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Abstract. In this paper we study the linearized Vlasov--Poisson equation for localized distur-
bances of an infinite, homogeneous Maxwellian background distribution in R3

x\times R3
v . In contrast to the

confined case Td
x\times Rd

v , or the unconfined case Rd
x\times Rd

v with screening, the dynamics of the disturbance
are not scattering towards free transport as t \rightarrow \pm \infty : we show that the electric field decomposes into
a very weakly damped Klein--Gordon-type evolution for long waves and a Landau-damped evolution.
The Klein--Gordon-type waves solve, to leading order, the compressible Euler--Poisson equations lin-
earized about a constant density state, despite the fact that our model is collisionless, i.e., there is
no trend to local or global thermalization of the distribution function in strong topologies. We prove
dispersive estimates on the Klein--Gordon part of the dynamics. The Landau damping part of the
electric field decays faster than free transport at low frequencies and damps as in the confined case
at high frequencies; in fact, it decays at the same rate as in the screened case. As such, neither
contribution to the electric field behaves as in the vacuum case.

Key words. Landau damping, Vlasov--Poisson, Klein--Gordon, dispersive, linearized, long-time
dynamics
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1. Introduction.

1.1. The problem at hand. One of the fundamental equations in the kinetic
theory of plasmas is the Vlasov--Poisson equations for an infinitely extended plasma
(see, e.g., [12, 7]),

(1.1)

\left\{ 
      
      

\partial tf + v \cdot \nabla xf + E(t, x) \cdot \nabla vf = 0,

E(t, x) =  - \nabla xW \ast x \rho (t, x),

\rho (t, x) =

\int 

R3

f(t, x, v)dv  - n0,

f(t = 0, x, v) = fin(x, v),

for the time-dependent probability density function f(t, x, v) \geq 0 of the electrons in
the phase space (x, v) \in R3 \times R3, where n0 is the number density of the constant ion
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background, and W is the kernel of the Coulomb interaction,1

W (x) =
q2

4\pi \epsilon 0me | x| 
,

with q the electron charge, me the electron mass, and \epsilon 0 the vacuum permittivity.
We will consider (1.1) linearized about the homogeneous Maxwellian background with
fixed temperature T ,

f0(v) :=
n0

(2\pi T )3/2
e - 

me| v| 2
2T .(1.2)

In the 1930s and 1940s, Vlasov [39, 38] suggested neglecting collisions and derived
the so-called Vlasov--Poisson equation for long-range interactions, independently from
Jeans's derivation [23] in stellar dynamics. Motivated by the mathematical under-
standing of the plasma oscillations previously theorized in particular by Langmuir,
he studied the linearized approximation of (1.1) (see (1.6) below) formally searching
for eigenmodes in the form of planar waves e - i\omega t+ikxF (v), given some velocity distri-
bution F , and computed various dispersion relations (see, for instance, equation (50)
in [39]). He asserted---not quite correctly but almost correctly, as we shall see and
clarify in this paper---that in the long-wave limit | k| \ll 1, where k is the Fourier
variable in space, one has the dispersion relation

\omega 2 = \omega 2
p +

3T

me
| k| 2 +\scrO 

\Bigl( 
| k| 4

\Bigr) 
as k \rightarrow 0, where \omega p :=

q2n0

\epsilon 0me
(1.3)

is the cold plasma frequency. The relation \omega 2 = \omega 2
p+

3T
me

| k| 2 is called the Bohm--Gross

dispersion relation2 and arises from the following compressible Euler--Poisson model
for the spatial density n(t, x) \geq 0 and macroscopic velocity u(t, x) \in R3:

\left\{ 
   
   

\partial tn+\nabla x \cdot (nu) = 0,

men [\partial tu+ (u \cdot \nabla x)u] = qnE(t, x) - 3T\nabla xn,

\epsilon 0\nabla x \cdot E(t, x) = qn;

(1.4)

when linearized around a constant density state n0 > 0, u0 = 0:

\left\{ 
   
   

\partial tn+ n0\nabla x \cdot u = 0,

men0\partial tu = qn0E(t, x) - 3T\nabla xn,

\epsilon 0\nabla x \cdot E(t, x) = qn.

(1.5)

This model is sometimes referred to as a warm plasma model in the physics literature;
see, e.g., [12, Chapter 16] for more details. Vlasov's prediction was shown to be
incomplete by Landau in 1946 [25], who showed that in fact the linearized electric
field decays to zero as t \rightarrow \infty , a phenomenon now known as Landau damping, and

1Note that we are slightly abusing notation, as E in (1.1) actually denotes the acceleration of
the electrons due to the electric field, not the electric field itself. We use this convention for the
remainder of the paper.

2Technically, the relation seems to have first appeared in Vlasov's earlier work [39] before ap-
pearing in [6]; however, it is likely that access to Vlasov's work was difficult at that time. See also,
e.g., page 260 of [12].
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in particular that nontrivial planar waves never satisfy the dynamics. The damping
arises due to mixing/filamentation in phase space, not unlike a scalar quantity being
stirred in a fluid (as first pointed out in [37]). Landau damping was later observed
in experiments [26, 27] and is considered one of the most important properties of
collisionless plasmas [32, 12, 35].

On T3\times R3, the linearized electric field decays rapidly, provided the initial data is
regular; specifically, its decay in time is comparable to the decay in the Fourier variable
associated with v of the initial data [28, 4]. Such rapid decay estimates do not hold
at low frequencies in the electric field on R3 \times R3 if one uses a model with Debye
shielding (this arises when studying the ion distribution function), i.e., where W is
the fundamental solution to the elliptic problem  - \Delta W + \alpha W = \delta for some constant
\alpha > 0 (see [5, 19] and the references therein). However, one nevertheless obtains a
rather rapid Landau damping rate of \| E(t)\| L\infty \lesssim \langle t\rangle  - 4 (in three dimensions), which is
the same rate as one would obtain from the free transport equation. Indeed, both the
shielded problem on R3\times R3 and (1.6) posed on T3\times R3 ``scatter"" to the free transport
dynamics in a very strong sense. However, such scattering and rapid decay estimates
on the linearized electric field are false in R3\times R3 for Vlasov--Poisson. Landau himself
predicted an extremely slow Landau damping of long waves approximately solving the
dispersion relation (1.3) (see also, e.g., [12, 35] for modern exposition in the physics
literature), something that we will make much more precise below. This lack of
significant Landau damping was proved rigorously by Glassey and Schaeffer [10, 11],
though a precise characterization of the dynamics was still lacking.

In this work, we make precise the linearized dynamics and prove that the linearized
electric field can be split into two contributions: one contribution at long spatial waves
k \sim 0 that is a Klein--Gordon-like propagation matching (1.3) to leading order with
very weak Landau damping with rate ``\scrO (| k| \infty ),"" and another contribution, which
is properly Landau damping and decays at a rate faster than kinetic free transport
for long waves k \sim 0, i.e., faster than the Vlasov--Poisson equation linearized around
f0 = 0, n0 = 0. In particular, our work shows that the hydrodynamic description
(linearized Euler--Poisson) in fact is the leading order description of the electric field
at long waves, despite the lack of collisional effects. As such, we remark that Vlasov
was essentially correct to leading order in his prediction of the long-wave dynamics of
(1.6). For long waves, we show that the distribution function decomposes (to leading
order) into two pieces: a term that factorizes as \~E(t, x) \cdot \nabla vf

0(v) (where f0 is the
Maxwellian background), where \~E solves a Klein--Gordon-type equation (including an
additional tiny damping), and a separate contribution that scatters to free transport in
Lp
x,v for p > 6. Hence, the hydrodynamic behavior arises from a large-scale collective

motion of the plasma that is insensitive to the filamentation in phase space normally
associated with Landau damping.

Understanding the relationship between Landau damping (or other kinetic effects)
and the observed large-scale hydrodynamic behavior in collisionless plasmas has been
an area of research in the physics literature for some time (see, e.g., [17, 16, 33, 20]
and the references therein). Our work provides a precise description of the hydro-
dynamic behavior and its leading order corrections due to Landau damping and other
kinetic effects, for the simple linearized problem; studies of more physical settings
(e.g., external and/or self-consistent magnetic fields, inclusion of ions, inhomogeneous
backgrounds, etc.) and/or the inclusion of nonlinear effects is an interesting direction
for further research.

Our work is only linear, but we remark that much progress has been made at
the nonlinear level in recent years in other settings. After the earlier work of [8]
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(see also [21]), the major breakthrough came in [28], when Landau damping for the
nonlinear problem was shown on T3 \times R3 for all sufficiently small and smooth initial
perturbation of Landau-stable stationary solutions, the actual smoothness required
being Gevrey or analytic. We also refer the reader to [4, 13] for simplified proofs
and [3] for a study of the problem with collisions. The work [2] shows that the results
therein do not hold in finite regularity (see also [14]). Our previous work [5] studied
the nonlinear problem with shielding on R3 \times R3; see also [19, 29] for an alternative
approach and some refinements. Other works, old and new, have studied the nonlinear
Cauchy problem near the vacuum state, that is, without the presence of a nonzero
spatially homogeneous background equilibrium f0; see, e.g., [1, 22]. As can be seen
from our results below, the dynamics are significantly different in this case.

1.2. Main results. We linearize the Vlasov--Poisson equation (1.1) on R3
x \times R3

v

around an infinitely extended, homogeneous background f0(v) \geq 0. This models a
spatially localized disturbance of an infinite plasma in which collisions can be ne-
glected, a fundamental problem in the kinetic theory of plasmas [12, 7, 35]. For a
localized disturbance h := f0  - f , the linearized Vlasov--Poisson equations for the
electron distribution function are given by

(1.6)

\left\{ 
      
      

\partial th+ v \cdot \nabla xh+ E(t, x) \cdot \nabla vf
0 = 0,

E(t, x) =  - \nabla xW \ast x \rho (t, x),

\rho (t, x) =

\int 

R3

h(t, x, v)dv,

h(t = 0, x, v) = hin(x, v),

where we take the charge neutrality assumption
\int 
R3\times R3 hin(x, v)dxdv = 0. Define the

standard plasma constants (number density, plasma frequency, and temperature),

n0 := \widehat f0(0), \omega 2
p :=

q2n0

\epsilon 0me
, T :=

me

3n0

\int 

R3

| v| 2 f0(v)dv,

and as stated above, we assume the Maxwellian distribution background (1.2).
Our main results are asymptotic decomposition of the electric field and the dis-

tribution function; we give slightly simplified statements for readability and refer the
reader to the main body of the paper for more detailed expansions. See subsection 1.3
for the notation \langle x\rangle , \langle x, y\rangle , \langle \nabla \rangle , and W k+0,p

w .
We remark that another paper proving similar results with somewhat different

methods [18] has recently been completed as well. These works have been completed
totally independently.

