
Sound and E!icient Concurrency Bug Prediction

Yan Cai ∗

State Key Laboratory of Computer
Science, Institute of Software, Chinese
Academy of Sciences, and University
of Chinese Academy of Sciences

Beijing, China
ycai.mail@gmail.com

Hao Yun
State Key Laboratory of Computer

Science, Institute of Software, Chinese
Academy of Sciences, and University
of Chinese Academy of Sciences

Beijing, China
yunhao@ios.ac.cn

Jinqiu Wang
State Key Laboratory of Computer

Science, Institute of Software, Chinese
Academy of Sciences, and University
of Chinese Academy of Sciences

Beijing, China
wangjq@ios.ac.cn

Lei Qiao
Beijing Institute of Control

Engineering
Beijing, China

"y2mars@163.com

Jens Palsberg
University of California
Los Angeles (UCLA), USA

palsberg@ucla.edu

ABSTRACT
Concurrency bugs are extremely di#cult to detect. Recently, several
dynamic techniques achieve sound analysis. M2 is even complete
for two threads. It is designed to decide whether two events can
occur consecutively. However, real-world concurrency bugs can
involve more events and threads. Some can occur when the order
of two or more events can be exchanged even if they occur not
consecutively. We propose a new technique SeqCheck to soundly
decide whether a sequence of events can occur in a speci$ed order.
The ordered sequence represents a potential concurrency bug. And
several known forms of concurrency bugs can be easily encoded
into event sequences where each represents a way that the bug can
occur. To achieve it, SeqCheck explicitly analyzes branch events
and includes a set of e#cient algorithms. We show that SeqCheck
is sound; and it is also complete on traces of two threads.

We have implemented SeqCheck to detect three types of concur-
rency bugs and evaluated it on 51 Java benchmarks producing up to
billions of events. Compared with M2 and other three recent sound
race detectors, SeqCheck detected 333 races in 30 minutes; while
others detected from 130 to 285 races in 6 to 12 hours. SeqCheck
detected 20 deadlocks in 6 seconds. This is only one less than Dirk;
but Dirk spent more than one hour. SeqCheck also detected 30
atomicity violations in 20 minutes. The evaluation shows SeqCheck
can signi$cantly outperform existing concurrency bug detectors.

CCS CONCEPTS
• Software and its engineering→Multithreading; Scheduling;
Software testing and debugging.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro$t or commercial advantage and that copies bear this notice and the full citation
on the $rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci$c permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468549

KEYWORDS
Concurrency bugs, data races, deadlocks, atomicity violations

ACM Reference Format:
Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, and Jens Palsberg . 2021. Sound
and E#cient Concurrency Bug Prediction. In Proceedings of the 29th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens,
Greece. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3468264.
3468549

1 INTRODUCTION
Concurrent programs can exhibit di%erent thread interleavings due
to non-determinism, bringing concurrency bugs [33]. They can
bring harmful results or even disasters [25, 32, 44].

To detect concurrency bugs, one promising direction would be a
sound predictive analysis [24, 28, 29, 43, 55]. They run a concurrent
program to generate traces consisting of di%erent types of events.
They then consider the dependencies of events and model such
relations either as constraints [24, 28] or direct edges in graphs [43]
or comparable vector clocks [29, 31, 55]. And a feasible solution or
a feasible topological order or a pair of con"icting vector clocks is
taken as a proof of the existence of a real concurrency bug. Di%erent
models o%er di%erent abilities and su%er from di%erent weaknesses.
For example, constraint-solver-based ones are able to check values
in memory access events, producing a larger concurrency coverage;
but they rely on heavy constraint solvers to guarantee their sound-
ness and completeness. To be e#cient, these techniques usually
analyze a segmentation (e.g., every 10k consecutive events) of a
trace [24, 28]. Graph based ones can be complete (given a trace of
two threads [43]) over full traces, but are usually ine#cient. Vector
clock based approaches are e#cient but often incomplete.

This paper focuses on e#cient, sound, and complete approaches.
To the best of our knowledge, M2 [43] is the state-of-the-art one.
However, M2 is limited to data race prediction only; or more pre-
cisely, it is limited to predict the kinds of concurrency bugs involv-
ing two events that should occur consecutively. Data races right
fall into this category because it is de$ned to be two con"icting
memory accesses of two threads [29, 55] that occur consecutively.

255

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468549
https://doi.org/10.1145/3468264.3468549
https://doi.org/10.1145/3468264.3468549

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, and Jens Palsberg

Furthermore, other types of concurrency bugs such as deadlocks
[6], atomicity violations [34], and order violations [33] are not
limited to two events or two threads. They do not require that all
involved events occur at the same time. For example, two well-
protected events can form a concurrency bug if their orders are
reversed [8]; however, it $ts poorly with the de$nition of data races.
It seems highly nontrivial to extend M2 to support the detection of
common concurrency bugs (see Section 2).

In this paper, we address the above challenge by presenting
SeqCheck, an e#cient and sound tool to analyze full traces to
detect various types of concurrency bugs. SeqCheck is complete
when there are two threads. The core of SeqCheck is an algorithm
to decide whether a sequence of two (or more) events is feasible
over a given trace. Such a sequence can vary for di%erent types of
concurrency bugs but can be easily designed; it can have events
from any number of threads.

SeqCheck $rstly calculates an event set that is necessary for
determining the feasibility of the sequence. Secondly, SeqCheck
constructs a graph to reorder the events in the set. It applies four
types of orders as edges including program orders, observation
orders (on pairs of write and read), lock orders, and the orders from
the input sequence. Finally, it computes a closure for these orders
on the graph. If no cycle is found in the process, SeqCheck soundly
decides that the sequence is feasible indicating a true bug.

SeqCheck is inspired by M2 [43]; however, the essential di%er-
ence between them is that M2 targets deciding whether two events
can be reordered one after another; whereas SeqCheck targets
deciding whether a sequence of events in a speci$ed order is feasi-
ble, no matter whether they can occur consecutively. Note, if two
events can occur consecutively, they are exchangeable; but two
exchangeable events may be unable to occur consecutively. As a
result, M2 produces a subset of that of SeqCheck.

To achieve the above goal, SeqCheck considers branch events.
Besides, for a potential concurrency bug with more than two events
that have multiple ways to occur, SeqCheck natively supports
a "divide-and-conquer" manner to decide it. That is, SeqCheck
can decide a potential concurrency bug to be true if it decides
that any sequence (corresponding to a unique way for the bug to
occur) is feasible in a trace. Instead, if any two events of a sequence
can occur consecutively in di%erent traces, M2 cannot decide that
the sequence can be feasible in the same trace. We show that the
algorithm SeqCheck is �푂 (�푛2 × �푙�표�푔(�푛)) where �푛 is the number of
events. And we present a proof to show that SeqCheck is sound
and is also complete when there are two threads.

We have implemented SeqCheck for Java programs to detect
general concurrency bugs. We selected two sets of previously used
Java benchmarks with 31 from [3, 37, 43] and 20 from [27, 28].
They produced traces up to millions or even billions of events.
On detecting data races and atomicity violations, we compared
SeqCheck with (1) M2 and other three sound algorithms SHB,
WCP, SyncP [37] and with AtomFuzzer [41] on the $rst set of
benchmarks, respectively. On detecting deadlocks, we compared
SeqCheck with (2) Dirk (a sound deadlock prediction tool) on the
second set of benchmarks.

The experiment shows that SeqCheck signi$cantly outperformed
others on both e%ectiveness and e#ciency. On race detection, Se-
qCheck detected 333 races in 30 minutes; the others detected from

130 to 285 races in at least 6 hours. The latter four reached our time
limit (1 hour) on almost all large-scale benchmarks. On deadlock
detection, SeqCheck detected 20 ones in 6 seconds; this number
is only 1 less than that by the constraint-solver-based Dirk (that
are expected to detect more than ours). However, Dirk spent >1
hour. SeqCheck detected 30 atomicity violations in the $rst set of
benchmarks whereas AtomFuzzer detected none or crashed.

In summary, we make the following contribution:

• We propose a dynamic approach SeqCheck that models pro-
gram branches and predicts the feasibility of event sequences.
Thus, we turn the detection of concurrency bugs into a ques-
tion of feasibility of an event sequence. And we propose how
to detect three types of concurrency bugs.

• We present an analysis to show that SeqCheck is sound and
is also complete when there are only two threads, and further
show SeqCheck has a time complexity of �푂 (�푛2 × �푙�표�푔(�푛)).

• We have implemented SeqCheck and compared it with several
recent sound works. An experiment con$rms that SeqCheck
is signi$cantly more e#cient and e%ective than others.

2 PRELIMINARIES AND MOTIVATIONS

2.1 Basic De!nitions
This section describes a set of de$nitions and notations about se-
quentially consistency memory models [30] that are similar to
de$nitions found in previous papers [28, 29, 43] .

Execution trace. An (execution) trace �휎 represents a lineariza-
tion of a multithreaded program execution. It is a totally ordered
list of its events, for which the order is denoted by ≺�휎 . For a trace
�휎 , we use T (�휎) to denote the number of threads in trace �휎 , and use
�휎�푡 to denote the projection of �휎 on thread �푡 ∈ T (�휎). Each event
�푒 ∈ �휎 has a thread ID and a event ID, which can be extracted by
tid (�푒)/�푒�푖�푑 (�푒). tid (�푒) denotes the thread which �푒 belongs. �푒�푖�푑 (�푒)
denotes the index of �푒 in �휎tid (�푒) .

There are three categories of events (other synchronization
events can be handled similarly [24, 28, 43]):

• Memory event: write/read, denoted by �푤�푟 (�푡, �푥)/�푟�푑 (�푡, �푥,�푤),
indicates a thread �푡 writes to a (memory) location �푥 , or read
from a location �푥 where the last write event to �푥 is �푤 and �푤
can be ∅.

• Lock event: acquire/release, denoted by �푎�푐�푞(�푡, �푙) / �푟�푒�푙 (�푡, �푙),
indicates a thread �푡 acquires or releases a lock �푙 . Other implicit
synchronizations can be treated based on this two events.

• branch, denoted by �푏�푟 (�푡), indicates there is another path that
is not followed by thread �푡 . Note, this includes both the explicit
conditional branches and the implicit branches (method calls,
memory usage) in object-oriented programming languages [28].

We denote the set of event types as {�푤�푟 , �푟�푑,�푎�푐�푞, �푟�푒�푙,�푏�푟 } and use
�표�푝 (�푒) to extract the type of an event �푒 . We suppose that each thread
starts and ends with a branch event ∅�푆 and ∅�퐸 , respectively.

In the rest of this paper, we may omit the thread ID of an event or
the write event in a read event if there is no ambiguity in the context.
We assume that lock acquire/release events are well-nested, i.e., if
a thread has acquired multiple locks at a time, the corresponding
lock release events must be in the nested manner.

256

Sound and E!icient Concurrency Bug Prediction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

We de$ne a set of auxiliary functions. For a memory/lock event
�푒 , we use loc(�푒) to get its location/lock. We denote the set of all
locations of a trace �휎 as L�휎 . For a read event �푒 , we use obs�휎 (�푒) and
obs�푋 (�푒) to denote the involved write event in a trace �휎 or a set
of events �푋 . For a lock acquire/release event �푒 , we use match�휎 (�푒)
to denote the corresponding paired lock release/acquire event. We
use last

�표�푝
�푥 (�푒) and next

�표�푝
�푥 (�푒) to denote the most recent event that

operates on �푥 before and after �푒 in program order, respectively,
where �표�푝 ∈ {�푤�푟 , �푟�푑,�푎�푐�푞, �푟�푒�푙,�푏�푟 }, where �푥 and �표�푝 can be omitted
indicating any event type and any location, respectively.

We use E�휎 and E�푋 to denote all events in a trace �휎 and all
events in a set �푋 , respectively. And we use E�푟�푑

�푋 , E�푤�푟
�푋 , E

�푎�푐�푞
�푋 , E�푟�푒�푙

�푋 to
denote the set of all read events, all write events, all lock acquire
events, and all lock release events in �푋 , respectively. We de$ne
the [] operation on them as the projection on a location/lock, e.g.,
E�푟�푑
�푋 [�푥] = {�푒 ∈ E�푟�푑

�푋 | loc(�푒) = �푥}.
Two events �푒1 and �푒2 from di%erent threads are con"icting,

denoted as �푒1 ∝ �푒2 if: (1) they are memory events on the same
location and at least one of them is a write event; or (2) they are
lock events and have the same lock. We use �퐶�표�푛�푓 �푆�푒�푡 (�푋 , �푒) to $nd
the con"icting event of �푒 in an event set�푋 (We only use this function
when there is only one con"icting event in �푋).

