus one can use direct energy estimates to get a
control of H’UEHLfngg—l and |‘VUE||L?H$—1. Note that we cannot estimate the maximal number of derivatives
m due to the lack of structure of the coupling terms involving the compressible part in the energy estimates.
The key point here is that the diffusion (which on the other hand creates new difficulties in the control
of the vorticity) allows to get the estimate of |Vve|| r2pm-1- This is still not enough to close an estimate
since, because of the time oscillations, we cannot use Sobolev embedding in time to control ||Vve|| oo HIL=
as it is done in small viscosity problems for compressible fluids (see for example [43], [50]). Here, we only
have estimates for powers of €9, instead of 9;. Nevertheless, with the additional information obtained from
v°, we can then reduce the matter to the study of ||w® x n| Lge a2 Where w® is the vorticity, which solves
the heat equation with a non-homogeneous Dirichlet boundary condition which can be controlled from the
previous estimates. We shall get the estimate by using the Green’s function of the heat equation.

Outline of the proof of Theorem 1.1. The uniform energy estimates will be more precisely achieved in the
following steps: (we shall skip the € dependence in the notations for the sake of simplicity).

Step 1: Uniform high-order £0; derivatives and c-dependent high-order conormal derivatives. In this
step, we aim to prove two kinds of estimates. Namely, uniform estimates for high order £0; derivatives,
(0, w)|| Lo rm, and e-dependent estimates: el|(o, u)||Lgerpy, €l|(Vo, divu)|| poc grm—1. On the one hand, since
the time derivative e0; commutes with the spatial derivatives, we can get uniform estimates for high order
time derivatives. Note that we use €9; instead of 0; since we are dealing with ill-prepared data. On the other
hand, as the spatial conormal vector fields do not commute with V, div, the singular part of the system, we
need at this stage to add this additional € weight to control the commutator.

Step 2: Uniform estimates for the incompressible part of the velocity. Let us denote by v = Pu, and
V¥ = Qu the incompressible and compressible part of the velocity respectively, where P, Q are defined in
(2.2). By applying the projection P on the equation for the velocity and expanding the boundary conditions,
we find that v solves:

pov — pAv + Vg + g"’gﬁsﬁtu +gou-Vu=0 in

(1.28)
v.n=0, II(Ow)=I(-2au+Dn-V¥+Dn-u) on OS2

where

-1
Vg = _Q(92€ edyu + gou - Vu — pAv).

Note that the first boundary condition v-n = 0 is due to the definition of the projection P while the second
boundary condition is deduced from (1.14). The incompressible part v interacts with the compressible part
VU through the source term and the boundary condition. Due to the absence of singular terms, one can get
the uniform estimates for v (namely ||v]] Leopm—t and Vo] 12 gm-1) by direct energy estimates. Nevertheless,
for latter use in the proof, we need to track in the energy estimates the counts of time and spatial conormal
derivatives.
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Step 3: Uniform estimates for the compressible part of the system. In this step, we aim to get the control
of [|(Vo,divu)| e 212 m—1- This can be done by using the equations and induction arguments. Indeed,
by rewriting the system (1.15),

—divu = g1€0,0 + eg1u - Vo,
—Vo = geediu + e(gou - Vu — div Lu).

In view of the above two equations, one can ‘trade’ one spatial derivative by one (small scale) time derivative
€0;. We can thus recover the high order spatial (conormal) derivatives by using iteratively this observa-
tion.

Step 4: Control of L H™~2 norm of Vu. In this step, we aim to get a uniform control of Vull poo prm—2
which is quite useful to control LS, type norms. The difficulty is the estimate close to the boundary. We
can work in a local chart €2;. In light of the identities

Onu -0 = divu — (0, u)" — (0,,u)?, T(dyu) = H(w x n) — I[(Dn)u],

where n is an extension of the unit normal and II projects on (n)*, it suffices to control ||w x n| Lgo HIL—2-
We remark that the advantage of working on w X n rather than w is that the boundary condition for
w x 1 (see (2.33)) only involves lower order terms on the boundary. To estimate w x n, a natural attempt,
used in [35], is to perform energy estimates on the equation for the ‘modified vorticity’ w = w x n +
2II(au — (Dn)u) and to take advantage of the fact that w vanishes on the boundary. However, the equations
for w still involve a stiff term éVLU, which is obviously an obstacle to obtain uniform energy estimates.
We shall thus instead use a lifting of the boundary conditions by using Green’s function for the solution
of the heat equation with non-homogenous boundary conditions and estimate the remainder by energy
estimates.

Step 5: L7, estimates. The control of the LS, norms contained in A,, 7 mainly stems from the Sobolev
embedding and the maximum principle for the system solved by the vorticity. Note that at this stage, it is
crucial to use the direct L Hm~! for (o,u) and L H™ =2 for V(o,u) estimates obtained in the previous
steps since because of the fast oscillations in time, uniform L°° estimates in time cannot be deduced from
a Sobolev embedding in time.

The case 2 = ]Ri where the boundary is flat can also be treated following the above steps and is
indeed easier to analyze. Indeed, the spatial tangential derivatives can be controlled directly through energy
estimates without weight in ¢, since in this case the derivatives 9,; commute with div or V. The use of the
step with the Helmholtz-Leray projection is thus not necessary. The details can be found in the PhD thesis
[47] (see pages 39-40 and Section 6.8).

In a companion paper [37], we strengthen the strategies used in this paper to deal with the low Mach
number limit problem for the free surface compressible Navier-Stokes system, where we are forced to deal
with strong enough solutions in the absence of a suitable theory of weak solutions.

Organization of the paper. We will prove Proposition 1.6 by establishing uniform control of energy norms
S, and LY, type norms A, v which is achieved in Section 2 and Section 3 respectively. Section 4 is then
devoted to the proof of Theorem 1.1. In Section 5, we will justify the incompressible limit. Some remarks
will be given in Section 6 regarding to the incompressible limit in exterior domain. In the appendix, we
gather some useful product and commutator estimates as well as the proofs of some technical lemmas.

2. Uniform estimates-energy norm

In this section, we establish the a-priori estimates for the energy norm &, r. Again, for notational
convenience, we skip the e-dependence of the solutions.
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Proposition 2.1. If the estimates (1.24), (1.23) are satisfied, then we can find a constant C1(1/co) that
depends only on 1/cy and a polynomial A whose coefficients are independent of , such that for a smooth
enough solution of (1.15), the following estimate holds on [0,T] for e € (0,1]:

Efn,T < Cl(%)Yé(Uo,uo) + (T+5)%/~\(%,Nm7q~). (2.1)

As explained in the introduction, to overcome the difficulty due to the nontrivial commutators between
the tangential spatial derivatives and the standard derivation (V,div), we need to split the velocity u into
u= VW + v, where VU, v are the compressible part and the incompressible part respectively (see (2.2) the
precisely definition). On the one hand, the compressible part V¥ satisfies the elliptic equation A¥ = divu
with Neumann boundary condition, from which one can deduce the estimate of V2W¥ from that of divu.
On the other hand, since the incompressible part v is governed by a convection diffusion equation without

oscillations, we can control its conormal derivatives by direct energy estimates. The estimates for dyv will
then be deduced from the ones for w x n.

2.1. Preliminaries: Leray projection

To define the compressible or acoustic part and the incompressible part of the velocity field, we shall use
the Leray projection. One has the decomposition,

L2Q)P=HaoG
where
H={veL2(Q)3 divo=0,v-n|sgqo =0}, G={VV¥, VU c L*(Q)>*}.

We denote P, Q the projectors that map L2(Q2)? to its subspaces H and G respectively, namely,

Q:L*(Q)? -G P:L*Q)° - H 22)
f=Qf=Vvv ff-Qf '
where V¥ is defined as the unique solution of
AV =divf in Q,
¥ =f-n on 09, (2.3)

Jo¥dz=0.

Note that the solvability of the Neumann problem (2.3) in H'(Q) is well-known as an application of the
Lax-Milgram theorem. Moreover, by Proposition 7.6, one has that for a C**! bounded domain,

Ve, S IOl IV g S Ndiv £ )]s + 1F )] gy (2.4)

Note that in these estimates, the time variable is just an external parameter.
Since [P, 9;] = 0, (1.15) is equivalent to the following system:

100 +u-Vo) + Ag—‘l' =0,
POV + Q(L=Ledyu + gou - Vu — pAv — (2 + A)Vdivu + %) =0, (2.5)

€

pOv + 2=Leu + gou - Vu — pAv + Vg = 0,

g
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where

v=Pu, VU =Qu, Vqg= —Q( E@tu + gou - Vu — MAU) p = g2(0).

By taking the divergence of the third equations of (2.5) and noting that dive = 0,e0;u - n|sq = 0, we see
that Vg is governed by the following elliptic equation:

Aq = —div (92 ~P B+ gou - Vu) in Q,

(2.6)
Ong = —(g2u-Vu) - n+pAv-n on 0.

Proposition 2.1 can be shown by the first three steps outlined in the introduction, they will be handled
in the following three subsections.

2.2. Step 1: Highest conormal estimates

For notational convenience, we denote A for a polynomial which may differ from line to line, and use the
notation < - as < C- for some generic constant C' = C(1/¢p) that depends on 1/¢y but not on e.
Let us state the main result of this subsection.

Lemma 2.2. Suppose that (1.24) is satisfied, then for any m >0, any 0 < T <1 and ¢ € (0, 1] we have:
(o, W)l Zegem + €210 W ey + 1(Vor, diva)[[] o rs)
IVl g0+ (19l 1+ [Veliv 2, ) 2
< Y2 (00,u0) + (T + e)%A(clo ) E2 .
Proof. The estimate (2.7) can be derived from the following two lemmas. 0O

Let us start with:

Lemma 2.3. Under the same assumption as in Lemma 2.2, for any 0 < t < T, the following estimates hold:
(0, W) Fsog0m + IVl Zagim S [1(0,w)(0)F0m + A( Aon, 1) T2 E}, 1, (2.8)
52(||(u70)(t)||§[m + ||VU||QL%HCO) < e%[|(o,u) (0 )||Hm + EZA( o A, T)82 T+ £2||Vdiv uHigHég—l. (2.9)
We recall that in our notations the norms at ¢ = 0 involve the computation of powers of €0; at t = 0.
Proof. Define 0! = Z'o,u! = ZTu. Then (o7, u!) satisfies:

divu!
g1y’ +u-Vol) + ave RL
£ (2.10)
Vo!
g2(0pu’ +u - Vu') — Z1 (div Lu) + — = RL
where

Ré = _[Zlv g_l}gato— - [Zlaglu : V}O’ - 2[217 diV]’U,,

1
R = 77, gQ}satu—[ZI,ggu~V]u—g[ZI,V]a.
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We first show (2.8) which is easier. Assuming that I = (5,0,--- ,0), |j| < m which means that Z! = (£0;)’
involves only time derivatives. The advantage of this case is that the commutators do not include singular
terms, that is the third terms in R and R! vanish.