Theorem 1. Suppose
\int 
R3\times R3 hindxdv = 0, and let h and E solve (1.6). There

are \delta 0 > 0 and a decomposition of the electric field E = EKG +ELD between ``Klein--
Gordon"" and ``Landau damped"" parts, with EKG supported in spatial frequencies | k| <
\nu 0, and the following hold:

\bullet ELD satisfies the following Landau damping--type decay estimates for any
\sigma \in N:

\| \langle \nabla x, t\nabla x\rangle \sigma ELD(t)\| L2
x
\lesssim 

1

\langle t\rangle 5/2 \| hin\| 
W

\sigma +3
2
+0,1

0

,

\| \langle \nabla x, t\nabla x\rangle \sigma ELD(t)\| L\infty 
x

\lesssim 
1

\langle t\rangle 4 \| hin\| W\sigma +3+0,1
0

.(1.7)
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\bullet EKG further decomposes as EKG = E
(1)
KG + E

(2)
KG with the pointwise-in-time

estimates:
\bigm\| \bigm\| \bigm\| E(1)

KG(t)
\bigm\| \bigm\| \bigm\| 
L2

x

\lesssim \| Ein\| L2 + \| vhin\| L2
x,v

+ \| hin\| W 0,1
4

,

\bigm\| \bigm\| \bigm\| E(2)
KG(t)

\bigm\| \bigm\| \bigm\| 
L2

x

\lesssim \| hin\| W 0,1
5

,

\bigm\| \bigm\| \bigm\| E(2)
KG(t)

\bigm\| \bigm\| \bigm\| 
L\infty 

x

\lesssim \langle t\rangle  - 3/2 \| hin\| W 3/2,1
5

,

\bigm\| \bigm\| \bigm\| E(1)
KG(t)

\bigm\| \bigm\| \bigm\| 
Lp

x

\lesssim p \langle t\rangle  - 3( 1
2 - 1

p ) \| \langle x\rangle hin\| W 0,1
4

(\forall 2 \leq p < \infty ),
\bigm\| \bigm\| \bigm\| \nabla xE

(1)
KG(t)

\bigm\| \bigm\| \bigm\| 
L\infty 

x

\lesssim \langle t\rangle  - 3/2 \| hin\| W 0,1
4

.

\bullet E
(1)
KG solves a weakly damped Klein--Gordon-type equation in the following

sense: there are bounded, smooth functions \lambda ,\Omega , k \in B(0, \delta 0) such that (for
errors independent of t)

Ê
(1)
KG(t, k)=

\widehat Ein(k)e
 - \lambda (k)t cos (\Omega (k)t)+e - \lambda (k)t ik

| k| 2
\Bigl( 
k \cdot \nabla \eta 

\widehat hin(k, 0)
\Bigr) sin (\Omega (k)t)

\Omega (k)

+\scrO (| k| 2)e - \lambda (k)t+i\Omega (k)t +\scrO (| k| 2)e - \lambda (k)t - i\Omega (k)t,(1.8)

where \lambda (k) > 0, \lambda (k) = \scrO (| k| \infty ) , \Omega 2(k) = \omega 2
p +

3T

me
| k| 2 +\scrO 

\Bigl( 
| k| 4

\Bigr) 

as k \rightarrow 0.

Furthermore, there holds, for all 2 < p \leq \infty ,
\bigm\| \bigm\| \bigm\| ( - \Delta x)

 - 1E
(2)
KG(t)

\bigm\| \bigm\| \bigm\| 
Lp

\lesssim \langle t\rangle  - 3( 1
2 - 1

p ) \| hin\| W 3/2,1
5

,

which further emphasizes that for small k, E
(1)
KG is much larger than E

(2)
KG.

Remark 1. The E
(2)
KG electric field is essentially a Klein--Gordon-type evolution

subjected to a Landau damping external forcing, whereas E
(1)
KG is to leading order the

solution to a Klein--Gordon-type initial value problem with initial conditions deter-
mined by the initial density and momentum, as can be seen from (1.8) (and higher
order expansions are similar but depend on higher moments of hin). Hence, the mo-
tivations for separating these fields as distinct contributions. See section 2 for more

details on the decomposition. Note also that E
(2)
KG is significantly smaller when k \rightarrow 0

than E
(1)
KG, and thus the asymptotic expansion of EKG as k \rightarrow 0 is given by the

corresponding leading order terms in E
(1)
KG.

Remark 2. For frequencies bounded away from zero, i.e., for any \delta > 0, P\geq \delta E,
Landau damps at a polynomial rate \langle t\rangle  - \sigma , provided the initial data is W \sigma ,1; hence
the extremely slow Landau damping of EKG manifests only at k = 0. As expected,
for frequencies bounded from zero, the electric field (both ELD and EKG) damps
exponentially fast if the initial data is analytic (and analogously e - \langle kt\rangle s for Gevrey
initial data).

Remark 3. As the electric field is not shielded, it is too restrictive to assume
that Ein \in L1, regardless of how well localized the initial hin is. If xhin \in L1 and\int 
R3

X\times R3
v
hindxdv = 0, then Ein(x) \approx | x|  - 3

as x \rightarrow \infty (hence, Ein \in Lp for p > 1 but
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not p = 1), but one cannot obtain faster decay at infinity unless one has higher zero-
moment conditions, such as

\int 
R3

x\times R3
v
x\alpha hindxdv = 0, and the latter are not propagated

by the semigroup.

Remark 4. In the case of the kinetic free transport, the electric field decays only as
\| EFT (t)\| L\infty 

x
\lesssim \langle t\rangle  - 2, which is two full powers of t slower than (1.7). For frequencies

bounded away from zero, both the free transport electric field EFT and our ELD

are Landau damped exponentially fast for analytic data (and polynomial for Sobolev
data); the difference in decay rates comes from the contribution of long waves.

Remark 5. There is a clear distinction between Landau damping and dispersive
decay above: for the Landau damping contributions, each derivative buys one power
of time (a structure that can be guessed from free transport), whereas for the Klein--
Gordon-like contributions, there is no such behavior.

Remark 6. We have not endeavored to get the sharpest dependence on the initial
data that could be possible. This could be important for nonlinear extensions.

We deduce a similar decomposition at the level of the distribution function.

Theorem 2. The solution to (1.6) decomposes as h = hKG + hLD with hKG =
\~EKG(t, x) \cdot \nabla vf

0(v) for some effective electric field \~EKG, with the following estimates:
\bullet for all m \geq 0, all r \in [1,\infty ], and all p \in [2,\infty ) ( \~EKG is essentially a phase-

shifted version of E
(1)
KG and satisfies the same estimates),

\| \langle v\rangle mhKG(t)\| L2
xL

r
v
\lesssim m \| hin\| W 0,1

4
,(1.9)

\| \langle v\rangle mhKG(t)\| Lp
xLr

v
\lesssim p,m \langle t\rangle  - 3( 1

2 - 1
p ) \| \langle x\rangle hin\| W 0,1

4
,

\| \langle v\rangle m\nabla xhKG(t)\| L\infty 
x Lr

v
\lesssim m \langle t\rangle  - 3/2 \| hin\| W 0,1

4
;

\bullet hLD scatters to free transport in all Lp
x,v, p > 6 (provided one has enough

initial regularity). In particular, if \langle \nabla \rangle \sigma \langle v\rangle mhin is integrable for \sigma ,m \in N
large enough, then for all p > 6, there exists an h\infty \in Lp

x,v such that

\bigm\| \bigm\| \bigm\| \langle v\rangle m
\Bigl[ 
hLD(t, x - vt, v) - h\infty (x, v)

\Bigr] \bigm\| \bigm\| \bigm\| 
Lp

x,v

t\rightarrow +\infty  -  -  -  - \rightarrow 0.

Remark 7. Using the Strichartz estimates [9] for the transport equation, one ob-
tains

\| hLD\| Lq
tL

p
xLr

v
\lesssim \| hin\| W\sigma ,1

m

for all (p, q, r, a) satisfying

1

r
 - 1

n
<

1

p
\leq 1

r
\leq 1, 1 \leq 1

p
+

1

r
,

2

q
= n

\biggl( 
1

r
 - 1

p

\biggr) 
,

1

a
=

1

2

\biggl( 
1

r
+

1

p

\biggr) 
, a > 6.

Theorem 2 shows that the leading order term in the asymptotics of the distri-
bution h factorizes between a function of (t, x) and a fixed function of v, which is
reminiscent of a hydrodynamical limit even though the equations are collisionless.
One can actually push this intuition further: a long-wave rescaling of the electric
field converges weakly (in negative Sobolev spaces) to the electric field, solving the
linearized Euler--Poisson system (1.5). See subsection 2.5 for a proof.
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Theorem 3. Consider an initial data hin(x, v) = \epsilon 3\scrH 0(\epsilon x, v) such that \scrH 0 has
zero average and \scrH 0 \in W 5+0,1

5 , and denote

E0 =
q2n0

\epsilon 0me
\nabla x( - \Delta x)

 - 1

\int 

R3

\scrH 0(\cdot , v) dv.

Let \scrE be the unique solution in the natural energy space \scrE \in L\infty 
t H1

x and \partial t\scrE \in 
L\infty 
t L2

x to the following Klein--Gordon equation:

\left\{ 
       
       

\partial 2
t \scrE +

\biggl( 
\omega 2
p  - 

3T

me
\Delta 

\biggr) 
\scrE = 0,

\scrE (0, x) = E0(x),

\partial t\scrE (0, x) =  - n0\nabla x \cdot 
\biggl( \int 

vhindv

\biggr) 
.

(1.10)

Then, for all s \in (5/2, 7/2), 0 < \epsilon \ll 1, for all 0 < t < \epsilon  - N , there holds

\bigm\| \bigm\| \bigm\| E
\Bigl( 
t,
\cdot 
\epsilon 

\Bigr) 
 - \scrE 

\Bigl( 
t,
\cdot 
\epsilon 

\Bigr) \bigm\| \bigm\| \bigm\| 
H - s

\lesssim \epsilon 2
\Bigl( 
\epsilon 2 + \epsilon s - 

3
2 - 0\langle t\rangle 

\Bigr) 
\| \scrH 0\| W 2,1

5
.(1.11)

Moreover, given such initial data with appropriate scaling, both the electric fields in the
linearized Vlasov--Poisson and the linearized Euler--Poisson systems are asymptotic to
the Bohm--Gross dispersion relation at large scale: E(t, x) = E+ + E - and \scrE (t, x) =
\scrE + + \scrE  - with the following weak L2

x limit on t \in [ - T, T ] for any fixed finite T :

1

\epsilon 2
e\mp i\omega p

t
\epsilon 2 E\pm 

\biggl( 
t

\epsilon 2
,
x

\epsilon 

\biggr) 
weak -  -  - \rightarrow 
L2

x

1

2
e\pm 

3T
me

i\Delta tE0,

1

\epsilon 2
e\mp i\omega p

t
\epsilon 2 \scrE \pm 

\biggl( 
t

\epsilon 2
,
x

\epsilon 

\biggr) 
weak -  -  - \rightarrow 
L2

x

1

2
e\pm 

3T
me

i\Delta t\scrE 0.

Remark 8. The Klein--Gordon equation arises as the linearization of many non-
linear PDEs around homogeneous equilibria. The specific link with the linearized
Euler--Poisson is seen by keeping track of the physical parameters in (1.5) and seeing
that the results of Theorems 1--3 show that (1.6) reduces at low frequencies to leading
order specifically to (1.5), and not to some other Klein--Gordon equation (see also
(1.10) and (1.11) of Theorem 3). However, a more complete linking between (1.4)
and (1.1) would have to come from a weakly nonlinear study.

1.3. Notation. Denote \langle x\rangle = (1 + | x| 2)1/2 and by \langle \nabla \rangle the Fourier multiplier
defined by

\langle \nabla \rangle f(\xi ) = \langle \xi \rangle \widehat f(\xi );

we define other Fourier multipliers in an analogous way. We define P\leq N to be the
Littlewood--Paley low-pass filter in x; in particular, we define \chi \in C\infty 

c (B(0, 2)) with
\chi (x) = 1 for | x| \leq 1, and define

P̂\leq Nf(k) = \chi 

\biggl( 
k

N

\biggr) 
\widehat f(k).

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright � by SIAM. Unauthorized reproduction of this article is prohibited. 

4386 J. BEDROSSIAN, N. MASMOUDI, AND C. MOUHOT

Denote the weighted Sobolev spaces (note that the weight index refers to the variable
v) as follows:

\| f\| Lp
x,v

:=

\biggl( \int 

R3\times R3

| f(x, v)| p dxdv
\biggr) 1/p

, \| \rho \| Lp
x
:=

\biggl( \int 

R3

| \rho (x)| p dx
\biggr) 1/p

,

\| f\| W\sigma ,p
m

:= \| \langle v\rangle m\langle \nabla x,v\rangle \sigma f\| Lp .