For simplicity, we view a sequence of events �휌 = 〈�푒1, �푒2, · · · �푒�푛〉
as an array (e.g., �휌 [1] refers to �푒1). A sequence �휌 ′ is a read variant
of another sequence �휌 , denote as �휌 * �휌 ′ if |�휌 | = |�휌 ′ | and, for
1 ≤ �푖 ≤ |�휌 |, we have either �휌 [�푖] = �휌 ′[�푖] or �휌 [�푖] = �푟�푑 (�푡, �푥,�푤) ∧
�휌 ′[�푖] = �푟�푑 (�푡, �푥,�푤 ′). A sequence �휌 is w-r consistent if, for any its
read event �푒 = �푟�푑 (�푡, �푥,�푤), �푤 is identical to the most recent write
event on �푥 before �푒 in �휌 . That is, a read event always reads a value
from the latest write event to the location. A pre$x of a sequence
�휌 = 〈�푒1, �푒2, · · · �푒�푛〉 is a sequence �휌 ′ = 〈�푒1, �푒2, · · · �푒�푖 〉 where 1 ≤ �푖 ≤ �푛
or �휌 ′ = ∅. We denote the set of all pre$xes of �휌 as prefix (�휌). Note
that a trace �휎 is also regard as an event sequence.

2.2 Orders
Given a trace �휎 , we de$ne three basic types of orders:

• Program order ≺�푃�푂 . ∀�푒1, �푒2 ∈ E�휎 : tid (�푒1) = tid (�푒2) ∧ �푒1 ≺�휎
�푒2 ⇒ �푒1 ≺�푃�푂 �푒2 (i.e., among thread local events).

• Observation order ≺�푂�푂 . Let �푋 = E�휎 ,∀�푒 ∈ E�푟�푑
�푋 : �푒 =�푟�푑 (�푡 , �푥 ,

�푤) ⇒ �푤 ≺�푂�푂 �푒 .
• Lock order ≺�퐿�푂 . Let �푋 = E�휎 ,∀�푒1, �푒2 ∈ E

�푎�푐�푞
�푋 : �푒1 ∝ �푒2 ⇒

match�휎 (�푒1) ≺�퐿�푂 �푒2 ∨match�휎 (�푒2) ≺�퐿�푂 �푒1.

2.3 Motivations
M2 [43] is a sound predictive technique for race detection and is
also complete when there are only two threads. For a pair of con"ict
events (�푒1, �푒2), M2 $rstly builds a graph where vertexes are events
that may a%ect the execution of �푒1 and �푒2 and edges are de$ned
as three types of orders. M2 then applies a closure algorithm on
the graph. After that, if there is no cycle formed, M2 decides that
the two events can occur at the same time and they form a race.
Otherwise, it makes no decision (unless the trace has two threads
and, in this case, M2 decides that the two events do not form a race).

M2 decides whether two events can occur consecutively to detect
races. Even if it can be extended to further check whether more
events from di%erent threads can occur consecutively, detecting

t1 t2
1 acq(l)
2 rd(y)
3 wr(x)
4 rel(l)
5 acq(l)
6 rd(x)
7 wr(x)
8 rel(l)
9 wr(y)

t1 t2

sync(l)
{x++;}
y=0;

sync(l)
{x=y;}

Figure 1: A trace (right) of two threads (left).

common concurrency bugs requires to determine whether an order
of two or more events can be reordered. This cannot be resolved
by M2. Let’s discuss this point.

Figure 1 shows two threads and one trace where thread �푡1 exe-
cutes after thread �푡2. Let’s denote each event in the trace by their
line numbers. M2’s purpose is to check whether �푒2 and �푒9 is a race.
M2 $rstly computes a set of dominating orders. For �푒2, the set
is empty as no event before it can a%ect the execution of �푒2. For
�푒9, event �푒6 dominates it where �푒6 reads a value on �푥 written by
�푒3. Similarly, we have that �푒3 is dominated by �푒2. As a result, the
set dominating �푒9 contains �푒2. This indicates that the two cannot
execute consecutively. M2 decides that they do not form a race.
Obviously, this conclusion is false given that the trace stems from
the code on the left.

Next, suppose that M2 is extended to determine the orders, say
whether the execution order from �푒2 to �푒9 can be reversed into that
from �푒9 to �푒2 in an alternative execution. Obviously, this targeted
order and the concluded dominating order (i.e., �푒2 dominates �푒9)
together form a cycle. As a result, M2 decides that the target order
cannot be reversed. However, it is obvious again that the target
(from �푒9 to �푒2) order is feasible in a di%erent trace.

The reason failing M2 on the above two examples is at its execu-
tion model. M2 follows the model [29, 36, 55] that requires: every
read event in an inferred (partial) execution should read a value
written by the same write event as the original trace; any other
inferred (partial) execution violating it is unsound (i.e., not guar-
anteed to be feasible). That is, the model implicitly assumes that
any read event is followed by a branch; and reading a value from a
di%erent write event may produce execution divergence.

To make M2 workable in the above example, branches must be
explicitly considered. Actually, some constraint-based approaches
already consider branches [24, 28] where they require: a read event
should read the same value (that can be from di%erent events) as
that in the original execution, and any violation to it may produce
an infeasible trace. This results in a huge search space for large-
scale programs and constraint-solvers can be ine#cient on them
[24, 28]. Besides, it is di#cult to consider constraints (e.g., the logic
operations like "OR") for graph-based approaches like M2.

Suppose M2 is adapted to recognize branch events and check the
above order reversing problem. Then, there are four branches (right
before and right after each of the two events) to be analyzed. One
adaption for M2 is to infer races for two events through deciding
whether any two branches can be executed consecutively. This
requires an analysis on the four pairs of branches. However, the
two are inconsistent, i.e., whether the two branches can be executed
consecutively and whether the two events can form a race.

257

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, and Jens Palsberg

For example, Figure 2 shows a trace �훿 including branch events.
For the two events �푒12 and �푒6, the adapted M2 can decide that two
branches before them (i.e., �푒11 and∅�푆) cannot execute consecutively
due to the write-read order from �푒7 to �푒10; moreover, the two events
cannot form a race for the same reason. Now, suppose �훿 ′ is another
trace which is the same as �훿 except that we swap �푒6 and �푒7, namely
�푒 ′6 = �푤�푟 (�푥) and �푒 ′7 = �푤�푟 (�푝) in �훿 ′. Now, considering the two events
�푒12 and �푒 ′7. The adapted M2 can decide that the two branches before
them (i.e., �푒11 and ∅�푆) cannot execute consecutively due to write-
read order from �푒 ′6 to �푒10; but, this time, the two events indeed form
a race. We can see from these two cases that there is no consistent
conclusion on whether a race can be decided by deciding whether
the involved branches can be executed consecutively. We can also
draw the same conclusion on other cases (e.g., the branch before
one event and the branch after the second event).

Another limitation is that M2 is not designed for checking mul-
tiple events from two or more threads. Say that we want to check
whether the three events �푒6, �푒12, �푒18 in Figure 2 can execute in the
order: �푒6, �푒18, �푒12 (this pattern can be a concurrency null pointer
exception [8]) . If M2 is adapted to decide whether each two of them
can form a race, it will be challenging to prove the correctness be-
cause each isolated conclusion is drawn under di%erent conditions
(e.g., write-read orders).

3 OUR APPROACH
We $rst present a set of de$nitions and then present our algorithms
to check the feasibility of an event sequence. We use the trace �훿
and the sequence �휌 = 〈�푒6, �푒18, �푒12〉 in Figure 2 to illustrate them.

3.1 Feasible Sets
Open lock set. Given a set �푋 ⊂ E�휎 of a trace �휎 and an event
�푒 ∈ E

�푎�푐�푞
�푋 , if match�휎 (�푒) ∉ �푋 , we say �푒 an open lock event. We use

�푂�푝�푒�푛(�푋) to denote the set of all open lock events in�푋 . For example,
let �푋 = {�푒15−20} on trace �훿 ; we have �푂�푝�푒�푛(�푋) = {�푒15, �푒19}.

Producible set (PSet). Given an event set �푋 ⊂ E�휎 of a trace
�휎 and a set �푌 ⊆ �푋 , we de$ne a Producible set (or PSet for short)
PSet (�푋 |�푌) = �푃1 ∪ �푃2, where:

• �푃1 = �푋 \ E�푟�푑
�푌 , and

• �푃2 = {�푒 ′ | �푒 ′ = �푟�푑 (�푡, �푥,�푤 ′) ∧ �푟�푑 (�푡, �푥,�푤) ∈ E�푟�푑
�푌 ∧�푤 ′ ∈ E�푤�푟

�푋 [�푥]}

Intuitively, PSet (�푋 |�푌) have exactly the same set of events with
�푋 except that some of its read events have di%erent but valid write
events (note, in �푃2,�푤 ′ can be the same as that in �푒). In particular, if
�푌 = ∅, we have PSet (�푋 |�푌) = �푋 = �푃1 and �푃2 = ∅.

For the running example, let �푋 = {�푒1−17, �푒18 = �푟�푑 (�푝, �푒12)} and
�푌 = {�푒18 = �푟�푑 (�푝, �푒12)} in �훿 ; the set �푋1 = {�푒1−17, �푒 ′18 = �푟�푑 (�푝, �푒6)} is
a PSet of �푋 but the set �푋2 = {�푒1−17, �푒 ′18 = �푟�푑 (�푝, �푒4)} is not a PSet of
�푋 as the event �푒6 is in E�푤�푟

�푋 [�푝] = {�푒6, �푒12} but the event �푒4 is not.
The reason for introducing the set �푌 ⊆ �푋 is that we consider

branch events explicitly. Hence, there should be a cut over a set
of events such that (1) all read events in one part should read the
same values as that in the original trace but (2) some read events
in another part can read di%erent values as long as they do not
produce execution divergence. We will de$ne such a �푌 later.

To correlate events in the two sets �푋 and PSet (�푋 |�푌), we use
�푠 (�푒 ′), for any event �푒 ′ ∈ PSet (�푋 |�푌), to denote its original event �푒 in
�푋 . Notice that, for an event �푒 ∈ PSet (�푋 |�푌), if �푒 ∈ �푃1, then �푠 (�푒) = �푒 .

t1 t2 t3
1 acq(l2)
2 wr(x)
3 rel(l2)
4 wr(y)
5 acq(l2)
6 wr(p)
7 wr(x)
8 rel(l2)
9 acq(l1)
10 rd(x)
11 br
12 wr(p)
13 wr(y)
14 rel(l1)
15 acq(l1)
16 rd(x)
17 br
18 rd(p)
19 acq(l2)
20 rd(y)
21 rel(l2)
22 rel(l1)

Figure 2: A trace �훿 and a sequence of events �휌 = 〈�푒6, �푒18, �푒12〉 .

Given �푋 ⊂ E�휎 in a trace �휎 , let �푌 ⊆ �푋 and �푋 ′ = PSet (�푋 |�푌), we
say that �푋 ′ is a Feasible Set (or FSet for short) if it satis$es:

• Program order closed (or pre!x closed): ∀�푒 ′1 ∈ �푋 ′, ∀�푒2 ∈ �푋 ,
if �푒2 ≺�푃�푂 �푠 (�푒 ′1), then ∃�푒 ′2 ∈ �푋 ′ ∧ �푠 (�푒 ′2) = �푒2.

• Observation feasible: ∀�푒 ′ = �푟�푑 (�푡, �푥,�푤 ′) ∈ E�푟�푑
�푋 ′ , we have�푤

′ ∈
�푋 ′.

• Lock feasible: (1) ∀�푒 ∈ E�푟�푒�푙
�푋 ′ , we have match�휎 (�푒) ∈ �푋 ′ and

(2) ∀�푒�푎�푐�푞1 , �푒�푎�푐�푞2 ∈ E
�푎�푐�푞
�푋 ′ ∧ �푒�푎�푐�푞1 ≠ �푒�푎�푐�푞2 , if match�휎 (�푒�푎�푐�푞1) ∉

�푋 ′ ∧match�휎 (�푒�푎�푐�푞2) ∉ �푋 ′, then loc(�푒�푎�푐�푞1) ≠ loc(�푒�푎�푐�푞2).

The de$nition of FSet restricts a set to be feasible by consider-
ing program orders, observation orders, and lock orders. For the
running example, let �푋 = E�훿 and �푌 = {�푒4−8, �푒12−14, �푒18−22}, then
we have �푋 ′ = {�푒1−17, �푟�푑 (�푝, �푒6), �푒19, �푟�푑 (<, �푒4), �푒21−22} is a FSet of �푋 .