For the sake of notational simplicity, we denote (07, u/) = (¢8;)? (o, u). Taking the scalar product of (2.10)
by (07,u7) and taking benefits of the boundary conditions

uw -n=0, T(0yu')=TI(—2au’ + (Dn)u!) on 09, (2.11)

as well as the relation drgs + div (gou) = 0, we get from standard integration by parts that:

1 , , , .
- / (@107 + galud 2)(8) dr + // HIV [ 4 (ot N)|divd P dads
Q Q¢

1 . , ,
< 5/(91|03|2 +g2[u’?) (0) do + // (Org1 + div (g1u)) o’ [* dads (2.12)
Q Q

t
| [ [ O 008, 0s) + 1R 1 [ ez + IR 22 [ 20,
0 9

where we denote by dS, the surface measure of 902 and Q¢ = [0, ] x Q. The second term in the above right
hand side can be controlled easily by A17oo7t||aj||%2(Qt). Note that

1
19eg1lllo,coe < sup_ (lg1(s)DlleBeo oo < —NleDealllo,co,r-
p.3P 0

[—3¢P,3P/¢]

The boundary term of the last line of (2.12) can be treated thanks to the boundary condition (2.11) and
the trace inequality (7.10)

t
0 99

We now detail the estimate of (RL,RL) which vanish unless j # 0. For 1 < j < m, by the commutator
estimate (7.3) and the estimate (7.4) for gy,

1RGN 22@0) < 106911l 2pem -1 [1(£00) o 111,00, + N1egnlll sy o e (€Tl 3pem s

2

+ g1l Lzaem Vol 100 + llgrellimer) oot IV Ol L230m (2.14)

2

S A= A t) (IVOllL2gim—1 + (0, 9) || L290m ) -

1
co
In a similar way, we have:
1
[CATRERES A(%,ﬂm,t)(\\v(m Wllzzpm—1 + (0, )| L290m ) (2.15)
Therefore, (2.8) is the consequence of (2.12)-(2.15). Note that we have used the fact that

1 1
Il zsm S THI0, Wllsmrn ST Emr, V(001231 S
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We are now ready to prove (2.9). Suppose now that Z! involves at least one spatial derivative and 1 < |I] <
m. In this case, it seems unlikely to get a uniform estimate with respect to € with this approach since R, RZ
now contains singular terms. Taking the scalar product of system (2.10) by £2(¢?,u’), and integrating by
parts in space and time, we get in the same way as for (2.12) that:

2 [ (o’ P+ galu' P)0) da
Q

<& / (g1]0" P + galu’ )(0) da + // (Brgn + div (gr))|o’ P dads
Q Qt

+2€2//Zldivﬁu'ul dzds + €% (|R: 200 llo 122 @0y + IRLI 200 1v! 1 12(0,)) - (2:16)
Q:

Before going further, it will be convenient to introduce the notation:

Iz = 1f 2 mm + IV ANl L2 - (2.17)

Note that from the definition of &, in (1.17), one has indeed that: [|ul[gp;m < Epm -
Let us now estimate the terms in the last line of (2.16). It follows from the commutator estimate (7.2)
that:

1 1
el (R, R 2@ S IV(0,w)ll g2 -1 + 2 I(o, U)IIE:nA(a,ﬂm,t) (2.18)

We remark that when controlling the extra term: 1[Z!, V]o, we have used the following identity which can
be shown by induction:

3 3
(2", 8] = Z Z cr,s 2’05 = Z Z dr,;0;,2’ (2.19)
J=L|JI<I]-1 J=1|J|<|I|-1

where J is an (M + 1) multi-index and ¢y s,d; ; are smooth functions that depend on I, J, i and the
derivatives (up to order |I]) of V¢, 0; is the derivation in the standard Euclidean coordinates.
It remains to estimate the third term in the right hand side of (2.16). Since, we have

div Lu = div (2uSu + Adivuld) = pAu + (g + A\)Vdivu,

one has by integrating by parts that:

// Z' Ly ! deds = — // (u[Z",V]u- V' + (p+N)[Z7, div]udivu’) dzds
Q: Q1

+ // (u[Z",div]Vu+ (p+ N)[Z, V]divu)u dzds — //mw’ﬁ + (p + N)|dive! |* deds (2.20)
Q: Q: ’

t
+///wI(ZIVu-n)—i—(M—l—)\)ZIdivu(uI -n) dSyds =: K1 + Ko + K3 + Ka.
0 o0

Let us begin with the K term. By (2.19) and the Young inequality, we get
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K1 < 5N||VUH%,?H§; + Cé,uv\HquigHggfl (2:21)

for § > 0 to be chosen sufficiently small independent of €. Next, by (2.19) and integration by parts, K>
can be written as a combination of the following two types of terms (up to some smooth coefficients that
depending on ¢, n and their derivatives up to order m + 1):

t
%} :/Zfaiu~8juldxd5, %2 ://Zfaiu~u1nj dzds, |I| < |I|—1.
Q1 0 90

The term KJ can be estimated in the same way as Ki, we find again
1 112 2
Ky <oplVu'llze(q,) + Counll Vullpsgym-1-

For K2, we use the trace inequality (7.10) to get that:

t

t
K3 S / 12" 05ul 200 [u” - 15 200y ds S /(|U|Flm(aﬂ) +1divul g1 gy |’ 0yl L200) ds
0 0

< 5/1||vu‘|i§Hgg + O&H,A(HM

T+ |\Vdivu||i§H$,l).

To get the second inequality, we have used that I does not contain conormal derivatives of the type Z} since
Z% vanishes on the boundary and the identity:

Owu-n=divu — (M9u)' — (110,2u)?, (2.22)

as well as the boundary condition (1.14).
To summarize, we have thus proven that there exists an absolute constant C' > 0 (independent of ¢ and
of course ¢) such that

Kz < CopllVullZz g + Copn(IVdivulgsym— + llullEp). (2.23)

Finally, we handle the term % in the right hand side of (2.20) which is nontrivial only if Z! contains
merely £0; and tangential derivatives which read in local charts 0,1, 0y2. For the second term of Ky, since
Z! is assumed to contain at least one spatial derivative, it can be written as Z! = 0y 2 I (we denote 0, = 0,1
or dy = 0,2). Moreover, since u - n|sg = 0, ul -n = [Z! n]u. Integrating by parts along the boundary, and
then use the trace inequality (7.11), we find that

t

t
//Z’divu(u’ -n) dS,ds g/\Z’divu|H%(6m|ay[Z’,n]UIH—%(am ds

0 90 0 (2.24)

SNV Uy +
For the first term of K}, we can split it into two terms:

t
ﬂ//—ul([ZI,n]Vu) + 27 n]0gu(u’ - n) + [Z7, TM]0pu - TTu! dS,ds
0 a0

t
— ,u//ZI(é‘nu . n)(ul ‘n) + ZI(Hanu) . Hul) dSyds =: Kui1 + Kuiz.
0 o0
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Thanks to the trace inequality and the Young’s inequality, K411 can be bounded as:

7(411 < 5IUJ||VUHL2HTH + 05 [L(”uHEm + ||vdlvu||L2Hm 1)

Next, for K412, we use again the identity (2.22), as well as the boundary conditions (1.14). Integrating by
parts along the boundary for the first term of Ky12, we get that by writing Z! = 9,27

10,127, n]ul + | Z 00Ul 1200y |1 | 12 (00 ds

H3 (09) H™ % (09)

7(412 = ,u/ ‘Zl(anu n)|
< 0l Vull Ly o + Copllullp + [Vdiv 72 s)-
To summarize, we get the following estimate for Ky:

K < 20|V ulliz gy, + o ulllullf + [9ivall2, ). (2.25)

Inserting (2.21), (2.23), (2.25) into (2.20), we get that:

/ZILU ~u! deds < — //u|VuI\2 + (p + N)|div ! |* dzds
& (2.26)
+(C+3)0ulVul Lz gy + Coplllullfm + IVdivullfs ).

Plugging (2.18) and (2.26) into (2.16) and summing up for |I| < m, we finally get (2.9) by choosing J small
enough (independent of €). O

Lemma 2.4. Under the same assumption as in Lemma 2.2, for any 0 < t < T, one has that:
. 1 2
e[[(Vo, divu) ()1 o) + IV Ul 2 s S (Vo divu) ()31 + (T2 +27) Ao 00 7€, e (2:27)

Proof. Applying the vector field Z! with 0 < |I| < m — 1, we then find that (Vo)!,u!) = (ZIVo, Z1u)
solves the system:

divuf
0O+ u-V)(Vo) 4 YV o
€ (Vo) (2.28)
o0’ — peurl(Z'w) — (2p + N)Vdiva! + = cl,
where w = curlu and
C(IT = —[ZIV,gl/E]EatO' — [ZIV,glu -Vl]o — [ZI7 Vdiv]u/e, (2.20)

Cl = —Z1(gou - Vu) — [Z7, go Jeledu + pu[Z, curllw + (2u + N)[Z!, Vdiv ]u.

We take the scalar product of the equation (2.28); by (Vo)!, and (2.28)s by —Vdivu!, we then integrate
in space and time and sum up the two equations to get that (note that the singular terms cancel):
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/(gl|(VJ)I|2 + goldiva! |?)(t) dz + (2p + /\)/ |Vdivu!|* dads
Q Q

1 1
< = /(g1|VUI|2 +g2|divu1|2)(0) dz + 2‘/ (Org1 + div (glu))|VUI|2 dzds

2
Q
t
+ ’ //gzatul -ndivu! dS,ds
0 90

+ ’ //(gég@tuf -Vo)divu! deds
Q¢

—l—,u‘ //curlleVdivuI dxds

N | =

(2.30)

2,u+

+lCellLz @IVl ez, + ICulIZ2 ) + = IVdivu'|Zz g,

(2u+A)

Among the terms in the right hand side, the second and the third terms can be bounded by:

1 . .
A(%’ o, w)ll1,00.1 + (V0 diver)lllo.cc.e) [| (Vo) dival,c0pu’) |} (2.31)

|L2(Qt) ’

Next, we note that the fourth term vanishes if Z/ involves at least one conormal derivative Z which vanishes
on the boundary. We thus suppose that I = (I,I"),|I'| > 1 and Z! does not contain Zi. Consequently, the
trace inequality (7.10) leads to

‘//ggatu -ndivu! dS ds’ < - /| n]edyu( )\L2(89)|divu1(s)|Lz(aQ) ds
0 90
(2.32)

1 . 1 . i .
E(HVUHL2H$ v llull g2 - 1)(||Vd1vu1||22(Qt)||d1VuI||22(Qt) + |[divu’ || 12,))
2

: _4
||Vd1v ’LLH%z(Qt) +Cur(1+e73)|(u, Vu)||i%H$71.
Note that since d;u - n|spq = 0, one has (Z10;u - n)|aq = ([Z!,n]0,u)|sq-

For the fifth term in the right hand side of (2.30) we first integrate by parts and then use the duality

(-, '>H%(aQ)xH‘%(aQ) to get that

u|//cur1Z1w Vdiv u! dxds| —,u// wxn) Vdiv u! dS,ds
0 00

< ,u/ |Z1w x n(s)|H%(am|divu1(s)|H%(aQ) ds

We point out that for the derivation of the last line, the fact that IIV involves only tangential derivatives
has been used. It remains to control Zfw x n on the boundary. One first deduces by (1.14) that on the
boundary,

wxn=I(wxn) = 2[(Su) — 2[1((Vu)" - n) = 2II(—au + Dn - u) on 99, (2.33)

which leads to:
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1 1 I
1210 0(5)] 3 gy S 121 @05) X 0]y + 11270 X 0l
fs |'U,( )|H"L** + |w( )|H7n77 < |U( )|H7n77 + |d1VU( )|H7n—%

where we recall that we denote:

Z I( E3t )| k(0Q)-

k<[r]
Note that by using the boundary condition (1.14) and the identity (2.22), we have that:
Vulge S |ulges +[divulg..

Finally, owing to the trace inequality (7.11) and Young’s inequality, one obtains that:

u‘//curlZIw~VdivuI dmds’

. . . 2.34
< C,[L(HleVU”Lsz—Z + HVuHLszq + ||UHL§H3)(Hd1VUIHLZ(Qt) + HleVUI”LQ(Qt)) ( )

2u+

[Vdivu! |22 @0 + Cun(IVdivul? remm—2 + [l )
where we use again the notation (2.17).