For inequalities involving norms W \sigma +0,p
m we use the notation +0 if we mean that the

estimate holds for \sigma + \delta with \delta \in (0, 1) with a constant that depends on \delta . For
p \in [1,\infty ] we denote p\prime = p

p - 1 as the H\"older conjugate. Let f : [0,\infty ) \rightarrow C satisfy

e - \mu tf(t) \in L1 for some \mu \in R. Then for all complex numbers \Re z \geq \mu , we can define
the Fourier--Laplace transform via the (absolutely convergent) integral

\^f(z) :=
1

2\pi 

\int \infty 

0

e - ztf(t)dt.(1.12)

This transform is inverted by integrating the \~f along a so-called Bromwich contour
via the inverse Fourier--Laplace transform: let \gamma > \mu and define

\v f(t) :=

\int \gamma +i\infty 

\gamma  - i\infty 
eztf(z)dz.

2. Decomposition of the electric field.

2.1. Volterra equation. The most important property of the linearized Vlasov
equations is that one can reduce the problem to a Volterra equation for the density
separately for each spatial frequency. We now recall how this is done. Writing a
Duhamel representation along free transport gives

h(t, x, v) = hin(x - vt, v) +

\int t

0

(\nabla xW \ast x \rho )(t, x - v(t - s)) \cdot \nabla vf
0(v)ds.

Taking the Fourier transform in x and integrating in v gets (with w0 := \omega 2
pn

 - 1
0 )

\^\rho (t, k) = \widehat hin(k, kt) - w0

\int t

0

(t - \tau )\widehat f0(k(t - \tau ))\^\rho (\tau , k)d\tau .(2.1)

Taking the Fourier--Laplace transform (1.12) in time for \Re z sufficiently large gives

\~\rho (z, k) = H(z, k) + \scrL (z, k)\~\rho (z, k),(2.2)

where H(z, k) is the Fourier--Laplace transform of t \mapsto \rightarrow \widehat hin(k, kt) and the dispersion
function is

\scrL (z, k) :=  - w0

\int +\infty 

0

t\widehat f0(kt)e - ztdt =  - w0

| k| 2
\int +\infty 

0

e - 
z
| k| ss\widehat f0

\Bigl( 
\^ks

\Bigr) 
ds,(2.3)

with the standard notation \^k = k/| k| . This change of variable allows for the function

s \mapsto \rightarrow s\widehat f0(\^ks) to have regularity bounds independently of the size of k. Our assump-
tion (1.2) implies that z \mapsto \rightarrow \scrL (z, k) is an entire function for all k \not = 0. Moreover, we
see that away from z = 0 or k = 0, \scrL (z, k) is also a smooth function of k. We will
see that analyzing the behavior near (z, k) = (z, 0) and (z, k) = (0, 0) is an important
and subtle aspect of our analysis (see Lemma 2.3 below).
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2.2. Asymptotic expansions and lower bounds on the dispersion func-
tion. Solving (2.2) for \rho works, formally at least, except where \scrL (z, k) gets close to
one. In the case of not-so-small spatial frequencies k, the treatment is similar to that
of the periodic domain x \in T3, and so we merely sketch the argument here; see [28, 4]
for more details.

Lemma 2.1 (resolvent estimates for nonsmall frequencies). There exists a \lambda > 0
such that for any \nu 0 > 0, \exists \kappa > 0 (depending on \nu 0) such that

\forall | k| > \nu 0, inf
\Re z> - \lambda | k| 

| 1 - \scrL (z, k)| > \kappa .(2.4)

Furthermore, the following estimate holds uniformly on the critical vertical line of this
region:

\forall | k| > \nu 0, \omega \in R, | \scrL ( - \lambda | k| + i\omega , k)| \lesssim \lambda 
1

1 + | k| 2 + \omega 2
.(2.5)

Proof. The estimate (2.4) is proved in, e.g., [28, 4]. To see (2.5), we use integration
by parts and the analyticity of f0 to get

| \scrL ( - \lambda | k| + i\omega , k)| = w0

| k| 2
\bigm| \bigm| \bigm| \bigm| 
\int \infty 

0

e\lambda s - i \omega 
| k| ss\widehat f0

\Bigl( 
\^ks

\Bigr) 
ds

\bigm| \bigm| \bigm| \bigm| 

=
w0

| k| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\int \infty 

0

1
\bigl( 
\lambda  - i \omega 

| k| 
\bigr) 2 \partial 2

s

\Bigl( 
e\lambda s - i \omega 

| k| s
\Bigr) 
s\widehat f0

\Bigl( 
\^ks

\Bigr) 
ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\leq w0

(\lambda 2| k| 2 + \omega 2)

\biggl[ 
| n0| +

\int \infty 

0

\Bigl( 
2
\bigm| \bigm| \bigm| \partial s\widehat f0

\Bigl( 
\^ks

\Bigr) \bigm| \bigm| \bigm| + s
\bigm| \bigm| \bigm| \partial 2

s
\widehat f0

\Bigl( 
\^ks

\Bigr) \bigm| \bigm| \bigm| 
\Bigr) 
ds

\biggr] 

\lesssim \lambda 
1

1 + | k| 2 + \omega 2
,

which completes the proof.

Next we turn to the low frequency estimates, which are more challenging, and
contain the long-wave dispersive structure. For \delta , \delta \prime > 0, define the following region
in the complex plane (see Figure 1 for a diagram):

\Lambda \delta ,\delta \prime :=
\Bigl\{ 
z = \lambda + i\omega \in C : \lambda >  - min

\Bigl[ 
(1 - \delta ) | \omega | , \delta \prime | k| 

\Bigr] \Bigr\} 
.

We will next show that \scrL (z, k) stays uniformly away from one in the region
\Lambda \delta ,\delta \prime \setminus \{ | z \pm i\omega p| < \epsilon \} , where \omega p is the cold plasma frequency. The proof relies on
two representations: (1) an expansion obtained by the stationary phase method (i.e.,
successive integrations by parts in time) meaningful for large values of z

| k| , and (2)

an approximation argument using the explicit formula obtained from the Plemelj
formula at the imaginary line \Re z = 0 that provides estimates near this line. The
first representation is given by the following lemma. This expansion is ultimately the
source of the Bohm--Gross dispersion relation (1.3).

Lemma 2.2 (asymptotic expansion of \scrL ). For any \delta \in (0, 1) and any \delta \prime > 0 there
holds

\forall z \in \Lambda \delta ,\delta \prime , \scrL (z, k) =  - \omega 2
p

z2

\Biggl[ 
1 +

3T | k| 2
mez2

+\scrO 
\Biggl( 
| k| 4

| z| 4

\Biggr) \Biggr] 
, as

| z| 
| k| \rightarrow \infty .(2.6)
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Λδ,δ′

ℜz = −δ′|k|

ℜz = −(1− δ)|ℑz|

ℜz = −(1− δ)|ℑz|

Fig. 1. The region \Lambda \delta ,\delta \prime .

Note that this expansion only contains information for frequencies | k| \ll | z| . The
expansion (2.6) gives the natural continuous extension of \scrL (z, k) at (z, 0) for z \in 
C \setminus \{ 0\} :

\scrL (z, 0) :=  - \omega 2
p

z2
.

We will see below that this extension makes \scrL (z, k) smooth in k and analytic in z
away from (z, k) = (0, 0).

Remark 9. Notice that this expansion holds everywhere in \Lambda \delta ,\delta \prime , and in particular
only requires \Re z \geq  - \delta \prime | k| near z = 0. This observation is important for our analysis
of the behavior near (z, k) = (\pm i\omega p, 0), which is well separated from the singularities.

Proof. Since s \mapsto \rightarrow s \^f0(\^ks) is odd, observe that \partial j
s(s

\widehat f0(\^ks))| s=0 = 0 for all even j.
Therefore, integrating by parts repeatedly in s in (2.3) gives

\scrL (z, k) =  - w0

z2
\widehat f0(0) - w0

z2

\int \infty 

0

e - 
z
| k| s\partial 2

s

\Bigl( 
s\widehat f0

\Bigl( 
\^ks

\Bigr) \Bigr) 
ds

=  - w0

z2
\widehat f0(0) - 3w0 | k| 2

z4

\Bigl[ 
\^k \otimes \^k : \nabla 2\widehat f0(0)

\Bigr] 
 - w0 | k| 2

z4

\int \infty 

0

e - 
z
| k| s\partial 4

s

\Bigl( 
s\widehat f0

\Bigl( 
\^ks

\Bigr) \Bigr) 
ds

=:  - w0

z2
\widehat f0(0) - 3w0 | k| 2

z4

\Bigl[ 
\^k \otimes \^k : \nabla 2\widehat f0(0)

\Bigr] 
 - w0 | k| 2

z4
\zeta (z, k).

Since w0
\widehat f0(0) = w0n0 = \omega 2

p and 3n0T := me
\^k \otimes \^k : \nabla 2\widehat f0(0) gives the leading order

terms in (2.6). Note that we have

\zeta (z, k) :=

\int \infty 

0

e - 
z
| k| s\partial 4

s

\Bigl( 
s\widehat f0

\Bigl( 
\^ks

\Bigr) \Bigr) 
ds.

It remains to show that for z \in \Lambda \delta ,\delta \prime there holds

| \zeta (z, k)| \lesssim | k| 2

| z| 2
.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright � by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEARIZED WAVE DAMPING IN VLASOV--POISSON 4389

First consider the region \Re z \geq  - \delta \prime | k| : integrating by parts two more times, we obtain

\forall \Re z \geq  - \delta \prime | k| , | \zeta (z, k)| \lesssim | k| 2

| z| 2
\biggl( 
1 +

\int \infty 

0

e\delta 
\prime s
\bigm| \bigm| \bigm| \partial 6

s

\Bigl( 
s\widehat f0

\Bigl( 
\^ks

\Bigr) \Bigr) \bigm| \bigm| \bigm| ds
\biggr) 

\lesssim \delta \prime 
| k| 2

| z| 2
,

where the last line follows by the analyticity of f0.
Turn next to the region \Re z <  - \delta \prime | k| with \Re z >  - (1  - \delta )| \Im z| . Observe then

arg z2 \in [\pi 2 + \beta , 3\pi 
2  - \beta ] for a small \beta > 0 depending on \delta . Write

\zeta (z, k) =

\int \infty 

 - \infty 
e - 

z
| k| s\partial 4

s

\Bigl( 
s\widehat f0(\^ks)

\Bigr) 
ds - 

\int 0

 - \infty 
e - 

z
| k| s\partial 4

s

\Bigl( 
s\widehat f0(\^ks)

\Bigr) 
ds =: \zeta 1(z, k) + \zeta 2(z, k).

On the one hand, \zeta 2 is bounded as in the region \Re z \geq  - \delta \prime | k| due to the now ad-
vantageous sign of the exponent. On the other hand, \zeta 1 is a true Fourier--Laplace
transform, and due to (1.2),

\zeta 1(z, k) =

\int \infty 

 - \infty 
e - 

z
| k| s\partial 4

s

\Bigl( 
s\widehat f0(\^ks)

\Bigr) 
ds =

z4

| k| 4
\int \infty 

 - \infty 
e - 

z
| k| s\widehat f0(\^ks)ds

=
n0

m
3/2
e

z4

| k| 4
\int \infty 

 - \infty 
e - 

z
| k| s - s2 T

2me ds =
n0

m
3/2
e

z4

| k| 4 e
mez2

2T | k| 2 .

