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LINEARIZED WAVE-DAMPING STRUCTURE OF
VLASOV-POISSON IN R3*

JACOB BEDROSSIANT, NADER MASMOUDI!, AND CLEMENT MOUHOTS

Abstract. In this paper we study the linearized Vlasov—Poisson equation for localized distur-
bances of an infinite, homogeneous Maxwellian background distribution in R2 x R2. In contrast to the
confined case ']l'g X Rg, or the unconfined case Rg X Rg with screening, the dynamics of the disturbance
are not scattering towards free transport as t — +o00: we show that the electric field decomposes into
a very weakly damped Klein—Gordon-type evolution for long waves and a Landau-damped evolution.
The Klein—Gordon-type waves solve, to leading order, the compressible Euler—Poisson equations lin-
earized about a constant density state, despite the fact that our model is collisionless, i.e., there is
no trend to local or global thermalization of the distribution function in strong topologies. We prove
dispersive estimates on the Klein-Gordon part of the dynamics. The Landau damping part of the
electric field decays faster than free transport at low frequencies and damps as in the confined case
at high frequencies; in fact, it decays at the same rate as in the screened case. As such, neither
contribution to the electric field behaves as in the vacuum case.
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1. Introduction.

1.1. The problem at hand. One of the fundamental equations in the kinetic
theory of plasmas is the Vlasov—Poisson equations for an infinitely extended plasma
(see, e.g., [12, 7)),
atf"’v ' V1f+E(t7x) va =0,

E(t,x) = =V ;W %, p(t,x),
p(t,z) = / ft,x,v)dv — ng,
R3

ft=0,2,v) = fin(z,v),

(1.1)

for the time-dependent probability density function f(¢,z,v) > 0 of the electrons in
the phase space (z,v) € R? x R, where ng is the number density of the constant ion
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background, and W is the kernel of the Coulomb interaction,*

q2

= dmegme ||’

W (z)

with ¢ the electron charge, m. the electron mass, and ¢y the vacuum permittivity.
We will consider (1.1) linearized about the homogeneous Maxwellian background with
fixed temperature T,

ng _melv|?

(1.2) o) = We

In the 1930s and 1940s, Vlasov [39, 38] suggested neglecting collisions and derived
the so-called Vlasov—Poisson equation for long-range interactions, independently from
Jeans’s derivation [23] in stellar dynamics. Motivated by the mathematical under-
standing of the plasma oscillations previously theorized in particular by Langmuir,
he studied the linearized approximation of (1.1) (see (1.6) below) formally searching
for eigenmodes in the form of planar waves e =% [(y), given some velocity distri-
bution F', and computed various dispersion relations (see, for instance, equation (50)
in [39]). He asserted—mot quite correctly but almost correctly, as we shall see and
clarify in this paper—that in the long-wave limit |k| < 1, where k is the Fourier
variable in space, one has the dispersion relation

2
q no

€0Me

3T
+—|k|2+0(\k|4) as k — 0, where w,:=
Me

(1.3) w? = wz

is the cold plasma frequency. The relation w? = wf, + fn—T \k|2 is called the Bohm—Gross
dispersion relation® and arises from the following compressible Euler—Poisson model

for the spatial density n(t,x) > 0 and macroscopic velocity u(t,z) € R3:
on+ V- (nu) =0,

(1.4) men [Opu + (u - Vy)u] = qnE(t,z) — 3TV yn,
€Va - E(t,x) = qn;

when linearized around a constant density state ng > 0, ug = 0:

om +ngVy-u=0,
(1.5) mengdiu = qnoE(t, ) — 3TV n,
eV - E(t,z) = qn.

This model is sometimes referred to as a warm plasma model in the physics literature;
see, e.g., [12, Chapter 16] for more details. Vlasov’s prediction was shown to be
incomplete by Landau in 1946 [25], who showed that in fact the linearized electric
field decays to zero as t — 0o, a phenomenon now known as Landau damping, and

INote that we are slightly abusing notation, as F in (1.1) actually denotes the acceleration of
the electrons due to the electric field, not the electric field itself. We use this convention for the
remainder of the paper.

2Technically, the relation seems to have first appeared in Vlasov’s earlier work [39] before ap-
pearing in [6]; however, it is likely that access to Vlasov’s work was difficult at that time. See also,
e.g., page 260 of [12].
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in particular that nontrivial planar waves never satisfy the dynamics. The damping
arises due to mizing/filamentation in phase space, not unlike a scalar quantity being
stirred in a fluid (as first pointed out in [37]). Landau damping was later observed
in experiments [26, 27] and is considered one of the most important properties of
collisionless plasmas [32, 12, 35].

On T3 x R3, the linearized electric field decays rapidly, provided the initial data is
regular; specifically, its decay in time is comparable to the decay in the Fourier variable
associated with v of the initial data [28, 4]. Such rapid decay estimates do not hold
at low frequencies in the electric field on R3 x R? if one uses a model with Debye
shielding (this arises when studying the ion distribution function), i.e., where W is
the fundamental solution to the elliptic problem —AW + oW = § for some constant
a > 0 (see [5, 19] and the references therein). However, one nevertheless obtains a
rather rapid Landau damping rate of | E(t)|| - < (t)~* (in three dimensions), which is
the same rate as one would obtain from the free transport equation. Indeed, both the
shielded problem on R? x R and (1.6) posed on T3 x R? “scatter” to the free transport
dynamics in a very strong sense. However, such scattering and rapid decay estimates
on the linearized electric field are false in R x R3 for Vlasov—Poisson. Landau himself
predicted an extremely slow Landau damping of long waves approximately solving the
dispersion relation (1.3) (see also, e.g., [12, 35] for modern exposition in the physics
literature), something that we will make much more precise below. This lack of
significant Landau damping was proved rigorously by Glassey and Schaeffer [10, 11],
though a precise characterization of the dynamics was still lacking.

In this work, we make precise the linearized dynamics and prove that the linearized
electric field can be split into two contributions: one contribution at long spatial waves
k ~ 0 that is a Klein—Gordon-like propagation matching (1.3) to leading order with
very weak Landau damping with rate “O(|k|>°),” and another contribution, which
is properly Landau damping and decays at a rate faster than kinetic free transport
for long waves k ~ 0, i.e., faster than the Vlasov—Poisson equation linearized around
f° =0, np = 0. In particular, our work shows that the hydrodynamic description
(linearized Euler—Poisson) in fact is the leading order description of the electric field
at long waves, despite the lack of collisional effects. As such, we remark that Vlasov
was essentially correct to leading order in his prediction of the long-wave dynamics of
(1.6). For long waves, we show that the distribution function decomposes (to leading
order) into two pieces: a term that factorizes as E(t,z) - V,f%(v) (where f is the
Maxwellian background), where E solves a Klein—Gordon-type equation (including an
additional tiny damping), and a separate contribution that scatters to free transport in
L%, for p > 6. Hence, the hydrodynamic behavior arises from a large-scale collective
motion of the plasma that is insensitive to the filamentation in phase space normally
associated with Landau damping.

Understanding the relationship between Landau damping (or other kinetic effects)
and the observed large-scale hydrodynamic behavior in collisionless plasmas has been
an area of research in the physics literature for some time (see, e.g., [17, 16, 33, 20]
and the references therein). Our work provides a precise description of the hydro-
dynamic behavior and its leading order corrections due to Landau damping and other
kinetic effects, for the simple linearized problem; studies of more physical settings
(e.g., external and/or self-consistent magnetic fields, inclusion of ions, inhomogeneous
backgrounds, etc.) and/or the inclusion of nonlinear effects is an interesting direction
for further research.

