
Compiling Volatile Correctly in Java
Shuyang Liu �

University of California, Los Angeles, CA, USA

John Bender �

Sandia National Laboratories, Albuquerque, NM, USA

Jens Palsberg �

University of California, Los Angeles, CA, USA

Abstract
The compilation scheme for Volatile accesses in the OpenJDK 9 HotSpot Java Virtual Machine
has a major problem that persists despite a recent bug report and a long discussion. One of the
suggested fixes is to let Java compile Volatile accesses in the same way as C/C++11. However, we
show that this approach is invalid for Java. Indeed, we show a set of optimizations that is valid for
C/C++11 but invalid for Java, while the compilation scheme is similar. We prove the correctness of
the compilation scheme to Power and x86 and a suite of valid optimizations in Java. Our proofs are
based on a language model that we validate by proving key properties such as the DRF-SC theorem
and by running litmus tests via our implementation of Java in Herd7.

2012 ACM Subject Classification Software and its engineering æ Semantics

Keywords and phrases formal semantics, concurrency, compilation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.6

Related Version Full Version: http://compilers.cs.ucla.edu/papers/compiling-volatile.pdf

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.3

Funding This material is based upon work supported by the National Science Foundation under
Grant No. 1815496.

Acknowledgements We thank Doug Lea for the helpful insights on the Java language semantics
and compilers; we thank Jade Alglave for her precious and detailed help on implementing Java
architecture for Herd; we thank Ori Lahav, Anton Podkopaev and Viktor Vafeiadis for initially
pointing out the issue of the Java Access Modes model; we thank all the reviewers of ECOOP’22 for
their insightful feedback.

1 Introduction

In OpenJDK 9, the Java programming language introduced the VarHandle API with Access
Modes to provide a standard set of operations that gives clear semantics to programs with
shared object fields. Among the four available Access Modes (which we will explain in
Section 3 in detail), programmers are allowed to use Volatile mode to ensure the consistency
of updates on shared variables. Conceptually, the set of Volatile mode accesses in a program is
totally ordered [9]. If all of the accesses in a program are in Volatile mode, then the program
should only have sequentially consistent executions since all accesses in that program are
totally ordered.

Sadly, this basic property of Volatile mode does not hold under the current implementation
of the Java compiler in OpenJDK 9 HotSpot JVM. That is, marking all accesses as Volatile
in a Java program can still result in behaviors that are not sequentially consistent when
compiling to Power [14]. In particular, the C1 and the C2 compilers in HotSpot do not

V1.1

Ar
tif

acts
Available

ECOOP

Functional V

1.
1

Ar
tif

act
s Evaluated

ECOOP

Reusable V1

.1

Ar
tif

act
s Evaluated

ECOOP

© Shuyang Liu, John Bender, and Jens Palsberg;

licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).

Editors: Karim Ali and Jan Vitek; Article No. 6; pp. 6:1–6:26

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sliu44@cs.ucla.edu
https://orcid.org/0000-0002-1601-9086
mailto:jmbende@sandia.gov
mailto:palsberg@ucla.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2022.6
http://compilers.cs.ucla.edu/papers/compiling-volatile.pdf
https://doi.org/10.4230/DARTS.8.2.3
https://doi.org/10.4230/DARTS.8.2.3
https://doi.org/10.4230/DARTS.8.2.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Compiling Volatile Correctly in Java

provide enough synchronization between a Volatile read and a Volatile write when compiling
to the Power architecture. While we leave the details of their respective compilation schemes
to Section 2, when a program includes a sequence of a Volatile read followed by a Volatile
write, there is no hwsync instruction inserted in-between. Without the hwsync, it is possible
for threads to disagree on the orders in which instructions are executed. As a consequence,
the compilation schemes can still cause violations of sequential consistency in programs with
all accesses marked Volatile. We have contacted the maintainers of the OpenJDK about this
issue and a bug report has been filed [17].

One solution is to add the missing hwsync instruction to restore sequential consistency
for Volatile. The resulting compilation scheme is similar to C/C++11 [4], which leads one to
wonder whether Java compilers can simply handle Access Modes the same way as C/C++11
compilers handle atomic memory orders. However, there are significant di�erences in the
semantics of Volatile access mode and the seq_cst memory order, which leads to di�erences in
the valid compiler transformations applied to them respectively. In contrast to C/C++11 [6],
Java does not allow certain compiler transformations to be applied to Volatile accesses. For
example, register promotion cannot be applied to memory locations with Volatile accesses
in Java while it can be applied in C/C++11. The di�erences provide Java programmers
stronger synchronization guarantees and a more intuitive reasoning process: Volatile accesses
(1) are equivalent to inserting fullFence()s, and (2) will not be optimized by the compiler
in unexpected ways. We provide a detailed comparison along with soundness proofs and
examples in Section 5.

While the change to the compilation scheme appears to be simple, the work of verifying
its soundness is challenging. First, the formal language model JAM (hereafter JAM19) [3]
exhibits the same issue as the HotSpot compilers. That is, it cannot guarantee sequential
consistency for programs with all accesses marked Volatile. Therefore, we revise the language
model to fix this issue. To ensure the change to the model is valid we formally verify its key
properties, such as the standard DRF-SC theorem, and leverage a set of empirical litmus tests
via our implementation of Java in Herd7 [1] that keeps the model valid. We call the revised
model JAM21 to distinguish from the original version. Second, the language model defines
the semantics of fullFence() with a total order. However, many target-level architectures
such as the Power memory model [14] only specify a partial observable order among their
synchronization mechanisms (fence cumulativity). Therefore, we develop an intermediate
language model, JAM Õ

21
, to bridge JAM21 with the target level models. We show that

JAM
Õ
21

yields the same observable program executions as JAM21 but does not specify a
total order among fullFence()s, which simplifies the proof for compilation correctness.

1.1 Outline

The rest of the paper is structured as follows. Section 2 explains the bug in the current Java
compiler to Power with an example. In Section 3, we explain the formal model that we use
in this paper. Section 4 provides a correctness proof for our proposed compilation scheme to
Power. Section 5 presents a set of program transformations that are valid/invalid for Java
and a comparison with C/C++11. We include a discussion on expected performance impact
in Section 6. Section 7 details some recent related work and finally, Section 8 concludes the
paper.

S. Liu, J. Bender, and J. Palsberg 6:3

1.2 Supplementary Material
The proofs of the theorems appear in this paper are available in the appendices (which are
available in the full version of the paper). The following are also available as artifact of this
paper at https://github.com/ShuyangLiu/ECOOP22-Supplementary-Material.

The extended Herd7 tool suite with the Java architecture.
The litmus tests that appear in this paper.
The Coq proofs for some of the theorems in this paper.

2 The Problem of Compiling Volatile and How to Fix it

In this section we use an example to demonstrate that the approach implemented by the
HotSpot JVM compilers does not provide sequentially consistent semantics even when all
accesses use Volatile mode.

Consider the volatile-non-sc.4 example shown as an execution in Fig.1. In this example,
there are four concurrent threads (P1, P2, P3, and P4) accessing two shared integer variables
(x and y). The notation Wx = 1 means “writing to variable x with value 1”. The notation Rx

= 0 means “reading from variable x and the value returned is 0”. In addition, each variable is
initialized to 0 at the beginning before the threads start execution. The small superscript on
each memory access denotes the access mode that the access uses. For example, Rxv means
“reading with Volatile mode”.

If all of the read and write accesses in this program use Volatile mode, would the reads
ever return the values that are specified in the figure?

According to the specification [9], the program must exhibit sequentially consistent
behavior because all accesses are marked Volatile:
“When all accesses use Volatile mode, program execution is sequentially consistent, in

which case, for two Volatile mode accesses A and B, it must be that A precedes execution

of B, or vice versa.”

Therefore, we are interested in whether the example in Fig. 1 is sequentially consistent.
Sequential consistency, as first defined by [7], requires a total sequential order that preserves
program order and the values returned by the reads are compatible with this total order.
Following the definition, the execution in Fig. 1 does not satisfy sequential consistency. To
see this, we demonstrate a contradiction under the guarantees of sequential consistency.
Consider the following order constraints:
1. By program order, we know that (a) occurs before (b).
2. Since the value (b) gets is the initial value 0, it must occur before (c) writes to the

location y.
3. Then, (d) reads the value written by (c), so (c) occurs before (d).
4. By program order, (d) occurs before (e).
5. Now, looking at P4, we know that the value of x changed from 1 to 2. Therefore, we can

infer that (e) occurs before (a) since (e) is the only write to x with a value of 1 and (a) is
the only write to x with a value of 2.

In this execution, we find a cycle: (a) ≠æ (b) ≠æ (c) ≠æ (d) ≠æ (e) ≠æ (a) which
appears in Fig. 1 with the “occurs before” relation represented as edges in the execution
graph. Sequential consistency requires an irreflexive total order among all instructions.
Therefore, the chain formed by the total order should be acyclic, i.e., a valid execution should
not exhibit any cycle in its graph. Thus, this execution is inconsistent under sequential
consistency and should be forbidden.

