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Abstract

In this paper, we prove the stability of the Couette flow for a 2D Navier—Stokes
Boussinesq system without thermal diffusivity for the initial perturbation in Gevrey-
%, (1/3 < s £ 1). The synergism of density mixing, vorticity mixing and velocity
diffusion leads to the stability.

1. Introduction

The stability of shear flow in a stratified medium is of interest in many fields
of research, such as fluid dynamics, geophysics, astrophysics, mathematics, etc..
Density stratification can strongly affect the dynamic of fluids like air in the at-
mosphere or water in the ocean and the stability question of stratified flows dates
back to Taylor 1914 [76] and Goldstein 1931 [38] and since then there has been an
active search towards the understanding of the stability of density-stratified flows.
The question that many researchers want to answer is for a given steady state is it
(asymptotically) stable relative to small disturbances?

This is the problem of the hydrodynamic stability, which is one of the most
classical problems in the study of fluid dynamics and its investigation dates back
to Rayleigh, Orr, Summerfeld, Bénard among others; see for instance the book of
Drazin and Reid [35] and reference therein.

In this paper, we consider the 2D Navier—Stokes Boussinesq system without
thermal diffusivity in T x R:

ov+v-Vv+ VP = —pger + VA,
kp+v-Vp=0, (1.1)
V.v=0.

Here (x,y) € T x R, v = (v¥, v?) is the velocity field, P is the pressure and p is
the density and g = 1 being the normalized gravitational constant and e; = (0, 1)
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is the unit vector in the vertical direction and v is the kinematic viscosity. The first
equation is the Navier—Stokes equation with the buoyancy forcing term —pge; in
the vertical direction. The second equation is the transport equation of the density
and the third equation is the incompressibility condition which represents the mass
conservation.

The Boussinesq system (1.1) attracted the attention of many mathematicians
first due to its wide range of applications, (see for example [23,62,71,78]) and
second, due to the fact that the 2D Boussinesq model retain some key features of
the 3D Euler and Navier—Stokes equations. For instance it has been known that the
inviscid 2D Boussinesq equations are identical to the incompressible axi-symmetric
swirling 3D Euler equations, as pointed out in [61]. During the last decades many
interesting results were obtained in different directions.

One of the important research directions is to find the minimal dissipation in
the Boussinesq system that yields a global existence under the lowest possible
regularity. When both the viscosity and diffusivity are present in the Boussinesq
system, then the system is known to be globally well-posed for smooth and arbitrary
large initial data; see for instance [16,37] and also [77]. In the absence of the
diffusivity, the global existence was proved in [43] (see also [18]). An extension
of the results in [18,43] to a rough initial data in some Besov type spaces has
been obtained in [41]. More importantly, it has been proved in [26], that the L?
regularity of the initial data is enough to prove the global existence of the solution;
see also [27] where a similar result, under some extra assumptions, has been proved
in the presence of the diffusivity only. If the diffusion or the viscosity acts on the
horizontal direction on one of the equations only, the authors in [1,2,28,33] showed
a global existence result for initial data with different regularities. Under the same
regularity assumption as in [28], the uniqueness of the solution was shown in [52].
Recently, and by considering only partial dissipation on the vertical direction in both
equations, a global existence result was obtained in [55] under very low regularity
assumptions. We recall that in the absence of viscosity and diffusion, the global
well-posedness of the inviscid Boussinesq system is still largely open; see [18] and
[19] for investigation in this direction.

Despite the large literature on the Boussinesq system, the asymptotic stability
of solutions has not been well studied. For the non-flowing steady states vy =
0, ps =y, in [24,75], the authors studied the stability problem of 2D Boussinesq
with different settings.

For the flowing steady states as in the case of Couette flow,

y
w=0.0 po= =yl po= [ aG0in =y =2 (2
the asymptotic stability problem is very challenging.

The goal of this paper is to study the stability of the Couette flow described by
the steady state (1.2). Before stating our main results, let us first recall previous
works about the stability problem of flowing steady states.

The linear inviscid 2D Boussinesq system with shear flows has been extensively
studied starting from the work of Taylor [76], Goldstein [38] and Synge [74]. We
also refer to the book of Lin [57]. It has been proved that the stability of the solutions
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of the linearized inviscid 2D Boussinesq system with a shear flow is determined by
the competition between the stabilizing forces and the vertical shear flow U (y).

In general if pj is the steady state for the density, we define the local Richardson
number y (y) to be such that

_ 89ps(y)

2 _
YOY =G UG

This number measures the ratio of the stabilizing effect of the gravity to the desta-
bilizing effect of the shear. We assume that 9, p; < 0 (stable stratification) so that
y* 2 0.

The Richardson number is one of the control parameters of the stability of
stratified shear follows. The Miles—Howard theorem [44,67] guarantees that any
flow in the inviscid non-diffusive limit is linearly stable if the local Richardson
number everywhere exceeds the value 1/4, however unstable modes can arise for
Richardson number smaller than 1/4 [34].

The introduction of viscosity or diffusivity in stratified shear flows may seem
to lead to stability, however this is not always correct. As shown in Miller and
Lindzen [68] for some particular geometry, the addition of viscosity may allow over-
reflection and subsequent instability even if the Richardson number is everywhere
greater than 1/4. In fact, they proved a normal mode instability for a Richardson
number as large as 0.349. This is in contrast to the Miles—Howard theorem in the
inviscid case, where it is shown that unstable modes cannot exist for any flow with
a Richardson number greater than 1/4. Hence, it seems an interesting problem to
investigate the stability of the stratified shear flows when viscosity is added.

In the physics literature, there have been a lot of work devoted to the stability
of the Couette flow in the linearized stratified inviscid flow; see for example [15,
17,22,31,36,40,42,50], though these are are less mathematically rigorous results.

In [85] Yang and Lin studied the linear asymptotic stability of the steady state
(1.2) for the 2D Euler Boussinesq system (v = 0):

0w+ yo,w = —yzaxé,
0,0 + y0,0 = u”, (1.3)
u=ur,u) = (=0y¥,0¥), AY =w;

see also [13] for more linear results of general shear flows. They showed that
the decay rates depend crucially on the Richardson number. More precisely, they
obtained the following decay rates for the velocity components (which confirms
the decay rate stated in [36]):
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where f» = f — % fT f(x, y)dx denotes the non-zero mode. Let us also point
out that the linearized Euler Boussinesq (v = 0) system around (1.2) with ro = 0

0w + yoyw = —0,0,
30 + 73,0 =0, (1.4
u= (up,uz) = (—dyy, 0xv¥), AY = o,

is a couple system with two transport equations (transport diffusion equation if
v # 0). The behavior of the solutions are easy to obtain. Indeed, we have

(U1, U2, 02, 02) S (1, 0, t) .

which is same as the limit behavior of the solutions of (1.3) as y2 = ry — 0.
However, since the limit process y> = ry — 0 is a singular limit, the system (1.3)
does not converge to (1.4).

Let us also point out here that if @ = 0 then(1.4) is the linearized Euler (Navier—
Stokes) equation whose solutions behave as follows:

(w202 S (07 0720 1).

The vorticity does not grow and behaves better. The buoyancy forcing term 9,6
leads to a growth of the vorticity even at the linear level, which destabilizes the
system.

In recent papers [29,63], the authors investigated the stability of the Couette
flow for the 2D Navier—Stokes Boussinesq system with both dissipation and ther-
mal diffusion in an infinite channel and a finite channel. They also considered the
problem with a weaker stabilization mechanism and studied the partial dissipation
case. The mechanism leading to stability is the so-called inviscid damping and
enhanced dissipation which we will introduce later.

In this paper, we study the system without thermal diffusivity which is the
natural and the physical setting. Also mathematically it is much more interesting
and challenging. The stability problem of systems with various diffusion terms is
always a difficult problem. We refer to [73,79] for similar challenges appearing in
MHD.

In order to state our main result, we introduce the perturbation: v = u + (y, 0),
P = p+ psand p = o + ps, then (u, p, o) satisfies

y
atu+y8xu+<u0)+u-Vu+Vp=—Qe2+Au,
0,0+ yoyo —rou’ +u-Vo =0,

V-u=0.

For ro > 0, we introduce 6 = ri()Q, the Richardson number y = ,/rg and the
vorticity

— — y X
=V Xu=0u —oyu
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which satisfies
0w+ yoyw+u-Vo = —y28x9 + Aw,
0:0 + y0,0 +u-V0 =u”, (1.5)

u=VIty = (=d,¢, 0v), AV =o.

We also study the case ro = 0, and let & = p, see the perturbation (0, ®)
satisfies
w4+ yoyw+u-Vo =—0,0 + Aw,

00 + y0,60 +u-Ve =0, (1.6)
u=Vry = (=d,¥, ¥), AV =o.

The dissipation term Aw can hopefully stabilize the system. However compar-
ing to the full diffusion case, in this system, the perturbed density 6 does not decay,
which leads to a linear growth of the vorticity due to the presence of the buoyancy
force term 0,.0.

Let us point out that due to the dissipation term, the behavior of the solutions
changes a lot. Our main result reads as follows:

Theorem 1.1. Let (w, 0) solve (1.5) with y # 0. Let (u, V) be the corresponding
velocity field and stream function. For all % <s < land iy > A > 0, there exists

an €y = €o(Xo, A, V) é % such that for all € é €0 if (Win, Oin) and (uin, Yin)

satisfy
/uindxdy = /a)indxdy = f@indxdy =0,

S lywin(x, y)|dxdy + [ |y0in(x, y)|dxdy < € and

Hiflﬂm(x,)dx Se (1.7)
2 T

Ll

and

lwin gy + 16inligsg = D / (1in (ks mI* + 101 (k, )Py dy < €2,
k

then there exists O with f Osodxdy = 0 and ||900||gy < € such that

2
6,3 41+ 9. 3). )~ buolw Mgy S T Ine+ D+ (19)

where ®(t,y) is given explicitly by

1 t
O, y) = E/(; /TUX(I,x,y)dxdr
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Moreover, it holds that

Ha)(l,x,y)—ifw(t,x,~)dx < L
27T LZ ~ <t>2
ux(t,x,y)—L/ux(t,x,-)dx < L,
2 PRTE

€

| @ 9 2 S

Let us remark that the Gevrey regularity of the initial perturbations does not
change for different Richardson numbers. The size of perturbations € may vary for
different Richardson numbers. We prove Theorem 1.1 in this paper. One can easily
follow the same proof and obtain the following stability result for (1.6):

Theorem 1.2. Let (w, 0) solve (1.6). Let (u, ) be the corresponding velocity field
and stream function. For all % < s S land iy > ) > 0, there exists an €y =

€0(ro, M, s) < % such that for all € < €q if (win, Oin) and (uin, Yin) satisfy

fuindxdy = fwindxdy = /Qindxdy =0,

[ Iywin(x, y)ldxdy + [ [y0;n(x, y)|dxdy < € and

1
“E/TWin(xa Jdx

<e€
A

and

linllZsy + 16inlgse = D / (1in (ks mI* + 101 (k, ) P)e? 01 dy < €2,
k

then there exists 0o, With f Osodxdy = 0 and ||900||gy < € such that
62
”9(tv X + ty + (D(t’ Y)» )’) - Qoo(xs y)”gx/ 5 E ln(e + t)

where ®(t,y) is given explicitly by

1 t
D(t,y) = E/(‘) /TUX(T,x,y)dxdr

Moreover, it holds that

Hw(t,x,y)—i/w(t,x,~)dx < i,
27'[ L2 ~ <t>
ux(t,x,y)—ifux(t,x;)dx < i,
2 PaRUE
€

“”y(t’x’y)”LZ S 0E
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The results are surprising at first glance. Normally the dissipation term may have
smoothing effect on the system. Then the infinite regularity assumptions on initial
perturbations are not necessary. However, the buoyancy force term 9,6 brings the
trouble. One may find some evidences about the necessity of Gevrey-3_ regularity
assumptions on the initial perturbation in Section 3. As mentioned, the buoyancy
force term 0,6 leads to a time growth of the vorticity in the inviscid model. The
presence of the viscosity term Aw is a physical setting which also stabilizes the
equation of vorticity but destabilizes the equation of density. It causes a significant
change of the behavior even at the linear level comparing to the inviscid case.
Although the vorticity @ decays as le’ the density & becomes worse and does not
decay any more. To characterize the mixing effects of the buoyancy force term 0,6
and dissipation term Aw, we introduce an important good unknown X in this paper,
see Section 2 for more details.

The mechanism leading to stability is the synergism of density mixing, vor-
ticity mixing and velocity diffusion. It is similar to the inviscid damping caused
by vorticity mixing. In [70], Orr observed an important phenomenon that the ve-
locity tends to 0 as t — o00. This phenomenon is called inviscid damping. In [8],
Bedrossian and Masmoudi proved nonlinear inviscid damping around the Couette
flow in Gevrey class 2_ (see also [46]). Nonlinear asymptotic stability and invis-
cid damping are sensitive to the topology of the perturbation. There are also some
negative results. In [59], Lin and Zeng constructed periodic solutions near Cou-
ette flow. Recently, Deng and Masmoudi [30] proved some instability for initial
perturbations in Gevrey class 2. For general shear flows, due to the presence of
the nonlocal term the inviscid damping is a challenging problem even at the linear
level. For the linear inviscid damping we refer to [17,39,48,49,81,86] for the re-
sults for general monotone flows. For non-monotone flows such as the Poiseuille
flow and the Kolmogorov flow, another dynamic phenomenon should be taken into
consideration, which is the so-called vorticity depletion phenomenon, predicted by
Bouchet and Morita [14] and later proved by Wei, Zhang and Zhao [82,83]. Very
recently, lonescu and Jia [47], Masmoudi and Zhao [66] proved the nonlinear invis-
cid damping for stable monotone shear flow independently. The inviscid damping
is the analogue in hydrodynamics of the Landau damping found by Landau [51]
and later proved by Mouhot and Villani [69] (see also [3,9]), which shows the rapid
decay of the electric field of the Vlasov equation around homogeneous equilibrium.
See [12,45,60,72,84,87] for similar phenomena in various system.

It remains a very interesting problem to study the nonlinear asymptotic stabil-
ity/instability of shear flow for the Euler Boussinesq system.

We also remark that when 8 = 0, the system (1.6) reduces to the 2D Navier
Stokes. The stability problem of 2D Couette flow has previously been investigated.
One may refer to [10,11,54,64,65] for infinite channel case, and to [7,21] for finite
channel case and to [4-6,20,80] for stability results of 3D Couette flow. We also
refer to references [25,32,56,58] for the stability results of other shear flows.

In a forthcoming paper, the small viscosity case will be studied, where the
Richardson number will play an important role. Of course, under the assumption
that the initial perturbations are sufficiently small (depending on the viscosity), and
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by following the proof in this paper, one can prove the stability results. The main
problem in the small viscosity case should be the optimality of the size.

1.1. Notation and conventions

See [8, Appendix A] for the Fourier analysis conventions we are taking. A con-
vention we generally use is to denote the discrete x (or z) frequencies as subscripts.
By convention we always use Greek letters such as 1 and £ to denote frequencies
in the v direction and lowercase Latin characters commonly used as indices such as
k and [ to denote frequencies in the x or z direction (which are discrete). Another
convention we use is to denote M, N, K as dyadic integers. That is M, N, K € D
where

1 .
D= {—, 1,2,4,8,...,2/, }
2

When a sum is written with indices K, M, M’, N or N’ it will always be over a
subset of . We will mix use same A for Af = (Ax(z, n)fk(t, 7)) or Af =
Ax(t, n)fk(t, n), where A is a Fourier multiplier.

We use the notation f < g when there exists a constant C > 0 independent
of the parameters of interest such that f < Cg (we analogously define g > f).
Similarly, we use the notation f &~ g when there exists C > 0 such that C~!g <
f=Cg.

We will denote the /! vector norm |k, n| = |k| + |n|, which by convention is
the norm taken in our work. Similarly, given a scalar or vector in R” we denote

) = 1+ o).

We use a similar notation to denote the x or z average of a function: < f >=
ﬁ J f(x, y)dx = fo. We also frequently use the notation f» = Pxf = f — fo.
We denote the standard L” norms by || - ||, for 1 < p < oo.

For any f defined on R, we make common use of the Gevery-% norm with
Sobolev correction defined by

N 2 s
1o = [ [ ] 5 e an
k

For n = 0, we define E(57) € Z to be the integer part. We define for n € R

1 . _
and 1 < [k| < E(|n|3) with yk = 0,1, = [}] - %,t,in = |2+ % and the

critical intervals

_ . 1
ey = [0y 0,1 ik 2 0and 1< k1 < Eqnif),
’ ) otherwise.

. def _ def -
We also introduce I, = [f;, t,:fn] C [213%, 2,3—21] = Iy
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2. Main Difficulties, Ideas and Sketch of the Proof

We next give the proof of Theorem 1.1, starting the primary steps as propositions
which are proved in subsequent sections. The stability or instability of the steady
state (1.2) for the 2D nonlinear Euler Boussinesq system (i.e., (1.1) with v = 0) is
unknown due to the growth of vorticity, and to authors knowledge, even no partial
result is available. The complexity of the problem becomes clear form the linear
behavior of the vorticity of the linearized problem. In fact as shown in [85], the
vorticity w(t) grows roughly like /7. This seems far away from the situation of
the Euler equation discussed in [8] where the vorticity stays bounded, and even
without any time growth, a Gevrey-2 regularity in [8] was necessary to close the
estimates and prove stability. See also [30] for a negative result if the regularity is
below Gevery-2. Hence, it seems that a stability result for the 2D nonlinear Euler
Boussinesq system may not be possible even for analytic regularity, since a small
perturbation of the steady state (1.2) may amplify by a very large factor. Therefore,
from the stability point of view, the presence of the viscosity term Av in (1.1) is
completely justified both physically and mathematically. However the presence of
viscosity will lead to other complications, since it acts as a stabilizing factor only
for the vorticity equation, but due to the presence of the buoyancy forcing term
—pgen, the viscosity has a destabilizing effect on the equation of density, since in
the absence of viscosity, p decays roughly like %ﬁ, but in the presence of viscosity,
p does not decay at all. This leads to a major difficulty in the analysis and due to
this fact and from the growth of the toy model in Section 3, it seems that a Gevrey-3
regularity is needed.

Hence, in order to use the damping of the vorticity equation for the density
equation, we introduce a new unknown K that connect the vorticity and the density
(see the definition of K in (2.2) for the linear problem and the adapted one (2.3c)
for the nonlinear problem). The unknown K creates somehow a balance between
the buoyancy term and the viscosity term. However, in terms of analysis it leads to
some extra terms that we should control carefully. (See the definition of H in (2.4)).

Another issue in the proof is that even in the presence of viscosity, it seems not
possible to use the nonlinear coordinate systems introduced in [10], since this leads
to a shear flow term in the equation of density, which cannot be controlled. So, due
to this we rely on an inviscid change of coordinates as in [8]. However, due to the
presence of the viscosity, the control of the coordinate systems is different from
the one in [8] and the extra L'-control (1.7) is needed to get enough decay of the
coordinates.

Also, compared to [8] the norm introduced here (see (2.8)) contains the two
extra components M (¢, n) and By (¢, 7). The multiplier My (¢, n) is used to control
the growth in appropriate time regime and together with By (¢, ) they have been
also used as “ghost” weight in phase place to control the growth coming from some
linear terms.

One of the key ideas in the proof of Theorem (1.1) is the construction of time-
dependent norm which contains several components, each component is introduced
to control the growth predicted by the toy model in different time regimes. (See
Section 3 for more details). Armed with such a norm, and by applying energy
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estimates, we were able to allow the loss of regularity at specific frequency and
time and it enables us also to pay regularity for time decay in order to close the
energy estimates. Another complicated issue in the proof is the absence of any
damping in the density equation, for this reason we need to find a nice combination
that connects the density to the velocity (see the definition of K in (2.3c)). This
combination allows us to transfer damping from the velocity equation to the density
equation. Another important remark, which is well known in this Gevrey-type
estimates is that by allowing A to shrink (see (2.9)) we were able to introduce the
CK,, terms that will play a role of an extra damping term that will help to control
many terms in some specific time regime.

2.1. Linearized behavior and an important good unknown

Before beginning the proof of Theorem 1.1, we discuss the linearized behavior
in more detail and mention some of the main challenges that must be overcome for
a nonlinear result. The linearized equation of (1.5) or (1.6) can be written as:

orw + yoyw = —y28x9 + Aw,
30 + yo,0 = y1u”, 2.1
u=Viy = (=, ¥, ¥), AY = o,

where the parameters y, y; varies in different cases. Let us consider the simple
case: y = 1 and y; = 0, which are the parameters of the linearized equation of
(1.6). Now we introduce the linear change of coordinates:

Z:X—ly, f(tszvy):a)(tsxsy)» P(I,Z,)’):e(t’x,y)-

From (2.1) with y = 1 and y; = 0, we have

W f=—0.p+ By —13,)2f + .. f,
dp =0,

which gives us that p(t, k, n) = pin(k, ), and, for k # 0,

t
f(t, k, n) — e*f(;(ksfﬂ)2+k2ds (ﬁn(kv 1’]) _ lk,aln(k, n)/ efor(ksn)2+k2dsdt> .
0
By the fact that
o= Jo ks =m?+k*ds /tefJ(ks—n)2+k2dsdT < 1 ’
0 (kt —m)? + k2

we get that

A~ ot N2 72 A
|t k)| S e Jolks=m ks £ ey 4 k. ).

ki =22 P

However for the nonlinear system and the case y; # 0 even at the linear level, we
can not write the precise formula for the solutions. It is not just a technical difficulty.
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Indeed, to obtain the behavior of the solution, we should balance the effect of the
buoyancy force term 9,0 and dissipation term Aw. We define the following “good”
unknown:

K=—y*p+ALf (2.2)

which has good properties. Indeed we have

2
&K + (k% —kt)HK = -y —— 42k — kD) f,
which gives us that
1 12 2 2N 1212
§8le| + k" + (n = k))IK]|
2 k2 % 2
— | fIIK]| +2k|n — kt|| f|K
*yk2+(n—kt)2|f|| | + 2k|n K]
2 e IR+ 10K F2 + =y — ke IR P
=V 2 (0 — k)2 10" '

Note that K satisfies a diffusion equation (or transport diffusion equation in the
(t, x, y) coordinate) w1th forcing terms that decay fast enough.
Therefore we get K (1, k, DI |Kin(k, n)| and

NI |kl Bin| + |Kin)-

(kt — )% + k? (

The good unknown K characterizes the mixing effects of the buoyancy force
term 90,0 and dissipation term Aw, which is one of the key structures we found in
this system. For the nonlinear system, K will change slightly due to the nonlinear

change of coordinates, but we will use, without ambiguity, the same notation, see
(2.3c) below.

