Sound and Efficient Concurrency Bug Prediction

Yan Cai
State Key Laboratory of Computer
Science, Institute of Software, Chinese

Hao Yun
State Key Laboratory of Computer
Science, Institute of Software, Chinese

Jingiu Wang
State Key Laboratory of Computer
Science, Institute of Software, Chinese

Academy of Sciences, and University =~ Academy of Sciences, and University =~ Academy of Sciences, and University

of Chinese Academy of Sciences
Beijing, China
ycai.mail@gmail.com

Lei Qiao
Beijing Institute of Control
Engineering
Beijing, China
fly2mars@163.com

ABSTRACT

Concurrency bugs are extremely difficult to detect. Recently, several
dynamic techniques achieve sound analysis. M2 is even complete
for two threads. It is designed to decide whether two events can
occur consecutively. However, real-world concurrency bugs can
involve more events and threads. Some can occur when the order
of two or more events can be exchanged even if they occur not
consecutively. We propose a new technique SEQCHECK to soundly
decide whether a sequence of events can occur in a specified order.
The ordered sequence represents a potential concurrency bug. And
several known forms of concurrency bugs can be easily encoded
into event sequences where each represents a way that the bug can
occur. To achieve it, SEQCHECK explicitly analyzes branch events
and includes a set of efficient algorithms. We show that SEQCHECK
is sound; and it is also complete on traces of two threads.

We have implemented SEQCHECK to detect three types of concur-
rency bugs and evaluated it on 51 Java benchmarks producing up to
billions of events. Compared with M2 and other three recent sound
race detectors, SEQCHECK detected 333 races in 30 minutes; while
others detected from 130 to 285 races in 6 to 12 hours. SEQCHECK
detected 20 deadlocks in 6 seconds. This is only one less than Dirk;
but Dirk spent more than one hour. SEQCHECK also detected 30
atomicity violations in 20 minutes. The evaluation shows SEQCHECK
can significantly outperform existing concurrency bug detectors.

CCS CONCEPTS

« Software and its engineering — Multithreading; Scheduling;
Software testing and debugging.

“Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8562-6/21/08...$15.00
https://doi.org/10.1145/3468264.3468549

of Chinese Academy of Sciences
Beijing, China
yunhao@ios.ac.cn

255

of Chinese Academy of Sciences
Beijing, China
wangjq@ios.ac.cn

Jens Palsberg
University of California
Los Angeles (UCLA), USA
palsberg@ucla.edu

KEYWORDS

Concurrency bugs, data races, deadlocks, atomicity violations

ACM Reference Format:

Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, and Jens Palsberg . 2021. Sound
and Efficient Concurrency Bug Prediction. In Proceedings of the 29th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE °21), August 23-28, 2021, Athens,
Greece. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3468264.
3468549

1 INTRODUCTION

Concurrent programs can exhibit different thread interleavings due
to non-determinism, bringing concurrency bugs [33]. They can
bring harmful results or even disasters [25, 32, 44].

To detect concurrency bugs, one promising direction would be a
sound predictive analysis [24, 28, 29, 43, 55]. They run a concurrent
program to generate traces consisting of different types of events.
They then consider the dependencies of events and model such
relations either as constraints [24, 28] or direct edges in graphs [43]
or comparable vector clocks [29, 31, 55]. And a feasible solution or
a feasible topological order or a pair of conflicting vector clocks is
taken as a proof of the existence of a real concurrency bug. Different
models offer different abilities and suffer from different weaknesses.
For example, constraint-solver-based ones are able to check values
in memory access events, producing a larger concurrency coverage;
but they rely on heavy constraint solvers to guarantee their sound-
ness and completeness. To be efficient, these techniques usually
analyze a segmentation (e.g., every 10k consecutive events) of a
trace [24, 28]. Graph based ones can be complete (given a trace of
two threads [43]) over full traces, but are usually inefficient. Vector
clock based approaches are efficient but often incomplete.

This paper focuses on efficient, sound, and complete approaches.
To the best of our knowledge, M2 [43] is the state-of-the-art one.
However, M2 is limited to data race prediction only; or more pre-
cisely, it is limited to predict the kinds of concurrency bugs involv-
ing two events that should occur consecutively. Data races right
fall into this category because it is defined to be two conflicting
memory accesses of two threads [29, 55] that occur consecutively.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468549
https://doi.org/10.1145/3468264.3468549
https://doi.org/10.1145/3468264.3468549

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Furthermore, other types of concurrency bugs such as deadlocks
[6], atomicity violations [34], and order violations [33] are not
limited to two events or two threads. They do not require that all
involved events occur at the same time. For example, two well-
protected events can form a concurrency bug if their orders are
reversed [8]; however, it fits poorly with the definition of data races.
It seems highly nontrivial to extend M2 to support the detection of
common concurrency bugs (see Section 2).

In this paper, we address the above challenge by presenting
SEQCHECK, an efficient and sound tool to analyze full traces to
detect various types of concurrency bugs. SEQCHECK is complete
when there are two threads. The core of SEQCHECK is an algorithm
to decide whether a sequence of two (or more) events is feasible
over a given trace. Such a sequence can vary for different types of
concurrency bugs but can be easily designed; it can have events
from any number of threads.

SEQCHECK firstly calculates an event set that is necessary for
determining the feasibility of the sequence. Secondly, SEQCHECK
constructs a graph to reorder the events in the set. It applies four
types of orders as edges including program orders, observation
orders (on pairs of write and read), lock orders, and the orders from
the input sequence. Finally, it computes a closure for these orders
on the graph. If no cycle is found in the process, SEQCHECK soundly
decides that the sequence is feasible indicating a true bug.

SEQCHECK is inspired by M2 [43]; however, the essential differ-
ence between them is that M2 targets deciding whether two events
can be reordered one after another; whereas SEQCHECK targets
deciding whether a sequence of events in a specified order is feasi-
ble, no matter whether they can occur consecutively. Note, if two
events can occur consecutively, they are exchangeable; but two
exchangeable events may be unable to occur consecutively. As a
result, M2 produces a subset of that of SEQCHECK.

To achieve the above goal, SEQCHECK considers branch events.
Besides, for a potential concurrency bug with more than two events
that have multiple ways to occur, SEQCHECK natively supports
a "divide-and-conquer" manner to decide it. That is, SEQCHECK
can decide a potential concurrency bug to be true if it decides
that any sequence (corresponding to a unique way for the bug to
occur) is feasible in a trace. Instead, if any two events of a sequence
can occur consecutively in different traces, M2 cannot decide that
the sequence can be feasible in the same trace. We show that the
algorithm SEQCHECK is O(n? x log(n)) where n is the number of
events. And we present a proof to show that SEQCHECK is sound
and is also complete when there are two threads.

We have implemented SEQCHECK for Java programs to detect
general concurrency bugs. We selected two sets of previously used
Java benchmarks with 31 from [3, 37, 43] and 20 from [27, 28].
They produced traces up to millions or even billions of events.
On detecting data races and atomicity violations, we compared
SEQCHECK with (1) M2 and other three sound algorithms SHB,
WCP, SyncP [37] and with AtomFuzzer [41] on the first set of
benchmarks, respectively. On detecting deadlocks, we compared
SEQCHECK with (2) Dirk (a sound deadlock prediction tool) on the
second set of benchmarks.

The experiment shows that SEQCHECK significantly outperformed
others on both effectiveness and efficiency. On race detection, SE-
oCHECK detected 333 races in 30 minutes; the others detected from

256

Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, and Jens Palsberg

130 to 285 races in at least 6 hours. The latter four reached our time
limit (1 hour) on almost all large-scale benchmarks. On deadlock
detection, SEQCHECK detected 20 ones in 6 seconds; this number
is only 1 less than that by the constraint-solver-based Dirk (that
are expected to detect more than ours). However, Dirk spent >1
hour. SEQCHECK detected 30 atomicity violations in the first set of
benchmarks whereas AtomFuzzer detected none or crashed.
In summary, we make the following contribution:

e We propose a dynamic approach SEQCHECK that models pro-
gram branches and predicts the feasibility of event sequences.
Thus, we turn the detection of concurrency bugs into a ques-
tion of feasibility of an event sequence. And we propose how
to detect three types of concurrency bugs.

e We present an analysis to show that SEQCHECK is sound and
is also complete when there are only two threads, and further
show SEQCHECK has a time complexity of O(n? x log(n)).

e We have implemented SEQCHECK and compared it with several
recent sound works. An experiment confirms that SEQCHECK
is significantly more efficient and effective than others.

2 PRELIMINARIES AND MOTIVATIONS
2.1 Basic Definitions

This section describes a set of definitions and notations about se-
quentially consistency memory models [30] that are similar to
definitions found in previous papers [28, 29, 43] .

Execution trace. An (execution) trace o represents a lineariza-
tion of a multithreaded program execution. It is a totally ordered
list of its events, for which the order is denoted by <. For a trace
o, we use T (o) to denote the number of threads in trace o, and use
o; to denote the projection of o on thread t € T (o). Each event
e € o has a thread ID and a event ID, which can be extracted by
tid(e)/eid(e). tid(e) denotes the thread which e belongs. eid(e)
denotes the index of e in 6yjq(e)-

There are three categories of events (other synchronization
events can be handled similarly [24, 28, 43]):

e Memory event: write/read, denoted by wr(t,x)/rd(t,x,w),
indicates a thread ¢ writes to a (memory) location x, or read
from a location x where the last write event to x is w and w
can be 2.

e Lock event: acquire/release, denoted by acq(t,l) / rel(t, 1),
indicates a thread t acquires or releases a lock I. Other implicit
synchronizations can be treated based on this two events.

e branch, denoted by br(¢), indicates there is another path that
is not followed by thread t. Note, this includes both the explicit
conditional branches and the implicit branches (method calls,
memory usage) in object-oriented programming languages [28].

We denote the set of event types as {wr, rd, acq, rel, br} and use
op(e) to extract the type of an event e. We suppose that each thread
starts and ends with a branch event @5 and @F, respectively.

In the rest of this paper, we may omit the thread ID of an event or
the write event in a read event if there is no ambiguity in the context.
We assume that lock acquire/release events are well-nested, i.e., if
a thread has acquired multiple locks at a time, the corresponding
lock release events must be in the nested manner.