ECOOP 2022

https://github.com/ShuyangLiu/ECOOP22-Supplementary-Material

6:4 Compiling Volatile Correctly in Java

Figure 1 volatile-non-sc.4 under the sequential consistency model, Forbidden.

Figure 2 volatile-non-sc.4.ppc translated to Power by HotSpot C1, Allowed.

However, despite the promise of sequential consistency given by the source-level Volatile
semantics, the compilation scheme found in the Java compilers for Power allows the example
execution in Fig. 1. To see this, we present the compilation scheme from the C1 compiler
which is the more conservative of HotSpot’s two compilers. We then give a Power-consistent
execution graph corresponding to the example in Fig. 1.

The Power architecture adopts a relaxed memory model and provides fence instructions to
recover sequential consistency. Two main types of fence instructions, the stronger fence hwsync
and the weaker fence lwsync, are usually used by the compilers to enforce synchronization
guarantees. Using lwsync usually gives better performance but the synchronization guarantee
of lwsync is weaker than hwsync. In particular, while both fence instructions carries a set
of writes (Group A writes) when propagating to another thread, lwsync does not require
an acknowledgement to continue executing the instructions after it. On the other hand, a
hwsync requires an acknowledgment marking that it (along with its Group A writes) has
propagated to all threads before proceeding to the next instruction.

The compilation to Power for Volatile accesses on C1 is the following 1:

R
V hwsync ; lwz ; lwsync

W
V lwsync ; stw ; hwsync

A Volatile read is compiled to a hwsync instruction followed by a load instruction and a
lwsync instruction; a Volatile write is compiled to a lwsync instruction followed by a store
instruction and a hwsync instruction.

Fig. 2 shows the example from Fig. 1 according the compilation scheme in the C1
compiler2.

1 This compilation scheme was found in the OpenJDK 13 HotSpot compiler and it follows from a previously
inaccurate description in the documentation [9] regarding the semantics of Volatile accesses. We have
contacted the author and the documentation has been corrected in the latest version while the compiler
bug (although reported) is still not fixed at the time of writing.

2 The C2 compiler yields a slightly di�erent compilation scheme for Volatile reads: Instead of inserting a
lwsync fence after the load instruction, it emits a control dependency followed by an isync instruction,
which we denote as ctrlisync. But in this example, the resulting execution graph is e�ectively the same

S. Liu, J. Bender, and J. Palsberg 6:5

Figure 3 volatile-non-sc.4.ppc translated to Power using the revised compilation scheme, Forbidden.

The Power memory model [14] allows the behavior annotated in Fig. 2. The full trace of
the execution can be found in the full version of this paper. Here we give a brief explanation.
First note that a write operation is split into multiple steps and can be propagated to foreign
threads in di�erent orders if not properly synchronized. Furthermore, the lwsync in P3 is
not su�cient in this case. In particular, the lwsync does not require an acknowledgement
before proceeding to the next instructions and it only requires (c) Wy = 1 to be propagated
when itself needs to be propagated to the thread (the cumulativity of lwsync). Since P4

needs to read from (e) Wx = 1, which is subsequent to (B2), (B2) needs to be propagated to
P4 before (e) Wx = 1 is propagated to P4. The propagation of (B2) lwsync makes sure that
(c) Wy = 1 is propagated to P4 before it can read x (even though it doesn’t really need to
read the value of y). On the other hand, P1 does not have any instructions reads from an
instruction of P3 that comes after (in program order) (B2). Therefore, it does not require (c)
and (B2) to be propagated to it when it executes (b). As a result, (c) can be propagated to
P1 long after reaching P3 and hence letting P3 and P1 have di�erent views of the memory
during the execution. When P1 tries to read the value of y, it can only get an initial value
of 0 since the newer value has not been propagated to P1 yet. Consequently, this non-SC
execution is allowed (consistent) under the Power memory model, despite that the semantics
of the “all-Volatile” source program requires it to be forbidden.

The solution to fix this issue is quite straightforward. Instead of letting Volatile read
be translated using “leading fence” while Volatile write be translated using “trailing fence”,
they should both use the same fence inserting strategy (both leading fence or both trailing
fence).3 Therefore, the correct compiler scheme for Volatile should be:

R
V hwsync ; lwz ; lwsync

W
V hwsync ; stw

With the revised compilation scheme we can demonstrate that the example of Fig. 1 is
forbidden in accordance with the required SC semantics. The resulting execution graph is
shown in Fig. 3. While most of this example matches Fig. 2, (B2) now is a hwsync instruction.
As an e�ect of this change, (B2) is now required to be propagated to every thread and get

as C1’s because the e�ect of ctrlisync is subsumed into the lwsync or the hwsync instruction that it
follows. In addition, we have simplified the compiled code (such as eliminating the fence instructions at
the beginning or end of the threads and merging consecutive fence instructions) without changing its
semantics for clarity here.

3 Here we choose to show the leading fence strategy for simplicity. However, the trailing fence strategy
is symmetric to leading fence and the same correctness proof works for both conventions given it’s
used consistently (more details can be found in Section 4.1). In practice, it is usually preferable to use
trailing fence strategy for better performance.

ECOOP 2022

6:6 Compiling Volatile Correctly in Java

acknowledged before start executing (e). As a result, at the time when (c) is propagated
to P4 (as a result of the cumulative e�ect of (B2) just like in Section. 2), it must also have
propagated to P1 due to the acknowledgement required by the hwsync at (B2). Therefore,
it becomes impossible for (b) to read the value 0 because Power requires reads to always
read from the latest value that has been propagated to the thread. That is, this execution is
now forbidden by Power, aligning with the sequentially consistent semantics promised by the
Java Volatile mode. Note that the reasoning is the same if we use a “trailing fence” scheme.
The key is to deploy a fence insertion strategy such that there is a hwsync fence inserted
between every pair of Volatile accesses.

Interestingly, we found similar compilation schemes applied to other architectures in
HotSpot as well. This is not an accident. The source of this compiling behavior stems from
the IR phase of the compiler. At the IR (called the Ideal Graph IR in HotSpot) level, a
Volatile read is translated to a fullFence() followed by an Acquire read; a Volatile write
is translated to a Release write followed by a fullFence(). Then each compiler back end
translates the code further using the corresponding template file that maps the IR to specific
architecture instructions. In the case of Power, a fullFence() is mapped to the hwsync

instruction and Release-Acquire accesses are implemented using the lwsync instruction. While
the example we provide here focuses on the compilation to Power, the more fundamental
issue here is a lack of fullFence() between a Volatile read and a Volatile write at the IR
encoding level. JAM19 aligns with this encoding when specifying the semantics of Volatile
memory operations. As a result, JAM19 also exhibits the same problem. That is, when all
memory accesses are Volatile, JAM19 does not guarantee sequential consistency.

3 Formal Model

In this section we present the revised model JAM21, which we use as our theoretical
foundation for proving compiler correctness in the rest of the paper. We begin by introducing
the basic syntax (Section 3.1) used in the rest of the paper. Then we give the formal definition
of JAM21 in Section 3.2.

3.1 Basic Syntax
We adopt the syntax of [3] and the cat language [1] in addition to some utility functions.

Given a program P œ P, there is a set of executions (run-time traces) associated with P .
We call the executions histories of P and use H to denote a single history. Each execution
history consists of sets of memory access events specified by P . In particular:

H.E denotes the whole set of memory events of H.
H.F denotes the whole set of fence events of H.
H.IW denotes the set of initialization writes of H.
H.FW denotes the set of final writes of H
H.W denotes the set of write events in H.
H.R denotes the set of read events in H.
H.RMW denotes the set of read-modify-write events in H.

Note that we treat each RMW events as a single event and H.RMW ™ H.W and H.RMW ™ H.R. In
addition, for RMW operations such as compare-and-swap (CAS), we assume the operation is
on its success comparison path. They are sometimes implemented using LL/SC instructions
on hardware, which cannot guarantee atomicity if the comparison fails. We assume each
write event to the same memory location has an unique value for simplicity.

S. Liu, J. Bender, and J. Palsberg 6:7

For each memory event i, we define the following utility functions to extract memory
event attributes:

H.AccessMode(i) returns the Access Mode of event i in H.
H.val(i) returns the value of event i in H.
H.loc(i) returns the shared memory location of event i in H.
H.T id(i) returns the thread identifier of which i is executed from

Finally, we use the symbol H to denote the set of all execution histories.
The memory events of each H are related by order relations.
The program order (po) is a partial order relation (po ™ H.E ◊ H.E) specified by P . We
use the notation i1

po≠≠æ i2 to denote the pair of events Èi1, i2Í related by po and H.po to
denote the set of all pairs relates by po in H.
The reads-from (rf) order is a partial order relation (rf ™ H.W ◊ H.R). For each read
event i2, there exists a unique write event i1 such that H.val(i1) = H.val(i2) and
H.loc(i1) = H.loc(i2). We use the notation i1

rf≠≠æ i2 to denote the pair of events Èi1, i2Í
related by rf and H.rf to denote the set of all pairs relates by rf in H.
Model-Specific relations. There are sets of relations that are specifically defined by the
memory model. They are derived from the event attributes, po, and rf using the semantic
rules of the memory model. We will detail them in the next few sections. We use the
notation i1

R≠≠æ i2 to denote the pair of events Èi1, i2Í œ H.R.