2.2. Coordinate transform

In order to tackle the nonlinear problem (1.5), we make suitable nonlinear
change of variables. The basic idea of this change of variables is to get a rid of
the zero mode. There are two different types of change of coordinates: one is the
inviscid one for the Euler equation, see [8], the other one is the viscous one for the
Navier—Stokes equation, see [10]. The coordinate systems were chosen in a very
natural way in both cases. However, in this paper, the diffusion term only appears
in the vorticity equation, the density equation is a transport equation. It is always a
challenge problem when the diffusion terms are different in one system, see [79].
Here we use the inviscid change of coordinates.

Let

1 1
ayie ) = /T e e = 5 /Tuxa,x, Vs,
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then system (2.1) can be rewritten as

{ o+ (y+uh(t, y)dw + (Vs - Vio = —y23,0 — Ao,
¥0 + (v +ud (t, )0 + (Vs - VIO = y10: 9.

To remove the zero mode from the above system, we introduce the change of
variables (¢, x, y) — (¢, z, v) with

Z=Xx—1tv,

1 ("1
v:y+—/ —/ux(r,x,y)dxdr.
t Jo 27 Jr

‘We then have

d
4 (10 3) = D) = —oo(t. ).

Let

fz,v) =0, x,y), pt z,v)=00x,y), ¢t z,v)=¢{x,Yy),
U/(tv U):8yv(tv y)ﬂ U//(tv U):3yyv(t» y)’ g(tv v)=8,v(t, y)1
wo(t,v) = uy(t,y), ht,v)=v'(,v)— 1.
Then v” (¢, v) = %Bv ((1/)2 - 1) and ¢ satisfies the equation

A % [0cc + W20, = 10,02 + 0" (@, — 18| ¢ = f.

where A, can be regarded as a perturbation of Ay .
Hence, we obtain the following equations for f:

of +u-Vouf ==y 00+ Af. Mo =1
with
0
w2, v) = (o) + UV Peg.
We also obtain the following equation for p:

o +u-V, 0 =y10:0,

A= f (2.3a)
Following the argument of the linearized system, let us introduce
K =—y%0.p4+ A f. (2.3b)
Hence, K satisfies the equation
K +u-V,,K—-AK=H- V210220 — 2(0y — 10,)0, f, (2.3¢)

where
H=y%'VE0.Prp- V. yp — 203y — 13)0, f + 2 fov' 0.3y — 13.) f
—2(0')* By — 13)Vidy - Vi (By — 1) f —20'Vid,p. -V f  (24)
— 0, ("' 3y — 18.)¢p£(3y — 13,) f).
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We also have
3 fo+ gdufo— (W) fo — V" dufo+v < Vs Voyfz >=0. (2.58)
Therefore,
1
dth + goyh = —7 (fo+h) (2.5b)
and
2 1, n - 1,
g + ;g + govg = —;v < V&g, -Viuy > —1—?1) dy fo,

where u(t, z, v) = u(t, x, y). Let
_ 1 ,
h:—;(fo—i-h):vavg. (2.5¢)
Then  satisfies
- 2 — 1 1, N
Blh + ;h + gBUh + ;K() = ;U < Vz)v(ﬁ# . szvf > .
In the sequel, we will perform the estimates using system (2.3) together with (2.5).

2.2.1. Discussion of the nonlinear change of coordinates In this paper, we use
the inviscid nonlinear change of coordinates (see [10] for the viscous nonlinear
change of coordinates).

By the definition of g, an easy calculation shows that

1 t
g, v) =dv(t,y) = t_2/ sd:uy (s, y)ds,
0

where the zero mode of velocity satisfies
Ay — dyyuy = —08y < OxYu’ > . (2.6)

In order to get enough decay of g in lower regularity, we introduce the equation
of the stream function. By the fact that [ u;,, (x, y)dxdy = [ 6, (x, y)dxdy= 0, we
have for any ¢ 2 0, f u(t, x, y)dxdy = 0. Thus the average of the stream function

Yolt,y) = ﬁ f ¥ (t, x, y)dx satisfies the 1D nonlinear heat equation
Yo — dyy Yo =< dxYu’ > 2.7

and ugy(t, y) = =y Yo(t, y).
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2.3. Main energy estimate

We will use a carefully designed time-dependent norms written as
1A VK=Y / |Ac(t. K (, m)2dn,
k n

and

1A V013 = 3 [ 1A i P

k n

The multiplier A has several components
Act, ) = ORI G )T (e, ) Mi(e, m)Br(t, ). (2.8)

The index A(¢) is the bulk Gevrey-% regularity and will be chosen to satisfy (see
(81

3 1
A) = =ro+ -2, t <1
) y 0+ 1 s
and
== w151 (2.9)
— = — _ > .
dt (t)2a ' '

where 85 ~ Ao — A’ is a small parameter that ensures A(f) > X9/2+A'/2and g is a
parameter that will be determined by the proof. Let us also remark here that to study
analytic data, s = 1, we would need to add an additional Gevrey-é correction to
A with s" € (%, 1) as an intermediate regularity so that we may take advantage of
certain beneficial properties of Gevrey spaces.

The main multipliers for dealing with the nonlinear interaction are

1
etnl3 1
Te(t,m) = + etk
O(t, n)
and
4msL—]m\% i
Mk(t, n) — e— +e47‘[8]:1|k|§’
g(t,m)

with 81, > 0 being a small enough constant that will be determined by the linear
nonlocal term. The weights ® (¢, n) and g(¢, ) are constructed in Section 3.
The multiplier B is defined as follows:

tb(s,k,
Byt n):exp<5g1/0 %ds)
k

Here

vk =1 () 0 ()« (70) m ()
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where 0 < x(x) < 1 is a smooth cut-off function satisfying x (x) = 1 for |x| < 8
and supp x C [—10,10]and 0 < x;(x) < 1 is a smooth cut-off function satisfying
x1(x) = 1 when % < xl £ % and supp x C [%, %].

Thus we get that Bo(7, n) = 1 and

Br(t,n) ~s5 1
Note that

1
sup |9,b(t, k, )| S —.
t.k (n)

With this special norm, we can define our main energy:
1 A 2, 1 A 2 1 INCREAE
E@) = SIAE VK] + SIAE V)l Ea@®) = () 1A0) I

and

3

k
t
Eio,jo () = Y 22105 follgupie
k=0

Elo,g () = (1)19) 8135005000 Elon (1) = (2195 Rl G0 -

The assistant energy is

Eas. o (1) = max (0¥l . (0410, VollF, )3 I0la, (07 100l ),

(gl

Basg () = max (G ES

4—ey 2 2
O P A P AN DA H L)
where 0 < /e S e? with0 <€ 3s+1—4Gand0 < € < %
Let us make a technical remark about the assistant energy here: We use the
inviscid change of coordinate which brings us new challenge since the equation are
not both inviscid. It leads to the appearance of the term %v’av fo in the equation of

. _7 .
g- Then it holds that ||g||;2 < €(¢) ™4, which decays not fast enough to control the
main energy. However, the assistant energy together with Proposition 2.3 shows that
the homogeneous norms ||g|| . - ||g||Hz+E2 10vgllgn.p:s» the Fourier L' norms
gl llg ”gk,ﬁ,g and || g|lL~ have better decay rate. Luckily we can use these norms
1

of g to close our energy estimate.

It is natural to compute the time evolution of ||A(z, V)K||% and ||A(z, V)p||%.

To lighten notations, we define, for ¢ € {K, p}, the following:

CKyp = —A(DVI2Ap]%,,

HOL ) s
CK / Okl g pyo
O = Z Oclt, ) o Seim

Mka, mBr(t, Ak, n)|@i(t, n)|*dn,

1
etInl3



660 NADER MAsMouDI, BELKACEM SAID-HOUARI & WEIREN ZHAO

ol
CKM :Z/ 8[g(t, n)e)“(t)‘kanP(k n)g 647[8[4 nl
v )y e gt )

Je(t, mBi (2, U)Ak(f M@z, n)*dn,

_ (t.k.n
CKB‘/’_S 12] 1+ — )7))2|Ak(t fl)fﬂk(f T))| dn.

Here CK stands for ‘Cauchy—Kovalevskaya’. In what follows, we define

- Ol euln\%
Ap(t, n) = Okl (g pye M (t, m)Bg(t, n)
Or(t, n)
and
- . e4nagl|n|%
Ar(t,n) = KM (k)T ————— T (1, By (2, 1)
g(t,n)

which satisfy A < A, A < A. In particular if k| < |5] then A < A and A < A.
First, we have

1d
R / |Ap|*dzdv = —CK; , — CKe,, — CKyr, — CKp ,

- / ApA(u - Vp)dzdv + f ApA(d.¢)dzdv
= —CK, , —CKg,, —CKpy,, —CKp, —NL, +II,.

(2.10)
Similarly, we have
1d 2
Ed_ |AK | dZdv——CK)\K—CK@K—CKM[(—CKBK

+/AKA(AtK)dzdv - /AKA(u~VK)dzdv
+ / AKAMH)dzdv + y2y; / AKA(9,.¢)dzdv

- Z/AKA((E)U — 13,)d, f)dzdv

= —CK, x —CKpg,x —CKy,x —CKp .k
+E—NLk — NL% 4 [T} + IT%. (2.11)

2.4. Bootstrap argument and main propositions
We prove the theorem by a bootstrap argument. In order to avoid discussing the

fake singularity in the equations as ¢+ — 0., let us first give the following local-
wellposedness theory.
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Lemma 2.1. Under the same assumptions of Theorem 1.1 or 1.2, we have

sup E(t) + Eq(r) < €.
te(0,1]

The lemma s easy to obtain by using the energy method to the transport equation
and we omit the proof here.

The goal is next to prove by a continuity argument that this energy E(¢) + E;(¢)
together with By ¢ (), Ejo,1(t), Eqs,y (t) and Egg, £, (f) are uniformly bounded for
all time if € is small enough. We define the following controls referred to in the
sequel as the bootstrap hypotheses for # = 1 and some constants Cy, Ky = 1
independent of € and determined in the proof,

E() + K, 'Ba(1) < 10Cpe?,
t
/ (CKA,K +CKo x +CKy.x +CKp x + |IVLAK|3
1
+CKy,p +CKao,, + CKyy,p + CKp, ) (5)ds < 10Coe, 2.12)

! 2
/ (CKM, +CKe .+ CKyp + HA<av>2h Hz)(s)ds < 10K Coe  (2.13)
1

where
. s 2
CKon0) = =300} 10,13 A0,
50 |’ ae I°
CKe n(t) = (t) A(8v>2 Ry X . CKuya(t) = (1) A(av)2 t?gh
2 2

The main proposition of this paper is as follows:

Proposition 2.2. (Bootstrap) There exists an€qg € (0, %) depending onlyon X, \', s
and o such that if € < €, and on [1, T*] the bootstrap hypotheses (2.12)—(2.13)
hold, then for vVt € [1, T*],

E(t) + K, 'Eq(t) < 8Coe?
/1[ (CK.k + CKe,k + CKy x ++CKp x + [VLAK 3
+CKy.p +CKeo.p + CKprp + CKB,p)(s)ds < 8Cye?,
/1 t (CKi+ CKop + CRr + | A1) Hi )(©)ds < 8K,Coe?,

from which it follows that T* = +o0.

The main purpose of this paper is to prove Proposition 2.2, which follows from
the following propositions by taking €, 81, dp sufficiently small and M sufficiently
large. (See Section 9.4 for the determination of Mj).)

First we control the lower energy and the assistant energy and obtain the fol-
lowing proposition. The proof is given in Section 4.
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Proposition 2.3. Under the bootstrap hypotheses, for any 0 < /e < 612 with
0<e S3s+1—-4Ggand0 < ¢ < %, it holds that

2 4 2
s+ [0 sefLow 5
1
and

Eas.po (1) S €2, Eus o) S €7,

As a corollary, it holds that

€ _s _1
IIhlleﬁm, I foll2 S €)™, Nlovfoll2 S elr)™*.

[}

We also get that
Elo, fo (1) + Eio.g (1) + B (1) S €2
As a corollary, it holds that

d s €
||g||glx,ﬁ:x =ef/R(~§)’3 MOBE (1, 8)|dE < 3/2< N4 < e+t

Proposition 2.4. Under the bootstrap hypotheses, it holds that

3
€
INL,| + INLk| < ot ()2 AN g|2 + VeCK;_, + €CKo, + €CKy,

+ /€CK; g +€CKe g +€CKy x

[ (S 225 PR |

The proof of Proposition 2.4 is given in Section 6 and it is one of the main parts
of the proof.

+€

Proposition 2.5. Under the bootstrap hypotheses, it holds that

3

INL2| < <>2+6||VLAK||2+—HA8 A LP¢fH
dy IVlf 0rg 3z )
+ef{— A+ A+ a7'A P¢¢
19; Hr

The proof of Proposition 2.5 is the subject of Section 8.

In Propositions 2.6, 2.7 and 2.8, we state the estimates of the linear terms
M,, E, Mk and 1% appearing in (2.10) and (2.11). The proofs of such estimates
are given in Section 9.
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Proposition 2.6. Under the bootstrap hypotheses, it holds that

m < €2 713*1A2AP C18.CK
| p|:W E - 1APLgp| + C18LCKy,p
2
W\ [ ?
€012 %
s <za> |89 1A2AP.0| |
g 2

where C1 is a constant independent of 5.

Proposition 2.7. Under the bootstrap hypotheses, it holds that

7 cel
E< ——||VLAK|? + —.
< 8|| L ||2+<t>2

Proposition 2.8. Under the bootstrap hypotheses, it holds that

2
c |l/a,\"! c |/, \"!
I Nl S— (=) 9-'ALAP — (=) A 'ALP
| 1(|+| S () <t8> z L #d) +(l‘)4 19, z L #f ,
0 0 ?
f||vLAK||2+c15L < > 2B A AP
to, g )
s —1 2
V|2 [ 8, 1
+C 1tZMo 3 \ 7 AdALPLf
= 1o 5
. 2
b(t,V)o, [0y \™
ST WAL LR TN I
Ap 10, 5
where C1 is a constant independent of 51, 6 and M.
Proposition 2.9. Under the bootstrap hypotheses, it holds that
”AE)Z_IALP;éfHZ <e (2.14)

The proof of Proposition 2.9 is the subject of Section 5.1.

Proposition 2.10. Under the bootstrap hypotheses, for some C1 = 1 independent
of My, it holds that
2

vz [, \ !
1,2M0%<5> AT'ALPLf| < cleq ¥ (CKy.x + CKyp) + CeCK
N 2 2
(2.15)
and for some Cy 2 1 independent of 81, it holds that
dg [\ 7! ’
12 [ Ov |
—(—) A9, 'ALP
HV g <taz> i , (2.16)

< Ca(CKyr.k + CKy k + CKyr.p + CK; ) 4 Ce2[|A(D,) 2R3,
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and for some C3 2 1 independent of 8g, it holds that

b(t, V) [, \7" .,
|2 PRV AQTIALP
H Al l‘az < L #f

The proof of Proposition 2.10 is given in Section 5.3.

2
< C3(CKp .k +CKp ) + Ce*[A(3,)R]|3.
2

Proposition 2.11. Under the bootstrap hypotheses, it holds that

W\t
<i> AT'ATPLo| Se

2

The proof of Proposition 2.11 is detailed in Section 5.2

Proposition 2.12. Under the bootstrap hypotheses, it holds that

au>‘1 V|2 dgx  [a© -\ . | 5
— “A+ [—A4 [ —A)0 AL PL¢
<taz ((t)3i g o )% T

< Ci1(CKy xk +CKo,k + CKuy,x +CK,, , + CKo,p + CKpr,p)
+ C2(2CKy i + €2 1A (3,)2R113), (2.17)

2
2

where the constant C is independent of 81, and the constant C> may depend on ..

The proof of Proposition 2.12 is the subject of Section 5.4.

2.5. Conclusion of the proof

Now, to prove the estimates of the main Theorems 1.1 and 1.2, we need to
recover the estimates on the original systems (1.5) and (1.6). So, we need to undo
the coordinate transform and transfer the uniform energy bound on E(¢) + E4(¢)
in the (z, v) variables into the original (x, y) variables. This requires the use of an
inverse function theorem in Gevrey spaces. We refer to [8, Remark 7 and Section 2.4]
for more details. Here we only focus on the scattering results.

Our goal now is to prove (1.8). We have by using the second equation in (2.3a),
and for some A < A1 < A9/2+ A /2 < A

+

o0
/ goypds
t GH:0:s

/OO d;¢p(s)ds
l (2.18)

We estimate first [[gdypllgr.0.s. We have by using the physical definition of the
Gevrey spaces (see (B.2)) together with Lemma B.2

”p(t) - poo”g?»lyo;s S,

o0
/ V'V, Psg - Vo up(s)ds

t

g}\l.O;s

+

gAI‘O:x

lgduoligris = lgdupllearz.n, SN8wPlleL2:s,

5 ||31),0||151LZ;)L1 ||g||zlL0<>;M-
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‘We have that

3
||g||/zlLoc;)Ll Sliglie + ||8vg||[1Loc;M

3 3 (2.19)
Slglive + 1058l 2roen, S NgliLe + 1058llgr.3:s
where we have used (B.3) for some 19/2 + 1//2 > A3 > Ay > A].
We also have, by (B.3), that
1800llp112:2, Siait 130pll21200, - (2.20)
Hence, (2.19) and (2.20) together with the bootstrap assumption, yield
In(e + 1)
I83uplgn s S gl lollgiaos +1078lgnoslplgaos S €= ==
2.21)

The last two terms can be easily estimated using the lossy elliptic estimates (see
Lemma 5.1). Indeed, we have

Oov/VJ- P.o- <2 OOL <i
‘/t 2uP#® - Veup(s)ds . Se f[ (s)4dSN ER (2.22)
and
o €
‘ [ 00 (s)ds o S IGER (2.23)

Hence, keeping in mind (2.18) and collecting (2.21), (2.22) and (2.23), we obtain

2
1p(8) = pocllgn.os S  In(e +1) + ——.
(t) (0)

Again by the same argument in [8, Section 2.3], we have the estimate in (x, y)
coordinate and get (1.8).

3. Growth Mechanism and Construction of Weights

In this section, we will construct the key weights ® and g which come from a
toy model that capture the growth of the solutions (the worst case scenario) in the
nonlinear interaction.

From the argument of the linearized equation, due to the dissipation term, the
good unknown K decays. We may focus on the nonlinear interaction in the equation
of p. Since we must pay regularity to deduce decay on the velocity u, it is natural
to consider the frequency interactions in the product « - V p with the frequencies of
u much larger than p, which is called the reaction. This leads us to study a simpler
model

0 p — 33z 010 = 0.
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This contribution was chosen as A; loses ellipticity in v, not in z. Suppose that
insteadof A;¢p = fand A, f—y2d,p = K,wehad Aj¢p = fand Ay f—y20.p =
0, then on the Fourier side:

2
) iy Elk—Dp(1.1.5) .
dp(t, k. n) = EZ g (P+1E—1]P)?

Pio (t, k—1,n—§)dé.
10

Since p;, weakens interactions between well-separated frequencies, let us consider
a discrete model with 7 as a fixed parameter:

)’ nltk —Dp (t,1, n)A

2 _ 2
2 S (Pt Iy — i)

0Pt k,m) = Pio (t, k—1,0). (3.1

This is an infinite system of ODEs. The coefficient W of p (¢, 1, 17) in

the summation on the right hand side of (3.1) becomes large when |t — ﬂ| <

‘ ] S — -3N<E
Meanwhile, other coefficients e £ # 1 is small |z | £ -%. Thus for

any/ and |t — | 3,we divide {5 (t, £, n)}¢0 into two parts pr = ,o(t [, n) and
PONR = p(1, €, n) 12 ;é [ where R and NR stand for resonance and non resonance.
Due to the existence of (k — /) in the summation of (3.1), the resonance part will

never act on the resonance part. By choosing the largest coefficient of all non
resonance, we have for k = 1,2, ..., E(|n|3) and | — | < the growth of the

solutions to (3.1) is captured by the following ODE system

k*’

kS
0 R = KFPNR,
3 nk
=K——————0R,

This leads to the weight ® which is constructed in the next section
We will also take into account the growth for |t — | 3 withk =1,2,.

E(|n|%), which leads to the weight g.

3.1. Construction of ®

The construction is done backward in time, starting withk = 1. Fort € Iy ,, =
[t,;n, t,:fn] with |k| < E(|n|%). Let ®nr be a non-decreasing function of time with
ONRr(Z, 1) = 1 for t = 2|n|. For definiteness, we remark here that for |n| < 1,
ONR (¢, n) = 1, which will be consequence of the ensuing the definition. Hence we
may safely assume |n| > 1 for the duration of the section. For k = 1, we assume
that ONR ( 2,3—21, n) was computed.

To compute ®OnNR on the interval ik,,,, we define fork = 1, 2, 3, ..., E(|n| %) and
telrl, oy

2n
Or(t,n) =06 t,n) =0 , .
R, 1) NR(Z, 1) NR <2k 1 77)
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Fort € [t,;n, t,:fn], we define

k3 0 Ck
ONR(, ) = (E [1 + by y ‘l - EH) ®NR(t;:T,7, n,
wet, = [Lit)]

n —1-Ck n
ONR(, 1) = (l + ag,g ’l - ED ONR <Z 77),
L _[,— 7
vVt € Ika’/ = [tkyn’ %:I .

. 3
The constant by ; is chosen to ensure that 2]‘7 [1 + bk’ﬂz_ZS] = 1, hence for

1 k3
o=a(1-35),
2
’))1+2CK

The constant ay ; is chosen to ensure that ©ONRr (t,jn, n) = ONR (tk_n’ 77)(i—3
hence for k = 1, we have

k 2 1, we have

On each interval Iy ,, we define Or(z, 1) by

3
Or(, M =5 (1 +biy |t — F) Onr@m), Ve elR, = |T.05

3
Or(, M =5 (L +ary |t — T)) Onr@m), Viely, =6, T
Fort € [213%, . y)» We define

Or(, ) = ONR(, 1) = ONR( . 1)-
Due to the choice of ay , and by ,, we get that Or (t,gcn, n) = ONR (t,gcn, n),
3
OR(F, ) = £ ONr(F, n) and, for 1 € It ,,

3
0;Or ~ ;@)NR,

kn

0;® N — 0
N BA w1 = 1P

R-

Then we define

Ot L, n), <t 1
gy E(nl )1
Ok(t,n) = ONR (2, 1), tE(|n|%),n’ 277:| Vi (3.3)
®R(I9 ’7), t e Ik,?’]