Sound and Efficient Concurrency Bug Prediction

We define a set of auxiliary functions. For a memory/lock event
e, we use loc(e) to get its location/lock. We denote the set of all
locations of a trace ¢ as L. For a read event e, we use obs,(e) and
obsx (e) to denote the involved write event in a trace o or a set
of events X. For a lock acquire/release event e, we use matchg(e)
to denote the corresponding paired lock release/acquire event. We
use lastzp (e) and nextf(p (e) to denote the most recent event that
operates on x before and after e in program order, respectively,
where op € {wr,rd, acq,rel,br}, where x and op can be omitted
indicating any event type and any location, respectively.

We use E, and Ex to denote all events in a trace o and all
events in a set X, respectively. And we use 8)’(01, 8)‘(”, S;Cq, S)rfl to
denote the set of all read events, all write events, all lock acquire
events, and all lock release events in X, respectively. We define
the [] operation on them as the projection on a location/lock, e.g.,
E[x] = {e € & | loc(e) = x}.

Two events ey and ez from different threads are conflicting,
denoted as e; o ey if: (1) they are memory events on the same
location and at least one of them is a write event; or (2) they are
lock events and have the same lock. We use ConfSet (X, e) to find
the conflicting event of e in an event set X (We only use this function
when there is only one conflicting event in X).

For simplicity, we view a sequence of events p = (e, ez, - - en)
as an array (e.g., p[1] refers to e1). A sequence p’ is a read variant
of another sequence p, denote as p ~ p’ if |p| = |p’| and, for
1 < i < |p|, we have either p[i] = p’[i] or p[i] = rd(t,x,w) A
p’[i] = rd(t,x,w’). A sequence p is w-r consistent if, for any its
read event e = rd(t, x, w), w is identical to the most recent write
event on x before e in p. That is, a read event always reads a value
from the latest write event to the location. A prefix of a sequence
p = e, e en)isasequence p’ = (e1,e2, - e;) where 1 <i<n
or p’ = @. We denote the set of all prefixes of p as prefix(p). Note
that a trace o is also regard as an event sequence.

2.2 Orders
Given a trace o, we define three basic types of orders:
e Program order <pg. Ve, e; € E; : tid(e1) = tid(ez) A e1 <4
ey = e1 <po ez (i.e., among thread local events).
e Observation order <pp. Let X = &4, Ve € S}V(d: e =rd(t, x,
w) = w <00 e.
e Lock order <;p. Let X = &4, Ve, ep € S;Cq: e1 x eg =
matchs(e1) <po e2 V matchs(e2) <po e1.

2.3 Motivations

M2 [43] is a sound predictive technique for race detection and is
also complete when there are only two threads. For a pair of conflict
events (eq, e2), M2 firstly builds a graph where vertexes are events
that may affect the execution of e; and e; and edges are defined
as three types of orders. M2 then applies a closure algorithm on
the graph. After that, if there is no cycle formed, M2 decides that

the two events can occur at the same time and they form a race.

Otherwise, it makes no decision (unless the trace has two threads

and, in this case, M2 decides that the two events do not form a race).

M2 decides whether two events can occur consecutively to detect
races. Even if it can be extended to further check whether more
events from different threads can occur consecutively, detecting

257

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

1 t,
1 acq(l)
4 t 2 rd(y)
sync(l) 3 wr(x)
{x=y,} ‘ 4 rel(l)
sync(l) 5 | acq(l)
{x++;} 6 | rd(x)
y=0; 7 | wr(x)
8 | rel(])
9 | wr(y)

Figure 1: A trace (right) of two threads (left).

common concurrency bugs requires to determine whether an order
of two or more events can be reordered. This cannot be resolved
by M2. Let’s discuss this point.

Figure 1 shows two threads and one trace where thread t; exe-
cutes after thread t;. Let’s denote each event in the trace by their
line numbers. M2’s purpose is to check whether ey and e is a race.
M2 firstly computes a set of dominating orders. For ey, the set
is empty as no event before it can affect the execution of e;. For
e9, event eq dominates it where eg reads a value on x written by
e3. Similarly, we have that e; is dominated by e;. As a result, the
set dominating eg contains ez. This indicates that the two cannot
execute consecutively. M2 decides that they do not form a race.
Obviously, this conclusion is false given that the trace stems from
the code on the left.

Next, suppose that M2 is extended to determine the orders, say
whether the execution order from e; to eg9 can be reversed into that
from eg to ey in an alternative execution. Obviously, this targeted
order and the concluded dominating order (i.e., e; dominates eg)
together form a cycle. As a result, M2 decides that the target order
cannot be reversed. However, it is obvious again that the target
(from eg to e3) order is feasible in a different trace.

The reason failing M2 on the above two examples is at its execu-
tion model. M2 follows the model [29, 36, 55] that requires: every
read event in an inferred (partial) execution should read a value
written by the same write event as the original trace; any other
inferred (partial) execution violating it is unsound (i.e., not guar-
anteed to be feasible). That is, the model implicitly assumes that
any read event is followed by a branch; and reading a value from a
different write event may produce execution divergence.

To make M2 workable in the above example, branches must be
explicitly considered. Actually, some constraint-based approaches
already consider branches [24, 28] where they require: a read event
should read the same value (that can be from different events) as
that in the original execution, and any violation to it may produce
an infeasible trace. This results in a huge search space for large-
scale programs and constraint-solvers can be inefficient on them
[24, 28]. Besides, it is difficult to consider constraints (e.g., the logic
operations like "OR") for graph-based approaches like M2.

Suppose M2 is adapted to recognize branch events and check the
above order reversing problem. Then, there are four branches (right
before and right after each of the two events) to be analyzed. One
adaption for M2 is to infer races for two events through deciding
whether any two branches can be executed consecutively. This
requires an analysis on the four pairs of branches. However, the
two are inconsistent, i.e., whether the two branches can be executed
consecutively and whether the two events can form a race.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

For example, Figure 2 shows a trace § including branch events.
For the two events e12 and eg, the adapted M2 can decide that two
branches before them (i.e., 11 and @) cannot execute consecutively
due to the write-read order from e to eq(; moreover, the two events
cannot form a race for the same reason. Now, suppose 8’ is another
trace which is the same as § except that we swap eg and e7, namely
e = wr(x) and e; = wr(p) in §’. Now, considering the two events
e12 and eé. The adapted M2 can decide that the two branches before
them (i.e., e11 and @g) cannot execute consecutively due to write-
read order from eé to eqp; but, this time, the two events indeed form
a race. We can see from these two cases that there is no consistent
conclusion on whether a race can be decided by deciding whether
the involved branches can be executed consecutively. We can also
draw the same conclusion on other cases (e.g., the branch before
one event and the branch after the second event).

Another limitation is that M2 is not designed for checking mul-
tiple events from two or more threads. Say that we want to check
whether the three events eg, €12, €13 in Figure 2 can execute in the
order: eg, €13, e12 (this pattern can be a concurrency null pointer
exception [8]) . If M2 is adapted to decide whether each two of them
can form a race, it will be challenging to prove the correctness be-
cause each isolated conclusion is drawn under different conditions
(e.g., write-read orders).

3 OUR APPROACH

We first present a set of definitions and then present our algorithms
to check the feasibility of an event sequence. We use the trace §
and the sequence p = (eg, €18, e12) in Figure 2 to illustrate them.

3.1 Feasible Sets

Open lock set. Given a set X C &, of a trace o and an event
ec€ S;Cq, if matchs(e) ¢ X, we say e an open lock event. We use
Open(X) to denote the set of all open lock events in X. For example,
let X = {e15-20} on trace §; we have Open(X) = {e1s, e19}.

Producible set (PSet). Given an event set X C &, of a trace
o and a set Y C X, we define a Producible set (or PSet for short)
PSet(X|Y) = P; U P, where:

o Py =X\& and
e Py={e | e =rd(t,x,w) Ard(t,x,w) € 8;‘1 Aw’ € EX"[x]}

Intuitively, PSet(X|Y) have exactly the same set of events with
X except that some of its read events have different but valid write
events (note, in P2, w’ can be the same as that in e). In particular, if
Y = @, we have PSet(X|Y) =X =P and P, = @.

For the running example, let X = {e1-17, e13 = rd(p, e12)} and
Y = {e1s = rd(p, e12)} in §; the set X1 = {e1-17, e[= rd(p, es)} is
a PSet of X but the set X2 = {e1-17, eig =rd(p, e4)} is not a PSet of
X as the event e is in 83" [p] = {es, e12} but the event e4 is not.

The reason for introducing the set Y C X is that we consider
branch events explicitly. Hence, there should be a cut over a set
of events such that (1) all read events in one part should read the
same values as that in the original trace but (2) some read events
in another part can read different values as long as they do not
produce execution divergence. We will define such a Y later.

To correlate events in the two sets X and PSet(X|Y), we use
s(e’), for any event e’ € PSet(X|Y), to denote its original event e in
X. Notice that, for an event e € PSet(X|Y), if e € Py, then s(e) =e.

258

Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, and Jens Palsberg

t t t
1 acq(ly)
2 wr(x)
3 rel(l,)
4 wr(y)
5 acq(ly)
6 wr(p)
7 wr(x)
8 rel(l,)
9 | acq(t))
10 | rd(x)
11 | br
12 | wr(p)
13 | wr(y)
14 | rel(l))
15 acq(ly)
16 rd(x)
17 br
18 rd(p)
19 acq(ly)
20 rd(y)
21 rel(l,)
22 rel(l))

Figure 2: A trace § and a sequence of events p = (eg, 13, €12) -

Given X C 4 in a trace o, let Y C X and X’ = PSet(X|Y), we
say that X’ is a Feasible Set (or FSet for short) if it satisfies:

e Program order closed (or prefix closed): Ve € X', Ve, € X,

if ez <po s(e7), then Je; € X" As(eg) = ea.

e Observation feasible: Ve’ = rd(t,x,w’) €

X’.
e Lock feasible: (1) Ve € 8;",1, we have match,(e) € X’ and
(2) Veacq,s acq, € S;C,q A €acq; # €acqys if match,,(eacql) ¢

X' A matchs (eacq,) & X', then loc(eacq,) # loc(eacq,)-

8)’(‘{ we have w’ €

The definition of FSet restricts a set to be feasible by consider-
ing program orders, observation orders, and lock orders. For the
running example, let X = E5 and Y = {e4—3, e12-14, €18-22}, then
we have X’ = {e1-17, rd(p, es), €19, rd(y, e4), e21-22} is a FSet of X.