We also use operations on relations: given relations R1 and R2, we use composition R1;R2,
union R1|R2, intersection R1 & R2, complement ~R1, transitive closure R

+
1
, and inversion R

-1
1
.

We may present an execution history H as a graph. An execution graph consists of a set
of nodes labeled with unique identifiers, and a set of labeled edges. Each labeled node refers
to an executed memory access.

Lastly, we use the notation acyclic(R≠≠æ) to denote that R is acyclic in the execution
history.

3.2 The JAM21 Model
In this section, we present the JAM21 model. The full definition of the relations in JAM21

can be found in the full version of this paper. We explain several excerpts of the formal
model.

There are five available access modes in JAM21: Plain mode, Opaque mode, Release mode,
Acquire mode, and Volatile mode. The synchronization e�ect of the access modes are partially
ordered using ı :

Plain ı Opaque ı {Release,Acquire} ı Volatile.

3.2.1 Visibility
At the center of JAM21 is the notion of visibility orders (vo). The most basic form of visibility,
vo includes the reads-from (rf) relation. Intuitively, a read has certainly seen the e�ects of
the write it takes its value from. Otherwise, visibility comes from synchronization4. Both

4 Here, we use the high-level term “synchronization” for any memory consistency guarantee among
instructions. We noticed that the usage of this term might di�er outside of this paper. Therefore, we
try to avoid using this term ambiguously to avoid confusion.

ECOOP 2022

6:8 Compiling Volatile Correctly in Java

Volatile (V) and Release(REL)-Acquire(ACQ), (RA as the union) accesses provide synchronization
and thus visibility. Note that Volatile accesses are also included in the set of accesses that are
considered Release-Acquire by the model. Further, vo can be derived from ra or svo orders,
which captures the synchronization e�ects of Release-Acquire memory events or fences, spush
or volint orders, which capture the synchronization e�ects of Volatile memory events or
fullFence()s. In addition, the pushto order is trace order (to) restricted to the domain
of spush and volint. Composing pushto with spush or volint emulates the cross-thread
total order among fullFence()s, which is also part of the vo order. Finally, po to the same
location is also included as part of the vo definition.

ra , po ; [REL | V] | [ACQ | V] ; po

svo , po ; [F & REL] ; po ; [W] | [R] ; po ; [F & ACQ] ; po

spush , po ; [F & V] ; po

volint , [V] ; po ; [V]

vvo , rf | svo | ra | spush | volint | pushto ; (spush | volint)

vo , vvo+ | po-loc

Note that the definition of volint has been corrected from JAM19 to ensure sequential
consistency for Volatile.

3.2.2 Coherence
The coherence order, co-jom, is an order among writes to the same location. Coherence
order edges can be derived using the vo order and the po order among memory accesses.

WWco(rel) , {Èi1, i2Í | Èi1, i2Í œ H.rel · i1, i2 œ H.W · H.loc(i1) = H.loc(i2) · i1 ”= i2}

coww , WWco(vo)

cowr , WWco(vo ; rf≠1)

corw , WWco(vo ; po)

corr , [O | RA | V] ; WWco(rf ; po ; rf≠1) ; [O | RA | V]

co-jom , coww | cowr | corw | corr

Note that co-jom is di�erent from the definition of co in other memory models such
as Power and x86-TSO. Instead of enumerating all possible total coherence order to check
the consistency of a given execution history, JAM21 derives coherence order co-jom among
memory events from their known relations. Therefore, co-jom is a partial order among
writes to the same location in JAM21. We use the notation i1

co-jom≠≠≠≠≠æ i2 to denote the pair
of events Èi1, i2Í related by co-jom and H.co-jom to denote the set of all pairs relates by
co-jom in H. We use the simpler name co to denote co-jom when the context is clear.

In addition, di�erent from JAM19, Plain mode reads to the same location ordered by po

can be reordered by compiler and therefore cannot be used to derive co-jom order.

3.2.3 Execution Consistency
Axiomatic models define program semantics as the set of allowed executions. We adopt the
same definition of candidate execution from [1].

S. Liu, J. Bender, and J. Palsberg 6:9

I Definition 1 (Consistent Candidate Execution). Given a program P and a memory model

M , an execution history H is a M-consistent candidate execution of P if and only if:

H is a candidate execution of P (specified by the architecture of the programming language

of which P is written in).

H is M-consistent.

We denote the set of all M -consistent candidate executions of P by HistoriesM (P).

We now have all the definitions needed to define execution consistency under JAM21.

I Definition 2 (JAM21-consistency). An execution history H is JAM21-consistent if it is
trace coherent and satisfies the following two requirements:

1. No-Thin-Air: po | rf is acyclic. acyclic(po | rf≠≠≠≠≠æ)
2. Coherence.: co-jom is acyclic, acyclic(co-jom≠≠≠≠≠æ)
We say such an execution history H is allowed by JAM21. Otherwise, it is forbidden.

For the JAM21 model, we use HistoriesJAM21(P) to denote the set of all JAM21-
consistent execution histories of P .

JAM21 satisfies a set of properties such as the DRF-SC Theorem. We show the theorems
and the proofs in the full version of this paper.

3.2.4 Validation with Litmus Tests
The experimental validation of the JAM21 model includes two parts.

First, we implement the Java architecture in Herd7. Herd7 [1] was developed to simulate
program executions with user-defined memory models. An architecture in Herd7 provides
the parser for litmus tests written in the language corresponding to the architecture and an
operational semantics of the instructions that appear in litmus tests. Herd7 uses the parser
and the instruction semantics from the architecture to form an internal representation of the
input litmus test and generate the set of all possible executions. Then, Herd7 checks the
consistency of the executions using memory models written in the cat language. As of today,
several mainstream architectures, such as C/C++11 [6], x86 [15], ARM [2], and Power [14],
have been implemented and included in Herd7’s o�cial repository. Unfortunately, Java is
not. JAM19 [3] validated its formalization by mapping memory events to other architectures’
events that exists in the Herd7 repository and run the litmus tests in the architecture’s
language. The mapping roughly captures part of the compilation scheme but it is neither
complete nor proven sound. For example, in its mapping to ARMv8, Volatile accesses are
ignored and not mapped to any memory event. Hence this approach is invalid and the results
cannot be trusted though they show intentions on how JAM19 was expected to behave.
Therefore, we extend the Herd7 tool suite with the Java architecture and translate the set
of litmus tests used for testing JAM19 to Java5. A detailed description of each supported
instruction is shown in the full version of this paper.

Second, we validate the JAM21 model using the Java translation of the set of litmus
tests that was originally used to validate JAM19 and compare their outcomes. The results
are mostly the same as the results from JAM19 except for three cases that are relevant
to the inconsistency issue discussed earlier in this paper because we wish to fix the issue
while keeping other parts of the model unchanged. The three exceptions reveal another

5 Note that not all tests are translatable. For example, for the cases that test address dependencies, there
is no corresponding Java version since the notion of address dependency does not exist in Java. We
drop a small set of litmus tests due to this reason.

ECOOP 2022

6:10 Compiling Volatile Correctly in Java

aspect of the change, accommodating both the leading fence convention and the trailing
fence convention, whereas JAM19 forced the compiler to choose a particular (problematic)
convention. Since the compiler is free to choose either convention, a full synchronisation is
only guaranteed to appear between a pair of Volatile accesses. In e�ect, certain executions
that was forbidden by JAM19 are allowed by JAM21 since it is no longer guaranteed that
Volatile writes are followed by a full synchronisation and Volatile reads are prepended with a
full synchronisation. In addition, we have added new litmus tests for showing the change
in the semantics of Volatile, volatile-non-sc.4 and volatile-non-sc.5. While JAM19 allows the
non-sequentially consistent behavior, JAM21 correctly forbids them. We further translated
the examples to Power using the problematic compilation scheme, volatile-non-sc.4.ppc and
volatile-non-sc.5.ppc, and the tests are indeed allowed by the Power memory model. Please
see the full version of this paper for a detailed report.

4 Compilation Correctness to Power

In this section, we show that the revised compilation scheme for Power is correct with respect
to the Power memory model [14]. We use an intermediate model for the Java Access Modes
that is observationally equivalent to JAM21, which we call JAM

Õ
21
. We include the detailed

definition of JAM Õ
21

and the proofs for their observational equivalence in the full version of
this paper. We use JAM

Õ
21

to prove that the revised compilation scheme to Power is correct.