1, t22n
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3.2. Construction of g(t, n)

Again the construction is done backward in time, starting with k& = 1. For

tel, = [2k+1, 2k sl for 1 < [k| < E(|77|3) Let g be a non-decreasing function
of time with g(¢, n) = 1 for ¢ 2 2|n|. For definiteness, we remark here for |n| < 1,
g(t,n) = 1, which will be consequence of the ensuing the definition. Hence we
may safely assume |n| > 1 for the duration of the section. For k = 1, we assume
that g(zz—fl n) was computed To compute g on the interval ik,n, we define for

k=1,2,3,..,E(n|3 )andt€[2k+1’2k 7l

57! 27
a = # ) = (—5 )7
T T -zt gl =857

andfork:E(Inl%)-l-l E(|n|3)andte[2k+],2k 71

; 5 | <2n )
T — S Sl T8

3.3. The total growth predicted by the toy model

Lemma 3.1. For n > 1, there exists i = 6(1 + 2C«) such that

Or2n.m 1 1 T
OO, — O, ) @k(t 1 ) Il

E([n13).n’

Proof. The proof of Lemma 3.1 can be done as in [8]. Indeed, the total growth over
U?_x Ik, is given by the product (N = E(|n|%))

N

(%) (@) - () =[] 64

with ¢ = 2C«k + 1. Using the Stirling formula: N! &~ +/ 2JTN(%)N, we get

nN N 1 63’11/3[,71/2 (i)Ne3N_3"]/3]
(ND3  @n)32/m N3/2\N3 ’
Since |[N — n'/3| < 1, then it holds that
N
1 3
77‘ 3 —=e
(N N

Hence, this together with (3.4), yields (3.6). O
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Lemma 3.2. For n > 1, it holds that

1

13 2,
& E(nl3).n )

t )
g2n,m) &( E(lnl )0 m g(2n, n)

t 2 5 t 2 ) t 1 )
& E(nl3).n ) & E(nl3).n ) &( E(nl3).n )

) U I I
= X 8_1 — | arctan(——— ) + arctan (——
Pl Z} el Gem+n) (|k|(2|k|—1>))
E(n|3)+1

1
E(lnl3)

. i S —
xep |t 3 (aretan () + o (i =)

This gives us that for any t = 0,

< it (3.5)

1<
~ gt T

Proof. We have for 1 € I . if [k| < E(|n|3),

Ul Ul 2n
g(t,n) = exp (8 (arctan (r— m) — arctan (m))) g(Zk T 77>,

and if E(|n|3) > k| = E(Inl3) + 1,

In] Inl 2n
g1, n)—exP<5 lk (arctan(t—m) arctan(|k|(2|k|_]))>)g(2k_1,77>,

This yields for [k| < E(|n|3),

g(tk—1,7, 1) Inl Inl
m = exp (8 (arctan (tk 1y — |k|) — arctan (tk,,, — m)))
1 Inl nl
= exp <8 (arcta (—|k|(2|k| " 1)) + arctan (—|k|(2|k| — 1)))(2 .

and B(In|3) = k| = E(Inl%) + 1

glk—1,9,1m) 1 n nl nl
T <8L k3(ar°ta“(|k|(2|k|+1>)+ar°ta“(|k|<2|k|—1>)(>3>7')
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Hence, we obtain (recall that 7y ,, = 21)

! )
g(2n,n) _ g(to, 1, m) gty n> M) & E(ni)—1.n m
t , fyns ) gt 2,
gmﬁmn) gty n, m) gty M) amm%nm
Egol) ] In|
= l_[ exp ((S l(arctan (tk Ly — X )—arctan (fk,n — 7)))
i | |
2
R n In] 1]
X ex 8_1—<arctan tk—1.n — — ) — arctan (¢, ——) R
1_1[ p(L k3 (k Ly |k|) (k”] Ikl)
E(In|3)+1

which gives the lemma. 0O

Lemma 3.3. Let &, 1) be such that there exists some o« = 1 with é|$| < nl £ alé|

and let k, n be such thatt € fk,,, andt € in,g (note that k =~ n). Then at least one
of the following holds:

(a)k:nandrelkgﬂl

b k=nand|t — 12, a%andlt—%iﬁf—;;
(©) k=nand|§ —n| Za iz,
1_Inl 1 €],
(A e -1 2 IOC,lk"z and |t — £ > 1 1],
© & —nl 2 Il
Moreover ift € Iy y N1, ¢, then at least one of the following holds:
@)k=n;

O) It = 21 2o Woand |t - £| 24 B
©) 1§ =l Za i

Proof. To see that k ~ n note that
kI Inl ltk| 1§]

Inl 1] Inl |tn]

If n =k and t € Iy ¢ N1y, then there is nothing to prove. Suppose n = k but (a)

and (b) are false, which means one of the two inequalities in (b) fails. Without loss

of generality suppose |t — %| < m%'f—gl Then, t ¢ I; ; gives us that

§ Ll L 1& S Inl
—al k|2 PR L L
& =nl= ‘k )— el TR

Ol

_n >k)__[
k

This proves (c).
Suppose n # k and (d) is false. Without loss of generality suppose that |r — %l <

1&, El Then, r e Ir,, gives us ¢ ¢ I, ,, which gives us that
g_ﬁ >’z_t‘_t_é—> |n| _L@ ||
noon|=In Z Mt D) 10an a2

This proves (e). The proof of (a’), (b’) and (c’) is similar. O
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By the construction of @, it is easy to check that the following lemma holds.

Lemma 3.4. Fort € Iy yandt > E(|77|%), we have the following witht =t — %

9ON(, ) 1 9Or(, n)
ONr(, 1) (I+1zDh Or(t, 1)
Lemma 3.5. Forall t, &, n, it holds that

g, &) +g(t, n) <ec5L—1m_g|%.
gt,n) g, &~

Proof. It is enough to prove

o' -e1} < B8 o csin-gl¥
g(t, 77)
Without loss of generality, we assume that |§] < |n|. If || < 1, we have g(z, &) =

g(t,n) = 1, so there is nothing to prove. If |§| < 1 < |n], then we have || <
[n — &| 4+ 1 and hence we have from (3.5)

1 1
cCot-es < B0 U eats < o5 mels
gt,n) glt,m) ™ ~
So from now on, we assume that min(|€|, |]) = 1.

Iflg] < %, then it holds that || < 2|n—&| and hence |€| < |n —&|. Therefore,
we have by using (3.5),

1
o—Cor €15 < ,—Co el < 808 o oo |3 < O - s
& ()

Now, we may focus on the case |1]/2 < |£] £ |n]. We need to discuss the
following time regimes:

Casel: = 2|n|;
Case 2 ¢ < min(¢ 2 )
E(|€|3) lel’ E(\UW)M\
Case 3 min(z ,t Y<t<max(t 2 ,t 2 )
E(\Elj)»lél E(Iﬂlj)’lﬂl E(I&13),11 Ednl3),In|
Casedmax(r 2 ,t 2 <t<min(t 1 ,t 1 )
E(€13),1&]1 Ednl3),In E(§13).161 E(nl3),Inl
CaseSmin(r 1 ,t 1 <t<max(t 1 ,t 1 )
E(&13),1¢1 E(|77|3) nl E(§13),161 Ednl3),Inl
Case 6 max(r | | <r <26,

E(§13).16]° E(\n\3) [n]
Case 72|6| <t < 2|n|.

Now, we discuss each of the above cases separately. Throughout the proof, we
will use the following notations:

~ ol Il
Pl = aretan (Ik|(2|kl T 1)) e (Ikl(zlkl - 1>>

i
k|3

and

F(k,n) = —=F(k, n). (3.8)
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Case 1. For t 2 2|n|, then g(z, &) = g(z, n) = 1, so there is nothing to prove.
Case2.Fort Smin(t 2 ,t 2 ), then we have
E(1§13),1&1" E(nl3).Inl

9 09
&5 = £0.2) =exp(Gi(k,n) — G1(k, &) exp(Ga(k, n) — Ga(k, &))
g(t,n)  g0,n)

(3.9)
with
1 2
E(nl3) E(ni%)
Gik.n)=58_" > Flk.n) and Gatk.m)=08" > Fik.m).
= E(In|)+1
We have

exp(Gi(k,n) — G1(k, §))

1 1
max{E(|§|3).E(|n[3)}

Sexp|d. ! Z <arctan (W>

1 . k| 2lk| + 1)
k=min{E(§|3).E(|n|3)}+1

1 1
in{E(|&]3),E(|n|3)}
max{|e|,|n|}))) o™
+arctan [ —————— xexp |6 |F(k, &) — F(k, n)|
<|k|<2|k|—1> Pl 2

k=1
By the fact that

1
€ —nl3 k|
[F(k. &) —F(k. | < el

we obtain that

exp(G1(k, 1) = Gi(k.§)) < exp (msg‘ [En1%) —Edg )

)

’w> (3.10)
2 €]

min(E(&] ) E(n|3)
exp (CSEI

1
< OO In—=§13
Similarly, we have

max{E(IE\%)»E(\nI%)} |
exp(Ga(k, n) — Ga(k, £)) < exp ((SLI

2 2 W
k=min{E(|§|3),E(In|3)}+1
}

max{|&], |n] max{|&][, [n|}
(aetan (i s 1) “f“*‘“(mauq—n)))

2 2
min{E(|§]3).E(|n]3)}

X exp (agl > IF(k, §) — F(k, n)l))

1 1
k=max{E(|§]3).E(In|3)}
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We have
= 2 < In—§
[F(k, &) — F(k,m| = T (3.11)
Consequently, we obtain
_ 2 2 _
exp(Ga(k, 1) — Ga(k, §) < exp (msL‘ (1% — Bl ) 1)
2 2
min{E(|§]3).E(n]3)} I — £
exp (caL—l = > (3.12)

k=max{E(|§]3).E(In|3)}

1
< oo =813

Plugging (3.10) and (3.12) into (3.9), we obtain the desired result.

Case 3. If t 2 St<t , ,wehave
E(1§13).8 E(|ﬂ|3)’71

8 & g.6) - 20.8)

t .m) T gt T g0,
ey ™ gem —e0.m

andift > <t<t , ,wehave
E(nl3).n E(|&13).&

eede® _en&) _ 20,9

USRI -G Vi ()

Thus we can deduce the estimates in Case 3 by the estimate of Case 4 and Case 2.
Similar argument can also apply to Case 7. Indeed, we have:

Case 7. 1f 2|¢| < 1 < 2|, we have 1 = g(r,n) = g(l€]. n) and g(¢,§) =
2(21&], &) = 1, which implies

_ g gClElLn
= 2,6 ~ 2ClELE)

Thus we can deduce the estimates in Case 7 by the estimate of Case 6.

For the cases 4, 5 and 6, we have max(¢ , ) St < 2|6|. Let j
_ _ E(|77|3)71 E(\§\3)§
and n be such thatt € I,, ; N1;¢. Then we have jrn2j.

Case 6. Let ¢ be such that max(t | ) < ¢ < 2|€|. We have in
E(lg13).16]" E(lﬂl’) nl

this case

n—1
gt n) = exp (—8;1 > Fk, n))
k=1
X exp (5 1(arctan (t — %) — arctan (ﬁ)))
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and

Jj—1

g(t,&) =exp [ =5 D F(k, &)
k=1

71211 =1

X exp ( l(arctan (t— :i—:) — arctan (L))> .

By the fact that n = j we have

) exp (3 ! Z F(k, n))
g(ts ) 1
s0) ik,
atm) ( ] ) P Z (m
exp | & Z F(k, &)

when j<n—1

ik arCta“(_|j|<2‘|sj‘_|—1>))>
il

exp (5 '(arctan (1 — {11) — arctan (L)))

exp (8 1(arctam

X

[n]2ln]—=T)
We get
’arctan (L) —arctan( i )‘ I 5| (3.13)
k(2] £ 1) k(2] £ 1) (&)

Since t € Tn p N ij’g, then it holds that |jt — &| = |j]||t — %| = ﬁl‘ t and also
|n — nt| § M ~ t, hence, we obtain the inequality

. it —&|+|n—&|+|n—nt —&|n 1

|]_n|§lj £ Intél I |§1+|n lnﬁ”|§l+ln—$l3,

Hence, we obtain

n) exp(ln - j)),

8(.6) _ I — &
- Cé
2(t, 1) Sexp(Cop (&)

and similarly we have Et g (CcS 1%11) exp(jn — j).

By the fact that n < |§| 3and [n —&| < |&], we get

gt m) g(t §) 1 1
Sexp(Co'n—81).
R RET)) .

Case 4. In the proof of Lemma 3.10, you may need more precise formula:
(similar for the Case 5.) Let j and n be such that ¢ € I, , N1;¢. Using the fact
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. . 1 1 1
that [n| = |§| which gives that E(|n|3) = E(|§]3), then |n] = E(|n|3) and |j| =
E(|E|%). By the definition of g(¢, 1), we get that

E(ElS) E(l%)
gt,m =exp | =" D" Fk,m |exp| 60" Y Fek,m)
k=1 E(g[5)+1
when E(In] 5)2E(é]5)+1
(3.14)
n—1
X exp —5[1 Z F(k, n)
k=E(n|)+1
_1 Inl n] Inl )
X ex ) 1—(arctan t——)—arctan{ ———— )
p(L n? =) SPTCTTEL
. 1 . 1
and if E(|n|3) 2 |j| =2 E(|£]3),
B(E1 ) I
gt. &) =exp [ =8 Y Fk & |exp|—s0' > Fk )
k=l k=E(l€[3)+1
X exp <8L1£L(arctan (t— |E—|) — arctan (L))>
[j] [J] J1C2ljI =1
and if E(In|%) + 1 < ||
1 1
E([7) E(n3)
gt.&) =exp [ =8 Y Fk & |exp|—s0' > Fk8)
k=t k=E(g|5)+1
-t (3.15)
xexp|—=8' > Fk.§)
k=E(In] $)+1
X exp <8E1 |§|3 (arctan (t — E) — arctan (L))>
1/ |1 J1CIT=1)

Thus we have that

g, m) 8, §)
g, &) gt

1
E(|€]3)
Sexp |6 S Bk, ) —Fk. ©)] | exp (E(Inl5) — E(]))

k=1
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j—1 n—1
xexp |80 Y [FGk,m) —Fk. &) |exp [ Y Fik,m)
k=E(In]$)+1 k=j

< exp (CSL‘|5|5'S§;’”)

it ~1 ,
— k) _
exp (E(lnH) —E(l§[ ) exp | 670 > '5k3’7| exp (2 If;3 L}

K=E(ln|$)+1
By the fact that [n — &| < |&] ~ [nl, In] 2 [n]3 and

<=8+ m—&l+m—nt - In—E&lnl

o ’ ST
we get

g, n) | g, é) . . 50—

g, 8) g, n) S exp (CSL [ 77|3) exp (T>

Sexp (o'l —nl?).

<t

[IA

Case 5. Let j and n be such thatt € I, ,, N1 ¢. I

t 1 t 1 s
E(Ié‘ljl),\%‘\ E(nl3),nl

we have | j| < E(&]3) < E(|nl?) < |n| ~ |j| ~ |£]3 & |n|3, we write

1
j—1 E(nl3)

g(t,m) =exp | =8 ' Y Fk,m) |exp | =6 D Fik,n)
k=1 k=j
n—1
exp|—o.' > Fk.n
k=E(In|¥)+1

—1 Iml In] In]
X exp (SL W(arctan ([ — m) — arctan (m)))

and

= Il

g(r, &) =exp [ -8 ZF(k, £) | exp <8L1 (arctan (r— ﬁ)
J
k=1
Inl >
— arctan (—————
(|J|(2|]| - 1))>

By the fact that

j—n < ljt =&l +1n— &+ In —nt| <14 ln —&lln|

I
t 0]

)
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we have

Jj—1

g(t?é) g(l, T]) < 1 )
8 F(k, &) — F(k, _
gt g e) YR kZ:;H £) — F(k, n)| | exp(lj — nl)

_ 1
< exp(C8; g — nl3).

1 1
If ¢ Zt>t ,then E(I€]3) < |j| < |n] £ E(|n|3), we write
B(§15).061 = = E(nl®).nl (813) = I = Inl = E(nl?)
E(&(5) n—1
gt.m) =exp [ =" > Ftkom) |exp|—s.' > Flem)
= k=E(l&]3)+1
_1 In] In] >
xexp|d (arctan t — — ) — arctan —)
(L ( |n|) (|n|<2|n|—1>)
and
E(&l3) i1
gt.&) =exp | =" > Fkom) |exp|—s.' > Flkm)
= k=E(€]3)+1

—1 1§ &1 1
X exp (8L |j—|(arctan (t — |J_|) — arctan (—|j|(2|j| — 1)))) .

By the fact that

it — - —nt -
j—n|§|] §|+|nt5|+|n nlgl_’_lfl'ﬁllnl
n

)

we have

1

E(|€]3)
2E) | B < oo | o F(k, §) — F(k P
st e e ~EP| ; IE(k. &) — F(k. )| | exp(lj — nl)

- 1
S exp(Co g — nl3).
Thus we have proved the lemma. 0O
Lemma 3.6. For all t, n, &, we have

ONR (7, 1) < emn_g\%
ONr(,6) ™ '

Proof. One may follow the proof of Lemma 3.5 and deduce to prove for n, & = 0,

2<&<pandt e max(t N <t < 2|€], it holds that
WSS oy ") =1 =2

ein=g13 < ONRED g (3.16)
~ONR®,E) T
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Let j and n be such that ¢ € I_n,,7 N I_j,g. Then we have n ~ j < n. We consider the
following cases:

Case j =nandt € IR,7 ﬂIRS ort € ILHHILs ort € IL 7(\1 E : We can use the
same argument in the proof of Lemma 3.5 to prove (3. 16) and we omit the details
here.

Case j=n,|t — 1| 2 ‘n—”;‘ and |t — §| ‘ L Tt holds that
forz 2 1, ONR(L, 1) & ONR(, ), 1)s
forr > ,% ONR(t, £) ~ ONR(t) ¢ £);
—1-2C«k
fort < 2, Onr(t, m) ~ (%) ONR(, . 1) A ONR s 1);
—2C«k
fort < &, ONR (1, £) ~ (i) @mz(t,;: £) ~ OnR(l ;. §).

Thusiftzgandt§% 1<1a ndt> thenwehave|n—$|>%|and

M 5 (T])C(nl)+CK (l)HZCK 5 (1 . n _E)CWB (H_m_gl>l+2CK
ONR(, 1) & n3 £ »
< peln—t13

andift = 1 andr > & >ort < Iandr? < , then we have

OnR(, ) <Q)C<H)+CK < peln—tl3
ONr(t, ) T\ & ~

Case j =n,|n—£&| 2 l:—Zl similarly we have

ONR(, &) < <n>c(n1)+CK

1+2C 1
(i) TR eln—¢13
3 ~ .

Onr(, ) T\ E n
Casej—n—l'Ifte_L thentn1g§g If elnls,then T < Ii—1p-
In either one of these case, we deduce that %l < =5 and thus
c(n—1)+Ck 1
ONR(E,5) <ﬁ> (E)HZCK < el (3.17)
ONR(T, 1) 3 n’

Next assume that r € IR ﬂIn 1 there are only two possibilities: One is % S ”;g

which we can conclude in a 51m11ar way to the above (3.17); the other one is [ — - | =
n% > 1 - and |1 — %l > ]% > j—3, which gives us that Ong (¢, ) ~ ®NR(t;f,7, )

and OR (1, §) ~ ONR (1,1 ¢ §) = ONR(1, ¢, §). Thus we have

O E) <2)C<n_l)+CK < peln—tl3
ONr(, 1) T\ & ~
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Case j < n— 1:Inthis case, itis easy to see that 5—2 < '7n;§ and we can conclude
in a similar way to (3.17). O

Lemma 3.7. Let t < L min{|&|3, |]3). Then

A

(k—1,& —n) ecagl|k—1,sfn\%

My (e, n) —1‘
QKL+ 1+ ]+ (DS

M1, §)

Proof. By Lemma 3.5, we get that

Mt m) _ g, S)ECBEIIE—VII% +ecaL—1|k_1|.% < 6C51:1|k—l,§—n|f!¥. 3.18)
M. §) ~ gt.n) ~

2
IF (Jk| + 1] + [n] + 1€DF < max{1, [k —I] + & — nl}, we get the lemma.
From now on, we assume that

1 2 2 2 2 1
k—1 —n < —( k|3 1|3 3 3) < — |1k l .
k= 11+18 =0l = 7o (615 + 1015 + 013 +161F) < o= (161 + 101+ Inl + 1£1)

Case 1: %(Ikl + 11D £ Inl + €] £ 10(Jk| + |1]): In this case, we have

lk —1,& —nl S |kl =~ |l] =~ [§] ~ Inl,

and

emflw% 64”651‘E‘% ansT 3 dms )
Myt n) I ) TR etk o

DA 1| é - + ]
Mz, €) oL el3 +e4nag]u|% oo 3 e4m§£]|l|%

2(t,8) g(t.§)

1
< _gg,s; g — ] ebmic et +‘—g(”5) 1'
g, n

g(t,n)

1
e4msgl lk—1|3

o R
_ _ ! 0
< |§ 1l zecsL‘|g_m§ n 'g( &) 1‘
€15 + [n13 g, m
|zl —kl 2e4n6]:1|lfk|%'
113 + [k|3
Recall that (3.6) and (3.7), we have
2 1
1 E(Inl3) _ E(lnl3)
w0 = 500 Y. Elew)|exp|of' Y Fkom
’ k=1

1
E(n3)+1
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and
2 1
’ E(ElS) E(15)
05 = S0t Y Fe#) |exp|s! Y] Fik &)
E(é]3)+1 =t
This gives (if [£] = [n])
2(0.£) E(l) E(lnl )
S0 =P s Y Flem —FG,6) |exp|s' Y Flkm)
= k=E(]3)+1
CGHE ] EQniS)
xexp|ort D (Flk,m) —Fk.&) |exp | =o' Y Flk )
E(nl3)+1 E(gl3)+1
Egnd)
xexp|og' D Fik.n)
E(lg15)+1
£0. 1) E(l5) R
0.5 = P =8 Y Bk, —Fk, &) |exp| =" Y Fkn)
= k=E(g|)+1
B ) Bl
xexp|=8." Y Bkom) —F.&) |exp|ogt Y Flk )
E(lnl$)+1 E(lg15)+1
B
X exp —8]:1 Z Fk, n)
E(g5)+1

By using the fact that |e®e” — 1| < (la| + |b])e“*?, we have

‘g((),i?)_l‘ 'g((),??)_l‘
(0. ) £(0,%)
E(E1T) BT )
S (8;1 SR —Foo o1+ Y IRk n) — Bk, ©)]

k=1 1
E(lnl3)+1

1 1 2 2
max{E(|n|3).E(|§]3)} max{E(|n|3).E(|§]3)

+

min{E

}
max{[€], [n])
DY E )

1 1 2 2
(In13).E(13)} min{E(|n|3).E(|§]3)}

{g(O,%“) 2(0, n)}
max , .
g(0,n) g@0,8)
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Now applying Lemma 3.5, we deduce that

‘M_l‘JF'M_l‘
(0, n) £(0,8)

E(E1 ) BT )
s( SRt —Foo O+ Y Bk, n) — Bk, £)]

k=1 1
E(nl3)+1

2 2
E(n|3) — E<|s|s>|>eC5L1|s_,,|;_
€|
We have for [£] ~ [y] and 1 < |k| < min{E(|5|3), E(&|3)} that

& — 7l
k2 + |g|?