3.2 Feasible Traces

Given an execution trace o, we say that an event sequence over &,
denoted as ¢’, is a feasible trace if :
(1) o’ € prefix(o), or,
(2) 6’ = 6" - e where ¢"’ is feasible and ¢’ is w-r consistent, and
the following three conditions are satisfied:
(a) let ¢ = tid(e), br = last’" () € &gy, and o’ =0"-br-0",
then 36 such that o;" - br - 0 € prefix(o;) A 6] - e = 6.
(b) op(e) = acq, then Fe’ € Open(Ey) A loc(e’) = loc(e).
(c) op(e) =rel, then e’ € Open(SU;/) A loc(e’) = loc(e).
The condition 2a requires that the appended event e must be
exactly the next event of t except, if it is a read event and there is
no branch event after it, it can read different but valid values.

3.3 Feasible Partial Orders

A FSet can be linearized into an event sequence. However, such a
sequence is not guaranteed to be a feasible trace defined in the last
subsection. This section defines a set of necessary partial orders
such that, if a sequence is linearized from a FSet by reserving all
partial orders over the set, then it is a feasible trace.

Given a trace o and a partial order P over a FSet X’ = PSet(X|Y)
where X € &5 and Y C X, we say P is a trace-respecting partial
order over X' if: (1) P refines the program order in o when restricted

Sound and Efficient Concurrency Bug Prediction

K w acq,
e € r
N
r € N e €
br'y
br
w' rel,
(2) (b)

Figure 3: An illustration on the observation closure.

to events in X’, (2) for every read event r € X’, if r € X \ Y we have
obsx(r) <p r,and (3) for every lock acquire event escq € Ex’ such
that matchs (eacq) ¢ X’ and for every lock release event e, € X',
if ey¢f o eqcq, then e,o; <p eqcq. We write that P respects X”.

Trace-closed Partial Orders. Given a trace o and a set of events
X C Eg,letY = {e € X|next?” (¢) ¢ X} and Pbe a trace-respecting
partial order over a feasible set of events X’ = PSet(X|Y). We say
that P is trace-closed if it satisfies the following:

e Observation-closed. (1) For every read eventr = rd(t,x, w’) €
8;{ such that s(r) € Y, 3w’ € &7 [loc(r)] A w" <p r.(2)
For every read event r € S}Vg such that s(r) ¢ Y, letw =
obsx’ (r) being conflicting with r. For every write event w’ €
EYT [loc(r)]\ {w}, (@) if w’ <p r then w’ <p w; (b) if w <p w’
thenr <p w'.

¢ Lock-closed. For events Ve, , erej, € 8)’(‘3,1 and their matched
acquire events egeq, = matchg (eyep,) and eqcq, = matchg (eyey,),
if €1, o €acq,, then e.e;, <p €acq, V €rel, <P €acq;-

In the definition, if there is no branch event after the read event
r, the observation-closed property requires that r can happen after
any write event. In other case, it requires that any write should
occur either before or after both events from a pair in observation
order (obsx(r),r) on the same location, as shown in Figure 3(a)
and (b). This is different from that of M2 that applies same rule to all
read events. Figure 3(a) illustrates that any write w’ should occur
before w = obsx (r) as it already occurs before r (due to the order
(e1, e2)). Figure 3(b) illustrates the second case. The lock-closed
property requires two conflicting critical sections not overlapping.
The order of the two sections can be obtained when the order of
two events in them ({e1, e2)) is known, as illustrated in Figure 3(c).
Then, we can infer that e,.;, occurs before escq,. Other cases (eg
occurs after e, , ez occurs before egcq,) have similar results.

Given a feasible set of events X C &, from a trace o, its FSet X’
may have zero to multiple trace-closed partial orders. If it has one,
we call the smallest trace-closed partial order P as the closure of
X’ and also say that P is a feasible partial order over X’. There
exists at most one smallest trace-closed partial order, which can be
proved by contradiction [43].

3.4 The SEQCHECK Algorithm

This section presents the detailed algorithm of SEQCHECK and also
compare it with M2. SEQCHECK decides the feasibility of an event
sequence that encodes a potential concurrency bug. We allow two
kinds of ordering to be specified by an input: (1) the orders be-
tween two events in a given sequence and (2) whether an event not
from the sequence can occur in between any two events from the
sequence. The second is referred to as Adjacency set.

Formally, given a trace o, an event sequence p = (ey, €z, ...en)
over a PSet, and a set of pairs A = {(e;, ¢;) | ej,e; € Ep}, SEQCHECK

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Algorithm 1: ComputePotentialFSet(c, p)

1 Fe—0 /* To hold a FSet candidate. */
2 M—9 /* To map branch events to write events. */
3 L—@ /* To hold a set of open locks. */
1 Q0 /* A temp queue to keep intermediate events. */

5 foreache € &, do Q.push(e)

6 fori « |E,|to1do

7 L' «— Open({e € E5 | e <po plil})

8 foreach e; € L' | ConfSet(L,ej) ¢ {@,¢e;} do
9 Q.push(matchs(ej))

10 L' — L'\{e;}

n | L—LulL

12 while —=Q.empty() do

13 B«—o

14 ecur — Q.pop()

15 for e € &5\ F | e <po ecur do

16 if op(e) = br then B «— BU {e}

17 else if op(e) =rd A next®” (e) #+ @ then

18 ep — next?” (e)

19 | Mlep].insert(obss(e))

20 else if 01)(8) = acq then

21 Lete’ € E, | Ve” € Ep Ae” <po €' Atid(e) =
tid(e’) A tid(e) = tid(e”)

22 if ¢’ = @ then Q.push(match,(e))

23 else if ¢’ <po e then

24 x « the index of ¢’ in p

25 foreachi «— x—1to1do

26 L' «— Open({e; € & | ej =po plil})

27 ec « ConfSet(L,e)

28 Q.push(matchs(ec))

29 Q.push(matchs(e))

30 | F<—FU/{e}

31 foreach e; € B do

32 Q.push(Mle;]) /* Push all events mapped from e;. */

33 Remove key e; from M

34 foreach e, € Sf:d | next®” (e,) ¢ F do

35 if no write event can be observed by e, then

36 e,y < the first conflicting event of e, in thread
tid(obss (er))

. Q.push(e,)

38 return F

answers whether there is a feasible trace ¢’ that satisfies p and A,
that is: (1) for 1 < i < j < n, we have e; <5 e; and (2) for a pair
(e1,e2) € A, we have fle € E, such that e; <5 e A e <y e3.

Overall, SEQCHECK computes a set of events as a candidate of
FSet (Algorithm 1) and then checks whether there is a set of feasible
partial orders over the candidate (Algorithms 2, 3, and 4); if so, the
events can be reordered to obey the given sequence of events.

(1) Generate a Candidate FSet. Algorithm 1 computes a set
of events F as a candidate FSet. It starts from an initial set of all
events in p and iteratively includes additional events according to
the three requirements in the definition of FSet. In the iteration, M
maps a branch event to a set of write events. That is, the key of
the map is a branch event and the value is a set of write events. It
indicates that any read event before a branch event (in program
order) read a value from one of the mapped write events. Hence, if
a branch is included, all mapped write events will be included.

Additionally, for any open lock event e not from threads in p,
the algorithm includes the release event matchs(e) and all other
events before it by program order.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Algorithm 2: ComputeLockOrders(o, p, F)

1 CLo <« @ /* To hold a initial set of lock semantic orders. */
2 L — @ /*Tokeep a set of intermediate open lock acquisitions. */
3 foreachi « |E,| to1do
L’ « Open({e; € & | ej <po plil})
€cur < ”eXt(P [l])
while e, € FAL # @ do
if op(ecur) = rel A matchs (ecur) <po pli] then
eq «— matchy (ecyur

9 ec <« ConfSet(L,eg)
if ec # @ then

L CLo < CrLo Y {{ecur,ec)}

L' L\ {eq}
else if op(ecyr) = acq A ConfSet(L, ecyr) = @ then
L L' L' U {ecur}
L €cur < neXt(ecur)
| LeLuL
L «— Open(F)
foreach e; € 8;‘?1 do
eq = ConfSet(L,ec)
L Cro < Cro U {({ec,eq)}
21 return Cr o

% N G e

Table 1: State changes of Algorithm 1 on trace .

Line 5 O={es, e1s,e12}, L={}, F={}, M={}
Line 6 - 11 Q={es, €15, €12, €22}, L={eg, €5}, F={}, M={}
Line 12-37 Q={},L={}, F={e1-12,e15-22}, M={(@E, {e12-13}) }

Note, in our definition of FSet, there are two parts: X and Y. The
result F is actually the X’ in definition; and for any remaining key
ep (that is not removed in line 33), all read events in between e,
and its previous branch of the same threads belong to Y.

Compared to M2 that has a RCone algorithm to find a set of
potential events starting from two given events, our algorithm
focuses on a sequence of events. This brings the following major
differences: (1) we include all events in p (line 5) to be part of F
whereas M2 excludes the two events of a potential race; (2) we
process all events in p in the reverse order as that are expected to
occur (line 6) whereas M2 can start from any of two events; (3) we
consider read events in two categories. For read which is followed
by branch event in F, we include the corresponding write event.
For the other case, we heuristically include some write, so that the
read event have at least one write to observe. However, M2 treats
read events the same and includes all write events if the read events
are included. The three points distinguish our algorithm from that
of M2. They allow us to model how branch events can affect trace
feasibility and how an event sequence can be considered.

On the running example, Algorithm 1 runs as follows and we
show how Q, L, F, and M changes in Table 1. Recall that each
thread in § starts and ends with a branch. The @ in Table 1 is the
end branch in thread ¢;. Line 5 initializes Q to include all events
in p; next, the loop at line 6 appends e9 into L in first iteration.
When processing ejs in the second iteration, eg € L is a conflicting
event of ej5 and matchg(e15) = ez is appended into Q; in the third
iteration, es is appended into L = {eo, e5}. The iteration at line 12
pops all events in Q as well as other events that occurred before
them in program order; they are included into F. Finally, we have
F = {e1-12, e15-22}-

260

Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, and Jens Palsberg

Table 2: State changes of Algorithm 2 on trace 6.

Cpo ={---},Coo = {{er, e10), (€7, e16) },
Cso = {(es, e13), (e1s, €12) }

Line 3 - 16
Line 17 - 20

Cro = {{e2, e9), (es,e19) }, L = {eg, e19}
Cro = {(e2, e9), (es, e19)}, L = {eo}

(2) Initialize a Set of Partial Orders. SEQCHECK next checks
whether the set F can be a FSet. It first constructs three sets of partial
orders on F according to the definition of the trace-respecting
partial orders: (1) program order Cpo, (2) observation order Cpp,
(3) lock semantic order Crp. The program order Cpo can be easily
constructed according to the occurrence order of events from the
same threads in F. The observation order Cpo is defined to be
{(obsg(e), e)|Ve € E9, next? (e) € F}.

