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SINGULARITY FORMATION FOR BURGERS EQUATION WITH
TRANSVERSE VISCOSITY

CHARLES COLLOT, TEJ-EDDINE GHOUL, AND NADER MASMOUDI

ABSTRACT. We consider Burgers equation with transverse viscosity
O 4 udpu — Dyyu = 0, (z,y) €R?, w:[0,T) x R* = R.

We construct and describe precisely a family of solutions which become singular in finite time by
having their gradient becoming unbounded. To leading order, the solution is given by a backward
self-similar solution of Burgers equation along the x variable, whose scaling parameters evolve
according to parabolic equations along the y variable, one of them being the quadratic semi-
linear heat equation. We develop a new framework adapted to this mixed hyperbolic/parabolic
blow-up problem, revisit the construction of flat blow-up profiles for the semi-linear heat equa-
tion, and the self-similarity in singularities of the inviscid Burgers equation.

1. Introduction

1.1. Setting of the problem and motivations
We consider Burgers equation with transverse viscosity

{ Oru + udyu — Oyyu =0, (x,y) € R?, (1.1)

Ut=0 = Uo,

for u : [0,T) x R?> — R. The present study is motivated by the following. This model reduces
to the classical inviscid Burgers equation for solutions that are independent of the transverse
variable u(t, x,y) = U(t,z), which is a classical example of a nonlinear hyperbolic equation for
which initially smooth solutions can become singular in finite time, see for example [11, 27]. The
effects of viscosity in the streamwise direction, namely the equation dyu+ud,u—e0dyu = 0, have
been extensively studied, see [18, 19] and references therein. This work aims at understanding
precisely the consequence of an additional effect, here the transverse viscosity, on a blow-up
dynamics that it does not prevent. Moreover, this new effect changes the nature of the equation
which is of a mixed hyperbolic/parabolic type. Handling these two issues, our result then ex-
tends known ones for blow-ups in a new direction, as well as raising new interesting problems,
see the comments after the main Theorem 3.

More importantly, the study of (1.1) is motivated by fluid dynamics, from the fact that it is a
simplified version of Prandtl’s boundary layer equations. Solutions to Prandtl’s equations might
blow up in finite time [8, 12, 21] but a precise description of the singularity formation is still
lacking. The present work is a step towards that goal and this issue will be investigated in a
forthcoming work. Finally, let us mention that there has been recent progress on other models
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for singular solutions in fluid dynamics, see [5, 6, 28] and references therein.

The existence of smooth enough solutions to (1.1) follows from classical arguments. For example,
relying on a fixed point argument and energy estimates, one can show that the equation is locally
well-posed in H*(R?) for s > 3. There then holds the following blow-up criterion (again from
energy estimates because of the identity | [ uvvy| < [Jug|/ze [v?): the solution u blows up at
time T > 0 if and only if
lim sup |0z || oo (m2y = +00. (1.2)
“T

The existence of global kinetic solutions u € L*([0,+00), L' (R?)) has been showed by Chen
and Perthame [4] following the framework of Lions, Perthame and Tadmor [22]. We refer to [27]
for an introduction on kinetic solutions for scalar conservation laws. We expect singularities for
such low regularity solutions to be different than the solutions in the present paper, as regularity
plays a key role in the blow-up mechanism we describe. Before stating the main theorem, let
us give the structure of the singularities of Burgers equation, and of the ones of the parabolic
system encoding the effects of the transverse viscosity.

1.2. Self-similarity in shocks for Burgers equation

Burgers equation
U +U0,U =0, xeR,
Ui=o = U,

admits solutions becoming singular in finite time in a self-similar way:

— Y-, (—

Ult,z) =p (T =)V, (M(T—t)H%)

where (U;);en+ is a family of analytic profiles (see [13] for example), and where u > 0 is a free
parameter. They are at the heart of the shock formation, a fact that is rarely emphasised, which
lead us to give a precise and concise study in Section 2. Self-similar and discretely self-similar
blow-up profiles for Burgers equation are classified in Proposition 4. Different scaling laws
are thus possible, depending on the initial condition via its behaviour near the characteristic
where the shock will form, which has to do with the fact that the scaling group of (1.3) is
two-dimensional, see Section (2). This possibility of several scaling exponents is referred to as
self-similarity of the second kind [1]. For each i € N*, W,  defined in Proposition 5, is an odd
decreasing profile, which is nonnegative and concave on (—oo, 0] and such that dx ¥; is minimal
at the origin with asymptotic ¥;(X) = —X + X**! as X — 0. One has in particular the formula