Our work is only linear, but we remark that much progress has been made at
the nonlinear level in recent years in other settings. After the earlier work of [§]
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(see also [21]), the major breakthrough came in [28], when Landau damping for the
nonlinear problem was shown on T3 x R? for all sufficiently small and smooth initial
perturbation of Landau-stable stationary solutions, the actual smoothness required
being Gevrey or analytic. We also refer the reader to [4, 13] for simplified proofs
and [3] for a study of the problem with collisions. The work [2] shows that the results
therein do not hold in finite regularity (see also [14]). Our previous work [5] studied
the nonlinear problem with shielding on R? x R?; see also [19, 29] for an alternative
approach and some refinements. Other works, old and new, have studied the nonlinear
Cauchy problem near the vacuum state, that is, without the presence of a nonzero
spatially homogeneous background equilibrium f9; see, e.g., [1, 22]. As can be seen
from our results below, the dynamics are significantly different in this case.

1.2. Main results. We linearize the Vlasov—Poisson equation (1.1) on R3 x R3
around an infinitely extended, homogeneous background f°(v) > 0. This models a
spatially localized disturbance of an infinite plasma in which collisions can be ne-
glected, a fundamental problem in the kinetic theory of plasmas [12, 7, 35]. For a
localized disturbance h := fO — f, the linearized Vlasov—Poisson equations for the
electron distribution function are given by

Oth +v-Voh+ E(t,z) -V, f° =0,
E(t,x) = =V, W %, p(t, x),
p(t,x) = / h(t,z,v)dv,

R3
h(t =0,z,v) = hjp(z,v),

(1.6)

where we take the charge neutrality assumption fR3x1R<3 hin(x,v)dxdv = 0. Define the
standard plasma constants (number density, plasma frequency, and temperature),

2
— qno

= f9(0 2= T::me/ 2 £0(p)a
no f ( )7 wp GOme’ Sno - |’U| f (U) v,

and as stated above, we assume the Maxwellian distribution background (1.2).

Our main results are asymptotic decomposition of the electric field and the dis-
tribution function; we give slightly simplified statements for readability and refer the
reader to the main body of the paper for more detailed expansions. See subsection 1.3
for the notation (z), (z,y), (V), and WE+0»,

We remark that another paper proving similar results with somewhat different
methods [18] has recently been completed as well. These works have been completed
totally independently.

THEOREM 1. Suppose ngng hindxdv = 0, and let h and E solve (1.6). There
are dg > 0 and a decomposition of the electric field E = Exa + Erp between “Klein—
Gordon” and “Landau damped” parts, with Ex ¢ supported in spatial frequencies |k| <
Vg, and the following hold:

e E;p satisfies the following Landau damping—type decay estimates for any
o€ N:

. 1
(Va, tVa) ELD(t)HLg S <t>5/2 ||hin||Wa+%+0,1v
0
o 1
(1.7) (Vs tVe) Erp ()l S o 1R [y +sor -
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o Fxe further decomposes as Exag = EE(% + Eg?)G with the pointwise-in-time

estimates:
Et()|| , < 1Bl + lvhinlla  + hinllwos
Ee®)], S Minllwg
BRe@||, SO Whinllyre
Bio )|, So 07079 [@hinllyos (V2 <p < 00),

1 _
VL ERGW)| S 072 hinllyon

° Egg solves a weakly damped Klein—Gordon-type equation in the following
sense: there are bounded, smooth functions X\,Q, k € B(0,069) such that (for
errors independent of t)

sin (Q(k)t)

B (0.8) = Bin(B)e ™ cos (k) +¢ 0 1 (19,0 (1,0 o

k|
(1.8) + O(‘k|2>e—k(k)t+i9(1f)t + (’)(|k|2)e_)‘(k)t_m(k)t,

T
where  A(k) >0, A(k)=O(k[*), Q3(k)=w’+ i— kP +0 (|k|4)
as k— 0.

Furthermore, there holds, for all 2 < p < o0,
1 (2 _3(1_1
|20 BR|| S ®7 0 il

which further emphasizes that for small k, Egé 18 much larger than Egé

Remark 1. The E;?)G electric field is essentially a Klein—Gordon-type evolution
subjected to a Landau damping external forcing, whereas ES)G is to leading order the
solution to a Klein—Gordon-type initial value problem with initial conditions deter-
mined by the initial density and momentum, as can be seen from (1.8) (and higher
order expansions are similar but depend on higher moments of h;,). Hence, the mo-
tivations for separating these fields as distinct contributions. See section 2 for more

details on the decomposition. Note also that Egg is significantly smaller when k — 0

than ES)G, and thus the asymptotic expansion of Exg as k — 0 is given by the
corresponding leading order terms in Egg

Remark 2. For frequencies bounded away from zero, i.e., for any 6 > 0, P>sE,
Landau damps at a polynomial rate (t)~°, provided the initial data is W!; hence
the extremely slow Landau damping of Ex¢ manifests only at £ = 0. As expected,
for frequencies bounded from zero, the electric field (both Erp and Exg) damps
exponentially fast if the initial data is analytic (and analogously e~ %" for Gevrey
initial data).

Remark 3. As the electric field is not shielded, it is too restrictive to assume
that E;, € L', regardless of how well localized the initial h;, is. If zh;, € L' and
fR}ng hindxdv = 0, then E;,(x) ~ |J:|_3 as © — oo (hence, E;, € LP for p > 1 but
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not p = 1), but one cannot obtain faster decay at infinity unless one has higher zero-
moment conditions, such as ng «r3 T hindzdv = 0, and the latter are not propagated

by the semigroup.

Remark 4. In the case of the kinetic free transport, the electric field decays only as
|Err ()| Lo S (t)=2, which is two full powers of ¢ slower than (1.7). For frequencies
bounded away from zero, both the free transport electric field Frr and our Erp
are Landau damped exponentially fast for analytic data (and polynomial for Sobolev
data); the difference in decay rates comes from the contribution of long waves.

Remark 5. There is a clear distinction between Landau damping and dispersive
decay above: for the Landau damping contributions, each derivative buys one power
of time (a structure that can be guessed from free transport), whereas for the Klein—
Gordon-like contributions, there is no such behavior.

Remark 6. We have not endeavored to get the sharpest dependence on the initial
data that could be possible. This could be important for nonlinear extensions.

We deduce a similar decomposition at the level of the distribution function.
_ THEOREM 2. The solution to (1.6) decomposes as h = hxg + hpp with hxg =
Exg(t,z) -V, fO(v) for some effective electric field Exq, with the following estimates:
e forallm >0, allr € [1,00], and all p € [2,00) (Ekq is essentially a phase-
shifted version of Eg{l)c and satisfies the same estimates),
(1.9) 1Y hica®) 21z S Mhinlyeos
m _3(1_1
)™ b )l g Spom (775 @) hin |01
1Y Vahico @z 1z S B [hinllyor

e hpp scatters to free transport in all L ,, p > 6 (provided one has enough
initial regularity). In particular, if (V)7 (v)™h,, is integrable for o,m € N

large enough, then for all p > 6, there exists an hoo € LE ,, such that
H(v)m {hLD(t,x —vt,v) — hoo(x,v)] ) - 2Ee.