4.1 The Power Memory Model
We use the Power memory model defined in Herd7 [1], which consists of the following basic
order definitions (Please see the full version of this paper for the full semantics):

po and rf follows the same definitions as in JAM21 (as described in Section. 3).
co is the union of total orders among writes to the same location. Additionally, if i1 and
i2 are events on di�erent threads and i1

co≠≠æ i2, then i1
coe≠≠≠æ i2.

ctrl is the control dependency between memory accesses.
ppo is the set of preserved program orders. The detailed definition can be found in the
full version of this paper.
chapo , rfe | fre | coe | (fre ; rfe) | (coe ; rfe)
com , rf | fr | co
po-loc is a subset of po that relates accesses to the same locations.
rmw relates the read and the write access from the same RMW memory event.
hb , ppo | (sync | lwsync) | rfe
propbase , ((sync | lwsync) | (rfe ; (sync | lwsync))) ; hb

ú

prop , propbase&(W ú W) | (chapo? ; propbase
ú
; sync ; hb

ú)
Additional order definitions can be found in the full version of this paper.

I Definition 3 (Power Consistency). An execution history H is Power-consistent if it is
trace coherent and satisfies the following six requirements:

1. SC-per-location: po-loc | com is acyclic.

2. Atomicity: rmw & (fre ; coe) is empty.

3. No-Thin-Air: hb is acyclic.

4. Propagation: (co | prop) is acyclic.

5. Observation: fre; prop; hbú
is irreflexive.

6. SCXX: co | (po & (X ú X)) is acyclic (where X denotes atomic accesses)

We say such an execution history H is allowed by Power. Otherwise, it is forbidden.

S. Liu, J. Bender, and J. Palsberg 6:11

getOpaque() lwz ; cmp ; bc
setOpaque() stw

getAcquire() lwz ; lwsync
setRelease() lwsync ; stw

getVolatile() hwsync ; lwz ; lwsync
(Or getVolatile() lwz ; hwsync for trailing fence convention)

setVolatile() hwsync ; stw
(Or setVolatile() lwsync ; stw ; hwsync for trailing fence convention)

AcquireFence() lwsync
ReleaseFence() lwsync

fullFence() hwsync
getAndAdd() hwsync ; _1: ldarx ; add ; stdcx. ; bne _1 ; lwsync

(Or getAndAdd() lwsync ; _1: ldarx ; add ; stdcx. ; bne _1 ; hwsync for trailing
fence convention)

getAndAddAcquire() _1: ldarx ; add ; stdcx. ; bne _1 ; lwsync
getAndAddRelease() lwsync ; _1: ldarx ; add ; stdcx. ; bne _1

Figure 4 Compilation to Power.

4.2 Compilation Scheme
We use the compilation scheme in Fig. 4. Note that this is slightly di�erent from the
compilation scheme found in OpenJDK HotSpot compiler in that each Opaque mode read is
translated to a load instruction followed by a conditional branch. This enables us to ensure
the No-Thin-Air property as it is not guaranteed in the Power memory model. The problem
of Out-of-Thin-Air in axiomatic models has been an active research area for a long time and
there exists various ways to use weaker compilation schemes while still ruling out thin-air
reads. However, it is out of the scope of this paper and here we adopt the stronger scheme for
Opaque mode to simplify the proofs. Additionally, we fix the compilation scheme for Volatile
as suggested in Section 2. Note that both leading fence and trailing fence conventions ensure
a hwsync instruction is inserted between each pair of Volatile mode accesses as long as they
are used consistently (use the same convention for Volatile writes and reads). Therefore, the
proof for the trailing fence convention can be carried out in a very similar way as the proof
for the leading fence convention.

We start our proof by defining a CompilesTo relation over execution histories that relates
source level executions to target level executions. Intuitively, the process of compilation can
be seen as a transformation function on executions from source level to target level. With
the CompilesTo relation, we can characterize a subset of target level executions that are
constructed particularly through the compilation (following a given compilation scheme)
from the source level. Note that at this step we do not check whether the resulting execution
is consistent under the target level memory model, since the consistency of an execution is
checked after the execution is constructed in axiomatic memory models.

I Definition 4 (Compilation of an Execution). We define the “CompilesTo” relation ;™ H◊H

for the compilation from Java to Power as the following: Given a Java program Psrc, let

Ptgt be the target-level program compiled from Psrc using the compilation scheme in Fig. 4

(using the leading fence convention). Let Hsrc be a candidate execution history of Psrc and

Htgt be a candidate execution history of Ptgt. We say Hsrc ; Htgt if:

Htgt.IW = Hsrc.IW

ECOOP 2022

6:12 Compiling Volatile Correctly in Java

Htgt.FW = Hsrc.FW
Htgt.E = Hsrc.E
Htgt.rf = Hsrc.rf

Htgt.po = Hsrc.po

Htgt.co ™ Hsrc.to
If i1 œ Hsrc.E, irmw œ Hsrc.RMW and irmw

po≠≠æ i1, then irmw
ctrl≠≠≠≠æ i1 in Htgt

If i
ˆO

R œ Hsrc.R, i1 œ Hsrc.E and i
ˆO

R
po≠≠æ i1, then iR

ctrl≠≠≠≠æ i1 in Htgt

If i1, i2 œ Hsrc.E and i1
push≠≠≠≠æ i2, then i1

sync≠≠≠≠æ i2 for i1, i2 œ Htgt.E

If i1, i2 œ Hsrc.E and i1
ra≠≠æ i2, then i1

lwsync≠≠≠≠≠æ i2 for i1, i2 œ Htgt.E

Once we have the source level and target level execution histories, we use the memory
model to check for consistency. A correct compilation, intuitively, should not introduce any
new program behavior. In this context, it means there should not be any execution Hsrc that
is forbidden by the source level memory model being related (by the “CompilesTo” relation)
with a Htgt that is allowed by the target level memory model. That is, if Htgt is consistent
under the target level memory model, then Hsrc should also be consistent under source level
memory model. Formally, we have the following definition (recall that we use HistoriesM (P)
to denote the set of consistent execution histories if a program P under a memory model M).

I Definition 5 (Compilation Correctness). Let Psrc be a source program and S be a memory

model that supports the source language, Ptgt be the target program compiled from Psrc using

a compilation scheme and T be a memory model that supports the target language. We say a

compiler that compiles Psrc to Ptgt is correct if for all Htgt œ HistoriesT (Ptgt) there exists

a Hsrc œ HistoriesS(Psrc) such that Hsrc ; Htgt.

4.3 Proof of Compilation Correctness
We leverage an intermediate memory model, JAM

Õ
21
, to prove the compilation correctness to

Power. While the complete definition of JAM
Õ
21

can be found in the full version of this paper,
it is important to note that JAM

Õ
21

is observationally equivalent to JAM21, which means
they allow the same visible program behaviors given the same program. Intuitively, each
consistent execution under JAM21 has a corresponding consistent execution under JAM

Õ
21

with the same set of events and the same observable value on each event. Formally, we give
the following definitions for observational equivalence.

I Definition 6 (Observational Equivalence of Execution Histories). Given a program P , let H

and H
Õ
be two execution histories of P . We say H and H

Õ
are observationally equivalent

if:

H.IW = H
Õ
.IW

H.FW = H
Õ
.FW

H.E = H
Õ
.E

H.po = H
Õ
.po

H.rf = H
Õ
.rf

’i œ H.E, H.AccessMode(i) = H
Õ
.AccessMode(i)

I Definition 7 (Observational Equivalence of Memory Models). Given a program P , let M1

and M2 be two memory models that support the architecture of the programming language

that P is written in. Let HistoriesM1(P) be the set of all M1-consistent candidate executions

of P ; let HistoriesM2(P) be the set of all M2-consistent candidate executions of P . We say

M1 and M2 are observationally equivalent if:

S. Liu, J. Bender, and J. Palsberg 6:13

(∆) For all H1 œ HistoriesM1(P), there exists H2 œ HistoriesM2(P) such that H1 is

observationally equivalent to H2.

(≈) For all H2 œ HistoriesM2(P), there exists H1 œ HistoriesM1(P) such that H2 is

observationally equivalent to H1.

Then we prove the compilation correctness from JAM
Õ
21

to Power.

I Lemma 8 (JAM Õ
21

to Power). Let Psrc be a Java program, Ptgt be the Power program

compiled from Psrc using the compilation scheme in Fig. 4 (with the leading fence convention).

For all Htgt œ HistoriesPower(Ptgt) there exists a Hsrc œ HistoriesJAM Õ(Psrc) such that

Hsrc ; Htgt.

Please see the full version of this paper for the proof.
Finally, we associate JAM21 with JAM

Õ
21

through the notion of observational equivalence
and prove the compilation correctness from JAM21 to Power.

