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We establish uniform with respect to the Mach number regularity estimates for 
the isentropic compressible Navier-Stokes system in smooth domains with Navier-
slip condition on the boundary in the general case of ill-prepared initial data. To 
match the boundary layer effects due to the fast oscillations and the ill-prepared 
initial data assumption, we prove uniform estimates in an anisotropic functional 
framework with only one normal derivative close to the boundary. This allows to 
prove the local existence of a strong solution on a time interval independent of the 
Mach number and to justify the incompressible limit through a simple compactness 
argument.
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r é s u m é

Nous établissons des estimations de régularité uniformes par rapport au nombre de 
Mach pour le système de Navier-Stokes compressible isentropique dans les domaines 
réguliers avec condition de Navier au bord dans le cas général de données initiales 
mal préparées. Pour être cohérent avec les effets de couche limite dus aux oscillations 
rapides et à l’hypothèse de données initiales mal préparées, nous prouvons des 
estimations uniformes dans un cadre fonctionnel anisotrope avec une seule dérivée 
normale proche du bord. Ceci permet de prouver l’existence locale d’une solution 
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forte sur un intervalle de temps indépendant du nombre de Mach et de justifier la 
limite incompressible par un argument de compacité simple.

© 2022 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we consider the following scaled isentropic compressible Navier-Stokes system (CNS)ε⎧⎪⎪⎨⎪⎪⎩
∂tρ

ε + div (ρεuε) = 0,

∂t(ρεuε) + div (ρεuε ⊗ uε) − divLuε + ∇P (ρε)
ε2 = 0, (t, x) ∈ R+ × Ω

uε|t=0 = uε
0, ρ|t=0 = ρε

0,

(1.1)

where Ω ⊂ R3 is a smooth bounded domain, ρε(t, x) and uε(t, x) are the density and the velocity of the 
fluid respectively, P is the pressure The viscous stress tensor takes the form:

Luε = 2μSuε + λdiv uεId, Suε = 1
2(∇uε + ∇tuε).

Here, μ, λ are viscosity parameters that are assumed to be constant and to satisfy the condition: μ >

0, 2μ + 3λ > 0. The parameter ε is the scaled Mach number which is assumed small, that is ε ∈ (0, 1].
Since we are considering the system in a domain with boundaries, we shall supplement the system (1.1)

with the Navier-slip boundary condition

uε · n = 0, Π(Suεn) + aΠuε = 0 on ∂Ω (1.2)

where n is the unit outward normal vector and a is a constant related to a slip length (our analysis can be 
easily extended to a a smooth section of T ∗∂Ω ⊗ T∂Ω). We use the notation Πf for the tangential part of 
a vector f , Πfε = fε − (fε · n) · n. Let us remark that Navier-slip boundary conditions can be expressed as 
a non-homogeneous Dirichlet condition on curl u × n,

curl u × n = 2Π(−au + Dn · u) on ∂Ω.

The special case curl u × n = 0 corresponds to the choice a = Dn.
The aim of this paper is to study the uniform regularity (with respect to ε) and the low Mach number 

limit of system (1.1). Formally, due to the stiff term ∇P (ρε)
ε2 , the pressure (and hence the density ρε) is 

expected to tend to a constant state. One thus expects to obtain in the limit a solution to the following 
incompressible Navier-Stokes system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ̄(∂tu
0 + div (u0 ⊗ u0)) − Δu0 + ∇π = 0,

div u0 = 0, (t, x) ∈ R+ × Ω
u0|t=0 = u0

0,

u0 · n = 0, Π(Su0n) + aΠu0 = 0 (t, x) ∈ R+ × ∂Ω.

(1.3)

This limit process is therefore frequently referred to as the incompressible limit.
The rigorous justification of this limit process has been studied extensively in different contexts depending 

on the generality of the system (isentropic or non-isentropic), the type of the system (Navier-Stokes or Euler), 
the type of solutions (strong solutions or weak solutions), the properties of the domain (whole space, torus 
or bounded domain with various boundary conditions), as well as the type of the initial data considered 
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(well-prepared or ill-prepared). Roughly speaking, in the case of the compressible Euler system, one proves 
first that the local strong solution exists on an interval of time independent of the Mach number, and then 
compactness arguments are developed to pass to the limit. In the case of the compressible Navier-Stokes 
system, one can either try to use the same approach as for the inviscid case (prove the existence of a strong 
solution on an interval of time independent of the Mach number and then try to pass to the limit) or 
try to pass to the limit directly from global weak solutions. Both approaches have been used in domains 
without boundaries (whole space or torus), nevertheless when a boundary is present the question of uniform 
regularity for general data is more subtle, as we shall see below, and has not been addressed.

More precisely, the mathematical justification of the low Mach number limit was initiated by Ebin [14], 
Klainerman-Majda [30,31] for local strong solutions of compressible fluids (Navier-Stokes or Euler), in the 
whole space with well-prepared data (div uε

0 = O(ε), ∇P ε
0 = O(ε2)) and later, by Ukai [49] for ill-prepared 

data (div uε
0 = O(1), ∇P ε

0 = O(ε)). In the latter case, there are acoustic waves of amplitude 1 and frequency 
ε−1 in the system. These works were extended by several authors in different settings. For instance, one 
can refer to [2,5,39,40] for the non-isentropic system and ill-prepared initial data whenever the domain is 
the whole space or the torus, and also [29,44] for bounded domains with well-prepared initial data. Uniform 
(in Mach number) regularity estimates for the non-isentropic Euler equations in a bounded domain are 
established in [1]. The low Mach number limit of weak solutions for the viscous fluid system (1.1) was 
studied by Lions and the first author [32], [33] where the convergence of the global weak solutions of the 
isentropic Navier-Stokes system towards a solution of the incompressible system is established. The result 
holds for ill-prepared initial data and several different domains (whole space, torus and bounded domain 
with suitable boundary conditions). In general, for ill-prepared data, one can only obtain weak convergence 
in time, nevertheless, by using the dispersion of acoustic waves in the whole space, Desjardins and Grenier 
[11] could get local strong convergence. There are also many other related works, one can see for example 
[2,4,6,8,10,15,19,23,26,34]. For more exhaustive information, one can refer for example to the well-written 
survey papers by Alazard [3], Danchin [9], Feireisl [17], Gallagher [21], Jiang-Masmoudi [28], Schochet 
[45].

Let us focus now more specifically on the study of the low Mach limit of the isentropic compressible 
Navier-Stokes (CNS)ε system in domains with boundaries with ill-prepared initial data, which is more 
related to the interest of the current paper. As mentioned above, Lions and Masmoudi [32] studied the 
convergence of weak solutions to (CNS)ε in bounded domains with Navier-slip boundary condition. Later 
on, for low Mach limit in bounded domains with Dirichlet boundary condition, the authors in [12,27] noticed 
that, under some geometric assumption on the domain, the acoustic waves are damped in a boundary layer 
so that local in time strong convergence (L2

t,x) holds. Recently, this result is extended by Feireisl et al.
[18] and Xiong [51] to the case of Navier-slip boundary conditions with a of the order ε− 1

2 . In this case, 
the boundary layer effect is comparable to the one in the Dirichlet case. One can also refer to [13,15,16]
for the justification of convergence in unbounded domains by using the local energy decay for the acoustic 
system. Without one of the above properties of the domain, strong convergence does not hold for ill-prepared 
data.

In the current paper, our aim is to obtain uniform (with respect to ε) high order regularity estimates for 
(CNS)ε in bounded domains with ill-prepared initial data, in order to get the existence of a local strong 
solution on a time interval independent of ε. There are only a few papers addressing this issue. In [42], 
the authors establish uniform global (for small data) H2 estimates under a (very) well-prepared initial data 
assumption, namely the second time derivative of the velocity needs to be uniformly bounded initially. For 
ill-prepared initial data, the situation is more subtle and a uniform H2 estimate, even locally in time, cannot 
be expected. Indeed, at leading order, after linearization and symmetrization, the system (1.1) becomes:

∂tU
ε + 1

ε
LUε −

(
0

divLuε

)
= 0, L =

(
0 div
∇ 0

)
, U = (σε, uε) ∈ R × R3

+. (1.4)
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Due to the presence of the diffusion term as well as the singular linear term, a boundary layer correction 
to the highly oscillating acoustic waves appear and create unbounded high order normal derivatives of the 
velocity. Note that here, we do not start from a small viscosity problem, nevertheless, at the scale τ = t/ε

of the acoustic waves the system (1.4) behaves like a small viscosity perturbation of the acoustic system. 
For example, in the easiest case where the boundary is flat (for example Ω = R3

+), we expect the following 
expansion of the solutions to (1.4) involving boundary layers⎧⎪⎨⎪⎩

σε(t, x) = σI
0( t

ε , t, x) + ε
3
2 σB( t

ε , t, x, z√
ε
) + · · · ,

uε(t, x) = uI
0( t

ε , t, x) +
√

ε

(
uB

1,τ ( t
ε , t, x, z√

ε
)

0

)
+ εuB

2 ( t
ε , t, x, z√

ε
) + · · ·

(1.5)

where x = (y, z), z > 0, which suggests that ‖uτ ‖L2
t H1 , ‖uε

3‖L2
t H2 , ‖σε‖L2

t H3 can be uniformly bounded 
whereas ‖∂t(σε, uε)‖L2

t,x
and ‖∂2

z uε
τ ‖L2

t,x
will blow up as ε tends to 0.

In order to get uniform high order estimates, we shall thus need to use a functional framework based on 
conormal Sobolev spaces that minimize the use of normal derivatives close to the boundary in the spirit 
of [35,36] (conormal Sobolev spaces have been widely used to study initial boundary value problems for 
parabolic and hyperbolic equations, see for example [46], [25,48], [22,38,41]). Nevertheless, note that here 
we have to handle simultaneously the fast oscillations in time and a boundary layer effect so that the 
difficulties and the analysis will be different from the ones in [43,50] where compressible slightly viscous 
fluids are considered. Indeed, the energy estimates for conormal derivatives cannot be easily obtained since 
for example tangential vector fields do not commute with the singular part of the system, while in order to 
include ill-prepared data, it will be impossible to get uniform estimates for high order time derivatives as it 
is done in [43,50] in the study of the inviscid limit. We shall explain more these two difficulties below after 
the introduction of the various norms used in this paper.

1.1. Conormal Sobolev spaces and notations

To define the conormal Sobolev norms, we take a finite set of generators of vector fields that are tangent 
to the boundary of Ω: Zj(1 ≤ j ≤ M). Due to the appearance in (1.5) of the ‘fast scale’ variable t

ε , it is 
also necessary to involve the scaled time derivative Z0 = ε∂t. We set

ZI = Zα0
0 · · · ZαM

M , I = (α0, α1, · · · αM ) ∈ NM+1

Note that ZI contains not only spatial derivatives but also the scaled time derivative ε∂t. We introduce the 
following Sobolev conormal spaces: for p = 2 or +∞,

Lp
t Hm

co = {f ∈ Lp
(
[0, t], L2(Ω)

)
, ZIf ∈ Lp

(
[0, t], L2(Ω)

)
, |I| ≤ m},

equipped with the norm:

‖f‖Lp
t Hm

co
=

∑
|I|≤m

‖ZIf‖Lp([0,t],L2(Ω)), (1.6)

where |I| = α0 + · · · αM . For the space modeled on L∞, we shall use the following notation for the norm:

�f�m,∞,t =
∑

|I|≤m

‖ZIf‖L∞([0,t]×Ω). (1.7)

Since the number of time derivatives and spatial conormal derivatives need sometimes to be distinguished, 
we shall also use the notation:
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‖f‖Lp
tHj,l =

∑
I=(k,Ĩ),k≤j,|Ĩ|≤l

‖ZIf‖Lp([0,t],L2(Ω)) (1.8)

and to simplify, we will use Hj = Hj,0. To measure pointwise regularity at a given time t (in particular also 
with t = 0), we shall use the semi-norms

‖f(t)‖Hm
co

=
∑

|I|≤m

‖(ZIf)(t)‖L2(Ω), ‖f(t)‖Hj,l =
∑

I=(k,Ĩ),k≤j,|Ĩ|≤l

‖ZIf(t)‖L2(Ω). (1.9)

Finally, to measure regularity along the boundary, we use

|f |Lp
t H̃s(∂Ω) =

[s]∑
j=0

|(ε∂t)jf |Lp([0,t],Hs−j(∂Ω)). (1.10)

Let us recall, how the vector fields Zj , 1 ≤ j ≤ M can be defined. We consider Ω ∈ R3 a smooth domain 
(the following construction and our results are actually valid as long as the boundary of Ω can be covered 
by a finite number of charts), therefore, there exists a covering such that:

Ω ⊂ Ω0 ∪N
i=1 Ωi, Ω0 � Ω, Ωi ∩ ∂Ω �= ∅, (1.11)

and Ωi ∩ Ω is the graph of a smooth function z = ϕi(x1, x2).
In Ω0, we just take the vector fields ∂k, k = 1, 2, 3. To define appropriate vector fields near the boundary, 

we use the local coordinates in each Ωi:

Φi : (−δi, δi) × (0, εi) → Ωi ∩ Ω

(y, z)t → Φi(y, z) = (y, ϕi(y) + z)t
(1.12)

and we define the vector fields (up to some smooth cut-off functions compactly supported in Ωi) as:

Zi
k = ∂yk = ∂k + ∂kϕi∂3, k = 1, 2 Zi

3 = φ(z)(∂1ϕ1∂1 + ∂2ϕ1∂2 − ∂3), (1.13)

where φ(z) = z
1+z , and ∂k, k = 1, 2, 3 are the derivations with respect to the original coordinates of R3. We 

remark that if Ω = R3
+, the conormal vector fields can be defined globally due to the flat boundary:

Z1 = ∂1, Z2 = ∂2, Z3 = z

1 + z
∂z.

We shall denote by n the unit outward normal to the boundary. In each Ωi, we can extend it to Ωi by 
setting

n(Φi(y, z)) = 1
|N|N, N(Φi(y, z)) = (∂1ϕi(y), ∂2ϕi(y), −1)t.

In the same way, the projection on vector fields tangent to the boundary,

Π = Id − n ⊗ n

can be extended in Ωi by using the extension of n.
Let us observe that by identity

Π(∂nu) = Π((∇u)n) = 2Π(Su) − Π((Du)n)
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with [(∇u)n]i =
∑3

j=1 nj∂jui, [(Du)n]i =
∑3

j=1 ∂iujnj , the boundary conditions (1.2) can be reformulated 
as:

u · n|∂Ω = 0, Π(∂nu) = Π[−2au + (Dn)u] (1.14)

where [(Dn)u]i =
∑3

j=1 ∂injuj .

1.2. Main results

Let us introduce the new unknown

σε = P (ρε) − P (ρ̄)
ε

,

where ρ is a positive constant state, we can rewrite the system (1.1) into the following form which is more 
convenient to perform energy estimates:⎧⎪⎪⎪⎨⎪⎪⎪⎩

g1(εσε)
(
∂tσ

ε + uε · ∇σε
)

+ div uε

ε
= 0,

g2
(
εσε)(∂tu

ε + uε · ∇uε
)

− divLuε + ∇σε

ε
= 0, (t, x) ∈ R+ × Ω

uε|t=0 = uε
0, σε|t=0 = σε

0,

(1.15)

where the scalar functions g1, g2 are defined by

g2(s) = ρε = P −1(P̄ + s), g1(s) = (ln g2)′(s); s > −P̄ = −P (ρ̄). (1.16)

In order to establish uniform energy estimates, we shall use the following quantity

Nm,T (σε, uε) = Em,T (σε, uε) +Am,T (σε, uε)

where Em,T contains L2 (in space) type quantities

Em,T (σε, uε) = ‖(σε, uε)‖L∞
T Hm + ‖∇(σε, uε)‖L∞

T Hm−2
co ∩L2

T Hm−1
co

+ ε
(
‖(σε, uε)‖L∞

T Hm
co

+ ‖∇(σε, uε)‖L∞
T Hm−1

co
+ ‖∇2uε‖L∞

T Hm−2
co

)
+ ε‖∇2σ‖L∞

T L2 , (1.17)

and Am,T involves L∞ (in space and time) type quantities

Am,T (σε, uε) = ‖|∇uε‖|0,∞,T + ‖|(∇σε, div uε, ε
1
2 ∇u)‖|[ m−1

2 ],∞,T + ‖|(σε, uε)‖|[ m+1
2 ],∞,T

+ ε‖|∇uε‖|[ m+1
2 ],∞,T + ε‖|(σε, uε)‖|[ m+3

2 ],∞,T . (1.18)

Note that the norms involved in the above definitions are defined in (1.6)-(1.8). See also Remarks 1.4, 1.5
and 2.5 for the comments on the norms appearing in Em,T and Am,T .

Before stating our main result, we introduce the following definition.

Definition 1 (Compatibility conditions). We say that (σε
0, uε

0) satisfy the compatibility conditions up to order 
m if:

(ε∂t)juε
∣∣ · n = 0, Π

[
S

(
(ε∂t)juε|t=0

)
n
]

= −aΠ
[
(ε∂t)ju|t=0

]
on ∂Ω, j = 0, 1 · · · m − 1.
t=0
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Note that the restriction of the time derivatives of the solution at the initial time can be expressed 
inductively by using the equations. For example, we have

(ε∂tu
ε)(0) = 1

ρε
0

(−εuε
0 · ∇uε

0 + εdivLuε
0 − ∇σε

0).

We thus define the admissible space for initial data as

Ym =
{

(σε
0, uε

0) ∈ H2(Ω)4, Y ε
m(σε

0, uε
0) < +∞, (σε

0, uε
0) satisfy the compatibility conditions up to order m

}
where

Ym(σε
0, uε

0) =: ε‖(σε
0, uε

0)‖H2(Ω) + ‖(σε, uε)(0)‖Hm
co

+ ‖∇(σε, uε)(0)‖Hm−1
co

+
∑

|I|≤[ m−1
2 ]

‖ZI(∇σε, ∇uε)(0)‖L∞(Ω)
(1.19)

by using our notation (1.9). Note that as explained above, by using inductively the equations to express the 
time derivatives Ym(σε

0, uε
0) can indeed be expressed in terms of the initial data only.

The following is our main uniform regularity result:

Theorem 1.1 (Uniform estimates). Given an integer m ≥ 6 and a Cm+2 smooth bounded domain Ω. Consider 
a family of initial data such that (σε

0, uε
0) ∈ Ym, and

sup
ε∈(0,1]

Ym(σε
0, uε

0) < +∞,

−c̄P̄ ≤ εσε
0(x) ≤ P̄ /c̄, ∀x ∈ Ω, ε ∈ (0, 1],

where 0 < c̄ < 1/4 is a fixed constant, P̄ = P (ρ̄). There exist ε0 ∈ (0, 1] and T0 > 0, such that, for any 
0 < ε ≤ ε0, the system (1.15), (1.2) has a unique solution (σε, uε) which satisfies:

−2c̄P̄ ≤ εσε(t, x) ≤ 2P̄ /c̄, ∀(t, x) ∈ [0, T0] × Ω, (1.20)

and

sup
ε∈(0,ε0]

Nm,T0(σε, uε) < +∞. (1.21)

Let us begin with a few comments about the above assumptions and our result.