Due to arg z2 \in [\pi 2 + \beta , 3\pi 
2  - \beta ], it holds that \Re z2 \lesssim \delta  - | \Im z| 2 \lesssim \delta  - | z| 2, and this term

vanishes (to infinite order) in terms of | z| 
| k| \rightarrow \infty . This completes the proof.

Lemma 2.2 suffices to estimate the resolvent in much of the areas of interest. The
next lemma estimates the resolvent for low frequencies k in the half-plane \Re z \geq  - \delta \prime | k| 
and away from the cold plasma frequencies \pm i\omega p. Given \epsilon > 0, define the following
region (see Figure 2 for a diagram):

H\epsilon ,\delta \prime := \{ z = \lambda + i\omega \in C : \lambda >  - \delta \prime | k| and | z \pm i\omega p| \geq \epsilon )\} .

Lemma 2.3 (low frequency resolvent estimates). Given \varepsilon , \delta \prime > 0, there are \nu 0, \kappa >
0 such that

\forall | k| < \nu 0, \forall z \in H\epsilon ,\delta \prime , | 1 - \scrL (z, k)| \geq \kappa .

Remark 10. One of the central difficulties of this lemma is dealing with the region
near (z, k) = (0, 0), which is explicitly excluded in Lemma 2.2.

Proof. Let R > 0 be fixed large depending on f0 but independent of k.

Case 1: | z| > R | k| . In this region the estimate follows from (2.6) taking R > 0
sufficiently large.

Case 2: | z| \leq R | k| . In this region the asymptotic expansion (2.6) is no longer
useful and we use the Plemelj formula instead. Writing z = \lambda + i\omega , it is classical that
for \lambda = 0, one has (see, e.g., [31, 28] for explanations)

\scrL (i\omega , k) = w0

| k| 2
\int 

R

(f0
k )

\prime (r)
r  - \omega 

| k| 
dr + i

w0\pi 

| k| 2 (f
0
k )

\prime 
\biggl( 

\omega 

| k| 

\biggr) 
,

where, for any k \not = 0, the partial hyperplane average is defined as

\forall r \in R, f0
k (r) :=

\int 

k
| k| r+k\bot 

f0(v\ast )dv\ast .
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Hǫ,δ′

ℜz = −δ′|k|

|z − iωp| < ǫ

|z + iωp| < ǫ

Fig. 2. The region H\epsilon ,\delta \prime . The bold line denotes the line \Re z =  - \delta \prime | k| , while the real and
imaginary axes are denoted by thin black lines with arrows.

Moreover, observe that for any z \in C such that | z| \leq R| k| and \Re z \in ( - \delta \prime | k| , 0],

| \partial z\scrL (z, k)| \lesssim 
w0

| k| 3
\int \infty 

0

se\delta 
\prime s
\bigm| \bigm| \bigm| \widehat f0

\Bigl( 
\^ks

\Bigr) \bigm| \bigm| \bigm| ds \lesssim \delta \prime 
1

| k| 3
,(2.7)

where we have used \delta \prime > 0 and the Gaussian decay of \widehat f0.

Subcase 2.1: | z| \leq R| k| and c| k| \leq | \omega | \leq R| k| . Given any c > 0, we deduce from
decay, smoothness, radial symmetry, and monotonicity of f0 that

inf
c<

| \omega | 
| k| <R

w0\pi 

| k| 2
\bigm| \bigm| \bigm| \bigm| (f0

k )
\prime 
\biggl( 

\omega 

| k| 

\biggr) \bigm| \bigm| \bigm| \bigm| \gtrsim c,R
1

| k| 2 ,

and therefore, using (2.7), | \Im \scrL (z, k)| \gtrsim 1 holds uniformly for all \Re z \in ( - \delta \prime | k| , 0).
Subcase 2.2: | z| \leq R| k| and | \omega | < c| k| . Observe that

(f0
k)

\prime (r)
r is integrable since

(f0
k )

\prime (0) = 0 and f0 is smooth, and if we denote

\int 

R

(f0
k )

\prime (r)
r

dr = c0 \not = 0,

we deduce that if c \leq | c0| 
2 is small enough, then

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 

R

(f0
k )

\prime (r)
r  - \omega 

| k| 
dr  - c0

\bigm| \bigm| \bigm| \bigm| \bigm| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\omega 

| k| 

\int 

R

(f0
k )

\prime (r)

r
\Bigl( 
r  - \omega 

| k| 

\Bigr) dr

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\lesssim 

| \omega | 
| k| \leq 

| c0| 
2

,

and thus

| 1 - \scrL (i\omega , k)| \gtrsim 1

| k| 2
.
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Using again (2.7), for \delta \prime small enough we deduce that for \Re z \in ( - \delta \prime | k| , 0],

| 1 - \scrL (z, k)| \gtrsim 1.

These different cases above together prove that 1/| 1  - \scrL | is bounded from above
on the strip \Re z \in ( - \delta \prime | k| , 0] and outside B(0, R| k| )\cap \{ \Re z > 0\} , and since there are no
poles within the remaining region B(0, R| k| )\cap \{ \Re z > 0\} , the function is holomorphic
in this region and the upper bound is also valid there by the maximum principle,
which completes the proof.

2.3. Construction of the branches of poles. From Lemma 2.2, we have
a pole at | k| = 0 at the cold plasma frequency: \scrL (\pm i\omega p, 0) = 1. It follows from
Rouch\'e's theorem that if | k| is small enough, exactly two poles persist in respective
neighborhoods of \pm i\omega p: Given \epsilon > 0, the two functions F (z) := 1  - \scrL (z, 0) and
G(z) := \scrL (z, k)  - \scrL (z, 0) are holomorphic on the set | z \mp i\omega p| = \epsilon , and Lemma 2.2

implies | 1 - \scrL (z, 0)| \gtrsim \epsilon and | \scrL (z, 0) - \scrL (z, k)| \lesssim | k| 2 on | z \mp i\omega p| = \epsilon . Therefore,
F (z) = 1  - \scrL (z, 0) and F (z)  - G(z) = 1  - \scrL (z, k) have the same number of poles in
| z \mp i\omega p| < \epsilon , provided that | k| is sufficiently small relative to \epsilon .

iωp

−iωp

p+(k) = i
(
ωp +

3T
meωp

|k|4 +O (|k|2)
)
+ Error(k)

p−(k) = −i
(
ωp +

3T
meωp

|k|2 +O (|k|4)
)
+ Error(k)

Error(k) = O (|k|∞) < 0

Fig. 3. The branches of poles k \mapsto \rightarrow p\pm (k).

However, knowing just the approximate location of the poles is not enough to
deduce dispersive estimates. We next use the implicit function theorem to construct
the branches of solutions p\pm (k) (see Figure 3 for a diagram of the branches).

Lemma 2.4. There are \epsilon , \nu 0 > 0 such that for all | k| < \nu 0, there are unique
p\pm (k) \in C solutions to \scrL (p\pm (k), k) = 1 in \{ | z\mp i\omega p| < \epsilon \} and k \mapsto \rightarrow p\pm (k) =:  - \lambda (k)\pm 
i\Omega (k) are smooth (but not analytic) and satisfy \lambda (k) > 0 and p\pm (k) \sim k\rightarrow 0 \pm i\omega p with
the following expansions as k \rightarrow 0:

\Omega (k)2 = \omega 2
p +

3T

me
| k| 2 +\scrO 

\Bigl( 
| k| 4

\Bigr) 
,(2.8)

\nabla \Omega (k) = i
3T

me\omega p
k +\scrO 

\Bigl( 
| k| 3

\Bigr) 
,(2.9)

\nabla 2\Omega (k) = i
3T

me\omega p
Id +\scrO 

\Bigl( 
| k| 2

\Bigr) 
,(2.10)

\bigm| \bigm| \nabla j\lambda (k)
\bigm| \bigm| \lesssim j,N | k| N for any j,N \in N .(2.11)
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Remark 11. This expansion of \Im p\pm (k) = \pm \Omega (k) provides the rigorous justifica-
tion for the Bohm--Gross dispersion relation in kinetic theory. Regarding the real part
\Re p\pm (k) =  - \lambda (k), physicists assert that (see, e.g., [12, p. 419])

\lambda (k) \approx \surd 
\pi 
m

3/2
e \omega 4

p

| k| 3 T 3/2
exp

\Biggl( 
 - me\omega 

2
p

4 | k| 2 T

\Biggr) 
;

however, at this time we lack a mathematically rigorous explanation for this exact
prediction.

Proof. Since \widehat f0 is real, p+ = p - and it is enough to build the branch near +i\omega p.
By the implicit function theorem applied to the function \scrL of (z, k) \in C \times Rd, the
result will follow by verifying \partial z\scrL (i\omega p, 0) \not = 0 along with observing that \scrL is smooth
in (z, k) and analytic in z in this neighborhood. Roughly speaking we want to take
derivatives of the expansion (2.6). From (2.3) and integrating by parts as in the proof
of Lemma 2.2,

\partial z\scrL (z, k) =
w0

| k| 3
\int \infty 

0

e - 
z
| k| ss2\widehat f0

\Bigl( 
\^ks

\Bigr) 
ds =

w0

z2| k| 

\int \infty 

0

e - 
z
| k| s\partial 2

s

\Bigl( 
s2\widehat f0

\Bigl( 
\^ks

\Bigr) \Bigr) 
ds

=
2w0n0

z3
+

w0

z3

\int \infty 

0

e - 
z
| k| s\partial 3

s

\Bigl( 
s2\widehat f0

\Bigl( 
\^ks

\Bigr) \Bigr) 
ds

=
2w0n0

z3
+

6w0| k| 
z4

\Bigl[ 
\^k \cdot \nabla \widehat f0 (0)

\Bigr] 
+

w0| k| 
z4

\int \infty 

0

e - 
z
| k| s\partial 4

s

\Bigl( 
s2\widehat f0

\Bigl( 
\^ks

\Bigr) \Bigr) 
ds

=
2w0n0

z3
+

w0| k| 
z4

\zeta \prime (z, k),

with \zeta \prime (z, k) that is uniformly bounded for | z  - i\omega p| < \epsilon and | k| < \nu 0 (using the
analyticity of f0). From the above calculation we can also observe that \scrL (z, k) is

analytic in z in this neighborhood. Moreover, \partial z\scrL (i\omega p, 0) =
2\omega 2

p

(i\omega p)3
= 2i

\omega p
\not = 0. By the

same integration by parts method used in Lemma 2.2, we obtain

\nabla k\scrL (z, k) =  - w0

| k| 3
\int \infty 

0

e - 
z
| k| ss2\nabla \widehat f0(\^ks)ds =

2w0k

z4

\Bigl[ 
\^k \otimes \^k : \nabla 2\widehat f0(0)

\Bigr] 
+\scrO 

\Bigl( 
| k| 3

\Bigr) 
.

(2.12)

Similar, but lengthier, calculations verify that near z = \pm i\omega p, \scrL is also smooth in k.
The implicit function theorem then implies the existence of a unique smooth solution
k \mapsto \rightarrow p+(k) to the equation \scrL (p+(k), k) = 1 in a neighborhood of i\omega p.

To get more precise information on the behavior of the poles near k = 0, we need
to compute derivatives in k as well as \scrL . Expansion (2.8) immediately follows from
Lemma 2.2:

p2+ = p2+\scrL (p+, k) = \omega 2
p  - 

3T\omega 2
p

mep2+
| k| 2 +\scrO 

\bigl( 
| k| 4

\bigr) 
= \omega 2

p +
3T

me
| k| 2 +\scrO 

\bigl( 
| k| 4

\bigr) 
.

Next, observe that

\nabla p+ =  - (\nabla k\scrL )(p+, k)
(\partial z\scrL )(p+, k)

,(2.13)

\nabla 2p+= - (\partial z\scrL )(p+, k) - 1
\bigl[ 
(\nabla 2

k\scrL )(p+, k)+(\nabla k\partial z\scrL )(p+, k) \cdot \nabla p++(\partial 2
z\scrL )(p+, k)| \nabla p+| 2

\bigr] 
.