+ [E(In|3) — B(&|)| +

|F(k,n) —F(k, §)| S (3.19)

and for max(E(|n] ), E(I§1$)} < [k| < min{E(In|$), E(I£13)) that

n 1§ —nl +|n—€|<ln—$|’
k3k2+|f;“|2 k3 ~ k3

|F(k, n) — F(k, &)| < (3.20)

which gives us that

2(0, ) 2(0,m) €5 +n|3

Case 2: || + |€] = 10(Jk| + |I]): We have |&| = 4(|k| + |I|) and

1 1
Aot e tiel3 o L
M (t, n) g T ewd) AL IKI3 _ pAms I3
R 1‘ é 1 N |
M (@, §) S 6471351\”?1; M_Fe“msf]lll%
g(t.) X3
1
§ g, 8) ‘|g_—|% _ |n|% 647'[6L|n—§\3 + ‘w B 1‘
gt gt )
1
‘Ikl% —|I|3 | e e=t3
+

1 1
AL 813 —dms 113

1
4 k113
< & —nl ecsilg_,ﬂ% [lk| —|I]] e*" L =il

~ 2 2

&5 + Inl3 &1
<K=L E =l catie-n3,

E15 + [n]3

Case 3: In| + |&] < 1]—0(|k| + |1]): We have

1 1011 989
k—1 ol S —— (k1D ——] = k] = ——i],
I |+ |& n|_1000(||+||) 989|I_|I_1011||
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thus 21| < |€ — il + 0]+ 1&] = a5 (kI + 1) < 22111, which implies |/| = 8¢].
Thus

1
48 E|3
IR ol < gasmtu’,
gt &) = -
and then
Myt ) 1’ . (g(;,g) ’IEI% ol AToLIn—E1T | ‘g(t §) 1‘) o-05m8 13
Ml(t S) - g(t,?]) g(t 77)
[l — e’

|k — |l||e‘““3 113

< & —nl eCBEI\éfnl%efo.SJrSEl\lH
~ T2 2

1§13 + [nl3 Ill +|k|
< |k —1,& — 77| c5‘1|g n|3

113 + [k|F

Thus we proved the lemma. 0O
Lemma 3.8. Let t < 1 m1n{|“§|? In|3 } Then

M@, n) 1' < E—m  corlg—nt
M@, 8) 1™ (k| + ]+ 1ED3

Proof. By the argument in the proof of Lemma 3.7 (see Case 3) and Lemma 3.5,
we have for |n| + |£] < %|k|,

Mi(t, ) ’ (g(t,f,:) 1 Ll azey| _g|% ’g(t,é) D _0,5ﬂ5*‘|k|%
—1l< 5 Lin g.s) 4
Myt €) ) G ¢ Tleaw )¢
< Lgestte-nt < &M colie-nt
|k|3 (|k|'|'|77|+|$|)z

Now we focus on the case || + || > %|k|. We have from Lemma 3.5 that

M (t, m)

i 1
O] <1 OO el
My (t,8)

So, if (|&] + |n|)% < max{l, |n — &|}, then we obtain the lemma. So from now on,
we assume that |r)|% + |§|% 2 1and
I 3 < 3.21
& —nl= 1OO(I?’)I +1£13) = 1OO(I?’/|+I5EI) (3.21)
We have

M@, ) l‘ - &%) [e4n5gl(|g|'/3_|n|%) ]’ i ‘g(r £)

< —1]. 322
M (2, ) gt n) g(t,n) ‘ :22)
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Using Lemma 3.5, we estimate the first term as
1 1
EUE) [ as-ih) _1]| =&l estners,
gt m) I3 +&13

Now, we estimate the second term in (3.22). We first consider the time regime

t < min(z 2 ). In this case, we have (see (3.9))
E(E(3). 161 E(MF) nl

‘M 1| = ‘M_ 1] E=nlcstie-m’

gt ) (0, ) el 3
Now, we consider the time regime: min(* 2 ,t 2 ) < t <
E(§13), |§| E(nl3).1nl

ax(t 2 ) which corresponds to Case 3 in the proof of Lemma

E(l13).J¢| E(\n\3) [n]
35.Letr €, N1je

t 2 =Zt<t 3 ,wehave
E(1§]3).§ E(|n|3)ﬂ7

& i > 8. 8) - 20.8)

t ; t 0,
g(E(m%),n m ~— gt.n) g0, n)’

This gives that if g( < 1, then we have

g(t,S) ‘ < ’g(O 5) ’ < 1§ —nl e“[‘lé—nlé
gt m gO.m T g5 43

and if i ) = 1, then we have

g, &) 1‘ < 13

< —1].
t, - t < I
g(t,n) g( A n)
Similarly, we have forz > <t<t 2
E(|n|3).n E(l£13).
t 2,
g, 8) 1’ < 36 _ 1‘ 4 If — Zecag‘w—m?
g, n) g(tE(|§|%),s’ ) 13 + |n|3

Thus we deduce the problem to consider the timeregime max{¢ 2,7 2 <
E(lnl3).n" E(l§]3).8

t < m1n{|§| 3 7] 5 }, which corresponds to Case 4 in proof of Lemma 3.5.
Wlthout loss of generality, let us assume |n| = |&| and prove

B0 o[ f< ezt
g(t, n) g(t, §) |3 + |&]3

So, let n and j be such that # € I, ,, N1, ¢. Then we have |n| = |,

Claim: It holds that 5 2'"' < 2L < n"f' which implies ||n| — | j|| < 1.
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i 2 L5 s oh imnli 2Inl=1.5
Indeed if not, then 2|n||"_|1 > 1_5|n‘|5_|1 which implies ||| — |&]| = % It

holds from (3.21) that

684

99 101 3 1
_— < < _ < T _|&|3
orlEI SIS SolElL In— &l = I
Thus we get that
3 20| — 1.5¢] H H 1
_|$|3 2 |77_§| 2 2 2 2 > = _|§|3’
3In| TE(In3) 120815 12

100

which leads a contradiction. 1 1 1 1
Therefore, it holds that n = E(|n|3), j = E(|€]3) and E(|n|3) = E(|€]3). For

j = n (hence in this case |j| = E(|n|%) + 1), thus recalling (3.14) and (3.15) and
using the inequality |e®e” — 1| < (la| + |b])e?*?, we get

g, &) _I‘Jr g, 1‘

g(t, n) gt &)
E(gl9) e ) )

S| OYC sC' ko —Fk O+ > SC'IFkm) —Fik, )|

= k=E(&]3)+1

= €] €]
+ > 8Bk, n) —Fk, &)+ 8" i etan <z— m)

k=E(Iy|$)+1
— ul arctan <t—|l|> ‘+8L_1’|.i|3arctan (— |7?| )
[J12j1 =1

1i1? 1j] 1]
_ B an ( 151 ) D max {g(t, £ g, n)}
113 12— 1) gt,m) g, &)
First applying (3.19), we have
1
E(l£]3)
_ 1 |&—n| (& —n)
8. [F(k, n) — F(k, &) < ISIé S - (3.23)
;; - R2A1EP ™ e 4y 3

Similarly, using (3.20), we have

B . 1 =&l (E—n)
Z 8. IF(k,m) —F(k, &)| S [E(Inl3) — E(&]3)] 2] . 3

1 3 3

k=E(§13)+1 &1 +(;”2|4)
and .

S P ey N

Yo SFGen) —Fk &I S — S ——
mls gD + Il

1
k=E(In|3)+1
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Also, we have
£|3 arctan ( E) — |i|3 arctan <t — li') ‘
/1 /1 71 /1
|é|3 arctan ( E) — arctan <t — i') ‘
| | 11 11

+(arctan(t_m> |

R 1P
< &l In—&l  In—§&l
R IEaV] i
< (?—n)l.
515 + Inl3

Similarly, for the last term, we have by applying (3.13)

Il ( Il ) €] ( €] )
—arctan [ —————— ) — —=arctan | —————— ‘
i Jiehi—n) 1l T,
- lnl 1] €|
pEAe e =) T\ Gia o |
i J|§|J SR Y (5:20)
—i—’arctan( >H——L

1@l =0/ 0e 1P
<=8 In—& _ &—n
TP () P IE+ Il

Collecting (3.23)—(3.26) together with Lemma 3.5 yield Lemma 3.8 in the above
time regime with j = n.
Now, we discuss the case n # j. We then have

2 2 1.5
Wl 2l o 2l LSkl del o0
=31 2n—1 I5n—1 n—1
It is clear that since t ~ inl < 2rn1n{|§|3 |n|3} then it holds that j = n — 1 =
2[n|3 — 12 |53 + 1. Hence, using (3.14) and (3.15), we have
t, t,
g( 5)_1‘+ g( '7)—1‘
g, n) g(t, §)
B(E1%) E(nl ) Bgn®)
<oct| Y Fkew -FkoO)I+ > Fhkom+ Y Fke)
k=1

k=E(&|5)+1 k=E(g|5)+1

n—1
" Z |15(k, n) — F(k |+ ||77||3 arctan (t - %)

1
k=E(|n|3)+1
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il ) )
—aretan <|n|<2|n| - 1)) -+ TESTE (man (t e 1|>

[ - g, §) g, n)
— arctan (m)) + F(i’l — 1, S)‘) X max { g(t, 77) ’ g(h g) } .
(3.28)

The first four terms can be estimated as in (3.23), (3.24) and (3.25).
We also have in the time regime (3.27),

‘ ( |n|> ( Il ) ‘
arctan|{ ¢t — — | —arctan| ——
|| |n|(2|n| — 1)

<‘ 2| n] 2] In] ‘
S | arctan — — | — arctan - —
2nf =1 n] 2nf =1 In|
5'5_'7'5 <§—n>l‘
Inl 5 i

Now, using (3.11), we have

_ - In—&1 _ In—&l (E—m
Fn— 1) —Fn—1,6) < S s '
[F(n —1,m) — F(n —1,8)| (In] — 1)3 €] £15 + |3

Now, we need to estimate the last term in (3.28).
Recalling (3.8), we have

€] €] €] =

n— 1 (ama“ (t T - 1|) —aretan ((|n| - 3))) FRe=LE)

_‘ H ( ( H ) ( H )

=|——larctan|{{ — —— ) —arctan| —

n—13 n — 1| In —1|2n — 3)
€] €]
-+ arctan <—|n “1)@n = 1)) —+ arctan <—|n “l@2n = 3))) ‘
| 1& €] €]
= ‘|n — 1|3 (arctan (t — n— 1|) 4+ arctan <—|n " 1n— 1))) ‘
We have, by exploiting (3.27),
€] €] €]

—|n — 1|3 ‘ arctan (t — = 1|> + arctan (—|n “Tan - 1)) ‘
18] ‘ < €] 21€| ) < &1 )\
= arctan | ——— — ——— | — arctan —t

n—13 n—11 2n-—1 |n — 1]

< _ &l ‘ €] 2|&| &1 2|n| ‘
< arctan - — arctan -
In—1p n—1 2n—1 In—1 2n|—1

5l In—&1 (-8
Tn =18 nl o 7 ENS 4 (3

Putting the estimates together, we have proved the lemma. 0O
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Lemma 3.9. Let t < L min{|&|3, || 3). Then

Tt 1‘ o Kk=LE—m cuprgnt
e Y Gk 1+ Il + 1ED3

Proof. Keeping (3.3) in mind and due to our assumption on the range of ¢, then it

holds that Jx (7, n) = Jx(z_ 1 ,m) =Jk(0,n) and Jx (2, 8) = Iz 1 &) =
E(Inl3).n E(€]3).¢
Jx (0, &). First, we have from Lemma 3.6:

B < presih gkt < cun-sant, (3.29)
€)1~ -

Hence, we obtain

Je(t,m) 1‘ - ‘Jk(t,ﬂ)
1i(1,8) @)
Hence, the lemma holds for (|k| + |I| + |n| + |$|)% < |k —1I| + |& — nl|. Also, if

(kI + 11+ In] + Iél)% < 1, then Lemma 3.9 holds since due to (3.29) by allowing
the constant C in the exponent to be large enough. So, from now on we restrict to

2 2 2 2
the case |k|3 + |I|3 + [n]3 + &3 2 1.
We assume now that

KI5+ 115+ 115 + 1815 2 1000k — 1] + 1€ — )
That is, we have in this case
[kl + 171 + Inl + €] = 100(lk — 1] + & — n). (3.30)
We define the multiplier i, n) as
euln\%
Ok (r,m)’

Case 1. If |k,I| ~ |n, &|. That is if for instance: %(Ikl +11) < Inl + &l £
10(Jk| 4 |11). Then this together with (3.30) implies that

lk—1.&§ —nl S |kl =~ |l = |§] ~ Inl.

Tet,m) =

Hence, we have

(3.31)

Ji@, ) 12, §) 1t &)

The second term on the right-hand side of (3.31) can be estimate as

1 1
3 3
}emk\ _ onll

N, )

| < [erkS -1 )
< [k —1] k=113
~ PR+ KB + 175
(k—1,n—§) . emk_z,,,_gﬁ.
(k[ + 111+ Inl + 1513
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For the first term, we have

Tk, m) —L(r,@‘ - ‘ik(r, ) =3, 6)

D@, &) @, &)
< ©:(0,§) el =gl )y ‘ ©:100.8) 1 (3.32)
O (0, n) ©1 (0, n)

Then, we control the first term as, by using the mean value theorem

PP =IEM) g < /3 = (g |13 eI g1

< In — & ol —[E1/3)
PB4 Il B1g 13 45123
(k—1,n—§&) zemkfz,,,fgﬁ’
(kl+ 111+ Il + 1813

which together with Lemma 3.6 implies the control of the first term in (3.32).
Our goal now is to control the second term on the right-hand side of (3.32). Due

to (3.30) and the fact that |k| + |/| = |n| + |&], it holds that |E(n) — E(&)| < 1.
Keeping in mind (3.4) and if E(|5|'/3) = E(|&|'/3), then we have

¢ 1/3
S|

with 2C« + 1. This implies

‘(m)cﬁ(mﬂ/% B 1‘ < ‘(1 n In—EI)cE(InI'“) B 1‘
€] - €]

Using the inequality

a\’ |al
(1+b—3) —12C5 lal<l b1,

we obtain

| — &[\Em') In —¢&|
)(1+ n|g| ) _1‘5 n|5|§

Next, if E(1n]'/?) = E(1§]'/?) + 1, we have |§]'/3 < E(1n['/) < |n|'/?
©(0,8) 1‘ _ ‘(M)cE(ISIW)( In| )C ~ 1’
Ok (0, 1) H (E(In|'/3))?

. |n|s_|§€| " K(E(hﬁ"ﬂ)ﬁ)c -1

Since,

‘((E<|:|71|/3>)3)C - 1‘ = (%> - 1) e <n|;|é>'

We omit the case E(|n|'/3) = E(|£]'/3) — 1 since it can be treated similarly.
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The other two cases || + || = 10(|k| + |n|) and |k| + |I] = 10(|&] + |n])
can be treated by modifying slightly the above argument and using the fact that the
first condition together with (3.30) implies that |§]| = % (|1 + |k|) and the second

condition together with (3.30) implies that || = %(m + |k|) and the second

condition together with (3.30) implies |/| = %(m +In)) O

4. Zero Mode and Coordinate System

In this section, we deal with the coordinate system and prove Proposition 2.3.

4.1. Assistant estimate

In this section, we prove the estimate of . Recall (2.7), by the Duhamel’s
principle, we have

t
< ¥ >=eM < gy > —/ =9y ey > (s)ds.
0

Under the bootstrap hypotheses, by the fact that for any f1(y) = f>(v) we have for
any k > 0and 1 < p < oo, [[(8,)¥F2h| 1~ < € and then

k 1 k 1
11y d=ef2< fR |a;f1<y>|”dy) ~ [ fall i ‘Lefz( fR |a:;fz<v>|”dv)
i=0

i=0

4.1)
and for any y € (0, 1)
def ([ 1) = AiGDP :
iy ([ O R a0,
) : (4.2)
[2(v1) — fa(v2)] def
~ dvid = 7.
(fR e dudnn ) £l
which together with the elliptic estimate, we have for any k = 0
2
< 0y > Nlyhr SN < Bz > llyr S NPl grss il grss S 5 e
(4.3)
Thus we get that for0 < j <7
Py < ! . ) .
0y < ¥ > llLr S T 04l | <Yin>llp + 1l < Vin > llwice
<t)2 P 2

+/[ 1 €2 ds
0 (- s)%(lfi)% 1+ 54

€
m%(lﬁw%'
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By choosing different j and p, we get Eys, 4, (f) S €2.
By using the fact that wp = 9y, < ¥ > and < u* >= —0, < ¥ >, we have

_5 _1
lwollze S €)™, ldywollp2 S €(r)™ 4,

_9 €
i
s

9yywollL2 <€) [9yy <u™ > Lo S

~1 42
which together with (4.1), (4.3) and (2.6) gives us that

_3 _1 €
I follz S €)™, N9 follz S €)™, Ndugliee S 72
Q

_1 G o
Iz S €075, Bl 1 S €T 1Bl )L, ST
Moreover recall that Ko(t, v) = dyywo(t, ), we get that
_9
Kol 2 < eft)™ 3. (4.4)
Recall that g(¢,v) = d;v(¢, y) and h(z, v) = dyv(¢, y) — 1 and that o,v(z, y) =
[iz fot s0pug (s, y)ds and dyv(r, y) — 1 = —% fot wo(s, y)ds, we get that

] t
0 v, Yl S —2/ slldpudlleds < e(In(t) + D(r) 2,
’ (1) Jo ’

1 ! _7
oot e S = [ saglizas < e,

241
1Bl S =07 el

1 L € s
Swf 1+3d55—(t)
0 (s)' "2 €2

and

)

1 4 €
loyv(t, y) — 12 < —f lwoll 2ds < —
Y B~ Jo L (t)

Thus by (4.1) and (4.2), we get that
€

Al S —,
e~

(4.5)
and By o (1) < €2

4.2. Estimate of g(t, y)
Proof. Recall (2.5¢). Under the bootstrap hypotheses we have

t
IAKo 2 < Se, / 3,AKo|3ds < 8¢
1
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By the fact that Ko = 0y, fo + h(h 4 2)9yy fo + yh(1 + h)0dy fo, we have

Ay foll2 S IIAK 2 + [[AA]2(2 + [[AR|12) [Ayy foll2
+ |AdAll2(1 + |AR]2) 1Ay foll2
S AKoll2 + €llAdvy foll2 + €18y foll L2 + |Adwy foll2),

which gives us that
}
A8y foll2 < IAKoll2 + €%(1) 74 Se. (4.6)

By the fact that
IAKoll2 = IKollz2 + 19,AKoll 12, 4.7

we have by (4.4),

t
/ 1Ay, foll3ds < €.
1
Thus we get that
t”ava}_l”[? 5 ”Aavva”Z + ”Aavvh“L2 5 €.

and

t t t
/ s18uuAR(s)][2,ds < f | A8y, fo(s)l13ds + / IAdh(s)]%,ds < €.
1 1 1
Note that

1Aduuugllz < 1Aduull2 + 1Ay, (h32) 112
S 1Adll2 + [|AR 21| Aduuue) 12 + 1A hlI2 [ Adyg 2
S 1Adhll2 + 1AL 21| A ) 12 + 1Akl (1A gll2 + llgll2),

which together with the bootstrap assumption implies that

- _7
IABugll2 S IAByhlls + €2(1) 74,

which implies the first inequality in Proposition 2.3.
Moreover by the fact that || foll ;2 < e(t)_% and || il ;2 < 5—>, we have ||A]|;2 <
%, thus under the bootstrap hypotheses, we get that

lovgll2 < (4.8)

€
W'

O
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4.3. Low Gevrey norm estimate

In this section we prove the rest parts of Proposition 2.3. It is natural to compute
the time evolution of By, ¢, and Ej, ;. Recall that fj satisfies (2.5a) and £ satisfies
(2.5b). We then have

3k 3k
1d t . t s
53 (0 22198 fols ) = 20 Y7 211801208 foll s + Dt s 0)
k=0 k=0
> krk! ko2 >k k 1
= 5 IO folgus + 2 gp < 0 fo v < VIhs Y fu >>gipe
k=1 k=0
— < fo.83ufo >gres + < fo, (V) = Dy fo >grss
3 k
t
+ < fov" 0y fo >gras + Y ( b 35 fo. 95 (80 fo) >grpis
k=1
1 k k 2
+ 25 < % f0, 4 (W) = Dduw fo) =g
1 k k
+ 4_k < 0y fo, 0, (v//avfo) >Gibis ) = Z Mg s

j=1
where

3

k
t
Dio, (1) = D 10 foll g
k=0

and the inner product is defined as follows:

1 ST o
< fi. fa>gps= 5= f ()P 2O F () fa(nydn.
2 R
We also have
1d 21927,112 ) 21927,112
EE(Z 19511 Gap:5) — MO0 RN Gs s
= _tz < Oyyh, avv(gavh) > GhiBis -1 < avva: dyh >GhBis= 1_Ih,l + Hh,2~

By (4.5), it is easy to check that

1
t”h||gk,ﬁ+2;x < €+ Elz(),h

~

and by (2.5¢), (4.8) and using the same argument as above section, we have

1
ovgligrsszs < €+EL .o Eiog S Eio gy + Eion

It is easy to check that

3
T, 1] = nga,fo(t)~



2D Boussinesq System Without Thermal Diffusivity 693

By the elliptic estimate in Lemma 5.1, we have

2
€
Ty 2l S 25005 follgrss (1 + 1Rl grp) IV P2gllgrss IV feligrss < e Eﬁ, fo-

By the fact that ||g|l;2 < ﬁ, we get that
)4

I 5y 31 S I follgrsss 18Nl grurss 10w foll grpis
S IIfOIIgA,ﬁ:x(IIgIILz + 188l grp:s) 13 foll gin.pis

1 1
< — —Eo, ,EL -
~ (t> 10 Jo + (t)2 lo, fo lo,g

Similarly, we have

T4l = 1 follgrgs IRl grpis 2 4 IRl grpis ) 19wy foll grsis
€ 1 %
S Wﬁlu,fo + WElo,foElo,h’

M50 S I follgrsss 10uhll grpis (14 1Al grps) 10w foll gnpis
¢ 1 !
S —5Eio, fo + —5Ei0, o Ejpy -
()2 ()2

By using the fact that < f1, 9, f> >onps= — < o f1, f2 >Gghpis, W have
3
M6l S D2 (1054 follgrsliglignss19% foll g
k=1
+ 19 follgrs 1028 s 120 foll g )

€ 1 ! 1 € E;,
<D2 E? — + —E}, +D B2 &y Tles |
fofoto-Jo ((t)l (2™ ) lofo™lofo \ (1) T (1)
3 k 1
o7l S D7 (€ 105F folZe s + 120057 foll gt Ul gaopomat 1900 foll g )
k=1

1
< €Dio, f, +Ej,, Do, fo-
Now we deal with I, g. For k = 3, we have
21 < 83 fo, 83 (3 (W) = Dy fo) >gress |
3 3
S 10 foll gt [92(0u(@ ) = Doufo)|

g)\.ﬂ::
1 1
<D, oVt ||h||gk ﬁ+1~sr||a3fo||gx.ﬁ;s + D, (VA gperst 10 follgass

< €Dio gy +E} 1 Dio. gy + D}, foﬁ 1402kt (19, fol 2 + 19w follgn.s )

< €Dio sy + B Drogy + (€ + B, ) (Do + () 1A02013).