Remark 1.2. In view of (1.20), there exists c0 ∈ (0, 1], such that:

c0 ≤ ρε(t, x) = g2(εσ) ≤ 1/c0 ∀(t, x) ∈ [0, T0] × Ω

Moreover, as a consequence of (1.21), the following uniform estimates hold:

sup
ε∈(0,ε0]

(
‖(σε, uε)‖L∞

T0
Hm−1

co ∩L2
T0

Hm
co

+ ‖∇(σε, uε)‖L∞
T0

Hm−2
co ∩L2

T0
Hm−1

co
+ ‖|∇(σε, uε)‖|0,∞,t

)
< +∞,

in particular, we have a uniform estimate for ‖∇(σε, uε)‖L∞([0,T0]×Ω).
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Remark 1.3. Because of the compatibility conditions, the assumption supε∈(0,1] Ym(σε
0, uε

0) < +∞ imposes 
that the data are prepared (in the sense that it may depend on ε) on the boundary. Nevertheless, this is 
compatible with the fact that

(div uε, ∇σε) = O(1)

in the domain and thus ill-prepared data in the usual sense. Indeed, note that Ym clearly contains smooth 
functions which vanish identically near the boundary. This kind of compatibility conditions also appears in 
the study of the incompressible limit of the Euler system in bounded domains [1].

Remark 1.4. The control of the weighted time derivatives (ε∂t)k up to highest order k = m : ‖(σε, uε)‖L∞
T Hm

is available since time derivation commutes with the space derivation. Moreover,

‖(σε, uε)‖L∞
T Hm−1

co ∩L2
T Hm

co
� Em,T (σε, uε). (1.22)

In other words, we can control the highest number of derivatives in the L2
t L2

x norm but lose the uniform 
control of the highest space conormal derivatives in L∞

t L2
x. This is due to the bad commutation properties 

of the space conormal derivatives with the singular part of the system.

Remark 1.5. The solution constructed in Theorem 1.1 is a strong solution in the sense that for ε > 0 fixed 
(σε, uε) ∈ L∞([0, T0], H1 × H2), uε ∈ L2([0, T0], H3). Note that we further have a uniform control of the 
L∞

t Hm−1 ∩ L2
t Hm norms in every compact set in the interior of the domain. Nevertheless, due to boundary 

layer effects (see (1.5)), we cannot expect uniform estimates for higher order normal derivatives near the 
boundary.

To prove Theorem 1.1, the crucial step is to show the following uniform a priori estimate which is the 
heart of this paper:

Proposition 1.6. Let c0 ∈ (0, 1] be such that:

∀s ∈
[

− 3c̄P̄ , 3P̄ /c̄
]
, c0 ≤ gi(s) ≤ 1/c0, i = 1, 2, |(g1, g2)|Cm

([
−3c̄P̄ ,3P̄ /c̄

]) ≤ 1/c0 (1.23)

where c is such that for some T ∈ (0, 1] the following assumption holds:

−3c̄P̄ ≤ εσε(t, x) ≤ 3P̄ /c̄ ∀(t, x) ∈ [0, T ] × Ω, ∀ε ∈ [0, 1]. (1.24)

Then, there exist C(1/c0) > 0 and a polynomial Λ0 (whose coefficients are independent of ε), such that, for 
any ε ∈ (0, 1], we have for a smooth enough solution of (1.15) on [0, T ] the following estimate:

N2
m,T (σε, uε) ≤ C

( 1
c0

)
Y 2

m(σε
0, uε

0) + (T + ε) 1
2 Λ0

( 1
c0

,Nm,T (σε, uε)
)
, (1.25)

where Ym(σε
0, uε

0) is defined in (1.19).

This proposition is the consequence of Proposition 2.1 and 3.1, which will be established in Section 2 and 
Section 3 respectively.

By combining the uniform estimates (1.21) stated in Theorem 1.1 with a compactness argument, we get 
the following convergence result:
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Theorem 1.7 (Convergence). Under the assumptions of Theorem 1.1, let (σε, uε) the solution defined on 
[0, T0] given by Theorem 1.1 and assume that uε

0 converges strongly in L2(Ω) to some u0
0 when ε tends to 

zero. Then, as ε tends to zero, ρε (defined by (1.16)) converges to ρ in L∞([0, T0] × Ω) and uε converges in 
L2

w([0, T0], L2(Ω)) (weak convergence in time) to u0 such that

u0 ∈ L∞
T0
H0,m−1 ∩ L2

T0
H0,m, ∇u0 ∈ L2

T0
H0,m−1 ∩ L∞([0, T0] × Ω). (1.26)

Moreover, u0 is the (unique in this class) weak solution to the incompressible Navier-Stokes system with 
Navier boundary condition (1.3).

Note that L2
T0
H0,m is defined in (1.8) and involves only spatial conormal derivatives.

Remark 1.8. Due to the absence of uniform estimate for the second order normal derivatives and thus also 
for the strong trace of the normal derivative, u0 has to be interpreted as the weak solution to (1.3) in the 
following usual sense: for any ψ ∈ C∞([0, T0] × Ω) with div ψ = 0, ψ · n|∂Ω = 0, the following identity holds: 
for every 0 < t ≤ T0,

ρ̄

ˆ

Ω

(u0 · ψ)(t, ·) dx + μ

¨

Qt

∇u0 · ∇ψ dxds + ρ̄

¨

Qt

(u0 · ∇u0) · ψ dxds

= ρ̄

ˆ

Ω

(u0
0 · ψ)(0, ·) dx + ρ̄

¨

Qt

u0 · ∂tψ dxds + μ

tˆ

0

ˆ

∂Ω

Π(−2au0 + (Dn)u0) · ψ dSyds,

(1.27)

where Qt = [0, t] × Ω and dSy denotes the surface measure of ∂Ω.

Remark 1.9. The convergence is weak in the time variable due to the lack of uniform estimate for ∂t(σε, uε). 
This cannot be improved since in our bounded domain setting, there is no large time dispersion effect for 
the acoustic waves, and since because of our Navier boundary conditions with fixed slip length, there is no 
damping in the boundary layers of the acoustic waves. Nevertheless, if Ω is changed into an exterior domain, 
the strong convergence in time can be shown by using the RAGE Theorem [15,20], see Section 6 for this 
aspect.

Note that when ε tends to zero, we have convergence of the whole family uε and not only of subsequences 
due to the uniqueness for the limit system at this level of regularity.

1.3. Difficulties and strategies

We shall now explain the main difficulties and the main strategies in order to prove Proposition 1.6. 
As already mentioned the main feature of our problem is the presence of both fast time oscillations and a 
boundary layer in space. These two aspects are well-understood when they occur separately, but in order 
to handle them simultaneously some new ideas will be needed.

On the one hand, concerning the inviscid limit problem, one controls [35,43,50] the high order tangential 
derivatives by direct energy estimates, and then uses the vorticity to control the normal derivatives. Never-
theless, for the system with low Mach number, even the tangential derivative estimates are not easy to get, 
since the spatial tangential derivatives do not commute with ∇, div, defined with the standard derivations 
in R3, and thus create singular commutators. Without this a priori knowledge on the tangential derivatives, 
the estimate of the vorticity cannot be performed as in [35] [36] because of the consequent lack of information 
on its trace on the boundary. On the other hand, for the compressible Euler system with low Mach number, 
uniform high regularity estimates are established for example in [1]. One can get uniform Hs(s > 5/2) es-
timates by using first ε∂t derivatives and then recover space derivatives by using the equations to estimate 
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the divergence of the velocity and the gradient of the pressure and a direct energy estimates for the vorticity 
which solves a transport equation with a characteristic vector field. Here, in the case of viscous fluids, we 
face again the fact that the estimates of the vorticity are challenging due to the lack of information on its 
trace on the boundary at this stage.

In order to get the missing information, we shall first use the Leray projection (the precise definition 
(2.2) is in Section 3) to split the velocity into a compressible part and an incompressible part: uε =
∇Ψε +vε. On the one hand, the compressible part ∇Ψε of the velocity can be controlled by div uε thanks to 
standard elliptic theory and hence by using the mass conservation equation and the energy estimates for ε∂t

derivatives. On the other hand, the incompressible part vε solves, up to the control of non-local commutators, 
a convection-diffusion equation without oscillations, and thus one can use direct energy estimates to get a 
control of ‖vε‖L∞

t Hm−1
co

and ‖∇vε‖L2
t Hm−1

co
. Note that we cannot estimate the maximal number of derivatives 

m due to the lack of structure of the coupling terms involving the compressible part in the energy estimates. 
The key point here is that the diffusion (which on the other hand creates new difficulties in the control 
of the vorticity) allows to get the estimate of ‖∇vε‖L2

t Hm−1
co

. This is still not enough to close an estimate 
since, because of the time oscillations, we cannot use Sobolev embedding in time to control ‖∇vε‖L∞

t Hm−2
co

as it is done in small viscosity problems for compressible fluids (see for example [43], [50]). Here, we only 
have estimates for powers of ε∂t instead of ∂t. Nevertheless, with the additional information obtained from 
vε, we can then reduce the matter to the study of ‖ωε × n‖L∞

t Hm−2
co

where ωε is the vorticity, which solves 
the heat equation with a non-homogeneous Dirichlet boundary condition which can be controlled from the 
previous estimates. We shall get the estimate by using the Green’s function of the heat equation.

Outline of the proof of Theorem 1.1. The uniform energy estimates will be more precisely achieved in the 
following steps: (we shall skip the ε dependence in the notations for the sake of simplicity).

Step 1: Uniform high-order ε∂t derivatives and ε-dependent high-order conormal derivatives. In this 
step, we aim to prove two kinds of estimates. Namely, uniform estimates for high order ε∂t derivatives, 
‖(σ, u)‖L∞

t Hm , and ε-dependent estimates: ε‖(σ, u)‖L∞
t Hm

co
, ε‖(∇σ, div u)‖L∞

t Hm−1
co

. On the one hand, since 
the time derivative ε∂t commutes with the spatial derivatives, we can get uniform estimates for high order 
time derivatives. Note that we use ε∂t instead of ∂t since we are dealing with ill-prepared data. On the other 
hand, as the spatial conormal vector fields do not commute with ∇, div, the singular part of the system, we 
need at this stage to add this additional ε weight to control the commutator.

Step 2: Uniform estimates for the incompressible part of the velocity. Let us denote by v = Pu, and 
∇Ψ = Qu the incompressible and compressible part of the velocity respectively, where P , Q are defined in 
(2.2). By applying the projection P on the equation for the velocity and expanding the boundary conditions, 
we find that v solves:⎧⎨⎩ ρ̄∂tv − μΔv + ∇q + g2−ρ̄

ε ε∂tu + g2u · ∇u = 0 in Ω

v · n = 0, Π(∂nv) = Π(−2au + Dn · ∇Ψ + Dn · u) on ∂Ω
(1.28)

where

∇q = −Q(g2 − 1
ε

ε∂tu + g2u · ∇u − μΔv).

Note that the first boundary condition v · n = 0 is due to the definition of the projection P while the second 
boundary condition is deduced from (1.14). The incompressible part v interacts with the compressible part 
∇Ψ through the source term and the boundary condition. Due to the absence of singular terms, one can get 
the uniform estimates for v (namely ‖v‖L∞

t Hm−1
co

and ‖∇v‖L2
t Hm−1

co
) by direct energy estimates. Nevertheless, 

for latter use in the proof, we need to track in the energy estimates the counts of time and spatial conormal 
derivatives.
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Step 3: Uniform estimates for the compressible part of the system. In this step, we aim to get the control 
of ‖(∇σ, div u)‖L∞

t Hm−2
co ∩L2

t Hm−1
co

. This can be done by using the equations and induction arguments. Indeed, 
by rewriting the system (1.15),

−div u = g1ε∂tσ + εg1u · ∇σ,

−∇σ = g2ε∂tu + ε(g2u · ∇u − divLu).

In view of the above two equations, one can ‘trade’ one spatial derivative by one (small scale) time derivative 
ε∂t. We can thus recover the high order spatial (conormal) derivatives by using iteratively this observa-
tion.

Step 4: Control of L∞
t Hm−2

co norm of ∇u. In this step, we aim to get a uniform control of ‖∇u‖L∞
t Hm−2

co

which is quite useful to control L∞
t,x type norms. The difficulty is the estimate close to the boundary. We 

can work in a local chart Ωi. In light of the identities

∂nu · n = div u − (Π∂y1u)1 − (Π∂y2u)2, Π(∂nu) = Π(ω × n) − Π[(Dn)u],

where n is an extension of the unit normal and Π projects on (n)⊥, it suffices to control ‖ω × n‖L∞
t Hm−2

co
. 

We remark that the advantage of working on ω × n rather than ω is that the boundary condition for 
ω × n (see (2.33)) only involves lower order terms on the boundary. To estimate ω × n, a natural attempt, 
used in [35], is to perform energy estimates on the equation for the ‘modified vorticity’ w = ω × n +
2Π(au − (Dn)u) and to take advantage of the fact that w vanishes on the boundary. However, the equations 
for w still involve a stiff term 1

ε ∇⊥σ, which is obviously an obstacle to obtain uniform energy estimates. 
We shall thus instead use a lifting of the boundary conditions by using Green’s function for the solution 
of the heat equation with non-homogenous boundary conditions and estimate the remainder by energy 
estimates.

Step 5: L∞
t,x estimates. The control of the L∞

t,x norms contained in Am,T mainly stems from the Sobolev 
embedding and the maximum principle for the system solved by the vorticity. Note that at this stage, it is 
crucial to use the direct L∞

t Hm−1
co for (σ, u) and L∞

t Hm−2
co for ∇(σ, u) estimates obtained in the previous 

steps since because of the fast oscillations in time, uniform L∞ estimates in time cannot be deduced from 
a Sobolev embedding in time.

The case Ω = R3
+ where the boundary is flat can also be treated following the above steps and is 

indeed easier to analyze. Indeed, the spatial tangential derivatives can be controlled directly through energy 
estimates without weight in ε, since in this case the derivatives ∂yi commute with div or ∇. The use of the 
step with the Helmholtz-Leray projection is thus not necessary. The details can be found in the PhD thesis 
[47] (see pages 39-40 and Section 6.8).

In a companion paper [37], we strengthen the strategies used in this paper to deal with the low Mach 
number limit problem for the free surface compressible Navier-Stokes system, where we are forced to deal 
with strong enough solutions in the absence of a suitable theory of weak solutions.

Organization of the paper. We will prove Proposition 1.6 by establishing uniform control of energy norms 
Em,T and L∞

t,x type norms Am,T which is achieved in Section 2 and Section 3 respectively. Section 4 is then 
devoted to the proof of Theorem 1.1. In Section 5, we will justify the incompressible limit. Some remarks 
will be given in Section 6 regarding to the incompressible limit in exterior domain. In the appendix, we 
gather some useful product and commutator estimates as well as the proofs of some technical lemmas.

2. Uniform estimates-energy norm

In this section, we establish the a-priori estimates for the energy norm Em,T . Again, for notational 
convenience, we skip the ε-dependence of the solutions.
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Proposition 2.1. If the estimates (1.24), (1.23) are satisfied, then we can find a constant C1(1/c0) that 
depends only on 1/c0 and a polynomial Λ̃ whose coefficients are independent of ε, such that for a smooth 
enough solution of (1.15), the following estimate holds on [0, T ] for ε ∈ (0, 1]:

E2
m,T ≤ C1

( 1
c0

)
Y 2

m(σ0, u0) + (T + ε) 1
2 Λ̃

( 1
c0

,Nm,T

)
. (2.1)

As explained in the introduction, to overcome the difficulty due to the nontrivial commutators between 
the tangential spatial derivatives and the standard derivation (∇, div), we need to split the velocity u into 
u = ∇Ψ + v, where ∇Ψ, v are the compressible part and the incompressible part respectively (see (2.2) the 
precisely definition). On the one hand, the compressible part ∇Ψ satisfies the elliptic equation ΔΨ = div u

with Neumann boundary condition, from which one can deduce the estimate of ∇2Ψ from that of div u. 
On the other hand, since the incompressible part v is governed by a convection diffusion equation without 
oscillations, we can control its conormal derivatives by direct energy estimates. The estimates for ∂nv will 
then be deduced from the ones for ω × n.

2.1. Preliminaries: Leray projection

To define the compressible or acoustic part and the incompressible part of the velocity field, we shall use 
the Leray projection. One has the decomposition,

L2
x(Ω)3 = H ⊕ G

where

H = {v ∈ L2
x(Ω)3, div v = 0, v · n|∂Ω = 0}, G = {∇Ψ, ∇Ψ ∈ L2(Ω)3}.

We denote P , Q the projectors that map L2
x(Ω)3 to its subspaces H and G respectively, namely,

Q :L2(Ω)3 → G P : L2(Ω)3 → H

f �→ Qf = ∇Ψ f �→ f − Qf
(2.2)

where Ψ is defined as the unique solution of⎧⎪⎨⎪⎩
ΔΨ = div f in Ω,

∂nΨ = f · n on ∂Ω,´
Ω Ψ dx = 0.

(2.3)

Note that the solvability of the Neumann problem (2.3) in H1(Ω) is well-known as an application of the 
Lax-Milgram theorem. Moreover, by Proposition 7.6, one has that for a Ck+1 bounded domain,

‖∇Ψ(t)‖Hk
co

� ‖f(t)‖Hk
co

, ‖∇2Ψ(t)‖Hk−1
co

� ‖div f(t)‖Hk−1
co

+ ‖f(t)‖Hk−1
co

. (2.4)

Note that in these estimates, the time variable is just an external parameter.
Since [P , ∂t] = 0, (1.15) is equivalent to the following system:⎧⎪⎪⎨⎪⎪⎩

g1(∂tσ + u · ∇σ) + ΔΨ
ε = 0,

ρ̄∂t∇Ψ + Q
(

g2−ρ̄
ε ε∂tu + g2u · ∇u − μΔv − (2μ + λ)∇div u + ∇σ

ε

)
= 0,

ρ̄∂ v + g2−ρ̄ ε∂ u + g u · ∇u − μΔv + ∇q = 0,

(2.5)
t ε t 2
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where

v = Pu, ∇Ψ = Qu, ∇q = −Q
(g2 − ρ̄

ε
ε∂tu + g2u · ∇u − μΔv

)
, ρ̄ = g2(0).

By taking the divergence of the third equations of (2.5) and noting that div v = 0, ε∂tu · n|∂Ω = 0, we see 
that ∇q is governed by the following elliptic equation:⎧⎨⎩ Δq = −div

(g2 − ρ̄

ε
ε∂tu + g2u · ∇u

)
in Ω,

∂nq = −(g2u · ∇u) · n + μΔv · n on ∂Ω.
(2.6)

Proposition 2.1 can be shown by the first three steps outlined in the introduction, they will be handled 
in the following three subsections.

2.2. Step 1: Highest conormal estimates

For notational convenience, we denote Λ for a polynomial which may differ from line to line, and use the 
notation � · as ≤ C· for some generic constant C = C(1/c0) that depends on 1/c0 but not on ε.

Let us state the main result of this subsection.