3.2 Feasible Traces
Given an execution trace �휎 , we say that an event sequence over E�휎 ,
denoted as �휎 ′, is a feasible trace if :

(1) �휎 ′ ∈ prefix (�휎), or,
(2) �휎 ′ = �휎 ′′ · �푒 where �휎 ′′ is feasible and �휎 ′ is w-r consistent, and

the following three conditions are satis$ed:

(a) let �푡 = tid (�푒), �푏�푟 = last�푏�푟 (�푒) ∈ E�휎′
�푡
, and �휎 ′′ = �휎 ′′′ ·�푏�푟 · �휃 ′′′,

then ∃�휃 such that �휎 ′′′
�푡 · �푏�푟 · �휃 ∈ prefix (�휎�푡) ∧ �휃 ′′′�푡 · �푒 * �휃 .

(b) �표�푝 (�푒) = �푎�푐�푞, then 5�푒 ′ ∈ �푂�푝�푒�푛(E�휎′′) ∧ loc(�푒 ′) = loc(�푒).
(c) �표�푝 (�푒) = �푟�푒�푙 , then ∃�푒 ′ ∈ �푂�푝�푒�푛(E�휎′′

�푡
) ∧ loc(�푒 ′) = loc(�푒).

The condition 2a requires that the appended event �푒 must be
exactly the next event of �푡 except, if it is a read event and there is
no branch event after it, it can read di%erent but valid values.

3.3 Feasible Partial Orders
A FSet can be linearized into an event sequence. However, such a
sequence is not guaranteed to be a feasible trace de$ned in the last
subsection. This section de$nes a set of necessary partial orders
such that, if a sequence is linearized from a FSet by reserving all
partial orders over the set, then it is a feasible trace.

Given a trace �휎 and a partial order �푃 over a FSet �푋 ′ = PSet (�푋 |�푌)
where �푋 ⊂ E�휎 and �푌 ⊆ �푋 , we say �푃 is a trace-respecting partial
order over�푋 ′ if: (1) �푃 re$nes the program order in�휎 when restricted

258

Sound and E!icient Concurrency Bug Prediction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

e1

r

a
w

e2

(a)

w'

w'

w
r

e1 e2

(b)

acq1

rel2rel1

acq2

e1 e2

(c)

૚࢒ࢗࢉࢇ

૚࢓ࢗࢉࢇ

૛࢓ࢗࢉࢇ

૛࢒ࢗࢉࢇ

br
br

Figure 3: An illustration on the observation closure.

to events in �푋 ′, (2) for every read event �푟 ∈ �푋 ′, if �푟 ∈ �푋 \�푌 we have
obs�푋 ′ (�푟) ≺�푃 �푟 , and (3) for every lock acquire event �푒�푎�푐�푞 ∈ E�푋 ′ such
that match�휎 (�푒�푎�푐�푞) ∉ �푋 ′ and for every lock release event �푒�푟�푒�푙 ∈ �푋 ′,
if �푒�푟�푒�푙 ∝ �푒�푎�푐�푞 , then �푒�푟�푒�푙 ≺�푃 �푒�푎�푐�푞 . We write that �푃 respects �푋 ′.

Trace-closed Partial Orders.Given a trace �휎 and a set of events
�푋 ⊂ E�휎 , let �푌 = {�푒 ∈ �푋 |next�푏�푟 (�푒) ∉ �푋 } and �푃 be a trace-respecting
partial order over a feasible set of events �푋 ′ = PSet (�푋 |�푌). We say
that �푃 is trace-closed if it satis$es the following:

• Observation-closed. (1) For every read event �푟 = �푟�푑 (�푡, �푥,�푤 ′) ∈
E�푟�푑
�푋 ′ such that �푠 (�푟) ∈ �푌 , ∃�푤 ′ ∈ E�푤�푟

�푋 ′ [loc(�푟)] ∧ �푤 ′ ≺�푃 �푟 . (2)

For every read event �푟 ∈ E�푟�푑
�푋 ′ such that �푠 (�푟) ∉ �푌 , let �푤 =

obs�푋 ′ (�푟) being con"icting with �푟 . For every write event�푤 ′ ∈
E�푤�푟
�푋 ′ [loc(�푟)] \ {�푤}, (a) if�푤 ′ ≺�푃 �푟 then�푤 ′ ≺�푃 �푤 ; (b) if�푤 ≺�푃 �푤 ′

then �푟 ≺�푃 �푤 ′.
• Lock-closed. For events ∀�푒�푟�푒�푙1 , �푒�푟�푒�푙2 ∈ E�푟�푒�푙

�푋 ′ and their matched
acquire events �푒�푎�푐�푞1 =match�휎 (�푒�푟�푒�푙1) and �푒�푎�푐�푞2 =match�휎 (�푒�푟�푒�푙2),
if �푒�푟�푒�푙1 ∝ �푒�푎�푐�푞2 , then �푒�푟�푒�푙1 ≺�푃 �푒�푎�푐�푞2 ∨ �푒�푟�푒�푙2 ≺�푃 �푒�푎�푐�푞1 .

In the de$nition, if there is no branch event after the read event
�푟 , the observation-closed property requires that �푟 can happen after
any write event. In other case, it requires that any write should
occur either before or after both events from a pair in observation
order 〈obs�푋 ′ (�푟), �푟 〉 on the same location, as shown in Figure 3(a)
and (b). This is di%erent from that of M2 that applies same rule to all
read events. Figure 3(a) illustrates that any write�푤 ′ should occur
before�푤 = obs�푋 ′ (�푟) as it already occurs before �푟 (due to the order
〈�푒1, �푒2〉). Figure 3(b) illustrates the second case. The lock-closed
property requires two con"icting critical sections not overlapping.
The order of the two sections can be obtained when the order of
two events in them (〈�푒1, �푒2〉) is known, as illustrated in Figure 3(c).
Then, we can infer that �푒�푟�푒�푙1 occurs before �푒�푎�푐�푞2 . Other cases (�푒1
occurs after �푒�푟�푒�푙1 , �푒2 occurs before �푒�푎�푐�푞2) have similar results.

Given a feasible set of events �푋 ⊂ E�휎 from a trace �휎 , its FSet �푋 ′

may have zero to multiple trace-closed partial orders. If it has one,
we call the smallest trace-closed partial order �푃 as the closure of
�푋 ′ and also say that �푃 is a feasible partial order over �푋 ′. There
exists at most one smallest trace-closed partial order, which can be
proved by contradiction [43].

3.4 The SeqCheck Algorithm
This section presents the detailed algorithm of SeqCheck and also
compare it with M2. SeqCheck decides the feasibility of an event
sequence that encodes a potential concurrency bug. We allow two
kinds of ordering to be speci$ed by an input: (1) the orders be-
tween two events in a given sequence and (2) whether an event not
from the sequence can occur in between any two events from the
sequence. The second is referred to as Adjacency set.

Formally, given a trace �휎 , an event sequence �휌 = 〈�푒1, �푒2, ...�푒�푛〉
over a PSet, and a set of pairsA = {(�푒�푖 , �푒 �푗) | �푒�푖 , �푒 �푗 ∈ E�휌 }, SeqCheck

Algorithm 1: ComputePotentialFSet(�휎, �휌)

1 �퐹 ← ∅ /* To hold a FSet candidate. */
2 �푀 ← ∅ /* To map branch events to write events. */
3 �퐿 ← ∅ /* To hold a set of open locks. */
4 �푄 ← ∅ /* A temp queue to keep intermediate events. */
5 foreach �푒 ∈ E�휌 do �푄 .�푝�푢�푠ℎ (�푒)
6 for �푖 ← |E�휌 | to 1 do
7 �퐿′ ← �푂�푝�푒�푛 ({�푒 ∈ E�휎 | �푒 7�푃�푂 �휌 [�푖] })
8 foreach �푒 �푗 ∈ �퐿′ | �퐶�표�푛�푓 �푆�푒�푡 (�퐿, �푒 �푗) ∉ {∅, �푒 �푗 } do
9 �푄 .�푝�푢�푠ℎ (match�휎 (�푒 �푗))

10 �퐿′ ← �퐿′\{�푒 �푗 }

11 �퐿 ← �퐿 ∪ �퐿′

12 while ¬�푄 .�푒�푚�푝�푡D () do
13 �퐵 ← ∅
14 �푒�푐�푢�푟 ← �푄 .�푝�표�푝 ()
15 for �푒 ∈ E�휎 \ �퐹 | �푒 7�푃�푂 �푒�푐�푢�푟 do
16 if �표�푝 (�푒) = �푏�푟 then �퐵 ← �퐵 ∪ {�푒 }
17 else if �표�푝 (�푒) = �푟�푑 ∧ next�푏�푟 (�푒) ≠ ∅ then
18 �푒�푏 ← next�푏�푟 (�푒)
19 �푀 [�푒�푏] .�푖�푛�푠�푒�푟�푡 (obs�휎 (�푒))

20 else if �표�푝 (�푒) = �푎�푐�푞 then
21 Let �푒′ ∈ E�휌 | ∀�푒′′ ∈ E�휌 ∧ �푒′′ 7�푃�푂 �푒′ ∧ tid (�푒) =

tid (�푒′) ∧ tid (�푒) = tid (�푒′′)
22 if �푒′ = ∅ then �푄 .�푝�푢�푠ℎ (match�휎 (�푒))
23 else if �푒′ ≺�푃�푂 �푒 then
24 �푥 ← the index of �푒′ in �휌
25 foreach �푖 ← �푥 − 1 to 1 do
26 �퐿′ ← �푂�푝�푒�푛 ({�푒 �푗 ∈ E�휎 | �푒 �푗 7�푃�푂 �휌 [�푖] })
27 �푒�푐 ← �퐶�표�푛�푓 �푆�푒�푡 (�퐿′, �푒)
28 �푄 .�푝�푢�푠ℎ (match�휎 (�푒�푐))

29 �푄 .�푝�푢�푠ℎ (match�휎 (�푒))

30 �퐹 ← �퐹 ∪ {�푒 }

31 foreach �푒�푖 ∈ �퐵 do
32 �푄 .�푝�푢�푠ℎ (�푀 [�푒�푖]) /* Push all events mapped from �푒�푖 . */
33 Remove key �푒�푖 from�푀

34 foreach �푒�푟 ∈ E�푟�푑
�퐹 | next�푏�푟 (�푒�푟) ∉ �퐹 do

35 if no write event can be observed by �푒�푟 then
36 �푒�푤 ← the !rst con"icting event of �푒�푟 in thread

tid (obs�휎 (�푒�푟))
37 �푄 .�푝�푢�푠ℎ (�푒�푤)

38 return �퐹

answers whether there is a feasible trace �휎 ′ that satis!es �휌 and A,
that is: (1) for 1 ≤ �푖 < �푗 ≤ �푛, we have �푒�푖 ≺�휎′ �푒 �푗 and (2) for a pair
(�푒1, �푒2) ∈ A, we have 5�푒 ∈ E�휎′ such that �푒1 ≺�휎′ �푒 ∧ �푒 ≺�휎′ �푒2.

Overall, SeqCheck computes a set of events as a candidate of
FSet (Algorithm 1) and then checks whether there is a set of feasible
partial orders over the candidate (Algorithms 2, 3, and 4); if so, the
events can be reordered to obey the given sequence of events.

(1) Generate a Candidate FSet. Algorithm 1 computes a set
of events �퐹 as a candidate FSet. It starts from an initial set of all
events in �휌 and iteratively includes additional events according to
the three requirements in the de!nition of FSet. In the iteration, �푀
maps a branch event to a set of write events. That is, the key of
the map is a branch event and the value is a set of write events. It
indicates that any read event before a branch event (in program
order) read a value from one of the mapped write events. Hence, if
a branch is included, all mapped write events will be included.

Additionally, for any open lock event �푒 not from threads in �휌 ,
the algorithm includes the release event match�휎 (�푒) and all other
events before it by program order.