The lock order Cr o is constructed by Algorithm 2. Unlike M2,
the lock orders consist of (1) the intra-thread lock orders among
(open) lock events for events in p (lines of the first for-loop at line
3) and (2) the lock orders between the (open) lock event for the
events in p and for all others in F (the for-loop at line 18). The intra
lock orders must be constructed by considering the sequence order.

Finally, SEQCHECK includes the set of input orders Csp in p,
where Cso = {(ej, ei+1)|Vi € {1, -+, |Ep| = 1}}.

Table 2 shows the four sets of orders (in its first row) given the
set F. Note, although F includes the event ez = rd(y), there is no
observation order from obss(ez0) (i.e., €13) to it; this is because, by
our definition, we have next” (ez) ¢ F. The second row in Table 2
shows the state changes of Algorithm 2. For the example. By the
algorithm, during its second iteration (the for loop at line 3), as the
event eqs and its matching event ez are both included in F, the
algorithm inserts a intra-thread lock order (es2, e9). In the third
iteration, the intra-thread lock order (eg, e19) is included due to that
e1s is happened after e in p and a conflict pair on lock I, exists.

(3) Compute a Closure. Given the four sets of partial orders,
SEQCHECK computes a closure according to the definition of the
trace-closed partial order as shown in Algorithm 3. Before intro-
ducing the algorithm, we first introduce a graph data structure [43].
All partial orders will be represented as edges on such a graph.

Let G be a directed acyclic graph and X be a set of events. The
vertexes of G consist of all events Ex and the edges are defined to
be a subset of Ex X Ex. We define a set of operations over G:

o G.insert(ey, e2) inserts an edge (ey, e2) into G.

e G.reach(ey, e2) returns True if there is a path from e; to es.

e G.succ(e, t) returns the earliest successor e’ of e in thread ¢
where G.reach(e, e’) returns True.

e G.pred(e,t) returns the latest predecessor e’ of e in thread ¢
where G.reach(e’, e) returns True.

These four operations over G can be done with an O(n X log(n))
algorithm through Fenwick Tree [18], where n = |Ex|.

Given a trace o, a graph G, an initial set of orders C, and a adja-
cency set A, Algorithm 3 iteratively examines each partial order
in C, inserts it into G, and closes it according the definition of
trace-closed partial orders. These are shown as functions InsertAnd-
Close, ObsClosure, and LockClosure. For observation-closed rule,
Algorithm 3 only close the rule (2). Rule (1) will be consider in
Algorithm 4. Besides, it further closes any adjacency orders (lines
22-26). That is, for any pair of events (e1,ez2) € A, if an event e

Sound and Efficient Concurrency Bug Prediction

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Algorithm 3: CloseOrders(o, G, C, A)

1 Let F < G.F
2 foreach x = (e1,ez) € Cdo Q..push(x)

3 whlle =Qc.empty() do

ex,ey) — Qc.pop()
5 if G.reach(e,, ex) then return False
6 | elseif -G.reach(ex,ey) then InsertAndClose(ex,ey)

7 return True
8 Function ObsClosure(e, e2):
9

foreach x € {loc(e) | e € 8;‘1 U

ey — last}" (e1)

e, — next;d(ez)

if e\, # obss(er) A nextbr(er) € F then
L Qc.push({es, obss(er)))

14 e, — nextwr(eg)

foreach e; € % | obsy (e;) = ey, A next? (e;) € F do

L Qc P”Sh(<eh ew>)

&) do
10
11

12
13

Function LockClosure(es, ez):

foreach I € {loc(e) | e € E;°7 U &L¢'} do
€acq — lastlacq(el)

€rel < nethrEI(eZ)

L Qc~pu5h((matcha (eacq); matCho' (erel)))

Function AdjacencyClosure (A):
foreach (e, e;) € A do
foreach t « 1toT (o) d

L L

Function InsertAndClose (e, e3):

G.insert(eq, ey

ObsClosure(ey, e2)

LockClosure(ey, e2)

fori,j«— 1toT(o) |i+tid(e1) V j # tid(ez) do
(epreds esucc) < (G.pred(ei, i), G.succ(ez, j))
G.insert(epreds €succ)
ObsClosure(epreds €succ)
LockClosure(epred €succ)

| AdjacencyClosure(A)

occurs before or after one of the two event, it also occurs before or
after another one. Algorithm 3 fails whenever it finds a cycle.

For the running example, the given initial set of orders are shown
in Figure 4(a) except the two from events of t (where we do not
explicit show the program orders). The two orders are produced
by Algorithm 3. Considering that obss(eis) is e7 and the event
ez occurred before ej¢ by program order, Algorithm 3 reorders e
before obss(e16), resulting an order (ez, e7). When computing the
lock closure of this order, an order (es, es) is inserted.

(4) The Complete SEQCHECK Algorithm. Algorithm 4 de-
scribes the complete SEQCHECK. Given a trace o, an event sequence
p, and an adjacency set A, it drives Algorithms 1, 2, and 3 to find a
closure. The order specified by the input sequence of events p is
denoted as Cgp. Then, Algorithm 4 check if the read event (which
are not followed by branch event in F) has a write event to observe.
If not, it heuristically let e, observe the first conflicting write in
thread tid(obss(e,)) and calculates the closure. These operations
are according to the observation-closed rule (2). If it succeeds, it
additionally considers all other conflicting but unordered pairs of
events (line 9). Such pairs are inserted into G according to their
occurrence orders in o. After SEQCHECK finishes, if there is a cycle,
it returns @; otherwise, it returns a linearization of the graph G.

Oc.push((G.pred(er, 1), e2)), Qc-push({er, G.succ(er, 1))
Qc.push((G.pred(ez, 1), e1)), Qc-push({ez, G.succ(es, 1))

261

t t, t, 1 t A
acq(l,) ; acz(gy)
) wr(x
wrx) 3 rel(l,)
rel(l 4 wr(y)
acq(l,) wr(y) 5 acq(l,)
rd(x) hacq(ly) 6 wr(p)
) 7 wr(x)
br L\ wr(p) 8 rel(l,)
wr(p) s/roo 9 acq(ly)
acq(ly) / [rel(l,) 10 rd(x)
d(x) 11 br
5 12 rd(p)
4 13 acq(ly)
rd(p) 14 rd(y)
15 rel(l,)
acq(l) 16 rel(l)
rd(y) 17 | acq(l))
el(] 18 | rd(x)
- *) 19 | br
rel(l,) 20 | wrip)
(a) (b)

Figure 4: The closure for trace § in (a) and one of its corre-
sponding execution in (b).

For the running example, SEQCHECK produces a set of orders as
shown in Figure 4(a). As there is no cycle found and no additional
event to be ordered, these orders indicate that the set F produced
by Algorithm 2 is a FSet. And it decides that the input sequence p
is feasible and Figure 4(b) shows a trace that satisfies p.

In summary, as reflected in Algorithms 1, 2, and 3, M2 can only
handle adjacency relations, while SEQCHECK can handle both ad-
jacency relations and order relations. That is, M2 can only detect
that events happen consecutively, while SEQCHECK can detect that
events happen in a particular order, as well as consecutively. And
SEQCHECK has a novel definition of feasible sets.

3.5 Algorithm Analyses

Algorithm Time Complexity. SEQCHECK consists of four algo-
rithms. Let n be the size of trace o, the total number of events
in 0. Algorithms 1 has two major loops. In the first major loop,
the Open() map can be initialized in O(n) by scanning all events
once. The function ConfSet(L, e) can be implemented in O(log(n)).
The second major loop (the while part) pushes each event at most
once into Q, and all the operations in loop can be implemented in
O(log(n)). So, both parts have an O(n X log(n)) time complexity.

In Algorithm 2, each for/while-loop processes at most n events.
For each event, there is at most a call to ConfSet(L,e). That is
O(n X log(n)) in time complexity. Algorithm 3 computes a closure
for the edges. There are at most n? edges and each is inserted into G
once. That is (n? x log(n)) in time complexity. Algorithm 4 has two
loop, processing at most n? event pairs. For each pair, it inserts at
most one edge. Hence, SEQCHECK has (n? xlog(n)) time complexity.

Next, we give an analysis on the soundness and the completeness
of SEQCHECK.

THEOREM 1. Soundness. Given a trace o, an event sequence p,
and an adjacency set A over &, if Algorithm 4 returns a linearization
o', then ¢’ is a feasible trace that satisfies p and A.

Proor SKETCH. We show that ¢’ is a feasible trace by induction.

Let 0’/ = ¢ - e € prefix(o’), such that o’”’ is feasible (i.e., @ in
the base step). When appending e to ¢’”/, we show below that no
condition of the definition of feasible traces is violated.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, and Jens Palsberg

Algorithm 4: SeqCheck(o, p, A)

Algorithm 5: DetectConcurrencyBugs(o)

1 F « ComputePotentialFSet (o, p)

2 C«— CpoUCpo UCLoUCso /" Cso is a set of orders over p. */
3 G« (F,0)

4 if =CloseOrders(o,G,C, A) then return @

5 foreache, € 8;‘1 | next®” (e,) ¢ F do

6 if Ze,, € Ep" [loc(er)] A G.reach(e.y, er) then

7 e’ « the first conflicting event of e, in thread

L tid(obss (er))

8 if ~InsertAndClose(¢,,, e,) then return o

9 foreach unordered pair (ej,e;) € G | e; x ez A ey <5 €3 do
10 | if -InsertAndClose(e, e;) then return @
11 o’ « atopological order of G /* A linearization of G */

12 return o’

First, if e is a read event, Algorithm 4 initially sets an order
(obss (e), e), resulting in an edge from obs, (e) to e in G; Algorithm
3 ensures that any other conflicting write events are ordered either
before obsy(e) or after e. Therefore, no other conflicting write
event appears in between obs, (e) and e in ¢’. Hence, the sequence
o’"” - e is w-r consistent.

Second, if e is a lock acquire event, Algorithm 1 ensures that
there are no two open lock events on loc(e); Algorithm 2, 3 ensures
that all other conflicting lock release or acquire events are before
e or after matchg(e). If e is not closed, they before e. The similar
analysis applies when e is a lock release event. Hence, the conditions
2b and 2c in definition of feasible trace are not violated.