Lemma 2.2. Suppose that (1.24) is satisfied, then for any m ≥ 0, any 0 < T ≤ 1 and ε ∈ (0, 1] we have:

‖(σ, u)‖2
L∞

T Hm + ε2(‖(σ, u)‖2
L∞

T Hm
co

+ ‖(∇σ, div u)‖2
L∞

T Hm−1
co

)

+ ‖∇u‖2
L2

tHm + ε2(‖∇u‖2
L2

T Hm
co

+ ‖∇div u‖2
L2

T Hm−1
co

)

� Y 2
m(σ0, u0) + (T + ε) 1

2 Λ
( 1

c0
,Am,T

)
E2

m,T .

(2.7)

Proof. The estimate (2.7) can be derived from the following two lemmas. �
Let us start with:

Lemma 2.3. Under the same assumption as in Lemma 2.2, for any 0 < t ≤ T , the following estimates hold:

‖(σ, u)‖2
L∞

t Hm + ‖∇u‖2
L2

tHm � ‖(σ, u)(0)‖2
Hm + Λ

( 1
c0

,Am,T

)
T

1
2E2

m,T , (2.8)

ε2(
‖(u, σ)(t)‖2

Hm
co

+ ‖∇u‖2
L2

t Hm
co

)
� ε2‖(σ, u)(0)‖2

Hm
co

+ ε
1
2 Λ

( 1
c0

,Am,T

)
E2

m,T + ε2‖∇div u‖2
L2

t Hm−1
co

. (2.9)

We recall that in our notations the norms at t = 0 involve the computation of powers of ε∂t at t = 0.

Proof. Define σI = ZIσ, uI = ZIu. Then (σI , uI) satisfies:⎧⎪⎨⎪⎩
g1(∂tσ

I + u · ∇σI) + div uI

ε
= RI

σ,

g2(∂tu
I + u · ∇uI) − ZI(divLu) + ∇σI

ε
= RI

u,

(2.10)

where

RI
σ = −[ZI ,

g1

ε
]ε∂tσ − [ZI , g1u · ∇]σ − 1

ε
[ZI , div ]u,

RI
u = −[ZI ,

g2 ]ε∂tu − [ZI , g2u · ∇]u − 1 [ZI , ∇]σ.

ε ε
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We first show (2.8) which is easier. Assuming that I = (j, 0, · · · , 0), |j| ≤ m which means that ZI = (ε∂t)j

involves only time derivatives. The advantage of this case is that the commutators do not include singular 
terms, that is the third terms in RI

σ and RI
u vanish.

For the sake of notational simplicity, we denote (σj , uj) = (ε∂t)j(σ, u). Taking the scalar product of (2.10)
by (σj , uj) and taking benefits of the boundary conditions

uj · n = 0, Π(∂nuj) = Π(−2auj + (Dn)uj) on ∂Ω, (2.11)

as well as the relation ∂tg2 + div (g2u) = 0, we get from standard integration by parts that:

1
2

ˆ

Ω

(g1|σj |2 + g2|uj |2)(t) dx +
¨

Qt

μ|∇uj |2 + (μ + λ)|div uj |2 dxds

≤ 1
2

ˆ

Ω

(
g1|σj |2 + g2|uj |2

)
(0) dx +

∣∣∣∣∣∣
¨

Qt

(
∂tg1 + div (g1u)

)
|σj |2 dxds

∣∣∣∣∣∣
+ μ

∣∣∣∣∣∣
tˆ

0

ˆ

∂Ω

Π(∂nuj)ΠujdSyds

∣∣∣∣∣∣ + ‖RI
σ‖L2(Qt)‖σj‖L2(Qt) + ‖RI

u‖L2(Qt)‖uj‖L2(Qt),

(2.12)

where we denote by dSy the surface measure of ∂Ω and Qt = [0, t] × Ω. The second term in the above right 
hand side can be controlled easily by Λ1,∞,t‖σj‖2

L2(Qt). Note that

‖|∂tg1‖|0,∞,t ≤ sup
[−3c̄P̄ ,3P̄ /c̄

](|g′
1(s)|)‖|ε∂tσ‖|0,∞,t ≤ 1

c0
‖|ε∂tσ‖|0,∞,t.

The boundary term of the last line of (2.12) can be treated thanks to the boundary condition (2.11) and 
the trace inequality (7.10)

μ
∣∣ tˆ

0

ˆ

∂Ω

Π(∂nuj) · Πuj dSyds
∣∣ ≤ μ

4 ‖∇uj‖2
L2(Qt) + Cμ‖uj‖2

L2(Qt). (2.13)

We now detail the estimate of (RI
σ, RI

u) which vanish unless j �= 0. For 1 ≤ j ≤ m, by the commutator 
estimate (7.3) and the estimate (7.4) for g1,

‖RI
σ‖L2(Qt) � ‖∂tg1‖L2

tHm−1‖|(ε∂t)σ‖|[ m
2 ]−1,∞,t + ‖|∂tg1‖|[ m−1

2 ],∞,t‖(ε∂t)σ‖L2
tHm−1

+ ‖g1u‖L2
tHm‖|∇σ‖|[ m

2 ]−1,∞,t + ‖|g1u‖|[ m+1
2 ],∞,t‖∇σ‖L2

tHm−1

� Λ
( 1

c0
,Am,t

)(
‖∇σ‖L2

tHm−1 + ‖(σ, u)‖L2
tHm

)
.

(2.14)

In a similar way, we have:

‖RI
u‖L2(Qt) � Λ

( 1
c0

,Am,t

)(
‖∇(σ, u)‖L2

tHm−1 + ‖(σ, u)‖L2
tHm

)
. (2.15)

Therefore, (2.8) is the consequence of (2.12)-(2.15). Note that we have used the fact that

‖(σ, u)‖L2Hm � T
1
2 ‖(σ, u)‖L∞Hm � T

1
2Em,T , ‖∇(σ, u)‖L2Hm−1 � Em,T .
t t t
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We are now ready to prove (2.9). Suppose now that ZI involves at least one spatial derivative and 1 ≤ |I| ≤
m. In this case, it seems unlikely to get a uniform estimate with respect to ε with this approach since RI

σ, RI
u

now contains singular terms. Taking the scalar product of system (2.10) by ε2(σI , uI), and integrating by 
parts in space and time, we get in the same way as for (2.12) that:

ε2
ˆ

Ω

(g1|σI |2 + g2|uI |2)(t) dx

≤ ε2
ˆ

Ω

(g1|σI |2 + g2|uI |2)(0) dx +
¨

Qt

(∂tg1 + div (g1u))|σI |2 dxds

+ 2ε2
¨

Qt

ZIdivLu · uI dxds + ε2(
‖RI

σ‖L2(Qt)‖σI‖L2(Qt) + ‖RI
u‖L2(Qt)‖uI‖L2(Qt)

)
. (2.16)

Before going further, it will be convenient to introduce the notation:

‖f‖Em
t

= ‖f‖L2
t Hm

co
+ ‖∇f‖L2

t Hm−1
co

. (2.17)

Note that from the definition of Em,t in (1.17), one has indeed that: ‖u‖Em
t

� Em,t.
Let us now estimate the terms in the last line of (2.16). It follows from the commutator estimate (7.2)

that:

ε‖(RI
σ,RI

u)‖L2(Qt) � ‖∇(σ, u)‖L2
t Hm−1

co
+ ε

1
2 ‖(σ, u)‖Em

t
Λ

( 1
c0

,Am,t

)
. (2.18)

We remark that when controlling the extra term: 1
ε [ZI , ∇]σ, we have used the following identity which can 

be shown by induction:

[ZI , ∂i] =
3∑

j=1

∑
|J|≤|I|−1

cI,JZJ∂j =
3∑

j=1

∑
|J|≤|I|−1

dI,J∂jZJ (2.19)

where J is an (M + 1) multi-index and cI,J , dI,J are smooth functions that depend on I, J , i and the 
derivatives (up to order |I|) of ∇φ, ∂i is the derivation in the standard Euclidean coordinates.

It remains to estimate the third term in the right hand side of (2.16). Since, we have

divLu = div (2μSu + λdiv uId) = μΔu + (μ + λ)∇div u,

one has by integrating by parts that:
¨

Qt

ZILu · uI dxds = −
¨

Qt

(
μ[ZI , ∇]u · ∇uI + (μ + λ)[ZI , div ]udiv uI

)
dxds

+
¨

Qt

(
μ[ZI , div ]∇u + (μ + λ)[ZI , ∇]div u

)
uI dxds −

¨

Qt

μ|∇uI |2 + (μ + λ)|div uI |2 dxds

+
tˆ

0

ˆ

∂Ω

μuI(ZI∇u · n) + (μ + λ)ZIdiv u(uI · n) dSyds =: K1 +K2 +K3 +K4.

(2.20)

Let us begin with the K1 term. By (2.19) and the Young inequality, we get
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K1 ≤ δμ‖∇u‖2
L2

t Hm
co

+ Cδ,μ,λ‖∇u‖2
L2

t Hm−1
co

(2.21)

for δ > 0 to be chosen sufficiently small independent of ε. Next, by (2.19) and integration by parts, K2
can be written as a combination of the following two types of terms (up to some smooth coefficients that 
depending on φ, n and their derivatives up to order m + 1):

K1
2 =
¨

Qt

Z Ĩ∂iu · ∂juI dxds, K2
2 =

tˆ

0

ˆ

∂Ω

Z Ĩ∂iu · uInj dxds, |Ĩ| ≤ |I| − 1.

The term K1
2 can be estimated in the same way as K1, we find again

K1
2 ≤ δμ‖∇uI‖2

L2(Qt) + Cδ,μ,λ‖∇u‖2
L2

t Hm−1
co

.

For K2
2 , we use the trace inequality (7.10) to get that:

K2
2 �

tˆ

0

|Z Ĩ∂iu|L2(∂Ω)|uI · nj |L2(∂Ω)ds �
tˆ

0

(|u|H̃m(∂Ω) + |div u|H̃m−1(∂Ω))|uI · nj |L2(∂Ω) ds

≤ δμ‖∇u‖2
L2

t Hm
co

+ Cδ,μ,λ

(
‖u‖2

Em
t

+ ‖∇div u‖2
L2

t Hm−1
co

)
.

To get the second inequality, we have used that Ĩ does not contain conormal derivatives of the type Zi
3 since 

Zi
3 vanishes on the boundary and the identity:

∂nu · n = div u − (Π∂y1u)1 − (Π∂y2u)2, (2.22)

as well as the boundary condition (1.14).
To summarize, we have thus proven that there exists an absolute constant C > 0 (independent of δ and 

of course ε) such that

K2 ≤ Cδμ‖∇u‖2
L2

t Hm
co

+ Cδ,μ,λ(‖∇div u‖2
L2

t Hm−1
co

+ ‖u‖2
Em

t
). (2.23)

Finally, we handle the term K4 in the right hand side of (2.20) which is nontrivial only if ZI contains 
merely ε∂t and tangential derivatives which read in local charts ∂y1 , ∂y2. For the second term of K4, since 
ZI is assumed to contain at least one spatial derivative, it can be written as ZI = ∂yZ Ĩ (we denote ∂y = ∂y1

or ∂y = ∂y2). Moreover, since u · n|∂Ω = 0, uI · n = [ZI , n]u. Integrating by parts along the boundary, and 
then use the trace inequality (7.11), we find that

tˆ

0

ˆ

∂Ω

ZIdiv u(uI · n) dSyds ≤
tˆ

0

|Z Ĩdiv u|
H

1
2 (∂Ω)

|∂y[ZI , n]u|
H− 1

2 (∂Ω)
ds

� ‖∇div u‖2
L2

t Hm−1
co

+ ‖u‖2
Em

t
.

(2.24)

For the first term of K4, we can split it into two terms:

μ

tˆ

0

ˆ

∂Ω

−uI([ZI , n]∇u) + [ZI , n]∂nu(uI · n) + [ZI , Π]∂nu · ΠuI dSyds

− μ

tˆ ˆ
ZI(∂nu · n)(uI · n) + ZI(Π∂nu) · ΠuI) dSyds =: K411 +K412.
0 ∂Ω
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Thanks to the trace inequality and the Young’s inequality, K411 can be bounded as:

K411 ≤ δμ‖∇u‖2
L2

t Hm
co

+ Cδ,μ(‖u‖2
Em

t
+ ‖∇div u‖2

L2
t Hm−1

co
).

Next, for K412, we use again the identity (2.22), as well as the boundary conditions (1.14). Integrating by 
parts along the boundary for the first term of K412, we get that by writing ZI = ∂yZ Ĩ

K412 = μ

tˆ

0

|Z Ĩ(∂nu · n)|
H

1
2 (∂Ω)

|∂y[ZI , n]u|
H− 1

2 (∂Ω)
+ |ZIΠ∂nu|L2(∂Ω)|uI |L2(∂Ω) ds

≤ δμ‖∇u‖2
L2

t Hm
co

+ Cδ,μ(‖u‖2
Em

t
+ ‖∇div u‖2

L2
t Hm−1

co
).

To summarize, we get the following estimate for K4:

K4 ≤ 2δμ‖∇u‖2
L2

t Hm
co

+ Cδ,μ(‖u‖2
Em

t
+ ‖∇div u‖2

L2
t Hm−1

co
). (2.25)

Inserting (2.21), (2.23), (2.25) into (2.20), we get that:

ˆ

Qt

ZILu · uI dxds ≤ −
¨

Qt

μ|∇uI |2 + (μ + λ)|div uI |2 dxds

+ (C + 3)δμ‖∇u‖2
L2

t Hm
co

+ Cδ,μ(‖u‖2
Em

t
+ ‖∇div u‖2

L2
t Hm−1

co
).

(2.26)

Plugging (2.18) and (2.26) into (2.16) and summing up for |I| ≤ m, we finally get (2.9) by choosing δ small 
enough (independent of ε). �
Lemma 2.4. Under the same assumption as in Lemma 2.2, for any 0 < t ≤ T , one has that:

ε2‖(∇σ, div u)(t)‖2
Hm−1

co (Ω) + ε2‖∇div u‖2
L2

t Hm−1
co

� ‖(∇σ, div u)(0)‖2
Hm−1

co
+ (T 1

2 + ε
2
3 )Λ2,∞,TE2

m,T . (2.27)

Proof. Applying the vector field ZI with 0 ≤ |I| ≤ m − 1, we then find that ((∇σ)I , uI) = (ZI∇σ, ZIu)
solves the system:

⎧⎪⎨⎪⎩
g1(∂t + u · ∇)(∇σ)I + ∇div uI

ε
=: CI

σ,

g2∂tu
I − μ curl(ZIω) − (2μ + λ)∇div uI + (∇σ)I

ε
=: CI

u,

(2.28)

where ω = curl u and

CI
σ = −[ZI∇, g1/ε]ε∂tσ − [ZI∇, g1u · ∇]σ − [ZI , ∇div ]u/ε,

CI
u = −ZI(g2u · ∇u) − [ZI , g2/ε]ε∂tu + μ[ZI , curl]ω + (2μ + λ)[ZI , ∇div ]u.

(2.29)

We take the scalar product of the equation (2.28)1 by (∇σ)I , and (2.28)2 by −∇div uI , we then integrate 
in space and time and sum up the two equations to get that (note that the singular terms cancel):
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1
2

ˆ

Ω

(g1|(∇σ)I |2 + g2|div uI |2)(t) dx + (2μ + λ)
¨

Qt

|∇div uI |2 dxds

≤ 1
2

ˆ

Ω

(g1|∇σI |2 + g2|div uI |2)(0) dx + 1
2

∣∣∣∣¨
Qt

(∂tg1 + div (g1u))|∇σI |2 dxds

∣∣∣∣
+

∣∣∣∣¨
Qt

(g′
2ε∂tu

I · ∇σ)div uI dxds

∣∣∣∣ +
∣∣∣∣

tˆ

0

ˆ

∂Ω

g2∂tu
I · ndiv uI dSyds

∣∣∣∣
+ μ

∣∣∣∣¨
Qt

curl ZIω∇div uI dxds

∣∣∣∣
+ ‖CI

σ‖L2(Qt)‖∇σI‖L2(Qt) + 1
(2μ + λ)‖CI

u‖2
L2(Qt) + 2μ + λ

4 ‖∇div uI‖2
L2(Qt).

(2.30)

Among the terms in the right hand side, the second and the third terms can be bounded by:

Λ
( 1

c0
, ‖|(σ, u)‖|1,∞,t + ‖|(∇σ, div u)‖|0,∞,t

) ∥∥(
(∇σ)I , div uI , ε∂tu

I
)∥∥2

L2(Qt) . (2.31)

Next, we note that the fourth term vanishes if ZI involves at least one conormal derivative Zi
3 which vanishes 

on the boundary. We thus suppose that I = (l, I ′), |I ′| ≥ 1 and ZI does not contain Zi
3. Consequently, the 

trace inequality (7.10) leads to

∣∣ tˆ

0

ˆ

∂Ω

g2∂tu
I · n div uI dSyds

∣∣ � 1
ε

tˆ

0

|[ZI , n]ε∂tu(s)|L2(∂Ω)|div uI(s)|L2(∂Ω) ds

� 1
ε

(‖∇u‖L2
t Hm−1

co
+ ‖u‖L2

t Hm−1
co

)(‖∇div uI‖
1
2
L2(Qt)‖div uI‖

1
2
L2(Qt) + ‖div uI‖L2(Qt))

≤ 2μ + λ

4 ‖∇div u‖2
L2(Qt) + Cμ,λ(1 + ε− 4

3 )‖(u, ∇u)‖2
L2

t Hm−1
co

.

(2.32)

Note that since ∂tu · n|∂Ω = 0, one has (ZI∂tu · n)|∂Ω = ([ZI , n]∂tu)|∂Ω.
For the fifth term in the right hand side of (2.30) we first integrate by parts and then use the duality 

〈·, ·〉
H

1
2 (∂Ω)×H− 1

2 (∂Ω)
to get that

μ
∣∣¨

Qt

curl ZIω · ∇div uI dxds
∣∣ = −μ

tˆ

0

ˆ

∂Ω

(ZIω × n) · Π∇div uI dSyds

≤ μ

tˆ

0

|ZIω × n(s)|
H

1
2 (∂Ω)

|div uI(s)|
H

1
2 (∂Ω)

ds

We point out that for the derivation of the last line, the fact that Π∇ involves only tangential derivatives 
has been used. It remains to control ZIω × n on the boundary. One first deduces by (1.14) that on the 
boundary,

ω × n = Π(ω × n) = 2Π(Su) − 2Π((∇u)t · n) = 2Π(−au + Dn · u) on ∂Ω, (2.33)

which leads to:
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|ZIω × n(s)|
H

1
2 (∂Ω)

� |ZI(ω(s) × n)|
H

1
2 (∂Ω)

+ |[ZI , n] × ω|
H

1
2 (∂Ω)

� |u(s)|
H̃m− 1

2
+ |ω(s)|

H̃m− 3
2
� |u(s)|

H̃m− 1
2

+ |div u(s)|
H̃m− 3

2

where we recall that we denote:

|f(t)|H̃r :=
∑

k≤[r]

|(ε∂t)kf(t)|Hr−k(∂Ω).

Note that by using the boundary condition (1.14) and the identity (2.22), we have that:

|∇u|H̃s � |u|H̃s+1 + |div u|H̃s .