I Theorem 9 (Compilation Correctness to Power (Leading Fence Convention)). The compilation

from Java to Power following the compilation scheme in Fig. 4 (using the leading fence

convention) is correct. That is, let Psrc be a Java program, Ptgt be the Power program

compiled from Psrc using the compilation scheme in Fig. 4 (using the leading fence convention).

For all Htgt œ HistoriesPower(Ptgt) there exists a Hsrc œ HistoriesJAM (Psrc) such that

Hsrc ; Htgt.

Please see the full version of this paper for the proof.

I Corollary 10 (Compilation Correctness to Power (Trailing Fence Convention)). The com-

pilation from Java to Power following the compilation scheme in Fig. 4 (using the trailing

fence convention) is correct. That is, let Psrc be a Java program, Ptgt be the Power program

compiled from Psrc using the compilation scheme in Fig. 4 (using the trailing fence conven-

tion). For all Htgt œ HistoriesPower(Ptgt) there exists a Hsrc œ HistoriesJAM (Psrc) such
that Hsrc ; Htgt.

Please see the full version of this paper for the proof.

5 Compiler Transformations

One important aspect of compilers is the program transformations that they apply to the
program. A correct compiler transformation should not introduce any new program behavior.
While this is relatively simple for sequential programs, it can yield subtle issues when
applying the same transformations to concurrent programs. A memory model’s task is
then to accommodate a set of common program transformations while still provide intuitive
synchronization guarantees to the programmers. In Section 4 we show that Java and
C/C++11 can use the same compilation scheme to Power (and x86, please see the full version
of this paper). However, Java has a stronger semantics for Volatile comparing to seq_cst

in C/C++11 and can adopt only a strict subset of the transformations that are valid for
C/C++11.

In this section, we use the set of compiler transformations detailed by [6] and compare their
soundness in Java with C/C++11. We provide formal proofs for the sound transformations
and counter-examples for invalid transformations. We conclude this section by discussing
the implications of our results.

To prove a transformation is valid, intuitively, we show that there does not exist a Hsrc

of Psrc such that it is forbidden by JAM21 but the corresponding Htgt of Ptgt is allowed.

ECOOP 2022

6:14 Compiling Volatile Correctly in Java

Transformation C/C++11 Java
Strengthening [Sec. 5.1] 3 3

Sequentialisation [Sec. 5.2] 3 3

Reordering [Sec. 5.3] See Fig. 6
Merging [Sec. 5.4] See Fig. 7
Register Promotion [Sec. 5.5] 3 For locations that does not

have Volatile access

Figure 5 Compiler Transformations in C/C++11 and Java.

I Definition 11 (Valid Program Transformation). Let Psrc be a Java program which has a

set of candidate executions, Histories(Psrc). Let T : H æ H be a program transformation

and Htgt = T (Hsrc) for each candidate execution Hsrc of Psrc. Then we say T is valid
under JAM21 if and only if for each Htgt, if Htgt is JAM21-consistent, then Hsrc is also

JAM21-consistent.

The results for Java comparing them C/C++11 [6] are summarized in Fig. 5.

5.1 Strengthening
Strengthening transforms the access mode of accesses to stronger access modes. It is supported
by JAM21 due to the monotonicity property of the memory model. The formal theorem is
the following:

I Theorem 12 (Strengthening). Let Htgt an execution of Ptgt, which is obtained from applying

Strengthening to a program Psrc. There exists an execution Hsrc of Psrc such that:

Hsrc.E = Htgt.E
Hsrc.po = Htgt.po

Hsrc.rf = Htgt.rf

’i œ Hsrc.E, Hsrc.AccessMode(i) ı Htgt.AccessMode(i)
If Htgt is JAM21-consistent, then Hsrc is JAM21-consistent.

Proof. By Monotonicity of JAM21, all the constraints in Hsrc are preserved in the strength-
ened execution Htgt. Therefore, if Htgt is JAM21-consistent, so is Hsrc. J

5.2 Sequentialisation
Sequentialisation transforms two concurrent accesses into accesses in a single sequential
process. It is natually supported by JAM21 because sequentialisation does not remove any
synchronization from the program.

I Theorem 13 (Sequentialisation). Let Psrc be a Java program and Ptgt be a Java program

obtained by performing a sequentialisation operation on a pair of accesses a and b. Let Htgt

be an execution of Ptgt. Then there exists an execution Hsrc of Psrc such that

Hsrc.po fi {Èa, bÍ} = Htgt.po where Èa, bÍ /œ Hsrc.po and Èb, aÍ /œ Hsrc.po

Hsrc.rf = Htgt.rf

Hsrc.E = Htgt.E

Hsrc.to = Htgt.to
Hsrc.IW = Htgt.IW

’i œ Hsrc.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
and if Htgt is JAM21-consistent, then Hsrc is JAM21-consistent.

S. Liu, J. Bender, and J. Palsberg 6:15

Rm2
y Wm2

y RMWm2
y Fm2

Rm1
x m1 ı Opaque m1,m2 ı

Opaque ·
(m1 = Plain ‚
m2 = Plain)

m1 = Plain ·
m2 ı Acquire

(m1 ı Opaque · m2 =
Release · ’i, Fm2 po≠≠æ i ∆ i /œ
H.W) ‚ (m1 = Acquire · m2 =
Acquire) ‚ (m1 = Acquire ·
m2 = Release)

Wm1
x m1 ”= Volatile‚

m2 ”= Volatile

m2 ı Opaque m2 ı Acquire (m2 = Acquire) ‚ (m2 =
Release · ’i, Fm2 po≠≠æ i ∆
i /œ H.W) ‚ (m2 = Release ·
’i, Fm2 po≠≠æ i · i œ H.W ∆
AccessMode(i) = Release)

RMWm1
x m1 ı Release m1 ı Release·

m2 = Plain

- (m1 ˆ Acquire · m2 =
Acquire) ‚ (m2 = Release ·
’i, Fm2 po≠≠æ i ∆ (i œ H.R ‚
(i œ H.W · AccessMode(i) =
Release)))

Fm1 (m1 =
Release) ‚
(m1 =
Acquire ·
’i, i po≠≠æ
Fm1 ∆ i /œ
H.R)

m1 = Release·
m2 ˆ Release‚
(m1 =
Acquire ·
’i, i po≠≠æ
Fm1 ∆ i /œ
H.R)

m1 = Release·
m2 ˆ Release‚
(m1 =
Acquire ·
’i, i po≠≠æ
Fm1 ∆ i /œ
H.R)

(m1 = Release · m2 =
Acquire) ‚ (m1 = Acquire ·
’i, i po≠≠æ Fm1 ∆ i /œ H.R) ‚
(m2 = Release · ’i, Fm2 po≠≠æ
i ∆ i /œ H.W)

Figure 6 Allowed Deordering Pairs in JAM21.

Proof. Assume towards contradiction that Hsrc is not JAM21-consistent. Then there are
two cases: either there is a (po | rf)+ cycle or a co cycle in Hsrc. Whether or not a and b

are included in this cycle, adding a po edge between a and b cannot eliminate this cycle
(although it might introduces new cycles). Therefore, Htgt is also not JAM21-consistent,
contradicting to our assumption. J

5.3 Reordering
The operation of reordering can be seen as composing deordering with sequentialisation. Since
we know that sequentialisation is sound in JAM21, we only need to show that deordering is
sound in order to show reordering is sound in JAM21.

Deordering

Deordering is a transformation that turns a pair of accesses related by a po relation into a
pair of concurrent accesses. In e�ect, it removes an po edge in the execution graph.

First, we adopt the same definition of adjacent events from [6]:

I Definition 14 (Adjacent Events). Two events a and b are adjacent in a partial order R if

for all c, we have:

c
R≠≠æ a ∆ c

R≠≠æ b

b
R≠≠æ c ∆ a

R≠≠æ c

For Java, the table of allowed reordering two adjacent events (with each row as the first
event and column as the second event) is shown in Fig. 6 (some of the cases are di�erent
from C11 [6] and we have marked them in red). Intuitively, the sound deorderable pairs are
ordered by the po edges that does not impose any synchronization in the program. Therefore,
deordering (removing the po edge) does not introduce new program behavior.

ECOOP 2022

6:16 Compiling Volatile Correctly in Java

Name C/C++11 Java

Read-read Merging Rm; Rm Rm RmıAcq; RmıAcq Rm

Write-write Merging Wm; Wm Wm WmıRel; WmıRel Wm

Write/RMW-read Merging Wm; Racq Wm Wm; RmıOpq Wm

Wsc; Rsc Wsc 7

RMWm; Rmrım RMWm RMWm; RmıOpq RMWm

Write-RMW Merging Wmwım; RMWm Wmw WmwıRel; RMWm<Vol Wmw

RMW-RMW Merging RMWm; RMWm RMWm RMWm<Vol; RMWm<Vol RMWm

Fence-fence Merging Fm; Fm Fm Fm; Fm Fm

Figure 7 Mergable Pairs in C/C++11 [6] and Java.