694 NADER MAsMouDI, BELKACEM SAID-HOUARI & WEIREN ZHAO

and for k = 1, 2, we have
51 < 3% fo, 35 (3, (V)2 = D)dy fo) >gres |
k
S 25 follgrpstllhllgrss (||3vf0||gx,ﬁ:s + ||3vvf0||gl,ﬁ:s>

1
S ED[,,’fO + Elzg,thO,fO'
Next we turn to IT, ; and IT, . We get that

M1l S 21000kl gr st 18l grss 1Buuhl gasers
+ t3uohll g 1338 I gases 1Al gh s

1
SE, h\f (I8l 22 + 18 8llgrps ) V11 ABu 12
1 1
+ 5 >Eﬁ,h Ep,  (Ihll 2 + 180hllgrsis)

1
e—i—Eln € +E}
8 lo,h
—— (Eio,n + € +—E E
(l)4 ( 0, ) (t)2 lo,h""lo,g"

Thus we conclude by taking € small enough that

1d
2dr

A

1
(Elof + Eip h) + B

< —= + —<(Bio.s +Eion)
s ()3

(1A 113 +E,0 PROIECHATES

Do, fo

3 3
€ 3

1
+ (Eto, f + Ei0,0) 2 Dio, f;

which implies that Ej, o < €2 and
1 [t 2
(Elo,f + El(),h) + § / Dl(),fo(s)ds 5 €7,
0
We have

[P [PS / (2, ©)IdE + [10vwvgll gr.sis
! lE1=1 :

—L4e -2
S s el yy + e
1 €
S =gl ye +en? S —=——r
Ve ! ()27

which gives the proposition.
Remark 4.1. It holds that

€
||3vg||gx.ﬂ+2;: < W
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5. Elliptic Estimate

In this section, we study the elliptic estimate. We give the proofs of Propositions
2.11-2.10. Before giving the proof of these propositions, we start with fundamental
estimate on the stream function ¢ in a lower norm. The regularity gap between
the higher regularity norms and this lower regularity norm allows us to trade the
regularity of f in higher norms for the decay of the stream function in lower norms.
In other word, we prove the following lemma.

Lemma 5.1. Under the bootstrap hypothesis and for € sufficiently small, it holds
that

P23 AL ()l gro—2s + (P23 @) gro—ss S 107" Prf ()l gro—as
(5.1

and
IP£I- AL fllgros + (021107 Pef (D) ligro—as S e (5.2)

Proof. We have for any ¢ and o’ > 0

1P207 oG ory = Y [ 5 e 107 ok, m) dn
k0N

Ly [ b
o, T+ kPR

x (K2 4 (n — kt)»)?18;  p(k, m)|*dn

1 -1 2
S ol PALIT 00 G

On the other hand, we have
ALPigp =Pyf + (1 — W))(3y — 13;)* Prgp — V" (3y — 13:) Pp.
and
ALf=y20p+K — (V) = D@ — 1) f —v"(@ — 1) f.  (5.3)

Hence, it holds that by using the algebra property of Gevrey spaces together with
the bootstrap assumption
P20 AL Dl gro—2s S 1P£I]" f ()l gra2s
+ 11— @) llgro—zs |1 P20, AL (0) | gro—zs
+ 10" | gro—2s | P20 ' AL (D)l gro—2:s
SIP fDllgho2s + €l P23 ALY gro2s-

Thus by taking ¢ = ¢, 0/ = o — 4 and ¢ sufficiently small, we get (5.1).
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Similarly, we have from (5.3)

1P£3; AL fligros SIAPLplla + 1407 P2K [l + G | gross | P20, AL fll gross
+ 18y G llgro:s 1 P23 AL fll gross
Se+ellPrd AL fllgros.

Therefore by taking ¢ = f, 0’ = o — 2 and € sufficiently small, we get (5.2). O

5.1. Proof of Proposition 2.9
Proof. It is also easy to check that

IAPLI- AL fll2 < v2IAPLpl2 + 1AD P2K |1

. » (5.4)
+ AP, My rll2 + AP, " Ma 7.

where
Miy = () = D@ — 13> f. Moy =0"(d, —13,) f-

Hence, by dividing each via a paraproduct decomposition in the v variable only we
have that

— 1 ~ A
Moyt km) =——— > / G1EM(( — &) — ki) fu(n — &) <miysdé

M28

l = A
- 52 2 [ Gl = ©)ause — ki

M=8

1 — A
DD /GI(E)M’((W—E) — k0)? fi(n — £)mdé

MeD ImM<Mm'<sM

= fVTl,f;HL + fVTl,f;LH + /\//\ll,f;HHs

and

R stk = 5= 3 [ @m0 =6 = k) fitn - £)wysds

M8
o 2 [ T0- 5 wste k0 fu@was
M>8

+§Z )3 /lﬁ(n_g)M/(g—kt)fk(E)Mdg

MeD Im<m'<sMm

= M\z,f;HL + ﬂz,f’;LH + fVTZ,f;HH-

where G = (v/)2 — 1 and v" = 13,G.
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The treatment of M 1,f;LH and f\/\lz,f;LH is similar. By the fact that
Ji(n) < ecm_g\%
Ji(§)
We get that

IAP£07 M punl3 S D IG G0 1A By — 19.)> P2 fuall3,

M2>8 (5.5)

S EENAPL AL

S e lAPLO AL S5,

and
IAPL Mo pinls S ) IV 150 1A By — 130 P2 fuall3
M8 (5.6)
S EIAPL ALSI.

Next we consider the high-low interaction. The notation is deceptive: the fre-
quency in z could be very large and hence more ‘derivatives’ are appearing on f

and we will be in a situation like the low-high interaction. Hence we break into two
cases:

— 1 —
Migm=—=5-) /[lwk@ﬂ—@m\ T < 1G1Em
Mz

((n — &) — k) fr(n — &) <mygdE
= Mi,f;HL + MY,f;HLv

— i =
Mo =) /[llklérlélnl L < 1V )
M>8

((n — &) — kt) fi(n — &) <mysdé
=M p + Mo

Let us ﬁrs.t treat /T/l\i .y, and /\//Té FiHL: On the support of the integrand, we get
that there is some ¢ € (0, 1) such that,

k. nl* = 1k, n—§1° +cl&)

We also have 1
Je(m) < oClkn—¢13
Ji()
Thus we get that

IAPLOT MG oy I3+ IAPLOT ME oy 13

S Y (G130 + 1V 1500 ) 1A AL P2 fuall3 S €211AD AL P I3,
M=>8
(5.7)
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Next we consider /\/l'f FiHL and M; FiHL: Due to the fact that G admits two more
derivate.

By the definition of Ji (¢, n) together Lemma 3.6, (3.2) and the fact that n ~ &, we
have

1
Te(t, ) - oClkn—¢13 if té¢l, < (E)eclk’n_gl%

< (5.8)
Yo,8) ™ | neclenit i yety,

Hence, we have
IAPLIT MY o 13+ AP MYy 13

S 2 (HO)AW WM + 10)AGOMIB P20 AL IG00s (5.9
M>8

< et

The high-high interaction is easy to treat. We show the results and omit the proof.

IAPL MY pyll3 + IIAP2O; MY pylls S € (5.10)
Plugging (5.5), (5.6), (5.7), (5.14) and (5.10) into (5.4) using the bootstrap assump-
tion and taking € small enough, we get the proposition. 0O

5.2. Proof of Proposition 2.11
Proof. We write
Arp =+ (1= @)@ — 1079 — V"3 — 13)9.

This yields by using the fact that 9, (v/)> = 23,h(h + 1) and

5 1
Aj¢=ALf = Gi(dy =102 Asd = 0,G1(3, —10) (50— 10, +502)9

1
- 28qul(av - taz)2¢ - Eavval(av - taz)¢

=M+ Mz + M;3p+ Mgy
(5.11)
Similarly, by following the proof of Lemma 5.1, it is easy to check that under
the bootstrap assumption, it holds, for oy < o — 1, that

1P£0 ' AL llgros S €. (5.12)
Hence, it holds, by using (2.14), that

o\~ 12 dy \~! -1
2N Ao AP H <H<—> APLITA H
H<taz> e ALP2O|, R 19, 9 ALT|,
4 9 \—1
O ~1 4.
+§H<ta> AP Mig |, (5.13)

4
3v -1 -1
Set+ Y H<E> AP My
i=1
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We write
Mot k,n) =M guL + Migin +Migun, i=1,...4
To estimate M 1,¢:LH,> We proceed as in the estimate involving M 1,f;LH and using

the fact that on the support of the integrand, we have for the (%)_1 ~ (%)_1,
which means that we can move this factor to ¢ and obtain as in (5.5)

dy \~! -1 o\~ 12
R Ly VRN
H(taz> #0. Mign )€ 10, . ApPzd 2

We also have similarly
H(-a” >71AP 9~ M H <€H<—8" >71A8_1A2P ¢”
19, R PR (PP Y : BLTEP,

Both terms can be absorbed by the left-hand side of (5.13) for sufficiently small €.
The other two terms M3 .15 and My 4.1 1 can be treated similarly. We omit
the details and write the result

31) -1 -1 8v -1 —1

—AP8M<”+H<—>AP8M~H
v \=1 12

< (2 AataZp H

~ €H<taz> z LPz¢ 2

For the high-low interaction, we write

— 1 Ui -1 o
Migm = —5— 2; /(§> W= L + L < 1 101N
M>8

(0 — &) — k> Ardr(n — &) -mysdé
= Miq&;HL + M11),¢;HL’

— i n\—1 —~
Mo =50 2; /(;) (> it + Ly 107 EM
M8

(0 — &) — k)AL (n — &) -yzdE
= M3y T Mg

As in (5.14), we have the estimate
81) -1 —1 81) -1 —1
() APt M g |, + () AP a5 ]

9, \—1
< () w e

~ t :

(5.14)

5’

which again can be absorbed by the left-hand side of (5.13).
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The estimate of the terms f\/\llf’(ﬁ,HL and M; ¢:HL Can also be done as in (5.14)
and by using (5.12), we get

A BT ? AN BT, ?
(G) Arsor Mg [, + (5) AP2O M |

S Y (O)AQ IS + 1) AG DMIR) P23 AT BlIG0s S €.
M=>8

Now, we prove estimates for My .¢:HL- The one of M3 4.1 is easier com-
H _ 4 v
pared to My, ¢.p1.. We write as above My ¢.11, = M4‘¢;HL + M4’¢;HL. The term

/T/l\i $:HL €an be treated as the low-high interaction and we have
dy \~! -1 B\~ 12
) apeo Mg, < (7)Ao airsl,

thus, the most changeling term is the term /\/l 4.6HL since in this term all the
derivatives are landing on the term 9,,, G| which will have a regularity loss. Here,
where we need to use the factor (£/(I/1)) ! to absorb one derivative by paying time

decay.
By the definition of J; (¢, n) together Lemma 3.6, (3.2) and the fact that n/ k ~ ¢,

we have

1
Clk.n—£13 i 3
Ji(t,n) <l . if 7¢I, < (1)eClen=¢13 (5.15)
Jo(2,§) ZeClkn=8l3 i 1 ey,

Then, we get, by using the fact that on the support of the integrand |n| =~ |£|, and
since s > %,

av -1 1
‘<ﬁ> Ap#az MZ,(}&;HL‘

Z

Z/ - Wty A0©IEPIG Eml 1) r — ©)

M>8
L
— kt|eMkn =81 (IR =513 140 (1 — ) _my81dE

S Y [ 1y ©2A0EG Gl o — 2

M=8

1~
M =EF gCIn=E1 16y (1 — £) omys]dE
This yields by using the bootstrap assumption together with Lemma 5.1,
9, \—1 B 2
H%) AP M g || S 00 2 (1002 Asall2) I3) 1 P26 120 S €
M8

To estimate the terms M, 4.5, | = 1, ..., 4, we use the fact that on the support
of the integrand, we have |n|* < c|n —&|° +c|€|*, ¢ € (0, 1), which together with
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(5.8), yields, after absorbing all the possible loss of derivatives by the Gevery term
(since c < 1),

Z IAPL M} 4yl < €

i=1

Collecting all the above estimates and taking € sufficiently small, we get the desired
result. O

5.3. Proof of Proposition 2.10

In this section, we prove the estimate in Proposition 2.10.

5.3.1. Proof of (2.15) We have by using (5.3) (see (5.4))

|V|% _ 2 |V|, 2
1y~ AD ALPLf ) < v zm s pE: w APzp ,
v 2
+ IIZMO 3s Aaz P#K
-z 2
V|2 . 2
T Lzmy 5 AP£, My
-z 2
V]2 i 2
>y~ APz, Mo p| . (5.16)
-z 2

Keeping in mind (2.9), the first two terms in (5.16) can be estimates using CK; x
and CK , as follows:

2 i)

V|2 _c
= 135—2 1> mo

: 2 .
Lz g APer VIEAPLo| < CiMgT Y CKy .

Similarly, we have

V|2

_ 2q
lszO_ﬁ Aaz IP;,EK q=3s
(r)2

< CiM,
2

CK k.

The above constant C depends on 8, but it is independent of Mp.
Now, we estimate the last two terms in (5.16). We simply first write
My =M raL + M piia + M pun

as in the proof of Proposition 2.9. Following similar ideas as in the proof of Propo-
sition 2.9, we have ((by using the same notation)

2l el

<

AP#(') 1./\/1, f:LH

1
t>M0 SAP#a MszHL 5

s
ME

€ IIZM()_’;
=7
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which will be absorbed by the left-hand side of (5.16), provided that € is sufficiently
small.
Next, the terms involving M;’ f:HL €an be estimated as (we omit the details)

V|2

2
1@’”“(:) —APL MY oy geZCK”,(t).

>

i=1

5.3.2. Proof of (2.16) In this section, we prove the estimate (2.16). Using (5.3),
we have

2
atg av ! = —1
[—(— Ad. "ALP.
H g <t3z> ¢ t #f
drg [0 0:g
&8 <—”> AP#,O H |28 Aa 'PLK
/3 8 | 0:g 3
H 8% AP¢3 1./\/11 f ” Ge [ AP753 lef

A direct calculation shows that
9 9 -1 ~ 2
)
g \10; ' 2

atg<8v >—1: 2
282N APLp| +
H g \10; # 2

< C2(CKeo,p + CKo k)

2
<

for some C»> > 0 independent of 4y .
Similarly we write

Mi =M rien + M paL + Mg ppn, i =1,2.

We write

([ () Aresrisnn)
0 g(t, 77)
ZZ/‘/ ) tk T AMG -8 s~k 20T £k, )mds

M=8 k#0

To simplify our proof, let us take advantage of the 1 ; decay of G1 and 9,G1.
By the fact that on the support of integrand || 3 <t < Inl = ||, A < A and

\/ 8’%([”';) < 1, we have by using the fact that 1 < (¢ )252;;—21
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[0:g [ By e 1 2 org [ 9y -1z _ 2
— (= AP0 M ¢ + —\ =

H g <t81 i b g \19;

APLO; le,f;LH

O UGG 1 + 18,6151

2
s 2
VI2 [\
— = A0 ALPLf
)z 1o, 5
s 2
1R f a7
<€ %\ o Aaz ALP;éf
(t)7 taz ’

2

The high-low and high-high interactions are easy. Again by using the fact , / é),g%t(t;yr)]) <
1 and following the proof of Proposition 2.9, we have
dg [0\ R 0o 2 + % a—“
g \10; * b /L t8
Btg BU at
S8 (W) ApLa- /\/l
e Rrsn IN
< 2

V|3
“<;a> Ad; ALP;éf (I(8,)AG 113 + 11(8,)Ad,G1 [13)
(t)z z 2
+€2||A(d

s 2
VI [a,\ 7"

= <t;> ATALPLSf o) 2R3
(z)z z 2

Similarly, by using the fact that A < A and

2
AP#B;IMQJ';HH

2

2

AP¢3Z_1M2,f;HL

2
2
Se

k2 + (n — kt)? O, m ™
We get that
. 2
a b(t, V),
—” (/( ) )a AP M, ¢
taz 5
2
8 t, V)o,,
+ _v> ( ( )9: )8 ALP;,A./\/lzf
10, \/ 5
15 /9
<€ ; <—”> A IALP#f
(1)7 \19

+ €2 A(B,) 2R3 (5.17)
2
Thus by taking € small enough, we proved Proposition 2.10



704 NADER MAsMouDI, BELKACEM SAID-HOUARI & WEIREN ZHAO

5.4. Proof of Proposition 2.12

Recalling (5.11), we have

7

< ”'w APLOT 1ALfH +ZH< > V2 D AP IM””H

(t) 3
<y
Z H< > |V| (M"’q"HL + Migiin + Mi,¢;HH> H2

(5.18)

Applying Proposition 2.10, we estimate the first term in (5.18) as

V|2
e
(

V]
1?2

;IALfH2 < C1(CKyk + CK;p) + CeCKjp.

Now, we estimate the second term in (5.18). For the low-high terms and since
on the support of the integrand, we have |k, n| =~ |k, &| and |n| ~ |&|, then we can

move the term <t35 > ‘Vl : —5 AP to land on ¢ and get as in the proof of Proposition
; N

—1

2.11, and under the bootstrap assumption
VIS o 9y \~ |V|
g AP Migul, 3¢ ()

4
d
; H<5> 0¥ 0¥

Next, we treat the high-low part. We use the decomposition

air,

Migin = My + Migiy. i=1....4

The terms involving Jﬂf #:HL Can be treated as the low-high part and we have

4 —
S T o, <) i 0]

Now, we treat the term involving MY 4.¢:.y> Which is the most challenging terms.
We have, by using (5.15), with the fact that on the support of the integrand we have
In| & & and |k, n| < |&] and by making use of the bootstrap assumption,

VI3 9 | Ik
« )% <g> APz M4¢ LH Z / 3; 1|k|<]6|17|
M=8

Ao@) (1) 1G1EMmIlk, n — gl sl CIkn=E13 14, iy — &) _y\/sldé.
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This implies

|V| N 2 oo
(ﬁ> #0z Migin|, <€ ah ().

Similarly, we can prove that

vk
Z‘ <_> AP M1¢HLH < €2 CKon(0).

Hence, collecting all the above estimates, we obtain

By \— |V|
H(ﬁ)) e ~1A2 P¢¢H C1(CK;. k + CK;_p) + CeCK;p.

Next, we treat the ®-term on the left-hand side of (2.17). The g-term is similar and
we omit the details. We have by using (5.11),

dy a[ 2 ) X 1 ?
<§> ——A3'A P¢¢ H < > AdT'ALPLS
2
30 [o,\7' - 2
P3| () |
i=1
(5.19)

The first term on the rigpt-hand side of (5.19) has been already estimated in (5.17).
Using the fact that A < A together with the bootstrap assumption, we have

[30 [0, \ " - 2 [a© o, \ 7" - 2
—— (= /= (=) Ay 'P.K
O \10, O \10, < 5
By the fact that on the support of integrand |n|% <t < |nl &~ |g], A< Aand
\/ %{2‘7’;) < 1, we have by using the fact that 1 < (t)25<|t'7>—|;,

< C2(CKe,p+CKp k).

4 -1 2
[0 [, \" ~
(2} AP M, 4
Z C} <l‘3z> A e
i=1
: VI3 8\ ’
2s j 2 Oy —1 A2
<0 (X 19{G11G0) ()32<t3> Ad; AL Pxé
j=0 2
vz [a,\" ’
P LIS R
Similarly, we have
50 [0, \~ 2 IVIZ [ 8, \ 7! ’
v v —1 A2
—— AP M? Se€ —v<—> Ad. A7 Prop
- o <taz> #0z 1¢HL2 (t)% 10, : 2LTF )
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For the terms involving M? LgiHL? we treat the most problematic term which
is the term MY 4.4:HL which contalns the loss of three derivatives. The other terms

can be treated by the same method (even easier). We have by the fact that Jféis';) <

<r>eC"<v"—5'% and [n — & —kt| S (k,n — &)(t)

/3,@ 8,, -1 1
’ o \r1a AP;&E)Z MZ,qb;HL

Zf ) A ©IEFIG )

M2>8
1 o~
x (k, 1 — &)(1)?eHkn=E (CIkn=513 14, (1 — £) _\/5]dE

Zf Ly 1y Ao@IEPIG1E)mI)

M=8
1 o~
x (k, 1 — &) (1)3eHhn=EF LCIN=E13 16 (y — £) _pyys]de,

which, together with the fact that || P || gros S W implies that

7O -l 2
oo (=) AP ME g [ S 140230 NP1 0
Z
< EIA@) R,

Similarly, we have

RACNIS
H\/ﬁza Apsa ‘M4¢HHH < E1A@)R3.

Thus we have proved the proposition.

6. Estimate of NL, and NL}

This section is devoted to the proof of Proposition 2.4 and hence we estimate
NL, and NL}{. Let us focus on NL,,, the estimate of NL}( can be obtained by
easily replacing p by K.