Third, Algorithm 4 keeps program orders; according to Algo-
rithm 1, when an event e’ is included, all other events occur before
e’ by program order are included. Hence, we have SU;r C &g, and,
the sequence o;” = ;" - e € prefix(o;). And we can rewrite o, to
be ;" - br - 6 (form in definition) that is also in prefix(o;). Thus,
the condition 2a is not violated.

Inductively, we show that ¢’ is a feasible trace when we have
N| = O"|‘

Finally, as Algorithm 4 includes the order by p and Algorithm 3
closes adjacency orders according to A, ¢’ satisfies p and A. O

|o

THEOREM 2. Completeness. Given a trace o of two threads, an
event sequence p, and an adjacency set A over &, if there is a feasible
trace o’ that satisfies p and A , Algorithm 4 returns an event sequence.

Proor SKETcH. When there are two threads, the initial sets
Cpo U Cpp UCro U Csp, their closure by Algorithm 3, the closure
on A are necessary orders to witness p.

If no cycle forms after Algorithm 4 in line 4, SEQCHECK will
check the read events which are not followed by branch event one
by one. Because there are only two threads in o, a read event can
only observe the write event (1) before it in program order, or (2)
in the other threads. When the line 8 need to be executed, it must
meet the second case. In other words, there must be no relative
write event before it in the same thread. So, it’s a definite case to
add the order, from the first conflicting write event of the other
thread to the read event. It’s a necessary order.

Then, SEQCHECK checks others unordered pairs. In this proce-
dure, only some critical sections are unordered. This procedure will
not form cycle, as any unordered critical section indicates that there

262

/* Detect data races
1 foreach pair of conflicting memory events (e1, e2) do
p «— (last(e1), ez, e, next(ez)))
A — {(e1,e2)}
if SeqCheck(o, p, A) # @ then
| print "A data race detected"

ook W N

/* Detect deadlocks of two threads */

¢ foreach potential deadlock ({acq}, acqy,), {acq%, acq;)) do

2] e acdiy acqly acat)

8 | pz < {acq;,acqj, acqy,)

9 if SeqCheck (o, p1,2) # @ V SeqCheck (o, ps, @) # @ then

o
=)

| print "A deadlock detected"

/* Detect atomicity violations of the pattern “w — w - r"
11 foreach potential atomicity violation: (wy, wo, r) do

12 | p e (wy,w,r)

13 if SeqCheck (o, p, @) #+ @ then

14 | print "An atomicity violation detected"

*/

are no conflicting event pair to dominate two section. (Actually,
ordering them is useful for linearization.)
Finally, Algorithm 4 returns a linearization of G, i.e., an event

sequence. [m}

Note, if there are additional threads, there may have conflicting
critical sections that will be included by Algorithm 1. Orders among
these events may not be necessary to witness a sequence and a
cycle may be introduced.

4 IMPROVE PERFORMANCE

SEQCHECK can suffer from an overhead that stems from handling
a large number of orders and event pairs in searching for any
unordered events (that are part of potential bugs). M2 adopts an
optimization to only consider pairs of conflicting events that are
neither protected by common locks nor ordered by trace-respecting
partial orders. The optimization is in a pre-process phase under an
O(n? x log(n)) (where n is the number of events) algorithm.

We also include a pre-process phase. However, we construct a
graph G’ to have an initial set of program orders and observation
orders and then to compute a transitive closure (with considering
branches) on G’. Then from G’, we can easily identify pairs of al-
ready ordered events; and the remaining pairs are undecided. The
algorithm to construct the graph is O(k? x n x log(n)) in time com-
plexity, where k and n are the number of threads and the number of
events, respectively. Moreover, pre-storing the observation orders
and performing an de-duplication are also an acceleration.

5 DETECT GENERAL CONCURRENCY BUGS

This section presents Algorithm 5 that drives Algorithm 4 to detect
three types of concurrency bugs by encoding them into sequences
of events. Other types can be implemented similarly.

Detect Races. A race occurs when two conflicting events oc-
cur consecutively. Our work decides sequence of events and can-
not be directly used to detect races. Algorithm 5 introduces two
more events last, (e1) and next,(ez). (Note, these two events can
be dummy ones as long as they are right before and right after
e1/o by program order.) Besides, there is an adjacency ordering

Sound and Efficient Concurrency Bug Prediction

ac}
1

Last(e;)
€

Wy

acq Wy oWy

L3
Next(e,)

2 W2
acqy,

acq? r r

@ ()
Figure 5: An illustration of part of sequence for three con-

currency bugs.

(©)

requirement: no other event should be between e; and ey. It then
produces a target sequence p. Obviously, the two events form a
race iff SeqCheck (o, p, A) returns an event sequence.

Detect Deadlocks. Unlike data race, any deadlock occurs by
following a sequence of events. Hence, we only need to check
whether a feasible sequence (over lock acquisition events only)
exists. For deadlocks of two threads, Algorithm 5 generates all two
sequences where p; is shown in Figure 5(b). Obviously, the four
events form a deadlock iff either of the call to SeqCheck () returns
an event sequence. For deadlocks of more threads, one can easily
implement an algorithm to generate possible occurrence sequences
and to check their feasibility accordingly.

Detect Atomicity Violations. Detection of Atomicity violation
is even more straightforward. It is known that there are multiple
patterns [34, 42, 56]. Algorithm 5 shows how to detect the pattern
where a write event w; intrudes into a write-read pair (wy, r). Given
three events wy, wy, and r (suppose that they occur in this order
in o), the algorithm straightforward generates a sequence p =
(wa, w1, r) and checks whether it is feasible, as illustrated in Figure
5(c). Note, Figure 5(c) shows two cases where the read event r can
be from a third thread or from the thread tid(ws).

6 EVALUATION

6.1 Benchmarks and Traces

We collected a set of previously used Java benchmarks [3, 28, 37]
where 31 programs were used for data race detection and atomicity
violations detection. This set is almost the same set as evaluated
before [29, 36, 37, 43] except 4 were not found. Only some of bench-
marks in the AtomFuzzer paper are available, among which we
included four, including the largest one. We used 20 benchmarks
in Java from [26, 27] for deadlock detection. We run the tool Dirk
[28] to generate traces.

The first six columns of Table 3 show the statistics of all traces
including the numbers of threads, events, locations ("Mems"), locks,
and branches. For well-readable purpose, we optimized the table,
upper case "K" and "M" indicates thousand and million magnitude,
respectively. We classify all traces into four categories according
to the number of events ("n" in time complexity): S-Bench (<1M
events), M-Bench (from 1M to 100M), L-Bench (from 100M to
1,000M), and XL-Bench (>1, 000M events).

6.2 Experimental Setup

We implemented SEQCHECK in Java and compared it with M2 [43],
WCP [29], SHB [36], and SyncP [37] on data race detection. The
four race detectors are published in recent years and SyncP is
the-state-of-art. Section 7 has more discussion on them. They are
available from the release package [37] . We compared SEQCHECK

263

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

with the sound deadlock detector Dirk [28] , which is also the
state-of-the-art on sound deadlock detection except that Dirk is
a constraint-solver-based one. For atomicity violation detection,
we only found an available tool AtomFuzzer [41] for comparison.
AtomFuzzer detects potential atomicity violations and then, for
each of them, schedules a new execution with aim to trigger it.
All experiments were conducted on a Linux server with two
Intel(R) Xeon(R) Gold-6148 CPUs and 256GiB RAM. Following the
work [37], we setup a time limit of one hour, fairly limit the maxi-
mum usage of memory (80GiB) for each tools, run each tool one
by one with guaranteeing no CPU/IO-dense processes running si-
multaneously. We conducted all experiment five times and took the
average values. Different scheduling may produce different traces;
we run the benchmarks once to collected the same set of traces.

Results on Data Race Detection. Table 3 shows the result on
race detection, including the number of races, the time cost, and the
max/mean distances of a race (i.e., the number of events between
the two events). The symbols "—" and "TO" indicate the cases with
no race detected and the cases where the time limit was reached, re-
spectively. Note, for each approach, we collected and de-duplicated
all reported races before it finished or run out of time. We use
SeqC to denote SEQCHECK in result tables from this subsection. For
well-readable purpose, we use lower case "s", "m", "h" to indicate
seconds, minutes, hours respectively.

From Table 3, we see that SEQCHECK performed significantly
better than others. On effectiveness, SEQCHECK detected the largest
set of races on each (group of) benchmark. We have manually
confirmed that SEQCHECK detected all races detected by others and
no false positives were reported by SEQCHECK on S-Bench. Overall,
it detected 48 more races than the other four. Some of these races
have a distance of more than 200M.

This shows the advantage of SEQCHECK by analyzing branch
events . Both SyncP and M2 detected a similar set of races (285 and
269). This is consistent with the previous result [37]. Both WCP
and SHB detected a similar set of races (130 and 144).

On efficiency, SEQCHECK spent 30 minutes on all benchmarks;
while others spent from 6 hours to 11.5 hours. On each large bench-
mark (except S-Bench), SEQCHECK is also the fastest one except on
montecarlo and series. Overall, SEQCHECK is nearly 12 times faster
than all other approaches. Among the other four, M2 spent the most
time (11.5 hours) and SyncP, WCP, and SHB spent from 6 hours to
7 hours. This result is also consistent with that of [37].

Another observation is that, except SEQCHECK, all others reached
2 to 10 TO. And on the XL-Bench group, all run up to nearly or
more than 1 hour except M2 on h2. But M2 has many more TO
on all benchmarks. This result is consistent with the features of
these four algorithms: the three (SyncP, WCP, SHB) are streaming
algorithms and have almost a linear time complexity [37]; but M2
as well as SEQCHECK is a full-trace algorithm where optimizations
can be conducted for it.

Results On Deadlock Detection. Table 4 shows the results on
deadlock detection by Dirk (with window size 10K) and SEQCHECK.
It also includes the number of threads and events.

On effectiveness, Dirk detected one more deadlock than Sk-
QCHECK. In detail, SEQCHECK detected one additional deadlock
(on Vector) missed by Dirk. All these are true positives based on

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, and Jens Palsberg

Table 3: Results on detection of data races.