To prove that JAM21 supports the reordering shown in this table, we need to prove each
cell shown in the table is valid for JAM21.

I Theorem 15 (Deordering). Let Psrc be a Java program and Ptgt be a Java program obtained

by performing a deordering operation on a pair of accesses a and b according to Fig. 6. Let

Htgt be an execution of Ptgt. Then there exists an execution Hsrc of Psrc such that

Hsrc.po = Htgt.po fi {Èa, bÍ} where a and b are po-adjacent

Hsrc.rf = Htgt.rf

Hsrc.E = Htgt.E

Hsrc.to = Htgt.to
Hsrc.IW = Htgt.IW

’i œ Hsrc.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
and if Htgt is JAM21-consistent, then Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.
Reordering, as mentioned previously, can be decomposed into two steps: deordering and

sequentialisation. Since we have already shown the soundness of the two transformations,
the soundness of reordering follows naturally.

I Corollary 16 (Reordering). JAM21 supports the reordering transformation for pairs of

adjacent accesses shown in Fig. 6.

5.4 Merging
Merging transforms two adjacent accesses into one single equivalent access to reduce the
number of memory accesses in the program. We have grouped all types of merging transfor-
mations appeared in C/C++11 [6] here in one section. A summarized result of mergable
pairs comparing with C/C++11 can be found in Fig. 7. The results are mostly similar except
for Volatile. Many merging transformation are invalid for Volatile because they remove the
cross-thread synchronization of Volatile.

S. Liu, J. Bender, and J. Palsberg 6:17

5.4.1 Read-Read Merging
Read-read merging is sometimes done when the compiler is optimizing redundant loads in
the same thread. When we are encountering two consecutive reads to the same location,
the first read is unchanged but the second read becomes a local read without accessing the
memory.

Let aÕ and b be two adjacent read accesses reading from the same write access a. a rf≠≠æ a
Õ

and a
rf≠≠æ b, and a

Õ po≠≠æ b. Assuming AccessMode(aÕ) = AccessMode(b), then
’i, aÕ po≠≠æ i ∆ b

po≠≠æ i

’i, aÕ ra≠≠æ i ∆ b
ra≠≠æ i

’i, aÕ push≠≠≠≠æ i ∆ b
push≠≠≠≠æ i

’j, j po≠≠æ b ∆ j
po≠≠æ a

Õ

For executions, this corresponds to the following transformation in the execution graph:
since the value of r1 and r2 are guaranteed to have the same value in Ptgt, we know
that this corresponds to the execution of Psrc where the two read accesses read from the
same write access. Then we want to show that, if Htgt is JAM21-consistent, Hsrc is also
JAM21-consistent.

I Theorem 17 (Read-Read Merging). Let Htgt be an JAM21-consistent execution. Let

a œ Htgt.R\RMW and let a
Õ œ Htgt.E such that a

rf≠≠æ a
Õ
. Let b /œ Htgt.E. There exists a

Hsrc such that:

Hsrc.po = Htgt.po fi {Èa, bÍ} fi {Èi, bÍ | i po≠≠æ a} fi {Èb, jÍ | a po≠≠æ j}
Hsrc.rf = Htgt.rf fi {ÈaÕ

, bÍ}
Hsrc.E = Htgt.E fi {b}
Hsrc.to = Htgt.to fi {Èa, bÍ} fi {Èi, aÍ | i to≠≠æ b} fi {Èa, jÍ | b to≠≠æ j}
Hsrc.IW = Htgt.IW

’i œ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
b œ Hsrc.R
Hsrc.AccessMode(b) = Hsrc.AccessMode(a) ı Acquire

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.
Note that JAM21 does not allow read-read merging if the two read accesses are both

Volatile mode reads. We provide an example of this in the full version of this paper.

5.4.2 Write-Write Merging
The write-write merge transformation refers to the program transformation that merges
two consecutive write operations into one by removing the former one. JAM21 support
write-write merge when the access modes of the two writes are the same and they are not
Volatile mode accesses.

Let a and b be the two adjacent writes such that a
po≠≠æ b. We once again have the

properties:
’i, i po≠≠æ a ∆ i

po≠≠æ b

’j, b po≠≠æ j ∆ a
po≠≠æ j

’i, i ra≠≠æ a ∆ i
ra≠≠æ b

We have the following theorem.

I Theorem 18 (Write-Write Merging). Let Htgt be an JAM21-consistent execution. Let

b œ Htgt.W\RMW and let a /œ Htgt.E and loc(a) = loc(b) · ’i œ Htgt.W, loc(i) = loc(b) ∆
val(a) ”= val(i). There exists a Hsrc such that:

ECOOP 2022

6:18 Compiling Volatile Correctly in Java

Hsrc.po = Htgt.po fi {Èa, bÍ} fi {Èi, aÍ | i po≠≠æ b} fi {Èa, jÍ | b po≠≠æ j}
Hsrc.rf = Htgt.rf

Hsrc.E = Htgt.E fi {a}
Hsrc.to = Htgt.to fi {Èa, bÍ} fi {Èi, aÍ | i to≠≠æ b} fi {Èa, jÍ | b to≠≠æ j}
Hsrc.IW = Htgt.IW

’i œ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
a œ Hsrc.W

Hsrc.AccessMode(a) = Hsrc.AccessMode(b) ı Release

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.
Note that write-write merging is not valid for Volatile mode writes. We provide an

example of this in the full version of this paper.

5.4.3 Write/RMW-read Merging
The Write/RMW-read merging refers to the program transformation that merges a write/
RMW and a read into a single write/RMW and a local access.

Similarly, the transformation with an RMW operation and a read operation optimizes
the latter read operation to read locally and in e�ect removes a memory load operation in
the execution graph.

JAM21 only support this transformation when the read operation is (or is weaker than)
Opaque mode which is di�erent from RC11 [6]’s result for C/C++11. We provide a counter-
example in the full version of this paper to show that write/RMW-read merging is invalid
when the read is (or is stronger than) Acquire mode.

I Theorem 19 (Write/RMW-Read Merging). Let Htgt be a JAM21-consistent execution. Let

a œ Htgt.W and b /œ Htgt.E. There exists a Hsrc such that:

Hsrc.E = Htgt.E fi {b}
b œ Hsrc.R

Hsrc.loc(b) = Hsrc.loc(a)
Hsrc.val(b) = Hsrc.val(a)
Hsrc.po = Htgt.po fi {Èa, bÍ} fi {Èi, aÍ | i po≠≠æ b} fi {Èa, jÍ | b po≠≠æ j}
Hsrc.rf = Htgt.rf fi {Èa, bÍ}
Hsrc.to = Htgt.to fi {Èa, bÍ} fi {Èi, aÍ | i to≠≠æ b} fi {Èa, jÍ | b to≠≠æ j}
Hsrc.IW = Htgt.IW

’i œ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
Hsrc.AccessMode(b) ı Opaque

Please see the full version of this paper for the proof.

5.4.4 Write-RMW Merging
The write-RMW merging refers to the program transformation that merges a write and a
consecutive RMW operation into a write with the value of the RMW. For example, if we
have the following pattern in a program:

x = 1;
x.getAndSet(1,2);

It can be tranformed to:

x = 2;

S. Liu, J. Bender, and J. Palsberg 6:19

Similar to write-write merging, JAM21 supports write-RMW merging when the access
mode of the write is {Opaque, Release} and the access mode of the RMW is {Acquire, Release}.

I Theorem 20 (Write-RMW Merging). Let Htgt be a JAM21-consistent execution. Let

b œ Htgt.W\Htgt.RMW, a /œ Htgt.E and v œ Val. There exists a Hsrc such that:

Hsrc.E = Htgt.E fi {a}
’i œ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
Hsrc.AccessMode(a) œ {Opaque, Release}
Hsrc.AccessMode(b) œ {Acquire, Release}
Hsrc.loc(b) = Hsrc.loc(a)
b œ Hsrc.RMW
Hsrc.val(b) = (Hsrc.val(a), v)
Hsrc.po = Htgt.po fi {Èa, bÍ} fi {Èi, aÍ | i po≠≠æ b} fi {Èa, jÍ | b po≠≠æ j}
Hsrc.rf = Htgt.rf fi {Èa, bÍ}
Hsrc.to = Htgt.to fi {Èa, bÍ} fi {Èi, aÍ | i to≠≠æ b} fi {Èa, jÍ | b to≠≠æ j}
Hsrc.IW = Htgt.IW

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.