We have

1
NL, = /Ap[A(u -Vp)—u- VA,o]dzdv —5 / V. uIAplzdzdv
| 6.1
=NL; — E/V~u|Ap|2dzdv.

The second term in (6.1) can be estimated as,

| [ v-uiapiazan] < I9uliApl
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Recall the fact that
u(t,z,v) = (0. 9)" +v'VE, Prp = (0.9)" +hVE, Prgp+ VI, Prop, (6.2)
then we have
€

IVulls < (gl + 0+ Wl Peglls) S 1o

To handle NL, we use a paraproduct decomposition. Precisely, we define three
main contributions: transport (low-high interaction), reaction (high-low interac-
tion) and a remainder:

NL; = /Ap[A(u +Veup) —u- V. Ap|dzdv

1 1 1
== ZTI;N"‘ 5= ZRl;N+ - Ri,
2 N8 2 o’ 2

where
TN =27 / Ap[A(ucnss - VzupN) — uanyg - Vo vApn]dzdy
RN =27 / Ap[A(uN - Vo yp<n/8) —un - Vo yApons]dzdy

Ri=2ry > pr[A(uN VzuoN') — uN - Vo yApn |dzdv.
NeD INSN'<8N

6.1. Reaction term Ry.N
Recall (6.2), we write

Rin = RLN + Rf;ll\I + R%;N + Rf;N
R%;N = Z / AD (AL (I — EKY1 (EINDk—1(n — &) <nysdndé
Rik= 3 [ ABenan [i976 ] @ Tpistn - £) s
k10718
R%;N =- Z / ) ADR M AMEE)N - Boor (i — &) <nysdndé
k 1,

Rin=-2 [ AP DA~ BN TP 01— )<
kil v

Here € stands for the smallness of the term coefficient /.
In this section we will prove the following proposition.
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Proposition 6.1. Under the bootstrap hypotheses, it holds that,

2
€
Y RN S G tetn IAd,glI3 + €CK;. , + €CKe , + €CKyr,p

N>8
IVI A 08 3z 2
za T + A+ a7'A P¢¢

6.1.1. Main contribution The main contribution comes from R} N+ We subdivide
this integral depending on whether or not (/, £) and/or (k, ) are resonant as each
combination requires a slightly different treatment.

Define the partition

+

1= 1t¢Ik,n,t¢Il.g + ltilk_n,tell.g + ltelk.n,t¢11’g + ltEIk’n,tell,g-

Correspondingly, denote

R] ‘N — Z / [ltélkn Z¢Ilg + ltilkn tel; ¢ + ltEIkn t%l/g + ltelk,, ZEI[E]
k,1#0

x Ak (AL () (] — Ek)r (EINDk—1 (1 — &) <n/zdndé

bl ! ! 1
=RpnnrNR FRENNR R T RENRNR T RENR R

On the support of the integrand of R1 .N» it holds that

&= Tkl < [k —1,n—§&| = 3—2|l £l. (6.32)

This implies that |k, n| ~ |I, &| since |[, ] < 28|k n| and

38
kool s lk—1n—§l+|L§ = /6l

Treatment of R1 ‘N:NR.NR
We write first that
_ i l(nl —&k)
L N:NR.NR Z . 16111 e AP (M Ak (17) ¥ E )22

k10T
0" A3 ¢, (NP1 (0 — &) njsdndE.
First, if /& < 0, we do not have resonances for positive times. In this case, we

have

1N, & 1211, & 1 s s -1
2 : IV 45 7 S zlkenl?llL &1 £ ,
=+ & —1t]%) ()~ + & (t) It
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we have

leligs.

0\ o5t a2
INR({— V120, A7 AP.oN
2
(6.4)

10,

! <1 3
|R1;N;NR,NR| ~ W IVIZAp~N )

which together with the bootstrap hypotheses implies that
2

(VT
NR ta 50, A7APL¢

ZlRlNNRNRH_'RlNRNR' < €CKy pte e

N>8

2

Second, let us assume that /£ > 0. Now we consider the following two cases:
|€] = 6]I| and |£| < 6]/| and in each case, we consider several sub-cases, depending
on the time regime.

Case 1: || = 6]l|, then it holds by (6.3a) that

_ < . < < =
In—§&l = 32IEI and ISI [l = 32Iél (6.5)
we obtain

Jk('?) ®l(t &) e §|3 1 ohlk— 1|3 ONR(?, §) o= g\x 1 phlk— 1|3'
JZ(E) - @k(t 77) ~ Onr(, 77)
By Lemma 3.6, we have
W@ ropp—tn-¢13

1)~

We also have

Mk(’?) < &8 g(t,8) AL = g|7
Mz(%‘) g, 77)

By using (6.3a), we have |k, n| =~ |&, [|, this means that we can freely interchange

between (k, ) and (I, §) in the Sobolev correction as well as in the Gevrey part in
Ak (t, n). We get that

1 1
1AL kS < O k=813

Je(m) Mi(n)
J1(§) M(¢)

Rinnearl S D / : Loty ogn e [ADR (D —— NG)

k10"

1] 1 A2

2
i 2B NIV D1 (7 — £) anysldndé.
(6.6)

1
Case1.1: 1 £t < max{ ml 5] }: We have ¢ < |£]3 and hence,
2E(In|3)+1  2E(|&]3)+1

we obtain for || < 21,

1§
B+ - 52?2

&1
(1)

S1S

~
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and for & > 2/t, then 5 = 2¢ which implies | — 7| > 5
N
€| Ikl < 3 >
B+ @—5»H2 7 EP ™ @) \ir

Consequently, in this case, we get from (6.6),

.

Case 1.2: max { bl i } <t < —LEL . Inthis case, Let j
2E(Inl3)+1  2E(|§]3)+1 2E(J§13)+1

and n be such that 7 € ij,,, ﬂin,g. Then we have form (6.5) that |E|% R |n|% <t S
€5 ~ |n|3 and if |&| = 211, we have |§ — 1] > § > ¢ which implies that

s -1

H Ll <s> |
B+ =522 TP~ @)\l

and if |€| < 2/, then

lloligs-

s W\t
|V|21NR<j> T AT AP PN
N 2

1
1
IRi.NNRNRI S _(t)3S

1]
B+ —5H»?
=< B <i> it 1012 EQg1$) + 1
3 -1 1
(1 +|ft|/_n§)2)2 <lé_t> i BOE) +15 1= ol SEGETH)
< ’ : :
~) g s -1 if E(E[5)+1=1]=I§2
vt IRl y
it [§12 + 1= |I] S E(§]5)
1 r? |EI‘<E>_ . L
- << = f 1= |11 S E(€]3).
Ara—5mi ~ & T e\ SR
By Lemma 3.3, for the second case, we have if [k| ~ | j| ~ |n| = |I| 2 ISI ~E
then

§/m’  _ VEm E-mvn/ib P
S ~ S _ﬂ 3S<$ )
(I4+@—2))> " 1+t—2] L+t —7l ()

In summary, we get that

V|2 MENEA
|R%;N;NR,NR| Se 3s Ap~N Inr 3s <j> 81 lAiAP#—‘pN
()2 2 ()2 < 2
og = g [ o -t z
+el|. /] Apn INR t_<%> 0; ]A%AP¢¢N
& 2 : 2
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Here we use that fact that [k| < |5, |/| < |£| and then A < A.

Case 1.2°(if possible): — L — < ¢ < max AN Ul }: Let j
B 2E_(|§|§)+1 2E(Iilj)-i-l 22E(\71|§)+1 .
and n be such thatz € I; , N1, ¢. Then we have r ~ |§]3 ~ |3, n~ j =~ |§|3 ~
In1% and
€]
B+~ 2
(A 2
— < = f || Z E(&|3 1
&~ o> \ir if |I] 2 E(§3) +
1 1
1 s g\ if BE(E5)+1< < g2
—< |5|3S<l§> it 11| % |n| and (|l§| ) _||_|§|2
_ | vET @ it 1617 + 1< )1 S EQE)

1 -1 1
m@ if g1 ~ 1l = Inl < E(81%)

e '§'S <§>_ it |/ SE(EY) and |n| # |I|

By Lemma 3.3, for the third case, we have |j| =~ |k| & |n| = |[| = |$|%, n ~ & and

1 o V&M -/ 5P

3
Gra—522 ~Tap—g 1hu-1 Ty

which implies that

. V|2 |V| BRI
IRinoNRNR| S € | = Ap~N —) 9 'A7AP.¢N
T (13 (13 fa
2 2
) el \7h =
ve| [2BApn| |1nr ’—g<%> 0 AZAPLoN
g 5 g z 5

Case 1.3: ¢ = min{2|n|, 2|&|}: We have |l|t = |It — &| 2 |l|t, and thus by the
fact that g(r, n) = g(t, §) and ©; (¢, £) = O (¢, ), we obtain that

1
IRl;N;NR,NR |

S Z/ Ligre,.r¢1. ADK (M Ak () (n] — £k (E) N Pr—t (1 — &) <nysdndé
k120

N

3 / Ligte, gt e JABK (A1 E)IE B |

k.10
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eCOL W83 G, (1 — &) <y /s]dndE

-1
> - 'ATAPLoN|| lpligs.

2

. 19,
Ine V]2 (22
NRIV| <taz

1 s
< i
< oz [1V1EAs

Ul 5] } <t < min{2|n|, 2&|}: Let j and n be

Case 1.4: max { —> T
_ 2E(In|3)+1  2E(l§13)+1
such that € I,, NI;¢ and we may first consider the case |/f| = 2|&|, then we

| g1 ep

have
%_ -1
B+@—502 " Ut =% PP~ (1) <E>

Then we focus on the case |I7| < 2|&|, whichimplies |I] < [£]7,if |I| = E(|&|3)+1,
- %’ > £ > €15 and thus

€] o lEr <§>‘1_
B+@—5M2 " g5 70\t

thenl # j,

Now we consider the case || < E(|$|%), and we have for |/| < %|j|,

’é_t’>g>§g\;t’
l ~ Nj

which implies that

€] o lgr <§>‘1
B+@—5n2 " @\l -

For [I] > | j|, we have |I7] > |jt| ~ [¢| and

t—g gi, t—§,§t—§, ‘t—2‘§‘t—2,
l 3 j l n k
and
3 -1
€| D L <§>
E (41t —5D2"7 (1t —5p2 \U

B+ = §P2

Case 1.3.1 j = n: We have

Lo L)
Tl =5 Al =5D "

(1+r =52
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which implies
1
|R1;N;NR,NR|

<S> / Ligty .11, e ADK (DAL ()) (nl — ER)G1(EINPR—1(n — &) <nysdndE

k.10
dgt,n) [dgt )
! A NGRS,
kl%:o/ il iy ¢ |ADK (0 )I\/ ) \/g(t,g) 9] AN

_ L —_—
x eCOL k=Ln=€13 1925 ( — &) <nysldndé

dg = dg o, \ ! =
S NEET VN ;_g<_v> 1Nk, ATAPLON| lpllgs
V ¢ LIV g \re )
Case 1.3.2 |t — | > ¢ and |t — 12z niz: We have
1 1 1

<
I+l =5P) ™ A+l =5 A+l =3

which gives us that

0rg = dgfo - _ z
Rinneogl S [/ —=Ap~N —= <j> InR3; AT APLN| Nollgs.

g ) g z 5

[l A 4
Case 1.3.3 |§€ —n| 2 -} ~ t: We have
€] < E-n?
BA+l=5)"~
which gives us that
1 1 9y \ ™! —1A2
|R1;N;NR,NR| 5 W IAp~Nll2 | INR ﬁ az ALAP;&QbN ||/0||QS~
Z
2

Case 2: |€| < 6]l|: We have

1]

1
24 E—10)27 (1)?

<
~r)?

which implies
IR{ |
1;N;NR,NR

Z/ 1t¢Iknt¢IlgAPk(77)Ak(77)(7ll £k (E) N Pk—i (N — &) <N /gdndE

k,1£0
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<3 / gt it ABLOD A OB E) |

k10

_ 1
eCOL W=Ln=615 |G, (i — £) - gl dndE

lollgs-

8\~ o1
— INRIV|20; AT AP2ON
2

1 s
S liwitan|
S VR

Treatment of R
Forl& <0, we have as in (6.4),

W\ s
Rixeawl S 72 H|V|2Ap~NH 1NR<%> V130, A3 APLon| llollge.
Z
2
Now, for /& > 0, we have
1
IRl;N;R,NR|
S Y [ bt aon  ABDACD I = KB ENF-11 — §) sl
k.10 7 ME

E f Liery, r¢1 Pk(fl)Jk(t’ m M, )
€lg y, 1,
e AT M@ e

x ALl — EK| i

1A+ (G =22

19; 1A%¢,<s)N||pk 1(n — &) <y ygldnde.

Note that for ¢ € I ;, we have

3

Ot ~ Oxae [ (141 - 1)

thus we obtain that

J(t, n) @NR(I &) oln— §|1/3+ wlk—1)1/3

I, &) = Or(t,n)
< ONR(E, &) ONRWE 1) pyjy—gy1/3 SIS
®NR(l n) Or(. 1)

< (Culn—¢'" ul TSTIE
~ 31+ 16—
< i (CHln—&.k—1]1/3

LR

Also using the fact that
Mi(n) 5 eC(SZ'|kfl,nfél%
M)
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Hence, we obtain that

1
|R1;N;R,NR|
S / Licty g1, AP (MAI(E) 'i' U o
k#o nE P+ G =D AP+ = gD
<l AZ6, @Itk — n — £1eMMER 5y — £ sldnde.
(6.7)
withc € (0,1) and s > % Our goal now is to estimate the symbol
1§ 7l 6.8)

IR+ (G =022 KB+ I — gD
in different time regimes in order to absorb the large factor

Inl
K31+ 1t — )

Case 1. First, for It = 2|&| and |I| = 1, it holds that
‘ 5> Il

; t

1~ 1 2
Hence, keeping in mind the fact that that |£| ~ |n|, we estimate the factor in (6.8)
as

and )t——‘>t ‘$‘> e aar

€] Il 1 s <5>‘1
IR+ G =02 KB+ =D T 14+ G =02~ 02\l
Consequently, it holds from (6.7), that

leligs-

o\l
s v _
V|2 <_ra > 3. 'AZAPLON
<
2

Rirsel S -5 [1V13A0-x]
NRNRL ()2 2

Now we always assume that |[|z < 2|&].

Case 2. Now, for 2|—E2| < t < 2|&|: then there exists n such that ¢ € in,g.
2E(J§13)+1

Hence, we havet € Iy )Ny e C Ik yNLye, k| ~ n] < HE and‘t - f—l‘ < ‘t — £,
If|l| < 10|n| < I€]3, then ‘% —z‘ > € > € xp ~ U thus we have
€| Inl _ lgrs <g>‘1
IR+ G =022 P A+ 1= D) S\l
which implies that
V|2 ViR fa\7
Rieel S | TrAon| | s () 0 ALAPzex| lollge.
2
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Now we focus on the case |I| = 10|n| thus |I7] 2 nt ~ |&| which gives us that

-1
<§> ~ 1
It

We are in a position to apply Lemma 3.3.
Case 2.1 k = n: Since t ¢ I; ¢ we have the following two cases:

2Bl +1 and 1 S BGED, win - 5|z 20
For the first one, if 1 < ZI—EII then by the fact that t € I ,; N ik,g, then
2E(J§]3)+1

JUNTRE. FONTE el > 2|§| _ < 1
t ~ |n|3, hence we get |k| ~ |n|3;andift = o then k| = |n| = E(|€]3),
2E(|6]3)+1

‘t — 5‘ 2 12 > |§| . Therefore in both sub-cases, we get that

4 Il ! !
IR+ G = 0D KBA+Ir— gD ™ T+l — 51 L+ 1= g

< 9@ &) [dg n)
~V e &) | g
For the second one, and since ¢ ¢ I ¢, then if |/| = |n| which means that
t € Tpe \ g, recall that [k| = |n], then we get ‘ f‘ > £ andif |I] # |n thus

‘t — %‘ P 1% Therefore in both sub-cases, we get that

| Inl 1 1
P+ G- WP+ =) ~ 14— £ 1+ — 7

_ [aea o) [agan
TV e o)\ g
Case 2.2 |t — %| 2z f—z and |t — | 2 k%: We have by using the inequality
t— Sl =gl

[ Inl < 1 1
P+ G =02 kPA+1e =D~ 14— 51+t =7

< ogt, &) [og(t,n)
Y og, &) | gt

£ 2 2
Case 23 |6 —n| 2 7 2 |€]3 2 (t)3, where we have used the fact that
k| 2 |n| < |£]'/3 and ¢ < 2|£] in the above time regime. Hence, we have

€| 1] < —gp? \/atga,s) d,2(t, 1)
P+ E =22 KB+ =)~ g, 6) | g
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Consequently, in all the above cases, we have the following estimate:

0,0 =
/t—gA,oNN
g

Treatment of R1 ‘N:NR.R 1
By Lemmas 3.5 and 3.6, it holds that 1 < |/| £ E(|€]3) and

llollgs
2

1
|R1;N;R,NR| 5

—1 -
—)  Inr3T'AZAP
. t82> NRJ, ATAP:éN

o (0

2

1
IR1 ;N:NR, R|

Z / Loty et [ADR M AKIE NG (E)N Y or_i (1 — &) < sldndE

k10

J(@, n) M(t,n)
Ligr,,retc |ADE (1)
“27;0/ s Tt &) M(t, )

AIEIIENGIE NV (1 — £) <nsldndé
ME
S Z/ 1t¢Ikntellg|Apk(77)| | (I+r— gI)Az(";')l|§|I¢z(§)1\/
120706 €] !

1
x eCOLI=LE=N G, (n — &) <y ysdndé.

By (6.3a), we have t > ——— . Suppose 2|f;‘| >t > 2|n|. Then
2E(|TI|3)+1

3 1
& —nl 2 1§ = 71§ = ZEl=e

which implies that

lpllgs-

W\ s
<—”> V|20, ' AT AP ¢N
2

1.

R gkl S —s V13 Apoy]
I:N;NR,R! ~ (l)2 P~NII2

Note that in this case it holds that

—1
<§> ~ 1
It

Now let focus on the case ¢ < 2|n|. Let n be such that t € T,,,,, Nhe C in,n N,
we have the following cases:

Casel = n: We have (1 + [t — 2|) < (14|t — 5])(& — 7).

Case [t — 1| > niz and |t — %| > l%: Then by the fact ¢+ € I; ¢ we have

In| ~ |I] ~ 1. Thus it still holds that (1 + |t — 1) < (1 4 |t — $])(& — ).
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Therefore, we obtain that

A IPA+1r—5D°A
R} e k| S Z/ ABLD| IR+ 1= $D3A©)Idi )|

llﬁlkntehg ]
(120 L+t — ] 1+t — 5|

y echfl,éfﬂ\SVzpk_l(Tl — &) nygldndé

0:8 =
AP~N
g

d 9,0
<”> ——1RA A2 PLgn

< 5.
N 0. ) lollg
2
Case |€§ — n| 2 > : We have |§ — | 2 |§|% e (t)% and thus
1 1 s u\ ™" s —1 2
Rl S 7z lIVIEApnll 1) IVIZ AFAPLon | lolg:
Z
2

Treatment of R1 N:R.R
By Lemma 3.3, we consider the following three cases:
Case 1: k = [, then

Ringrl = Z/ Ly, ret e ADR (M AL (1] — EDG(E)nPo(n — &) <y sdndE
10

I(t,n) M, n)
< Z/ Vet retyc Al )]
= B I, &) M, €)

AP E NIV po(n — &) <nysldndé

By Lemma 3.5 and the fact that

I, n) _ ONr(,E) Or(,E) ONRE, Tl)emﬂ_gﬁ
J(t, &) ™ OnNRr(L, ) ONR(E, E) OR(, 1)

< oCuln—§13 M < ecu\n—%‘l% (6.9)
~ I

and that

1 < (E—n)n’
e 1

3\ 9 2
<—”> 2 R0 AZAP N
to; g

Case 2: |t — §| > £ and |1 — 21 2 Z: By Lemma 3.5 and (6.9) and the fact
that

we obtain that

1
Rl < lpligs-

2
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3 _ 1 P n/k3
BA+t=5% " A+t =5» " A+ =5 A+1r=FD

< 98 &) [dg n)
~V e &) | gy

0rgz 0rg | 0y ! 1.2 %
—Ap~ —{— 1RO, "A7AP.
\ o PNy o \7a. RO, ALAPLoN

Case 3: |& — | 2 5]: We have 1] < |E13, 1£13 < (1) < |£] which gives us that

we obtain that

lellgs
2

1
|R1;N;R,R| SJ

2

1
& — 0l 2 ()3,
Thus we get that
|R%;N;R,R|
< f et |APLODA D] = EK1G0 €11 ) <nlands
k1071

1
<Y / Liciy . rety ¢ |AD () [eCOL =21
k,1£0 7 M

Az(é)léll(/;z(é)zv@k 1(n — E)<N/8|dnd$

e Z/ (ABleCok—ta-¢1}

k,1#0
ALE)| P E)NE — Vo () — €) <nsldnde

B\
lRAP7g¢N

0. leligs.

1
S 1Al
(1)?

2

6.1.2. The term RTII\I In this section, we treat the term R1 'N- We also use a
paraproduct in v to linearize the high frequencies around the low frequencies of the
product hVLq&l. Hence, we have

Ry Z > / ADALM) (7 = &)1 = &'k = D)h(E — &) amys
M>gkl;ﬁ0

X <PN(l EYP1(E IMPre—i1 (1 — &) <n/gdndEdE’
D / ABLA (01— §) — €'k~ D)h(E — &)

M>gk 1#£0
x on(, E)1(E") om/sPr—1(n — €) nysdndEde’

+—Z ) Z/ ADDAD (0 = &) = 'tk 1)

MeD 'M<M’<8Mk 1#0
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h(E — & x on(l, €y (E)MPr—i(n — &) <n/sdndEdE’
. .1 ,1
= RI;N;LH + RT;N;HL + RI;N;HH’

where gn denotes the cut-off associated to the N-th dyadic shell in Z x R.
Let us first treat the term Rfill\l, Ly~ Since £ is in low frequency, then it is natural
to expect that RTII\I L behaves somehow like Rill\v since hum /8 provides only a

modulation of the term (¢)n for large frequencies.
On the support of the integrand we have (see (6.3a)).

6
L& =kl S Tk —=1n—§ = —II,EI

(6.10)
N—Lgll < < L
| —1,&l| < 1& - 5|_32| g'|
This implies |k, n| &~ |1, &| ~ |1, §’|. As in (6.3a), it holds that
(=& —& k=D SILENk—1,n—&| (6.11)

Hence, the estimates goes the same as in the one of Ri,N where (I, £') will play the
role of (I, &). Therefore, when we switch from Ay (z, n) to A;(t, §'), we will pay a
Gevrey-3 regularity for & as shown by the following inequality:

B R S R e S 6.12)

with 0 < ¢ < 1 which will help to absorb the Sobolev exponent in the estimates.
Hence, with the estimate (6.12) in hand, we may rewrite Rii%\I_LH as

1NLH| Z Zf Al T Mi ()L, €7
M>gkl;é0

el (6.13)

|(n — &) — &' (k = D]on(l, &) x e 5T hE — &) wys

~

HMEET Gy (& e KEE b () — £) nygdndEdE

Thus we have

V|2 vz |9, \ !
IR?L;LH' ’S 62 | |3x A'ONN |35 <_U> aZ_IA%AP#(ﬁN
’ )z 5 | ()7 \19: 5

dg = dg [ dy\ 7! =

+ €2 t—A,ONN GE (% 3Z_IA%AP¢¢N
g g \1o; )
de = O 3,0

+e | [ZERpn <—> O 1 RANTLAZ Pagy
g 5 1o, ® 5
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Let us now turn to the term RZII\I;HL. Weuse the cut-off 1 = 16> ¢+ 116 < g

and split the term RTII]\I,HL according to this cut-off and write

Rf;‘N;HL—— > / ADL AL (1 — )] — &' (k = D)h(E — )

M>gkl;é0
< oN(L E)Pr (&) w8 Pr—1(n — £)n/s(Lygp> ey + Ligp<ie)dndedé’

€15z e, ;v
_RlNHL+R1NHL

To estimate Rif ;?HL, we have first form (6.10) and from the fact that

/
MS|§—E’|S% and Ll
2 = =7 M/8

174N
W

together with |£| < 16]l|, we have

LEl—lk,nl| S lk—1,n— <—l
I, &1 — |k, nll = | n §|_32| 3

& — 11,8 §|§—§/I§EI$|§IZI- (6.14a)

We discuss two cases: || = 16/&| and %|E| < |l| < 16|&|. For the case |I| = 16]&]
First, if || = 16|&|, then it holds that %|§| < = |l| = 13|l &1, hence (6.12) holds.