259

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, and Jens Palsberg

Algorithm 2: ComputeLockOrders(�휎, �휌, �퐹)

1 �퐶�퐿�푂 ← ∅ /* To hold a initial set of lock semantic orders. */
2 �퐿 ← ∅ /* To keep a set of intermediate open lock acquisitions. */
3 foreach �푖 ← |E�휌 | to 1 do
4 �퐿′ ← �푂�푝�푒�푛 ({�푒 �푗 ∈ E�휎 | �푒 �푗 7�푃�푂 �휌 [�푖] })
5 �푒�푐�푢�푟 ← next (�휌 [�푖])
6 while �푒�푐�푢�푟 ∈ �퐹 ∧ �퐿′ ≠ ∅ do
7 if �표�푝 (�푒�푐�푢�푟) = �푟�푒�푙 ∧match�휎 (�푒�푐�푢�푟) 7�푃�푂 �휌 [�푖] then
8 �푒�푎 ← match�휎 (�푒�푐�푢�푟)
9 �푒�푐 ← �퐶�표�푛�푓 �푆�푒�푡 (�퐿, �푒�푎)

10 if �푒�푐 ≠ ∅ then
11 �퐶�퐿�푂 ← �퐶�퐿�푂 ∪ { 〈�푒�푐�푢�푟 , �푒�푐 〉 }
12 �퐿′ ← �퐿′ \ {�푒�푎 }

13 else if �표�푝 (�푒�푐�푢�푟) = �푎�푐�푞 ∧�퐶�표�푛�푓 �푆�푒�푡 (�퐿, �푒�푐�푢�푟) = ∅ then
14 �퐿′ ← �퐿′ ∪ {�푒�푐�푢�푟 }

15 �푒�푐�푢�푟 ← next (�푒�푐�푢�푟)

16 �퐿 ← �퐿 ∪ �퐿′

17 �퐿 ← �푂�푝�푒�푛 (�퐹)
18 foreach �푒�푐 ∈ E�푟�푒�푙

�퐹 do
19 �푒�푎 = �퐶�표�푛�푓 �푆�푒�푡 (�퐿, �푒�푐)
20 �퐶�퐿�푂 ← �퐶�퐿�푂 ∪ { 〈�푒�푐 , �푒�푎 〉 }
21 return�퐶�퐿�푂

Table 1: State changes of Algorithm 1 on trace �훿 .

Line 5 �푄 = {�푒6, �푒18, �푒12 }, �퐿= {}, �퐹 = {},�푀 = {}
Line 6 – 11 �푄 = {�푒6, �푒18, �푒12, �푒22 }, �퐿= {�푒9, �푒5 }, �퐹 = {},�푀 = {}
Line 12 – 37 �푄 = {}, �퐿= {}, �퐹 = {�푒1−12, �푒15−22 },�푀 = {(∅�퐸 , {�푒12−13 }) }

Note, in our de!nition of FSet, there are two parts: �푋 and �푌 . The
result �퐹 is actually the �푋 ′ in de!nition; and for any remaining key
�푒�푏 (that is not removed in line 33), all read events in between �푒�푏
and its previous branch of the same threads belong to �푌 .

Compared to M2 that has a RCone algorithm to !nd a set of
potential events starting from two given events, our algorithm
focuses on a sequence of events. This brings the following major
di#erences: (1) we include all events in �휌 (line 5) to be part of �퐹
whereas M2 excludes the two events of a potential race; (2) we
process all events in �휌 in the reverse order as that are expected to
occur (line 6) whereas M2 can start from any of two events; (3) we
consider read events in two categories. For read which is followed
by branch event in �퐹 , we include the corresponding write event.
For the other case, we heuristically include some write, so that the
read event have at least one write to observe. However, M2 treats
read events the same and includes all write events if the read events
are included. The three points distinguish our algorithm from that
of M2. They allow us to model how branch events can a#ect trace
feasibility and how an event sequence can be considered.

On the running example, Algorithm 1 runs as follows and we
show how �푄 , �퐿, �퐹 , and �푀 changes in Table 1. Recall that each
thread in �훿 starts and ends with a branch. The ∅�퐸 in Table 1 is the
end branch in thread �푡2. Line 5 initializes �푄 to include all events
in �휌 ; next, the loop at line 6 appends �푒9 into �퐿 in !rst iteration.
When processing �푒18 in the second iteration, �푒9 ∈ �퐿 is a con"icting
event of �푒15 and match�훿 (�푒15) = �푒22 is appended into �푄 ; in the third
iteration, �푒5 is appended into �퐿 = {�푒9, �푒5}. The iteration at line 12
pops all events in �푄 as well as other events that occurred before
them in program order; they are included into �퐹 . Finally, we have
�퐹 = {�푒1−12, �푒15−22}.

Table 2: State changes of Algorithm 2 on trace �훿 .

�퐶�푃�푂 = {· · · },�퐶�푂�푂 = { 〈�푒7, �푒10 〉, 〈�푒7, �푒16 〉 },
�퐶�푆�푂 = { 〈�푒6, �푒18 〉, 〈�푒18, �푒12 〉 }

Line 3 – 16 �퐶�퐿�푂 = { 〈�푒22, �푒9 〉, 〈�푒8, �푒19 〉 }, �퐿 = {�푒9, �푒19 }
Line 17 – 20 �퐶�퐿�푂 = { 〈�푒22, �푒9 〉, 〈�푒8, �푒19 〉 }, �퐿 = {�푒9 }

(2) Initialize a Set of Partial Orders. SeqCheck next checks
whether the set �퐹 can be a FSet. It !rst constructs three sets of partial
orders on �퐹 according to the de!nition of the trace-respecting
partial orders: (1) program order �퐶�푃�푂 , (2) observation order �퐶�푂�푂 ,
(3) lock semantic order �퐶�퐿�푂 . The program order �퐶�푃�푂 can be easily
constructed according to the occurrence order of events from the
same threads in �퐹 . The observation order �퐶�푂�푂 is de!ned to be
{〈obs�퐹 (�푒), �푒〉 |∀�푒 ∈ E�푟�푑

�퐹 , next�푏�푟 (�푒) ∈ �퐹 }.
The lock order �퐶�퐿�푂 is constructed by Algorithm 2. Unlike M2,

the lock orders consist of (1) the intra-thread lock orders among
(open) lock events for events in �휌 (lines of the !rst for-loop at line
3) and (2) the lock orders between the (open) lock event for the
events in �휌 and for all others in �퐹 (the for-loop at line 18). The intra
lock orders must be constructed by considering the sequence order.

Finally, SeqCheck includes the set of input orders �퐶�푆�푂 in �휌 ,
where �퐶�푆�푂 = {〈�푒�푖 , �푒�푖+1〉 |∀�푖 ∈ {1, · · · , |E�휌 | − 1}}.

Table 2 shows the four sets of orders (in its !rst row) given the
set �퐹 . Note, although �퐹 includes the event �푒20 = �푟�푑 (<), there is no
observation order from obs�훿 (�푒20) (i.e., �푒13) to it; this is because, by
our de!nition, we have next�푏�푟 (�푒20) ∉ �퐹 . The second row in Table 2
shows the state changes of Algorithm 2. For the example. By the
algorithm, during its second iteration (the for loop at line 3), as the
event �푒15 and its matching event �푒22 are both included in �퐹 , the
algorithm inserts a intra-thread lock order 〈�푒22, �푒9〉. In the third
iteration, the intra-thread lock order 〈�푒8, �푒19〉 is included due to that
�푒18 is happened after �푒6 in �휌 and a con"ict pair on lock �푙2 exists.

(3) Compute a Closure. Given the four sets of partial orders,
SeqCheck computes a closure according to the de!nition of the
trace-closed partial order as shown in Algorithm 3. Before intro-
ducing the algorithm, we !rst introduce a graph data structure [43].
All partial orders will be represented as edges on such a graph.

Let �퐺 be a directed acyclic graph and �푋 be a set of events. The
vertexes of �퐺 consist of all events E�푋 and the edges are de!ned to
be a subset of E�푋 × E�푋 . We de!ne a set of operations over �퐺 :

• �퐺 .�푖�푛�푠�푒�푟�푡 (�푒1, �푒2) inserts an edge 〈�푒1, �푒2〉 into �퐺 .
• �퐺 .�푟�푒�푎�푐ℎ(�푒1, �푒2) returns True if there is a path from �푒1 to �푒2.
• �퐺 .�푠�푢�푐�푐 (�푒, �푡) returns the earliest successor �푒 ′ of �푒 in thread �푡
where �퐺 .�푟�푒�푎�푐ℎ(�푒, �푒 ′) returns True.

• �퐺 .�푝�푟�푒�푑 (�푒, �푡) returns the latest predecessor �푒 ′ of �푒 in thread �푡
where �퐺 .�푟�푒�푎�푐ℎ(�푒 ′, �푒) returns True.

These four operations over�퐺 can be done with an�푂 (�푛 × �푙�표�푔(�푛))
algorithm through Fenwick Tree [18], where �푛 = |E�푋 |.

Given a trace �휎 , a graph �퐺 , an initial set of orders �퐶 , and a adja-
cency set A, Algorithm 3 iteratively examines each partial order
in �퐶 , inserts it into �퐺 , and closes it according the de!nition of
trace-closed partial orders. These are shown as functions InsertAnd-
Close, ObsClosure, and LockClosure. For observation-closed rule,
Algorithm 3 only close the rule (2). Rule (1) will be consider in
Algorithm 4. Besides, it further closes any adjacency orders (lines
22–26). That is, for any pair of events (�푒1, �푒2) ∈ A, if an event �푒

260

Sound and E!icient Concurrency Bug Prediction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Algorithm 3: CloseOrders(�휎,�퐺,�퐶,A)

1 Let �퐹 ← �퐺 .�퐹
2 foreach �푥 = 〈�푒1, �푒2 〉 ∈ �퐶 do �푄�푐 .�푝�푢�푠ℎ (�푥)
3 while ¬�푄�푐 .�푒�푚�푝�푡D () do
4 〈�푒�푥 , �푒6 〉 ← �푄�푐 .�푝�표�푝 ()
5 if �퐺 .�푟�푒�푎�푐ℎ (�푒6, �푒�푥) then return False
6 else if ¬�퐺 .�푟�푒�푎�푐ℎ (�푒�푥 , �푒6) then InsertAndClose(�푒�푥 , �푒6)

7 return True
8 Function ObsClosure(�푒1, �푒2):
9 foreach �푥 ∈ {loc (�푒) | �푒 ∈ E�푟�푑

�퐹 ∪ E�푤�푟
�퐹 } do

10 �푒�푤 ← last�푤�푟
�푥 (�푒1)

11 �푒�푟 ← next�푟�푑�푥 (�푒2)
12 if �푒�푤 ≠ obs�휎 (�푒�푟) ∧ next�푏�푟 (�푒�푟) ∈ �퐹 then
13 �푄�푐 .�푝�푢�푠ℎ (〈�푒�푤 , obs�휎 (�푒�푟) 〉)

14 �푒′�푤 ← next�푤�푟
�푥 (�푒2)

15 foreach �푒�푖 ∈ E�푟�푑
�퐹 | obs�휎 (�푒�푖) = �푒�푤 ∧ next�푏�푟 (�푒�푖) ∈ �퐹 do

16 �푄�푐 .�푝�푢�푠ℎ (〈�푒�푖 , �푒′�푤 〉)

17 Function LockClosure(�푒1, �푒2):
18 foreach �푙 ∈ {loc (�푒) | �푒 ∈ E

�푎�푐�푞
�퐹 ∪ E�푟�푒�푙

�퐹 } do
19 �푒�푎�푐�푞 ← last

�푎�푐�푞
�푙

(�푒1)

20 �푒�푟�푒�푙 ← next�푟�푒�푙
�푙

(�푒2)
21 �푄�푐 .�푝�푢�푠ℎ (〈match�휎 (�푒�푎�푐�푞),match�휎 (�푒�푟�푒�푙) 〉)

22 Function AdjacencyClosure(A):
23 foreach (�푒1, �푒2) ∈ A do
24 foreach �푡 ← 1�푡�표T (�휎) do
25 �푄�푐 .�푝�푢�푠ℎ (〈�퐺 .�푝�푟�푒�푑 (�푒1, �푡), �푒2 〉),�푄�푐 .�푝�푢�푠ℎ (〈�푒1,�퐺 .�푠�푢�푐�푐 (�푒2, �푡) 〉)
26 �푄�푐 .�푝�푢�푠ℎ (〈�퐺 .�푝�푟�푒�푑 (�푒2, �푡), �푒1 〉),�푄�푐 .�푝�푢�푠ℎ (〈�푒2,�퐺 .�푠�푢�푐�푐 (�푒1, �푡) 〉)

27 Function InsertAndClose(�푒1, �푒2):
28 �퐺 .�푖�푛�푠�푒�푟�푡 (�푒1, �푒2)
29 ObsClosure(�푒1, �푒2)
30 LockClosure(�푒1, �푒2)
31 for �푖, �푗 ← 1 to T (�휎) | �푖 ≠ tid (�푒1) ∨ �푗 ≠ tid (�푒2) do
32 (�푒�푝�푟�푒�푑 , �푒�푠�푢�푐�푐) ← (�퐺 .�푝�푟�푒�푑 (�푒1, �푖),�퐺 .�푠�푢�푐�푐 (�푒2, �푗))
33 �퐺 .�푖�푛�푠�푒�푟�푡 (�푒�푝�푟�푒�푑 , �푒�푠�푢�푐�푐)
34 ObsClosure(�푒�푝�푟�푒�푑 , �푒�푠�푢�푐�푐)
35 LockClosure(�푒�푝�푟�푒�푑 , �푒�푠�푢�푐�푐)

36 AdjacencyClosure(A)

occurs before or after one of the two event, it also occurs before or
after another one. Algorithm 3 fails whenever it $nds a cycle.