Finally, owing to the trace inequality (7.11) and Young’s inequality, one obtains that:

μ
∣∣¨

Qt

curl ZIω · ∇div uI dxds
∣∣

≤ Cμ(‖∇div u‖L2
t Hm−2

co
+ ‖∇u‖L2

t Hm−1
co

+ ‖u‖L2
t Hm

co
)(‖div uI‖L2(Qt) + ‖∇div uI‖L2(Qt))

≤ 2μ + λ

4 ‖∇div uI‖2
L2(Qt) + Cμ,λ(‖∇div u‖2

L2
t Hm−2

co
+ ‖u‖2

Em
t

)

(2.34)

where we use again the notation (2.17).
It remains to control the L2(Qt) norm of CI

σ, CI
u in (2.30). Let us begin with the estimate CI

σ. For the 
term:

[ZI∇,
g1

ε
]ε∂tσ = ZI((∇g1/ε)ε∂tσ) + [ZI , g1/ε](ε∂t)∇σ,

the product estimates (7.1) the commutator estimate (7.2) and the estimate (7.5) yield:

‖[ZI∇, g1/ε]ε∂tσ‖L2(Qt) � ‖(ε∂tσ, ∇σ)‖L2
t Hm−1

co
Λ

( 1
c0

, ‖|∇σ‖|[ m
2 ]−1,∞,t + ‖|σ‖|[ m+1

2 ],∞,t

)
� ‖σ‖Em

t
Λ

( 1
c0

,Am,t

)
.

For the term

[ZI∇, g1u · ∇]σ = ZI
(
∇(g1u)∇σ

)
+ [ZI , g1u]∇∇σ,

since in the interior domain Ω0, the spatial conormal derivatives are equivalent to the derivations with 
respect to the standard coordinates in R3. We thus have that:

ε‖χ0[ZI∇, g1u · ∇]σ‖L2(Qt) � (‖χ̃0(σ, u)‖L2
t Hm + ‖χ̃0∇(σ, u)‖L2

t Hm−1)Λ
( 1

c0
, ‖|ε(σ, u)‖|[ m

2 ]+1,∞,t

)
.

� ‖(σ, u)‖Em
t

Λ
( 1

c0
,Am,t

)
,

where Supp (χ̃0) � Ω and χ̃0χ0 = χ0. It suffices to focus on the case near the boundary. Direct computations 
show that, in the local coordinates (1.12),

u · ∇f = u1∂y1f + u2∂y2f + u · N∂zf, (2.35)
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which leads to:

[ZI∇, g1u · ∇]σ = ZI
(
∇(g1u)∇σ

)
+

2∑
j=1

[ZI , g1uj ]∂yj ∇σ

+ [ZI , (g1u · N)/φ]φ∂z∇σ +
(
(g1u · N)/φ

)
[ZI , φ]∂z∇σ + (g1u · N)[ZI , ∂z]∇σ.

(2.36)

With the help of the product and commutator estimates (7.1), (7.2) and the estimate (7.5) for g1, the first 
two terms in the right hand side of (2.36) can be bounded as:

ε‖χiZ
I
(
∇(g1u)∇σ

)
‖L2(Qt) +

2∑
j=1

‖χi[ZI , g1uj ]∂yj ∇σ‖L2(Qt)

� ‖(σ, u)‖Em
t

Λ
( 1

c0
, ε‖|(σ, u)‖|[ m

2 ],∞,t + ‖|∇σ‖|[ m−1
2 ],∞,t + ε‖|∇u‖|[ m

2 ],∞,t

)
� ‖(σ, u)‖Em

t
Λ

( 1
c0

,Am,t

)
.

(2.37)

To continue, we need to establish some estimates on (g1u · N)/φ. At first, since (u · n)|∂Ω = 0, one has by 
the fundamental theorem of calculus and the identity (2.22) that:

‖|χj(gju · N)/φ‖|k,∞,t � (‖|∇(u · N))‖|k,∞,t + ‖|u‖|k,∞,t)‖|g‖|k,∞,t

� Λ
( 1

c0
, ‖|u‖|k+1,∞,t + ‖|(σ, div u)‖|k,∞,t

)
, j = 1, 2.

(2.38)

Next, thanks to Hardy inequality and product estimate (7.1), estimate (7.6) for gj

‖χi(gju · N)/φ‖L2
t Hm−1

co
� ‖χ̃i(u · N)/φ‖L2

t Hm−1
co

+ ‖(gj − gj(0))(u · N)/φ‖L2
t Hm−1

co
)

�
(
‖χ̃i(u, ∇u)‖L2

t Hm−1
co

+ ‖gj − gj(0)‖L2
t Hm−1

co

)
Λ

( 1
c0

,Am,t

)
� Λ

( 1
c0

,Am,t

)
‖(σ, u)‖Em

t
, j = 1, 2,

(2.39)

where χ̃i is a cut-off function supported on the vicinity of Ωi and χ̃iχi = χi. Therefore, since φ∂z can be 
spanned by Zi

1, Zi
2, Zi

3, it follows from (2.38), (2.39), (7.2), (7.5) that:

ε‖χi[ZI , (g1u · N)/φ]φ∂z∇σ‖L2(Qt)

� ‖(∇σ, (g1u · N)/φ)‖L2
t Hm−1

co
Λ

( 1
c0

, ‖∇σ‖[ m−1
2 ],∞,t + ε‖|χ̃i(g1u · N)/φ‖|[ m

2 ],∞,t

)
� ‖(σ, u)‖Em

t
Λ

( 1
c0

,Am,t

)
.

(2.40)

Moreover, one gets by induction that (up to some coefficients that depend only on φ and its derivatives)

[ZI , φ](∂zf) =
∑

|Ĩ|≤|I|−1

∗ĨZ Ĩ(φ∂zf), [ZI , ∂z] =
∑

|Ĩ|≤|I|−1

∗Ĩ∂zZ Ĩ (2.41)

Hence, by (2.38), the last two terms in (2.36) can be controlled by ‖∇σ‖L2
t Hm−1

co
Λ

( 1
c0

, Am,t

)
, which, together 

with (2.37), (2.40) leads to:
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ε‖χi[ZI∇, g1u · ∇]σ‖L2(Qt) � ‖(σ, u)‖Em
t

Λ
( 1

c0
,Am,t

)
. (2.42)

We switch to the estimate of the third term of CI
σ defined in (2.29), which is nontrivial only if ZI contains 

at least one spatial derivative, that is |I ′| ≥ 1. By induction, one has that (up to some coefficients which 
are regular enough)

[ZI , ∇div ] =
∑

|Ĩ|≤|I|−1,| ˜̃I|≤|I|−1

3∑
j,k=1

∗jkĨ∂2
jkZ Ĩ + ∗jĨ∂jZ

˜̃I ,

which yields that:

1
ε

‖[ZI , ∇div ]u‖L2(Qt) �
1
ε

(‖∇2u‖L2
t Hm−2

co
+ ‖∇u‖L2

t Hm−2
co

).

To summarize, we have thus obtained from the above estimates that:

ε‖CI
σ‖L2(Qt) � Λ

( 1
c0

,Am,t

)
‖(σ, u)‖Em

t
+ ‖(∇2u, ∇u)‖L2

t Hm−2
co

. (2.43)

By using the same argument, CI
u (defined in (2.29)) can be controlled as follows:

ε‖CI
u‖L2(Qt) � Λ

( 1
c0

,Am,t

)
‖(σ, u)‖Em

t
+ ε‖∇2u‖L2

t Hm−2
co

. (2.44)

Plugging (2.31), (2.32), (2.34), (2.43), (2.44) in (2.30), we arrive at

ε2(
‖((∇σ)I , div uI)(t)‖2

L2(Ω) + ‖∇div uI‖2
L2(Qt)

)
� ε2‖((∇σ)I , div uI)(0)‖2

L2(Ω) + ε
2
3 Λ

( 1
c0

,Am,t

)
‖(σ, u)‖2

Em
t

+ T
1
2 ‖ε∇2u‖L∞

t Hm−2
co

(‖ε∇2u‖L2
t Hm−2

co
+ ‖∇σ‖L2

t Hm−1
co

).

(2.45)

We thus get (2.27) by summing up (2.45) for 0 ≤ |I| ≤ m − 1. �
2.3. Step 2: Energy estimate for the incompressible part of velocity

In this subsection, we focus on the estimates of the incompressible part of the velocity v = Pu which 
solves (2.5)3.

In the following, we recall for convenience the definition of the L∞
t,x norm:

Am,t = ‖|∇u‖|0,∞,t + ‖|(u, σ)‖|[ m+1
2 ],∞,t + ‖|(∇σ, div u, ε

1
2 ∇u)‖|[ m−1

2 ],∞,t

+ ‖|ε∇u‖|[ m+1
2 ],∞,t + ε‖|(σ, u)‖|[ m+3

2 ],∞,t.
(2.46)

Remark 2.5. In view of the first term in Am,t, we have only the uniform control of ∇u in L∞
t,x space. Indeed, 

by some delicate analysis on the Green function for the vorticity in the local coordinates, it is possible to 
get the uniform control of the high order conormal derivatives of ∇u (say ‖ |∇u‖ |[ m

2 ]−2,∞,t). One can refer 
for instance to [37]. Nevertheless, involving only ‖ |∇u‖ |0,∞,t in Am,t is enough for us to close our estimate. 
See Lemma 2.8 and Proposition 2.18.

We begin with some additional estimates on ∇div u:
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Lemma 2.6. Suppose that (1.24) holds then for any 0 < t ≤ T ≤ 1.

‖∇div u‖L2
t Hm−2

co
� ‖∇σ‖L2

t Hm−1
co

+ ε
1
2 Λ

( 1
c0

,Am,t

)
‖(σ, u)‖Em

t
, (2.47)

ε‖∇div u(t)‖Hm−2
co

� ε‖∇σ‖L∞
t Hm−1

co
+ εΛ

( 1
c0

,Am,t

)
Em,t, (2.48)

‖∇div u(t)‖Hm−3
co

� Λ
( 1

c0
,Am,t

)
Em,t. (2.49)

Proof. By the equation for σ, we have that:

∇div u = g1(0)ε∂t∇σ + ε∇
(g1(εσ) − g1(0)

ε
ε∂tσ + g1(εσ)u · ∇σ

)
. (2.50)

We can control ε∇div u as follows, for p = 2, +∞,

‖∇div u‖Lp
t Hm−2

co
� ‖∇σ‖Lp

t Hm−1
co

+ ε‖∇
(
(g1 − g1(0))∂tσ, g1u · ∇σ

)
(t)‖Lp

t Hm−2
co

(2.51)

Inequalities (2.47)-(2.48) can thus be derived from the following estimate:

ε‖∇
(
(g1 − g1(0))∂tσ, g1u · ∇σ

)
(t)‖Lp

t Hm−2
co

� Λ
( 1

c0
,Am,t

)(
‖ε∇(σ, u)‖Lp

t Hm−1
co

+ ε
1
2 ‖(σ, u, ∇σ, ∇u)‖Lp

t Hm−2
co

)
.

Let us show the estimate of the term g1u · ∇∇σ, the other terms can be controlled in a similar way. Again, 
we focus only on the estimate near the boundary. Thanks to the identity (2.35), we have

χig1u · ∇∇σ = χig1uy · ∂y∇σ + χig1
u · N

φ
φ∂z∇σ.

Therefore, by applying the product estimate (7.1) and inequality (2.38), we find

ε‖χi(g1u · ∇∇σ)‖Lp
t Hm−2

co
� ε‖(uy, χiu · N/φ)‖Lp

t Hm−2
co

‖|g1Z∇σ‖|[ m−1
2 ]−1,∞,t

+ ε‖g1Z∇σ(t)‖Lp
t Hm−2

co
‖|(uy, χiu · N/φ)‖|[ m

2 ]−1,∞,t

� Λ
( 1

c0
,Am,t

)
(‖ε∇σ‖Lp

t Hm−1
co

+ ε
1
2 ‖(u, ∇σ, ∇u)‖Lp

t Hm−2
co

).

(2.52)

Finally, one gets (2.49) by using similar arguments as in the derivation of (2.48), we skip the details. �
Remark 2.7. By (2.7) and (2.48), we have that:

ε‖∇div u‖L∞
t Hm−2

co
� Ym(σ0, u0) + (T + ε) 1

4 Λ
( 1

c0
,Am,t

)
Em,t. (2.53)

Lemma 2.8. Let

f = −g2 − ρ̄

ε
ε∂tu − g2u · ∇u (2.54)

and assume that (1.24) holds, then we have:

‖f‖L2Hm−1
co

+ ‖f‖L∞Hm−2
co

� Λ
( 1

,Am,t

)
Em,t. (2.55)
t t c0
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Proof. Since the higher order L∞
t,x norm of ∂nu is not included in the definition of Am,t, we need to use 

again the fact that u · n vanishes on the boundary. More precisely, by using the product estimate (7.1), 
identity (2.35) and the estimate (2.39), we get for (p, k) = (2, 1), (∞, 2),

‖g2u · ∇u‖Lp
t Hm−k

co
� ‖(σ, u, ∇σ, ∇u)‖Lp

t Hm−k
co

Λ
( 1

c0
, ‖|(∇σ, div u)‖|[ m−1

2 ],∞,t + ‖|(σ, u)‖|[ m+1
2 ],∞,t

)
.

The first term is a direct application of the product estimate (7.1), we omit the detail. �
We split the estimate for v in the following three subsections.

2.3.1. Estimate of ∇q

We first give the estimate of ∇q that appears in (2.5)3. Since q is governed by the elliptic equation (2.6)
without singular terms, it can be easily estimated by standard elliptic regularity theory.

Lemma 2.9. Under the assumptions (1.24), we have the following estimates: for j + l ≤ m − 1, l ≥ 1,

‖∇q‖L2
tHj,l + ε

1
2 ‖∇q‖L2

tHm−1 � Λ
( 1

c0
,Am,t

)
Em,t (2.56)

where Em
t is defined in (2.17). Moreover,

ε‖ curl ω(t)‖Hm−2
co

+ ε‖∇q(t)‖Hm−2
co

� ‖v(t)‖Hm−1
co

+ Ym(σ0, u0) + (T + ε) 1
4 Λ

( 1
c0

,Am,t

)
Em,t. (2.57)

Proof. Recall that q is governed by (2.6), an elliptic equation with Neumann boundary conditions. We can 
apply (7.14) in the appendix by setting

f = −g2 − ρ̄

ε
ε∂tu − g2u · ∇u, g = μΔv · n

to get

‖∇q‖L2
tHj,l �

∥∥f
∥∥

L2
t Hm−1

co
+

∑
|I|≤m−1

|ZI(Δv · n)|
L2

t H− 1
2 (∂Ω) (2.58)

The first term in the right hand side has been controlled in (2.55), it remains to estimate the boundary 
term. By using the identity

(∇ × a) · b = ∇ · (a × b) + a · (∇ × b), (2.59)

we have that:

−Δv · n = (∇ × ω) · n = div (ω × n) + ω · curl n.

Near the boundary, it follows from (2.22) that:

div (ω × n) = ∂n(ω × n) · n + (Π∂y1(ω × n))1 + (Π∂y2(ω × n))2

= −(ω × n) · ∂nn + (Π∂y1(ω × n))1 + (Π∂y2(ω × n))2.
(2.60)

Therefore, by using the boundary condition (2.33), one has that for |I| ≤ m − 1,
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|ZI(div (ω × n))|
L2

t H− 1
2 (∂Ω)

� |u|
L2

t H̃m− 1
2 (∂Ω)

(2.61)

where L2
t H̃s(∂Ω) is defined in (1.10). In view of the identity (2.22) and the boundary condition (1.14), we 

have for l ≥ 1

|ZIω|
L2

t H− 1
2 (∂Ω)

� |u|
L2

t H̃m− 1
2

+|ZI(∂nu)|
L2

t H− 1
2
� |u|

L2
t H̃m− 1

2
+ |ZIdiv u|

L2
t H− 1

2

� ‖u‖Em
t

+ ‖∇div u‖L2
t Hm−2

co
.

(2.62)

Moreover, if ZI = (ε∂t)m−1, we have by L2(∂Ω) ↪→ H− 1
2 (∂Ω) and the trace inequality (7.10)

ε
1
2 |ZIdiv u|

L2
t H− 1

2
� ‖(div u, ε∇div u)‖L2

tHm−1 (2.63)

Collecting (2.58)-(2.63), and using (2.47), (2.55), one obtains that:

‖∇q‖L2
tHj,l + ε

1
2 |∇q‖L2

tHm−1

� ‖f‖L2
t Hm−1

co
+ ‖u‖Em

t
+ ‖∇div u‖L2

t Hm−2
co

+ ε‖∇div u‖L2
t Hm−1

co
� Λ

( 1
c0

,Am,t

)
Em,t.

We are now ready to prove (2.57). By using the equation (2.5)3, the elliptic estimate (7.14) and the 
product estimate (7.1), one finds:

ε‖Δv(t)‖Hm−2
co

+ ε‖∇q(t)‖Hm−2
co

� ‖v(t)‖Hm−1
co

+ ε
∥∥f(t)

∥∥
Hm−2

co
+ ε

∑
|I|≤m−2

|ZI(Δv · n)(t)|
H− 1

2 (∂Ω)
(2.64)

With the aid of the boundary condition (1.14), the identities (2.22), (2.60) and the estimates (2.7), (2.53), 
the boundary term can be treated as,

ε
∑

|I|≤m−2

|ZI(Δv · n)|
H− 1

2 (∂Ω)

� ε(‖∇u(t)‖Hm−2
co

+ ‖u(t)‖Hm−1
co

) + ε‖∇div u(t)‖Hm−2
co

� Ym(σ0, u0) + (T + ε) 1
4 Λ

( 1
c0

,Am,t

)
Em,t.

(2.65)

Combined with (2.64) and the fact that Δv = − curl ω, this yields (2.57). �
2.3.2. High order regularity estimates for v

This subsection is devoted to the high order estimates for v : ‖v‖L∞
t Hm−1

co
, ‖∇v‖L2

t Hm−1
co

.

Lemma 2.10. Suppose that (1.24) is satisfied, then for any j + l ≤ m − 1, j, l ≥ 0 and for every 0 < t ≤ T , 
the following a-priori estimate holds:

‖v‖2
L∞

t Hj,l + ε2‖∇v‖2
L∞

t Hj,l + ‖∇v‖2
L2

tHj,l + ε2‖ curl ω‖2
L2

tHj,l

� Y 2
m(σ0, u0) + (T + ε) 1

2 Λ2,∞,TE2
m,T + ‖div u‖2

L2
tHj,l∩L2

tHj+1,l−1

(2.66)

where we use the notation (1.8).
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Remark 2.11. The estimate (2.66) will be used later (see Lemma 2.12) to get the high order spatial regularity 
for div u, which in turn, together with (2.66), gives the control of v.