It remains to control the L?(Q;) norm of CL,C in (2.30). Let us begin with the estimate CL. For the
term:

[(Z'v, ]s@ta— ZH (Vg1 /e)edio) + [Z1, 91/€)(€0,) Vo

the product estimates (7.1) the commutator estimate (7.2) and the estimate (7.5) yield:

12"V, g1/eledrollz(qi) S 100, Vo)l gy 1A( Vel

(p1-tooit T llollljmgr) oo )

1

,S ||U||E{"A(avﬂm,t)

For the term
2"V, g1u- Vo = Z"' (V(g1u)Vo) + [Z7, g1u]V Vo,

since in the interior domain €2y, the spatial conormal derivatives are equivalent to the derivations with
respect to the standard coordinates in R3. We thus have that:

- - 1
ellxolZ"V, g1u- Vo2 < (IXo(o; w2 am + X0V (o, U)IILgHm—l)A(a lle(o, w)llpp+1,00.)-

1

< (e, U)HEZ”A(aaﬂm,t)a

where Supp (o) € Q and XoXxo = Xxo- It suffices to focus on the case near the boundary. Direct computations
show that, in the local coordinates (1.12),

(s Vf = u18y1f + uzany +u- Nazfa (235)
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which leads to:

2
2"V, giu- V]o = Z' (V(g1u) Vo) + Z , 1u;]0,; Vo
Jj=1 (2.36)

+[Z", (g1u-N)/¢]$0. Vo + (1w N)/¢)[Z",$]0.Vo + (g1u-N)[Z",0.]Vo

With the help of the product and commutator estimates (7.1), (7.2) and the estimate (7.5) for g;, the first
two terms in the right hand side of (2.36) can be bounded as:

2
elxiZ" (V(g1u) Vo)l 2o + Y IXil 2", 91451045 Vol L2,
j=1

(2.37)

1
S (o)l A~ =oellos wlllpp oo e + 1Vl m),00,t)

S o, U)IIEmA( s Am,t).

To continue, we need to establish some estimates on (g1u - N)/¢. At first, since (u - n)|spq = 0, one has by
the fundamental theorem of calculus and the identity (2.22) that:

x5 (g2 - N)/@lllk, 00,6 S (MY (- N)) k00,6 + [llulllk,00,e) g llk,o00,

1 (2.38)
< A(%? leelli+1,00,6 + (o diva)llle,coe), 5 =1,2.
Next, thanks to Hardy inequality and product estimate (7.1), estimate (7.6) for g;
Ixi(g5w - N) /@l 2= S IXe(w - N/l 2 g + (95 = 95(0)) (w - N) /&l 2 )
< (Ixi(w, Vu)ll g2 g + llgs — gj(O)HLngZ’l)A(%’ﬂmvt) (2.39)
SAG Andl@u)ler,  G=1.2

where ¥; is a cut-off function supported on the vicinity of €; and x;x; = x;. Therefore, since ¢0, can be
spanned by Zi, Zi, Zi it follows from (2.38), (2.39), (7.2), (7.5) that:

€||Xi[ZI (g1u - N)/¢]¢0. VJHLz(Qt)

S (Vo (g1 -N) /D)l L2 - 1/\( NVoll ) oo + elllXi(gru - N)/@lllzp) 00,0) (2.40)

S Il(o, U)IIEMA( s Am.t).

~

Moreover, one gets by induction that (up to some coefficients that depend only on ¢ and its derivatives)

Z1,6)0.£) = Y. xZN@d.f),  1Z5,0.)= Y 0.7 (2.41)

F{ESPIES! 1<|1]-1

Hence, by (2.38), the last two terms in (2.36) can be controlled by [[Va || - 1A( , Am,¢), which, together
with (2.37), (2.40) leads to:
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ellxilZ"V, gru- Vol z2q, < ll(o, U)llEmA( o’ A t)- (2.42)

We switch to the estimate of the third term of CL defined in (2.29), which is nontrivial only if Z! contains
at least one spatial derivative, that is |I’| > 1. By induction, one has that (up to some coefficients which
are regular enough)

3 .
[ZI,Vdiv] = Z Z *jkiaszf + *jiajzf,

\I|<|T| 1, <|1]—1 k=1

which yields that:

1 .
g||[ZI,Vd1v]u||L2(Qt) <

~

M | =

(UIV2ull 2 g2 + [ Vll 2 g 2).
To summarize, we have thus obtained from the above estimates that:
elCsllzn S A( s Ao ) (0, 0) |+ [[(V P, V) || g 2 (2.43)
By using the same argument, CZ (defined in (2.29)) can be controlled as follows:
ellcullzzn S A(%,ﬂm,t)ll(fﬂ wllep + el V2ull g2 prm-2- (2.44)
Plugging (2.31), (2.32), (2.34), (2.43), (2.44) in (2.30), we arrive at
e2(Il((Vo)', divu)(#)]1 22 () + IIVdivullltit))
< (Vo) divu')(0) 22y + 631\( s A ) || (0, 0) | B (2.45)
+ T ||ev2uuL§ngfz<||ev2u|\LgH;gfz + Vol L2 prm1)-
We thus get (2.27) by summing up (2.45) for 0 < |I|<m —1. O
2.3. Step 2: Energy estimate for the incompressible part of velocity
In this subsection, we focus on the estimates of the incompressible part of the velocity v = Pu which

solves (2.5).

In the following, we recall for convenience the definition of the LS, norm:

t,x

Pt = 1Vllo,00,6 + (21, 0l g2 e, + (Vo divs, 2 V)]

[wL 1] co,t

(2.46)

FlleVulllpmis oo + €ll(0; Wl pmts) oo,e-

Remark 2.5. In view of the first term in A,, ¢, we have only the uniform control of Vu in Lg¥, space. Indeed,
by some delicate analysis on the Green function for the vorticity in the local coordlnates, it is possible to

get the uniform control of the high order conormal derivatives of Vu (say [[Vull|[m]_2 0,¢). One can refer
for instance to [37]. Nevertheless, involving only |||Vu|||o,co,¢ in A ¢ is enough for us to close our estimate.

See Lemma 2.8 and Proposition 2.18.

We begin with some additional estimates on Vdiv u:
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Lemma 2.6. Suppose that (1.24) holds then for any 0 <t <T < 1.

) PN |
IVdivull g2 S 10 g + €2 A Al (00 e, (2.47)
1
el|[Vdivu(t)|| gm—2 S el Vol poo gm—1 + sA(C—,ﬂm,t)am,t, (2.48)
ol t co 0
1
IVdivu(t)| gm-s < A(C—,ﬂm,t)am,t. (2.49)
0

Proof. By the equation for o, we have that:

(€0) = 91(0)

Vdivu = ¢1(0)e0; Vo + 5V(g1 . edio + g1(ec)u - Vo). (2.50)
We can control eVdivu as follows, for p = 2, 400,
IVAiv ull pp -2 S IVl o ggm-1 + €IV ((91 = 91(0)840, g1u - Vo) ()] 1o -2 (2.51)

Inequalities (2.47)-(2.48) can thus be derived from the following estimate:
elV((g1 = 91(0)8s0, gru - Vo) () 1y g2
1 1
< A(a,ﬂmﬂg) (||€V(U, u)HL{;H$4 +e2/(o,u, Vo, Vu)”LfHZ.Z’Q)'

Let us show the estimate of the term g1u - VVo, the other terms can be controlled in a similar way. Again,
we focus only on the estimate near the boundary. Thanks to the identity (2.35), we have

u-N
Xigiu - VVo = xig1uy - 0,Vo + Xi917¢>5ZVU-

Therefore, by applying the product estimate (7.1) and inequality (2.38), we find

ellxi(gru - YVl pppm—2 S ell(uy, xiw - N/ ppgrm—2l191 2V 0 || 1)1 oo

2

+ el 20 (0) -2 ., xi10- N/6) 11,00 (252)
1 1
S A(aaﬂm,t)(HEVUHLngg*l +¢e2|/(u, Vo, VU)HLng’g*Q)'
Finally, one gets (2.49) by using similar arguments as in the derivation of (2.48), we skip the details. O

Remark 2.7. By (2.7) and (2.48), we have that:

1
ElIVdiv ull o -2 S Yin (00, uo) + (T + e)iA(C—,ﬂm,t)am. (2.53)
0

Lemma 2.8. Let

f= _ 9% 6_ psatu — gou - Vu (2.54)
and assume that (1.24) holds, then we have:

1
||f||LfHZ§’1 + HfHL?OHZZ’z S A(aaﬂm,t)am,t- (2~55>



188 N. Masmoudsi et al. / J. Math. Pures Appl. 161 (2022) 166-215

Proof. Since the higher order Lg% norm of dyu is not included in the definition of A,,, we need to use

again the fact that w - n vanishes on the boundary. More precisely, by using the product estimate (7.1),
identity (2.35) and the estimate (2.39), we get for (p, k) = (2,1), (o0, 2),

1 .
| gou - VU”Lng';*k’ < ll(oyu, Vo, VU)HLng’;*’“A(a’ (Vo le“)m[mT—l],ow + Il (o, u)|||[%+1],oo,t)'

The first term is a direct application of the product estimate (7.1), we omit the detail. O

We split the estimate for v in the following three subsections.

2.8.1. Estimate of Vq
We first give the estimate of V¢ that appears in (2.5),. Since ¢ is governed by the elliptic equation (2.6)
without singular terms, it can be easily estimated by standard elliptic regularity theory.

Lemma 2.9. Under the assumptions (1.24), we have the following estimates: for j +1<m —1,1> 1,

1

IVall 2zt + €2 Vall zpm— S A(avﬂm,t)am,t (2.56)
where ET" is defined in (2.17). Moreover,
1,1
cllewl (D)l + VOl S POl + Yoo, wo) + (T4 A A Jome: (257

Proof. Recall that ¢ is governed by (2.6), an elliptic equation with Neumann boundary conditions. We can
apply (7.14) in the appendix by setting

g2 —p
f=-

edu — gou - Vu, ¢g=pulAv-n

to get

Wallazros Wz + |Z 178 (A0 )3 o0 (2.58)
Il<m—1

The first term in the right hand side has been controlled in (2.55), it remains to estimate the boundary
term. By using the identity

(Vxa)-b=V-(axb)+a-(VxDb), (2.59)
we have that:
—Av-n=(Vxw) n=div(w xn) +w-curln.
Near the boundary, it follows from (2.22) that:

div (w x n) = Gp(w x n) -0+ (91 (w x n))" + (10,2 (w x n))?

(2.60)
= —(w xn) - Oyn + (IO (w x n))' + (02 (w x n))%.

Therefore, by using the boundary condition (2.33), one has that for [I| < m — 1,
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121 (div (w x n))| (2.61)

< _
L2H™ 3 (89) ~ |u‘L§H’"—% (09)

where L?H®(9Q) is defined in (1.10). In view of the identity (2.22) and the boundary condition (1.14), we
have for [ > 1

27| 3 127 (8aw)|

< < Tdi
Lfoé(aﬂ) ~ ‘U|L%Hm— L%Hié ~ ‘U|L%H7"7% + ‘Z leU|L%H7% (262)
S llullzy + IVAivul gz -2
Moreover, if Z1 = (¢9;)™*, we have by L2(8Q) < H~2(9Q) and the trace inequality (7.10)
1 . . .
ez|Z!div u|L%H,% < (divu, eVdivu)| Lzgim-1 (2.63)

Collecting (2.58)-(2.63), and using (2.47), (2.55), one obtains that:

1
IVl 20 + €2 [Vl Lzgm—

~

. . 1
Sz + llullzp + IVdivul[ 2 gm—2 + e[ Vdival| 2 ym-1 S A(a,ﬂm,t)gm,t-

We are now ready to prove (2.57). By using the equation (2.5),, the elliptic estimate (7.14) and the
product estimate (7.1), one finds:
ellAv()l g2 + ellVa®)ll gz

S v@®I gm-— +5||f(t)HH;'g*2 t+e Z 2" (Av - n)(t”H*%(aQ)

|1|<m—2

(2.64)

With the aid of the boundary condition (1.14), the identities (2.22), (2.60) and the estimates (2.7), (2.53),
the boundary term can be treated as,

e > |ZI(Av-n)\H_%(BQ)

1| <m—2

< eIVl -2 + 1ul®)] gz -+) + €l Velivu(t)]| -2 (2:65)

1
5 Ym(O'(), U,()) + (T + 6)%A(;,ﬂmvt)8m7t.
0
Combined with (2.64) and the fact that Av = — curlw, this yields (2.57). O

2.3.2. High order regularity estimates for v
This subsection is devoted to the high order estimates for v : [[v[| poc grm—1, | V[ 2 1.