Uy(X) = (—% + <% +X;>%)é + (—% — (% +X£>%)é, (1.4)

for the fundamental one [9]. As in the above formula, all these profiles are unbounded at infinity
but they emerge nonetheless from well localised initial data. A precise description of these
profiles is given in Proposition 5. Any regular enough non-degenerate solution v to (1.3) that
forms a shock at (T, x() is equivalent to leading order near the singularity to a self-similar profile
W, up to the symmetries of the equation

x— (xg—c(T — 1))
(T — )" 2

see Proposition 9. The blow-up dynamics involving the concentration of Wy is a stable one for
smooth enough solutions. The scenario corresponding to the concentration of W; for ¢ > 2 is an

Ut,xz) ~ (T — t)%/flllli <,u > +c as (t,z) — (T, x0), (1.5)

eq:critere e:

eq:burgers?2
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unstable one. For a suitable topological functional space, the set of initial conditions leading
to the concentration of W; for ¢ > 2 is located at the boundary of the set of initial condition
leading to the concentration of Wy, and admits 2(i — 1) instability directions yielding one or
several shocks formed by ¥; for j < ¢. The linearised dynamics is described in Proposition 8.

1.3. Blow-up for the reduced parabolic system

For a solution u to (1.1) that is odd in =z, the behaviour on the transverse axis {z = 0} is
encoded by a closed system, which is the motivation for this symmetry assumption. It admits
solutions blowing up simultaneously with a precise behaviour. Indeed, assume d%ug(0,y) = 0
for all y € R for 2 < j < 2¢ for some integer ¢ € N. This remains true for later times and the
trace of the derivatives

E(t,y) == —pu(t,0,y) and ((t,y) =0 u(t,0,y) (1.6)
solve the parabolic system

(NLH) & — €% — 9,6 =0, (1.7)
(LFH) G — (2 +2)6C — 9yy¢ = 0. .

Solutions to the nonlinear heat equation (NLH ) might blow up in finite time, a dynamics that
can be detailed precisely, see [26] for an overview. There exists a stable fundamental blow-up
[2, 3, 17, 24], and a countable number of unstable "flatter” blow-ups [3, 15], all driven to leading
order by the ODE f’ = 2. For the present work, we had to show additional weighted estimates
than those showed in these articles. In particular, we revisited the proof in [3, 15, 24] and
obtained a true improvement for the ”flat” unstable blow-ups, see the comment below. For the
solutions & to (NLH) below the solution to the linearly forced heat equation (LF H) may also
blow-up in finite time with precise asymptotic that we detail later on.

Theorem 1. Let J € N. There exists an open set for a suitable topology of even solutions to
(NLH) blowing up in finite time T > 0 with

1 | )
f(ﬂ y) = 2 + 57
=1 1+ sormayiogrr=an

where the remainder € satisfies for 0 < j < J for some constant C' > 0:

C 1 1

(T — )| log(T — t)| ¢ <1 + ng@_m)% (\/(T — )[log(T — t)] + \y!)

For any k € N, k> 2, a > 0, there exists T* > 0, such that for any 0 < T < T* there exists an
even solution to (1.7) blowing up at time T with

1
t = @@ @ @
§ty) T —t+ ay?

09¢| <

7

+ €, (1.8)

where the remainders € satisfies for j =0, ..., J for some constant C > 0:

o~ 1 3 —(2k+j)
el <o (@-vx+pl)* (1.9)

Comments on the result.