Proof. In view of (1.22), (2.7), it suffices to show that the left hand side of (2.66) can be controlled by:

C(1/c0)
(
Y 2

m(σ0, u0) +W2
m,T + ‖div u‖2

L2
tHj,l∩L2

tHj+1,l−1

)
where:

W2
m,T = ‖u‖2

L∞
t Hm−1 + ‖∇u‖2

L2
tHm−1 + ε2‖∇u‖2

L2
t Hm

co
+ (T + ε) 1

2 Λ
( 1

c0
,Am,t

)
Em,t. (2.67)

This estimate will be obtained as the direct consequence of the following three inequalities:

‖v‖2
L∞

t Hm−1 + ‖∇v‖2
L2

tHm−1 � ‖u‖2
L∞

t Hm−1 + ‖∇u‖2
L2

tHm−1 , (2.68)

‖v‖2
L∞

t Hj,l + ‖∇v‖2
L2

tHj,l � ‖v(0)‖2
Hm−1

co
+ ‖∇u‖2

L2
tHm−1

+ ‖div u‖2
L2

tHj,l + T
1
2 Λ

( 1
c0

,Am,t

)
E2

m,t, l ≥ 1,
(2.69)

ε2‖∇v‖2
L∞

t Hj,l + ε2‖Δv‖2
L2

tHj,l � ε2‖(∇v, v)(0)‖Hm−1
co

+ ‖∇v‖2
L2

tHj,l∩L2
tHj+1,l−1

+ ε2‖∇u‖2
L2

t Hm
co

+ (T 1
2 + ε)Λ

( 1
c0

,Am,t

)
E2

m,t.
(2.70)

Note that since the Leray projector P commutes with ε∂t, one has that: P ((ε∂t)ju) = (ε∂t)jv. Therefore, 
from the continuity of the projection, we have:

‖v(0)‖Hm−1
co

� ‖u(0)‖Hm−1
co

.

The inequality (2.68) is a direct consequence of the definition of v and the elliptic estimates in Proposi-
tion 7.6. We thus focus on the other two inequalities. Let us first prove (2.69) and then sketch the proof of 
(2.70). By (1.28), v solves

ρ̄∂tv − μΔv + ∇q = −(g2 − ρ̄

ε
ε∂tu + g2u · ∇u) =: f (2.71)

supplemented with the boundary conditions:

v · n|∂Ω = 0, Π(∂nv) = Π(−2av + Dn · v) + 2Π(−a∇Ψ + Dn · ∇Ψ). (2.72)

We apply ZI to the equation (2.71) with I = (j, I ′), 0 ≤ j + |I ′| = j + l = k ≤ m − 1, |I ′| ≥ 1. Taking the 
scalar product by ZIv, and then integrating in space and time, we get that:

1
2 ρ̄

ˆ

Ω

|ZIv(t)|2 dx ≤ 1
2 ρ̄

ˆ

Ω

|(ZIv)(0)|2 dx + μ

¨

Qt

ZI(Δv)ZIv dxds

+ ‖ZIv‖L2(Qt)
(
‖∇q‖L2

tHj,l + ‖f‖L2
t Hm−1

co

)
.

(2.73)

By (2.55) and (2.56), the second line in the above inequality can be bounded as:

‖ZIv‖L2(Qt)
(
‖∇q‖L2

tHj,l + ‖f‖L2
t Hm−1

co

)
� T

1
2 ‖u‖L∞

t Hm−1
co

Λ
( 1

c0
,Am,t

)
Em,t

� T
1
2 Λ

( 1
,Am,t

)
E2

m,t.

(2.74)
c0
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It remains to control the second term in the right hand side of (2.73), which is the following task. We split 
it into three terms:

μ

¨

Qt

ZI(Δv) · ZIv dxds = μ

¨

Qt

[ZI , div ]∇v · ZIv dxds − μ

¨

Qt

ZI∇v · ∇ZIv dxds

+ μ

tˆ

0

ˆ

∂Ω

ZI∇v · n ZIv dSyds =: T1 + T2 + T3.

(2.75)

The estimate of T1 − T3 will be similar to that of K1 −K4 in (2.20).
We first estimate T2. By integrating by parts, one has that:

T2 = −μ

¨

Qt

|ZI∇v|2 dxds − μ

¨

Qt

ZI∇v[∇, ZI ]v dxds

≤ −μ

2 ‖ZI∇v‖2
L2(Qt) + μ

2 ‖[∇, ZI ]v‖2
L2(Qt) ≤ −μ

2 ‖ZI∇v‖2
L2(Qt) + C‖∇v‖2

L2
tHj,l−1 .

(2.76)

Note that in the last estimate, by (2.19), we know that [∇, ZI ]v involves only lower order (≤ k−1) conormal 
derivatives of ∇v.

We now switch to the estimate of the boundary term T3 in (2.75), which vanishes if ZI involves at least 
one weighted normal derivative Zi

3. We thus assume that ZI contains only time derivatives and spatial 
tangential derivatives.

T3 = −μ

tˆ

0

ˆ

∂Ω

(
− [ZI , n]∇v · ZIv + [ZI , n] · ∂nv(ZIv · n) + [ZI , Π]∂nv · ΠZIv

)
dSyds

+ μ

tˆ

0

ˆ

∂Ω

(
ZI(∂nv · n)(ZIv · n) + ZI(Π∂nv) · ΠZIv

)
dSyds =: T31 + T32.

The first term T31 can be dealt with thanks to Hölder inequality and the trace inequality (7.10)

T31 �
tˆ

0

|(ε∂t)j∇v(s)|Hl−1(∂Ω)|ZIv(s)|L2(∂Ω) ds

�
tˆ

0

(|(ε∂t)jv|Hl(∂Ω) + |(ε∂t)j∇Ψ|Hl(∂Ω))|ZIv|L2(∂Ω) ds

≤ δμ‖∇v‖2
L2

tHj,l + C(δ, μ)‖(u, div u)‖2
L2

t Hk
co

.

Note that in the second inequality, we have used the boundary condition (2.72) and the identity (since 
div v = 0):

∂nv · n = −(Π∂y1v)1 − (Π∂y2v)2, (2.77)

to obtain that:

|(ε∂t)j∇v(s)|Hl−1 � |(ε∂t)jv(s)|Hl + |(ε∂t)j∇Ψ(s)|Hl . (2.78)
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For the second term T32, since l ≥ 1, we might as well assume that ZI = ∂yZ Ĩ , where ∂y = ∂y1 or ∂y2 . In 
view of the boundary condition (2.72) and the identity (2.77), we have by integrating by parts along the 
boundary that:

T32 =
tˆ

0

ˆ

∂Ω

Z Ĩ(∂nv · n)∂y · ([ZI , n·]v) + ZI(Π∂nv)ΠZIv) dSyds

�
tˆ

0

|(ε∂t)jv|2Hl(∂Ω) + |(ε∂t)j(v, ∇Ψ)|Hl(∂Ω)|(ε∂t)jv|Hl(∂Ω) ds

� δμ‖∇v‖2
L2

tHj,l + C(δ, μ)‖(u, div u)‖2
L2

tHj,l .

(2.79)

It remains to control T1. Owing to (2.19) and (2.78), one obtains again by integrating by parts that:

T1 � ‖∇v‖L2
tHj,l−1(‖v‖L2

tHj,l + ‖∇v‖L2
tHj,l) + |(ε∂t)j∇v(s)|Hl−1(∂Ω)|v|Hl(∂Ω)

� δμ‖∇v‖2
L2

tHj,l + C(δ, μ)(‖(u, div u)‖2
L2

tHj,l + ‖∇v‖2
L2

tHj,l−1).
(2.80)

Plugging (2.75)-(2.80) into (2.73) and summing up for all I = (j, I ′), |I ′| = l, one has by choosing δ small 
enough that

‖v(t)‖2
Hj,l + μ

4 ‖∇v‖2
L2

tHj,l ≤ ‖v(0)‖2
Hj,l + C(δ, μ)‖∇v‖2

L2
tHj,l−1 + ‖div u‖2

L2
tHj,l

+ T
1
2 Λ

( 1
c0

,Am,t

)
E2

m,t.
(2.81)

In view of inequalities (2.68) and (2.81), we obtain (2.69) by induction on l.
We are now in position to prove (2.70). As before, we apply ZI to the equation (2.71) for v and we take 

the scalar product by −ε2ZIΔv. One gets by integration by parts and by using Young’s inequality that:

1
2 ρ̄ε2

ˆ

Ω

|∇ZIv(t)|2 dx + μ

2 ε2
¨

Qt

|ZI(Δv)|2 dxds

≤ 1
2 ρ̄ε2

ˆ

Ω

|∇ZIv(0)|2 dx + ε

¨

Qt

ε∂tZ
Iv · [ZI , Δ]v dxds

+ ε

tˆ

0

ˆ

∂Ω

ε∂tZ
Iv · ∂nZIv dSyds + Cμε2‖(∇q, f)‖2

L2
t Hm−1

co
.

(2.82)

By induction, the following identity (up to some coefficients that depends on φ, ϕ and their derivatives up 
to order m) holds:

[ZI , Δ] =
∑

|Ĩ|≤|I|−1,|J|≤|I|−1
Ĩ0=j,J0=j

3∑
i,k=1

(∗Z Ĩ∂2
ik + ∗ZJ∂k).

This identity, combined with elliptic regularity theory yields:

‖[ZI , Δ]v‖L2(Qt) � ‖∇2v‖L2
tHj,l−1 + ‖∇v‖L2

tHj,l−1 � ‖Δv‖L2
tHj,l−1 + |∂n(ε∂t)jv|

Hl− 1
2

� ‖Δv‖ 2 j,l−1 + ‖(u, ∇u)‖ 2 j,l .
LtH LtH



N. Masmoudi et al. / J. Math. Pures Appl. 161 (2022) 166–215 193
Note that in the last inequality, we have used (2.78) and the trace inequality (7.10). We thus control the 
second term in (2.82) as follows:

ε

¨

Qt

ε∂tZ
Iv · [ZI , Δ]v dxds � ε2‖Δv‖2

L2
tHj,l−1 + ‖ε∂tv‖2

L2
tHj,l + ε‖u‖2

Em
t

. (2.83)

Moreover, the third term of (2.82) can be dealt with by arguments very similar to the ones for T3:

ε

tˆ

0

ˆ

∂Ω

ε∂tZ
Iv · ∂nZIv dSyds

� ε

tˆ

0

|ZIε∂tv|L2
(
|(ε∂t)jv|Hl+1 + |(ε∂t)j∇Ψ|Hl

)
ds

� ε(‖∇v‖
1
2
L2

tHj+1,l‖v‖
1
2
L2

tHj+1,l + ‖v‖L2
tHj+1,l)·

(‖∇v‖
1
2
L2

tHj,l+1‖v‖
1
2
L2

tHj,l+1 + ‖v‖L2
tHj,l+1 + ‖u, div u‖L2

tHj,l)

� ε2‖∇v‖2
L2

t Hm
co

+ ε‖(u, div u)‖2
L2

t Hm−1
co

+ ‖∇v‖2
L2

tHj+1,l−1∩L2
tHj,l + ‖v‖2

L2
tHm

(2.84)

Inserting (2.83) and (2.84) into (2.82), and using (2.55), (2.56) to find

ε2‖(∇q, f)‖2
L2

t Hm−1
co

� εΛ
( 1

c0
,Am,t

)
E2

m,t,

we obtain (2.70) by induction. �
2.4. Step 3: Uniform estimates for (∇σ, div u)

In this subsection, we aim to get uniform control of higher spatial conormal derivatives of (∇σ, div u). 
More precisely, we prove uniform boundedness of ‖(∇σ, div u)‖L∞

t Hm−2
co ∩L2

t Hm−1
co

. This will be achieved by 
using the equation iteratively.

Lemma 2.12. Assume that (1.24) holds, we then have that for every 0 < t ≤ T ,

‖(∇σ, div u)‖2
L∞

t Hm−2
co ∩L2

t Hm−1
co

� Y 2
m(σ0, u0) + (T + ε) 1

2E2
m,T Λ( 1

c0
,Am,T ). (2.85)

Proof. We will prove the following two inequalities:
• L2

t Hm−1
co estimate: for any j, k ≥ 0, j + k ≤ m − 1:

‖(∇σ, div u)‖L2
tHj,k � Ym(σ0, u0) + T

1
2 ‖(u, σ)‖L∞

t Hm

+ ε‖∇div u‖L2
t Hm−1

co
+ (T + ε) 1

4 Λ( 1
c0

,Am,T )Em,T .
(2.86)

• L∞
t Hm−2

co estimate: for any j, l ≥ 0 and j + l ≤ m − 2:

‖(∇σ, div u)‖L∞
t Hj,l � Ym(σ0, u0) + ε‖(∇div u, curl ω)‖L∞

t Hm−2
co

+ ‖v‖L∞
t Hm−1

co

+ ‖(σ, u)‖L∞
t Hm−1 + ε‖∇σ‖L∞Hm−1

co
+ εΛ( 1

,Am,T )Em,T .
(2.87)
t c0
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These two inequalities, combined with the estimates (2.7), (2.57), (2.66) and the definition (2.46), yield 
(2.85).

The inequality (2.86) can be obtained by induction on the number of space conormal derivatives. Let us 
first prove (2.86) for k = 0, j ≤ m − 1. By (2.50) and product estimate (7.1), we find that:

‖div u‖L2
tHm−1 � T

1
2 ‖σ‖L∞

t Hm + εΛ
( 1

c0
,Am,t

)
Em,t. (2.88)

Moreover, by the equations (1.15)2 for u,

∇σ = −ρ̄ε∂tu + εf − εμ curl ω + ε(2μ + λ)∇div u, (2.89)

we thus have by (2.55), (2.66) that:

‖∇σ‖L2
tHm−1 � ‖u‖L2

tHm + ε‖ curl ω‖L2
tHm−1 + ε‖∇div u‖L2

t Hm−1
co

+ εΛ
( 1

c0
,Am,t

)
Em,t

� T
1
2 ‖u‖L∞

t Hm + ‖div u‖L2
tHm−1 + Ym(σ0, u0)

+ ε‖∇div u‖L2
t Hm−1

co
+ (T + ε) 1

4 Λ
( 1

c0
,Am,t

)
Em,t,

(2.90)

which, together with (2.88), yields (2.86) for k = 0, j ≤ m − 1.
Now suppose that (2.86) holds for k = k0 − 1 with k0 ≥ 1, it suffices to prove that it is also true for 

k = k0 and for every j such that j + k0 ≤ m − 1. We begin with the estimate of div u, which again follows 
from the equation (2.50) and product estimate (7.1):

‖div u‖L2
tHj,k0 � ‖ε∂tσ‖L2

tHj,k0 + εΛ( 1
c0

,Am,t)Em,t

� ‖(σ, ∇σ)‖L2
tHj+1,k0−1 + Λ

( 1
c0

,Am,t

)
Em,t � R.H.S. of (2.86).

(2.91)

Next, one gets by equation (2.89), estimate (2.66) and the induction hypothesis that:

‖∇σ‖L2
tHj,k0 � ‖u‖L2

tHj+1,k0 + ε‖ curl ω‖L2
tHj,k0 + ε‖∇div u‖L2

t Hm−1
co

+ εΛ( 1
c0

,Am,T )Em,t

� ‖(div u, ∇v)‖L2
tHj+1,k0−1 + ε‖ curl ω‖L2

tHj,k0 + ε‖∇div u‖L2
t Hm−1

co
+ εΛ( 1

c0
,Am,T )Em,t

� R.H.S. of (2.86).

Let us switch to the proof of (2.87). By similar argument as in the derivation of (2.88), (2.90), one can 
find that:

‖(∇σ, div u)‖L∞
t Hm−2 � ‖(σ, u)‖L∞

t Hm−1 + ε‖(∇div u, curl ω)‖L∞
t Hm−2

co
+ εΛ

( 1
c0

,Am,t

)
Em,t, (2.92)

which proves (2.87) for l = 0. Suppose that it is true for l = l0 − 1 ≤ m − 3, we show that it also holds for 
l = l0 and for any j, such that j + l0 ≤ m − 2. Let us start with the estimate of div u. It follows from the 
equation (2.50), the product estimate (7.1) and the induction hypothesis that:

‖div u‖L∞
t Hj,l0 � ‖ε∂tσ‖L∞

t Hj,l0 + εΛ
( 1

c0
,Am,t

)
Em,t

� ‖(σ, ∇σ)‖L∞
t Hj+1,l0−1 + εΛ

( 1
,Am,t

)
Em,t
c0
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� ‖σ‖L∞
t Hm−2 + ‖∇σ‖L∞

t Hj+1,l0−1 + εΛ
( 1

c0
,Am,t

)
Em,t

� R.H.S. of (2.87).

For the estimate of ∇σ, we use the equation (2.89) and the product estimate (7.1) to obtain:

‖∇σ‖L∞
t Hj,l0

� ‖ε∂tu‖L∞
t Hj,l0 + ε‖(∇div u, curl ω)‖L∞

t Hm−2
co

+ ε
1
2 Λ

( 1
c0

,Am,t

)
Em,t.

(2.93)

It remains to bound ‖ε∂tu‖L∞
t Hj,l0 . We use that for j + l0 ≤ m − 2,

‖ε∂tu‖L∞
t Hj,l0 � ‖v‖L∞

t Hm−1
co

+ ‖(∇Ψ, ∇2Ψ)‖L∞
t Hj+1,l0−1

� ‖v‖L∞
t Hm−1

co
+ ‖(u, div u)‖L∞

t Hj+1,l0−1

� ‖u‖L∞
t Hm−2 + ‖v‖L∞

t Hm−1
co

+
l0∑

k=1

‖div u‖L∞
t Hj+k,l0−k .

(2.94)

Plugging (2.48) and (2.94) into (2.93) and using the induction hypothesis, we get that:

‖∇σ‖L∞
t Hj,l0 � R.H.S. of (2.87).

We thus proved that (2.87) holds for j + 1, l0 which ends the proof. �
Remark 2.13. By Lemmas 2.10, 2.12, we get that:

‖(σ, u)‖2
Em

t
� Y 2

m(σ0, u0) + (T + ε) 1
2 Λ

( 1
c0

,Nm,t

)
. (2.95)

2.5. Step 4: Uniform estimates for the gradient of the velocity

In this section, we will bound ‖∇v‖L∞
t Hm−2

co
, which, combined with (2.3), (2.87), gives the control of 

‖∇u‖L∞
t Hm−2

co
.

Lemma 2.14. Suppose that (1.24) holds, then for any 0 < t ≤ T , we have the following estimate,

‖∇v‖2
L∞

t Hm−2
co

� Y 2
m(σ0, u0) + ‖v‖2

L∞
t Hm−1

co
+ T

1
2 Λ

( 1
c0

,Nm,t

)
. (2.96)

Proof. Since in the interior domain, the conormal spatial derivatives are equivalent to the standard spatial 
derivatives, we only have to estimate ∇v near the boundary, say ‖χi∇v‖L∞

t Hm−2
co

where χi, (i = 1 · · · N)
are smooth functions associated to the covering (1.11) and are compactly supported in Ωi. Close to the 
boundary, it follows from the identity (2.77) and the following identity

Π(∂nv) = Π((∇v − Dv)n) + Π((Dv)n) = Π(ω × n) + Π∇(v · n) − Π((Dn)v)

that:

‖χi∇v‖L∞
t Hm−2

co
� ‖χiΠ(∂nv)‖L∞

t Hm−2
co

+ ‖v‖L∞
t Hm−1

co

� ‖χi(ω × n)‖L∞
t Hm−2

co
+ ‖v‖L∞

t Hm−1
co

.

We thus reduce the problem to the estimate of χi(ω × n), which is the aim of the following lemma. �
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Lemma 2.15. Under the assumption (1.24), the following estimate holds: for every 0 < t ≤ T ,

‖χi(ω × n)‖2
L∞

t Hm−2
co (Ω) � ‖χi(ω × n)(0)‖2

Hm−2
co

+ (T + ε) 1
2 Λ

( 1
c0

,Nm,t

)
, (2.97)

where χi is a smooth function compactly supported in Ωi.