#Races Time Distance

Benchmarks Threads Events MemsLocks Branchs SyncP M2 WCPSHBSeqC SyncP M2 WCP SHB SeqC Max Mean
array 3 47 4 1 9 - - - - - 0.03s 0.15s 0.03s 0.02s 0.10s - -
critical 4 76 9 0 15 3 3 1 3 3 0.03s 0.09s 0.03s 0.02s 0.10s 29 17
pingpong 8 189 16 0 57 1 1 1 1 1 0.03s 0.09s 0.03s 0.02s 0.07s 92 91
airlinetickets 11 249 20 0 51 6 6 5 6 6 0.03s 0.14s 0.03s 0.02s 0.11s 161 127
account 284 22 0 67 3 3 3 3 5 0.03s 0.10s 0.04s 0.02s 0.11s 152 109
clean 12 505 41 2 130 1 3 1 1 3 0.08s 0.16s 0.05s 0.03s 0.11s 226 123
gbubblesort 12 2.3K 74 2 581 3 3 3 3 3 0.15s 0.71s 0.08s 0.05s 0.12s 1.2K 11K
@ boundedbuffer 4 25K 39 4 871 8 8 6 8 10 0.07s 0.16s 0.08s 0.05s 0.08s 21K 1.1K
V')mergesort 7 5.9K 594 6 2.2K 2 2 2 2 2 0.08s 0.17s 0.10s 0.07s 0.11s 2.4K 909
raytracer 2 24.7K 3.9K 3 49K 4 4 4 4 5 0.23s 0.25s 0.29s 0.23s 0.09s 47K 2.1K
bufwriter 5 27.9K 75 1 3.6K 4 4 4 4 4 0.63s 1.38s 0.46s 0.24s 0.18s 269K 6.8K
ftpserver 5 99.8K 3.8K 71 56.9K 30 30 15 15 31 0.81s 5.17s 0.57s 0.41s 0.19s 36.2K 4.6K
readerswriters 8 307.0K 27 1 121.4K 1 1 1 1 1 11.52s 1m33s 3.09s 1.07s 1.42s 1.2K 1.2K
moldyn 5 555.0K 27K 1 148.0K 3 3 3 3 2.46s 20mb54s 4.05s 2.07s 0.34s 57.0K 30.3K
_ﬁjigsaw 13 2.8M 63.2K 104 930.0K 11 12 8 9 12 10.58s 17.92s 10.64s 10.09s 0.54s 443K 5.7K
Emontecarlo 3 10.1M 850.1K 1 2.1M 2 2 1 2 2 38.38s TO 47.15s 37.58s 40.97s 85M 4.2M
l:gsunﬂow 15 349M 2.0M 10 13.4M 7 7 5 6 7 1ml3s 9m21s 2m1l18s 1m4d4s 5.33s 20.0M 3.0M
Ecrypt 17 79.0M 6.3M 1 6.8M - - 8 5m06s TO 6m38s 5m07s 21.61s 56.8M 56.8M
eclipse 15 126.3M 10.4M 4.7K 62.1M 17 17 13 14 17 12m05s 18m32s 8m36s 6m24s 36.14s 18.3M 3.4M
xalan 7 1642M 28M 812 65.8M 128 135 9 9 138 TO TO 9m51s 7m08s 1mb56s 20.2M 13.1M
lufact 5 179.6M 1.0M 1 48.7M 6 - 5 6 6 11m09s TO 15m37s 10m37s 1m25s 5.1IM 2.5M
Sbatik 7 2799M 51M 19K 106.3M - - - - - 11m4ls 6mo0ls 15m23s 12mdls 22.59s - -
5lusearch 7 322.0M 47M 148 115.9M 16 - 16 16 19 14m21s TO 17m51s 13m46s 31.16s 200.6M 12.8M
ﬁpmd 9 382.6M 12.1M 221 168.9M 23 23 13 16 24 16m07s TO 20m28s 16m20s 35.91s 224.4M 33.6M
tsp 5 487.1M180.9K 2 167.3M 4 - 4 4 4 18m36s TO 22m25s 17ml15s 2m20s 86.7M 53.0M
series 18 574.2M286.4K 1 573.1M - - - - - 10.12s 14.65s 11.00s 10.19s 37.17s - -
luindex 3 775.0M 2.5M 65 304.6M 1 1 1 1 1 27m48s 14m35s 35mb56s 27m36s 1mO02s 19K 19K
,.ssparsematmult 6 1,286.9M 16.0M 1 150.3M - - - - - TO TO TO TO 5m07s - -
Esor 5 1,357.3M 4.0M 1 187.3M - - - - 10 TO TO TO TO 4mo08s 40.1M 17.6M
Ravrora 7 1,636.3M 864.5K 6 638.4M - - 6 6 7 TO TO TO 58mo03s 4m52s 896.8K364.4K
;hZ 2 2,088.7M 27.1M 15 1,126.0M 1 1 - 1 TO 25m19s TO 59m31s 5mlé6s 2 2
Total - 9,787.9M 96.4M 8.1K 3,738.2M 285269 130 144 333 >6h59m>11h36m>6h36m>5h57m 30mo03s - -

our code inspection. On Vector, the distance of the deadlock (i.e.,
the two acquire events) is 2.7M which is very large window and
constraint-solver-based approaches [24] are probably unable to de-
tect. On all other benchmarks, the distance is at most 1.6K. Hence,
Dirk was able to detect two deadlocks on Deadlock and Transfer
missed by SEQCHECK. On these two deadlocks, there are data flows
that can be handled by Dirk but not SEQCHECK. It is challenging
to extend SEQCHECK to handle these cases; we leave it as a further
work. Note, some benchmarks have deadlocks but their traces do
not have one [28]; and both tools did not detect deadlocks on them.

On efficiency, SEQCHECK is significantly better than Dirk. SE-
QCHECK spent less than 6 seconds in total and less than 2.5 seconds
on each benchmark. However, Dirk reached one TO and took much
more time, especially on benchmarks with >500K events.

Results On Atomicity Violations Detection. We configured
SEQCHECK to detect the atomicity violation pattern (wq, wz, r) as
that shown in Algorithm 5 and we set the distance between wy and
r to be at most 100. The result is shown in Table 5, including the
number of atomicity violations, the time cost, and the max/mean
distance. We use "®" to indicate a crash in testing.

264

The result shows that SEQCHECK finished in less than 20 minutes
and 30 unique ones were detected. Some of these atomicity viola-
tions have a distance up to 18.7M and SEQCHECK finished in about
20 seconds. This shows that SEQCHECK is efficient on detecting
atomicity violations. The results on S-Bench are also manually
confirmed and they match the pattern (wy, wa, r).

AtomFuzzer (i.e., "AtomF") detected none on all benchmarks
and it frequently crashed on many benchmarks. We have already
tried our best to avoid crashes as much as possible. But, it seems
no avail. The main reason of crashes is that AtomFuzzer does not
support Java reflection.

7 RELATED WORKS

Traditional Unsound Approaches. Two earliest works on data
race detection are based on the happens-before relation [31] and
the lockset discipline [51]. The former define a partial order over
synchronizations and is widely adopted in many data race detectors
[1,2,4,10,12,13, 15, 20, 45, 52-54, 57]. The latter defines a data race
if two accesses are not protected by a common lock [9, 39, 47, 51, 60].
Hybrid analyses combine the two approaches to improve accuracy

Sound and Efficient Concurrency Bug Prediction

Table 4: Results on detection of deadlocks.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 5: Full Results on Detection of Atomicity Violation.

#Deadlocks Time Distance #Atom Time Distance
Benchmarks Threads Events Dirk SeqC Dirk SeqC Max Mean Benchmarks AtomF SeqC AtomF SeqC Max Mean
Deadlock 3 50 1 - 0.02s 0.07s - - array - - 0.17s 0.07s - -
NotADlk 3 62 - - 0.02s 0.10s - - critical - 1 0.07s 0.10s 20 13
Picklock 3 68 1 1 0.02s 0.07s 25 25 pingpong - - 0.76s 0.07s - -
HashTable 3 70 2 2 0.03s 0.10s 41 36 airlinetickets - 1 0.07s 0.10s 159 159
Bensalem 4 80 1 1 0.06s 0.07s 29 29 account - 1 0.56s 0.10s 118 118
Transfer 3 81 1 - 0.02s 0.10s - - clean - - 0.07s 0.07s - -
Test 3 83 2 2 0.06s 0.07s 34 27 & bubblesort - - 0.08s 0.11s - -
StringBuffer 3 116 2 2 0.03s 0.07s 34 19 & boundedbuffer - 2 0.17s 0.08s 812 761
DiningPhi 3 166 1 1 0.05s 0.10s 105 105 Vlimergesort - - 0.07s 0.11s - -
DirkAccount 6 867 - - 0.15s 0.10s - - raytracer - 1 0.12s 0.08s 1.1K 1.1K
Log4j2 4 25K 1 1 0.80s 0.10s 295 295 bufwriter - - 0.08s 0.15s - -
Dbcp1 3 29K 2 2 0.23s 0.10s 210 191 ftpserver ® 1 ® 0.17s 18K 18K
Derby2 3 30K 1 1 0.31s 0.12s 61 61 readerswriters - - 0.40s 0.73s - -
Dbcp2 3 41K - - 0.55s 0.10s - - moldyn - - 0.19s 0.30s - -
JDBC 1 3 674.5K 2 2 44.92s 0.19s 424 240 :jigsaw ® 1 ® 0.37s 111 111
JDBC 2 3 674.6K 1 1 4.33s 0.19s 168 168 B}
& montecarlo ® - ® 48.72s - -
JDBC 3 3 675.8K 1 1 43.48s 0.16s 148 148 £ sunflow ® R ® 4995 } B
JDBC 4 3 675.9K 2 2 10.44s 0.20s 1.6K 1.6K El crvot R B 0.59s 20.328) B
Vector 3 54M 1 TO 1.34s 27M 2.7M P : ;
TestPerf 10 11.9M - - 48.63s 2.47s - - eclipse ® - ® 13.62s - -
xalan ® 20 ® 20.86s 18.7M 12.8M
Total - 20.0M 21 20 >1h02m 5.95s - - lufact ~ ~ 5725 4831s B ~
[11, 40]. Others include scheduling [5] and sampling approaches "ébatik ® - ® 25.10s - -
[4, 7, 22]. Unfortunately, the above can report false positives. 2 lusedamh ® - ® ZS'OZS . -
Sound Offline Analysis. Sound dynamic ones, as discussed _ f m z) z Zz'zos))
. . . . s - 308 - -
in Section 1, include three types. M2 is a graph based one that P
. R . X series - - 26m27s 38.07s - -
has been e).<tens1vely dlsgussed. Dirk [28] and RVPredu?t [24] are luindex ® ; ® 5461s } :
representatives of constraint solver based ones. They can infer alter-
native executions by considering branches and concrete read/write -5 sparsematmult) - 23.27s 3ml6s))
. £ sor - - 9.01s 3m2ls - -
values; hence, they have the potential to cover many races, as well Q
. & avrora ® 2 ® 2mb54s 141.0K 130.4K
as deadlocks [28] and other concurrency bugs (like concurrency Zhe ®) ® 3moTs))
Use-after-free and concurrency Null-pointer-dereference [16, 23]).
Total - 30 27mo08s 19m07s 18.9M 12.9M

However, they rely on (e.g., SMT) solvers. This prevents them from
analyzing a full execution trace. They can miss a race with much a
larger distance.