Lemma 2.10. Suppose that (1.24) is satisfied, then for any j+1<m —1,4,1 > 0 and for every 0 <t < T,
the following a-priori estimate holds:

||UH%§C7.(J',Z + 52HVU||2L;>°(HJ‘J + ”vv”%gq—ypl + &2 Curlw”igy,‘,t (2.66)
1 . ’
< Yn(o0,uo) + (T + 5)2A2,00,T872n,T + ||d1VuH%gwaxlng(HHl,z—l

where we use the notation (1.8).
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Remark 2.11. The estimate (2.66) will be used later (see Lemma 2.12) to get the high order spatial regularity
for divu, which in turn, together with (2.66), gives the control of v.

Proof. In view of (1.22), (2.7), it suffices to show that the left hand side of (2.66) can be controlled by:
C(l/co)(YTi(oo,uo) + ’VV,Qn’T + ||divuH%?Hj,lng(/_{jH,l,l)
where:
Wi = [ullfeqen—s + [Vl Zagm—s + X[Vl Zs g + (T + s)éA(%vﬂm,t)am,t. (2.67)

This estimate will be obtained as the direct consequence of the following three inequalities:

[Vl Zgeim—1 + 1V 200m -1 S Nl Leegim—r + IVl Z2gpmer, (2.68)
[l Zeegirs + IO 2900 S 0O -1 + IVl Zaggn-s
) ) L1 ) (2.69)
+ ||d1VU||L';’(Hj,z "‘TZA(C_vﬂm,t)Sm,tv I =1,
0
Vol eegirs + €218V 200. S (V0 0)(0)l s + IVVI 290 :
LgeHI! LEHIL ~S ) Hes LIHIINLFHI+1I-1
(2.70)

1
+ 2| VulZa g + (T + A(—, A 1) E
co O

Note that since the Leray projector P commutes with £0;, one has that: P((d;)/u) = (€d;)?v. Therefore,
from the continuity of the projection, we have:

[0 gz -+ < ()| -

The inequality (2.68) is a direct consequence of the definition of v and the elliptic estimates in Proposi-
tion 7.6. We thus focus on the other two inequalities. Let us first prove (2.69) and then sketch the proof of
(2.70). By (1.28), v solves

PO — pAv + Vq = —(g2 ; peﬁtu + gou-Vu) =: f (2.71)
supplemented with the boundary conditions:
v-nlgg =0, II(0yv)=1II(—2av+ Dn-v)+ 2II(—aVV¥ + Dn - V). (2.72)

We apply Z! to the equation (2.71) with I = (j,1'),0 < j+ |I'| =j +1 =k <m —1,|I'| > 1. Taking the
scalar product by Zv, and then integrating in space and time, we get that:

15/ Z1o(t)]? do < %p/ (Z10) (02 dz w//zf(m)zfv dzds
Q Q¢

2
Q (2.73)
+12%00 2@ (IVallzror + 12 am-1)-
By (2.55) and (2.56), the second line in the above inequality can be bounded as:
1 1
||ZIU||L2(Q1) (”VC]HL%HN + Hf”LgH;';*l) 5 T> ||u||L§°HZ'g*1A(C_vﬂm,t)am,t

. 0 (2.74)

STEN(—, Ami)E2 .

Co
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It remains to control the second term in the right hand side of (2.73), which is the following task. We split
it into three terms:

,u//ZI(Av) - Z% dads = u//[ZI,div]Vv - Z1v dads —,u//ZIVU -VZ' dxds
Qt Qt Q1

. (2.75)
—|—u//ZIVU-nZIU dS,ds =: T1 + T + T3.
0 o0
The estimate of 77 — T3 will be similar to that of K3 — Ky in (2.20).
We first estimate 75. By integrating by parts, one has that:
Ty = —u// |ZIVv|? dzds — u//ZIVv[V, Z1v dads
Q¢ (2.76)

1
< =512Vl g, + I[V Z"wll72(q,) < __”ZIV’UHLQ(Qt) + ClIVolZapp-1-

Note that in the last estimate, by (2.19), we know that [V, Z!]v involves only lower order (< k—1) conormal
derivatives of Vuv.

We now switch to the estimate of the boundary term 773 in (2.75), which vanishes if Z! involves at least
one weighted normal derivative Zi. We thus assume that Z! contains only time derivatives and spatial
tangential derivatives.

:—u// n|Vo- Z'v + [Z' 0] - 0pv(Z"v - n) + (27, 11|00 - 1Z7v) dS,ds
0 9Q

—|—,u// H(0wv -n)(Z"v - n) + ZT (o) - 1Z"v) dSyds =: T3 + Tao.
0 00

The first term 731 can be dealt with thanks to Holder inequality and the trace inequality (7.10)

T < / (00 Vo(3) 11— o) | 2 0(5) | 2 (o s

t

S /(|(Eat)jU|H’(6Q) + (€0 V¥ gr1(60)) 1 27 0| 12(002) ds
0

< 5,LL||VU||%%.H;',L +C(6, /L)H(uadIVU)Hi%Héco

Note that in the second inequality, we have used the boundary condition (2.72) and the identity (since
dive = 0):

v -n = —(19,1v)" — (119,2v)?, (2.77)
to obtain that:

(€00} Vu(s) -1 S 1(0e) v(8) | + |(£0:)VE(s) |- (2.78)
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For the second term 739, since [ > 1, we might as well assume that Z1 = 8yZi, where dy = 0,1 or 0,2. In
view of the boundary condition (2.72) and the identity (2.77), we have by integrating by parts along the
boundary that:

t
Ty = / Z1(040 1), - (27, o) + 2! (10,0)1127v) 45, ds
0 00
t

‘ ‘ ‘ (2.79)
< / (€000 oy + (00 (0, V) 10 (€00 0] 1y s
0

S 3ulIVolZagia + C(8, )l (u, div w) || 2
It remains to control 77. Owing to (2.19) and (2.78), one obtains again by integrating by parts that:

T1 SVl agmi-1 ([0l L2g00 + V0l L2g) +1(200) Vo(s)| gi-1 o0y 0] man)

; o , (2.80)
< Sl VolZap0 + O ) (1 div o) g + 11V0]2g500)-

Plugging (2.75)-(2.80) into (2.73) and summing up for all I = (4,1'),|I’| = [, one has by choosing ¢ small
enough that

00 s + 21900000 < N0 Bess + O I T s + vl
- (2.81)
+ T2 A=, A t)Er -
co
In view of inequalities (2.68) and (2.81), we obtain (2.69) by induction on [.
We are now in position to prove (2.70). As before, we apply Z! to the equation (2.71) for v and we take
the scalar product by —2ZAv. One gets by integration by parts and by using Young’s inequality that:

1
5[}52/|VZIU(15)|2 dx+gs2/ |Z1(Av) [ dzds
Q Q

< ,562/|VZIU(0)|2dx+5//58tZI’U~[ZI,A]vdxds

Q Q:

1
2 (2.82)

t
+€//fﬁtZIv~anZIvdSyds+Cﬂs2||(Vq,f)||isz_1.
0 a9

By induction, the following identity (up to some coefficients that depends on ¢, ¢ and their derivatives up
to order m) holds:

3
ZI,A = *ZIaQ +*Zjak. '
ik
|7|< || =1, J|<| 1| -1 4:k=1
To=j,Jo=j

This identity, combined with elliptic regularity theory yields:

127, AlollzzQiy S IV?0lligpoa—s + Vol agia- S [A0] Lagi-1 + [Ou(er) 0] 1

NG

S 1A zgei-r + [[(w; Vu)l 2g
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Note that in the last inequality, we have used (2.78) and the trace inequality (7.10). We thus control the
second term in (2.82) as follows:

s//s@tZIv (2!, Alvdads < 52||Av||%%w,l,1 + HsathzL%(Hj,, + sHuHQEtm (2.83)
Qt

Moreover, the third term of (2.82) can be dealt with by arguments very similar to the ones for 73:

t
5//58tZIv-0nZIUdSyds
0 90

t
S 6/ |ZI€atU|L2 (|(Eat)jU|Hl+1 + |(€8t)Jv\I/|Hl) ds
0 (2.84)

1 1
S E(HVUHZ%{J‘HJ||U||z§(yj+1,z + HU”L%(HHM)'
1 1 .
(HVIUHZ%([-(J'JJrl||/UH12,%(}-(J}H~1 + ||v||L$'H-7v’+1 + HualeUHL??{N)

S VI3 gy + 2l iV )2 s 190 a3 + [0 0

Inserting (2.83) and (2.84) into (2.82), and using (2.55), (2.56) to find

1
EQH(qu f)HierZ’f,_l S/ EA(aa ﬂm,t)sgn,ta
we obtain (2.70) by induction. O
2.4. Step 3: Uniform estimates for (Vo,divu)

In this subsection, we aim to get uniform control of higher spatial conormal derivatives of (Vo,divu).
More precisely, we prove uniform boundedness of [[(Va, divu)|| Lo Hm—2nrz -1+ Lhis will be achieved by
using the equation iteratively.

Lemma 2.12. Assume that (1.24) holds, we then have that for every 0 <t <T,

<vy?

(Vo diva) |13 < 20 2 g1 S Yim (00, w0) + (T +¢)2E% rA(—, Am 7). (2.85)

1
Co
Proof. We will prove the following two inequalities:

o LZH™~! estimate: for any j, k> 0,5 +k <m — 1:

. 1
[(Vo,divu)||Lzpinx S Yim(oo,u0) + T2 [|(u, o) gopem

) o1 (2.86)
+ el|Vdivul| 2 ym-1 + (T +€) 4A(C—,ﬂm,T)8m,T.
2HE 0
o L H™~2 estimate: for any j,1 > 0 and j +1 < m — 2:
[(Vo,divu)||pgepst S Yim(oo, uo) + el|(Vdivu, curlw) || pe gom—2 + [|0] oo -
(2.87)

1
+ l(oy )| Lgeqim—1 + e Vol oo -1 + eA(a,ﬂm’T)Sm,T.
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These two inequalities, combined with the estimates (2.7), (2.57), (2.66) and the definition (2.46), yield
(2.85).