Proof. Note that the important feature of χi(ω × n) is that: it solves a transport-diffusion system without
singular terms, with a non-homogeneous Dirichlet boundary condition. In order to perform the estimate, 
we split the system for χi(ω × n) into two parts, one of which just solves the heat equation with the 
nontrivial Dirichlet boundary condition and a remainder which is amenable to energy estimates since it 
satisfies a convection-diffusion equation with homogeneous Dirichlet boundary condition. To deal with the 
first system, the explicit formula for heat equation will play an important role. It is thus helpful to transform 
the problem to the half-space.

Let us set ηi = χiω × n, i ≥ 1. Direct computations show that ω solves the following system:

g2∂tω + g2u · ∇ω − μΔω = g2ω · ∇u − g2ωdiv u − ∇g2

ε
× (ε∂tu + εu · ∇u) =: Gω (2.98)

from which we obtain the equations satisfied by ηi (which is compactly supported in Ωi){
ρ̄∂tηi − μΔηi = F ω

i in Ωi ∩ Ω.

ηi = χiΠ(ω × n) = 2χiΠ(−au + (Dn)u) on Ωi ∩ ∂Ω̄,
(2.99)

where

F ω
i =: − Δ(χin) × ω − 2∇ω × ∇(χin) − (g2u · ∇ω) × (χin) + ρ̄ − g2

ε
ε∂tω × (χin) + Gω × (χin).

Since we will use the local coordinate (1.12), it is useful to know the expressions of Laplacian in this new 
coordinates. By direct computation, we find that:

(∇f) ◦ Φi = P∇(f ◦ Φi), (div F ) ◦ Φi = div
(
P ∗(F ◦ Φi)

)
(Δf) ◦ Φi = div (E∇

(
f ◦ Φi)

)
(2.100)

where ∇ = (∂y1 , ∂y2 , ∂z)t, div = (∇)∗ represent the gradient and the divergence in the new coordinates and⎛⎜⎝ 1 0 −∂y1ϕi

0 1 −∂y2ϕi

0 0 1

⎞⎟⎠ , E = P ∗P =

⎛⎜⎝ 1 0 −∂y1ϕi

0 1 −∂y2ϕi

−∂y1ϕi −∂y2ϕi |N|2

⎞⎟⎠ . (2.101)

Let us set η̃i(t, y, z) = ηi(t, Φi(y, z)) := (ηi ◦Φi)(y, z), (y, z) ∈ Φ−1
i (Ωi ∩ Ω̄). Denote also F̃ ω

i = F ω
i ◦Φi. Since 

Supp χi|Ω̄ � Ωi ∩ Ω̄, we can extend the definition of η̃i and F̃ ω
i from Φ−1

i (Ωi ∩ Ω̄) to R3
+ by zero extension, 

which are still denoted by η̃i, F̃ ω
i . Consequently, by (2.99) and (2.100), we find that η̃i satisfies:{

ρ̄∂tη̃i − μdiv (E∇η̃i

)
= F ω

ni in R3
+.

η̃i|z=0 = 2[χiΠ(−au + (Dn)u)] ◦ Φi

∣∣
z=0.

(2.102)

Let us set Z0 = ε∂t, Zj = ∂yj , j = 1, 2, Z3 = φ(z)∂z and define

‖η̃i‖m,t =
∑

‖Zαη̃i‖L2([0,t]×R3
+), ‖η̃i(t)‖m =

∑
‖(Zαη̃i)(t)‖L2(R3

+), (2.103)

|α|≤m |α|≤m
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where Zα = Zα0
0 Z

α1
1 Z

α2
2 Z

α3
3 , α = (α0, α1, α2, α3), by the definition of the conormal spaces (1.6) and the 

vector fields (1.13) we find that:

‖η̃i‖m,t ≈ ‖ηi‖L2
t Hm

co(Ω), ‖η̃i(t)‖m ≈ ‖ηi(t)‖Hm
co(Ω). (2.104)

Therefore, our following task is to establish an estimate for sup0≤t≤T ‖η̃i(t)‖m−2.
We shall write η̃i, F̃ ω

i by η̃, F̃ ω for the sake of notational clarity. We write η̃ = η̃h + η̃nh, where η̃h solves

{
ρ̄∂tη̃h − μ|N|2∂2

z η̃h = 0 in R3
+,

η̃h|t=0 = 0, η̃h|z=0 = η̃|z=0
(2.105)

while η̃nh satisfies {
ρ̄∂tη̃nh − μdiv (E∇η̃nh

)
= H(η̃h) + F ω in R3

+,

η̃nh|t=0 = η̃|t=0, η̃nh|z=0 = 0
(2.106)

where

H(η̃h) = μ
2∑

i,j=1
∂yi(Eij∂yj η̃h) + μ

2∑
i=1

∂yi(Ei3∂z η̃h) + ∂z(E3i∂yi η̃h).

Estimate (2.97) will be the consequence of the following two lemmas. �
Lemma 2.16. Adopting the notation introduced in (2.103), we have the following estimate: for any 0 < t ≤ T ,

sup
0≤t≤T

‖η̃h(t)‖m−2 + ‖η̃h‖m−1,T � T
1
4Em,T . (2.107)

Proof. Since |N|2 depends only on the tangential variable y1, y2, the equation (2.105) can be seen as a heat 
equation on the half line with Dirichlet boundary condition, which can be solved explicitly:

η̃h(t, y, z) = −2μ̃

tˆ

0

|N|2(
4πμ̃|N|2(t − s)

) 1
2

∂z

(
e

− z2
4μ̃|N|2(t−s)

)
η̃|z=0(s, y)ds

where μ̃ = μ/ρ̄. Taking a multi-index γ = (γ0, γ1, γ2, γ3), since time derivation commutes with ∂t, ∂2
z , we 

have that:

(
(ε∂t)γ0 η̃h

)
(t, y, z) = −2μ̃

tˆ

0

|N|2(
4πμ̃|N|2(t − s)

) 1
2

∂z

(
e

− z2
4μ̃|N|2(t−s)

)(
(ε∂t)γ0 η̃

)
|z=0(s, y)ds,

which, combined with (7.16) established in the appendix, yields that:

‖Zγ η̃h(t)‖L2
y,z(R3

+) �
tˆ

0

(t − s)− 3
4
∣∣η̃|z=0(s)

∣∣
H̃|γ|(R2

y)ds. (2.108)

The above inequality, combined with the boundary condition (2.102)2 and the trace inequality (7.9), yields 
that:
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‖η̃h(t)‖m−2 � T
1
4 sup

0≤s≤t
|η̃(s)|H̃m−2(R2

y) � T
1
4 ‖(u, ∇u)‖L∞

t Hm−2
co

� T
1
4Em,T .

Similarly, we apply a convolution inequality in the time variable (after extending η̃(s)|z=0 to s ∈ R by zero 
extension) to (2.108), and use the boundary condition (2.102)2 and the trace inequality (7.10) to obtain:

‖η̃h(t)‖m−1,t � T
1
4 |η̃|L2

t H̃m−1(R2
y) � T

1
4 ‖(u, ∇u)‖L2

t Hm−1
co

� T
1
4Em,T . �

Lemma 2.17. Using the notation (2.103), the following energy inequality holds: for any 0 < t ≤ T ,

‖η̃nh(t)‖2
m−2 + ‖∇η̃nh‖2

m−2,t � ‖η(0)‖2
Hm−2

co
+ (T + ε) 1

2 Λ
( 1

c0
,Nm,t

)
. (2.109)

Proof. Suppose that 0 ≤ |γ| = k ≤ m − 2. Denote η̃γ
nh = Zγ η̃nh, then η̃γ

nh solves the system (note that 
[Zγ , E] = 0):

ρ̄∂tη̃
γ
nh − μdiv

(
E∇η̃γ

nh

)
= μ[Zγ , div ](E∇η̃γ

nh) + μZγH(η̃h) +ZγF ω

=: Rγ
1 + Rγ

2 +ZγF ω

with the initial condition η̃γ
nh|t=0 = Zγ η̃|t=0 and the boundary condition η̃γ

nh|z=0 = 0.
Standard energy estimates show that:

ρ̄‖η̃γ
nh(t)‖2

L2(R3
+) +

tˆ

0

ˆ

R3
+

E∇η̃γ
nh · ∇η̃γ

nh dxds = ρ̄‖η̃γ
nh(0)‖2

L2(R3
+) +

tˆ

0

ˆ

R3
+

(Rγ
1 + Rγ

2 +ZγF̃ ω)η̃γ
nh dxds.

(2.110)

At first, since we can find some κ > 0, such that 2|N|2 ≤ 1/κ, one has that EX · X = |PX|2 ≥ 1
2|N|2 |X|2 ≥

κ|X|2 and hence, we deduce that:

tˆ

0

ˆ

R3
+

E∇η̃γ
nh · ∇η̃γ

nh dxds ≥ κ‖∇η̃γ
nh‖2

0,t. (2.111)

For the second term of the right hand side of (2.110), one needs to integrate by parts to avoid involving 
additional normal derivatives. Let us first study Rγ

1 which vanishes if |γ| = 0. By induction, one gets that 
for k = |γ| ≥ 1,

[Zγ , div ] = [Zγ , ∂z] =
∑
β<γ

Cφ,β,γ∂zZβ (2.112)

where Cφ,β,γ are smooth functions that depend on φ and its derivatives. Consequently, by integration by 
parts and Young’s inequality, we obtain that:

tˆ

0

ˆ

R3
+

Rγ
1 · η̃γ

nh dxds ≤ δ‖∇η̃γ
nh‖2

0,t + Cδ(‖∇η̃nh‖2
k−1,t + ‖η̃nh‖2

k,t). (2.113)

Similarly, by taking benefits of the zero boundary condition of η̃γ , one integrates by parts to get:
nh
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tˆ

0

ˆ

R3
+

Rγ
2 η̃γ

nh dxds ≤ δ‖∇η̃γ
nh‖2

0,t + Cδ(‖η̃h‖2
k+1,t + ‖η̃nh‖2

k,t). (2.114)

We are now left to deal with the term:

tˆ

0

ˆ

R3
+

ZγF̃ ω η̃γ
nh dxds =

5∑
j=1

tˆ

0

ˆ

R3
+

ZγF̃ ω
j η̃γ

nh dxdt =:
5∑

j=1
Ij (2.115)

where we denote that:

F̃ ω = −Δ̃(χin) × ω̃ − 2∇̃ω × ∇̃(χin) − ˜(g2u · ∇ω) × (̃χin) + (˜̄ρ − g2)
ε

ε̃∂tω × (̃χin) + G̃ω × (̃χin).

=: F̃ ω
1 + F̃ ω

2 + F̃ ω
3 + F̃ ω

4 + F̃ ω
5 .

Note that Gω is defined in (2.98). Moreover, without much ambiguity, we denote f̃ as (χ̃if) ◦ Φi where χ̃i

is a smooth function such that χ̃iχi = χi.
By the Cauchy-Schwarz inequality and the fact (2.104), I1 can be controlled by:

I1 � ‖ω̃‖k,t‖η̃nh‖k,t � T
1
2 ‖∇u‖L∞

t Hm−2
co

‖η̃nh‖k,t. (2.116)

Nevertheless, for I2 and I3, as F̃ ω
2 , F̃ ω

3 involve normal derivatives of ω, it is necessary to use integration by 
parts. By doing so, we can bound the term T2 as follows:

I2 ≤ δ‖∇η̃γ
nh‖2

0,t + Cδ(‖η̃nh‖2
k,t + ‖∇̃u‖2

k,t). (2.117)

Next, for I3, by noticing the expression

˜g2u · ∇ω = ∂y1(g̃2u1ω̃) + ∂y2(g̃2u2ω̃) + ∂z( ˜(g2u · N)ω̃)

−
(
∂y1 g̃2u1 + ∂y2 g̃2u2 + ∂z(g̃2u · N)

)
ω̃,

one performs an integration by parts again to get that:

I3 � ‖g̃2ũω̃‖k,t‖∇η̃γ
nh‖0,t + ‖ω̃(∂yj (g̃2uj), ∂z

˜(g2u · N))‖k,t‖η̃γ
nh‖0,t

≤ δ‖∇η̃γ
nh‖2

0,t + Cδ‖g̃2ũω̃‖k,t + T
1
2 ( sup

s∈[0,t]
‖η̃nh(s)‖k)‖ω̃(∂yj

(g̃2uj), ∂z(g̃2u · N))‖k,t

Here we used Einstein summation convention for j = 1, 2. By (2.104), (2.107) and the assumption k ≤ m −2, 
one can have that:

sup
s∈[0,t]

‖η̃nh‖k � sup
s∈[0,t]

‖(η̃, η̃h)(s)‖k � ‖∇u‖L∞
t Hm−2

co
+ T

1
4Em,t � Em,t. (2.118)

Moreover, since k ≤ m − 2, we have thanks to (2.104) that:

‖ω̃(∂yj (g̃2u
j), ∂z(g̃2u · N))‖m−2,t

� ‖|ω‖|0,∞,t‖Zi(g2uj), ∇(g2u · N)‖L2
t Hm−2

co

+ ‖ω‖L∞
t Hm−2

co

( tˆ
‖[Zi(g2uj), ∇(g2u · N)](s)‖2

m−3,∞ds
) 1

2

0
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where Zi stands for the tangential vector fields in Ωi. By identity (2.22) and the Sobolev embedding (7.7)
and estimate (2.47),

( tˆ

0

‖Zi(g2uj), ∇(g2u · N)(s)‖2
m−3,∞ds

) 1
2 � ‖u‖Em

t
+ ‖∇div u‖L2

t Hm−2
co

+ εΛ
( 1

c0
,Nm,t

)
� ‖(σ, u)‖Em

t
+ ε

1
2 Λ

( 1
c0

,Nm,t

)
,

which together with the previous inequality, yields:

‖ω̃(∂yj (g̃2uj), ∂z(g̃2u · N))‖m−2,t � Λ
( 1

c0
,Nm,t

)
.

Similarly, we have that:

‖g̃2ũω̃‖k,t � T
1
2 ‖|ω‖|0,∞,t‖u‖L∞

t Hm−2
co

+ ‖u‖Em
t

‖ω‖
L∞

t H
[ m

2 ]−2
co

+ (T + ε) 1
2 Λ

( 1
c0

,Am,t

)
Em,t.

Moreover, if k ≤ [ m
2 ] − 2,

‖g̃2ũω̃‖k,t � Λ
( 1

c0
,Am,t

)
‖∇u‖

L2
t H

[ m
2 ]−2

co

� T
1
2 Λ

( 1
c0

,Am,t

)
Em,t.

To summarize, we control T3 (defined in (2.115)) as follows:

T3 ≤ δ‖∇η̃γ
nh‖2

0,t + (T + ε) 1
2 Λ

( 1
c0

,Nm,t

)
, if k ≤ [m2 ] − 2, (2.119)

and for k ≤ m − 2,

T3 ≤ δ‖∇η̃γ
nh‖2

0,t + (T + ε) 1
2 Λ

( 1
c0

,Nm,t

)
+ ‖(σ, u)‖Em

t
‖ω‖

L∞
t H

[ m
2 ]−2

co

. (2.120)

For I4, the direct application of the Hölder inequality requires the control of the quantity ‖ ( ˜ρ̄−g2)
ε ε̃∂tω‖k,t, 

which further requires the estimate of L∞
t,x type norm of ∂tω However, ‖ |ε∂tω‖ |∞,t (or ‖ |∇u‖ |1,∞,t) does not 

appear in the L∞
t,x type norms present in Am,T . To avoid this problem, since ε̃∂tω = (P∇) × ε̃∂tu, we can 

integrate by parts in space before using product estimate. By doing so, we achieve that:

I4 ≤ δ‖∇η̃γ
nh‖2

0,t + Cδ‖η̃nh‖2
k,t + ‖(∇̃σ, ε̃∂tu)‖2

k,tΛ
( 1

c0
,Am,t

)
� δ‖∇η̃γ

nh‖2
0,t + Cδ‖η̃nh‖2

k,t + T Λ
( 1

c0
,Am,t

)
E2

m,t.

(2.121)

Finally, regarding the term T5 (defined in (2.115)) we control it by Cauchy-Schwarz inequality as:

T5 � T
1
2
(

sup
s∈[0,t]

‖η̃nh(s)‖k

)
‖G̃ω‖k,t.

By the estimate (2.118), the fact (2.104) and the Proposition 2.18, we get that:

T5 � (T + ε) 1
2 Λ

( 1
,Nm,t

)
. (2.122)
c0
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To summarize, we have found by collecting (2.116)-(2.121) that for 0 ≤ k ≤ m − 2,

tˆ

0

ˆ

R3
+

ZγF̃ ω η̃γ
nh dxdt ≤ 3δ‖∇η̃γ

nh‖2
0,t

+ Cδ

(
‖(η̃, η̃h)‖2

k,t + +‖u‖Em
t

‖ω‖
L∞

t H
[ m

2 ]−2
co

)
+ (T + ε) 1

2 Λ
( 1

c0
,Nm,t

)
≤ 3δ‖∇η̃γ

nh‖2
0,t + Cδ‖u‖Em

t
‖ω‖

L∞
t H

[ m
2 ]−2

co

+ (T + ε) 1
2 Λ

( 1
c0

,Nm,t

)
,

(2.123)

and also for 0 ≤ k ≤ [ m
2 ] − 2,

tˆ

0

ˆ

R3
+

ZγF̃ ω η̃γ
nh dxdt ≤ 3δ‖∇η̃γ

nh‖2
0,t + (T + ε) 1

2 Λ
( 1

c0
,Nm,t

)
. (2.124)

Inserting (2.113)-(2.114), (2.123)-(2.124) in (2.110), we obtain by choosing δ small enough that for any 
0 ≤ k ≤ m − 2,

‖η̃nh(t)‖2
k + ‖∇η̃nh‖2

k,t � ‖η(0)‖2
Hk

co
+ ‖∇η̃nh‖2

k−1,t

+ (T + ε) 1
2 Λ

( 1
c0

,Nm,t

)
+ ‖(σ, u)‖Em

t
‖ω‖

L∞
t H

[ m
2 ]−2

co

I{k≥[ m
2 ]−1},

(2.125)

where the convention ‖ · ‖l,t = 0 if l < 0 is used. We thus get by induction on 0 ≤ k ≤ [ m
2 ] − 2 that:

‖η̃nh(t)‖2
[ m

2 ]−2 + ‖∇η̃nh‖2
[ m

2 ]−2,t � ‖η(0)‖2
Hm−2

co
+ (T + ε) 1

2 Λ
( 1

c0
,Nm,t

)
, (2.126)

which, together with (2.107) and (2.85) gives that:

‖∇u‖2
L∞

t H
[ m

2 ]−2
co

� Y 2
m(σ0, u0) + (T + ε) 1

2 Λ
( 1

c0
,Nm,t

)
.

We then combine this estimate and (2.95) to obtain that:

‖u‖Em
t

‖ω‖
L∞

t H
[ m

2 ]−2
co

� Y 2
m(σ0, u0) + (T + ε) 1

2 Λ
( 1

c0
,Nm,t

)
.