(2.14)
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Using \nabla 2\widehat f0(0) = 3n0
T
me

Id and w0 = \omega 2
pn

 - 1
0 in (2.12), we obtain

\nabla k\scrL (p+(k), k) =
6T

me\omega 2
p

k +\scrO 
\Bigl( 
| k| 3

\Bigr) 
,

which implies (2.9). The proof of (2.10) is similar, using now (2.14) instead of (2.13);
the lengthier calculations are omitted for the sake of brevity. In these calculations
a clear pattern emerges: in all derivatives \nabla m

k \scrL (z, k) (resp., \nabla m
k \partial z\scrL (z, k)), for m \in 

N, the leading order as k \rightarrow 0 is an even (resp., odd) power of z - 1, and thus at
z = \pm i\omega p all derivatives \nabla m

k \scrL (i\omega p, 0) (resp., \nabla m
k \partial z\scrL (i\omega p, 0)) are purely real (resp.,

purely imaginary). This proves all derivatives \nabla mp+(0) are purely imaginary and
thus implies (2.11), i.e., \Re p+ =  - \lambda vanishes to infinite order at k = 0. Observe that
since nevertheless \Re p+ < 0 as k \sim 0 (by Lemma 2.1), the function k \mapsto \rightarrow p+(k) differs
from its Taylor series at k = 0 and is therefore not analytic.

2.4. Spectral surgery and extraction of Klein--Gordon waves. Through
(2.2), the solution to the Volterra equation (2.1) is classically [15] given formally as

\^\rho (t, k) = \widehat hin(k, kt) +

\int t

0

\scrR (t - \tau , k)\widehat hin(k, k\tau )d\tau ,(2.15)

where the resolvent kernel \scrR is given by the inverse Laplace transform

\scrR (t, k) =
1

2i\pi 

\int \gamma +i\infty 

\gamma  - i\infty 
ezt

\scrL (z, k)
1 - \scrL (z, k)dz

for a suitable Bromwich contour such that z \mapsto \rightarrow \scrL (z,k)
1 - \scrL (z,k) is holomorphic for \Re z > \gamma  - 0.

The calculations in subsections 2.2 and 2.3 show that for | k| < \nu 0 sufficiently

small, \scrL (\cdot ,k)
1 - \scrL (\cdot ,k) is holomorphic in the region H\epsilon ,\delta \prime represented in Figure 2 (the half-

plane \Re z \leq  - \delta \prime | k| minus \epsilon -discs around for the two poles), with one isolated pole
p\pm (k) in each disc, depending on k as studied in the last subsection. Therefore, by
Cauchy's residue theorem,

\scrR (t, k) =

\biggl( 
ep+(k)t

 - \partial z\scrL (p+(k), k)
+

ep - (k)t

 - \partial z\scrL (p - (k), k)

\biggr) 
+

1

2i\pi 

\int \gamma \prime +i\infty 

\gamma \prime  - i\infty 
ezt

\scrL (z, k)
1 - \scrL (z, k)dz

=: \scrR +
KG(t, k) +\scrR  - 

KG(t, k)\underbrace{}  \underbrace{}  
\scrR KG(t,k)

+\scrR RFT (t, k)

for some \gamma \prime \in ( - \delta \prime | k| , 0) so that the vertical line is to the left of the poles p\pm (k)
but still in H\epsilon ,\delta \prime , where \scrL /(1 - \scrL ) is meromorphic (always possible for | k| sufficiently

small since | \Re p\pm (k)| \lesssim | k|  - \infty 
). This decomposes the resolvent \scrR = \scrR KG + \scrR RFT

into a Klein--Gordon part and a remainder free transport part, the former named
thus because the poles satisfy to leading order (1.3) and due to the Klein--Gordon-
type EKG contribution in Theorem 1. This yields a corresponding decomposition of
the density \^\rho (t, k) through (2.15):

\^\rho (t, k) = \widehat hin(k, kt) +

\int t

0

\scrR KG(t - \tau , k)\widehat hin(k, k\tau )d\tau +

\int t

0

\scrR RFT (t - \tau , k)\widehat hin(k, k\tau )d\tau 

=: \^\rho FT (t, k) + \^\rho +KG(t, k) + \^\rho  - KG(t, k) + \^\rho RFT (t, k).
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We first prove a general expansion of \^\rho \pm KG(t, k) by successive integrations in time
(producing additional powers of k). Terms in this expansion are either comparable
to solutions to free transport (with additional Fourier multipliers) or to solutions to
a Klein--Gordon-like evolution equation.

Lemma 2.5 (expansion of the Klein--Gordon density). For all | k| < \nu 0 and all
\ell \in N, we have

\^\rho \pm KG(t, k) =
\ell \sum 

j=0

ep\pm (k)tA\pm 
j (k)

\Bigl[ 
k\otimes j : \nabla j

\eta 
\widehat hin(k, 0)

\Bigr] 
 - 

\ell \sum 

j=0

A\pm 
j (k)

\Bigl[ 
k\otimes j : \nabla j

\eta 
\widehat hin(k, kt)

\Bigr] 

+

\int t

0

\scrR KG(t - \tau , k)A\pm 
\ell +1(k)

\Bigl[ 
k\otimes (\ell +1) : \nabla \ell +1

\eta 
\widehat hin(k, k\tau )

\Bigr] 
d\tau ,(2.16)

where \nabla \eta 
\widehat hin(k, \eta ) is the differential in the second Fourier variable, and with the no-

tation

A\pm 
j (k) :=  - J\pm (k)

p\pm (k)j+1
and J\pm (k) :=  - 1

\partial z\scrL (p\pm (k), k)
.

Remark 12. Note that the Fourier multipliers A\pm 
j are smooth and bounded for

| k| < \nu 0.

Proof. Integrating by parts in time gives

\^\rho \pm KG(t, k) =

\int t

0

\scrR \pm 
KG(t - \tau , k)\widehat hin(k, k\tau )d\tau 

=

\int t

0

J\pm (k)e
p\pm (k)(t - \tau ) \widehat hin(k, k\tau )d\tau 

=  - 
\int t

0

J\pm (k)
p\pm (k)

\partial \tau 

\Bigl( 
e - \lambda (k)(t - \tau )\pm i\Omega (k)(t - \tau )

\Bigr) 
\widehat hin(k, k\tau )d\tau 

=
J\pm (k)
p\pm (k)

H(k, kt) - J\pm (k)
p\pm (k)

ep\pm (k)t \widehat hin(k, 0) +

\int t

0

J\pm (k)
p\pm (k)

ep\pm (k)(t - \tau )
\Bigl[ 
k \cdot \nabla \eta 

\widehat hin(k, k\tau )
\Bigr] 
d\tau ,

and iterating finitely many times yields the result.

Note that by symmetry J+(k) = J - (k) and A - 
j (k) = A+

j (k), and the calculations

of Lemma 2.4 give the expansion J\pm (k) = \mp \omega p

2i +O(| k| 2), which allows us to expand

the coefficients A\pm 
j (k) in (2.16). Denoting p\pm (k) =  - \lambda (k)\pm i\Omega (k) with \lambda (k) > 0 and

\Omega (k) = \omega p +\scrO (| k| 2), it immediately implies the following lemma.

Lemma 2.6 (Klein--Gordon coefficients at low frequencies). One has, as k \rightarrow 0,

A+
0 (k) +A - 

0 (k) = 1 +\scrO (| k| 2),(2.17)

A+
1 (k) +A - 

1 (k) = \scrO (| k| 2),
ep+(k)tA+

0 (k) + ep - (k)tA - 
0 (k) = e - \lambda (k)t

\Bigl[ 
cos [\Omega (k)t] +\scrO (| k| 2)ei\Omega (k)t +\scrO (| k| 2)e - i\Omega (k)t

\Bigr] 
,

ep+(k)tA+
1 (k) + ep - (k)tA - 

1 (k) = e - \lambda (k)t

\biggl[ 
sin [\Omega (k)t]

\Omega (k)
+\scrO (| k| 2)ei\Omega (k)t +\scrO (| k| 2)e - i\Omega (k)t

\biggr] 
,
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where the \scrO (| k| 2) in the above represent infinitely differentiable, bounded functions of
k which are independent of time.

We are now able to precisely define our decomposition of the electric field.

Definition 2.1. We define the variable precision decomposition,

\widehat E(1;\ell )
LD (t, k) = w0

ik

| k| 2
\bigl[ 
1 - A+

0 (k) - A - 
0 (k)

\bigr] \widehat hin(k, kt)

 - w0
ik

| k| 2
\ell \sum 

j=1

A\pm 
j (k)

\Bigl( 
k\otimes j : \nabla j

\eta 
\widehat hin(k, kt)

\Bigr) 
,(2.18)

\widehat E(2)
LD(t, k) = w0

ik

| k| 2
\int t

0

\scrR RFT (t - \tau , k)\widehat hin(k, k\tau )d\tau ,

\widehat E(1;\ell )
KG (t, k) = w0

ik

| k| 2
\ell \sum 

j=0

ep\pm (k)tA\pm 
j (k)

\Bigl( 
k\otimes j : \nabla j

\eta 
\widehat hin(k, 0)

\Bigr) 
,

\widehat E(2;\ell )
KG (t, k) = w0

ik

| k| 2
\int t

0

\scrR KG(t - \tau , k)A\pm 
\ell +1(k)

\Bigl[ 
k\otimes (\ell +1) : \nabla \ell +1

\eta 
\widehat hin(k, k\tau )

\Bigr] 
d\tau ,

and accordingly define the particular decomposition we shall use in what follows (set-
ting \ell = 4),

E
(1)
LD := E

(1;4)
LD , E

(2)
LD := as above,

E
(1)
KG := E

(1;4)
KG , E

(2)
KG := E

(2;4)
KG ,

ELD := E
(1)
LD + E

(2)
LD, EKG := E

(1)
KG + E

(2)
KG.

Remark 13. Note crucially that (2.17) cancels the leading order of the free trans-
port evolution for long waves as k \rightarrow 0, as can be seen in the first term in (2.18)
recalling the expansion (2.17). This ultimately leads to an improved decay of the
Landau damping contribution of the electric field.

Remark 14. The choice \ell = 4 was chosen large enough so that the expansions can
all be seen to be distinct in nature and in decay rates.

Next, we estimate the ``remainder free transport part"" of the resolvent. The gain
in powers of k present in Lemma 2.7 is critical to the high quality decay rate of the
Landau damping electric field.

Lemma 2.7 (remainder free transport resolvent at low frequencies). There exists
\lambda 0 > 0 such that for all | k| < \nu 0 there holds

\forall | k| < \nu 0, | \scrR RFT (t, k)| \lesssim | k| 3 e - \lambda 0| k| t.

Proof. We add and subtract by the expected leading order behavior as k \rightarrow 0
(using that the integration path is away from z = 0), hence defining for \alpha := 3T\omega 2

pm
 - 1
e

\scrQ (z) =
\omega 2
p

z2 + \omega 2
p

+
\alpha | k| 2

(z2 + \omega 2
p)

2
.