5.4.5 RMW-RMW Merging
The RMW-RMW merging transformation refers to the program transformation that merges
two consecutive RMW operations into one such that it has the first RMW’s (expected) read
value and the second RMW’s write value. For example, if we have the following pattern in a
program:

x.getandSet(1,2);
x.getandSet(2,3);

then it might be transformed into:
x.getAndSet(1,3);

The RMW-RMW merging transformation is essentially the same as write-write merging
and read-read merging described previously. Therefore, the set of constraints on valid access
modes for merging is the intersection of the two. That is, two RMWs are mergeable if they are
both Acquire mode or Release mode. For the counter-examples showing this transformation
is invalid for Volatile accesses, please see the examples for write-write and read-read merging.

I Theorem 21 (RMW-RMW Merging). Let Htgt be a JAM21-consistent execution. Let

x be a memory location and a œ Htgt.E with Htgt.val(a) = (vr, vw), Htgt.loc(a) = x, and

Htgt.AccessMode(a) œ {Release, Acquire}. Let b /œ Htgt.E, there exists a Hsrc such that:

Hsrc.E = Htgt.E fi {b}
’i œ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
Hsrc.val(a) = (vr, v)
Hsrc.val(b) = (v, vw)
Hsrc.loc(b) = x

Hsrc.AccessMode(b) = Hsrc.AccessMode(a) œ {Release, Acquire}
Hsrc.po = Htgt.po fi {Èa, bÍ} fi {Èi, bÍ | i po≠≠æ a} fi {Èb, jÍ | a po≠≠æ j}
Hsrc.rf = Htgt.rf fi {Èa, bÍ}
Hsrc.to = Htgt.to fi {Èa, bÍ} fi {Èi, bÍ | i to≠≠æ a} fi {Èb, jÍ | a to≠≠æ j}
Hsrc.IW = Htgt.IW

ECOOP 2022

6:20 Compiling Volatile Correctly in Java

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.

5.4.6 Fence-fence Merging
The Fence-fence merging refers to the program transformation that merges two consecutive
fences of the same access mode into one. For example, if we have:

VarHandle.fullFence();
VarHandle.fullFence();

then it can be optimized to:
VarHandle.fullFence();

Since JAM21 is fence-based such that each fence is converted into an edge between
memory accesses, this is trivially supported since the execution graph before and after the
transformation is exactly the same.

5.5 Register Promotion for Non-shared Variable
Register Promotion promotes memory accesses of a non-shared memory location to local
registers. It has the e�ect of removing memory accesses for thread-local variables. JAM21

only supports register promotion for variables without any Volatile accesses in the program.
For non-Volatile accesses, since the variable is not shared across threads, it is safe to remove
them without worrying about removing synchronization from the program. In contrast,
Volatile accesses impose cross-thread synchronizations with Volatile accesses for other variables,
so removing such accesses can potentially remove important synchronization in the program
and introduce new behaviors that were previously forbidden by the memory model. We
provide a counter-example in this section showing that we cannot promote Volatile accesses
to local register accesses even if the location is only accessed by one thread.

Suppose all accesses to a memory location are in the same thread, the transformation
can be seen as two steps:
1. Weakening the accesses to Plain mode accesses
2. Removing the Plain mode accesses

I Theorem 22 (Weakening for non-shared variable). Let Htgt be a JAM21-consistent execution

such that, for all accesses i and j in Htgt.E, loc(i) = loc(j) = x ∆ T id(i) = T id(j) for some

memory location x. In addition, ’i œ Htgt.E, loc(i) = x ∆ AccessMode(i) = Plain. There

exists an execution Hsrc such that:

Hsrc.E = Htgt.E

Hsrc.po = Htgt.po

Hsrc.rf = Htgt.rf

Hsrc.to = Htgt.to
Hsrc.IW = Htgt.IW

’i œ Hsrc.E, loc(i) = x ∆ AccessMode(i) œ {Release, Acquire}

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.

I Theorem 23 (Removing Plain accesses for non-shared variable). Let Htgt be a JAM21-

consistent execution. Let x be a memory location and for all i œ Htgt.E such that loc(i) = x,

T id(i) = t for some t. Let a /œ Htgt.E. There is a Hsrc such that:

S. Liu, J. Bender, and J. Palsberg 6:21

Hsrc.E = Htgt.E fi {a}
Hsrc.loc(a) = x

Hsrc.AccessMode(a) = Plain

Hsrc.po ∏ Htgt.po

for all i œ Hsrc.E such that Hsrc.loc(i) = x, i
po≠≠æ a or a

po≠≠æ i

Hsrc.rf = Htgt.rf if a œ Hsrc.W\RMW , otherwise, Hsrc.rf = Htgt.rf fi {Èi, aÍ} such

that (i œ Hsrc.W) · (loc(i) = x) · (i po≠≠æ a) · (’j œ Hsrc.E, (loc(j) = x) · (j po≠≠æ a) ∆
(j po≠≠æ i)).
Hsrc.to = Htgt.to
Hsrc.IW = Htgt.IW

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.

Counter Example

We now show a counter example for invalid register promotion on locations with Volatile
accesses. Consider the following program:

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2

}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
X.setOpaque(2);
Z.setVolatile(1);
Y.setVolatile(1);

}

Thread3 {
Y.setVolatile(2);
X.setVolatile(1);

}

An execution with the annotated values in this program is not allowed by JAM21. The
execution graph before the transformation is shown in Fig. 8. First note that the Volatile
access on z also has Release semantics due to the monotonicity of access modes, which yields
the ra edge in Thread 2. The total order among push edges gives use two cases:
1. Wz = 1

vvo≠≠≠æ Wx = 1. Since Wx = 2
ra≠≠æ Wz = 1 and ra ™ vvo and vvo

+ ™ vo, we have
Wx = 2

vo≠≠æ Wx = 1, which contradict with the co edge established by the observation
from Thread 0.

2. Wy = 2
vvo≠≠≠æ Wy = 1. This contradict with the co edge established by the observation

from Thread 1.
In both cases there is a contradiction (a co cycle). Therefore, this execution is forbidden by
JAM21.

In this example, the memory location z is only accessed by Thread 2. It maybe tempting
to promote z to a local register on Thread 2 to reduce the number of memory instructions,
which yields the following program:

Thread0 {
int r1 = X.getOpaque();
int r2 = X.getOpaque();

}

Thread1 {
int r3 = Y.getOpaque();
int r4 = Y.getOpaque();

}

Thread2 {
X.setOpaque(2);
int z = 1
Y.setVolatile(1);

}

Thread3 {
Y.setVolatile(2);
X.setVolatile(1);

}

ECOOP 2022

6:22 Compiling Volatile Correctly in Java

Figure 8 Before Register Promotion on Volatile access (Forbidden).

Figure 9 After Register Promotion on Volatile access (Allowed).

The execution graph after the transformation is shown in Fig. 9.
The annotated program behavior becomes allowed by JAM21 after the transformation.

As the execution graph shows, since Volatile accesses also have cross-thread synchronization
e�ect, we cannot simply weaken it to a Plain access without introducing new program
behaviors.

5.6 Why are many transformations invalid for Volatile?
As we have shown, many local transformations are invalid for Volatile accesses under JAM21.
This is not a surprise and is intended to provide programmers a more intuitive semantics for
Volatile accesses.

First, as we have confirmed with the author of [9], Java’s Access Modes intend equivalent
semantics for Volatile mode and fullFence(). In this way, the programmers can easily
understand the semantics of both once they understand fullFence(). To accurately capture
this intention, JAM21 used a fence-based approach with push order to model Volatile mode.
As we described in Section 3, fullFence() in Java has cross-thread synchronization e�ects.
As a result, any local program transformation that removes a Volatile access from the
execution graph may also remove its cross-thread synchronization, and might introduce new
program behavior after the transformation. Therefore, those transformations on Volatile
accesses are mostly not allowed by JAM21. On the other hand, the sc fence in C/C++11 [6]
has slightly stronger synchronization e�ect than sc accesses so that they can be used to
restore sequential consistency when inserted between every pair of accesses. Some of the
transformations are allowed to apply to sc accesses but not to the fence version of the
program.

In addition, restricting the set of possible transformations that is allowed to apply to
Volatile variables can keep the coding process simple for programmers. From the programmers’
perspective, one of the biggest challenges of developing and debugging concurrent programs

S. Liu, J. Bender, and J. Palsberg 6:23

comes from the compiler transformations that introduces surprising program behaviors that
are not observable under sequential consistency. Therefore, restricting the set of possible
transformations on Volatile accesses can restrict the set of surprising program behaviors
that can happen when using Volatile mode, making the development process simpler. From
this perspective, JAM21 provides more synchronization guarantees for Volatile mode than
C/C++11 for sc mode atomic accesses.

Lastly, as we have confirmed with the author of [9], the current implementation of
OpenJDK JVM does not apply those transformations on Volatile accesses.

6 Performance Implications

At the time of writing, the compiler bug [17] has been reported but still not resolved. The
main argument against fixing the bug by inserting the missing fence instruction is that it
may slow down the performance significantly. In this section, we argue that this is not the
case.