Sound Online Analysis. In recent years, more and more sound
dynamic online approaches have been proposed like CP [55], WCP
[29], SHB [36],DC [50], SDP/WDP [21], and SyncP [29]. These ap-
proaches track dependency among memory events and guarantee
that the predicted (partial) trace is feasible via vector clocks [31]. HB
and SHB both miss simple races because they cannot swap the crit-
ical sections. The other approaches based on HB construct weaker
partial orders in order to reduce the degree of incompleteness. CP
and WCP are sound but incomplete even for two threads. DC and
SDP are unsound weakenings of WCP; and WDP is an unsound
weakening of DC. The DC/WDP-races filtered by a vindication
algorithm become sound but incomplete [21, 50]. The recently in-
troduced SyncP is the state of the art in detecting races using online
techniques. All of these online approaches are computable in linear
time and have been compared in our experiments.

Other approaches such as static race analysis [14, 38, 46, 48,
58, 61] are unsound, reporting false races. Techniques such as
[17, 49, 59] implement efficient dynamic race detectors. Tools such
as RoadRunner[19] and Rapid [35] provide dynamic analysis frame-
works to facilitate experimentation for concurrent programs.

265

8 CONCLUSION

We have presented an efficient, sound dynamic approach SEQCHECK
for detection of general concurrency bugs. It advanced M2 by mod-
eling branch events and supporting decisions on whether an event
sequence is feasible. With SEQCHECK, one can easily encode a po-
tential concurrency bug into one or more sequences of events.
SEQCHECK has built in the sequence generation for data races, dead-
locks, and atomicity violations. The experimental results show that
SEQCHECK achieved significantly better results than recent sound
data race and deadlock detectors in both effectiveness and efficiency.

ACKNOWLEDGEMENTS

We sincerely thank the anonymous reviewers for helpful sugges-
tions and insights for improving this paper. This work is supported
in part by National Natural Science Foundation of China (NSFC)
(Grant No. 61932012), the Key Research Program of Frontier Sci-
ences, CAS (Grant No. ZDBS-LY-7006), the Youth Innovation Pro-
motion Association of the Chinese Academy of Sciences (YICAS)
(Grant No. 2017151), and the National Key Research and Devel-
opment Program of China (No. 2018YFB1403400). And National
Science Foundation award 1815496 supported Jens Palsberg.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, and Jens Palsberg

REFERENCES ’10). 1-8.
[20] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the 30th ACM SIGPLAN Conference on

[1] Swarnendu Biswas, Man Cao, Minjia Zhang, Michael D. Bond, and Benjamin P.
Wood. 2017. Lightweight data race detection for production runs. In Proceedings

of the 26th International Conference on Compiler Construction (Austin, TX, USA) Programming Language Design and Implementation (Dublin, Ireland) (PLDI '09).
(CC’17). Association for Computing Machinery, ustin, TX, USA, 11-21. https: ACM, New York, NY, USA, 121-133. https:/A/domrg/IOA1145/154247641542490
//doi.org/10.1145/3033019.3033020 [21] Kaan Geng, Jake Roemer, Yufan Xu, and Michael D. Bond. 2019. Dependence-

Aware, Unbounded Sound Predictive Race Detection. Proc. ACM Program. Lang.

[2] Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon Lucia. 2015. - g
Valor: efficient, software-only region conflict exceptions. ACM SIGPLAN Notices 3, OOPSLA, ArFlcle 17? FOCt' 2019), 30 pages. https://d01.0rg/1041145/33606Q5
50, 10 (Oct. 2015), 241-259. https:/doi.org/10.1145/2858965.2814292 [22] Yu Guo, Yan Cai, and Zijiang Yang. 2017. AtexRace: Across Thread and Execution

[3] S.M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, Sampling for in-House Race Detection. In Proceedings of the 2017 11th Joint
A. Diwan, D, Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, Meeting on Fqun'dations of Softwqre Enginegring (Paderborn, Germany) (ESEC/FSE
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dinck- 2017). AS§001at10n for Computing Machinery, New York, NY, USA, 315-325.
lage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking https://d014org/10.1145/310623‘743‘106242 .
Development and Analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM (23] Jeff Hufing. 2018. UFO: Predth1ve Concurrency UsefafterfFrf:e Dgtectlon. In
SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and Proceedings of the 40[1,1 Internatu?na_l Conference on _Software _Engmeermg (Gothen-
Applications (Portland, OR, USA). ACM Press, New York, NY, USA, 169-190. burg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY,
https://doi.org/10.1145/1167473.1167488 USA, 609-619. https://doi.org/10.1145/3180155.3180225

[4] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010. PACER: [24] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Pre-
Proportional Detection of Data Races. In Proceedings of the 31st ACM SIGPLAN dictive Race Detection with Control Flow Abstraction. In Proceedings of the 35th
Conference on Programming Language Design and Implementation (Toronto, On- ACM SIGPLAN 'Confe)"ence on Progran’qming Langque Design and I'mplement'ation
tario, Canada) (PLDI "10). Association for Computing Machinery, New York, NY, (Edinburgh, United Kingdom) (PLDI ’14). Association for Computing Machinery,
USA, 255-268. https://doi.org/10.1145/1806596.1806626 New York, NY, USA, 337-348. https://doi.org/10.1145/2594291.2594315

[5] Yan Cai and Lingwei Cao. 2015. Effective and Precise Dynamic Detection of [25] Joab Jackson. 2012. Nasdaq’s Facgbook glitch came from ‘race conditions’. http:
Hidden Races for Java Programs (ESEC/FSE 2015). Association for Computing Ma- //wwvAvAcomputerworld.com/s/artlclg/%27350. . .
chinery, New York, NY, USA, 450-461. ~https://doi.org/10.1145/2786805.2786339 [26] PallaviJoshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. 2009. A Randomized

[6] Yan Cai and W. K. Chan. 2012. MagicFuzzer: Scalable Deadlock Detection for Dynamic Program Analysis Technique for Detecting Re§1 Deadlocks. In P roceed-
Large-scale Applications. In Proceedings of the 34th International Conference on ings of the 39”1 ACM SIGPLAN Cunferen?e on Programming Language Design ‘{”d
Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press, Piscataway, NJ, Implementation (Dublin, Ireland) (PLDI '09). Association for Cor'nputmg MaChm’
USA, 606-616. http:/dL.acm.org/citation.cfm?id=2337223.2337294 ery, New York, NY, USA, 110-120. https://dof.org/10.1145/1542476.1542489

[7] Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. 2016. A Deployable Sampling [27] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. 2008. Dead-
Strategy for Data Race Detection. In Proceedings of the 2016 24th ACM SIGSOFT lock Immunity: Enabling Systems to Pefe“d against Peadlo‘:ks- In P roceefiings of
International Symposium on Foundations of Software Engineering (Seattle, WA, th? 8th USENIX Conferenﬁe on Operating Systems Design and Implementation (San
USA) (FSE 2016). Association for Computing Machinery, New York, NY, USA, Diego, California) (OSDI'05). USENIX Association, USA, 295-308. .
810-821. https://doi.org/10.1145/2950290.2950310 [28] Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction.

Proc. ACM Program. Lang. 2, OOPSLA, Article 146 (Oct. 2018), 29 pages. https:

[8] Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang. -
//doi.org/10.1145/3276516

2019. Detecting Concurrency Memory Corruption Vulnerabilities. In Proceedings - o . .
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference Dllee‘p Km{, Umang Mathur, and Mahesh V1§Wfinathan. 2017. ‘Dynamlc'Race
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia) Prediction in Linear Time (PLDI 2017). A§socmt10n for Computing Machinery,
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA, New York, NY, USA, 157-170. htt}_)s://domrg/l(ll145/5062541.5062574
706-717. https://doi.org/10.1145/3338906.3338927 Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes
[9] Jong-Deok Choi, Keunwoo Lee, and Alexey Loginov. 2002. Efficient and precise MulFlprocess Programs. IEEE Trans. Comput. C-28, 9 (1979), 690-691. https:
datarace detection for multithreaded object-oriented programs. ACM Sigplan //doi.org/10.1109/TC.1979.1675439)) o
Notices 37, 5 (June 2002), 258-269. https://doi.org/10.1145/543552.512560 [31] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed

[10] Intel Corporation. 2016. Intel Inspector. https://software.intel.com/en-us/intel- System. Commun. ACM 21, 7 (July 1978), 558-565. https://doi.org/10.1145/
inspector-xe 359545.359563

[11] Anne Dinning and Edith Schonberg. 1991. Detecting access anomalies in pro- [32] N.G.Leveson and C.S. Turner. 1993. An investigation of the Therac-25 accidents.