The function z \mapsto \rightarrow ezt\scrQ (z, k) is holomorphic and decaying in the left half-plane \Re z <
 - \gamma \prime | k| , and hence we can deform the contour defined by the standard Bromwich
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contour (from  - \gamma \prime  - i\infty to  - \gamma \prime  - i\infty ) to a new contour which basically follows the
boundary of \Lambda \delta ,\delta \prime , the region of validity of the asymptotic expansion in Lemma 2.2.
Accordingly, we design the new contour into three natural pieces: a center part being
a contribution with \Re z =  - \delta | k| with \Im z \in ( - R | z| , R | z| ) and two ``tails"" connecting
this central contour to infinity along diagonal lines. This contour is visualized below
in Figure 4. That is, we have the following:

\scrR RFT (t, k) =
1

2i\pi 

\Biggl( \int 

\Gamma 0

+

\int 

\Gamma +

+

\int 

\Gamma  - 

\Biggr) 
ezt

\biggl( \scrL (z, k)
1 - \scrL (z, k) +\scrQ (z, k)

\biggr) 
dz

=: \scrR 0
RFT +\scrR +

RFT +\scrR  - 
RFT with

\Gamma 0 =
\Bigl\{ 
z = \lambda + i\omega : \lambda =  - \delta | k| , \omega \in ( - R | k| , R | k| )

\Bigr\} 
,

\Gamma + =
\Bigl\{ 
z = \lambda  - i(1 + \delta )\lambda + i

\bigl[ 
R - (1 + \delta )\delta 

\bigr] 
| k| : \lambda \in ( - \infty , - \delta | k| ]

\Bigr\} 
,

\Gamma  - =
\Bigl\{ 
z = \lambda + i(1 + \delta )\lambda  - i

\bigl[ 
R - (1 + \delta )\delta 

\bigr] 
| k| : \lambda \in ( - \infty , - \delta | k| ]

\Bigr\} 
.

Γ0

Γ+

Γ−

R|k|

−R|k|

−δ|k|

∂Λδ,δ′

Fig. 4. The contour of integration (note that it is slightly modified as compared to \partial \Lambda \delta ,\delta \prime ).

We separate cases as in Lemma 2.3. Consider first z \in \Gamma 0 with | \Im z| < \delta \prime | k| . As
in the proof of Lemma 2.3, in this region there holds the following expansion, valid
for \delta \prime sufficiently small:

\forall z \in \Gamma 0 with | \Im z| < \delta \prime | k| , \scrL (\Im z, k) =  - \omega 2
p

| k| 2
+\scrO 

\Biggl( 
| \Im z| 
| k| 3

\Biggr) 
;

for all | z| \lesssim | k| ,

| \scrL (z, k)| \lesssim | k|  - 2
, | \partial z\scrL (z, k)| \lesssim | k|  - 3

.
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Therefore, for \delta and \delta \prime sufficiently small, we have \scrL (z, k) \approx | k|  - 2
for z \in \Gamma 0 with

| \Im z| < \delta \prime | k| . Next consider the case z \in \Gamma 0 with \delta \prime | k| \leq | \Im z| \leq R | k| . By arguments

similar to those above and in Lemma 2.3, we have | 1 - \scrL (z, k)| \gtrsim | k|  - 2
and | \scrL (z, k)| \lesssim 

| k|  - 2
. Therefore, on \Gamma 0, the integrand is \scrO (| k| 2), resulting in the estimate

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 

\Gamma 0

ezt

\Biggl( 
z2\scrL (z, k) + \omega 2

p

(1 - \scrL (z, k))(z2 + \omega 2
p)

+
\alpha | k| 2

(z2 + \omega 2
p)

2

\Biggr) 
dz

\bigm| \bigm| \bigm| \bigm| \bigm| \lesssim | k| 3 e - \delta | k| t.

This completes the estimates on \Gamma 0.
We next turn to \Gamma +,\Gamma  - . We need only consider \Gamma +, as \Gamma  - is analogous. We now

use | z| \gg | k| and the decomposition from Lemma 2.2:

\scrL (z, k) =  - \omega 2
p

z2
 - 3\omega 2

pT | k| 2

mez4
+

| k| 4
z6

\zeta (z, k),

with \zeta (z, k) uniformly bounded on \Gamma + and decaying at infinity. Using this expansion,
we have

\scrL (z, k)
1 - \scrL (z, k) +\scrQ (z, k) =

z2\scrL (z, k) + \omega 2
p

(1 - \scrL )(z2 + \omega 2
p)

+
\alpha | k| 2

(z2  - \omega 2
p)(z

2 + \omega 2
p)

=
\alpha k2(z2\scrL + \omega 2

p)

(z2  - z2\scrL )(z2 + \omega 2
p)

2
+

\zeta (z, k)k4

z2(z2  - z2\scrL )(z2 + \omega 2
p)

=
\alpha k2(\alpha k2 + \zeta (z, k)k4z - 2)

(z2  - z2\scrL )(z2 + \omega 2
p)

2
+

\zeta (z, k)k4

z2(z2  - z2\scrL )(z2 + \omega 2
p)
.

Using the uniform boundedness of \zeta (z, k), integration gives

\bigm| \bigm| \scrR +
RFT

\bigm| \bigm| \lesssim e - \delta | k| t
\int \infty 

R| k| 

| k| 4
x2

dx = | k| 3 e - \delta | k| t.

This completes the proof of Lemma 2.7.

We finally estimate the whole resolvent at frequencies bounded away from zero,
which is simpler.

Lemma 2.8 (nonsmall frequencies resolvent estimate). Given any \nu 0 > 0 there is
\lambda 1 > 0 such that

\forall | k| \geq \nu 0
2
, \scrR (t, k) \lesssim 

1

| k| e
 - \lambda 1| k| t.

Proof. Choose \lambda > 0 as in Lemma 2.1 and deform the contour to get (there are
no poles in \Re z \geq  - \lambda | k| when | k| \geq \nu 0/2)

\scrR (t, k) =
1

2i\pi 

\int  - \lambda | k| +i\infty 

 - \lambda | k|  - i\infty 
ezt

\scrL (z, k)
1 - \scrL (z, k)dz,

and using the estimate of Lemma 2.1 gives

| \scrR (t, k)| \lesssim e - \lambda | k| t
\int \infty 

 - \infty 

1

| k| 2 + | \omega | 2
d\omega \lesssim 

1

| k| e
 - \lambda | k| t.�
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2.5. Another look at the long-wave hydrodynamic behavior. In this sub-
section we prove Theorem 3 on the basis of the decomposition of Definition 2.1 and
the previous estimates of this section.

Proof of Theorem 3. We prove the first part of the theorem, as the second part
is seen directly from the decomposition of Definition 2.1, together with some basic
estimates that are similar to or easier than what is required to prove the first part.
For any field F , define

F\epsilon (t, x) :=
1

\epsilon 3
F

\Bigl( 
t,
x

\epsilon 

\Bigr) 
, with Fourier transform \widehat F\epsilon (t, k) = \widehat F (t, \epsilon k).

Note that we have defined hin such that for all \epsilon > 0, hin,\epsilon (x, v) = \scrH 0(x, v). Define
the initial macroscopic flux (recall that n0 is the total mass of f0(v)),

jin(x) :=
1

n0

\int 

R3

vhindv with Fourier transform \widehat jin(k) =
1

n0
i\nabla \eta 

\widehat hin(k, 0).

Denote

\widehat J(k) = 1

n0
i\nabla \eta 

\widehat \scrH 0(k).

The rescaled electric field \scrE \epsilon in the linearized Euler--Poisson system (1.10) satisfies

\epsilon \widehat \scrE \epsilon (t, k) =
ik

| k| 2
\widehat \scrH 0(k) cos\Omega KG(\epsilon k)t+ \epsilon \omega 2

p

k

| k| 2
\Bigl( 
k \cdot \widehat J(k)

\Bigr) sin\Omega KG(\epsilon k)t

\Omega KG(\epsilon k)
,

where we define the exact Euler--Poisson imaginary phase \Omega KG(k),

\Omega KG(k) :=

\sqrt{} 
\omega 2
p +

3T

m
| k| 2.

Consider E
(1)
KG first defined in the decomposition of Definition 2.1, since it is the

contribution which is asymptotic to \scrE \epsilon . Lemma 2.6 shows that

\epsilon \widehat E(1)
KG,\epsilon (t, k) = e - \lambda (\epsilon k)t ik

| k| 2
\widehat \scrH 0(k) cos [\Omega (\epsilon k)t] + e - \lambda (\epsilon k)t\epsilon \omega 2

p

ik

| k| 2
\Bigl( 
k \cdot \widehat J(k)

\Bigr) sin [\Omega (\epsilon k)t]

\Omega (\epsilon k)

+\scrO (\epsilon | \epsilon k| 2)e - \lambda (\epsilon k)t \| \scrH 0\| W 0,1
4

.

Note that the errors depend on time, but in a uniformly bounded way, and that they
depend on v-moments of hin up to order 5. By the expansion of \Omega in Lemma 2.4, we
have

| \Omega (\epsilon k) - \Omega KG(\epsilon k)| \lesssim 
\bigm| \bigm| \bigm| \bigm| \bigm| 

\sqrt{} 
\omega 2
p +

3T

m
| \epsilon k| 2 +\scrO (| \epsilon k| 4) - 

\sqrt{} 
\omega 2
p +

3T

m
| \epsilon k| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \lesssim | \epsilon k| 4

and thus
\bigm| \bigm| \bigm| cos [\Omega (\epsilon k)t] - cos [\Omega KG(\epsilon k)t]

\bigm| \bigm| \bigm| = \scrO 
\Bigl( 
| \epsilon k| 4 t

\Bigr) 
,

\bigm| \bigm| \bigm| sin [\Omega (\epsilon k)t] - sin [\Omega KG(\epsilon k)t]
\bigm| \bigm| \bigm| = \scrO 

\Bigl( 
| \epsilon k| 4 t

\Bigr) 
,
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and for any N > 0,
\bigm| \bigm| 1 - e - \lambda (\epsilon k)t

\bigm| \bigm| = \scrO 
\bigl( 
| \epsilon k| N t

\bigr) 
, and therefore we deduce

\epsilon 
\bigm| \bigm| \bigm| \widehat E(1)

KG,\epsilon  - \widehat \scrE \epsilon 
\bigm| \bigm| \bigm| \lesssim 

\Bigl( 
| \epsilon k| 4 t+ \epsilon | \epsilon k| 2

\Bigr) 
\| \scrH 0\| W 0,1

4
,

and thus

\epsilon 
\bigm\| \bigm\| \bigm\| E(1)

KG,\epsilon (t) - \scrE \epsilon (t)
\bigm\| \bigm\| \bigm\| 
H - s

\lesssim \| \scrH 0\| W 0,1
4

\Biggl( \int 

| \epsilon k| \lesssim 1

\epsilon 2 | \epsilon k| 4 + | \epsilon k| 8 t2
\langle k\rangle 2s dk

\Biggr) 1
2

\lesssim \| \scrH 0\| W 0,1
4

\epsilon s - 
3
2 - 0\langle t\rangle 

for s \in ( 32 ,
7
2 ). Turn next to \widehat E(2)

KG; from its definition

\epsilon 
\bigm\| \bigm\| \bigm\| E(2)

KG,\epsilon (t)
\bigm\| \bigm\| \bigm\| 
H - s

\lesssim \epsilon 

\int t

0

\Biggl( \int 

| \epsilon k| \lesssim 1

1

| \epsilon k| 2 \langle k\rangle 2s
| \epsilon k| 10

\bigm| \bigm| \bigm| \nabla 5
\eta 
\widehat \scrH 0(k, k\tau )

\bigm| \bigm| \bigm| 
2

dk

\Biggr) 1/2

d\tau 

\lesssim \| \scrH 0\| W 0,1
4

\epsilon s - 
1
2 - 0

for s \in ( 32 ,
19
2 ). This completes the treatment of the ``Klein--Gordon parts"" of the

electric field.
We turn next to the Landau damping contributions, which in fact dominate the

error. It is convenient to subdivide the Landau damping field as in Definition 2.1.