Remark 7. Using the Strichartz estimates [9] for the transport equation, one ob-
tains

”hLD HL?LQLQ S ”hin”WT‘ijl

for all (p, q,r,a) satistying

1 1 1 2 1 1 1 1/1 1
S*Sl, 1<7+77 —=n\-———1, —==|-+- , a > 6.
r a 2\r »p

S| =

<

S|

1
b

Theorem 2 shows that the leading order term in the asymptotics of the distri-
bution h factorizes between a function of (¢,z) and a fixed function of v, which is
reminiscent of a hydrodynamical limit even though the equations are collisionless.
One can actually push this intuition further: a long-wave rescaling of the electric

field converges weakly (in negative Sobolev spaces) to the electric field, solving the
linearized Euler—Poisson system (1.5). See subsection 2.5 for a proof.
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THEOREM 3. Consider an initial data hi,(z,v) = Ho(ex,v) such that Ho has
zero average and Hgy € W§+0’1, and denote

qzno 1
Ey = Vae(—=Ay)~ Ho(:,v) dv.
€M R3

Let € be the unique solution in the natural energy space & € L°H} and 0,€ €
L°L2 to the following Klein—Gordon equation:

P

(1.10) £(0,z) = Eo(z),

0:£(0,2) = —noVy - </ vhmdv> .

Then, for all s € (5/2,7/2), 0 < e < 1, for all 0 <t < e, there holds

926 + <w2 _ ?’TA) £—0,
Me

(1.11) HE (t, E) - & (t, E) HHiS <é (62 + 657%70<t>) [Hollyy2.1 -

Moreover, given such initial data with appropriate scaling, both the electric fields in the
linearized Vlasov—Poisson and the linearized Fuler—Poisson systems are asymptotic to
the Bohm~Gross dispersion relation at large scale: E(t,x) = Ex + E_ and E(t,x) =
E + E_ with the following weak L2 limit on t € [=T,T] for any fized finite T:

1 ot t x r 1 a7
7263pr TFy | —,- weak ot ZN/EO,
€ € € 2 2

1 . t = k 1 a7,
726%%35& =, = weak, ZetmeiAtg,.
€ € € L2 2

Remark 8. The Klein—Gordon equation arises as the linearization of many non-
linear PDEs around homogeneous equilibria. The specific link with the linearized
Euler—Poisson is seen by keeping track of the physical parameters in (1.5) and seeing
that the results of Theorems 1-3 show that (1.6) reduces at low frequencies to leading
order specifically to (1.5), and not to some other Klein—Gordon equation (see also
(1.10) and (1.11) of Theorem 3). However, a more complete linking between (1.4)
and (1.1) would have to come from a weakly nonlinear study.

1.3. Notation. Denote (z) = (1 + |z|*)*/2 and by (V) the Fourier multiplier
defined by

— o~

(V)f(&) = (€)(&);

we define other Fourier multipliers in an analogous way. We define P<x to be the
Littlewood—Paley low-pass filter in z; in particular, we define xy € C$°(B(0,2)) with
x(z) =1 for |z|] < 1, and define

Pt = x (37 ) F.

Copyright [ by STAM. Unauthorized reproduction of this article is prohibited.



gooooooooonooooboonbdboubooooooUbo DDLU oo DooDbOon

4386 J. BEDROSSIAN, N. MASMOUDI, AND C. MOUHOT

Denote the weighted Sobolev spaces (note that the weight index refers to the variable
v) as follows:

1/p 1/p
g, = ([ 1ol dsar) ™ ol = ([ oo as)
R3xR3 R3

1 llwgr = 0™ (Va,0) " fll o -

For inequalities involving norms W27 we use the notation +0 if we mean that the
estimate holds for ¢ 4+ 0 with ¢ € (0,1) with a constant that depends on §. For
p € [1,00] we denote p’ = p’%l as the Holder conjugate. Let f : [0,00) — C satisfy
e M f(t) € L' for some pu € R. Then for all complex numbers Rz > y, we can define

the Fourier-Laplace transform via the (absolutely convergent) integral

(1.12) f(z) = % /OOO e *tf(t)dt.

This transform is inverted by integrating the f along a so-called Bromwich contour
via the inverse Fourier—Laplace transform: let v > p and define

. ~y+io0

f(t) = / e* f(2)dz.
y—100

2. Decomposition of the electric field.

2.1. Volterra equation. The most important property of the linearized Vlasov
equations is that one can reduce the problem to a Volterra equation for the density
separately for each spatial frequency. We now recall how this is done. Writing a
Duhamel representation along free transport gives

h(t,z,v) = hip(z — vt,v) + /0 (VW 5y p)(t,x —v(t — 5)) - Vo f9(v)ds.

Taking the Fourier transform in z and integrating in v gets (with wq := wgno_ 1)

t —
(2.1) ot k) = hin(k, kt) —wg / (t —71)fO>k(t — 7))p(T, k)dT.
0
Taking the Fourier-Laplace transform (1.12) in time for $z sufficiently large gives
(2.2) p(z, k) = H(z, k) + L(z,k)p(z, k),

where H(z,k) is the Fourier-Laplace transform of ¢ — f;;(k‘, kt) and the dispersion
function is

oo wo +oo . —
(2.3) L(z,k):= —wo/ tfo(kt)e *'dt = ——2/ e % fO (ks) ds,
0 k[ Jo

with the standard notation k = k/|k|. This change of variable allows for the function
s+ S?B(]ACS) to have regularity bounds independently of the size of k. Our assump-
tion (1.2) implies that z — L(z,k) is an entire function for all k # 0. Moreover, we
see that away from z = 0 or k = 0, L(z,k) is also a smooth function of k. We will
see that analyzing the behavior near (z,k) = (z,0) and (2, k) = (0,0) is an important
and subtle aspect of our analysis (see Lemma 2.3 below).
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2.2. Asymptotic expansions and lower bounds on the dispersion func-
tion. Solving (2.2) for p works, formally at least, except where L£(z, k) gets close to
one. In the case of not-so-small spatial frequencies k, the treatment is similar to that
of the periodic domain x € T3, and so we merely sketch the argument here; see [28, 4]
for more details.

LEMMA 2.1 (resolvent estimates for nonsmall frequencies). There exists a A > 0
such that for any vy >0, 3k > 0 (depending on vy) such that

(2.4) v k| > vo, inf |1 —L(%k)| > k.
Rz>—Alk|

Furthermore, the following estimate holds uniformly on the critical vertical line of this
region:

1
(2.5) VIE| >, weR, [L(=Alk]+iw, k)| S —————.
1+ k)" +w?

Proof. The estimate (2.4) is proved in, e.g., [28, 4]. To see (2.5), we use integration
by parts and the analyticity of f° to get

; Wo > As—itss 70 (3

L(—=M\|k K| = — Th] 0(ks)d
EA b i) = | [ N (k) s

_wo | [T L o xe—iggs) T (i

= |k|2 \/O (A—’Li)Zag (6 k )Sf (ks) ds

k|
Wo o0 —~ /A 2/-\ N

<——7—— 0 0

> ()\2|k’|2+w2) |:7'l0+/0 (2 (lf (kS) +S 6sf (kS) )d5:|

D

14 |kI" + w?

which completes the proof. 0

Next we turn to the low frequency estimates, which are more challenging, and
contain the long-wave dispersive structure. For §,8" > 0, define the following region
in the complex plane (see Figure 1 for a diagram):

Asg = {z:)\—i—in(C : A>—min[(1—5)|w|,5’\k|]}.

We will next show that L(z,k) stays uniformly away from one in the region
A5\ {|# £iwp| < €}, where w), is the cold plasma frequency. The proof relies on
two representations: (1) an expansion obtained by the stationary phase method (i.e.,
successive integrations by parts in time) meaningful for large values of ﬁ, and (2)
an approximation argument using the explicit formula obtained from the Plemelj
formula at the imaginary line 38z = 0 that provides estimates near this line. The
first representation is given by the following lemma. This expansion is ultimately the
source of the Bohm—Gross dispersion relation (1.3).