Therefore, we take benefits of the estimate (2.125) and the induction arguments to get (2.109). �
Proposition 2.18. Assume that (1.23) holds and let

Gω = g2ω · ∇u − g2ωdiv u − ∇g2

ε
× (ε∂tu + εu · ∇u),

then we have:

‖χ̃iG
ω‖L2

t Hm−2
co

� Λ
( 1

c0
,Nm,t

)
.

Proof. Let us show the estimate of χ̃iω · ∇u, which is not direct since the higher order L∞
t,x norm is not 

included in Am,T . Nevertheless, thanks to identity (2.35), one can write this term as:
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χ̃iω · ∇u = χ̃i

(
ω1∂y1u + ω2∂y2u + (ω · N)∂nu

)
.

Moreover, by identities (2.59) and (2.22),

ω · N = (∇ × u) · N

= −(u × N)∂nn + (Π∂y1(u × N))1 + (Π∂y2(u × N))2 + u · curl N

which gives that for any t ∈ [0, T ], any k ≥ 0,

‖(ω · N)(t)‖Hk
co

� ‖u(t)‖Hk+1
co

, ‖(ω · N)(t)‖k,∞ � ‖u(t)‖k+1,∞

Therefore, by the Sobolev embedding (7.7), we have that:

‖χ̃iω · ∇u‖L2
t Hm−2

co

� ‖|∇u‖|0,∞,t‖(∂yiu, ω · N)‖L2
t Hm−2

co
+ ‖∇u‖L∞

t Hm−2
co

( tˆ

0

‖(∂yiu, ω · N)(s)‖2
m−3,∞ds

) 1
2

� ‖|∇u‖|0,∞,t‖u‖L2
t Hm−1

co
+ ‖∇u‖L∞

t Hm−2
co

‖u‖Em
t

� Λ
( 1

c0
,Nm,t

)
.

The other two terms in the definition of Gω are similar or easier to treat, we omit the details. �
Remark 2.19. Collecting the results stated in Lemmas 2.4, 2.10, 2.14, 2.12, we find that:

‖ε∇(σ, u)‖2
L∞

t Hm−1
co

+ ‖∇(σ, u)‖2
L∞

t Hm−2
co ∩L2

t Hm−1
co

+ ‖(σ, u)‖2
L∞

t Hm−1
co

� Y 2
m(σ0, u0) + (T + ε) 1

2 Λ( 1
c0

,Nm,T ).
(2.127)

2.6. ε-dependent estimate of ∇2u

To finish the estimates for the energy norm, we are left to deal with ‖ε∇2u‖L∞
t Hm−2

co
, ε‖∇2σ‖L∞

t L2 .

Lemma 2.20. Under the assumption (1.24), the following estimate holds:

‖ε∇2u(t)‖2
Hm−2

co
� Y 2

m(σ0, u0) + (T + ε) 1
2 Λ( 1

c0
,Nm,T ). (2.128)

Proof. As u satisfies the equation:

εμΔu = −(μ + λ)ε∇div u + g2(ε∂tu + εu · ∇u) + ∇σ,

we have by elliptic regularity theory:

‖ε∇2u(t)‖Hm−2
co

� ε
∑

|I|≤m−2

|ZI∂nu(t)|
H

1
2

+ ε‖∇div u(t)‖Hm−2
co

+ ‖u(t)‖Hm−1
co

+ ‖∇σ(t)‖Hm−2
co

+ ε
1
2Em,T Λ

( 1
c0

,Am,T

)
.

(2.129)

It follows from the boundary condition (1.14), the identity (2.22) and the trace inequality (7.9) that:

ε
∑

|ZI∂nu(t)|
H

1
2
� ε‖∇div u(t)‖Hm−2

co
+ ε‖(u, ∇u)(t)‖Hm−1

co
. (2.130)
|I|≤m−2
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Inserting (2.48) and (2.130) into (2.129), one arrives at:

ε‖∇2u(t)‖Hm−2
co

� ε‖∇(σ, u)(t)‖Hm−1
co

+ ‖∇σ(t)‖Hm−2
co

+ ‖u(t)‖Hm−1
co

+ ε
1
2Em,T Λ

( 1
c0

,Am,T

)
,

which, combined with (2.127) leads to (2.128). �
Lemma 2.21. Under the assumption (1.24), we have the following estimate for ∇2σ:

‖ε∇2σ‖2
L∞

t L2 + ‖∇2σ‖2
L2(Qt) � Y 2

m(0) + (T + ε)Λ( 1
c0

,Nm,T ). (2.131)

Proof. By (2.50) and (2.89), one finds that ∇σ solves:

ε2g1(∂t + u · ∇)∇σ + 1
(2μ + λ)∇σ = G (2.132)

where

G = −ε2(g′
1Sε∂tσ + ∇(g1uk) · ∂kσ) − ε

μ

(2μ + λ) curl ω − 1
(2μ + λ)g2(ε∂tu + εu · ∇u).

By taking the divergence of the equation (2.132), one arrives at:

ε2g1(∂t + u · ∇)Δσ + 1
2μ + λ

Δσ = div G − ε2[
g′

1∇σ · ε∂t∇σ +
3∑

i=1
∂i(g1u) · ∇∂iσ

]
=: G̃ (2.133)

From an energy estimate, we find

ε2‖Δσ‖2
L∞

t L2 + ‖Δσ‖2
L2(Qt) � T

1
2 ‖Δσ‖L2(Qt)‖G̃‖L∞

t L2 + T Λ
( 1

c0
,Am,t

)
‖εΔσ‖2

L∞
t L2 . (2.134)

We first observe that:

‖G̃‖L∞
t L2 � Λ

( 1
c0

,Am,t

)
E2

m,t.

Moreover, since in the local coordinate, we can find some coefficients aij that depends smoothly on n, such 
that (we use the convention ∂y3 = ∂n):

Δ = ∂2
n +

∑
0≤i,j≤3,(i,j) �=(3,3).

∂yi(aij∂yj ) (2.135)

which yields:

‖∂n∇σ‖L∞
t L2 � ‖Δσ‖L∞

t L2 + ‖∇σ‖L∞
t H1

co
.

We thus obtain (2.131) from (2.134). �
2.7. Proof of Proposition 2.1

By collecting (2.7), (2.127), (2.128) and (2.131), we get (2.1).
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Remark 2.22. In view of the formal expansion (1.5), one expects the first three normal derivatives of σ

to be bounded in L2(Qt). This can be achieved in the following way. By imposing additional assumption 
on σ0, namely ε∇2σ0 ∈ H1

co(Ω), ∇3σ0 ∈ L2(Ω), one can show by following similar computations as in the 
proof of Lemma 2.21 that: ε∇2σ ∈ L∞

t H1
co, ∇σ ∈ L2

t H1
co. These estimates at hand, one can carry out 

another energy estimate to control ‖∂nΔσ‖L2(Qt), which further leads to the boundedness of ‖∇3σ‖L2(Qt). 
We remark that in the latter energy estimate, the knowledge of ‖ε∇3u‖L2(Qt) is needed. Nevertheless, this 
term can be bounded by all the controlled norms appearing in Nm,T . More precisely, one has by equation 
for the velocity

εdivLu = g2(ε∂tu + εu · ∇u) + ∇σ,

and thus by (2.135):

‖ε∇3u‖L2(Qt) � ‖ε∇divLu‖L2(Qt) + ‖ε∇2u‖L2
t H1

co

≤ Λ(1/c0,Am,T )(‖(σ, u)‖L2
t H2

co
+ ‖∇(σ, u)‖L2

t H1
co

+ ‖∇2σ‖L2(Qt)).
(2.136)

3. Uniform estimates – L∞
t,x norms

In this section, we aim to control the L∞
t,x norms appearing in Am,T . Part of them can be deduced directly 

from the Sobolev embedding in the conormal setting (see Proposition 7.4) and the norms controlled in the 
previous section. Moreover, we use the maximum principle for transport-diffusion equation (3.5) satisfied by 
ω and of the damped transport equation (2.132) for ∇σ to get the L∞

t,x estimates of ∇u and ∇σ respectively.
We will prove the following proposition.

Proposition 3.1. Assuming that (1.24), (1.23) hold, then there is a constant C2(1/c0) depending only on 1/c0
and a polynomial Λ̄ whose coefficients are independent of ε, such that:

Am,T ≤ C2(1/c0)
(
Ym(σ0, u0) + Em,T

)
+ (ε 1

2 + T )Am,T Λ̄(1/c0,Am,T ). (3.1)

Proof. Let us recall that Am,T is defined as:

Am,T = ‖|∇u‖|0,∞,T + ‖|(∇σ, div u)‖|[ m−1
2 ],∞,T + ‖|(σ, u)‖|[ m+1

2 ],∞,T

+ ‖|ε 1
2 ∇u‖|[ m−1

2 ],∞,T + ‖|ε∇u‖|[ m+1
2 ],∞,T + ε‖|(σ, u)‖|[ m+3

2 ],∞,T .
(3.2)

The last four terms of Am,T can be controlled directly by the Sobolev embedding (7.7). For instance,

‖|(σ, u)‖|[ m+1
2 ],∞,T � sup

0≤s≤T

(
‖(σ, u)(s)‖

H
[ m+5

2 ]
co

+ ‖∇(σ, u)(s)‖
H

[ m+3
2 ]

co

)
� Em,T , (3.3)

ε
1
2 ‖|∇u‖|[ m−1

2 ],∞,T � sup
0≤s≤T

(
‖∇u(s)‖

H
[ m+3

2 ]
co

+ ε‖∇2u(s)‖
H

[ m+1
2 ]

co

)
� Em,T ,

ε‖|∇u‖|[ m+1
2 ],∞,T � ε sup

0≤s≤T

(
‖∇u(s)‖

H
[ m+5

2 ]
co

+ ‖∇2u(s)‖
H

[ m+3
2 ]

co

)
� Em,T .

Note that we have [ m+3
2 ] + 1 ≤ m − 2, [ m+5

2 ] ≤ m − 1 if m ≥ 6.
We remark also that ‖ |div u‖ |[ m−1

2 ],∞,T can be estimated by the other quantities in the definition of Am,T . 
Indeed, by using the equation satisfied by σ, we have that:

‖|div u‖|[ m−1 ],∞,T � ‖|σ‖|[ m+1 ],∞,T + εA2
m,T . (3.4)
2 2
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It thus remains to control ‖ |∇u‖ |0,∞,T , ‖ |∇σ‖ |[ m−1
2 ],∞,T . We note that away from the boundaries where 

the conormal Sobolev norm is equivalent to the usual Sobolev norm, these two terms can be bounded by 
the standard Sobolev embedding. Therefore, it suffices to control ‖ |χi∂nu‖ |0,∞,T , ‖ |χi∂nσ‖ |[ m−1

2 ],∞,T , where 
χi, (1 ≤ i ≤ N) are smooth functions compactly supported in Ωi. Moreover, by identity (2.22) and

Π(∂nu) = ω × n + 2Π(−(Dn)u),

we reduce our problem to the control of ‖ω‖0,∞,T , ‖χi∂nσ‖[ m−1
2 ],∞,T , which is the aim of the following two 

lemmas. �
We begin with the estimate for ‖ |ω‖ |0,∞,T which follows from the maximum principle of the transport-

diffusion equation for the vorticity.

Lemma 3.2. Under the assumption (1.24), the following estimate holds:

‖|ω‖|0,∞,T � ‖ω(0)‖L∞(Ω) + Em,T + (T + ε)A2
m,T . (3.5)

Proof. Recall that ω solves (2.98) which is rewritten below for convenience:

g2(∂t + u · ∇)ω − μΔω = g2(ω · ∇u − ωdiv u) + ∇g2 × [(∂t + u · ∇)u] = Gω x ∈ Ω.

Since g2(εσ) satisfies the transport equation: ∂tg2 +div (g2u) = 0, by the maximum principle, (one can refer 
to Proposition 13 of [43])

‖ω(t)‖L∞(Ω) ≤ ‖ω(0)‖L∞(Ω) + |ω(t)|L∞(∂Ω) + 1
inf g2

tˆ

0

‖Gω(s)‖L∞(Ω) ds. (3.6)

For the second term in the right hand side of (3.6), we use the boundary condition (1.14), the identity (2.22)
and (3.3), (3.4) to get that:

|ω(t)|L∞(∂Ω) � |(u, ∂yu, div u)(t)|L∞(∂Ω) � Em,T + εA2
m,T .

For the last term, we have by the assumption (1.24) and the property (1.23) that there is some C(1/c0), 
such that:

1
inf g2

tˆ

0

‖Gω(s)‖L∞(Ω) ds ≤ C(1/c0)TA2
m,T ,

which ends the proof. �
In the following, we estimate ‖ |χi∂nσ‖ |[ m−1

2 ],∞,T :

Lemma 3.3. Under the assumption (1.24), we have:

‖|χi∂nσ‖|[ m−1
2 ],∞,T � Ym(σ0, u0) + Em,T + ε

1
2Am,T Λ

( 1
c0

,Am,T

)
(3.7)

where χi is a smooth function that is compactly supported in Ωi.
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Proof. We define R = χi∂nσ = χin · ∇σ. By (2.132), R solves the following equation:

ε2g1(∂tR + u · ∇R) + 1
2μ + λ

R = −ε2g1u · ∇(χink)∂kσ + G · χin =: GR (3.8)

where

G = −ε2(g′
1Rε∂tσ + ∇(g1uk) · ∂kσ) − ε

μ

(2μ + λ) curl w − 1
(2μ + λ)g2(ε∂tu + εu · ∇u).

By applying ZI (|I| ≤ [ m−1
2 ]) to the equation (3.8), we get by setting RI = ZIR that

ε2g1(∂tR
I + u · ∇RI) + 1

2μ + λ
RI = ZIGR + CI

R,1 + CI
R,2 =: HI

where CI
R,1 = −ε2[ZI , g1/ε]ε∂tR, CI

R,1 = −ε2[ZI , g1u · ∇]R.
It is convenient to use the Lagrangian coordinates. Define the unique flow Xt(x) = X(t, x) associated to 

u: {
∂tX(t, x) = u(t, X(t, x))

X(0, x) = x ∈ Ω.
(3.9)

Note that since u · n|∂Ω = 0, and u ∈ Lip([0, T ] × Ω), we have for each t ∈ [0, T ], Xt : Ω → Ω is a 
diffeomorphism. By using the characteristics method, RI(t, Xt(x)) can then be expressed in the following 
way:

RI(t, Xt(x)) = e−Γ(t,x)RI(0) +
tˆ

0

e−Γ(t−s,x)( 1
ε2g1
HI

)
(s, Xs(x)) ds (3.10)

where Γ(t, x) = 1
2μ+λ

´ t

0
1

ε2g1(s,Xs(x)) ds ≥ c0t
(2μ+λ)ε2 . Note that we have used assumption (1.24) and property 

(1.23). Taking the supremum in (t, x) ∈ [0, T ] × Ω on both sides of (3.10), and using that X(t, ·)(0 ≤ t ≤ T )
is a diffeomorphism of Ω, we arrive at:

‖RI(t)‖L∞(Ω) � ‖RI(0)‖L∞(Ω) +
tˆ

0

e
− t−s

(2μ+λ)c1ε2 1
c0ε2 ds‖|HI‖|∞,T � ‖RI(0)‖L∞(Ω) + ‖|HI‖|∞,T . (3.11)

We have thus reduced the problem to the estimate of ‖ |(CI
R,1, CI

R,2)‖ |∞,T and ‖ |GR‖ |[ m−1
2 ],∞,T . By the 

identities (2.35), (2.41), and the definition of Am,T , we have:

‖|(CI
R,1,CI

R,2)‖|∞,T ≤ εΛ( 1
c0

,Am,T )Am,T . (3.12)

Moreover, GR (defined in (3.8)) can be controlled as:

‖|GR‖|[ m
2 ]−1,∞,T � ε

1
2Am,T Λ(1/c0,Am,T ) + ‖|(σ, u)‖|[ m+1

2 ],∞,T + ε‖|χ curl ω · n‖|[ m−1
2 ],∞,T .

Since curl ω · n = div (ω × n) + ω · curl n, the identity (2.60) yields

ε‖|χ curl ω · n‖|[ m−1 ],∞,T � ε‖|∇u‖|[ m+1 ],∞,T ,

2 2
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which further leads to:

‖|GR‖|[ m
2 ]−1,∞,T � ε

1
2Am,T Λ( 1

c0
,Am,T ) + Em,T . (3.13)

Inserting (3.12)-(3.13) into (3.11), we get (3.7). �
4. Proof of Theorem 1.1

Based on the uniform estimates established in previous sections, Theorem 1.1 can be shown by combining 
classical local existence results stated in below with a bootstrap argument:

Theorem 4.1. Assume that (σε
0, uε

0) ∈ H2(Ω), and

−c̄P̄ ≤ εσε
0(x) ≤ P̄ /c̄, ∀x ∈ Ω, ε ∈ (0, 1].

There is some Tε > 0 such that (1.15) has a unique strong solution which satisfies: (σε, uε) ∈
C([0, T ε], H2), uε ∈ L2([0, T ε], H3). Moreover, the following property holds:

−3c̄P̄ ≤ εσε(t, x) ≤ 3P̄ /c̄ ∀(t, x) ∈ [0, T ε] × Ω. (4.1)

This result can be obtained from Theorem 1.1 in [24]. Indeed, the statement in [24] requires higher 
regularity for the velocity (but not for the density), namely uε

0 ∈ H3, in order to include some time-space 
Hölder continuity and also to make the boundary condition (1.14) pointwisely satisfied. Nevertheless, we 
can use [24] to obtain Theorem 4.1. Indeed, to get the existence, we can approximate the initial velocity 
u0 in H2 satisfying the compatibility condition at order one by a velocity uN

0 ∈ H3, still satisfying the 
compatibility condition, and such that uN

0 converges to u0 in H2. This yields a local solution (ρN , uN ) with 
uN in H3 from Theorem 1.1 of [24]. Then, by using our a priori estimates, we can obtain that this local 
solution exists on an interval of time independent of N and use standard compactness argument to pass to 
the limit. A way to choose uN

0 is to use the approach of [24] based on the elliptic regularity for the Lamé 
operator, basically we take uN

0 = PN u0 where PN is the L2 projection on the N first eigenmodes.
By using Theorem 4.1, we can give the proof of Theorem 1.1.

4.1. Proof of Theorem 1.1

On the one hand, (σε
0, uε

0) ∈ H2, by Theorem 4.1, one can find some T ε > 0 such that there is a 
unique solution of (1.15) satisfying: (σε, uε) ∈ C([0, T ε], H2), uε ∈ L2([0, T ε], H3). Moreover, condition (4.1)
holds. On the other hand, as (σε

0, uε
0) ∈ Ym, a higher regularity space, by standard propagation of regularity 

arguments (for example based on applying finite difference instead of derivatives) in the estimates of Section 3
and Section 4, we find that the estimates of Proposition 1.6 hold on [0, T ε]. More specifically, we can find 
a constant C(1/c0) and an increasing polynomial Λ0 that are independent of ε and T ε, such that for any 
0 ≤ T ≤ min{1, T ε}, 0 < ε ≤ 1,

N2
m,T (σε, uε) ≤ C

( 1
c0

)
Y 2

m(σε
0, uε

0) + (T + ε) 1
2 Λ0

( 1
c0

,Nm,T

)
. (4.2)

Moreover, by using the characteristics method, we have that εσ can be expressed as,

εσε(t, x) = εσε
0(X−1(t, x)) −

tˆ
(div uε/g1)(X(s, X−1(t, x))) ds (4.3)
0
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where X(t, ·) is the flow associated to u.
Let us define

T ε
∗ = sup{T

∣∣(σε, uε) ∈ C([0, T ], H2), uε ∈ L2([0, T ], H3)},

T ε
0 = sup{T ≤ min{T ε

∗ , 1}
∣∣Nm,T (σε, uε) ≤ 2

√
C(1/c0)M,

− 2c̄P̄ ≤ εσε(t, x) ≤ 2P̄ /c̄ ∀(t, x) ∈ [0, T ] × Ω}

where M > supε∈(0,1] Ym(σε
0, uε

0).
We now choose successively two constants 0 < ε0 ≤ 1 and 0 < T0 ≤ 1 (uniform in ε ∈ (0, ε0]) which are 

small enough, such that:

(T0 + ε0) 1
2 Λ0

(
1/c0, 2

√
C(1/c0)M

)
< 1/2, 2

√
C(1/c0)MT0/c0 ≤ c̄P̄ .