Now, for %|§| < || £ 16|&]|, then, we have |& —&'| ~ |1, &| and hence, we

can obtain
s n ’ ’ s n s
MLE] < pCMLE|+IE=E"D) < MLE' perlE—E|

Hence, in both cases(6.12), holds. Hence, using the fact that (k, n) ~ (I, &) < (1),
we obtain as in (6.13),

RO S Y > f iz e Al I DM (D)°

M>8k 1£0
| — &) — &' (k — D|on(l, &) x e (g — &l
ST Gy (&) e K TIER fi_ (i — £) onysdndEde.

Now, in the above integral, we will take advantages for |/| being large to exclude
the resonant interval. For this reason, we fix My large enough and split the above
term into two terms:

RNl s( X+ X)X / Al Ik M) (1)°
M>M;, M<M, kl#0
[0 — )1 — &'k — D]on (1 €) x L1501 51 (€ — &)l

HMHET Gy (€N ygeRTER p i — &) onysdndEdE’

el;z €l;z
- Rl ;N;HL;H + R];N;HL;L'
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For the term RTIEFHL,H, we have |/| is large compared to |£’| and since |k, | ~

|1, &'|, then both (k, n) and (I, £) are both non-resonant. Then, it holds that
W M) cle—tn-€'3 < Clk—tn—£13 +Cle—¢5
JIEOM (&) ™ ~

Hence, it holds that by applying (6.11)

I, &l

REEE < / ALk, 0 BT E M) — 5L
il 5 2 2 N B+t =52

M2>M k.[#0

X <l>a<PN(l,5)116u|;|g|emg_s/‘s|fl(§ — &)mlInr

x MET9=IA2 ¢ (&) vyslhk — 1, — &
ec)»|k—l,7]_§|s ﬁskfl (r) — E)<N/8d77d€d€/
On the support of the integrand, we have

I, &) 1 1 <s>‘1
— S N = 6.15
B4 =822 T P4l =12~ ) \It (©.15)

Consequently, it holds from above that

. 9, \ 71

] —

Riinnl S 703 1Apls <§> Tk A2 AP
' 2

1
lo<Nysllgs Z MlthHgs
M2>My
2 9, |~ L
SW”A[%N”z ey INRO,  ATAPON

‘ 2

The treatment of RTZII\I;,ZHL_L is easy since |& — £'| 4 |&'| + |I| < 2Mo. Thus we have

V|2 <au

—1
) 1zROT'AZAP

el;z 2 2
Z IRyNHLLl S € CKap +€
N8

2

Now let us treat Rf;ll\};”HL. On the support of the integrand, (6.14a) holds. In
addition, we have

6
LEl—lk, S lk—1,n—§& S =l
1L, &1 = k.l = n—&l= L&l

!/ / 67 /
|15 — &1 — 1, €| §|l,§|§%IE—$I-

Hence, it holds that

Menl’ < MEE T HerlLE | +erlk—ln—§
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Also it holds from (6.6) that % —&1 <L < 323|§ &’|. Hence, this yields,
)

& —& ,
by using (6.11) and the fact that (k, n) ~ (I, &
RO S Y Y / A I M) (& — &NV HEEThE — &
M8 k.[£0
x on (1, £)eE T Gy(ey owpsll, €Nk — 1, — &)
M=l =51 Pk — 1(77_§)<N/8116|1\<|g|d’7d§d§

Now, we use the estimate

RV < (& — g)eCln—¢ |3 < — g/>ecu,g/|%Jrcuc—l,n—a%

Jo —&) ™
M) can—g-513 < O 5 rCh-ta—g13
Mo —§) ™

which gives us that
1
RO S 1A [ P2 || grpis 1A08uh-N2]1 2l s -

Now, we estimate the term RTIII\I_HH. ‘We have

MDD / AT DAL

MED 1M<M’<8Mk [#0

((n—&1—& Kk —D)hE — &

< N €)1 (EMPr—1 (1 — &) Nysdn (L =100 + 1< 100 dEDE’

e l;z e, ;v
_RlNHH+R1NHH

As above, we always have

LEl =Nk Slk—=1,n— <—l
1, &1 = [k, nll = | n $|_32| £|.

Also on the support of the integrand, we have

M M’ M 3M
— SlE-§< = =
2 2 2 2

This together with %M <M < 8M implies

24
LEl—|LEN S e —¢g <2418 < 21, &)
L&l 11L& S1E-¢&< IEI_IOOI,EI

Thus it holds that

s s _ _ s _ S _ &S
Ml < MLER phlk—Ln—§] < MLE1 +eME—E' 1" +hlk—Ln—EI"
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Hence, applying (6.15), we get

”10<N/8||g)~,ﬂ;s
2

9 -1
< v > INRB;IA%AP#sz
1o,

1 -
x D wplinligss.

M’ eD

|R€ NHH| << 2 lAo~NIl2

The term Rf’;\jUHH is easy to deal with, we have by using the fact that 28 = o

Nl S D0 D Zf ABemIeE = hE — &l

MeD MAM’ k,1£0

RE
l

x on (L, )T 1 G E Il — 1, — EleMKL=E 1 51 (p — ) s
X 1|Z‘<100|E/|d7’]d%_dgl

S22 |Ap~N||2HP¢¢MHgW||hM/||gm||p||gw
MeDMNM’

1
Sy 180Nl [ P2l grps Wllgrss 1ol grss-

Consequently, collecting the above estimates, we deduce the result of Proposi-
tion 6.1.

6.1.3. The term R]Z,N On the support of the integrand it holds that

kl+1n— &l _3
N/8 4

A

and

which implies that
k| +1n =& = > €]
n =16
and [k| < [§] ~ [n].

We obtain on the support of the integrand for 0 < ¢ < 1

Alk,n|’ 1 1
N pentkn-er D o ot MO etk
oM ET Jo(8) Mo(&)

Thus we get that

1
— AN () 1ABugnll2 10l grise S —5 IADNI3 + ()11 AD] gnl3.

R <
Rinl (1)

(1)

6.1.4. The term R1 N Now, we estimate the term R1 .- We have by using the fact
that [k — [, n — &| < < |1, €] (see (6.3a))

Ry S Z/sAk(r, Mok =1, — EI[6; &)y
k.l n,

A1 =) pk—1(n — &) <nygldndE
S IApNl2lunll g ALl S €l Apnl2018] gnll g4 + 1V PNl 4)-
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6.2. Transport term T1.N

In this section, we deal with the transport term and prove the following propo-
sition:

Proposition 6.2. Under the bootstrap hypotheses, it holds that,

Z Tl;N g \/ECKA,W

N2>8
Decompose the difference:

Ac(n) — AJ(E) = Ay(E) [P —HLER _ )

AT | e B
+ Ay(E)eH il AL ﬁ’;ﬁ;ﬁi - 1] Yzc é’f 1;,;(?))

T A(E)eMknl =AlLEr Z‘g;a B } 1;];((;))

Ay HLE l‘;’;((g)) . 1].

Hence, we write, accordingly,

TiN=1i Z/S A pk, Mtk —1,m — &) nys - (1, €) (Ax(n)
kil v

— Ai(&)p1(6)ndEdn
1 2 3 4 5
=T N+ Tin+Tin+ TN+ T

T};N =i /EAk(U)/é(k, matk —1,n =& nyg - LEAIE) o1 (E)N
kil <

x [eMRnP=HLER _ 1dedy

Tin=i), / : Ac(plke, Mtk — 1,0 — &) nys - (1 E)AI(E) py ()N kI HEET
kg <

[Jk(n) 3 1} Mi(n) (k. m)” Br(n) dzdy

1i(§) Mi€) (1.§)° Bi(§)

Tin=i), / : Ac(p ke, Mtk — 1,0 — &) nys - (1L E)AI(E) oy ()N kI HEET
kil v

[Mk(n) 3 1] (k. m)° Bk(n)dgd)7

Mi(§) (1,£)7 Bi(§)
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and

Tin =i / : Aok, Mk — 1, n — &) nys - (1L E)AI(E) oy () ek HEET
k.l n,
[(k, n)°? ]Bk(n)
X —1
(1, £)° By (£)
Tin=i) f : Ac)pk, Mtk — 1, — &) anyg - (L E)AIE) pr (E)neo T HET
k.l n,
[Bk(n)
y _
By (£)

d&dn.

1} deds.

6.2.1. Term T}; N We get that

IThnl S Z/%_ | Ak (AU, Ik — 1,7 — &) <nysl1 L EIAIE) 1 EN
k1Y

R L R e e

SAZ/E |Acpk, mIlak — 1,0 — &) nyslIL ENNAKE) AN
k,l n,

[k, 1 = 11
X
e nT= 1 €

eklk»nls—)\llfldedn
On the support of the integrand, we have

6
ool = 11, 81| S T —L,n — 6] S 1L, 8]
32
26 38 6.16)
—I|LEI S |k, S =], &
SIS kol < ZLg]

Consequently, we obtain

IT]xl SAZL Ak (D) Ge, I~ =) <nysllk. 11211, €12 1A (E) A1 (E)N]
kil vm

X eCMk—l,T]—SP dgdﬂ
SHNVIEApNINIVIE Apn I (I VP2liga s + lglges: )

NG s .
< e IVEAsNIalIYIE AN .
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6.2.2. Term T%‘ Now, we treat the term T%, N- Inspired by the estimate in Lemma
3.9, we split T%,N as

Tin=i) / . Ac)p ke, Mk — 1,0 — ) <nys - (1 E)AL(E) pr (§)neH ko —HEER
k.l n,

Y }Mkm) (k. )" Bu(n)
—1 déd
<[+ ][Jl@) M) ey Bie) =Y

2:S 2;L

=T N+ TN

here x5 =1 and xL =1 — 5.
e =< mm{\sw% E X

We now estimate T1 Ne where Lemma 3.9 plays a crucial role in absorbing

g3
derivatives. Hence, by (6 16) and Lemma 3.5 together with the fact that (k, n) =
(I, &) on the support of the integrand, we obtain

2

ITlNI S Z/ XS AR Bk, MGk — 1, — &) nyslll, g3

AL®) 15 (E)NIeMETN=E (ke — 1,8 — n)ec"‘—lf—"'?dsdn

< Z/éXSAk(ﬁ)VZ’(k? MG — 1,1 — &) onysl(1+ 1§13 1k, n17)
kg v
x A1E)|prE)nle 15 dedn

SIVIEApN 2191 Apxlla (1T Peglignns + gl s )

\/E s s
S IVIZApNI2VIZApNl2.
(t>2 €1/2

Next, we estimate T%f; which corresponds to ¢t > !

. 2 2 .
5 min{|§[3, [n[3}. We rewrite
2:L

Tl;N as

mk=iy |

: Ak, itk — 1,0 — ) nys - (L, E)A(E) pr(§)neknl —HELE!
k.l n,

T ] M) (k. m) Be(n)
* X gione + tz1oo) [JI(S) - 1} M@ 157 B S

2;L;v 2:Liz
=Ty +TiN

Let us now estimate T%,;I]:I’Z. Let us first see that on the support of the integrand, we
have

319
Inl < &1 + —(Ill +1ED = — 1l

— 1600
Hence, we have

1
eCMIk*lH’
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Since |/, €| < |{] and also from (6.16), we have on the support of the integrand
%m < |kl £ }ggg|l| Hence, we obtain

IS Z / ArIA e, MGGk — 1.7 — §) <xysllT13 Ay(€)| 31 (€)M —HEET

1 1
X XL1\1|;100\§| (k — 1)eCIkIIT (CI=LE=MI gqy)

SO [ Ak Bkl = 1= ) sl Ly o

kil Y6
X |12 A (&) o1 (E)n|eK ¢  dgdy

SHVIE AP 2191 Aox 2 (1T Pedlighns + Il o)

\/E s s
SW”|V|2A,0~N||2|||V|2A,0N||2-

Now to estimate T N Y and in order to use the decay rate of the nonzero mode,
we separate the zero mode and the nonzero mode as follows:

Tﬁ;’”=i2/ AcIA K, IV VE, P2k — 1,7 — &) s
k2l V06

I, €A (§)| o (&) ] eHInl —HILER

L Je@) ] M) (k. ) B ()
X 1"<‘°°'5'[J1(s> 1] M) (15)7 Bye) B

+iy / S Ak, Mg — &) <nyslIEIAE)] fr (€] —HEER
k n,

L Te(m) My () (k, n)? Br(n)
X XL <100ke) -1

T () M;(&) (k, &) Br(§)
_T2Lv#+T%II\}vO.

dedy

Now, we estimate Ty L \a . By the argument in the proof of the reaction term
we have

Jk(’)) < Clk—1,6— ,,|T 6.17
@) ~ &le (6.17)

We need to pay decay in time in order to gain regularity. We have on the support
of the integrand |, | < €] < #2 which implies, by using (6.16) that

£ < I EI 2k, ) 303C) (6.18)
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Hence, we have by making use of (3.18), (6.16) (6.17) and (6.18),
ITE 7S Y / AcDIB k. [V TE, Pk — 1y — &) xyslIL EAIE) A1 (E)x]
ki Ik
_ 1 .
x &1y <1o0je Lt (k — 1, & — myeCo ke =13 gehlk—Ln=¢F g gy
3 s =
S Z/ 7251k, |2 Ac(n) 16 (k, n)IIv’VL Propk — 1,1 —&)<Nysl
n.§

X |1, &2 A(E)] pn(€) |k H1=E " ded

_3 s N
7250V Prgllgrs V12 Apxll2 |1V 12 Apnll2
V12 Apnll2[lIV]2 Apx 2.

<
S
(l) 55+l

Our next goal is to estimate T% IEI v.0 . By the argument in the reaction term, we have

f0rt¢1kn0rt61knﬂlk§,

W@ culg—nl?

k]

Jk@€) ™~
and fort € Iy , and ¢ ¢ Ij ¢,
T () < 0] oCHls— nl’ §(&—n) cﬂ|g_,,|%
Jk@€) ™~ k3(1+|t—%|) k3(1+lt—-|)

< (£ — n>eCM§—n|%_

By making use of (6.16), (3.18), we obtain by using the fact that on the support
of the integrand, we have |&| < 72 and hence, || < |£]3|n|220~) and

o S Y / : Ar(1p k. MIIEM — ) nsslIEIALE) | P (E)n | —HkEF
k n,

e | M) k. n)°
Ji(®) M (§) (k. §)7

31 s = ~ S
< Zfsﬂ“ DALk, 1215k, )I18(n — &) <nysl[€12
n,

dédn

L
X X Lig<io00jg|

<s>|ﬁk(a5>N|e*"'—g " xtdedn
3_ s s
Str7z ||g||g¢m|||V|zAp~N||z|||V|zApN||2

gL

3 —1VI2Ap-x 211 V12 Apx]l2.
(1)25+T7
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6.2.3. Term T?,N Now, we turn to the term T?,N. ‘We have

Tin =i, / g Ak ok — 1 — &) oxys - (1L E)A () pr (E)xe o —HEEE
k.l n,

_s i [Mi( _1} (k, m)° Bk(’?)d d
X+ X )[MI(S) ey Bie) S
“rg e,

where 35 = nd y© =1—-%5.

1 R U: |
1< 5 min([§]3 [0 3}
Following the same steps as in the estimate of the term T%f;, we use Lemma
3.7 to gain %-derivatives. Indeed, we have by using Lemma 3.7 and (6.16),

TR S Z/gAmnﬁ(k, MRk — 1,7 — &) xyslll, €15 AE) AN, £)]
k,l n,

1
s eI =MLEF 5 (1 g py OO e=LE=n13 e g

S Z/EAk<n)|k,n|5|5(k, Ik — 1,0 — &) nyslll. E12AIE) | pn (L, £)]
k,l UB

X e)“kfl’nfglx)zsdédn
< |||v|7AP~N||2|||V|§APN||2(||U/VP#¢||gk~ﬁ;x + ||g||gim/5;s)

Ve : .
S eIV AoNIalIVIE Apx .

Next, we estimate Tffll\}, we have as in the estimate of T% II\‘I

TN =i / : Acm ik — 1. — ) anys - (1LEYAIE) &N
k.l UB

1 0] S S
S

Let us start by estimating T?f;’#. We have

“*_IZ / APV VL, Pagtk = 1n = §)axjs - L OAE) a1 E)N

Ak S_ALES
'"' 3 Wy<100ie) + 1z 1006 )

[Mk(n) N 1} (k, m)” Br(n)
Mi(§) (1,£)7 Bi(§)

3L#v BLoA

dédn

=T +T)x
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Apllying (3.18), together with the fact that on the support of the integrand, it
holds that |1, &| < |&| < > which implies |1, £] < |1, &|2 |k, 7|20 we get as
in the above estimates

3;L,#, —3s s s
TN S P70 VL, Padlighss 11VI2 Apxll2 11 V12 Apx 2
€ s

SW—SHII|V|7A0~NII2IIIVI7APNII2-

Next we estimate T?f;’#’z. We have

MG

1 (k—1,n—§) s k=1 _g\%
S—5+——F5—e"% o .
Mi®) ‘

ik k|3

Hence, we obtain

3,#;L, s s
TIEN S NVIEApN NIV Aplallv' VL, Pegligrs:s
€ s s
S W|||V|2AP~N||2|||V|2APN”2-

3:L.,0

Let us now turn to the zero mode term T N - We write We write

T =iy / E APk (M8 (1 — &) <n/sEAI(E) pr(E)neHE T —HEER
k 1,

MG 1} (k. m)® Bk(n)den

% M+ * |:
G20 | M)~ ke B
3;L,0;M 3,L,0;%
:TI;N +T1;N )

where

1 1 . 2 2
3 min{|¢] 3,53 }<r< 5 mingl£]3,In13)

2 2
1= 3 min{|&|3 153}

T3;L,0;M

We first estimate the term T} ¢ . On the support of the integrand, we have

2 s s 2_ s s A
1E15 S IEIZInIzZ 11575 S Ig12In|2 e,
Hence, we have by using Lemma 3.8 and (6.16),
3;L,0;M — N N s
ITiN |§Z/§r2 3 A2 1ok 1E (1 — &) onysIE |2
k n,
A©)|pr@EnleM Ty Mdedn
< 27 Nglgrss IV Ap-x NIV Apxla

B

N nhF 11VI2ZAp~Nl201V]2 Apxl2.
)2
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3,L,0;% . <
on the support of the integrand, we have |&|

Now, for the term Tl N
|§| [n] i3 3(1-9) Hence, as we did above, we get the following estimate

ZS”g”glM:ﬁ V12 Ap~ll2llIVIZApn |2

3,L,0:%
TN <”
Ve s s
S RYEEF 11VI2Ap~N2[1V]2ApNl2.
2 tas— 7

Note here we need 1 s+3 35— g 24

6.2.4. Term T‘l‘; N To estimate T?; N We get by (6.16) that

o k,nl —II, — -
L _1‘§)' Mo E bl
.67 (.6) .)

Consequently, using the above estimate, we obtain as above

Thnl S Z/g [AcDIA I8k — 1,7 — ) <nyslIl E11ALE) pr ()N
n

W= Ln =81 =061 gg gy

(,8)
SlAp~Nl20AeN 20 Vuligrss < W”AP~N”2”APN”2~

6.2.5. Trem T?, N We get that

T?N<Z/ Ax(m)pk, mak — 1,0 — &) g

kel
. soner [ BeGm)

(L EA Akl —AIL8] [k__l]d d ’

(1, &)A1(E)p1(§)ne B &) gdn

Ak(mé(k, MEM — &) onys - EAL(E) pr (§)ne R —HKEE

Bi(n)
d&d
[Bk(a } s"‘

_ 75
=Tinz+ Tl ‘N,0°
Let us first treat the term T?,N £ On the support of the integrand, we have either
1 1

In| = 3|k| or |§| = 3|I| which implies that |k, I| < |5, &], min{|&]3, |n|3} <t and
Inl ~ || .
Thus we have |1, &| < [£[*[&]'~* < [£]2[n|2£37%, and then
IThn2l S 72 NIVIZApn 2]V Pollgros 1IVIZ Apnll

€ s s
S W|||V|2Ap~N||2|||V|2APN||2-
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1
Next we focus on T? .N.0» We get that on the support of the integrand, ¢ 2, |n]3 ~
1 1
§15, k| Z In|5 and

t
‘Bk(f, mn 1' 5/
B (1, 8) 0
Thus we get that

‘Bk(l, n)
By (z,8)

b(svks 77) b(svkvg) |§_77|
vl 75|95 S i
I+ 6= 14 (s — 7)? In|3

2 s 5 H_12c
—1'|s| SIE I — & S IE12 |26 | — &
and thus

T ol S 27 100gllgros V2 Apnl2 V2 Apx 2

< €

S G IV EAPNIRI T Aoy .

6.3. Remainder

The remainder is easy. We give the result and omit the proof.

&3

RS hE

7. Estimate of E;(7)

In this section, we deal with the highest energy of the coordinate system E; (7).
We have

1d , 1 )
= —t[|Adyhll5 = = [|Adpuhll5 + 1 | Adyyd;hAdyyhdv
2dr 2
—CKun —CKe.n —CKyn
=—1 / Adyy (g3,h)Adyyhdv — f Adyy foAdyyhdv
1
— CKjj — CKe o — CKyrp — znAavvhn%.