For the running example, the given initial set of orders are shown
in Figure 4(a) except the two from events of �푡2 (where we do not
explicit show the program orders). The two orders are produced
by Algorithm 3. Considering that obs�훿 (�푒16) is �푒7 and the event
�푒2 occurred before �푒16 by program order, Algorithm 3 reorders �푒2
before obs�훿 (�푒16), resulting an order 〈�푒2, �푒7〉. When computing the
lock closure of this order, an order 〈�푒3, �푒5〉 is inserted.

(4) The Complete SeqCheck Algorithm. Algorithm 4 de-
scribes the complete SeqCheck. Given a trace �휎 , an event sequence
�휌 , and an adjacency set A, it drives Algorithms 1, 2, and 3 to $nd a
closure. The order speci$ed by the input sequence of events �휌 is
denoted as �퐶�푆�푂 . Then, Algorithm 4 check if the read event (which
are not followed by branch event in �퐹) has a write event to observe.
If not, it heuristically let �푒�푟 observe the $rst con"icting write in
thread tid (obs�휎 (�푒�푟)) and calculates the closure. These operations
are according to the observation-closed rule (2). If it succeeds, it
additionally considers all other con"icting but unordered pairs of
events (line 9). Such pairs are inserted into �퐺 according to their
occurrence orders in �휎 . After SeqCheck $nishes, if there is a cycle,
it returns ∅; otherwise, it returns a linearization of the graph �퐺 .

t1 t2 t3
1 acq(l2)
2 wr(x)
3 rel(l2)
4 wr(y)
5 acq(l2)
6 wr(p)
7 wr(x)
8 rel(l2)
9 acq(l1)
10 rd(x)
11 br
12 rd(p)
13 acq(l2)
14 rd(y)
15 rel(l2)
16 rel(l1)
17 acq(l1)
18 rd(x)
19 br
20 wr(p)

t1 t2 t3
acq(l2)
wr(x)
rel(l2)

acq(l1) wr(y)
rd(x) acq(l2)
br wr(p)
wr(p) wr(x)
wr(y) acq(l1) rel(l2)
rel(l1) rd(x)

br
rd(p)
acq(l2)
rd(y)
rel(l2)
rel(l1)

(a) (b)
Figure 4: The closure for trace �훿 in (a) and one of its corre-
sponding execution in (b).

For the running example, SeqCheck produces a set of orders as
shown in Figure 4(a). As there is no cycle found and no additional
event to be ordered, these orders indicate that the set �퐹 produced
by Algorithm 2 is a FSet. And it decides that the input sequence �휌
is feasible and Figure 4(b) shows a trace that satis$es �휌 .

In summary, as re"ected in Algorithms 1, 2, and 3, M2 can only
handle adjacency relations, while SeqCheck can handle both ad-
jacency relations and order relations. That is, M2 can only detect
that events happen consecutively, while SeqCheck can detect that
events happen in a particular order, as well as consecutively. And
SeqCheck has a novel de$nition of feasible sets.

3.5 Algorithm Analyses
Algorithm Time Complexity. SeqCheck consists of four algo-
rithms. Let �푛 be the size of trace �휎 , the total number of events
in �휎 . Algorithms 1 has two major loops. In the $rst major loop,
the �푂�푝�푒�푛() map can be initialized in �푂 (�푛) by scanning all events
once. The function�퐶�표�푛�푓 �푆�푒�푡 (�퐿, �푒) can be implemented in�푂 (�푙�표�푔(�푛)).
The second major loop (the�푤ℎ�푖�푙�푒 part) pushes each event at most
once into �푄 , and all the operations in loop can be implemented in
�푂 (�푙�표�푔(�푛)). So, both parts have an �푂 (�푛 × �푙�표�푔(�푛)) time complexity.

In Algorithm 2, each for/while-loop processes at most �푛 events.
For each event, there is at most a call to �퐶�표�푛�푓 �푆�푒�푡 (�퐿, �푒). That is
�푂 (�푛 × �푙�표�푔(�푛)) in time complexity. Algorithm 3 computes a closure
for the edges. There are at most �푛2 edges and each is inserted into�퐺
once. That is (�푛2 × �푙�표�푔(�푛)) in time complexity. Algorithm 4 has two
loop, processing at most �푛2 event pairs. For each pair, it inserts at
most one edge. Hence, SeqCheck has (�푛2×�푙�표�푔(�푛)) time complexity.

Next, we give an analysis on the soundness and the completeness
of SeqCheck.

Theorem 1. Soundness. Given a trace �휎 , an event sequence �휌 ,
and an adjacency setA over E�휌 , if Algorithm 4 returns a linearization
�휎 ′, then �휎 ′ is a feasible trace that satis!es �휌 and A.

Proof Sketch. We show that �휎 ′ is a feasible trace by induction.
Let �휎 ′′ = �휎 ′′′ · �푒 ∈ prefix (�휎 ′), such that �휎 ′′′ is feasible (i.e., ∅ in

the base step). When appending �푒 to �휎 ′′′, we show below that no
condition of the de$nition of feasible traces is violated.

261

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, and Jens Palsberg

Algorithm 4: �푆�푒�푞�퐶ℎ�푒�푐�푘(�휎, �휌,A)

1 �퐹 ← �퐶�표�푚�푝�푢�푡�푒�푃�표�푡�푒�푛�푡�푖�푎�푙�퐹�푆�푒�푡 (�휎, �휌)
2 �퐶 ← �퐶�푃�푂 ∪�퐶�푂�푂 ∪�퐶�퐿�푂 ∪�퐶�푆�푂 /*�퐶�푆�푂 is a set of orders over �휌 . */
3 �퐺 ← (�퐹 ,∅)
4 if ¬�퐶�푙�표�푠�푒�푂�푟�푑�푒�푟�푠 (�휎,�퐺,�퐶, A) then return ∅
5 foreach �푒�푟 ∈ E�푟�푑

�퐹 | next�푏�푟 (�푒�푟) ∉ �퐹 do
6 if 5�푒�푤 ∈ E�푤�푟

�퐹 [loc (�푒�푟)] ∧�퐺 .�푟�푒�푎�푐ℎ (�푒�푤 , �푒�푟) then
7 �푒′�푤 ← the !rst con"icting event of �푒�푟 in thread

tid (obs�휎 (�푒�푟))
8 if ¬�퐼�푛�푠�푒�푟�푡�퐴�푛�푑�퐶�푙�표�푠�푒 (�푒′�푤 , �푒�푟) then return ∅

9 foreach unordered pair 〈�푒1, �푒2 〉 ∈ �퐺 | �푒1 ∝ �푒2 ∧ �푒1 ≺�휎 �푒2 do
10 if ¬�퐼�푛�푠�푒�푟�푡�퐴�푛�푑�퐶�푙�표�푠�푒 (�푒1, �푒2) then return ∅

11 �휎′ ← a topological order of�퐺 /* A linearization of�퐺 */
12 return �휎′

First, if �푒 is a read event, Algorithm 4 initially sets an order
〈obs�휎′ (�푒), �푒〉, resulting in an edge from obs�휎′ (�푒) to �푒 in�퐺 ; Algorithm
3 ensures that any other con"icting write events are ordered either
before obs�휎′ (�푒) or after �푒 . Therefore, no other con"icting write
event appears in between obs�휎′ (�푒) and �푒 in �휎 ′. Hence, the sequence
�휎 ′′′ · �푒 is w-r consistent.

Second, if �푒 is a lock acquire event, Algorithm 1 ensures that
there are no two open lock events on loc(�푒); Algorithm 2, 3 ensures
that all other con"icting lock release or acquire events are before
�푒 or after match�휎 (�푒). If �푒 is not closed, they before �푒 . The similar
analysis applies when �푒 is a lock release event. Hence, the conditions
2b and 2c in de!nition of feasible trace are not violated.

Third, Algorithm 4 keeps program orders; according to Algo-
rithm 1, when an event �푒 ′ is included, all other events occur before
�푒 ′ by program order are included. Hence, we have E�휎′′

�푡
⊂ E�휎�푡 and,

the sequence �휎 ′′
�푡 = �휎 ′′′

�푡 · �푒 ∈ prefix (�휎�푡). And we can rewrite �휎 ′′
�푡 to

be �휎 ′′′
�푡 · �푏�푟 · �휃 (form in de!nition) that is also in prefix (�휎�푡). Thus,

the condition 2a is not violated.
Inductively, we show that �휎 ′ is a feasible trace when we have

|�휎 ′′ | = |�휎 ′ |.
Finally, as Algorithm 4 includes the order by �휌 and Algorithm 3

closes adjacency orders according to A, �휎 ′ satis!es �휌 and A. !

Theorem 2. Completeness. Given a trace �휎 of two threads, an
event sequence �휌 , and an adjacency setA over E�휌 , if there is a feasible
trace �휎 ′ that satis!es �휌 andA , Algorithm 4 returns an event sequence.

Proof Sketch. When there are two threads, the initial sets
�퐶�푃�푂 ∪�퐶�푂�푂 ∪�퐶�퐿�푂 ∪�퐶�푆�푂 , their closure by Algorithm 3, the closure
on A are necessary orders to witness �휌 .

If no cycle forms after Algorithm 4 in line 4, SeqCheck will
check the read events which are not followed by branch event one
by one. Because there are only two threads in �휎 , a read event can
only observe the write event (1) before it in program order, or (2)
in the other threads. When the line 8 need to be executed, it must
meet the second case. In other words, there must be no relative
write event before it in the same thread. So, it’s a de!nite case to
add the order, from the !rst con"icting write event of the other
thread to the read event. It’s a necessary order.

Then, SeqCheck checks others unordered pairs. In this proce-
dure, only some critical sections are unordered. This procedure will
not form cycle, as any unordered critical section indicates that there

Algorithm 5: DetectConcurrencyBugs(�휎)

/* Detect data races */
1 foreach pair of con"icting memory events (�푒1, �푒2) do
2 �휌 ← 〈last (�푒1), �푒2, �푒1, next (�푒2)) 〉
3 A ← {(�푒1, �푒2) }
4 if �푆�푒�푞�퐶ℎ�푒�푐�푘 (�휎, �휌, A) ≠ ∅ then
5 print "A data race detected"

/* Detect deadlocks of two threads */
6 foreach potential deadlock (〈�푎�푐�푞1

�푙
,�푎�푐�푞1�푚 〉, 〈�푎�푐�푞2�푚,�푎�푐�푞2

�푙
〉) do

7 �휌1 ← 〈�푎�푐�푞2�푚,�푎�푐�푞1�푚,�푎�푐�푞2
�푙
〉

8 �휌2 ← 〈�푎�푐�푞1
�푙
,�푎�푐�푞2

�푙
,�푎�푐�푞1�푚 〉

9 if �푆�푒�푞�퐶ℎ�푒�푐�푘 (�휎, �휌1,∅) ≠ ∅ ∨ �푆�푒�푞�퐶ℎ�푒�푐�푘 (�휎, �휌2,∅) ≠ ∅ then
10 print "A deadlock detected"

/* Detect atomicity violations of the pattern “w – w – r" */
11 foreach potential atomicity violation: (�푤1,�푤2, �푟) do
12 �휌 ← 〈�푤2,�푤1, �푟 〉
13 if �푆�푒�푞�퐶ℎ�푒�푐�푘 (�휎, �휌,∅) ≠ ∅ then
14 print "An atomicity violation detected"

are no con"icting event pair to dominate two section. (Actually,
ordering them is useful for linearization.)

Finally, Algorithm 4 returns a linearization of �퐺 , i.e., an event
sequence. !

Note, if there are additional threads, there may have con"icting
critical sections that will be included by Algorithm 1. Orders among
these events may not be necessary to witness a sequence and a
cycle may be introduced.

4 IMPROVE PERFORMANCE
SeqCheck can su#er from an overhead that stems from handling
a large number of orders and event pairs in searching for any
unordered events (that are part of potential bugs). M2 adopts an
optimization to only consider pairs of con"icting events that are
neither protected by common locks nor ordered by trace-respecting
partial orders. The optimization is in a pre-process phase under an
�푂 (�푛2 × �푙�표�푔(�푛)) (where �푛 is the number of events) algorithm.