The inequality (2.86) can be obtained by induction on the number of space conormal derivatives. Let us
first prove (2.86) for k = 0,j <m — 1. By (2.50) and product estimate (7.1), we find that:

1
[div ]| paggm—1 S T2 ||| gogem + EA (= A1) Emt (2.88)
0

Moreover, by the equations (1.15), for u,
Vo = —pedu+ef —epcurlw + e(2u + A\)Vdivu, (2.89)

we thus have by (2.55), (2.66) that:

. 1
IV Lzpm— < ullgm + el curlw|| zgm—1 + €[ Vdivul| o gm-1 + 5A(ayﬂm,t)8m,t
1 .
S T2 ||ul|pgeqem + [|divul| p2gm—1 + Y (o0, uo) (2.90)

1 1
+ SHVdiVUHLng'g_l -+ (T =+ 5)ZA(c_aﬂm,t)8m,ta
/ 0
which, together with (2.88), yields (2.86) for k = 0,5 < m — 1.
Now suppose that (2.86) holds for k = kg — 1 with kg > 1, it suffices to prove that it is also true for
k = ko and for every j such that j 4+ kg < m — 1. We begin with the estimate of divu, which again follows
from the equation (2.50) and product estimate (7.1):

1
[divull L2aen0 < €00 || Lapiro + EA(—, Am t)Em,t
co
1 (2.91)
< ||(U, VU)HL%HJ*L’CO*l + A(C_7ﬂm,t)8m,t < RHS of (286)

~J O ~Y
Next, one gets by equation (2.89), estimate (2.66) and the induction hypothesis that:
. 1
IVollzsine S llull Lapvine + ell curlwll pzggne + el Vdivullps s + eA(— A 1)Em,¢
: 0

1
< ||(div w, v’U)HL%(I_{j{»l,ko—l + el CUI'IOJHL%(}_{J‘,kO +e||Vdivaul| 2 gm-1 + EA(C—,ﬂm,T)Sm,t
tdlco 0
< R.H.S. of (2.86).

Let us switch to the proof of (2.87). By similar argument as in the derivation of (2.88), (2.90), one can
find that:

1
[(Vo,divu) || peeqim—2 S |[(0; ) || pogm—1 + el|(Vdivu, curlw) || e ym—2 + EA(C_7ﬂm,t)8m,t7 (2.92)
CHI 0
which proves (2.87) for I = 0. Suppose that it is true for [ = lp — 1 < m — 3, we show that it also holds for
[ = lp and for any 7, such that j 4+ [ < m — 2. Let us start with the estimate of divu. It follows from the
equation (2.50), the product estimate (7.1) and the induction hypothesis that:

. 1
[divul| poegriie S |€0t0 | Loopine + €A(C—’~7‘m,t)8m,t
0

1
S o Vo)l ppgsrio— + M=, Am,t)Em
0
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1
S lollperm—2 + IVoll geqatiio-r + EA(C_Oaﬂm,t)am,t

< R.H.S. of (2.87).
For the estimate of Vo, we use the equation (2.89) and the product estimate (7.1) to obtain:

V0]l oegest

) i 1 (2.93)
S lledeul| oo + ell(Vdivu, curlw) || oo ym—2 + €2 A(c_’ Arm,t)Emt-
0

It remains to bound |ledul| oo . We use that for j+ 1o <m — 2,
Hgatu”L?"?-lj’lo S ||v||Lt°°H§7,_1 + H(V‘IUVQ‘I’)HL;%?{HIJoﬂ

< i j
S vl e gz + Nl (s, div ) || pgeggrsaio-2 (2.94)

1
< Welzepn—s + Mol s+ 2 Il mpreno
k=1
Plugging (2.48) and (2.94) into (2.93) and using the induction hypothesis, we get that:
Vol peogin S RH.S. of (2.87).
We thus proved that (2.87) holds for j + 1,1y which ends the proof. O

Remark 2.13. By Lemmas 2.10, 2.12, we get that:

!
(o, w)llEp < Y (o0,u0) + (T + E)EA(a,Nm,t) (2.95)

2.5. Step 4: Uniform estimates for the gradient of the velocity

In this section, we will bound ||[Vv||; e -2, which, combined with (2.3), (2.87), gives the control of

||VUHL;>°H.§’J,*2'

Lemma 2.14. Suppose that (1.24) holds, then for any 0 < t < T, we have the following estimate,

1 1
Vo2 S Y2 (00,0) 4+ 1017 s+ THA(— Nonr)- (2.96)

LPHDL™2 ~ o

Proof. Since in the interior domain, the conormal spatial derivatives are equivalent to the standard spatial
derivatives, we only have to estimate Vv near the boundary, say ||XiVUHLchgg—2 where x;, (i = 1---N)
are smooth functions associated to the covering (1.11) and are compactly supported in ;. Close to the
boundary, it follows from the identity (2.77) and the following identity

I1(0yv) = I((Vv — Du)n) + II((Dv)n) = II(w x n) + IIV(v - n) — II((Dn)v)
that:
XVl oo =2 S XL (O00) | oo =2 + V]| Lo g
S Il (w x n)HLch;g* + HU”L?OH;’;*'

We thus reduce the problem to the estimate of x;(w x n), which is the aim of the following lemma. O
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Lemma 2.15. Under the assumption (1.24), the following estimate holds: for every 0 <t < T,

1, ,1
Ixi(w X D17 oo 2 ) S Ixi(w x W) (0|2 + (T + E)QA(a,Nm,t), (2.97)

where x; is a smooth function compactly supported in ;.

Proof. Note that the important feature of x;(w X n) is that: it solves a transport-diffusion system without
singular terms, with a non-homogeneous Dirichlet boundary condition. In order to perform the estimate,
we split the system for y;(w x n) into two parts, one of which just solves the heat equation with the
nontrivial Dirichlet boundary condition and a remainder which is amenable to energy estimates since it
satisfies a convection-diffusion equation with homogeneous Dirichlet boundary condition. To deal with the
first system, the explicit formula for heat equation will play an important role. It is thus helpful to transform
the problem to the half-space.
Let us set n; = x;w X n,7 > 1. Direct computations show that w solves the following system:

G20t + gott - Vw — pAw = gow - Vu — gowdivu — % x (edyu + eu - Vu) =: G¥ (2.98)

from which we obtain the equations satisfied by n; (which is compactly supported in ;)

pom; — ulAn, = FP in ;N Q.
' i (2.99)
7; = xill(w X n) = 2x;II(—au + (Dn)u) on §; NOQ,
where
FP =: —A(xin) X w —2Vw x V(yn) — (gou - Vw) x (x;n) + p —692 edw X (xin) + G¥ x (y;n).

Since we will use the local coordinate (1.12), it is useful to know the expressions of Laplacian in this new
coordinates. By direct computation, we find that:

(Vf)o®; =PV(fo®;), (divF)o®; =div(P"(Fo®;)) (Af)o®; =div(EV(fo®,)) (2.100)

where V = (9,1, 0,2,0.)",div = (V)* represent the gradient and the divergence in the new coordinates and

10 ~Opp 1 0 —Ope
0 1 —dppi |, E=PP= 0 1 —dppi |- (2.101)
0 0 1 —8y1cpl- —8y2§0i |1\I|2

Let us set 7;(t,y, 2) = ni(t, ®;(y, 2)) == (; 0 ®;)(y, 2), (y, 2) € ®; 1(2;NQ). Denote also_f:*\‘g’ = F¥o®,. Since
Supp xilg € Qi NQ, we can extend the definition of 7j; and F from @;1(% NQ) to R3 by zero extension,
which are still denoted by 7;, F*. Consequently, by (2.99) and (2.100), we find that 7; satisfies:

3

pouii; — pdiv (EV;) = F¥ in R,
{f ' (EV) N (2.102)
Milz=0 = 2[xill(—au + (Dn)u)] o (I)i|Z:0~
Let us set Zo = €0y, Zj = 0yi,j = 1,2, Z3 = ¢(2)0. and define
7|l m.e = Z 1Z%ill 2o, xr2ys (17 () [Im = Z (%) ()| 2 (2 ) (2.103)

lo|<m loe|<m
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where Z¢ = Z5°Z71Z52Z5%, 0 = (ap, a1, a2, a3), by the definition of the conormal spaces (1.6) and the
vector fields (1.13) we find that:

17l & N10ll 22 £ )0 W0 llm = (06 (O] 1y (22 - (2.104)

Therefore, our following task is to establish an estimate for supg<; < || (t) |7 —2-

We shall write 7, 1:"? by 7, F* for the sake of notational clarity. We write 7 = 7y, + 7jnn, Where 7, solves

pOiin — pIN20%7, =0 in R3,
_ i i (2.105)
nlt=0 = 0, 7| 2=0 = 7|.=0
while 7j,,;, satisfies
pOuiinn — pdiv (EViny) = H(fp) + F*  in R3,
{ ) o ) ’ (2.106)
Tnhli=0 = N|t=0, Ink|2=0 = 0

where

2 2
H(ijn) = 1Y 0yi(BigOysiin) + 1Y yi(Eiz0-iin) + 0= (Esi0yifin)-
i,j=1 i=1

Estimate (2.97) will be the consequence of the following two lemmas. O

Lemma 2.16. Adopting the notation introduced in (2.103), we have the following estimate: for any 0 <t < T,

sup (|7 ()llm—2 + linllm—1,7 < TTEm- (2.107)
0<t<T

Proof. Since |N|? depends only on the tangential variable y!, 52, the equation (2.105) can be seen as a heat
equation on the half line with Dirichlet boundary condition, which can be solved explicitly:

INJ? — N 7
T 82 e 4N (t_s))77|z:0(say)ds
(4mAIN(t — 5))

t
in(t,,2) = 2 /

0

where fi = u/p. Taking a multi-index v = (v0,71,72,73), since time derivation commutes with 9;, 9%, we
have that:

INJ”

0. (¢ TNET ) (204)°) ol 1),
(4mINP (¢ — 5)) 0

((&tat)%ﬁh)(t,y,z) = 72/1/

0

=

which, combined with (7.16) established in the appendix, yields that:

t
~ 3.
12701z ®3) S /(t —s)" 4 |77|z:0(5)|gw(R§)dS~ (2.108)
0

The above inequality, combined with the boundary condition (2.102), and the trace inequality (7.9), yields
that:
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~ 1 ~ 1 1
70 () lm—2 S T OS<UI<)t |77(3)|I§""*2(R§) S T |(u, VU)”L;X)H;';*? STiEm,r.
_s_

Similarly, we apply a convolution inequality in the time variable (after extending 7(s)|.—o to s € R by zero
extension) to (2.108), and use the boundary condition (2.102), and the trace inequality (7.10) to obtain:

- 1 1 1
170 (O)lm—16 S T4 L2 grm-1 w2y S THI(w, VUl 21 ST1EmT. O
Lemma 2.17. Using the notation (2.103), the following energy inequality holds: for any 0 <t < T,

N _ 11
7m0 (872 + Vil —2.6 S 00132 + (T + 5)2A(57Nm,t)' (2.109)

Proof. Suppose that 0 < |y| = k < m — 2. Denote 7,), = Z"7jup, then 7, solves the system (note that
[Z7, E] = 0):

poiiyy, — pdiv (EVA,,) = p[Z7,div](EVi,,) + pZ" H(in) + 27 F¢
=: R} +R, +Z"F“

with the initial condition 7, |(—o = Z"7]|t=o and the boundary condition 7, |.—o = 0.
Standard energy estimates show that:

t

t
ﬁHf]Zh(t)H%?(Ri) + / / EVilyy, - Vi, deds = 16”772}1(0)”%2(]1&1) + / /(RY + R + Z7F2)ij), dads.
0 RY 0 R3

(2.110)

At first, since we can find some % > 0, such that 2|N|? < 1/k, one has that EX - X = |PX|? > 2‘11”2 | X% >
x| X |? and hence, we deduce that:

t
[ [ BV Vi dads = k9T (2.111)
0 RY

For the second term of the right hand side of (2.110), one needs to integrate by parts to avoid involving
additional normal derivatives. Let us first study R] which vanishes if |y| = 0. By induction, one gets that
for k=|y| > 1,

(27, div] =[Z7,0:] =) Cyp,0-Z° (2.112)

B<y

where Cy 5., are smooth functions that depend on ¢ and its derivatives. Consequently, by integration by
parts and Young’s inequality, we obtain that:

t
/ / R -7, deds < S|V IR + Co(IVianlZ 1o+ [unl2.0)- (2.113)
0 RY

Similarly, by taking benefits of the zero boundary condition of 77}, , one integrates by parts to get:
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t
[ [ R dods < SIS+ Calinln, + i) (2.114)
0 R?