Using integration by parts, we have

1

/Aavv(gavh)Aoawhdv - - —favg|A8vvh|2dv
2

(7.1)

+ / Aavvh[Aavv(gavh) — gavAavvh]dv

The first term in (7.1) can be estimated as follows:

! S N0vgll 2Ea (0).

f B8l Aduuh 2y
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We write by using the paraproduct with respect to v:

/Aav,,h[Aaw(gauh) gy Adyh ] Z T+ 5 Z M+—R”
M>8

where

TK/[ =2r / Aavvh[Aavv (g<M/88th) - g<M/83vA8vth]dv
Rll\)/[ =2z f Aavvh[Aavv (gMavh<M/8) - gMavAavvh<M/8]dU

RY =27 Z Z Aavvh[Aavv(gMath’) - gMa”Aath/]dv'
MeD éMgM’§8M

One may easily follow the argument in section 5 and get that

Aavvh[Aaw(gB,,h) — gavAavvh]dv

3

€
< e(CKyp + CKypp + CKyrp) + ot () 1AByuugll3

By (4.4), (4.6) and (4.7), we get that

2
€ 1
< CilldAKollz + C 5 + - I1Aduhl3,

' / Adyy foAdyyhdv o

with C; = 1 independent of K.
Thus we obtain that

1 t
Ea)+ / (CKy i + CKep i+ CRy s + A 12 (5)ds
1

t
< Ey(1) + Ce% + C; / 18, AKol|3(s)ds.
1

Note that by choosing K; = 10C, the last term on the right hand side will be
absorbed by the dissipation term |V AK ||%.

8. Estimate of NL%

In this section, we treat NL%( and prove Proposition 2.5.
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8.1. Treatment of K| = yzfAKA(yzv’Vz%vazP#ﬁ . VZ,Up)dzdv
We have
K| =2 / AKAVE 3.P1¢ - V. ,pdzdv
yZ/AKA(hVZ%UaZP¢¢ -V, p)dzdy
=K; +K¢.

As before, we use the paraproduct in (z, v) and write

1
K%ZEZ }11;] ZKILHJ‘_ ZKIHH

N=>8 N>8 NeD
where
Kif=- 3 / AR DA 0] = 60 57101~ &) cnyscnds
k.10 n,
KN, = Z / AR Ak = DV, — &) <nys (L. )71 (E)ndnds
k.10
Ki=— ¥ Y / AR DAL DIV ()

INSN/ <N K170 U3
(k—1,n—&)pr—i(n — &)Nndndé.

The high-low interaction similar to the reaction term in section 5. The main differ-
ence is there is one more derivative in z direction acting on ¢. Luckily, we can take
advantage of the dissipation term ||V AK ||. That is

ll(nl — &k)| = (Ikl + |k —IDIL, &Ik — 1, n — &

Thus by following the argument of reaction term in section 5, we get that

3 ME [gz /at >
<t32 ( %A+ EA )a A P;gqﬁN
<8 <|V| / )alAzP#qu

3

€
Y KiN | SelVLAK+ —
Nzg <t>2

() (% p [543 o0z
19, "> g ® < TLT

1I;N
|K1;HL| 5 €[l AK N2

)

2

+ €llAoK~NIl2

which implies that

2
+e€ .
2
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The low-high interaction is different from the transport term in section 5. Again
we will take advantage of the dissipation term ||V, AK ||>. That is
[(k = DILEN S Tk =Lk, nl < Tk =k, n — kt|(r)

Thus we get that

KIN < )2 A V.AK

Kiphl S )7 lozlgros AN VLAK N 2.
Here we use a rough estimate that

Ji(t, m) < (t)eclk_l’"_ﬂ%.
i@, &)~

Thus we get that

63

;N
2 Kiln| S €IVLAKNIE + 1

N28
The high-high interaction is easy to deal with, we get that

;N
Z Kl;HH

NeD

&3

< =
~(n*

The treatment of K is similar. We use the paraproduct twice and write

1 ;N 1 1;N 1 ;N
KT =Z ZK1;HL+E ZKe;LH—i_EZ 1;HH
N=>8 N2>8 NeD

&N  _ qee:N €N &N
where K’y = Ky + Kilpe a + Ko g and

KN o p=-Y Y / g AR ACDAE — & i (€) ons

Mg kI#£0
X L(nl = £K)Pi—1(n — &) —xseon (L, €)dndg'de
KN a=- 3 Y / AR DAL — ) s
Mgk l£0 O1E
x I(nl — Ek)pr—1(n — &) <nygon (U, §)dndE’dg
KY w=-3 % Y / ARG AC(E — €1 €
MeD LM< M/ <M k.I#0 &
X L(nl = £K)Pi1(n — &) -nyseon (L, €)dnde'de
KN = - 3 / AR DA (k — DIV,
k107 18
(1 — &) onys(0. €)71(Endnde
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-y ¥ / AR AV, (E)n

INSN/ 8N k.I7#0
(k—1,n—&)pr—1(n — &)ndndé

e;N
KI;HH

4

;N
The treatment of K|}, and K}, are same as KLLH and K}y and we get
+ —.
()

that
< EIVLAK-NI3

ZKI ;HH

NeD

ZKILH +

N>8
;N .
The treatment of Ky’ |y is same as K1y, and we get that

4

2
2

> Kiiy Hen| S € IVLAKNIE + o

2|2y (W' ff) lAzM

N>8
. €, 1
One can follow the estimate of Ry/\.;y; and Ry in section 5 and get that

+

2

ZKI ‘HLHL| T ZKI ;HL,HH

N>8 N>8
|V|* 142
< E|VLAK |3 + 4+ ra A2PLo

1) 3 )

8.2. Treatment of K; —2fAKA(h(8v — taz)azf)dzdv

We have
1
KZ:EZ 2HL+ ZKZLH+ ZK2HH’
N>8 N>8 T NeD

with
K =2 / Ac(t, MRt AL RENTLIS £ (7 — &) nysdzdn,

k#0
Kz LH —2ZfAk(t 77)Kk(t mMAk(t, n)h(n—§)<N/8(f;' ko)k fic(§)ndédn,

k£0
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Kiu=2 3 3 [ ARt mio - oy

INSN/ <8N k70

(& — ko)k fr(£)ndEdn.

N
We first treat K2;HL' We have

Ji(t, m) < c|k,,7_g|%
o5~ &

Thus we get that

Y KN S Y IAPLK NIl (80) AN 21 VL Py fll gros
N2>8 N>8
3

€
< — +€||VLAPLK]||».
(t>2+||L «K]l2

By using the fact that & — k¢ < | — kt| + | — &], and
-1
L < i M < gCIn—EI%
K2+ (& —kn)? ™ \kt Ar) ~

we have that

Y KN n| S 0 IVLAPK I3 hllghos

9 —1
<_v> ABZ_IALP¢fN
N>8 N>8

10,

2
2

€
< €| VLAPLK|S + o

9 -1
<—“> A 'ALPLS
2

10,

Similarly using the fact that &€ — kt < |p — kt| + |np — &|, we have

Z K>

NeD

63

S elVLPLAK | + iR

8.3. Treatment of Kz = 2/AKA(f0v’(8U — taz)azf)dzdv

The treatment of K3 is similar to K. Here we show the result and omit the
proof. We have

2

+
2

3
2 € €
K| < €llVLAPLK|S + — =

9 —1
()

10,
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8.4. Treatment of K4 = =2 [ AKA((v')?(3y — 13,) Vi - V(3 — 1) f)dzdv
andKs = =2 [ AKA(vV'0, Vi - V0. f)dzdv

The treatment of K4 and Ks are similar. We will give the estimate of K4 and
only show the result of K5. We have

1 N, ] N o, 1 N 1 N
Ky =— Z Kype + 52 § :KZ;HL + § : Kym + E : K yms
2 2 2 2
N>8 N>8 N>8 NeD

. eN  _ yre,N e, N e, N
with Ky = Kyl g + Kyl on + Kyl gy and

Kine =i ) / AR A E — 10 — kY1 (E)x

k,I#0
Fl@y —13) f],_,(n — &) <nysdédn
Ko =209, / AR DAL G3(E i€ — € -myson(l, §)
M28 kl#0
x (& — & —10(In —k(E — ENF[By — 1) f],_,(n — &) <ny3dE’dEdn
Kiin= 2.0, / AR (DAL)G3(E — € omysdi (Emon (L, &)
M=8 k,1#£0
x (&' —It)(In — keNF[ @y — 1) f],_,(n — &) <n/3d'dEdn

Kim=2, 2, iy, / Ac) KAL) G3(E — Edi(E o (. €)

MeD ImM<mr<sm k./#0

x (&' —It)(In — k€NF[(@y — 13) f],_, (0 — &) n/sd8 dEdy

K=Y f ARCDACF[G3(By — 13)VEB], (0 — &)y
KA

(& —IN(E — 10 fi(§)ndgdn
K= ¥ 2 [ABnam (6@, - 10091 9],_,

INSN/S8N k#l

(n— & - (L& —I0)(E — I1) fi()ndEdn.

The key idea of estimate of Ki;gL is to move the derivative 9, — 19, on ¢+ to K
and using the dissipation ||V, AK ||>.

Indeed we have on the support of the integrand, |§ — 17| < |np —kt|+|n—& —
(k —Dt| < |k, n — kt|{(n — & — (k — I)t) which gives us that

KN l= > / Ac() VLK (DA — KE (|G x|
k.10

]:[ALf]k_l(’? — &) nygldEdn.
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Thus by following the argument of reaction term in section 5, we get that

ta 35 + + 7&¢N

where we use the fact that || AL fllgro—as <e.

Similarly, by using the fact that |§" —It| < |np—kt|+|n—§& — (k—Dt|+ 1§ —&'|,
we can still move the derivative d, — 79, on ¢ to K. Thus we get that

[ (one )

The treatment of K4 HL.HL and K4 HL.HH is similar to the R’ . N HL and R1 N:HH-"
We get that

I;N
|K4 HL| N €||VLAK~N”2

;N
|KZ HL, LH| Se ||VLAK~N||2

'A% PigN )

4

N N 2 2, €
D KGR K ! S EIVLAKS + —
= HHL. (1)

|V|7 12
AIPLop
<t3z> %

2
2

+ €

2

For the low-high interaction, by the fact that |§ —I¢| < |n—kt|+|k—1, n—&]|t,
we have

Kl S Y [ BEIAMIFIGG, - 1005E], 00— &) v
kL, 10
1107 AL f©xldsdn + Y [ RKL1AL ()
k0

IF[G3 @y — 18V, (1 — &) <nysl1uw Fo (E)nIdEy
= KEI;LH,I + KAIII;LH,Z'

By using the fact that on the support of integrand,
-1
5
|| +|& —1t] ™\t
and

By using the fact that on the support of integrand, |/| < |k| + |k — | and

Jk(’?) < (1)e c|k,,77g|%
5~ ’
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we have by (4.6) that,

€ _
2 K3l S 20 15 (10AKl + IAPOK-NI) [AP£0 AL fil2

N=8 N=>8

S Z (I19-AK-Nll2 + 10, APo K N 12
N>8

0 K~N|l 12 20, A N2
+ 1 PoK~NIl )||AP8 AL

SelAVLK[; + — " )2 IAP£O AL S5,

The treatment of KEHH is easy. We have

> Kl £ +e||vLAK||2
NeD

We conclude that

&3
Kyl + [Ks| S —5 + €l VLAKIS + —

e SIAPLO ' ALFIS

(>

+€

8.5. Estimate of K¢

The treatment of Kg is similar. Actually we have

K¢ = / aZAKA<v”v/(av — 10§+ (y — 10;) f)dzdv

1
== 6HL+ 6LH+ 6,HH
=Y ZK ZK

NZ=8 N>8 NeD

N N N N
with K¢y = Keyp on + Ke g pe + Kg g g Where

Ko =—2. 2. / 8- AK  (NAL WV (E — ) ams € — 1Dy

M8 170, k#0

EM x on(, E) () — & — (k — D1) fri(n — €) -ny/sdE'dEdn
Kipu=—2_ Y. / 0. AK (DA W) (E — EE — 1)

M8 170, k#0

G1(E) s X on(1L ) — & — (k= D) fi1(n — £) ony3d& dEdn

9y g 3: 1A
<§> %A+ A+ A P¢¢

741

Kigiun=-. > >, / 3 AK (DA W'Y (E — EE — 1)

MeD 1M<M’<8Ml9é0 k0

G1E ) x on(, &) — & — (k — D)) fies (7 — £) <nypdé'dEdy
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Kon=1i ) / BAK A F("0)0, = 109)
170, k0

(n — &) <nys(E — It) fi(§)ndEdy
Kpum=i Y. > f az/A\Kkm)Ak(n)f((v”v’)(av—taaas)kl
INSN/ <N 170, k70 B

(1 — &) nys(& — I1) f1(§)ndEd.

By using the fact that [[v"v'l|gr.pis S 77

€
IVL fllgrss S 10u follz2 + 10uw follgrss + IVLPx fligrss S o

and (§'—It) < |1, £'|(t), and by following the same argument ofKifEL LH> KifgL HL

and KffgL > We get that

4
€
Y K| S E€IVLAKIS + e

N=>8
av>‘1 V|2 gz | [95\,1o
— —A+ [—A+[—A) 3 AT Psop
<f3z ((;)32 g ® @ T

. N N .
The estimates of K6,LH and K6’HH are obvious. We have

2
+62 .
2

2 64

€
t ()2

D Kl + Y Kyl S €IVLAKZ + Wna;]ALP#fn% +
N;g NeD

9. Linear Terms

In this section, we deal with the linear terms I, E, H}( and 1'[%(.

9.1. Estimate of T,

We have

M= 5 Y [ Adeamacmkdeman
120

1 p—
=—5- Z/Ak(n)ﬁk(ﬂ)Ak(’?)

k#0

2

—1A2 7
o= kD% A7 o (mdn.

For n > %kt, we get that

< <

k> k> ( n >—1 1
(k2 + (n —k)2)2 ~ gt ™
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For n < %kt, we have <%)_1 A~ 1 and
2 -1
e o1 <_> L
K24+ —kt)2)2 ™ k24 Y kel 4
Thus in both cases we have

1
Ml S WIIApllz

2

W\
<i> 3. 'AZAPLY

Next we focus on the case %kt <pn< %kt, in which case, it holds that
1.

1
3
If € It , then

e e e O R
R+ g—knD? = Nkl A+ E—m2 = "kl g

which together with the fact that A < 2A if |k| < |n|, gives us that

ad
’_gAp
g

Ifr ¢ fk,,], then we consider the following two cases: 1.t < tE(| ‘%) ;
nl3).m
,2n] with |t — %l > klZ For the first case, using the fact that kt ~ 7,

Tyl < CoL

3 \ 7! g, 1,27
< “> —=37'ATAPLo
& 2

19,

2

telr 2
E(nl|3),n

we get that k 2> |n|% > % and then
gyt
(k> + (n —kt)»)2 ~ \kel 14

For the second case, we have |n — kt| 2 % ~ t and then

k* -1k -1 1
(k2 + (n — k1)2)2 S %) (k2 + 12)2 = <%> 2

Thus we conclude that

[TI,| < CéLCKy,p + 6L

dy -1 8.1, 2%
— —0, ATAP
<taz> g ° LAP29

2

+ ¢ APl
<t>2 Pli2

9 -1
<—”> - 'AZAPLo
2

10,
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9.2. The diffusion term E

In this section, we study the diffusion term E. We have

E= /AKA(ALK)dzdv +/AKA(((U’)2 — 1)(3y — 19,)*K)dzdv

+ / AKAQ" 3y — 18,)K)dzdv
= —|VLAK|3 +E; +E,.

Let G (t, n) = ((v’)2 1)(¢, n), then by the fact that |§ — k| < |n—kt|+ |& — 7],
we have

[Eil < Z/ AR ()AL [3,G (1. 1 — )11 — k|| Kx(§)]dEdn

k#0

~I—Z/ In — kel A Kk (DIAIG 1 (2, 1 — )€ — kt || Kk (§)|dEdn
k£0

n fs Ao(IRo(D1A0([3,G 1 (1, 1 — £)|IE]| Ko(€)|dedn
i

+/s 1n1A0 (KoM A0()|G1(t, 1 — £)1E]| Kx (£)|dEdn
1

<E, +E[, +E | +E),,

and

[E2| S Z/ A KeGDIA) 8, G (1. n — £)I1E — ke[| K (§)]dédy

k#0

+ /é Ao Ro(IAcD[8,G (1. 0 — )15 Ko(§)ldsdn < E] | +EY |
1

We also have v”/ = %av[(v’)2 —1]= %HUGI, which gives us that |Ep| < Ey ;. For
k = 0, we use the fact that the norm defined by A is an algebra when restricted to
the zero mode and obtain that

EY |1+ [EY 5| < 1A3,G11121A8,Koll2IAKoll2 + IAG1 [12|Ad, Kol3
3

€
S 180G (1148, Koll3 + I1Kol2:) S elldvAKol + o

By using the fact that
Ar(m) S (n—§)Ao(n — A (),
we get that

E7 |+ [E], S IVLAPLKILIIA(3,)2G1I2IVLAPLK |12 S € VLAPLK 3.

Thus we get by taking € small enough that

7 Ceé’
E< ——|VLAK|? + —.
< —gIVLAKIE + 55
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9.3. Estimate of H}(
One can easily follow the argument of IT, and get that

C
M| < —119:AK )2

9 —1
(0) <_> O ALAPL

10,

2

W\ fog =
+ C81 |0.AK |, <#> ‘?aZ 'AZAPLo
< 2
2
< Ljpakiz+ < <ﬁ>l 9 ATAPLo
=16 2 A \ra,] 7 TF )

2
+ Cdr,

2

dy -1 g, 1,27
— | —07"AJAP.
<t32> g ° APz

. 2
9.4. Estimate of Tl%

We get that

n = 2/ VIAKABZA '8 AL Py fdzdy

1 —
= -3 [ VAR At )
k40

2 _—
k2 + (n — kt)?
We get for n > %kt,

2 2 -1
L SR S <l) l
K24+ —kt)2 ™~ n2 Y \ktl £2

and for < Lkz, it holds that {Z)~' ~ 1 and

2 2 -1
£ <_* < (L) L
K24+ —kt)2 ™ k2 4+ k22 ~ Nkt 2

Next we focus on the case %kt <p< %kt.
Let My = 10 be large enough. For t < M, we have

k2 n\—11
EEPATINNE
k2 + (n — kt)? ktl 12

Fort € [t 1 ,2n], it holds that
E(Inl3).n

k? <c\/(§<">_l %_

K+ —ko)? = kt g

Fort € [Myp,r 2 ], wegetthatt < 2|n|% and then
E(nl3).n

2 -1 3
k <15<1> iz,

K4 (m—kn? > kel 3 M

3 AL fr(ndn.

745



746 NADER MAsMouDI, BELKACEM SAID-HOUARI & WEIREN ZHAO

Note that here we obtain the small parameter from the fact that for 2g < 3s,
=2 < Mgé_%t_h.
Another way to obtain the small parameter is by assuming Ag, A" large enough while

here we hope our results have no restriction on Ag, A.

Now we turn to the case ¢ € [t , 1N [20, +00] with 4 skt < =
E(W\3) n E(In\*) n
3kt

Thus we have

k )ZN\/><kt> N‘ﬁ T (kt> g

k2 +(n— 1+|t 1+ — 112
Thus we conclude that
2
w\"l
|H2|<—||VLAK||2+C(M0>(> <5> AT'ALPLSf
’ 2
s 2
V|2 -
+C 1t>Mo 3 E ABZ ALP?gf
(62 2
2
[, e [, \" =
~|—C8L‘ ’?g<j> AdT'ALPLS
N 2
2
b(t,V)o.. [, \""
+C83‘/(A—L)“<é> AIT ALPLS
2
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Appendix A. Paraproduct Tools

In this section, we introduce the tools and notations that we should use in the
Fourier analysis and paraproduct. We first introduce the dyadic partition of unity
that we should use throughout the paper. Let »(£) be a real radial bump function
which satisfies »(§) = 1 for |£] < 1/2 and »(§) = O for |§] = 3/4. We define
©(&) = »(§/2) — (&) supported on the annulus {% <ES %}. By construction,
we have the following partition of unity:

L=+ ¢E/2) ==&+ ) oM'8)
keZ Me2N

and we define the cut-off gy = @(M™!£), each supported in in the annulus % <
HES:
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For f € L%(R), we define

fm = om (18, DF,
£ = (13, Df,
fom=fi+ ) fx
Ke2N:K<M

Hence, we have the decomposition
f=f+ ) fu.
Me2N
We also have the almost orthogonality property
IE15 ~ Y litwlls
MeD

and the approximate projection property

ltmll2 ~ Ev)mll2-

More generally if f = )", Dy for any Dy with %Zk C supp Dy c C2¥ it follows

that
I£113 ~ Z 1Dk 113

During much of the proof we are also workmg with Littlewood—Paley decomposi-
tions defined in the (z, v) variables, with the notation conventions being analogous.
Our convention is to use N to denote Littlewood—Paley projections in (z, v) and M
to denote projections only in the v direction.

Forany 1 £ p < ¢ < o0, there exists a constant independent of M such that

195wl + 1195 fmysll, < CMAY/P=Ho+dgy

Appendix B. Important Inequalities
If |x — y| < |x|/K, then it holds that

| -y |§W|x—y|y, 0<s <1 (Bl)
In many occasions, we use the following inequality, which is a result of (B.1):

s NERES s
I < A gerlx

for |[x — y| < |x]/K,withK > 1,5 € (0, 1) and ¢ = c(s) € (0, 1).
If |y| < |x| £ K]y, then it holds that

s K 1= s s
eyl S () @t

Lemma B.1. (L? — L9 decay of the heat kernel) Let u be the solution of the heat
equation
up—Au=0, ut=0)=g¢kx), xR r>0.
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Let S(t) = e'® being the heat operator. Then it holds that forany 1 < g < p < 00
. ; _del_1y_ Sl
[ofazu] = |ofszsor] < cmtGho S o
p p

where j is a positive integer and a = (ay, ..., ag), where a;, 1 < i < disa
positive integer and |ot| = o) + - - + og and 3¢ = 3y 0yy ... Ove.

We define the Gevrey in the physical space as (see e. g. [53])

1/l ges ~ [ij}((A

1
n)s

n

R
10" 112) (B.2)
We can also extend (B.2a) define the more general £7 L? based spaces (see [69]) as

I Nenwrin ~ [i( N;l i 1,)"]" (B.2b)
n=0 s

(n!

Then it holds that (see [8, Appendix A.]) for A > A’ and for p, ¢ € [1, 00], we
have

ernasn S fllginan Sa—a ILf llepLasa
I S lercass Sa—n 11

”f”ZZLOO;)J 5 ||f||e2L2;)\-
Next, we show the following lemma, which useful to prove the scattering result in
Section 2.5.

Lemma B.2. The following inequality holds:

(B.3)

||fg||elL2;x 5 ||f||(Z1L2;A||g||£1L°O;A-
Proof. We have, by using (B.2b) together with Leibniz’s, rule, that

0 n

A
gz = ) i 10" (&)

n=0
x n 14 kyn—k
n! 5 ACA
< ( )3 Dk Dn—k o
Nn§_0:k§_0j prrer) e L I

S ez llgllgnee;as
which gives the lemma. 0O
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