The contribution of E
(1)
LD is straightforward; indeed,

\epsilon 
\bigm\| \bigm\| \bigm\| E(1)

LD,\epsilon (t)
\bigm\| \bigm\| \bigm\| 
H - s

\lesssim \epsilon 

\left( 
 

4\sum 

j=0

\int 

R3

\langle k\rangle  - 2s | \epsilon k| 2
\bigm| \bigm| \bigm| \bigm| | \epsilon k| 

j \nabla j
\eta \scrH 0(k, kt)

\bigm| \bigm| \bigm| \bigm| 
2

dk

\right) 
 

1
2

\lesssim \| \scrH 0\| W 2,1
4

\epsilon 2

\langle t\rangle 

for s > 5
2 . Turn finally to E

(2)
LD, which produces the dominant error. Then

\epsilon 
\bigm\| \bigm\| \bigm\| E(2)

LD,\epsilon (t)
\bigm\| \bigm\| \bigm\| 
H - s

\lesssim \epsilon 

\int t

0

\Biggl( \int 

R3

min(| \epsilon k| 2 , | \epsilon k|  - 1
)

\langle k\rangle 2s e - \lambda 0| \epsilon k| (t - \tau )
\bigm| \bigm| \bigm| \widehat \scrH 0(k, k\tau )

\bigm| \bigm| \bigm| 
2

dk

\Biggr) 1/2

d\tau 

\lesssim \epsilon 2 \| \scrH 0\| W 2,1
0

for s > 5
2 . This completes the proof of Theorem 3.

3. Electric field estimates.

3.1. Landau damping estimates on the electric field. In this section we
provide estimates for ELD. We start with the optimal decay estimates for the density
for the kinetic free transport (optimal in terms of time decay, not in the dependence
on the initial data). Denote the spatial density of the solution to the free transport
equation

H(t, x) :=

\int 

R3

hin(x - tv, v)dv with Fourier transform \widehat H(t, k) = \widehat hin(k, kt).

Lemma 3.1. For all \sigma \geq 0,

\| \langle \nabla x, t\nabla x\rangle \sigma H(t, \cdot )\| L1
x
\lesssim \| hin\| W\sigma ,1

0
,(3.1)

\| \langle \nabla x, t\nabla x\rangle \sigma H(t, \cdot )\| L2
x
\lesssim \langle t\rangle  - 3/2 \| hin\| W\sigma +3/2+0,1

0
,

\| \langle \nabla x, t\nabla x\rangle \sigma H(t, \cdot )\| L\infty 
x

\lesssim \langle t\rangle  - 3 \| hin\| W\sigma +3+0,1
0

.(3.2)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright � by SIAM. Unauthorized reproduction of this article is prohibited. 

4400 J. BEDROSSIAN, N. MASMOUDI, AND C. MOUHOT

More generally, for all 1 \leq p \leq \infty , j \geq 0,

\bigm\| \bigm\| \bigm\| \bigm\| \langle \nabla x, t\nabla x\rangle \sigma 
\biggl( 
\nabla \otimes j

x :

\int 

R3

v\otimes jhin(\cdot  - tv, v)dv

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
Lp

x

\lesssim \langle t\rangle  - j - 3(1 - 1
p ) \| hin\| W\sigma +3+j+0,1

j
.

(3.3)

Proof. Inequality (3.1) is clear. To see (3.2) note that

\| \nabla \sigma 
xH(t, \cdot )\| L\infty 

x
\lesssim 

\int 

R3

| k| \sigma 
\bigm| \bigm| \bigm| \widehat H(t, k)

\bigm| \bigm| \bigm| dk \lesssim 

\biggl( \int 

R3

| k| \sigma 
\langle k, kt\rangle 3+\sigma +

dk

\biggr) 
\| hin\| W\sigma +3+,1

0

\lesssim \langle t\rangle  - 3 - \sigma \| hin\| W\sigma +3+,1
0

.

The proof of (3.3) follows similarly (using also interpolation).

Next, we turn to estimates on the damped part of the electric field. By Lemmas

2.6 and 3.1, E
(1)
LD satisfies the estimates claimed in Theorem 1.

We turn next to obtaining estimates on E
(2)
LD.

Lemma 3.2. There holds the estimates
\bigm\| \bigm\| \bigm\| \langle \nabla x, t\nabla x\rangle \sigma E(2)

LD(t)
\bigm\| \bigm\| \bigm\| 
L2

x

\lesssim 
1

\langle t\rangle 5/2 \| hin\| W\sigma +2+0,1
0

,(3.4)

\bigm\| \bigm\| \bigm\| \langle \nabla x, t\nabla x\rangle \sigma E(2)
LD(t)

\bigm\| \bigm\| \bigm\| 
L\infty 

x

\lesssim 
1

\langle t\rangle 4 \| hin\| W\sigma +3+0,1
0

.(3.5)

Proof. Consider first the low spatial frequencies | k| \lesssim \nu 0. Compute using Lemma 2.7;
for any a > 0,

\bigm\| \bigm\| \bigm\| \langle \nabla x, t\nabla x\rangle \sigma P\leq \nu 0E
(2)
LD(t)

\bigm\| \bigm\| \bigm\| 
L\infty 

x

\leq 
\int t

0

\bigm\| \bigm\| \bigm\| \langle \nabla x, t\nabla x\rangle \sigma | \nabla x|  - 1
P\leq \nu 0RRFT (t - \tau ) \ast x H(\tau , \cdot )

\bigm\| \bigm\| \bigm\| 
L\infty 

x

d\tau 

\lesssim 
\int t

0

\int 

R3

\chi 

\biggl( 
k

\nu 0

\biggr) 
\langle k, (t - \tau )k\rangle \sigma | k|  - 1 | \scrR RFT (t - \tau , k)| \langle k, \tau k\rangle \sigma 

\bigm| \bigm| \bigm| \widehat hin(k, \tau k)
\bigm| \bigm| \bigm| dkd\tau 

\lesssim 

\biggl[ \int t

0

\biggl( \int 

R3

| k| 2 \chi 
\biggl( 

k

\nu 0

\biggr) 
\langle \tau k\rangle  - 3 - a\langle (t - \tau )k\rangle  - 3 - adk

\biggr) 
d\tau 

\biggr] 
\| hin\| W\sigma +3+a,1

0
.

We split the integral
\int t

0

\biggl( \int 

R3

| k| 2 \chi 
\biggl( 

k

\nu 0

\biggr) 
\langle \tau k\rangle  - 3 - a\langle (t - \tau )k\rangle  - 3 - adk

\biggr) 
d\tau 

=

\Biggl( \int t
2

0

+

\int t

t
2

\Biggr) \biggl( \int 

R3

| k| 2 \chi 
\biggl( 

k

\nu 0

\biggr) 
\langle \tau k\rangle  - 3 - a\langle (t - \tau )k\rangle  - 3 - adk

\biggr) 
d\tau 

and change variables k\prime = \tau k or k\prime = (t - \tau )k in each one to obtain

\int t

0

\biggl( \int 

R3

\chi 

\biggl( 
k

\nu 0

\biggr) 
| k| 2 \langle \tau k\rangle  - 3 - a\langle (t - \tau )k\rangle  - 3 - adk

\biggr) 
d\tau \lesssim t - 4.

Note that the | k| 2 in the numerator is crucial for obtaining this sharp rate. This
concludes the proof of (3.5) at low frequencies. At frequencies bounded away from

zero, i.e., the corresponding estimate on P\geq \nu 0
E

(2)
LD, the estimate is similar though more

straightforward and with less loss of regularity. The L2 case (3.4) follows similarly
and is omitted for brevity.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright � by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEARIZED WAVE DAMPING IN VLASOV--POISSON 4401

3.2. Dispersive estimates of the electric field. We now consider the ``Klein--
Gordon part"" of the electric field in Definition 2.1.

Consider first the following useful dispersive estimates.

Lemma 3.3 (dispersive estimates for weakly damped poles). We have 1 \leq p \leq 2
and the following holds for t \geq 0 and f = f(x) \in Lp(R3

x):

\bigm\| \bigm\| \bigm\| ep\pm (\nabla )tP\leq \nu 0
f
\bigm\| \bigm\| \bigm\| 
Lp\prime 

\lesssim t - 3( 1
p - 1

2 ) \| f\| Lp .(3.6)

Remark 15. The linear propagator ep\pm (\nabla )t is not a unitary operator, and the
standard TT \ast argument as in, e.g., [24, 36] do not apply. Hence, it is not as trivial
to obtain the homogeneous Strichartz estimates or the full range of expected inho-
mogeneous Strichartz estimates (although some inhomogeneous Strichartz estimates
follow immediately from (3.6) and the Young--O'Neil convolution inequality [30]).

Proof. It suffices to consider ep+(\nabla )t; the proof for ep - (\nabla )t is analogous. The case
p = 2 is immediate. For the case p = 1, write

ep+(\nabla )tP\leq \nu 0 f = K(t) \ast x f,

with the integral kernel

K(t, x) :=
1

(2\pi )3/2

\int 

R3

eix\cdot k+it\Omega (k) - \lambda (k)ta\nu 0
(k)dk,

where a\nu 0
is a Schwartz class function compactly supported in a ball of radius \leq 2\nu 0

corresponding to the Littlewood--Paley projection. Hence the p = 1 case follows from
the pointwise kernel estimate

\| K(t)\| L\infty \lesssim t - 3/2 (\forall t \geq 0).(3.7)

The intermediate exponents p \in (1, 2) are then obtained by the Riesz--Thorin inter-
polation theorem.

Let us prove (3.7). Despite the complex phase, K is essentially a standard os-
cillatory integral, and we may easily adapt the standard arguments as in, e.g., [34,

Proposition 6, p. 344]. Let us first explain the argument assuming that \Omega (k) = | k| 2
(the case \Omega 2(k) = \omega 2

p + 3T
me

| k| 2 can be treated similarly, as discussed below). In this
case, we make the change of variables y = k + x

2t and write (for some scale \epsilon chosen
below)

K(t, x) =
ei| x| 

2/4t2

(2\pi )3/2

\int 

R3

eit| y| 
2 - \lambda t\chi 

\Bigl( y
\epsilon 

\Bigr) 
a\nu 0

\Bigl( 
y  - x

2t

\Bigr) 
dy

+
ei| x| 

2/4t2

(2\pi )3/2

\int 

R3

eit| y| 
2 - \lambda t

\Bigl[ 
1 - \chi 

\Bigl( y
\epsilon 

\Bigr) \Bigr] 
a\nu 0

\Bigl( 
y  - x

2t

\Bigr) 
dy

=: KS(t, x) +KNS(t, x),

where \chi \in C\infty 
c (B(0, 1)) with \chi (z) = 1 for | z| \leq 1/2, and where we have split K into a

``stationary"" part and a ``nonstationary"" part. For the stationary part, KS , we simply
bound the integrand and estimate the volume of integration:

| KS(t, x)| \lesssim \nu 0 \epsilon 3.(3.8)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright � by SIAM. Unauthorized reproduction of this article is prohibited. 

4402 J. BEDROSSIAN, N. MASMOUDI, AND C. MOUHOT

For the nonstationary part, KNS , we integrate by parts using the nonvanishing of the
phase. In particular observe (noting that | \cdot | 2 = x\ast x for x \in Cn) that

t | 2iy  - \nabla \lambda | 2 eit| y| 2 - \lambda t = ( - 2iy  - \nabla \lambda ) \cdot \nabla ye
it| y| 2 - \lambda t.

Therefore, if we define the differential operator

Df := \nabla y \cdot 
\Biggl( 

 - 2iy  - \nabla \lambda 

| 2iy  - \nabla \lambda | 2
f

\Biggr) 
,

then by repeated integration by parts we have

| KNS | \lesssim 
1

tN

\bigm| \bigm| \bigm| \bigm| 
\int 

R3

eit| y| 
2 - \lambda tDN

\Bigl( \Bigl( 
1 - \chi 

\Bigl( y
\epsilon 

\Bigr) \Bigr) 
a\nu 0

\Bigl( 
y  - x

2t

\Bigr) \Bigr) 
dy

\bigm| \bigm| \bigm| \bigm| .