We are now left to deal with the term:
t 5 ¢t 5
/ /znﬁﬁgh dzds = Z/ / FPq, dadt =2 Y 1, (2.115)
0 R% Jj=1% RY j=1

where we denote that:

—_~—

— — — —~—— (/3_92)/\‘/ —~—— —

Fv = —A(xin) X & — 2Vw x V(x;n) — (g2 - Vw) x (xin) + edw x (xm) + G¥ x (y:n).
= FY + FY + FY + FY + F2.
Note that G¢ is defined in (2.98). Moreover, without much ambiguity, we denote f as (xif) o ®; where x;

is a smooth function such that Y;x; = xi.
By the Cauchy-Schwarz inequality and the fact (2.104), 71 can be controlled by:

~ ~ 1 ~
Iy S©llkellinnllee S T2V ull poo -2 1nn k.- (2.116)

Nevertheless, for 7o and 13, as FEJ, 1:"? involve normal derivatives of w, it is necessary to use integration by
parts. By doing so, we can bound the term 75 as follows:

Iy < |Vipylle.e + Co(llimnllz . + IV ullf ). (2.117)

n

Next, for I, by noticing the expression

g2t - Vew = 01 (G2 ®) + Oy2 (G212) + 0 ((gau - N)@)

— (91921 + D292t + 02 (g2u - N))@,

one performs an integration by parts again to get that:

lo.t + 10(8ys (92u;), 9= (g21 - N) [kt 177 llo0.2

I3 S |G|k, IV,

< OIVlulI3. + Collgo@@lles + T2 ( sup [|ihan(s)lle)2(D), (951,), 0- (g2 - N)) |z

s€0,t]

Here we used Einstein summation convention for j = 1,2. By (2.104), (2.107) and the assumption k < m—2,
one can have that:

sup |[7nnlle S sup [[(77,70)(s) ||k < ”v“HLgng';—Q +T58m S Emr- (2.118)
s€10,t] s€0,t] ‘

Moreover, since k < m — 2, we have thanks to (2.104) that:

12(8ys (g207), 0= (921 - N)) [ m—2,1

S Mlwllo,co.llZi(g2u;), V(920 - N)| 12 2

t

Wl oo pr— (/ 11Zi(g2us), V(gaw - N)|(8)[17 -5, 00d5)

=
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where Z; stands for the tangential vector fields in €2;. By identity (2.22) and the Sobolev embedding (7.7)
and estimate (2.47),

1 1
(| 1Zi(92u5), V(g2 - N)(8) [ —5,00d8) * < ull g + VAV ull 2 g2 + €A (=, Non,t)
2H o

S (o, w)l

1
Em + €%A(57Nm,t)v

which together with the previous inequality, yields:

[©(0ys (g2uy), 0=(g2u - N))[|m—2, S A( Nmt)-

Similarly, we have that:

1
tp1oa A+ (T4 ) A (=, A ) Emi-

IG2e S T2 wlllo,ootlull o 2 + lell gl o i %

Moreover, if k <[] — 2,

t S A( ﬂmt)l\VUIl

7

12 < T%A(i,ﬂm7t)8m7t.
co

To summarize, we control 73 (defined in (2.115)) as follows:

L1
T < 0Vl 8.+ (T 4+ €)FA(— N if b < [%] —2, (2.119)
0
and for k < m — 2,
_ L1
T3 <OV, I3 + (T+€)2A(CO Nnt) + |l(o, Wz il oo yepi-2- (2.120)

For 14, the direct application of the Holder inequality requires the control of the quantity || (o 792)5/5,;)”;6 ‘
which further requires the estimate of Ly, type norm of 9w However, |||68t(,u\||0O ¢ (or |IVulll1,00,t) does not
appear in the L{S, type norms present in A,, 7. To avoid this problem, since s@tw = (PV) x 68tu we can
integrate by parts in space before using product estimate. By doing so, we achieve that:

1
Ty < S|IVa,lI3 4 + Colliimnll? s + (Vo edpu)l[} A (Co,ﬂm,t)
(2.121)

S lIViipu 5. + Csllinnlli . + TA( s A ) Em 1
Finally, regarding the term 75 (defined in (2.115)) we control it by Cauchy-Schwarz inequality as:

Ts ST ( sup ([ (8)[1k) |G| e
s€[0,t]

By the estimate (2.118), the fact (2.104) and the Proposition 2.18, we get that:

N[

A(— L Nt (2.122)

Co ’

7_5 (T+€>
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To summarize, we have found by collecting (2.116)-(2.121) that for 0 < k <m — 2,

/ | ZFeiy, dede < 35191,

0 RY
L1 (2.123)
+ Cs (1, )17 ¢ + +lullzpe IIwH o 1B 1- 2) + (T+5)2A<COaNm,t)
- 1 1
<38V, lg. + CéllUllEmelleH o+ (TH )2 A(—, Non,i)»
€o
and also for 0 < k < [%] -2,
/ 1
[ [ 2 Foii dude <35IV IR + (T +2)PA( o). (2.124)

0 RY

Inserting (2.113)-(2.114), (2.123)-(2.124) in (2.110), we obtain by choosing § small enough that for any
0<k<m—2,

17 (Ol + 1VTnnlz e < 1007 + 1 Viin i e

L1 (2.125)
+ (T +e)2A(— Nmt) + (o, )|z llwll w12 Tgesmi—1y,
Co L H:s
where the convention || - [|;; = 0 if I < 0 is used. We thus get by induction on 0 < k <[] — 2 that:
- . 1 1
(O —2 + VT P00 S 10(0) [ Fm 2 + (T + 5>2A(007Nm,t)7 (2.126)

which, together with (2.107) and (2.85) gives that:

1

IVull} _ -2 S Vi (0,10) + (T + ) A( = M),
We then combine this estimate and (2.95) to obtain that:
2 a0l
e [l - S Vi (00,00) + (T + VA (, Now)
co

Therefore, we take benefits of the estimate (2.125) and the induction arguments to get (2.109). O

Proposition 2.18. Assume that (1.23) holds and let

\%
GY = gow - Vu — gawdivu — % x (e0pu + eu - Vu),
then we have:

_ 1
HXiGw”L%Hgg*? S A(a,Nm,t)-

Proof. Let us show the estimate of x;w - Vu, which is not direct since the higher order Lg%, norm is not

l'
included in A,, 7. Nevertheless, thanks to identity (2.35), one can write this term as:
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Xiw - Vu = X; (wlﬁylu + waly2u + (w - N)@nu).
Moreover, by identities (2.59) and (2.22),

w-N=(Vxu)-N
= —(ux N)Opn + (11,1 (u x N))' + (10,2 (u x N))® + u - curl N

which gives that for any ¢t € [0,T], any k > 0,

[(w-N)Ollms, S Nul®llgrgrs 1w - N)Ollkoo S Nul®)lle1,00
Therefore, by the Sobolev embedding (7.7), we have that:

[IxXiw - VU”L§H§'};2
t
0700,15”(81/1'“7“} : N)HL%H;’},_2 + ”quLfCH}f;_Q(/ ||(ay1u7w : N)(S)Hgnf&oods)
0

1
< HlvumO,oo,t”U”LgHgg—l + Hvu”Lgng’g—2||u”EF < A(%va,t)

[N

S Vel

The other two terms in the definition of G are similar or easier to treat, we omit the details.
Remark 2.19. Collecting the results stated in Lemmas 2.4, 2.10, 2.14, 2.12, we find that:
2 2 2
||EV(O', u) ||L,?°H&L*1 + ||V(U7 u)HLfngﬁ,”QﬂLnggfl + ”(07 u)HLtocHg*l

1 1
S YTZ(U(),UO) + (T + £':)EA(c_u/Vrn,T)'
0

2.6. e-dependent estimate of Vu

(2.127)

To finish the estimates for the energy norm, we are left to deal with HEVZUHLtong;*%EHVQUHLfCL?-

Lemma 2.20. Under the assumption (1.24), the following estimate holds:

1
A— , Np.1).
(CQ,N ,T)

Nf=

1eV2u(t) |2, m—2 S Y2 (00,u0) + (T +¢)

HE?
Proof. As u satisfies the equation:
epAu = —(pu+ N)eVdivu + go(e0u + cu - Vu) + Vo,
we have by elliptic regularity theory:

VU oo S > 12 0u(t)] g + &l Vdivu(t)| -

1]<m—2

1 1
+ ||u(t)||ch5—1 + Hva(t)”Hc’g*Z + 6;87rL,TA(avﬂm,T)~

(2.128)

(2.129)

It follows from the boundary condition (1.14), the identity (2.22) and the trace inequality (7.9) that:

e S 120,y S elVdiva®)ll e + el (w V) (8) .
|I|<m—2

(2.130)
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Inserting (2.48) and (2.130) into (2.129), one arrives at:
1 1
V20> S AT (@) Ol s + IOl + ) +<5Emrh (o),

which, combined with (2.127) leads to (2.128). O

Lemma 2.21. Under the assumption (1.24), we have the following estimate for V3o :

1

Proof. By (2.50) and (2.89), one finds that Vo solves:

1
2 . -~ = 2.132
e“g1(0 +u V)VU+(2M+)\)VU G (2.132)
where
1
G = —62(9/1863t0' + V(gluk) . akg) — E(2MILL—+)\) curlw — mgg(gatu +eu- Vu)

By taking the divergence of the equation (2.132), one arrives at:

3

1 -
2910 +u - V)Ao + ST )\Aa =divG — €*[¢| Vo - e, Vo + Z@i(glu) Vo] =: G (2.133)
i=1
From an energy estimate, we find
1 ~ 1
| Ac||F e + 1A0NZ2(q,) S T2 NA0 2@ IGllere + TA(aaﬂm,t)HgAU”zL;?OL?- (2.134)

We first observe that:
~ 1 5
||GHL10,CL2 5 A(CO ’ﬂm’t)sm,t'

Moreover, since in the local coordinate, we can find some coefficients a;; that depends smoothly on n, such
that (we use the convention Jys = 0y):

A=d%+ > yi(a;;0,) (2.135)

0<4,7<3,(4,5)#(3,3).
which yields:
[0uVo|lLeere S [|A0||Lerz + Vo pzemy, -
We thus obtain (2.131) from (2.134). O

2.7. Proof of Proposition 2.1

By collecting (2.7), (2.127), (2.128) and (2.131), we get (2.1).
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Remark 2.22. In view of the formal expansion (1.5), one expects the first three normal derivatives of o
to be bounded in L?(Q;). This can be achieved in the following way. By imposing additional assumption
on g, namely eV3a¢ € HL (), V30¢ € L?(2), one can show by following similar computations as in the
proof of Lemma 2.21 that: eV20 € L°H! Vo € L?H! . These estimates at hand, one can carry out
another energy estimate to control ||0yAc||2(q,), which further leads to the boundedness of ||V3o]12(q,)-
We remark that in the latter energy estimate, the knowledge of [|eV3ul|12(q,) is needed. Nevertheless, this
term can be bounded by all the controlled norms appearing in N, 7. More precisely, one has by equation

for the velocity
ediv Lu = go(e0iu + eu - Vu) + Vo,
and thus by (2.135):

leV3ullz2(q S leVdiv Lullz g + €92l 2,

(2.136)
< A(1/eo, Amr)(|(0w) | 2z, + IV (0, w)l| L2z, + 11V 20l 22 (00)-

3. Uniform estimates — LS norms
b

In this section, we aim to control the L7,

norms appearing in A, 7. Part of them can be deduced directly
from the Sobolev embedding in the conormal setting (see Proposition 7.4) and the norms controlled in the
previous section. Moreover, we use the maximum principle for transport-diffusion equation (3.5) satisfied by
w and of the damped transport equation (2.132) for Vo to get the L7, estimates of Vu and Vo respectively.

We will prove the following proposition.