The reason we only translated our volatile-non-sc example to Power instructions is
that we only expect changes in the implementation of compilers targeting Power architectures.
There is no need to change the Java compilers for x86 [15] and ARMv8 [13] all thanks to a
property called write atomicity. Write atomicity, or multicopy atomicity, ensures that, when
a write issued by a thread becomes observable by any other thread, it is observable by all
other threads in the system. The issue that we demonstrate in this paper is caused by a
write operation becoming visible to some threads before some other threads. Therefore, this
violation of sequential consistency may only be observed when compiling to non-multicopy
atomic architectures. If the underlying architecture ensures multicopy atomicity, then we
can be sure that all writes are committed in a broadcast style and Release-Acquire semantics
is su�cient. Since x86 [15] and ARMv8 [13] are multicopy atomic, we do not expect the
incorrect program behavior to appear on those architectures. Therefore, no change is needed
in compilers targeting multicopy-atomic architectures. In fact, we give a correctness proof
for x86 in the full version of this paper to concretely show that the current compilation
scheme to x86 is correct with respect to the x86-TSO memory model. Furthermore, the fence
instruction that compilers use to compile to ARMv7 is the DMB SY instruction [8], which
captures the same e�ects of a fullFence(). The only change that needs to be made is when
compiling to Power instructions. This change might slow down some programs. However,
relative to all other major factors that a�ect the performance of Java programs, we expect
the impact by this change in compilers to be small.

Furthermore, symmetric to “leading fence” scheme, the “trailing fence” scheme is also
valid. A correct compiler may choose to either of the schemes. Usually one may wish to
choose the “trailing fence” scheme for better performance. In this case, comparing to the
original compilation scheme, the fix only changes the compilation scheme for each Volatile
read:
1. Remove the hwsync in front of the lwz instruction
2. Change the lwsync following the lwz instruction to hwsync

It is easy to see that this fix only requires, in e�ect, moving the hwsync instructions that
were originally inserted before the lwz instruction, but does not add more. In addition, it
removes the lwsync instructions. Therefore, we do not expect this change to the compilation
scheme to have much performance impact as argued in the discussions in the bug report [17].

On the other hand, the impact of this change for compiler optimizations is unclear. That
is, whether this revised compilation scheme disables some of the compiler optimizations
is still a question. However, since C/C++11 compilers has long adopted this compilation

ECOOP 2022

6:24 Compiling Volatile Correctly in Java

scheme and performance has always been the first priority in their implementations, the
possibility of disabling optimisations is unlikely. We leave a detailed empirical study for
future work.

7 Related Work

7.1 Sequential Consistency Issue in C/C++11
A similar but di�erent issue in C/C++11 memory model for atomic operations with sequen-
tially consistent memory order was pointed out by Manerkar, et al. [11] and Lahav, et al. [6].
In particular, when using the “trailing fence” convention for compiling to Power and ARMv7
on GCC, the intended sequentially consistent semantics for certain atomic accesses can be
lost due to the di�erent placement of fences in the programs. In other words, the previous
C/C++11 memory model was not able to support the two existing compilation schemes on
GCC. On the other hand, JAM19 did not have the same problem. Since JAM19 defined the
semantics of Volatile mode in terms of push orders, which emulates the e�ect of a full fence,
it already supports and aligned with the existing compilation scheme found on OpenJDK
JVMs.

The problem, however, was that the existing compilation scheme does not give su�cient
synchronization to some programs with all accesses marked as Volatile. Since JAM19 models
the problematic compilation scheme, it is necessary to repair the problem for both the
compiler and the formal model.

7.2 Using Volatile to Restore Sequential Consistency in Java
Due to the complexity of the original Java Memory Model (JMM) [12], a class of bugs
caused by missing “volatile” annotations on certain shared variables, called missing-

annotation bugs, is found across real-world Java applications [10]. Aiming to improve the
safety guarantees of the Java language, volatile-by-default JVM was proposed and developed
by [10] to advocate the idea that variables should have volatile semantics by default and
relaxed semantics by choice. Following their idea, the correctness of volatile (or Volatile mode,
as they are equivalent) semantics become especially important. After all, if we cannot restore
sequential consistency by annotating every variable as volatile (or use Volatile mode for
every access), then volatile-by-default JVM would not be able to ensure intuitive program
behaviors either. As of today, we are not aware of any volatile-by-default JVM for versions
of Java after JDK9. Thus, we suggest that researchers carefully ensure the correctness of
the volatile (or Volatile mode) implementations when implementing such JVM for Java
versions after JDK9.

7.3 Memory Fairness and Compiler Transformations
Recently a declarative definition of memory fairness was proposed for axiomatic relaxed
memory models [5]. As an improvement to the existing definition of thread fairness, the
declarative memory fairness property can be easily integrated into axiomatic models with the
No-Thin-Air restriction and can be used to prove the termination of concurrent algorithms.
We noticed that the original JAM model [3] was published before this definition was proposed
and therefore did not make any assertions regarding memory fairness. We leave it as our
future work to verify whether memory fairness preserves the correctness of the compiler
transformations and the compilation schemes.

S. Liu, J. Bender, and J. Palsberg 6:25

8 Conclusion

In this paper, we have demonstrated that Java can use a compilation scheme that is similar to
C/C++11. On the other hand, one should not simply compile Java’s Access Modes the same
way as C/C++11 compiles atomic memory orders since the formal memory models supports
di�erent compiler optimizations. In the future, we hope the bug can be resolved soon and
the examples in this paper can be added to the Java Concurrency Stress Tests jcstress [16]
tool suite to aid in maintaining the correctness of the OpenJDK HotSpot implementations.

References
1 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,

testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2), July
2014. doi:10.1145/2627752.

2 ARM ARM. Architecture reference manual-armv8, for armv8-a architecture profile. ARM

Limited, Dec, 2017.
3 John Bender and Jens Palsberg. A formalization of java’s concurrent access modes. Proc.

ACM Program. Lang., 3(OOPSLA), October 2019. doi:10.1145/3360568.
4 Peter Sewell Jaroslav Sevcik. C/C++11 mappings to processors. Technical report, University

of Cambridge, October 2016. URL: https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.
html.

5 Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, and Viktor Vafeiadis.
Making weak memory models fair. Proc. ACM Program. Lang., 5(OOPSLA), October 2021.
doi:10.1145/3485475.

6 Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
sequential consistency in C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2017, pages 618–632, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3062341.3062352.

7 L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput., 28(9):690–691, September 1979. doi:10.1109/TC.1979.
1675439.

8 Doug Lea. The jsr-133 cookbook for compiler writers. http://gee.cs.oswego.edu/dl/jmm/
cookbook.html, 2011. Last modified: Tue Mar 22 07:11:36 2011.

9 Doug Lea. Using jdk 9 memory order modes. http://gee.cs.oswego.edu/dl/html/j9mm.
html, 2018. Last Updated: Fri Nov 16 08:46:48 2018.

10 Lun Liu, Todd Millstein, and Madanlal Musuvathi. A volatile-by-default jvm for server
applications. Proc. ACM Program. Lang., 1(OOPSLA), October 2017. doi:10.1145/3133873.

11 Yatin A Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi.
Counterexamples and proof loophole for the c/c++ to power and armv7 trailing-sync compiler
mappings. arXiv preprint arXiv:1611.01507, 2016.

12 Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. SIGPLAN

Not., 40(1):378–391, January 2005. doi:10.1145/1047659.1040336.
13 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.

Simplifying arm concurrency: Multicopy-atomic axiomatic and operational models for armv8.
Proc. ACM Program. Lang., 2(POPL), December 2017. doi:10.1145/3158107.

14 Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Understanding
power multiprocessors. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’11, pages 175–186, New York, NY, USA, 2011.
Association for Computing Machinery. doi:10.1145/1993498.1993520.

15 Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen.
X86-tso: A rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM,
53(7):89–97, July 2010. doi:10.1145/1785414.1785443.

ECOOP 2022

https://doi.org/10.1145/2627752
https://doi.org/10.1145/3360568
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://doi.org/10.1145/3485475
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
https://doi.org/10.1145/3133873
https://doi.org/10.1145/1047659.1040336
https://doi.org/10.1145/3158107
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443

6:26 Compiling Volatile Correctly in Java

16 Aleksey Shipilev. jcstress - the java concurrency stress tests. https://wiki.openjdk.java.
net/display/CodeTools/jcstress, 2017. Last Updated: Wed Dec 05 13:55 2018.

17 Aleksey Shipilev. [JDK-8262877] PPC sequential consistency problem: volatile stores are too
weak. Technical report, OpenJDK Bug System, March 2021. URL: https://bugs.openjdk.
java.net/browse/JDK-8262877.

https://wiki.openjdk.java.net/display/CodeTools/jcstress
https://wiki.openjdk.java.net/display/CodeTools/jcstress
https://bugs.openjdk.java.net/browse/JDK-8262877
https://bugs.openjdk.java.net/browse/JDK-8262877