[29

'@
=

grams with critical sections. ACM SIGPLAN Notices 26, 12 (Dec. 1991), 85-96. Computer 26,7 (1993), 18-41. https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/127695.122767 [33] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
[12] LauraEffinger-Dean, Brandon lucia, luis Ceze, Dan Grossman, and Hans-J Boehm. Mistakes: A Comprehensive Study on Real World Concurrency Bug Characteris-

2012. TFRit: interference-free regions for dynamic data-race detection. In Acm tics. In Praceec(ings of the 13th Internation'al Conference on Architectural Support
International Conference on Object Oriented Programming Systems Languages for Programming Languages and Operating Systems (Seattle, WA, USA) (ASP-
& Applications (Tucson, Arizona, USA) (OOPSLA 12). https://doi.org/10.1145/ LOS X11I). AAssoc1at10n for Computing Machinery, New York, NY, USA, 329-339.
2398857.2384650 https://doi.org/10.1145/1346281.1346323

[13] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: a race and Brandt?n Lucia, JOS?Ph Devietti, Karin Strauss, and Luis Ceze. 2008. Atom-Aid:
transaction-aware java runtime. Acm Sigplan Notices 42, 6 (June 2007), 245-255. Detecting and Surviving Atomicity Violations. In Proceedings of the 35th Annual

&
=)

https://doi.org/10.1145/1273442.1250762 International Symposium on Computer Architecture (ISCA *08). IEEE Computer
[14] Dawson Engler and Ken Ashcraft. 2003. RacerX : Effective, static detection of Society, USA, 277-288. https://dm.org/lp.l109/ISCAAA2008.4
race conditions and deadlocks. ACM SIGOPS Operating Systems Review 37, 5 (Oct. (35] Umang Mathur. 2020. RAPID : Dynamic Analysis for Concurrent Programs.
2003), 237-252. https:/doi.org/10.1145/945445.945468 https://github.com/umangm/rapid '
[15] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk. [36] Umang Mz}thur, Dileep Km‘ﬁ and Mahesh Ylswanathan. 2018. What Happens-
2010. Effective data-race detection for the kernel. In Proceedings of the 9th USENIX after the First Race? Enhancing the Predictive Power of Happens-before Based

Dynamic Race Detection. 2, OOPSLA, Article 145 (Oct. 2018), 29 pages. https:
//doi.org/10.1145/3276515
Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2021. Optimal

conference on Operating systems design and implementation (OSDI ’10). 151-162.

https://doi.org/10.5555/1924943.1924954 (37

[16] Azadeh Farzan, P. Madhusudan, Niloofar Razavi, and Francesco Sorrentino. 2012. B > Lay '
Predicting Null-Pointer Dereferences in Concurrent Programs. In Proceedings of Predlctlon} of Synchronization-Preserving Races. Proc. ACM Program. Lang. 5,
the ACM SIGSOFT 20th International Symposium on the Foundations of Software En- POPL, Article 36 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434317)
gineering (Cary, North Carolina) (FSE ’12). Association for Computing Machinery, [38] Mayur Naik, Alex Aiken, anq John Whaley. 2006. Effective static race df}tectmn
New York, NY, USA, Article 47, 11 pages. https:/doi.org/10.1145/2393596.2393651 for Java. ACM SIGPLAN Notices 41, 6 (June 2006), 308-319. https://doi.org/10.
[17] Mingdong Feng and Charles E. Leiserson. 1997. Efficient detection of determinacy 11‘45/1 1332?5?134018
races in Cilk programs. In Proceedings of the ninth annual ACM symposium on [39] Hiroyasu lehlyama.' 2004. Detectu?g Data Races Using Dynamic E§Cape Analy§1s
Parallel algorithms and architectures (SPAA "97). 1-11. Based on Read Barrier. In Proceed}ngs ofthe: 3rd conference on Virtual Machine
[18] Peter M. Fenwick. 1994. A New Data Structure for Cumulative Frequency Tables. Research A"d Technology Symposium (VM 04). New York, NY, USA, 127-138.
Softw. Pract. Exper. 24, 3 (March 1994), 327-336. https://doi.org/10.1002/spe. https://dol.()rg/10.5555/1267242_12672'52 .) .
4380240306 [40] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid dynamic data race detection.
[19] Cormac Flanagan and Stephen Freund. 2010. The RoadRunner Dynamic Analysis In Proceedings of the f“i"[h ACM SIGPLAN symposium on Prir’zaples and practice
Framework for Concurrent Programs. In Proceedings of the 9th ACM SIGPLAN- of parallel programming (San Diego, California, USA) (PPoPP’03). New York, NY,

SIGSOFT workshop on Program analysis for software tools and engineering (PASTE USA, 167-178. https://doi.org/10.1145/966049.781528

266

https://doi.org/10.1145/3033019.3033020
https://doi.org/10.1145/3033019.3033020
https://doi.org/10.1145/2858965.2814292
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1145/2786805.2786839
http://dl.acm.org/citation.cfm?id=2337223.2337294
https://doi.org/10.1145/2950290.2950310
https://doi.org/10.1145/3338906.3338927
https://doi.org/10.1145/543552.512560
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
https://doi.org/10.1145/127695.122767
https://doi.org/10.1145/2398857.2384650
https://doi.org/10.1145/2398857.2384650
https://doi.org/10.1145/1273442.1250762
https://doi.org/10.1145/945445.945468
https://doi.org/10.5555/1924943.1924954
https://doi.org/10.1145/2393596.2393651
https://doi.org/10.1002/spe.4380240306
https://doi.org/10.1002/spe.4380240306
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/3360605
https://doi.org/10.1145/3106237.3106242
https://doi.org/10.1145/3180155.3180225
https://doi.org/10.1145/2594291.2594315
http://www.computerworld.com/s/article/9227350
http://www.computerworld.com/s/article/9227350
https://doi.org/10.1145/1542476.1542489
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3062341.3062374
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1109/ISCA.2008.4
https://github.com/umangm/rapid
https://doi.org/10.1145/3276515
https://doi.org/10.1145/3276515
https://doi.org/10.1145/3434317
https://doi.org/10.1145/1133255.1134018
https://doi.org/10.1145/1133255.1134018
https://doi.org/10.5555/1267242.1267252
https://doi.org/10.1145/966049.781528

Sound and Efficient Concurrency Bug Prediction

[41] Chang-Seo Park and Koushik Sen. 2008. Randomized Active Atomicity Violation
Detection in Concurrent Programs. In Proceedings of the 16th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (Atlanta, Georgia)
(SIGSOFT "08/FSE-16). Association for Computing Machinery, New York, NY, USA,
135-145. https://doi.org/10.1145/1453101.1453121

[42] Chang-Seo Park and Koushik Sen. 2008. Randomized Active Atomicity Violation
Detection in Concurrent Programs. In Proceedings of the 16th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (Atlanta, Georgia)
(SIGSOFT "08/FSE-16). Association for Computing Machinery, New York, NY, USA,
135-145. https://doi.org/10.1145/1453101.1453121

[43] Andreas Pavlogiannis. 2020. Fast, sound, and effectively complete dynamic

race prediction. Proc. ACM Program. Lang. 4, POPL (2020), 17:1-17:29. https:

//doi.org/10.1145/3371085

Kevin Poulsen. 2012. Software bug contributed to blackout. Security Focus.

http://www.securityfocus.com/news/8016.

[45] Eli Pozniansky and Assaf Schuster. 2007. Multirace: Efficient On-the-fly Data

Race Detection In Multithreaded C++ Programs. ACM Trans. Comput. Syst. 19, 3

(Nov. 2007), 327-340. https://doi.org/10.1002/cpe.1064

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2011. LOCKSMITH:

Practical static race detection for C. ACM Transactions on Programming Languages

and Systems 33, 1 (Jan. 2011). https://doi.org/10.1145/1889997.1890000

[47] Christoph von Praun and Thomas R. Gross. 2001. Object Race Detection. ACM

Sigplan Notices 36, 11 (Nov. 2001), 70-82. https://doi.org/10.1145/504311.504288

Cosmin Radoi and Danny Dig. 2013. Practical static race detection for Java

parallel loops. In Proceedings of the 2013 International Symposium on Software

Testing and Analysis (ISSTA 2013). 178-190.

[49] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
2012. Scalable and precise dynamic datarace detection for structured parallelism.
ACM SIGPLAN Notices 47, 6 (June 2012), 531-542. https://doi.org/10.1145/2345156.
2254127

[50] Jake Roemer, Kaan Genc, and Michael D. Bond. 2018. High-Coverage, Unbounded
Sound Predictive Race Detection (PLDI 2018). 374-389. https://doi.org/10.1145/
3192366.3192385

[51] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multithreaded
Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997), 391-411. https://doi.org/
10.1145/265924.265927

[52] Koushik Sen. 2008. Race directed random testing of concurrent programs. In
ACM SIGPLAN Notices (Tucson, Arizona, USA) (PLDI 08). 11-21. https://doi.

[44

[46

[48

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

0rg/10.1145/1379022.1375584

Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race
detection in practice. In Proceedings of the Workshop on Binary Instrumentation
and Applications (New York, NY, USA) (WBIA °09). 62-71. https://doi.org/10.
1145/1791194.1791203

Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and Dmitriy
Vyukov. 2012. Dynamic Race Detection with LLVM Compiler. In Runtime Verifi-
cation (RV 2011). 110-114. https://doi.org/10.1007/978-3-642-29860-8_9

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jacheon Yi, and Cormac
Flanagan. 2012. Sound Predictive Race Detection in Polynomial Time. In Pro-
ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Philadelphia, PA, USA) (POPL ’12). Association for
Computing Machinery, New York, NY, USA, 387-400. https://doi.org/10.1145/
2103656.2103702

Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. 2010. PENELOPE:
Weaving Threads to Expose Atomicity Violations. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Santa Fe, New Mexico, USA) (FSE ’10). Association for Computing Machinery,
New York, NY, USA, 37-46. https://doi.org/10.1145/1882291.1882300

Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and Satish Narayanasamy.
2011. Detecting and surviving data races using complementary schedules. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles
(SOSP ’11). 369-384. https://doi.org/10.1145/2043556.2043590

[58] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static race detection

on millions of lines of code. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering (ESEC-FSE 07). 205-214.

Adarsh Yoga, Santosh Nagarakatte, and Aarti Gupta. 2016. Parallel data race
detection for task parallel programs with locks. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2016). 833-845.

Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. RaceTrack: Efficient Detection
of Data Race Conditions via Adaptive Tracking. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles (Brighton, United Kingdom)
(SOSP °05). Association for Computing Machinery, New York, NY, USA, 221-234.
https://doi.org/10.1145/1095810.1095832

Sheng Zhan and Jeff Huang. 2016. ECHO: instantaneous in situ race detection in
the IDE. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). 775-786.

https://doi.org/10.1145/1453101.1453121
https://doi.org/10.1145/1453101.1453121
https://doi.org/10.1145/3371085
https://doi.org/10.1145/3371085
http://www.securityfocus.com/news/8016
https://doi.org/10.1002/cpe.1064
https://doi.org/10.1145/1889997.1890000
https://doi.org/10.1145/504311.504288
https://doi.org/10.1145/2345156.2254127
https://doi.org/10.1145/2345156.2254127
https://doi.org/10.1145/3192366.3192385
https://doi.org/10.1145/3192366.3192385
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/1379022.1375584
https://doi.org/10.1145/1379022.1375584
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1007/978-3-642-29860-8_9
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/1882291.1882300
https://doi.org/10.1145/2043556.2043590
https://doi.org/10.1145/1095810.1095832