LEMMA 2.2 (asymptotic expansion of £). For any ¢ € (0,1) and any §' > 0 there

holds
w 3T || k[ ]
1 Ol — — .
+ P + (|Z|4 , as %] — 00

(2.6) Vze A575/, E(Z7 k) = )

SN
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Rz = —o'|k|

F1G. 1. The region As s .

Note that this expansion only contains information for frequencies |k| < |z|. The
expansion (2.6) gives the natural continuous extension of L(z,k) at (z,0) for z €

C\ {0}:
2
L(2,0) := ——2.
We will see below that this extension makes L(z,k) smooth in k and analytic in z

away from (z,k) = (0,0).

Remark 9. Notice that this expansion holds everywhere in As 5/, and in particular
only requires 8z > —§’ |k| near z = 0. This observation is important for our analysis
of the behavior near (z, k) = (+iw,, 0), which is well separated from the singularities.

Proof. Since s — sf9(ks) is odd, observe that ag(sﬁ(l%s)ﬂszo = 0 for all even j.
Therefore, integrating by parts repeatedly in s in (2.3) gives

L(z, k) = —@?B(O) - % /00 e T2 (s}"B (l%s)) ds
0

22
3 k X . k2 [e’e) _ = o~ A
=10 - P ks ks v2po)] - ML [T oo (o (i) ) as
_. W05 _ Bwolk Fok: v - LI
= o : o ’

Since woﬁ(O) = wong = w? and 3neT = mek @ k : V2}B(O) gives the leading order
terms in (2.6). Note that we have

o0 . - R
C(z,k) == / e ! (sfo (ks)) ds.
0
It remains to show that for z € A5 s there holds

2
ce k)] < B
"
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First consider the region Rz > —¢’|k|: integrating by parts two more times, we obtain

o8 (570 (is)) | a5) %o ||k|l

2 00
VRz > —d' |k, |§(z,k)|§||k|2(l+/ oS
z 0

where the last line follows by the analyticity of f°.
Turn next to the region Rz < —d’|k| with Rz > —(1 — §)|Sz|. Observe then
arg 2% € [ + 3,3 — ] for a small 3 > 0 depending on §. Write

(e’ . 0 . .
C(z,k) = / e T (sfo(ks)) ds — / e T (sfo(k:s)) ds =: (1(z, k) + Ca(z, k).
On the one hand, (; is bounded as in the region Rz > —§'|k| due to the now ad-
vantageous sign of the exponent. On the other hand, (; is a true Fourier—Laplace
transform, and due to (1.2),

Gz, k) = /jo e e (s?a(l%s)) ds = |Z4|14 /jo e_ﬁs?a(fcs)ds

4 4 2

o0
2 T mez
— 0 L 67ﬁ575 Zme dg = no * 62T7k|2
3/2 || 3/2 ||| 4 :

me —c0 me

Due to argz? € [Z + 3, 2% — f3], it holds that Rz? <5 —[32]? <s —[2|%, and this term
vanishes (to infinite order) in terms of % — 00. This completes the proof. |

Lemma 2.2 suffices to estimate the resolvent in much of the areas of interest. The
next lemma estimates the resolvent for low frequencies & in the half-plane Rz > —¢'|k|

and away from the cold plasma frequencies +iw,. Given € > 0, define the following
region (see Figure 2 for a diagram):

Hes:={z=A+iweC:A>-8k| and |zxiw,|>e€)}.

LEMMA 2.3 (low frequency resolvent estimates). Given €, > 0, there are vy, k >
0 such that

VIk| <vo, Vz€Hey, |1—L(zE) >k

Remark 10. One of the central difficulties of this lemma is dealing with the region
near (z,k) = (0,0), which is explicitly excluded in Lemma 2.2.

Proof. Let R > 0 be fixed large depending on f° but independent of k.

Case 1: |z| > R|k|. In this region the estimate follows from (2.6) taking R > 0
sufficiently large.

Case 2: |z| < R|k|. In this region the asymptotic expansion (2.6) is no longer
useful and we use the Plemelj formula instead. Writing z = A+ iw, it is classical that
for A = 0, one has (see, e.g., [31, 28] for explanations)

oy wo [ (f)(r) WOT oy, (W
ctio) = s [ 75 o+ (7).

where, for any k # 0, the partial hyperplane average is defined as

VreR, f2(r) ::/ O (v.)dv,.

I%?‘-‘rkJ_
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z —iw,| <€

v

FIG. 2. The region H, s/. The bold line denotes the line Rz = —d' |k|, while the real and
imaginary axes are denoted by thin black lines with arrows.

Moreover, observe that for any z € C such that |z| < R|k| and Rz € (=d'|k], 0],

W, o0 ’s
(2.7) 0.L(z, k)| < ﬁ / sed
0

70 (ks) | ds <o |k1|3

where we have used ¢’ > 0 and the Gaussian decay of ?5_

Subcase 2.1: |z| < R|k| and c|k| < |w| < R|k|. Given any ¢ > 0, we deduce from
decay, smoothness, radial symmetry, and monotonicity of f° that

N 1
79 (W)\ Zen o

and therefore, using (2.7), |SL(z, k)| 2 1 holds uniformly for all Rz € (=4’ |k|,0).

Subcase 2.2: |z| < Rlk| and |w| < c|k|. Observe that M is integrable since
(f2)'(0) =0 and f is smooth, and if we denote

/ UD'0) g _ e 20
R r ’

we deduce that if ¢ < % is small enough, then

e, | e [ e
‘/]R d Co AT d

T W ) RS

. wWoT™
inf —

<ttt <r TR

W

N
A

and thus

1
1—L(iw, k)| 2 —5.
1 Ll R 2
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Using again (2.7), for ¢’ small enough we deduce that for Rz € (—§’|k|, 0],
1 —L(z,k)| 2 1.

These different cases above together prove that 1/|1 — £| is bounded from above
on the strip Rz € (—4’|k|, 0] and outside B(0, R|k|) N{Rz > 0}, and since there are no
poles within the remaining region B(0, R|k|) N {Rz > 0}, the function is holomorphic
in this region and the upper bound is also valid there by the maximum principle,
which completes the proof. 0

2.3. Construction of the branches of poles. From Lemma 2.2, we have
a pole at |k| = 0 at the cold plasma frequency: L(%iw,,0) = 1. It follows from
Rouché’s theorem that if |k| is small enough, exactly two poles persist in respective
neighborhoods of +iw,: Given ¢ > 0, the two functions F(z) := 1 — £(#,0) and
G(z) := L(z,k) — L(z,0) are holomorphic on the set |z F iw,| = ¢, and Lemma 2.2
implies |1 — £(z,0)| > € and |£(z,0) — L(z, k)| < |k|* on |z Fiwp| = e. Therefore,
F(z) =1-L(%,0) and F(z) — G(z) = 1 — L(z, k) have the same number of poles in
|z F iwp| < €, provided that |k| is sufficiently small relative to e.

A

Wy

pi(k) =i (wp+ ZZ-|k|* + O (|K[?)) + Error(k)

MeWp

Error(k) = O (|k|>) <0

»
>

p-(k) = =i (wp + 2L [k[> + O (|k[*)) + Exror(k)

Mewp

— Wy

F1G. 3. The branches of poles k — p+ (k).

However, knowing just the approximate location of the poles is not enough to
deduce dispersive estimates. We next use the implicit function theorem to construct
the branches of solutions py (k) (see Figure 3 for a diagram of the branches).