We also include a pre-process phase. However, we construct a
graph �퐺 ′ to have an initial set of program orders and observation
orders and then to compute a transitive closure (with considering
branches) on�퐺 ′. Then from �퐺 ′, we can easily identify pairs of al-
ready ordered events; and the remaining pairs are undecided. The
algorithm to construct the graph is�푂 (�푘2 ×�푛 × �푙�표�푔(�푛)) in time com-
plexity, where �푘 and �푛 are the number of threads and the number of
events, respectively. Moreover, pre-storing the observation orders
and performing an de-duplication are also an acceleration.

5 DETECT GENERAL CONCURRENCY BUGS
This section presents Algorithm 5 that drives Algorithm 4 to detect
three types of concurrency bugs by encoding them into sequences
of events. Other types can be implemented similarly.

Detect Races. A race occurs when two con"icting events oc-
cur consecutively. Our work decides sequence of events and can-
not be directly used to detect races. Algorithm 5 introduces two
more events last�휎 (�푒1) and next�휎 (�푒2). (Note, these two events can
be dummy ones as long as they are right before and right after
�푒1/2 by program order.) Besides, there is an adjacency ordering

262

Sound and E!icient Concurrency Bug Prediction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

e1
Last(e1)

e2
Next(e2)

w1 w2

r

૚࢒ࢗࢉࢇ

૚࢓ࢗࢉࢇ

૛࢓ࢗࢉࢇ

૛࢒ࢗࢉࢇ

(c)(b)(a)

w1 w2

r

Figure 5: An illustration of part of sequence for three con-
currency bugs.

requirement: no other event should be between �푒1 and �푒2. It then
produces a target sequence �휌 . Obviously, the two events form a
race i% �푆�푒�푞�퐶ℎ�푒�푐�푘 (�휎, �휌,A) returns an event sequence.

Detect Deadlocks. Unlike data race, any deadlock occurs by
following a sequence of events. Hence, we only need to check
whether a feasible sequence (over lock acquisition events only)
exists. For deadlocks of two threads, Algorithm 5 generates all two
sequences where �휌1 is shown in Figure 5(b). Obviously, the four
events form a deadlock i% either of the call to �푆�푒�푞�퐶ℎ�푒�푐�푘 () returns
an event sequence. For deadlocks of more threads, one can easily
implement an algorithm to generate possible occurrence sequences
and to check their feasibility accordingly.

Detect Atomicity Violations. Detection of Atomicity violation
is even more straightforward. It is known that there are multiple
patterns [34, 42, 56]. Algorithm 5 shows how to detect the pattern
where a write event�푤1 intrudes into a write-read pair (�푤2, �푟). Given
three events �푤1, �푤2, and �푟 (suppose that they occur in this order
in �휎), the algorithm straightforward generates a sequence �휌 =

〈�푤2,�푤1, �푟 〉 and checks whether it is feasible, as illustrated in Figure
5(c). Note, Figure 5(c) shows two cases where the read event �푟 can
be from a third thread or from the thread tid (�푤2).

6 EVALUATION

6.1 Benchmarks and Traces
We collected a set of previously used Java benchmarks [3, 28, 37]
where 31 programs were used for data race detection and atomicity
violations detection. This set is almost the same set as evaluated
before [29, 36, 37, 43] except 4 were not found. Only some of bench-
marks in the AtomFuzzer paper are available, among which we
included four, including the largest one. We used 20 benchmarks
in Java from [26, 27] for deadlock detection. We run the tool Dirk
[28] to generate traces.

The $rst six columns of Table 3 show the statistics of all traces
including the numbers of threads, events, locations ("Mems"), locks,
and branches. For well-readable purpose, we optimized the table,
upper case "K" and "M" indicates thousand and million magnitude,
respectively. We classify all traces into four categories according
to the number of events ("�푛" in time complexity): S-Bench (<1M
events), M-Bench (from 1M to 100M), L-Bench (from 100M to
1, 000M), and XL-Bench (>1, 000M events).

6.2 Experimental Setup
We implemented SeqCheck in Java and compared it with M2 [43],
WCP [29], SHB [36], and SyncP [37] on data race detection. The
four race detectors are published in recent years and SyncP is
the-state-of-art. Section 7 has more discussion on them. They are
available from the release package [37] . We compared SeqCheck

with the sound deadlock detector Dirk [28] , which is also the
state-of-the-art on sound deadlock detection except that Dirk is
a constraint-solver-based one. For atomicity violation detection,
we only found an available tool AtomFuzzer [41] for comparison.
AtomFuzzer detects potential atomicity violations and then, for
each of them, schedules a new execution with aim to trigger it.

All experiments were conducted on a Linux server with two
Intel(R) Xeon(R) Gold-6148 CPUs and 256GiB RAM. Following the
work [37], we setup a time limit of one hour, fairly limit the maxi-
mum usage of memory (80GiB) for each tools, run each tool one
by one with guaranteeing no CPU/IO-dense processes running si-
multaneously. We conducted all experiment $ve times and took the
average values. Di%erent scheduling may produce di%erent traces;
we run the benchmarks once to collected the same set of traces.

Results on Data Race Detection. Table 3 shows the result on
race detection, including the number of races, the time cost, and the
max/mean distances of a race (i.e., the number of events between
the two events). The symbols "−" and "�푇�푂" indicate the cases with
no race detected and the cases where the time limit was reached, re-
spectively. Note, for each approach, we collected and de-duplicated
all reported races before it $nished or run out of time. We use
SeqC to denote SeqCheck in result tables from this subsection. For
well-readable purpose, we use lower case "s", "m", "h" to indicate
seconds, minutes, hours respectively.

From Table 3, we see that SeqCheck performed signi$cantly
better than others. On e%ectiveness, SeqCheck detected the largest
set of races on each (group of) benchmark. We have manually
con$rmed that SeqCheck detected all races detected by others and
no false positives were reported by SeqCheck on S-Bench. Overall,
it detected 48 more races than the other four. Some of these races
have a distance of more than 200M.

This shows the advantage of SeqCheck by analyzing branch
events . Both SyncP and M2 detected a similar set of races (285 and
269). This is consistent with the previous result [37]. Both WCP
and SHB detected a similar set of races (130 and 144).

On e#ciency, SeqCheck spent 30 minutes on all benchmarks;
while others spent from 6 hours to 11.5 hours. On each large bench-
mark (except S-Bench), SeqCheck is also the fastest one except on
montecarlo and series. Overall, SeqCheck is nearly 12 times faster
than all other approaches. Among the other four, M2 spent the most
time (11.5 hours) and SyncP, WCP, and SHB spent from 6 hours to
7 hours. This result is also consistent with that of [37].

Another observation is that, except SeqCheck, all others reached
2 to 10 TO. And on the XL-Bench group, all run up to nearly or
more than 1 hour except M2 on ℎ2. But M2 has many more TO
on all benchmarks. This result is consistent with the features of
these four algorithms: the three (SyncP, WCP, SHB) are streaming
algorithms and have almost a linear time complexity [37]; but M2
as well as SeqCheck is a full-trace algorithm where optimizations
can be conducted for it.

Results On Deadlock Detection. Table 4 shows the results on
deadlock detection by Dirk (with window size 10K) and SeqCheck.
It also includes the number of threads and events.

On e%ectiveness, Dirk detected one more deadlock than Se-

qCheck. In detail, SeqCheck detected one additional deadlock
(on Vector) missed by Dirk. All these are true positives based on

263

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, and Jens Palsberg

Table 3: Results on detection of data races.

Benchmarks Threads EventsMemsLocks Branchs

#Races Time Distance

SyncPM2WCPSHBSeqC SyncP M2 WCP SHB SeqC Max Mean

S-
B
en

ch

array 3 47 4 1 9 - - - - - 0.03s 0.15s 0.03s 0.02s 0.10s - -
critical 4 76 9 0 15 3 3 1 3 3 0.03s 0.09s 0.03s 0.02s 0.10s 29 17
pingpong 8 189 16 0 57 1 1 1 1 1 0.03s 0.09s 0.03s 0.02s 0.07s 92 91
airlinetickets 11 249 20 0 51 6 6 5 6 6 0.03s 0.14s 0.03s 0.02s 0.11s 161 127
account 5 284 22 0 67 3 3 3 3 5 0.03s 0.10s 0.04s 0.02s 0.11s 152 109
clean 12 505 41 2 130 1 3 1 1 3 0.08s 0.16s 0.05s 0.03s 0.11s 226 123
bubblesort 12 2.3K 74 2 581 3 3 3 3 3 0.15s 0.71s 0.08s 0.05s 0.12s 1.2K 1.1K
boundedbu%er 4 2.5K 39 4 871 8 8 6 8 10 0.07s 0.16s 0.08s 0.05s 0.08s 2.1K 1.1K
mergesort 7 5.9K 594 6 2.2K 2 2 2 2 2 0.08s 0.17s 0.10s 0.07s 0.11s 2.4K 909
raytracer 2 24.7K 3.9K 3 4.9K 4 4 4 4 5 0.23s 0.25s 0.29s 0.23s 0.09s 4.7K 2.1K
bufwriter 5 27.9K 75 1 3.6K 4 4 4 4 4 0.63s 1.38s 0.46s 0.24s 0.18s 26.9K 6.8K
ftpserver 5 99.8K 3.8K 71 56.9K 30 30 15 15 31 0.81s 5.17s 0.57s 0.41s 0.19s 36.2K 4.6K
readerswriters 8 307.0K 27 1 121.4K 1 1 1 1 1 11.52s 1m33s 3.09s 1.07s 1.42s 1.2K 1.2K
moldyn 5 555.0K 2.7K 1 148.0K 3 3 3 3 3 2.46s 20m54s 4.05s 2.07s 0.34s 57.0K 30.3K

M
-B

en
ch

jigsaw 13 2.8M 63.2K 104 930.0K 11 12 8 9 12 10.58s 17.92s 10.64s 10.09s 0.54s 44.3K 5.7K
montecarlo 3 10.1M850.1K 1 2.1M 2 2 1 2 2 38.38s TO 47.15s 37.58s 40.97s 8.5M 4.2M
sun"ow 15 34.9M 2.0M 10 13.4M 7 7 5 6 7 1m13s 9m21s 2m18s 1m44s 5.33s 20.0M 3.0M
crypt 17 79.0M 6.3M 1 6.8M - - - - 8 5m06s TO 6m38s 5m07s 21.61s 56.8M 56.8M

L
-B

en
ch

eclipse 15 126.3M 10.4M 4.7K 62.1M 17 17 13 14 17 12m05s 18m32s 8m36s 6m24s 36.14s 18.3M 3.4M
xalan 7 164.2M 2.8M 812 65.8M 128 135 9 9 138 TO TO 9m51s 7m08s 1m56s 20.2M 13.1M
lufact 5 179.6M 1.0M 1 48.7M 6 - 5 6 6 11m09s TO 15m37s 10m37s 1m25s 5.1M 2.5M
batik 7 279.9M 5.1M 1.9K 106.3M - - - - - 11m41s 6m01s 15m23s 12m41s 22.59s - -
lusearch 7 322.0M 4.7M 148 115.9M 16 - 16 16 19 14m21s TO 17m51s 13m46s 31.16s 200.6M 12.8M
pmd 9 382.6M 12.1M 221 168.9M 23 23 13 16 24 16m07s TO 20m28s 16m20s 35.91s 224.4M 33.6M
tsp 5 487.1M180.9K 2 167.3M 4 - 4 4 4 18m36s TO 22m25s 17m15s 2m20s 86.7M 53.0M
series 18 574.2M286.4K 1 573.1M - - - - - 10.12s 14.65s 11.00s 10.19s 37.17s - -
luindex 3 775.0M 2.5M 65 304.6M 1 1 1 1 1 27m48s 14m35s 35m56s 27m36s 1m02s 1.9K 1.9K

X
L
-B

en
ch

sparsematmult 6 1,286.9M 16.0M 1 150.3M - - - - - TO TO TO TO 5m07s - -
sor 5 1,357.3M 4.0M 1 187.3M - - - - 10 TO TO TO TO 4m08s 40.1M 17.6M
avrora 7 1,636.3M864.5K 6 638.4M - - 6 6 7 TO TO TO 58m03s 4m52s 896.8K364.4K
h2 2 2,088.7M 27.1M 15 1,126.0M 1 1 - 1 1 TO 25m19s TO 59m31s 5m16s 2 2

Total - 9,787.9M96.4M 8.1K3,738.2M 285269 130 144 333 >6h59m>11h36m>6h36m>5h57m30m03s - -

our code inspection. On Vector, the distance of the deadlock (i.e.,
the two acquire events) is 2.7M which is very large window and
constraint-solver-based approaches [24] are probably unable to de-
tect. On all other benchmarks, the distance is at most 1.6K. Hence,
Dirk was able to detect two deadlocks on Deadlock and Transfer
missed by SeqCheck. On these two deadlocks, there are data "ows
that can be handled by Dirk but not SeqCheck. It is challenging
to extend SeqCheck to handle these cases; we leave it as a further
work. Note, some benchmarks have deadlocks but their traces do
not have one [28]; and both tools did not detect deadlocks on them.