We next show that the integrand is bounded by | y|  - 2N
; for the proof in three dimen-

sions, we only need N = 1, 2, though it holds for all N . The case N = 1 is easily
checked. Indeed,

\partial j

\Biggl( 
 - 2iy  - \nabla \lambda 

| 2iy  - \nabla \lambda | 2

\Biggr) 
=  -  - 2iej  - \partial j\nabla \lambda 

| 2iy  - \nabla \lambda | 2
= \scrO (| y|  - 2

),

which is sufficient as the terms in which the derivative lands elsewhere are only better
(estimates on \nabla n\lambda are provided by Lemma 2.4). For N = 2 we analogously have

\partial \ell 

\Biggl( \Biggl( 
 - 2iy  - \nabla \lambda 

| 2iy  - \nabla \lambda | 2

\Biggr) 
 - 2iej  - \partial j\nabla \lambda 

| 2iy  - \nabla \lambda | 2

\Biggr) 
=  - 

\Biggl( 
 - 2ie\ell  - \partial \ell \nabla \lambda 

| 2iy  - \nabla \lambda | 2

\Biggr) \Biggl( 
 - 2iej  - \partial j\nabla \lambda 

| 2iy  - \nabla \lambda | 2

\Biggr) 

+

\Biggl( 
 - 2iy  - \nabla \lambda 

| 2iy  - \nabla \lambda | 2

\Biggr) \Biggl( 
\partial \ell j\nabla \lambda 

| 2iy  - \nabla \lambda | 2
 - ( - 2ie\ell  - \partial \ell \nabla \lambda ) (2iy  - \nabla \lambda ) \cdot ( - 2iej  - \partial j\nabla \lambda )

| 2iy  - \nabla \lambda | 4

\Biggr) 

= \scrO (| y|  - 4
),

which is similarly sufficient (note the pattern that selects a particular dominant term,
whereas the more complicated error terms are smaller, hence the desired estimates
hold for all N). Therefore, provided we choose N \geq 2,

| KNS | \lesssim 
1

tN

\int 

| y| \geq \epsilon 

1

| y| 2N
dy \lesssim 

1

tN
\epsilon 3 - 2N .

Hence making the choice \epsilon \sim t - 1/2 gives the result when combined with (3.8). The
case using the true \Omega (k) follows by Morse's lemma due to (2.10) and the other esti-
mates in Lemma 2.4 (see [34, Proposition 6, p. 344] for more details). This completes
the main dispersive estimates (3.6).

The estimates on E
(1)
KG in Theorem 1 follow immediately from (3.6) and the de-

composition in Definition 2.1 upon observing that for
\int 
R3 \rho indx = 0 we have for all

1 < p

\bigm\| \bigm\| \nabla x( - \Delta x)
 - 1P\leq \nu 0

\rho in
\bigm\| \bigm\| 
Lp \lesssim p,\nu 0

\| \langle x\rangle \rho in\| W 0,1
0

.

Next, we will prove the pointwise-in-time decay estimates on E
(2)
KG.
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Lemma 3.4. There holds for all 2 \leq p \leq \infty 
\bigm\| \bigm\| \bigm\| E(2)

KG

\bigm\| \bigm\| \bigm\| 
Lp

x

\lesssim \langle t\rangle  - 3( 1
2 - 1

p ) \| hin\| W 3/2,1
5

.

Proof. Define T as above:

T (t, x) =

\int 

R3

v\otimes 5hin(x - tv, v)dv, \widehat T (t, k) = i5\nabla \otimes 5
\eta 

\widehat hin(k, 0).

By Minkowski's inequality (and boundedness of the prefactor multipliers on Lp as
they are Schwartz class functions),

\bigm\| \bigm\| \bigm\| E(2)
KG

\bigm\| \bigm\| \bigm\| 
Lp

x

\lesssim 
\sum 

+, - 

\int t

0

\bigm\| \bigm\| \bigm\| ep\pm (\nabla x)(t - \tau )P\leq \nu 0 | \nabla x|  - 1 \nabla 5
x : T

\bigm\| \bigm\| \bigm\| 
Lp

x

d\tau .

On the one hand, by Bernstein's inequality, for any p \geq r\prime > 2, it follows from (3.6)
that we have

\bigm\| \bigm\| \bigm\| ep\pm (\nabla x)(t - \tau ) | \nabla x|  - 1 \bigl( \nabla \otimes 5
x : T

\bigr) \bigm\| \bigm\| \bigm\| 
Lp

x

\lesssim 
\bigm\| \bigm\| \bigm\| ep\pm (\nabla )(t - \tau )P\leq \nu 0

| \nabla x|  - 1 \bigl( \nabla \otimes 5
x : T

\bigr) \bigm\| \bigm\| \bigm\| 
Lr\prime 

x

\lesssim 
1

| t - \tau | 3( 1
r - 1

2 )

\bigm\| \bigm\| \bigm\| P\leq \nu 0 | \nabla x|  - 1 \bigl( \nabla \otimes 5
x T

\bigr) \bigm\| \bigm\| \bigm\| 
Lr

x

.

On the the other hand, we similarly have

\bigm\| \bigm\| \bigm\| ep\pm (\nabla x)(t - \tau ) | \nabla x|  - 1 \bigl( \nabla \otimes 5
x : T

\bigr) \bigm\| \bigm\| \bigm\| 
Lp

x

\lesssim 
\bigm\| \bigm\| \bigm\| P\leq \nu 0

| \nabla x|  - 1 \bigl( \nabla 5
x : T

\bigr) \bigm\| \bigm\| \bigm\| 
L2

x

.

Therefore, by Lemma 3.1, we have for r > 1

\bigm\| \bigm\| \bigm\| E(2)
KG

\bigm\| \bigm\| \bigm\| 
Lp

x

\lesssim \| hin\| W 3/2,1
5

\sum 

+, - 

\int t

0

min
\Bigl( 
\langle \tau \rangle  - 3/2 - 3/2, | t - \tau |  - 3( 1

r - 1
2 ) \langle \tau \rangle  - 3(1 - 1

r ) - 3
2

\Bigr) 
d\tau ,

which integrates to imply the stated result.

4. Decomposition and scattering for the distribution function. In this
section we prove Theorem 2. Denote the solution in the free transport moving frame
as

g(t, x, v) := h(t, x+ vt, v),

which satisfies \partial tg =  - E(t, x + tv) \cdot \nabla vf
0(v). Therefore we have on the Fourier side

(note \widehat h(t, k, \eta ) = \widehat g(t, k, \eta + kt))

\widehat g(t, k, \eta ) = \widehat hin(k, \eta ) - 
\int t

0

\widehat E(\tau , k) \cdot \nabla vf0(\eta  - k\tau )d\tau .
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Consider the contribution E
(1)
KG:

\int t

0

\widehat E(1)
KG(\tau , k) \cdot \nabla vf0(\eta  - k\tau )d\tau 

= w0
ik

| k| 2
\ell \sum 

j=0

\sum 

+, - 

\int t

0

ep\pm (k)\tau A\pm 
j (k)

\Bigl( 
k\otimes j : \nabla j

\eta 
\widehat hin(k, 0)

\Bigr) 
\cdot \nabla vf0(\eta  - k\tau )d\tau 

= w0
ik

| k| 2
\ell \sum 

j=0

\sum 

+, - 
ep\pm (k)t

A\pm 
j (k)

p\pm (k)

\Bigl( 
k\otimes j : \nabla j

\eta 
\widehat hin(k, 0)

\Bigr) 
\cdot \nabla vf0(\eta  - kt)

 - w0
ik

| k| 2
\ell \sum 

j=0

\sum 

+, - 

A\pm 
j (k)

p\pm (k)

\Bigl( 
k\otimes j : \nabla j

\eta 
\widehat hin(k, 0)

\Bigr) 
\cdot \nabla vf0(\eta )

 - w0
ik

| k| 2
\ell \sum 

j=0

\int t

0

ep\pm (k)\tau 
A\pm 

j (k)

p\pm (k)

\Bigl( 
k\otimes j : \nabla j

\eta 
\widehat hin(k, 0)

\Bigr) 
\cdot \nabla \eta \nabla vf0(\eta  - k\tau )k d\tau 

=: \widehat gKG + \widehat g2 + \widehat g3,

with hKG, h2, and h3 defined analogously. Note that since \widehat hKG(t, k, \eta ) = \widehat gKG(t, k, \eta +
kt),

\widehat hKG(t, k, \eta ) = \~EKG(t, k) \cdot \nabla vf0(\eta ),

where we define

\~EKG(t, k) := w0
ik

| k| 2
4\sum 

j=0

\sum 

+, - 
ep\pm (k)t

A\pm 
j (k)

p\pm (k)

\Bigl( 
k\otimes j : \nabla j

\eta 
\widehat hin(k, 0)

\Bigr) 
.

Arguing as for the E
(1)
KG estimates in Theorem 1, hKG satisfies (1.9). Similarly, we

define

(4.1)

\widehat hLD(k, \eta ) = \widehat hin(k, \eta ) + \widehat g2(k, \eta ) + \widehat g3(t, k, \eta )

 - 
\int t

0

\biggl( 
ÊKG

(2)
+ ÊLD

\biggr) 
(\tau , k) \cdot \nabla vf0(\eta  - k\tau )d\tau .

The term g2 is constant in time and in Lp for all p \geq 2 by the assumptions on the
initial data. The term g3 on the physical side is written in the form

h3(t, x, v) =

\int t

0

\nabla x
\~E3(\tau , x+ \tau v) :

\bigl( 
v \otimes \nabla vf

0(v)
\bigr) 
d\tau 

for a suitable \~E3. By straightforward variations of the arguments used to estimate

E
(1)
KG above, we have for any 6 < p

\int t

0

\bigm\| \bigm\| \bigm\| \nabla x
\~E3(\tau , x+ \tau v) :

\bigl( 
v \otimes \nabla vf

0(v)
\bigr) \bigm\| \bigm\| \bigm\| 

Lp
x,v

d\tau \lesssim 
\int t

0

\bigm\| \bigm\| \bigm\| \nabla x
\~E3(\tau , \cdot )

\bigm\| \bigm\| \bigm\| 
Lp

x

d\tau 

\lesssim \| hin\| W 3+0,1
5

\int t

0

\langle \tau \rangle  - 3( 1
2 - 1

p )d\tau ,

and hence h3 converges in Lp
x,v for all p > 6 as t \rightarrow \infty . Due to the decay estimates in

Lemma 3.3, the term in (4.1) involving E
(2)
KG similarly converges in Lp

x,v for all p > 6.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright � by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEARIZED WAVE DAMPING IN VLASOV--POISSON 4405

Next we prove that hLD converges in Lp
x,v for p > 6. The easiest contribution is

from ELD. Recall the decomposition ELD = E
(1)
LD + E

(2)
LD from subsection 3.1. From

a straightforward variant of Lemma 3.1, we have for all 2 \leq p \leq \infty 

\| ELD(t)\| Lp \lesssim \langle t\rangle  - 4+ 3
p \| hin\| W 4+0,1

0
,

and hence, for p \geq 2,

\int t

0

\bigm\| \bigm\| ELD(\tau , x+ \tau v) \cdot \nabla vf
0(v)

\bigm\| \bigm\| 
Lp

x,v
d\tau \leq 

\int t

0

\| ELD(\tau )\| Lp
x

\bigm\| \bigm\| \nabla vf
0
\bigm\| \bigm\| 
Lp

v
d\tau \lesssim \| hin\| W 4+0,1

0
,

and so the corresponding contribution converges as t \rightarrow \infty .
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