In order to prove Theorem 1.1, it suffices to show that T ε
0 ≥ T0 for every 0 < ε ≤ ε0. Suppose otherwise 

T ε
0 < T0 for some 0 < ε ≤ ε0, then in view of inequalities (4.2) and formula (4.3), we have by the definition 

of ε0 and T0 that:

Nm,T (σε, uε) ≤
√

2C(1/c0)M, ∀T ≤ T̃ = min{T0, T ε
∗ }, (4.4)

−2c̄P̄ ≤ εσε(t, x) ≤ 2P̄ /c̄ ∀(t, x) ∈ [0, T̃ ] × Ω. (4.5)

We will prove that T̃ = T0 ≤ T ε
∗ . This fact, combined with the definition of T ε

0 and estimates (4.4), (4.5), yield 
T ε

0 ≥ T0, which is a contradiction with the assumption T ε
0 < T0. To continue, we shall need the claim stated 

and proved below. Indeed, once the following claim holds, we have by (4.4) that ‖(σε, uε)(T0)‖H2(Ω) < +∞. 
Combined with the local existence result stated in Theorem 4.1, this yields that T ε

∗ > T0.

Claim. For all ε ∈ (0, 1], if Nm,T (σε, uε) < +∞, then (σε, uε) ∈ C([0, T ], H2), uε ∈ L2([0, T ], H3).

Proof of Claim. We see from the definition of Nm,T and the estimate (2.136) that:

εuε ∈ L2([0, T ], H3), ε∂tu
ε ∈ L2([0, T ], H1), εσε ∈ L∞([0, T ], H2).

One deduces from interpolation that εuε ∈ C([0, T ], H2). Moreover, carrying out direct energy estimates 
for σε in H2(Ω), one gets that:

|∂tR
ε(t)| ≤ Kε

(
Rε(t) + fε(t)

)
(4.6)

where Kε = Λ(1/c0, ‖ |(∇σε, ∇uε, ε∇2uε)‖ |∞,t) is uniformly bounded and

Rε(t) = ‖εσε(t)‖2
H2 , fε(t) = ‖εuε(t)‖H3‖σε(t)‖H2 ∈ L1([0, T ]).

Inequality (4.6) and the boundedness of ‖Rε(·)‖L∞([0,T ]) leads to the fact that Rε(·) ∈ C([0, T ]), which 
further yields that εσε ∈ C([0, T ], H2). This ends the proof of the claim. Note that at this stage we do not 
require the norm ‖(σε, uε)‖C([0,T ],H2) to be bounded uniformly in ε. �
5. Proof of Theorem 1.7

The convergence result follows from compactness arguments. At first, since σε = P (ρε)−P (ρ̄)
ε is uniformly 

bounded in L∞([0, T0], W 1,∞(Ω)) ∩L2([0, T0], H1(Ω)), we have that: P (ρε) → P (ρ̄) in L∞([0, T0], W 1,∞(Ω)) ∩
L2([0, T0], H1(Ω)), which yields that ρε → ρ̄ in L2([0, T0], H1(Ω)).
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For the convergence of uε, let us split the velocity into compressible part and incompressible part: 
uε = ∇Ψε + vε by using the Leray decomposition (2.2). We shall prove that the compressible part ∇Ψε

tends to 0 in L2
t,wH1(Ω) whereas incompressible part of uε tends to u0 in L2(QT0). Since ∇Ψε is uniformly 

bounded in L2
t H2(Ω), we have that, up to the extraction of a subsequence (that we do not mention explicitly) 

∇Ψε converges to Qu0 in L2
w([0, T0], H1(Ω)). Nevertheless, by the equation (2.50), div uε tends to 0 in the 

sense of distribution, which leads to Qu0 = 0. Because of this, one can indeed see that, without any 
extraction of the subsequences, ∇Ψε → 0 in L2

w([0, T0], H1(Ω)).
We are now in position to prove the convergence of vε. By the equation of vε : (2.5)3, ∂tv

ε is uniformly 
bounded in L2([0, T0], H−1(Ω)) whereas vε is uniformly bounded in L2([0, T0], H1(Ω)). Therefore, by Aubin-
Lions lemma, {vε} is compact in L2(QT0), which yields, up to extraction of subsequences, the convergence 
of vε (say to u0) in L2(QT0).

In the following, we aim to justify that u0 is the unique weak solution of the incompressible Navier-Stokes 
equation (1.3) satisfying (1.26). Let us rewrite the equations of vε as follows:

ρ̄∂tv
ε − μΔvε + ∇πε = F ε = F ε

1 + F ε
2 , (5.1)

where

F ε
1 = −(ρε − ρ̄)(∂tu

ε + uε · ∇uε), F ε
2 = −ρ̄(vε · ∇uε + ∇Ψε · ∇vε).

Note that we put the gradient terms ρ̄∇(∂tΨε + 1
2 |∇Ψε|2) into the pressure ∇πε. Let us write down the 

weak formulation for (5.1). Multiplying equation (5.1) by a test function ψ ∈ (C∞([0, T0] × Ω))3 which 
satisfies div ψ = 0, ψ · n|∂Ω = 0, we obtain that for each 0 < t ≤ T0,

ρ̄

ˆ

Ω

(vε · ψ)(t, ·) dx + μ

¨

Qt

∇vε · ∇ψ dxds +
¨

Qt

F ε · ψ dxds

= ρ̄

ˆ

Ω

(vε · ψ)(0, ·) dx + ρ̄

¨

Qt

vε · ∂tψ dxds + μ

tˆ

0

ˆ

∂Ω

Π∂nvε · ψ dSyds.

(5.2)

It remains to pass to the limit to show that u0 satisfies (1.27). We shall only focus on the last terms in 
both sides of (5.2), as the other terms are direct. Since ρε = g2(εσε), we have that (ρε − ρ̄)/ε is uniformly 
bounded in L∞(QT0), it then follows from the velocity equation in (1.15)2 that

¨

Qt

F ε
1 · ψ dxds =

¨

Qt

ρε − ρ̄

ρε
(divLuε − ∇σε

ε
)ψ dxds.

We then observe that

1
ε

¨

Qt

ρε − ρ

ρε
∇σε · ψ dxds = 1

ε

¨

Qt

g2(εσε) − g2(0)
g2(εσε) ∇σε · ψ dxds = 0

by integrating by parts since

g2(εσε) − g2(0)
g2(εσε) ∇σε = 1

ε
∇ (G(εσε))

where G(s) is such that
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G′(s) = g2(s) − g2(0)
g2(s)

.

In a similar way, we have that
¨

Qt

ρε − ρ̄

ρε
∇div uε · ψ dxds = −ε

¨

Qt

div uε G′′(εσε)∇σε · ψ dxds

¨

Qt

ρε − ρ̄

ρε
Δuε · ψ dxds = −ε

¨

Qt

G′′(εσε) ((∇σε · ∇)uε) · ψ dxds +
tˆ

0

ˆ

∂Ω

ρε − ρ̄

ρε
Π∂nuε · ψ dxds.

These three above terms tend to zero, for the last one, we use that ‖ρε − ρ̄‖L∞(Qt) = O(ε) while Π∂nuε is 
uniformly bounded in L2(∂Ω) by using the Navier-boundary condition and the trace inequality. This yields

¨

Qt

F ε
1 · ψdxds → 0.

Next, since ∇Ψε ⇀ 0, ∇uε ⇀ ∇u0, vε → u0 in L2(Qt) and vε is uniformly bounded in L2([0, T0], H1(Ω)), 
we have that:

¨

Qt

F ε
2 · ψ dxds → ρ̄

¨

Qt

(u0 · ∇u0) · ψ dxds.

Finally, for the boundary term in (5.2), we use the boundary condition for vε (see (2.72)):

Π(∂nvε) = Π(−2avε + (Dn)vε) + 2Π(−a∇Ψε + (Dn)∇Ψε).

As vε → u0 in L2(Qt) and vε is uniformly bounded in L2([0, t], H1(Ω)), ∇Ψε → 0 in L2
w([0, t], H1(Ω)), 

it follows from the trace inequality and the Hölder inequality that: vε|∂Ω → u0|∂Ω in L2([0, t], L2(∂Ω)), 
∇Ψε → 0 in L2

w([0, t], L2(∂Ω)). This yields:

μ

tˆ

0

ˆ

∂Ω

Π∂nvε · ψ dSyds → μ

tˆ

0

ˆ

∂Ω

Π(−2au0 + (Dn)u0) · ψ dSyds.

Therefore, u0 satisfies the formulation (1.27) and hence is a weak solution to (1.3). Next, due to the uniform 
boundedness of vε in L∞

T0
Hm−1

co and ∇vε in L2
T0

Hm−1
co ∩L∞(QT0), we get that u0 has the additional regularity 

property (1.26). The uniqueness result is easy owing to the boundedness of the Lipschitz norm. Since any 
subsequence of uε will have an extracted subsequence that solves (1.27) and satisfies the additional regularity 
property (1.26), we finally get from the uniqueness that the whole family uε converges to u0. This ends the 
proof of Theorem 1.7.

6. Remarks on the exterior domains

In this short section, we make some remarks on the incompressible limit problem for (CNS) when the 
domain is an exterior domain, that is Ω = R3\K, where K ⊂ R3 is a smooth compact domain. We first 
remark that the uniform regularity estimates can be obtained in the same way as in the bounded domain 
case (see Section 2-3). Indeed, to define conormal vector fields and conormal Sobolev spaces we only need a 
finite covering property of the boundary without requiring any boundedness of the domain. Moreover, the 
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Sobolev embeddings and the trace inequalities (Proposition 7.4, Lemma 7.5) widely used in Section 2-3 do 
not depend on the size of the domain.

Note that in the case of exterior domains, one can obtain the strong convergence in time of the velocities, 
namely uε → u0 in L2([0, T0], L2

loc(Ω)) by using some properties of the wave equation. Indeed, in the 
case of exterior domains, there is no point spectrum for the Neumann Laplacian and the RAGE Theorem 
(Theorem 5.8 of [7] for example) can be used. We refer to [15,20] where this approach was used for weak 
solutions of the Navier-Stokes-Fourier system, it can be easily used for solutions of the isentropic system 
enjoying our stronger uniform estimates.

7. Appendix

We state here the product and commutator estimates which are used throughout the paper:

Lemma 7.1. For each 0 ≤ t ≤ T , and for any integer k ≥ 2, one has the (rough) product estimates

‖(fg)(t)‖Hk
co

� ‖f(t)‖Hk
co

‖|g‖|[ k−1
2 ],∞,t + ‖g(t)‖Hk

co
‖|f‖|[ k

2 ],∞,t, (7.1)

and commutator estimates:

‖[ZI , f ]g(t)‖L2 � ‖Zf(t)‖Hk−1
co

‖|g‖|[ k
2 ]−1,∞,t + ‖g(t)‖Hk−1

co
‖|Zf‖|[ k−1

2 ],∞,t, |I| = k, (7.2)

‖[(ε∂t)k, f ]g(t)‖L2 � ‖(ε∂tf)(t)‖Hk−1‖|g‖|[ k
2 ]−1,∞,t + ‖g(t)‖Hk−1‖|ε∂tf‖|[ k−1

2 ],∞,t. (7.3)

Proof. This lemma follows from simply counting the derivatives hitting on f or g. For instance, to prove 
the product estimate (7.1) and the commutator estimate (7.2), one can use the following expansion:

ZI(fg) =
( ∑

|J|≤[(k−1)/2]

+
∑

|I−J|≤[k/2]

)
(CI,JZJgZI−Jf)

=
( ∑

|J|≤[k/2]−1

+
∑

1≤|I−J|≤[(k+1)/2]

)
(CI,JZJgZI−Jf) + fZIg, |I| = k. �

As a corollary of Lemma 7.1 the following composition estimates hold:

Corollary 7.2. Suppose that h ∈ C0(Qt) ∩ L2
t Hm

co with

A1 ≤ h(t, x) ≤ A2, ∀(t, x) ∈ Qt.

Let F (·) : [A1, A2] → R be a smooth function satisfying

sup
s∈[A1,A2]

|F (m)|(s) ≤ B.

Then we have the composition estimate, for p = 2, +∞

‖F (h(·, ·)) − F (0)‖Lp
t Hm

co
≤ Λ(B, ‖|h‖|[ m

2 ],∞,t)‖h‖Lp
t Hm

co
,

where Λ(B, ‖ |h‖ |[ m
2 ],∞,t) is a polynomial with respect to B and ‖ |h‖ |[ m

2 ],∞,t.

This Corollary, combined with Lemma 7.1, leads to the following estimates:
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Corollary 7.3. Let g1(εσ), g2(εσ) defined in (1.16) and assume that (1.24), (1.23) hold. Then one has the 
following estimates: for j = 1, 2, p = 2, +∞,

‖Zgj‖Lp
tHm−1 ≤ εΛ

( 1
c0

, ‖|σ‖|[ m
2 ],∞,t

)
‖(σ, Zσ)‖Lp

tHm−1 , (7.4)

‖Zgj‖Lp
t Hm−1

co
≤ εΛ

( 1
c0

, ‖|σ‖|[ m
2 ],∞,t

)
‖σ‖Lp

t Hm
co

, (7.5)

‖gj(εσ) − gj(0)‖Lp
t Hm

co
� εΛ

( 1
c0

, ‖|σ‖|[ m
2 ],∞,t

)
‖σ‖Lp

t Hm
co

. (7.6)

We will use often the following Sobolev embedding inequality whose proof is similar to that of Proposi-
tion 12 and Proposition 20 of [35].

Proposition 7.4. Let Ω = R3
+ or a smooth bounded domain, we have the following Sobolev embedding in-

equality

‖f(t)‖L∞(Ω) � ‖∇f(t)‖
1
2
Hk+1

co
‖f(t)‖

1
2
Hk+2

co
+ ‖f(t)‖Hk+2

co
. (7.7)

Proof. For the case of the half-space, this is a consequence of the inequality: for a function g defined on R3
+,

‖f(t)‖L∞(R3
+) � ‖∂zf(t)‖

1
2
H

s1
co (R3

+)‖f(t)‖
1
2
H

s2
co (R3

+) (7.8)

where s1, s2 are positive and satisfy s1 + s2 > 2. One can refer to (Prop. 2.2) of [36] for the proof. The case 
of general smooth bounded domains follows by working in local coordinates. �

The following trace inequalities are also used:

Lemma 7.5. For multi-index I = (I0, · · · , IM ) with |I| = k, we have the following trace inequalities:

|ZIf(t)|2L2(∂Ω) � ‖∇f(t)‖Hk
co

‖f(t)‖Hk
co

+ ‖f(t)‖2
Hk

co
. (7.9)

tˆ

0

|ZIf(s)|2L2(∂Ω) ds � ‖∇f‖L2
t Hk

co
‖f‖L2

t Hk
co

+ ‖f‖2
L2

t Hk
co

. (7.10)

tˆ

0

|ZIf(s)|2
H

1
2 (∂Ω)

ds � ‖∇f‖2
L2

t Hk
co

+ ‖f‖2
L2

t Hk
co

. (7.11)

In the next proposition, we state some elliptic estimates which are used frequently.

Proposition 7.6. Given a bounded domain Ω with Ck+1 boundary. Consider the following elliptic equation 
with Neumann boundary condition: ⎧⎪⎨⎪⎩

Δq = div f in Ω
∂nq = f · n + g on ∂Ω´

Ω qdx = 0
(7.12)

The system (7.12) has a unique solution in H1(Ω) which satisfies the following gradient estimate:

‖∇q(t)‖L2(Ω) � ‖f(t)‖L2(Ω) + |g(t)| − 1 . (7.13)

H 2 (∂Ω)
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Moreover, for j + l = k,

‖∇q(t)‖Hj,l(Ω) � ‖f(t)‖Hj,l(Ω) + |g(t)|
H̃k− 1

2 (∂Ω)
. (7.14)

‖∇2q(t)‖Hj,l(Ω) � ‖(f, div f(t))‖Hj,l(Ω) + |(f · n, g)(t)|
H̃k+ 1

2 (∂Ω)
. (7.15)

Proof. The existence of the weak solution in H =: {q| q ∈ H1(Ω), ́ Ω qdx = 0} as well as the gradient 
estimate (7.13) comes from Lax-Milgram Lemma. The estimates (7.14)-(7.15) are then standard regularity 
estimates for elliptic equations, that take into account the number of time derivatives (the time variable 
being only a parameter in this Lemma). �

Finally, we state an elementary estimate of the heat kernel which is useful in the estimates of the vorticity.

Lemma 7.7. Let

K(s, y, z) = μ̃|N|2(4πμ̃|N|2s)− 1
2 ∂z

(
e

− z2
4μ̃|N|2s

)
, N(y) = (−∂1ϕ(y), −∂2ϕ(y), 1)t

where (y, z) ∈ R3
+ and set Zβ = ∂β1

y1 ∂β2
y2Zβ3

3 , Z3 = z
1+z ∂z. We have the following estimate:

‖ZβK(s, y, ·)‖L2
z(R+) ≤ C(β, μ̃, |ϕ|C|β|+1)s− 3

4 . (7.16)

Proof. It suffices to prove that, for any l ∈ N, there is a polynomial P2|β|+1 with 2|β| + 1 degree, such that:

|ZβK(s, y, z)| ≤ C(β, μ̃, |ϕ|C|β|+1)P2|β|+1
( z√

s

)
e

− z2
4μ̃|N|2s s−1 ∀s > 0, y ∈ R2. (7.17)

By direct computation, one can see that, there exists a polynomial with degree 2(β1 + β2) + 1 : P2(β1+β2)+1, 
a smooth function depends on ∇yϕ and its derivatives up to order β1 + β2 : Fβ1+β2(∇yϕ) such that

∂β1
y1

∂β2
y2

K(s, y, z) = P2(β1+β2)+1
( z√

s

)
Fβ1+β2(∇yϕ)e− z2

4μ̃|N|2s s−1.

To prove (7.17), it suffices to show by induction arguments that, there exists a smooth function F (|N|2), 
such that

∂β3
z

(
P2(β1+β2)+1

( z√
s

)
e

− z2
4μ̃|N|2s

)
= F (|N|2)e− z2

4μ̃|N|s P2|β|+1
( z√

s

)
z−β3 . �
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