On e#ciency, SeqCheck is signi$cantly better than Dirk. Se-
qCheck spent less than 6 seconds in total and less than 2.5 seconds
on each benchmark. However, Dirk reached one TO and took much
more time, especially on benchmarks with >500K events.

Results On Atomicity Violations Detection. We con$gured
SeqCheck to detect the atomicity violation pattern 〈�푤1,�푤2, �푟 〉 as
that shown in Algorithm 5 and we set the distance between�푤2 and
�푟 to be at most 100. The result is shown in Table 5, including the
number of atomicity violations, the time cost, and the max/mean
distance. We use "⊗" to indicate a crash in testing.

The result shows that SeqCheck $nished in less than 20 minutes
and 30 unique ones were detected. Some of these atomicity viola-
tions have a distance up to 18.7M and SeqCheck $nished in about
20 seconds. This shows that SeqCheck is e#cient on detecting
atomicity violations. The results on S-Bench are also manually
con$rmed and they match the pattern 〈�푤1,�푤2, �푟 〉.

AtomFuzzer (i.e., "AtomF") detected none on all benchmarks
and it frequently crashed on many benchmarks. We have already
tried our best to avoid crashes as much as possible. But, it seems
no avail. The main reason of crashes is that AtomFuzzer does not
support Java re"ection.

7 RELATEDWORKS
Traditional Unsound Approaches. Two earliest works on data
race detection are based on the happens-before relation [31] and
the lockset discipline [51]. The former de$ne a partial order over
synchronizations and is widely adopted in many data race detectors
[1, 2, 4, 10, 12, 13, 15, 20, 45, 52–54, 57]. The latter de$nes a data race
if two accesses are not protected by a common lock [9, 39, 47, 51, 60].
Hybrid analyses combine the two approaches to improve accuracy

264

Sound and E!icient Concurrency Bug Prediction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 4: Results on detection of deadlocks.

Benchmarks Threads Events

#Deadlocks Time Distance

Dirk SeqC Dirk SeqC Max Mean

Deadlock 3 50 1 - 0.02s 0.07s - -
NotADlk 3 62 - - 0.02s 0.10s - -
Picklock 3 68 1 1 0.02s 0.07s 25 25
HashTable 3 70 2 2 0.03s 0.10s 41 36
Bensalem 4 80 1 1 0.06s 0.07s 29 29
Transfer 3 81 1 - 0.02s 0.10s - -
Test 3 83 2 2 0.06s 0.07s 34 27
StringBu%er 3 116 2 2 0.03s 0.07s 34 19
DiningPhi 3 166 1 1 0.05s 0.10s 105 105
DirkAccount 6 867 - - 0.15s 0.10s - -
Log4j2 4 2.5K 1 1 0.80s 0.10s 295 295
Dbcp1 3 2.9K 2 2 0.23s 0.10s 210 191
Derby2 3 3.0K 1 1 0.31s 0.12s 61 61
Dbcp2 3 4.1K - - 0.55s 0.10s - -
JDBC 1 3 674.5K 2 2 44.92s 0.19s 424 240
JDBC 2 3 674.6K 1 1 4.33s 0.19s 168 168
JDBC 3 3 675.8K 1 1 43.48s 0.16s 148 148
JDBC 4 3 675.9K 2 2 10.44s 0.20s 1.6K 1.6K
Vector 3 5.4M - 1 TO 1.34s 2.7M 2.7M
TestPerf 10 11.9M - - 48.63s 2.47s - -

Total - 20.0M 21 20 >1h02m 5.95s - -

[11, 40]. Others include scheduling [5] and sampling approaches
[4, 7, 22]. Unfortunately, the above can report false positives.

Sound O#line Analysis. Sound dynamic ones, as discussed
in Section 1, include three types. M2 is a graph based one that
has been extensively discussed. Dirk [28] and RVPredict [24] are
representatives of constraint solver based ones. They can infer alter-
native executions by considering branches and concrete read/write
values; hence, they have the potential to cover many races, as well
as deadlocks [28] and other concurrency bugs (like concurrency
Use-after-free and concurrency Null-pointer-dereference [16, 23]).
However, they rely on (e.g., SMT) solvers. This prevents them from
analyzing a full execution trace. They can miss a race with much a
larger distance.

Sound Online Analysis. In recent years, more and more sound
dynamic online approaches have been proposed like CP [55], WCP
[29], SHB [36],DC [50], SDP/WDP [21], and SyncP [29]. These ap-
proaches track dependency among memory events and guarantee
that the predicted (partial) trace is feasible via vector clocks [31]. HB
and SHB both miss simple races because they cannot swap the crit-
ical sections. The other approaches based on HB construct weaker
partial orders in order to reduce the degree of incompleteness. CP
and WCP are sound but incomplete even for two threads. DC and
SDP are unsound weakenings of WCP; and WDP is an unsound
weakening of DC. The DC/WDP-races $ltered by a vindication
algorithm become sound but incomplete [21, 50]. The recently in-
troduced SyncP is the state of the art in detecting races using online
techniques. All of these online approaches are computable in linear
time and have been compared in our experiments.

Other approaches such as static race analysis [14, 38, 46, 48,
58, 61] are unsound, reporting false races. Techniques such as
[17, 49, 59] implement e#cient dynamic race detectors. Tools such
as RoadRunner[19] and Rapid [35] provide dynamic analysis frame-
works to facilitate experimentation for concurrent programs.

Table 5: Full Results on Detection of Atomicity Violation.

Benchmarks

#Atom Time Distance

AtomF SeqC AtomF SeqC Max Mean

S-
B
en

ch

array - - 0.17s 0.07s - -
critical - 1 0.07s 0.10s 20 13
pingpong - - 0.76s 0.07s - -
airlinetickets - 1 0.07s 0.10s 159 159
account - 1 0.56s 0.10s 118 118
clean - - 0.07s 0.07s - -
bubblesort - - 0.08s 0.11s - -
boundedbu%er - 2 0.17s 0.08s 812 761
mergesort - - 0.07s 0.11s - -
raytracer - 1 0.12s 0.08s 1.1K 1.1K
bufwriter - - 0.08s 0.15s - -
ftpserver ⊗ 1 ⊗ 0.17s 1.8K 1.8K
readerswriters - - 0.40s 0.73s - -
moldyn - - 0.19s 0.30s - -

M
-B

en
ch

jigsaw ⊗ 1 ⊗ 0.37s 111 111
montecarlo ⊗ - ⊗ 48.72s - -
sun"ow ⊗ - ⊗ 4.22s - -
crypt - - 0.59s 20.32s - -

L
-B

en
ch

eclipse ⊗ - ⊗ 13.62s - -
xalan ⊗ 20 ⊗ 20.86s 18.7M 12.8M
lufact - - 5.72s 48.31s - -
batik ⊗ - ⊗ 25.10s - -
lusearch ⊗ - ⊗ 28.09s - -
pmd ⊗ - ⊗ 35.94s - -
tsp ⊗ - ⊗ 46.30s - -
series - - 26m27s 38.07s - -
luindex ⊗ - ⊗ 54.61s - -

X
L
-B

en
ch

sparsematmult - - 23.27s 3m16s - -
sor - - 9.01s 3m21s - -
avrora ⊗ 2 ⊗ 2m54s 141.0K 130.4K
h2 ⊗ - ⊗ 3m07s - -

Total - 30 27m08s 19m07s 18.9M 12.9M

8 CONCLUSION
We have presented an e#cient, sound dynamic approach SeqCheck
for detection of general concurrency bugs. It advanced M2 by mod-
eling branch events and supporting decisions on whether an event
sequence is feasible. With SeqCheck, one can easily encode a po-
tential concurrency bug into one or more sequences of events.
SeqCheck has built in the sequence generation for data races, dead-
locks, and atomicity violations. The experimental results show that
SeqCheck achieved signi$cantly better results than recent sound
data race and deadlock detectors in both e%ectiveness and e#ciency.

ACKNOWLEDGEMENTS
We sincerely thank the anonymous reviewers for helpful sugges-
tions and insights for improving this paper. This work is supported
in part by National Natural Science Foundation of China (NSFC)
(Grant No. 61932012), the Key Research Program of Frontier Sci-
ences, CAS (Grant No. ZDBS-LY-7006), the Youth Innovation Pro-
motion Association of the Chinese Academy of Sciences (YICAS)
(Grant No. 2017151), and the National Key Research and Devel-
opment Program of China (No. 2018YFB1403400). And National
Science Foundation award 1815496 supported Jens Palsberg.

265

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, and Jens Palsberg

REFERENCES
[1] Swarnendu Biswas, Man Cao, Minjia Zhang, Michael D. Bond, and Benjamin P.

Wood. 2017. Lightweight data race detection for production runs. In Proceedings
of the 26th International Conference on Compiler Construction (Austin, TX, USA)
(CC’17). Association for Computing Machinery, ustin, TX, USA, 11–21. https:
//doi.org/10.1145/3033019.3033020

[2] Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon Lucia. 2015.
Valor: e#cient, software-only region con"ict exceptions. ACM SIGPLAN Notices
50, 10 (Oct. 2015), 241–259. https://doi.org/10.1145/2858965.2814292

[3] S. M. Blackburn, R. Garner, C. Ho%man, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and
Applications (Portland, OR, USA). ACM Press, New York, NY, USA, 169–190.
https://doi.org/10.1145/1167473.1167488

[4] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010. PACER:
Proportional Detection of Data Races. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation (Toronto, On-
tario, Canada) (PLDI ’10). Association for Computing Machinery, New York, NY,
USA, 255–268. https://doi.org/10.1145/1806596.1806626

[5] Yan Cai and Lingwei Cao. 2015. E%ective and Precise Dynamic Detection of
Hidden Races for Java Programs (ESEC/FSE 2015). Association for Computing Ma-
chinery, New York, NY, USA, 450–461. https://doi.org/10.1145/2786805.2786839

[6] Yan Cai and W. K. Chan. 2012. MagicFuzzer: Scalable Deadlock Detection for
Large-scale Applications. In Proceedings of the 34th International Conference on
Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press, Piscataway, NJ,
USA, 606–616. http://dl.acm.org/citation.cfm?id=2337223.2337294

[7] Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. 2016. A Deployable Sampling
Strategy for Data Race Detection. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Seattle, WA,
USA) (FSE 2016). Association for Computing Machinery, New York, NY, USA,
810–821. https://doi.org/10.1145/2950290.2950310

[8] Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang.
2019. Detecting Concurrency Memory Corruption Vulnerabilities. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
706–717. https://doi.org/10.1145/3338906.3338927

[9] Jong-Deok Choi, Keunwoo Lee, and Alexey Loginov. 2002. E#cient and precise
datarace detection for multithreaded object-oriented programs. ACM Sigplan
Notices 37, 5 (June 2002), 258–269. https://doi.org/10.1145/543552.512560

[10] Intel Corporation. 2016. Intel Inspector. https://software.intel.com/en-us/intel-
inspector-xe

[11] Anne Dinning and Edith Schonberg. 1991. Detecting access anomalies in pro-
grams with critical sections. ACM SIGPLAN Notices 26, 12 (Dec. 1991), 85–96.
https://doi.org/10.1145/127695.122767

[12] Laura E#nger-Dean, Brandon lucia, luis Ceze, Dan Grossman, and Hans-J Boehm.
2012. IFRit: interference-free regions for dynamic data-race detection. In Acm
International Conference on Object Oriented Programming Systems Languages
& Applications (Tucson, Arizona, USA) (OOPSLA ’12). https://doi.org/10.1145/
2398857.2384650

[13] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: a race and
transaction-aware java runtime. Acm Sigplan Notices 42, 6 (June 2007), 245–255.
https://doi.org/10.1145/1273442.1250762

[14] Dawson Engler and Ken Ashcraft. 2003. RacerX : E%ective, static detection of
race conditions and deadlocks. ACM SIGOPS Operating Systems Review 37, 5 (Oct.
2003), 237–252. https://doi.org/10.1145/945445.945468

[15] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.
2010. E%ective data-race detection for the kernel. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation (OSDI ’10). 151–162.
https://doi.org/10.5555/1924943.1924954

[16] Azadeh Farzan, P. Madhusudan, Niloofar Razavi, and Francesco Sorrentino. 2012.
Predicting Null-Pointer Dereferences in Concurrent Programs. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software En-
gineering (Cary, North Carolina) (FSE ’12). Association for Computing Machinery,
NewYork, NY, USA, Article 47, 11 pages. https://doi.org/10.1145/2393596.2393651

[17] Mingdong Feng and Charles E. Leiserson. 1997. E#cient detection of determinacy
races in Cilk programs. In Proceedings of the ninth annual ACM symposium on
Parallel algorithms and architectures (SPAA ’97). 1–11.