LEMMA 2.4. There are €,vy > 0 such that for all |k| < vo, there are unique
p+ (k) € C solutions to L(p+(k),k) =1 in {|z Fiwy| < €} and k — py(k) = —A(k) £
iQ(k) are smooth (but not analytic) and satisfy A(k) > 0 and p+(k) ~p—o Liw, with
the following expansions as k — 0:

3T
2,2 9oL 9 4
(2.8) AR =)+ IH] +0 (Jkl*),
3T 5
(2.9) va(k) —zmewpk+(9(|k\ )
3T

2 o 2
(2.10) VI(R) = il + O <|k| )
(2.11) (VINK)| Sjon K] for any j,N €N .
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Remark 11. This expansion of Sp (k) = £Q(k) provides the rigorous justifica-
tion for the Bohm—Gross dispersion relation in kinetic theory. Regarding the real part
Rp+ (k) = —A(k), physicists assert that (see, e.g., [12, p. 419])

m3/2w4 me w2
ME) ~ /T ——P ex
(k) f\kl e p( T T)

however, at this time we lack a mathematically rigorous explanation for this exact
prediction.

Proof. Since fO is real, py = p_ and it is enough to build the branch near +iw,,.
By the implicit function theorem applied to the function £ of (z,k) € C x R?, the
result will follow by verifying 0,L(iwp,0) # 0 along with observing that £ is smooth
in (z,k) and analytic in z in this neighborhood. Roughly speaking we want to take
derivatives of the expansion (2.6). From (2.3) and integrating by parts as in the proof
of Lemma 2.2,

0.L(z, k) = f:—‘% /000 e TR 52 f0 (l%s) ds = Z;U—r)k' /OOO e T2 (52f5 (l%s)) ds

_ Zwong + 20 e T3 <s2;”6 (l%s)) ds
0

23 23
2wong  6wolk]| wo\k| s 4 270 (i
==+ [k; V70 (0 —re gt (20 (ks))ds

2’([)0710 ’U.)0|k|
= + 2:4 g’(z, k)?

with (’(z,k) that is uniformly bounded for |z — iw,| < € and |k| < vy (using the
analyticity of f°). From the above calculation we can also observe that L(z,k) is

2 .
analytic in z in this neighborhood. Moreover, 9, L(iw,,0) = % = 3—; # 0. By the
same integration by parts method used in Lemma 2.2, we obtain
(2.12)
e k
ViL(zk) = —lz[;/ 182V O (fos)ds = ‘;’0 ek vP0)] +0 (k).
0

Similar, but lengthier, calculations verify that near z = +iw,, £ is also smooth in k.
The implicit function theorem then implies the existence of a unique smooth solution
k — p4 (k) to the equation L(p4(k), k) =1 in a neighborhood of iw,,.

To get more precise information on the behavior of the poles near k = 0, we need
to compute derivatives in k as well as £. Expansion (2.8) immediately follows from
Lemma 2.2:

3Tw? 3T
i =PiLps, k) = wp = ——5 [k + O (k") = wp + — [k + O (|k]") -

e+ e
Next, observe that

(Vk‘c)(me )

(213) VP = T @D B)

(2.14)
V20 =—(0.L)(p4, k)" [(VRL) (D4, k) +(VrO.L) (D1, k) - Vo +(02L) (p4, k)| V4 7] -
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Using V2 £0(0) = 3np-2-1d and wo = wgnal in (2.12), we obtain

6T
ViL(ps (k). k) = ——k+ 0 (k")

€*p

which implies (2.9). The proof of (2.10) is similar, using now (2.14) instead of (2.13);
the lengthier calculations are omitted for the sake of brevity. In these calculations
a clear pattern emerges: in all derivatives Vi'L(z, k) (resp., V7'0,L(z,k)), for m €
N, the leading order as k — 0 is an even (resp., odd) power of 271, and thus at
z = fiw, all derivatives V'L(iwy,0) (resp., V7'0,L(iwp,0)) are purely real (resp.,
purely imaginary). This proves all derivatives V™p, (0) are purely imaginary and
thus implies (2.11), i.e., ®p; = —A vanishes to infinite order at k& = 0. Observe that
since nevertheless Rp; < 0 as k ~ 0 (by Lemma 2.1), the function k — p4 (k) differs
from its Taylor series at kK = 0 and is therefore not analytic. O

2.4. Spectral surgery and extraction of Klein—Gordon waves. Through
(2.2), the solution to the Volterra equation (2.1) is classically [15] given formally as

t
(2.15) At k) = o (k, kt) + / Rt — 7, k)i (k, kr)dr,
0

where the resolvent kernel R is given by the inverse Laplace transform

1 [rtiee L(z,k)

R(t, k) = — T d
(t, k) 2m/woo 1 L0
L(z,k)
1-L(z,k)
The calculations in subsections 2.2 and 2.3 show that for |k| < v sufficiently

L(-,k)
’ 17‘6(7]6)

plane Rz < —§’|k| minus e-discs around for the two poles), with one isolated pole
p+ (k) in each disc, depending on k as studied in the last subsection. Therefore, by
Cauchy’s residue theorem,

for a suitable Bromwich contour such that z —

is holomorphic for fz > v—0.

small

is holomorphic in the region H s represented in Figure 2 (the half-

dz

D+ (k)t p— (k)t v +ico

I L L [ LB
—0.L(p4 (k). k) T —0-Lp_ (k). F) i | L L(zk)

=: R;_(G (t, k’) + R;(G (t, k) +RRFT(t, k)

RKG(t,k)

2im

for some +' € (=0’ |k|,0) so that the vertical line is to the left of the poles pi (k)
but still in H, 5, where £/(1 — £) is meromorphic (always possible for |k| sufficiently
small since |Rp+ (k)| < |k|”°°). This decomposes the resolvent R = Rxg + Rrrr
into a Klein—-Gordon part and a remainder free transport part, the former named
thus because the poles satisfy to leading order (1.3) and due to the Klein-Gordon-
type Exqa contribution in Theorem 1. This yields a corresponding decomposition of
the density p(¢, k) through (2.15):

t t
ot k) = hin(k, kt) + / Rra(t — 1, k) hin(k, kT)dT + / Rerr(t — 7, k)hin (k, kT)dr
0 0

= ﬁFT(ta k) + lé;r(G(ta k) + ﬁl_{G(t7 k) + [)RFT(ta k)
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We first prove a general expansion of [)Ii(G(t,k) by successive integrations in time
(producing additional powers of k). Terms in this expansion are either comparable
to solutions to free transport (with additional Fourier multipliers) or to solutions to
a Klein—Gordon-like evolution equation.

LEMMA 2.5 (expansion of the Klein-Gordon density). For all |k| < v and all
¢ € N, we have

~

FE (. Zepm)tAi ) [K57  an(h,0)] = 37 A% (k) [67 - an (b, k)|
=0
(2.16) / Ria(t )A;‘;l(k) {k®(4+1> ;Vf}ﬂ@(l{,kr)} dr,

where V,,ﬁ;(k,n) is the differential in the second Fourier variable, and with the no-
tation

Ji(k 1

+ — _7) an Y TN AN A
Ay (k) = p(k)it1 d Je(k): 0.L(p+(k), k)

Remark 12. Note that the Fourier multipliers A?[ are smooth and bounded for
|k| < 1.
Proof. Integrating by parts in time gives
t

Pra(t k) = | Rko(t— 7, k)hin(k, k7)dr
0

t
_ / Ta (k)P ® D (1 kr)dr
0

t

Ju (k) (k) (t—7)%i )i

- _ 87— e (k) (t—T1)£iQ(k)(t—T) hin k,kT dr
/0 p+(k) ( ) (k. kr)

Jx (k) Jr (k) poyei™ s (k) - -
= H(k, kt) — ePMtp. (k.0 +/ =BT k., Ry (K, kT) | d,
pai) TR =) B0+ ) o) [+ Vo k)

and iterating finitely many times yields the result. 0

Note that by symmetry J, (k) = J_(k) and A; (k) = A;r (k), and the calculations

of Lemma 2.4 give the expansion Ji (k) = F32 + O(|k|?), which allows us to expand
the coefficients Aji(k) in (2.16). Denoting p4 (k) = —A(k) £ i©2(k) with A(k) > 0 and
Q(k) = wp, + O(|k|?), it immediately implies the following lemma.