Proposition 3.1. Assuming that (1.24), (1.23) hold, then there is a constant Co(1/co) depending only on 1/cy
and a polynomial A whose coefficients are independent of €, such that:

Am < Co(1/¢o) (Yin(00,u0) + Emr) + (62 + T)Am 1w A1/ co, A 7). (3.1)
Proof. Let us recall that A,, r is defined as:

Am,r = [Vulllo,co.r + (Vo divu)llm-s) o 7+ Il(o, w)llfmz1) o 7

2

+ [le* Vul

(m21),00,7 F lEVUllljmis) oo 7 +elll(or W) [l mgs) oo -

The last four terms of A, 1 can be controlled directly by the Sobolev embedding (7.7). For instance,

(o, w)lllmsr) oo S suP
0<s

(@) mgs, + [V )| mgs,) S Emor (3.3)
<s<T Heo H

co

1
e? |||VU|||[*"/T—1],OO,T S o?slgT (||VU(S)||H£:'T+3] + €||V2U(S)||H£:n;1]) S Emts

elllVul||;m <e su Vu(s mts, + ||[V2u(s m < Emn.T-
19l e S 510 IV gy + 92005 gs) S G

Note that we have [752] 41 <m — 2, [53] <m — 1 if m > 6.
We remark also that |||div ul]| [m=1] 00,7 AN be estimated by the other quantities in the definition of A, r.
Indeed, by using the equation satisfied by o, we have that:

eiv ull sy o < Mol e + < (3.4)

2
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It thus remains to control [[|Vulllo,co,r, [V lljzz1) o 7 We note that away from the boundaries where

2
the conormal Sobolev norm is equivalent to the usual Sobolev norm, these two terms can be bounded by

the standard Sobolev embedding. Therefore, it suffices to control |||x;Ont|||0,00, 7 |\|X1—8ﬂa|H[mT_1],OO’T, where
Xi, (1 < i < N) are smooth functions compactly supported in ;. Moreover, by identity (2.22) and

II(Opu) = w x n+ 2II(—(Dn)u),

we reduce our problem to the control of [|wl|o,e0, 7, [[XiOnO|[[m=1) o 7, Which is the aim of the following two

2

lemmas. O

We begin with the estimate for |||w|||o,co,» Which follows from the maximum principle of the transport-
diffusion equation for the vorticity.

Lemma 3.2. Under the assumption (1.24), the following estimate holds:
oo, S Nw0(0) Los () + Em, + (T + ) Az, 7. (3.5)
Proof. Recall that w solves (2.98) which is rewritten below for convenience:
920t +u - V)w — pAw = go(w - Vu —wdivu) + Vga X [(O +u-V)u] = G¥ € Q.
Since go(e0) satisfies the transport equation: 9;gs + div (gou) = 0, by the maximum principle, (one can refer

to Proposition 13 of [43])

t
1 W
lw®) =) < [[w(0)][Le () + lw(t)|L=(0) + iy / 1G“(8)||Lo< (o) ds. (3.6)
0

For the second term in the right hand side of (3.6), we use the boundary condition (1.14), the identity (2.22)
and (3.3), (3.4) to get that:

|w(t>|Loo(3Q) 5 |(u, 6yu7 diV u) (t)|Loo(3Q) S Sm,T + Eﬂ%l’T.

For the last term, we have by the assumption (1.24) and the property (1.23) that there is some C(1/¢g),
such that:

1
inf go

t
/ G (5)|| Lo () ds < C(1/co)T A, 1,
0

which ends the proof. O
In the following, we estimate |\|xi8na||\[m74],m,T:
Lemma 3.3. Under the assumption (1.24), we have:
1 1
Xi0u0 it S Yon(00,0) + Enr + 2R A (-, A ) (37)
0

where x; s a smooth function that is compactly supported in ;.
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Proof. We define R = x;0,0 = x;n- Vo. By (2.132), R solves the following equation:

5291(6‘tR +u-VR)+ T )\R =—%qiu- V(xing)oko + G- xin=: Gg (3.8)
where
1
G = —£*(g| Redo + V(grup) - Opo) — 5% curlw — mgg(eﬁtu +eu - Vu).
By applying Z7 (|I| < [™51]) to the equation (3.8), we get by setting R' = Z'R that

ngl(atR’ +u- VRI) +

T TR =2'Grt Chy+ Cho = H'

where Cf , = —€?[Z7,g1/e]ledyR, Cf , = —*[Z", g1u- V]R
It is convenient to use the Lagrangian coordinates. Define the unique flow X;(xz) = X (¢, x) associated to

{ X (t,x) = ult, X (t,x)) (3.9)
( .

X(0,2) =2 €.

Note that since u - njgg = 0, and u € Lip([0,T] x 2), we have for each t € [0,T], X; : 2 — Q is a
diffeomorphism. By using the characteristics method, R?(¢, X;(z)) can then be expressed in the following

way:
/ 1
RI(t, X, (2)) = e TEP RI(0) + / e_F(t_s’I)(SQ—HI)(S,XS(x))ds (3.10)
) g1
where I'(¢, 2) = QulJr)\ Ot 52g1(s,1X5(m))ds > (2u+>\) 5. Note that we have used assumption (1.24) and property

(1.23). Taking the supremum in (¢, z) € [0,7] x  on both sides of (3.10), and using that X (¢,-)(0 <t < T)
is a diffeomorphism of €2, we arrive at:

t
_ t—s 1
IR (t)]| 0y S IR (0)]| oo () + /6 @utrere CO?d5|||WI|||oo,T S RN 0) | o (o) + IH Nlooyr. (3.11)
0

We have thus reduced the problem to the estimate of [[|(Ck 1, Cko)llloo,r and |||GRH|["”T_1],00,T‘ By the
identities (2.35), (2.41), and the definition of Ay, 1, we have:

I(Ch1 Ch )l < 6A( s A, )P, T (3.12)

Moreover, Gr (defined in (3.8)) can be controlled as:

)

G RIlliz1-1,007 S €2 Am A1/ o, Amr) + l1(0, 1) | g,

Since curlw - n = div (w x n) + w - curln, the identity (2.60) yields

elixcurlw - nffm-s) o 7 < el Vullljmgr) oo
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which further leads to:

G R[22~ 1ooT§52ﬂmTA( A1) + Em,1- (3.13)
Inserting (3.12)-(3.13) into (3.11), we get (3.7). O
4. Proof of Theorem 1.1

Based on the uniform estimates established in previous sections, Theorem 1.1 can be shown by combining
classical local existence results stated in below with a bootstrap argument:

Theorem 4.1. Assume that (0§, us) € H?(2), and
—¢P < eoi(x) < P/e, VYxeQec(0,1].

There is some T, > 0 such that (1.15) has a unique strong solution which satisfies: (o%,u®) €
C([0,T¢), H?),uf € L?([0,T¢], H*). Moreover, the following property holds:

—3¢P < eo®(t,x) <3PJc Y(t,z) €[0,T°] x Q. (4.1)

This result can be obtained from Theorem 1.1 in [24]. Indeed, the statement in [24] requires higher
regularity for the velocity (but not for the density), namely u§ € H?, in order to include some time-space
Hélder continuity and also to make the boundary condition (1.14) pointwisely satisfied. Nevertheless, we
can use [24] to obtain Theorem 4.1. Indeed, to get the existence, we can approximate the initial velocity
ug in H? satisfying the compatibility condition at order one by a velocity u) € H3, still satisfying the
compatibility condition, and such that u)) converges to ug in H2. This yields a local solution (p",uV) with

N'in H? from Theorem 1.1 of [24]. Then, by using our a priori estimates, we can obtain that this local
solution exists on an interval of time independent of N and use standard compactness argument to pass to
the limit. A way to choose () is to use the approach of [24] based on the elliptic regularity for the Lamé
operator, basically we take u}’ = Pyug where Py is the L? projection on the N first eigenmodes.

By using Theorem 4.1, we can give the proof of Theorem 1.1.

4.1. Proof of Theorem 1.1

On the one hand, (c§,u§) € H?, by Theorem 4.1, one can find some T° > 0 such that there is a
unique solution of (1.15) satisfying: (o5, u®) € C([0,T¢], H?),u® € L*([0,T¢], H?). Moreover, condition (4.1)
holds. On the other hand, as (¢§, u§) € Yy, a higher regularity space, by standard propagation of regularity
arguments (for example based on applying finite difference instead of derivatives) in the estimates of Section 3
and Section 4, we find that the estimates of Proposition 1.6 hold on [0,7¢]. More specifically, we can find
a constant C(1/c¢y) and an increasing polynomial Ag that are independent of £ and T°, such that for any
0<T<min{l,7°},0<e <1,

1 1 1
N (o) < C(Z) Vi (06, ug) + (T + ) Ao M). (1.2)

Moreover, by using the characteristics method, we have that eoc can be expressed as,

of(t,x) = eoj(X / (divu/g1)(X (s, X (¢, ))) ds (4.3)
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where X (¢,-) is the flow associated to u.
Let us define

T: = sup{T|(c%,u") € C([0,T], H?),u* € L*([0,T], H?)},
T§ = sup{T < min{T%, 1}|Nm (0%, 1) < 2,/C(1/co) M,
—26P < eo(t,x) < 2P/c Y(t,x) €[0,T] x Q}

where M > sup.¢(g,1) Ym (05, u5)-
We now choose successively two constants 0 < g9 < 1 and 0 < Ty < 1 (uniform in € € (0,&]) which are
small enough, such that:

(To + £0)2 Ao (1/c0,2/C(1 /o) M) < 1/2,  24/C(1/co)MTp/co < P.

In order to prove Theorem 1.1, it suffices to show that T > Tj for every 0 < ¢ < gg. Suppose otherwise
T§ < Ty for some 0 < € < g, then in view of inequalities (4.2) and formula (4.3), we have by the definition
of g and T that:

N (0%,u) < /2C(1/co)M, VT <T =min{Ty, T}, (4.4)
—2¢P < eo®(t,x) < 2PJ¢ Y(t,z) €[0,T] x Q. (4.5)

We will prove that T' = Ty < T¢. This fact, combined with the definition of T and estimates (4.4), (4.5), yield
15 > Tp, which is a contradiction with the assumption 7§ < Tp. To continue, we shall need the claim stated
and proved below. Indeed, once the following claim holds, we have by (4.4) that ||(o%,u®)(To)| r2() < +oo.
Combined with the local existence result stated in Theorem 4.1, this yields that T > Tj.

Claim. For all e € (0,1], if Ny 1(0%,u) < 400, then (o°,u®) € C([0,T], H?), u¢ € L*([0,T], H?).
Proof of Claim. We see from the definition of Ny, 7 and the estimate (2.136) that:
eu® € L*([0,T), H®), 0w € L*([0,T), H'), o € L>([0,T], H?).

One deduces from interpolation that eu® € C([0,7T], H?). Moreover, carrying out direct energy estimates
for o in H%()), one gets that:

|0 R (t)] < K= (RE(t) + f2(1)) (4.6)
where K¢ = A(1/cy, |[|(Vo©, Vus, eV2uf)|||co,¢) is uniformly bounded and
RE(t) = |leo* ()32, S2(1) = llew (Ol llo® (D)= € L1([0,T)).