[18] Peter M. Fenwick. 1994. A New Data Structure for Cumulative Frequency Tables.
Softw. Pract. Exper. 24, 3 (March 1994), 327–336. https://doi.org/10.1002/spe.
4380240306

[19] Cormac Flanagan and Stephen Freund. 2010. The RoadRunner Dynamic Analysis
Framework for Concurrent Programs. In Proceedings of the 9th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering (PASTE

’10). 1–8.
[20] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: E#cient and Precise

Dynamic Race Detection. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Dublin, Ireland) (PLDI ’09).
ACM, New York, NY, USA, 121–133. https://doi.org/10.1145/1542476.1542490

[21] Kaan Genç, Jake Roemer, Yufan Xu, and Michael D. Bond. 2019. Dependence-
Aware, Unbounded Sound Predictive Race Detection. Proc. ACM Program. Lang.
3, OOPSLA, Article 179 (Oct. 2019), 30 pages. https://doi.org/10.1145/3360605

[22] Yu Guo, Yan Cai, and Zijiang Yang. 2017. AtexRace: Across Thread and Execution
Sampling for in-House Race Detection. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 315–325.
https://doi.org/10.1145/3106237.3106242

[23] Je% Huang. 2018. UFO: Predictive Concurrency Use-after-Free Detection. In
Proceedings of the 40th International Conference on Software Engineering (Gothen-
burg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY,
USA, 609–619. https://doi.org/10.1145/3180155.3180225

[24] Je%Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Pre-
dictive Race Detection with Control Flow Abstraction. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Edinburgh, United Kingdom) (PLDI ’14). Association for Computing Machinery,
New York, NY, USA, 337–348. https://doi.org/10.1145/2594291.2594315

[25] Joab Jackson. 2012. Nasdaq’s Facebook glitch came from ‘race conditions’. http:
//www.computerworld.com/s/article/9227350.

[26] Pallavi Joshi, Chang-Seo Park, Koushik Sen, andMayur Naik. 2009. A Randomized
Dynamic Program Analysis Technique for Detecting Real Deadlocks. In Proceed-
ings of the 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Dublin, Ireland) (PLDI ’09). Association for Computing Machin-
ery, New York, NY, USA, 110–120. https://doi.org/10.1145/1542476.1542489

[27] Horatiu Jula, Daniel Tralamazza, Cristian Zam$r, and George Candea. 2008. Dead-
lock Immunity: Enabling Systems to Defend against Deadlocks. In Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation (San
Diego, California) (OSDI’08). USENIX Association, USA, 295–308.

[28] Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction.
Proc. ACM Program. Lang. 2, OOPSLA, Article 146 (Oct. 2018), 29 pages. https:
//doi.org/10.1145/3276516

[29] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic Race
Prediction in Linear Time (PLDI 2017). Association for Computing Machinery,
New York, NY, USA, 157–170. https://doi.org/10.1145/3062341.3062374

[30] Lamport. 1979. How toMake aMultiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Trans. Comput. C-28, 9 (1979), 690–691. https:
//doi.org/10.1109/TC.1979.1675439

[31] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/
359545.359563

[32] N. G. Leveson and C. S. Turner. 1993. An investigation of the Therac-25 accidents.
Computer 26, 7 (1993), 18–41. https://doi.org/10.1109/MC.1993.274940

[33] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Characteris-
tics. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (Seattle, WA, USA) (ASP-
LOS XIII). Association for Computing Machinery, New York, NY, USA, 329–339.
https://doi.org/10.1145/1346281.1346323

[34] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. 2008. Atom-Aid:
Detecting and Surviving Atomicity Violations. In Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA ’08). IEEE Computer
Society, USA, 277–288. https://doi.org/10.1109/ISCA.2008.4

[35] Umang Mathur. 2020. RAPID : Dynamic Analysis for Concurrent Programs.
https://github.com/umangm/rapid

[36] Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018. What Happens-
after the First Race? Enhancing the Predictive Power of Happens-before Based
Dynamic Race Detection. 2, OOPSLA, Article 145 (Oct. 2018), 29 pages. https:
//doi.org/10.1145/3276515

[37] Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2021. Optimal
Prediction of Synchronization-Preserving Races. Proc. ACM Program. Lang. 5,
POPL, Article 36 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434317

[38] Mayur Naik, Alex Aiken, and John Whaley. 2006. E%ective static race detection
for Java. ACM SIGPLAN Notices 41, 6 (June 2006), 308–319. https://doi.org/10.
1145/1133255.1134018

[39] Hiroyasu Nishiyama. 2004. Detecting Data Races Using Dynamic Escape Analysis
Based on Read Barrier. In Proceedings of the 3rd conference on Virtual Machine
Research And Technology Symposium (VM ’04). New York, NY, USA, 127–138.
https://doi.org/10.5555/1267242.1267252

[40] Robert O’Callahan and Jong-DeokChoi. 2003. Hybrid dynamic data race detection.
In Proceedings of the ninth ACM SIGPLAN symposium on Principles and practice
of parallel programming (San Diego, California, USA) (PPoPP’03). New York, NY,
USA, 167–178. https://doi.org/10.1145/966049.781528

266

https://doi.org/10.1145/3033019.3033020
https://doi.org/10.1145/3033019.3033020
https://doi.org/10.1145/2858965.2814292
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1145/2786805.2786839
http://dl.acm.org/citation.cfm?id=2337223.2337294
https://doi.org/10.1145/2950290.2950310
https://doi.org/10.1145/3338906.3338927
https://doi.org/10.1145/543552.512560
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
https://doi.org/10.1145/127695.122767
https://doi.org/10.1145/2398857.2384650
https://doi.org/10.1145/2398857.2384650
https://doi.org/10.1145/1273442.1250762
https://doi.org/10.1145/945445.945468
https://doi.org/10.5555/1924943.1924954
https://doi.org/10.1145/2393596.2393651
https://doi.org/10.1002/spe.4380240306
https://doi.org/10.1002/spe.4380240306
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/3360605
https://doi.org/10.1145/3106237.3106242
https://doi.org/10.1145/3180155.3180225
https://doi.org/10.1145/2594291.2594315
http://www.computerworld.com/s/article/9227350
http://www.computerworld.com/s/article/9227350
https://doi.org/10.1145/1542476.1542489
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3062341.3062374
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1109/ISCA.2008.4
https://github.com/umangm/rapid
https://doi.org/10.1145/3276515
https://doi.org/10.1145/3276515
https://doi.org/10.1145/3434317
https://doi.org/10.1145/1133255.1134018
https://doi.org/10.1145/1133255.1134018
https://doi.org/10.5555/1267242.1267252
https://doi.org/10.1145/966049.781528

Sound and E!icient Concurrency Bug Prediction ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[41] Chang-Seo Park and Koushik Sen. 2008. Randomized Active Atomicity Violation
Detection in Concurrent Programs. In Proceedings of the 16th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (Atlanta, Georgia)
(SIGSOFT ’08/FSE-16). Association for Computing Machinery, New York, NY, USA,
135–145. https://doi.org/10.1145/1453101.1453121

[42] Chang-Seo Park and Koushik Sen. 2008. Randomized Active Atomicity Violation
Detection in Concurrent Programs. In Proceedings of the 16th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (Atlanta, Georgia)
(SIGSOFT ’08/FSE-16). Association for Computing Machinery, New York, NY, USA,
135–145. https://doi.org/10.1145/1453101.1453121

[43] Andreas Pavlogiannis. 2020. Fast, sound, and e%ectively complete dynamic
race prediction. Proc. ACM Program. Lang. 4, POPL (2020), 17:1–17:29. https:
//doi.org/10.1145/3371085

[44] Kevin Poulsen. 2012. Software bug contributed to blackout. Security Focus.
http://www.securityfocus.com/news/8016.

[45] Eli Pozniansky and Assaf Schuster. 2007. Multirace: E#cient On-the-"y Data
Race Detection In Multithreaded C++ Programs. ACM Trans. Comput. Syst. 19, 3
(Nov. 2007), 327–340. https://doi.org/10.1002/cpe.1064

[46] Polyvios Pratikakis, Je%rey S. Foster, and Michael Hicks. 2011. LOCKSMITH:
Practical static race detection for C. ACMTransactions on Programming Languages
and Systems 33, 1 (Jan. 2011). https://doi.org/10.1145/1889997.1890000

[47] Christoph von Praun and Thomas R. Gross. 2001. Object Race Detection. ACM
Sigplan Notices 36, 11 (Nov. 2001), 70–82. https://doi.org/10.1145/504311.504288

[48] Cosmin Radoi and Danny Dig. 2013. Practical static race detection for Java
parallel loops. In Proceedings of the 2013 International Symposium on Software
Testing and Analysis (ISSTA 2013). 178–190.

[49] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
2012. Scalable and precise dynamic datarace detection for structured parallelism.
ACMSIGPLANNotices 47, 6 (June 2012), 531–542. https://doi.org/10.1145/2345156.
2254127

[50] Jake Roemer, Kaan Genc, and Michael D. Bond. 2018. High-Coverage, Unbounded
Sound Predictive Race Detection (PLDI 2018). 374–389. https://doi.org/10.1145/
3192366.3192385

[51] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multithreaded
Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997), 391–411. https://doi.org/
10.1145/265924.265927

[52] Koushik Sen. 2008. Race directed random testing of concurrent programs. In
ACM SIGPLAN Notices (Tucson, Arizona, USA) (PLDI ’08). 11–21. https://doi.

org/10.1145/1379022.1375584
[53] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race

detection in practice. In Proceedings of the Workshop on Binary Instrumentation
and Applications (New York, NY, USA) (WBIA ’09). 62–71. https://doi.org/10.
1145/1791194.1791203

[54] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and Dmitriy
Vyukov. 2012. Dynamic Race Detection with LLVM Compiler. In Runtime Veri!-
cation (RV 2011). 110–114. https://doi.org/10.1007/978-3-642-29860-8_9

[55] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac
Flanagan. 2012. Sound Predictive Race Detection in Polynomial Time. In Pro-
ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Philadelphia, PA, USA) (POPL ’12). Association for
Computing Machinery, New York, NY, USA, 387–400. https://doi.org/10.1145/
2103656.2103702

[56] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. 2010. PENELOPE:
Weaving Threads to Expose Atomicity Violations. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Santa Fe, New Mexico, USA) (FSE ’10). Association for Computing Machinery,
New York, NY, USA, 37–46. https://doi.org/10.1145/1882291.1882300

[57] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and Satish Narayanasamy.
2011. Detecting and surviving data races using complementary schedules. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles
(SOSP ’11). 369–384. https://doi.org/10.1145/2043556.2043590

[58] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static race detection
on millions of lines of code. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering (ESEC-FSE ’07). 205–214.

[59] Adarsh Yoga, Santosh Nagarakatte, and Aarti Gupta. 2016. Parallel data race
detection for task parallel programs with locks. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2016). 833–845.

[60] Yuan Yu, Tom Rodehe%er, and Wei Chen. 2005. RaceTrack: E#cient Detection
of Data Race Conditions via Adaptive Tracking. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles (Brighton, United Kingdom)
(SOSP ’05). Association for Computing Machinery, New York, NY, USA, 221–234.
https://doi.org/10.1145/1095810.1095832

[61] Sheng Zhan and Je% Huang. 2016. ECHO: instantaneous in situ race detection in
the IDE. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). 775–786.

267

https://doi.org/10.1145/1453101.1453121
https://doi.org/10.1145/1453101.1453121
https://doi.org/10.1145/3371085
https://doi.org/10.1145/3371085
http://www.securityfocus.com/news/8016
https://doi.org/10.1002/cpe.1064
https://doi.org/10.1145/1889997.1890000
https://doi.org/10.1145/504311.504288
https://doi.org/10.1145/2345156.2254127
https://doi.org/10.1145/2345156.2254127
https://doi.org/10.1145/3192366.3192385
https://doi.org/10.1145/3192366.3192385
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/1379022.1375584
https://doi.org/10.1145/1379022.1375584
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1007/978-3-642-29860-8_9
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/1882291.1882300
https://doi.org/10.1145/2043556.2043590
https://doi.org/10.1145/1095810.1095832