LEMMA 2.6 (Klein—-Gordon coefficients at low frequencies). One has, as k — 0,
(2.17) AG (k) + Ag (k) = 1+ O(|k[*),
AT (k) + A7 (k) = Ok,
et AT () + e 1A (k) = D [eos [Q(k)E] + O(IK*)e ™M 4+ O(Jkf)e 2]

sin [Q(k)t]

e+ (0 4 (1) - e~ (A~ () = ¢~ MbE [ o

O+ (k0.
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where the O(|k|?) in the above represent infinitely differentiable, bounded functions of
k which are independent of time.

We are now able to precisely define our decomposition of the electric field.

DEFINITION 2.1. We define the variable precision decomposition,

~(1. 1k _ ~
B (k) = worgrs (1= AT (k) = A5 ()] A (k. )
. ¢
ik + ) -
(2.18) ~ w0 3 AE (k) (k;®] V3 an (, kt)) ,
j=1

—~

~ Zk t
E(LQL))(tv k)= WOW /o Rrrr(t — 7, k) hin (k, kT)dT,

. L
N k S
EQE (k) = wors > er+ WA (k) (k®3 V3 an (, 0)) ,

. t
B0 k) = woék? / Ria(t — k)AL (k) [k®(”1) LV i (k, ]417’)] dr,
0

and accordingly define the particular decomposition we shall use in what follows (set-
ting £ = 4),

E1(111)3 = E(ngl), Eg])D = as above,

1 1;4 2) | (24
Pl = B, P B,

Epp:=E) +E®  Exc:=EYL+EQ..

Remark 13. Note crucially that (2.17) cancels the leading order of the free trans-
port evolution for long waves as k — 0, as can be seen in the first term in (2.18)
recalling the expansion (2.17). This ultimately leads to an improved decay of the
Landau damping contribution of the electric field.

Remark 14. The choice £ = 4 was chosen large enough so that the expansions can
all be seen to be distinct in nature and in decay rates.

Next, we estimate the “remainder free transport part” of the resolvent. The gain
in powers of k present in Lemma 2.7 is critical to the high quality decay rate of the
Landau damping electric field.

LEMMA 2.7 (remainder free transport resolvent at low frequencies). There exists
Ao > 0 such that for all |k| < vy there holds

VK < vo, [Repr(t,k)] S [k[* e ok,

Proof. We add and subtract by the expected leading order behavior as k — 0

(using that the integration path is away from z = 0), hence defining for a := 3Tw?m_!

wy alkl®

22 +°‘)127 (22 +w12,)2'

Qz) =

The function z — e**Q(z, k) is holomorphic and decaying in the left half-plane Rz <
—~"|k|, and hence we can deform the contour defined by the standard Bromwich
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contour (from —7' —ico to —y' — io0) to a new contour which basically follows the
boundary of As s/, the region of validity of the asymptotic expansion in Lemma 2.2.
Accordingly, we design the new contour into three natural pieces: a center part being
a contribution with £z = —0 |k| with Sz € (=R |z|, R|z|) and two “tails” connecting
this central contour to infinity along diagonal lines. This contour is visualized below
in Figure 4. That is, we have the following:

Raret) =5 ([ [+ [ )t (P2 o) o

= R%pr + Rppp + Rpppr  With
- {z —Atiw: A= dkl,we (—R|k|,R|k|)},
r, — {z =X —i(1+ A+ i[R— (1+06)6] k| : A € (—o0, —5\k|]},

r_

{z: A+i(1+0)A—i[R— (1+0)8] k| : A € (foo,f§|k|]}.

| R|k|

o

\)

—0|k|

‘| —R|k|

FIG. 4. The contour of integration (note that it is slightly modified as compared to OAs s ).

We separate cases as in Lemma 2.3. Consider first z € Ty with |3z| < ¢’ |k|. As
in the proof of Lemma 2.3, in this region there holds the following expansion, valid
for ¢’ sufficiently small:

2 [
VzeTywith [Sz| <& k|, L(Sz, k)= —;:TPQ +0 (”Zﬁ) ;

for all |z| < |k,

L0z, k) S IR, [0:L(2, k)] S [k
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Therefore, for § and ¢ sufficiently small, we have L£(z,k) ~ |k| ™2 for z € Ty with
|Sz| < ¢ |k|. Next consider the case z € I'g with ¢’ |k| < |Sz| < R|k|. By arguments
similar to those above and in Lemma 2.3, we have |1 — £(z, k)| > k|7 and |£(z, k)| <
|k| 2. Therefore, on I'y, the integrand is O(|k|*), resulting in the estimate

22L(z, k) + w? o |k
/ e 2 - n T3 5 | 42
SN\ T— 2R+ ad) T wd)

This completes the estimates on T'y.
We next turn to I'y ,I'_. We need only consider I' ., as I'_ is analogous. We now
use |z| > |k| and the decomposition from Lemma 2.2:

S ‘k|3 e*&‘klt.

w? 3T |RP |k[*
L(z, k) = —Z—g - W + lz—L (2,k),

with {(z, k) uniformly bounded on 'y and decaying at infinity. Using this expansion,
we have

L(z, k) 22L(z, k) + w? ok
—ceh T eEN =g w%) (7 —o2)(2 T w2)
- ak? (2L + w?) C(z, k)k*
(22— 22L0) (22 + wa)?  22(2% = 22L) (2% +w3)
ak?(ak? + (2, k)k*2?) C(z, k)k*
(22— 22L)(2 +wp)? 22(22 = 22L)(22 + w2)’

Using the uniform boundedness of ((z, k), integration gives
+ < —O|k|t > |k‘4 3 _—5|k|t
Ripr| Se —5dr=[k["e .
Rlk| T
This completes the proof of Lemma 2.7. ]

We finally estimate the whole resolvent at frequencies bounded away from zero,
which is simpler.

LEMMA 2.8 (nonsmall frequencies resolvent estimate). Given any vg > 0 there is
A1 > 0 such that

Y 1 — k|t
vkl > R(t, k) < HIRIE,

Proof. Choose A > 0 as in Lemma 2.1 and deform the contour to get (there are
no poles in Rz > —A|k| when |k| > 1/2)

1 Akl Hioo zt l:(Z,k)
R(t7 k) B % /)\|kioo ‘ 1- E(Zv k) dz’

and using the estimate of Lemma 2.1 gives

& 1 1
IR(t, k)| < e-Alklf/ s dw S —e M u|
—oo |K|? + |w] ||
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2.5. Another look at the long-wave hydrodynamic behavior. In this sub-
section we prove Theorem 3 on the basis of the decomposition of Definition 2.1 and
the previous estimates of this section.