Inequality (4.6) and the boundedness of ||R*(-)||ze(o,77) leads to the fact that R°(-) € C([0,77]), which
further yields that eo® € C([0,77], H?). This ends the proof of the claim. Note that at this stage we do not
require the norm ||(o%,u%)||¢([0,7,52) to be bounded uniformly in e. O

5. Proof of Theorem 1.7

The convergence result follows from compactness arguments. At first, since o€ = w is uniformly
bounded in L>([0, Tp], W (Q))NL2([0, Ty], H*(£2)), we have that: P(p°) — P(p) in L*°([0, Tp], W (Q))N
L2([0,Ty], H*(£2)), which yields that p* — p in L%([0, To], H(Q)).
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For the convergence of u®, let us split the velocity into compressible part and incompressible part:
u® = V¢ + v° by using the Leray decomposition (2.2). We shall prove that the compressible part V¥*
tends to 0 in L7, H'(€2) whereas incompressible part of u¢ tends to u’ in L*(Qg ). Since V¥€ is uniformly
bounded in L? H?(2), we have that, up to the extraction of a subsequence (that we do not mention explicitly)
V¢ converges to QuP in L2 ([0, Tp], H*(R)). Nevertheless, by the equation (2.50), divu® tends to 0 in the
sense of distribution, which leads to Qu® = 0. Because of this, one can indeed see that, without any
extraction of the subsequences, V¥¢ — 0 in L2 ([0, Tp], H(2)).

We are now in position to prove the convergence of v°. By the equation of v® : (2.5),, 0;v° is uniformly
bounded in L?([0, Tp], H 1 (£2)) whereas v¢ is uniformly bounded in L2([0, Tp], H*(€2)). Therefore, by Aubin-
Lions lemma, {v¢} is compact in L?(Qr,), which yields, up to extraction of subsequences, the convergence
of v¢ (say to u®) in L?(Qr,)-

In the following, we aim to justify that «° is the unique weak solution of the incompressible Navier-Stokes
equation (1.3) satisfying (1.26). Let us rewrite the equations of v° as follows:

pOvE — uAv® + V€ = F° = Ff + F5, (5.1)
where
Ff=—(p° — p)(Owu® +u® - Vu©), F5=—p(® Vu® + V. Vo).
Note that we put the gradient terms pV(0,¥¢ + 1|V¥¢|?) into the pressure V7°. Let us write down the

weak formulation for (5.1). Multiplying equation (5.1) by a test function v € (C*([0,Tp] x Q))* which
satisfies divy = 0,1 - n|gg = 0, we obtain that for each 0 < ¢t < Tp,

pQ/(vE-w)(t,~) dx+u//vqﬁ-w dxds+/ Fe . 1p dads

Qt Q¢
t
= [)/(vS -)(0,-)dz + [)//vS - Optp dxds + ,u//H@nUE -9 dSyds.
Qt

Q 0 oQ

It remains to pass to the limit to show that u satisfies (1.27). We shall only focus on the last terms in
both sides of (5.2), as the other terms are direct. Since p* = ga(e0*), we have that (p° — p)/e is uniformly
bounded in L*>(Q7,), it then follows from the velocity equation in (1.15), that

//Ff - deds = //p —P(div Luf — v; Yo dzds.
pe
Q1

Q1

‘We then observe that

%//p _pVUa‘wdxds:%//MV(F%ﬁdxds:O
Qt

pe
Qs

by integrating by parts since

0200~ 20 o1
Ve = LV (Go)

where G(s) is such that
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/ o 92(3) - 92(0)
G'(s) = —92(8) .

In a similar way, we have that

// P = PYdives - dads = —5//div u® G"(e0%)Vo® - dads
pE

// PAu ~pdads = —5//6'” eo®) ((Vo® - V)u® wdxds—i—// pﬂﬁnu - duds.

0 00

These three above terms tend to zero, for the last one, we use that |[p° — pl||~(q,) = O(e) while I10,,u® is
uniformly bounded in L?(92) by using the Navier-boundary condition and the trace inequality. This yields

//FlE -tpdxds — 0.
Q1

Next, since V¥& — 0, Vu® — Vu®,v® — v in L*(Q;) and v° is uniformly bounded in L?([0, Tp], H(£2)),

we have that:
//Fzs -tpdxds — ﬁ//(uo -Vu) - 1) dads.
Qt Qr

Finally, for the boundary term in (5.2), we use the boundary condition for v¢ (see (2.72)):
[I(0yv°) = II(—2av® 4+ (Dn)v®) + 2I(—aV¥°® + (Dn)V¥®).

As v® — 4% in L*(Q;) and v° is uniformly bounded in L2([0,¢], H*(Q)), V¥* — 0 in L2 ([0,t], H' (1)),
it follows from the trace inequality and the Holder inequality that: v¥|pq — u®|aq in L?([0,t], L?(092)),
V¥ — 0 in L2 ([0,t], L2(012)). This yields:

t t
u//HanvE 1) dS,ds %u//ﬂ(—?aqur (Dn)u®) -4 dS,ds.

0 9Q 0 9Q

Therefore, u® satisfies the formulation (1.27) and hence is a weak solution to (1.3). Next, due to the uniform
boundedness of v® in LF H™ 1 and Vo© in LQT(J H™ INL>(Q7,), we get that u® has the additional regularity
property (1.26). The uniqueness result is easy owing to the boundedness of the Lipschitz norm. Since any
subsequence of u° will have an extracted subsequence that solves (1.27) and satisfies the additional regularity
property (1.26), we finally get from the uniqueness that the whole family u° converges to u°. This ends the
proof of Theorem 1.7.

6. Remarks on the exterior domains

In this short section, we make some remarks on the incompressible limit problem for (CNS) when the
domain is an exterior domain, that is = R3*\ K, where K C R? is a smooth compact domain. We first
remark that the uniform regularity estimates can be obtained in the same way as in the bounded domain
case (see Section 2-3). Indeed, to define conormal vector fields and conormal Sobolev spaces we only need a
finite covering property of the boundary without requiring any boundedness of the domain. Moreover, the
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Sobolev embeddings and the trace inequalities (Proposition 7.4, Lemma 7.5) widely used in Section 2-3 do
not depend on the size of the domain.

Note that in the case of exterior domains, one can obtain the strong convergence in time of the velocities,
namely u® — u® in L2([0,Tp), L?

c(2)) by using some properties of the wave equation. Indeed, in the

case of exterior domains, there is no point spectrum for the Neumann Laplacian and the RAGE Theorem
(Theorem 5.8 of [7] for example) can be used. We refer to [15,20] where this approach was used for weak
solutions of the Navier-Stokes-Fourier system, it can be easily used for solutions of the isentropic system
enjoying our stronger uniform estimates.

7. Appendix

We state here the product and commutator estimates which are used throughout the paper:

Lemma 7.1. For each 0 <t < T, and for any integer k > 2, one has the (rough) product estimates

IO ae, S SO rs, Mgl =y o + Mg e MLl 5 00,60 (7.1)

and commutator estimates:
1127, Alg@lee S NZF @ s Mgl -1.00 + N9 i NZF sty 0 s I =E, (7.2)
11280)*, flg@lize S 1E0S)@llges—2 gllx)— 1,00 + 19O lree NeDef isay oo - (7.3)

Proof. This lemma follows from simply counting the derivatives hitting on f or g. For instance, to prove
the product estimate (7.1) and the commutator estimate (7.2), one can use the following expansion:

ZNf)=( >, + > )CruZ'9Z'f)

[JI<[(k=1)/2]  [I-J|<[k/2]

=( > + X €22+ f2, |I=k O

JJI<k/2-1  1<|1-J|<[(k+1)/2]

As a corollary of Lemma 7.1 the following composition estimates hold:
Corollary 7.2. Suppose that h € C°(Q;) N L?H™ with
A < h(t,x) < Ay, V(t,xz) € Qy.
Let F(+) : [A1, A2] = R be a smooth function satisfying

sup  |[F™)|(s) < B.
s€[A1,A2]

Then we have the composition estimate, for p = 2,400
[E(h(-,-)) = FO) 2 mm < AB, (Il 12,00, )1l L2 27
where A(B, [||h[l|{m],00,¢) is a polynomial with respect to B and |[|h]|[m] co.¢-

This Corollary, combined with Lemma 7.1, leads to the following estimates:
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Corollary 7.3. Let g1(c0), g2(e0) defined in (1.16) and assume that (1.24), (1.23) hold. Then one has the
following estimates: for j =1,2, p = 2,400,

1
12951l Ly pm—r < EA(%’ llollig).oc,e) (e, Z0) [ Lpgem-1, (7.4)
1
1295l L pz—+ < 61\(%, el ,00,) ol e g (7.5)

1
lgj(e0) = g; (Ol Lp by < EA(E’ llo|

z)e0t) o]y 76)

We will use often the following Sobolev embedding inequality whose proof is similar to that of Proposi-
tion 12 and Proposition 20 of [35].

Proposition 7.4. Let Q) = Rf_ or a smooth bounded domain, we have the following Sobolev embedding in-
equality

1FOllz~) S IVFON i 7O sn + £l rsse- (7.7)

Proof. For the case of the half-space, this is a consequence of the inequality: for a function g defined on ]Ri,

1 1
Hf(t)”L“’(]Rﬁr) 5 ||azf(t)|‘12q§3 (Ri)“f(t)”ilﬁg(Ri) (7'8)

where s1, s9 are positive and satisfy s; + s2 > 2. One can refer to (Prop. 2.2) of [36] for the proof. The case
of general smooth bounded domains follows by working in local coordinates. 0O

The following trace inequalities are also used:

Lemma 7.5. For multi-index I = (Io,--- , Ipr) with |I| = k, we have the following trace inequalities:
121 F () 7200y S IV O 1F Ollezg, + 1 @)1 - (7.9)
t
/ 12" ()| 2200y ds SNV Fllzzms 1z e, + 112 - (7.10)
0
t
128 56) 5 S IV Ay, + 11 - (7.11)
0

In the next proposition, we state some elliptic estimates which are used frequently.

Proposition 7.6. Given a bounded domain Q with C**1 boundary. Consider the following elliptic equation
with Neumann boundary condition:

Ag=divf in Q
Owg=f-n+g on 0N (7.12)
Joqdz =0

The system (7.12) has a unique solution in H'(Q) which satisfies the following gradient estimate:

IVa@®)lz2() S 1FO)llz20) + 190 53 50 (7.13)
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Moreover, for j+1 =k,

IVa®)llpse) S NFOllzr@) + 190 go-3 50 (7.14)

V2 q() gy S N(Fdiv f(8)llga ) +1(f - m, DIGIFETNS (7.15)

Proof. The existence of the weak solution in H =: {q| ¢ € H'(Q), [,qdz = 0} as well as the gradient
estimate (7.13) comes from Lax-Milgram Lemma. The estimates (7.14)-(7.15) are then standard regularity

estimates for elliptic equations, that take into account the number of time derivatives (the time variable
being only a parameter in this Lemma). O

Finally, we state an elementary estimate of the heat kernel which is useful in the estimates of the vorticity.
Lemma 7.7. Let
22
K(s,y,2) = [N (47 fi|NI*s)"20. (" 7P%),  N(y) = (—010(y), —02(y), 1)

where (y,z) € Ri and set ZP = 8511 85§Z§3,Z3 = 150.. We have the following estimate:

1Z°K (5,9, )2,y < C(B, fi, |l ciorsn)s i (7.16)

Proof. It suffices to prove that, for any [ € N, there is a polynomial Py g4, with 23|+ 1 degree, such that:

22

z —
|ZﬁK(37ya Z)| S C(ﬂaﬁv |§0‘C|ﬁ|+1)P2|:8H‘1($)6 A 5571 Vs > O7y € ]Rz' (717)

By direct computation, one can see that, there exists a polynomial with degree 2(31 + 82) +1: Po(3,48,)+1,
a smooth function depends on V¢ and its derivatives up to order 51 + 52 : Fg, 4+, (Vy¢) such that

z =2
85118522]:{(5’ Y, Z) = P2(ﬂ1+,32)+1 (_)Fﬁl-i'ﬁz (Vysﬁ)e ARINIZs 5 1'

NG

To prove (7.17), it suffices to show by induction arguments that, there exists a smooth function F(|N|?),
such that

—6s

22 =2
S

z
o <P2(/31+6z)+1( %)z

<
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