Proof of Theorem 3. We prove the first part of the theorem, as the second part
is seen directly from the decomposition of Definition 2.1, together with some basic
estimates that are similar to or easier than what is required to prove the first part.
For any field F', define

1 — ~
Fe(t,z) = 5 F (t, E) , with Fourier transform  F(t,k) = F(t, €k).
€ €

Note that we have defined h;, such that for all € > 0, h;p, (z,v) = Ho(x,v). Define
the initial macroscopic flux (recall that ng is the total mass of f°(v)),

1 — 1 —
Jin(x) := —/ vhindv with Fourier transform  j;,, (k) = —iV,hin(k,0).
No JRr3 no

Denote

~ 1 .~
T(k) = iV Ho(k).

The rescaled electric field &, in the linearized Euler—Poisson system (1.10) satisfies

R ik , k ~ .\ sin Qg (ek)t
Bt k) = 1o Ho(K) cos Qucc ekt + s (- 70)) Quc(ek)

where we define the exact Euler—Poisson imaginary phase Q¢ (k),

3T
Qra(k) = w2 + = [k°.
m

p

Consider EE{% first defined in the decomposition of Definition 2.1, since it is the
contribution which is asymptotic to &. Lemma 2.6 shows that

7(1) o Aekyt ko ekt o ik ~\ sin [Q(ek)t]

E Q = (k-

eExg.(t k)= e Ho(k‘) cos [Qek)t] + e ewpw? (k: J(k;)) Oeh)
Oelek*)e™ M| Ho | o -

Note that the errors depend on time, but in a uniformly bounded way, and that they
depend on v-moments of h;, up to order 5. By the expansion of €2 in Lemma 2.4, we

have
9ek) — )] 5 |y + 21 ek + O (ebt) — 3 + 2 ek < e
and thus
| cos [2(ek)t] — cos [uca(ek)t] | = O (|ekl* ).
sin [Q(ek)t] — sin [Qe (k)L ’ (\ek|4t> :
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and for any N > 0, [1 — e M| = O(|ek|" t), and therefore we deduce

< (lek{" ¢+ elek]”) [Hollyss

and thus

2 4 8,2 %
) € |ek|” 4 |ek|" t
¢ HEggs(t) - Se(t)HH_s S Hollyon (/lequ Tdk

S [Hollwos €2 70(1)

for s € (2,2). Turn next to Egé, from its definition

1/2
t 2
(2) H / / 1 10 555~ ’
el|E t <e ——— |ek| |V Ho(k, kT)| dk dr
ko] o<mmw%w” o

< [ Hollyp 7270

for s € (2,%2). This completes the treatment of the “Klein-Gordon parts” of the
electric field.

We turn next to the Landau damping contributions, which in fact dominate the
error. It is convenient to subdivide the Landau damping field as in Definition 2.1.

The contribution of E(Ll[)) is straightforward; indeed,

[N

2 62
dh | S [ Holhyz 77

k! VI H k, kt
| ‘ n O( ) <t>

4
€ HES/%F(t)HH—S <e Z/}RBU@)—% |6k|2
§=0

for s > % Turn finally to Efl)), which produces the dominant error. Then

t . 2 —1
k k
e[, Qé(ymw,w>ﬂmwﬂ

H- ™ (k)2s

) 1/2
Holk, m)] dk) dr

< Moz

for s > % This completes the proof of Theorem 3. 0
3. Electric field estimates.

3.1. Landau damping estimates on the electric field. In this section we
provide estimates for Erp. We start with the optimal decay estimates for the density
for the kinetic free transport (optimal in terms of time decay, not in the dependence
on the initial data). Denote the spatial density of the solution to the free transport
equation

H(t,x) = / hin(x — tv,v)dv  with Fourier transform fj(t, k)= f;;(k, kt).
R3

LEMMA 3.1. For all o > 0,

(3.1) {Va, tV2) 79 )y S Mhinllyer s
||<V:p7tvw>‘7ﬁ t7 >||L?E 5 <t>_3/2 HhinHWOaJr?,/z+o,1 s
(3.2) (Vs tV2) 79t ) e S (7 lhinllype+sron .
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More generally, for all1 <p < oo, 5 2>0,
(3.3)
H(thvg)” (V?j :/ v hip (- — tv,v)dv)
R3

< <t>—j—3(1—%) HhmHWJgr+3+J‘+o,1 .

LE

Proof. Inequality (3.1) is clear. To see (3.2) note that

o o= k|
Vet M S [ 16780k 5 ( /. de) T —

5 <t>737€f ||hin||wg+3+,1 .

The proof of (3.3) follows similarly (using also interpolation). |

Next, we turn to estimates on the damped part of the electric field. By Lemmas
2.6 and 3.1, E(L% satisfies the estimates claimed in Theorem 1.

We turn next to obtaining estimates on Eg%.

LEMMA 3.2. There holds the estimates

o (2 1

(3.4) H<vx,tvw> E(L[),(t)’ 12 S o7 Minllgssson
o (2 1

(35) (V1927 BR 0 S gz Ihanllgessos

Proof. Consider first the low spatial frequencies |k| < 1. Compute using Lemma 2.7;
for any a > 0,

H<Vm,tVz>UP§,,OE(LQ})(t)HLw < /t H(Vm,thY’ Vol ™ Peyy Rrpr(t — 7) %, $(7, ~)Hm dr
z 0 °

o~

foon (K, Tk‘)‘ dkdr

5/; /RXCZ) k(= TR |k~ R (t — 7, k)| (e, k)

<[ (L (L) o= mm-ean) ar| g e

We split the integral

/Ot (/R [ x (:)) (k)5 (¢ — T)k>_3_“dk:) dr
- </0 +/;> (/R k% x <f0> (k)3 (¢ — T)k>3adk> dr

and change variables k' = 7k or ¥’ = (t — 7)k in each one to obtain

Note that the \k|2 in the numerator is crucial for obtaining this sharp rate. This
concludes the proof of (3.5) at low frequencies. At frequencies bounded away from
zero, i.e., the corresponding estimate on P, E(ng), the estimate is similar though more
straightforward and with less loss of regularity. The L? case (3.4) follows similarly
and is omitted for brevity. 0
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3.2. Dispersive estimates of the electric field. We now consider the “Klein—
Gordon part” of the electric field in Definition 2.1.
Consider first the following useful dispersive estimates.

LEMMA 3.3 (dispersive estimates for weakly damped poles). We have 1 <p < 2
and the following holds for t > 0 and f = f(z) € LP(R3):

(3.6) ‘

=P, il <G i,
- P

Remark 15. The linear propagator eP+(Y)! is not a unitary operator, and the
standard TT™* argument as in, e.g., [24, 36] do not apply. Hence, it is not as trivial
to obtain the homogeneous Strichartz estimates or the full range of expected inho-
mogeneous Strichartz estimates (although some inhomogeneous Strichartz estimates
follow immediately from (3.6) and the Young—O’Neil convolution inequality [30]).

Proof. Tt suffices to consider e?+(V)t; the proof for e?~(¥)t is analogous. The case
p = 2 is immediate. For the case p = 1, write

P+ (VP f = K (t) %o f,

with the integral kernel

. 1 ix-k+itQ(k)—A(k)t
K(t,ﬂ?) = (271_)3/2/]1&3 (& (k) —=A(k) Clyo(k)dk,

where a,,, is a Schwartz class function compactly supported in a ball of radius < 2y
corresponding to the Littlewood—Paley projection. Hence the p = 1 case follows from
the pointwise kernel estimate

(3.7) 1K@~ St2 (Yt 20),

The intermediate exponents p € (1,2) are then obtained by the Riesz—Thorin inter-
polation theorem.

Let us prove (3.7). Despite the complex phase, K is essentially a standard os-
cillatory integral, and we may easily adapt the standard arguments as in, e.g., [34,
Proposition 6, p. 344]. Let us first explain the argument assuming that Q(k) = |k|2
(the case Q?(k) = wp + 2C |k|* can be treated similarly, as discussed below). In this
case, we make the change of variables y = k + 57 and write (for some scale e chosen
below)

ei\z|2/4t2 il T
[ e (Y a, (5- £)a
(2m)3/2 /Rge e ) @o U™ g)
ez‘\x|2/4t2

+ e [ frx (D] (v )

=: Ks(t73;‘) + KNs(t,:L‘),

K(t,z) =

where x € C°(B(0,1)) with x(z) = 1 for |z] < 1/2, and where we have split K into a
“stationary” part and a “nonstationary” part. For the stationary part, Kg, we simply
bound the integrand and estimate the volume of integration:

(3.8) |Ks(t,2)] Suo €.
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For the nonstationary part, Kng, we integrate by parts using the nonvanishing of the
phase. In particular observe (noting that ||2 = z*z for x € C™) that

t[2iy — VA2 =2 = (24 — WA) . v ity A

Therefore, if we define the differential operator

—2iy — VA
Di=Vy, | ———=f ],
|2iy — V|

then by repeated integration by parts we have

ot | [ 0 (1 (2) (- £)) ]

We next show that the integrand is bounded by \y|_2N; for the proof in three dimen-
sions, we only need N = 1,2, though it holds for all N. The case N = 1 is easily
checked. Indeed,

—2iy — VA —2ie; — 0; VA _
Gl ooz ) = oy = O™,
|2iy — VA |2iy — VA

which is sufficient as the terms in which the derivative lands elsewhere are only better
(estimates on V™) are provided by Lemma 2.4). For N = 2 we analogously have

o (=29 =V ~2ie; 0,90 _ ([ =2ie, ~ 9N [ ~2ie; - 9,V
AN\ 2iy — VAR 12iy — VAP 2y — VA]? 126y — VA]?

( —2iy — VA ) ( De; VA (—2ie, — DV N) (2iy — V) - (—2ie; — @vx))

12iy — VA2 ) \ |20y — VAP 12iy — VAL

=O0(yI ™).

which is similarly sufficient (note the pattern that selects a particular dominant term,
whereas the more complicated error terms are smaller, hence the desired estimates
hold for all N). Therefore, provided we choose N > 2,

1 1 1
|[Kns| S tTV/ —5dy S tTV€372N~
e

Hence making the choice € ~ t~1/2 gives the result when combined with (3.8). The

case using the true Q(k) follows by Morse’s lemma due to (2.10) and the other esti-
mates in Lemma 2.4 (see [34, Proposition 6, p. 344] for more details). This completes
the main dispersive estimates (3.6). d

The estimates on Egg in Theorem 1 follow immediately from (3.6) and the de-

composition in Definition 2.1 upon observing that for f]R3 pindxr = 0 we have for all
1<p

Hva:(_Aa:)_lpguopinHLp SP,VO ||<‘r>pinHW3’l '

Next, we will prove the pointwise-in-time decay estimates on Eg?)G

Copyright [ by STAM. Unauthorized reproduction of this article is prohibited.



gooooooooonooooboonbdboubooooooUbo DDLU oo DooDbOon

LINEARIZED WAVE DAMPING IN VLASOV-POISSON 4403

LEMMA 3.4. There holds for all 2 < p < oo

(2)
HEKG L?

SO il -
Proof. Define T' as above:
Tt z) = / Bz — to,0)dv, Tt k) = PV (k, 0).
RS

By Minkowski’s inequality (and boundedness of the prefactor multipliers on LP as
they are Schwartz class functions),

t
|

On the one hand, by Bernstein’s inequality, for any p > 7’ > 2, it follows from (3.6)
that we have

2
|z

epi(Vw)(t*T)Psvo |Vz|71 Vi : THL" ar.

o0 7 08 ), 8 R 52 )

L
1 -1
STy [Pews 1917 (v2°1)

— I

Ly
On the the other hand, we similarly have

0 0. 02, € e 527

2’
Therefore, by Lemma 3.1, we have for r > 1

t
|B2] , < Whinllgarns 3 / min ({r)=3/273/2, |t — o2 8) () =80-D-1) g,
“ +.—

which integrates to imply the stated result. |
4. Decomposition and scattering for the distribution function. In this
section we prove Theorem 2. Denote the solution in the free transport moving frame
as
gt 2,v) = btz + vt ),
which satisfies 9,9 = —E(t,x + tv) - V, f%(v). Therefore we have on the Fourier side
(HOte h(ta k, 77) = g(t’ k,n+ kt))

t —
3t k) = (k) — / B(r.k) -, f0(n — kr)dr.
0
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Consider the contribution ES)G

/E v fo(n kr)dr
= wp—— k; 5 ZZ/ epi(k)TAi <k®j : Vf]@(lﬂ,ﬂ)) -ﬁ(n— kr)dr
| | 7=0+,
(k)t k) ®i . \7if < _f0
. ZZ P (k j ;v;hm(/c,O)) Vo fO(n — kt)
IkI o S +(k)
kY ;oo _
—w0|k|222 0 ) (k9 3 (1,0)) - T ()
j=0+,—
. 4 t +
ik AT (k) S~ —
— Wy (k)72 k%7 .V hin(k,0)) -V, Vo fO(n — k7)k dr
0|k|2];0 0 pj:(k) ( n ( )) n f (77 )

=:grxG + 92 + g3,

with hx g, ha, and hz defined analogously. Note that since f;(\g(t k.n) = gt k,n+
kt),

et k,n) = Exc(t.k) - Vo fo(n),

where we define

B AR ik - Pi(k)tA;E(k) k@j.viﬁ\ k.0
wa(t k) i=w WZ e pi(k)(  Vhhin(k,0))

Arguing as for the E%G estimates in Theorem 1, hxg satisfies (1.9). Similarly, we

define

hep(k,n) = hin(k,n) + Ga(k,n) + Ga(t, k, )

4.1 t_— —
( ) 7‘/0 (EKG(2) -+ ELD) (T,k) . vao(n — kT)dT.

The term go is constant in time and in L? for all p > 2 by the assumptions on the
initial data. The term g3 on the physical side is written in the form

t
hs(t,x,v) = / V.Es(t, x4 1v) : (v @V, fo(v)) dr
0

for a suitable E3. By straightforward variations of the arguments used to estimate

P d 5 /
L;z,'u 0

< Ik ' -3(3-3)
NH inllw§+°=1 o <T> v/dr,

Egg above, we have for any 6 < p

/

Vng(T, x4+ Tv) (v ® vao(v))’

Vo Bs(r, )

dr
LP

@

and hence h3 converges in L, for all p > 6 as t — 0o. Due to the decay estimates in

Lemma 3.3, the term in (4.1) involving E( )  similarly converges in L% , for all p > 6.

Copyright [ by STAM. Unauthorized reproduction of this article is prohibited.



gooooooooonooooboonbdboubooooooUbo DDLU oo DooDbOon

LINEARIZED WAVE DAMPING IN VLASOV-POISSON 4405

Next we prove that hyp converges in L% , for p > 6. The easiest contribution is

from Ep. Recall the decomposition Epp = E(Ll[)) + E(L% from subsection 3.1. From

a straightforward variant of Lemma 3.1, we have for all 2 < p < oo
443
|ELp(®)) . S @~ ||hm||wg+011 ,

and hence, for p > 2,

t t
/ [ELp(r,z+70) - Vo fO(0)]| , dr < / 1ELD ()l [V Ol p 7 S Mhinllyyaos
0 . 0

and so the corresponding contribution converges as t — oo.
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