The even assumption is not necessary, it is here to fit the even assumption on (1.1). The
construction that we give here for the second case of the unstable blow-ups is not a copy of
the seminal previous ones [3, 15, 24], but a bit simpler and more precise. In particular, we
extensively use the fact that these profiles are perturbations of the smooth unstable self-similar

id:decomposi

bd:remainder
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profiles of the quadratic equation f; = f2, and that away from the origin in self-similar variables
the problem is a perturbation of the renormalised quadratic equation fs+ f —(Z/2k)fz — f? = 0.
We avoid the use of maximum principle as in [15] or of Feynman-Kac formula as in [3, 24], and
obtain a sharp estimate. Namely, the convergence of the solution to the blow-up profile holds
in a spatial region that is of size one in original y variables which is the estimate (1.9). For
example, this estimate directly implies the existence of a profile at blow-up time u(t,y) — U*(y)
ast — T for y # 0, and that it satisfies U*(y) ~ (ay®*)~! as y — 0 (this fact would not be
obtained directly in previous works).

Proof of Theorem 1. The second part, concerning the unstable blow-ups, is proved in Section 4.
The proof of the first part for the stable blow-up is very similar, and though our method is a bit
simpler than [3, 24] it does not yield truly improved estimates, hence we just sketch the proof
in Section 5.

O

1.4. Statement of the result

The main result of this paper shows how, in a case with symmetries, the viscosity affects
the shock formation of Burgers equation, resulting in a concentration of a self-similar shock
U, along the vertical axis {z = 0}, with scaling parameters that are related to the solution of
the parabolic system (NLH) — (LFH). As a consequence, any blow-up solutions to the two
one-dimensional equations can be combined to obtain a two-dimensional blow-up. Note that
the solutions below can be chosen initially with compact support, and that we are only able to
construct them around an initially concentrated blow-up profile. The first theorem involves the
stable blow-up of (NLH). The blow-up pattern is stable in a Banach space B of C* regularity
with polynomial weight associated to the norm:

4 . .
()71 (y)72 07 0P u
lulls = i . (1.10)
’ jl'l'zjz::O <l‘>4(<y>3—|—<$>)_7 Lo (R?)

Theorem 2. For anyi € N* and b > 0, there exists a Schwartz class solution u to (1.1), blowing
up at time T with

1 T
u(t,z,y) = b AT (¢, )T, <b—>+ﬂt,$,y
(t.2.) () (b5 ) + i)

where V; is defined by (2.5) and the transverse scale satisfies

) 2 I+

Mt,y) = (T —t)t T2 (1

=00 (i)
and one has the convergence in self-similar variables (X, Z)

1 1 1 X
T —t)"2iu((T -2 X, /(T —t)|log(T —t)|Z) = b~ 11+ 2%/8)2V; | b— ———
(T — )3 ((T = )3 X, /T = O1og(T — D] 2 ) — b~'(1+ 2%/3) Tl
(1.11)

in C' on compacts sets and for some constants C > 0 the remainder satisfies
105i|| o0 < C(T — )~ log(T — t)| 1. (1.12)

For i = 1, there exists a ball in B around u(t = 0) such that any other solution with initial
datum in that set blows up with the same behaviour.

bd:def mathc:

main:bdtildes
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For ¢ = 1, we did not pursue optimality for the weighted space B. Other choices for the weight
may be possible, but the C* regularity is essential and could only be lowered to C** by adapting
the proof. Importantly, B allows for unbounded perturbations', highlighting the fact that only
the control of derivatives is of importance in this problem. The second theorem involves the
unstable ”flat” blow-ups of (NLH).

Theorem 3. For any k,i € N*, k > 2, a,b > 0, there exists T* > 0, such that for any
0 <T < T* there exists a Schwartz class solution u to (1.1) odd in x and even in y, blowing up
at time T with

u(t,z,y) = b_l)\ﬁ(t,y)\lli <b)\(zy)> +u(t,x,y) (1.13)

where A(t,y) = (T —t + ay%)H% and one has the convergence in self-similar variables (X, Z)

_1 1 1 _ 1 X
(T —t) 2iu ((T—t)H%X, (T —t)2x Z) = b (1 +aZ%)2 9, (bm> (1.14)

in C' on compact sets and for some constants C,n > 0 the remainder satisfies
0yt oo < C(T — t)~1H7, (1.15)

Proof. Theorem 3 is proved in Section 3. It is a consequence of Proposition 16 and Lemma 18.
The proof of Theorem 2 is very similar, and is just sketched in Section 5.
O

1.5. Comments on the result and open problems

1. Stability/Instability in the symmetric case. The solutions of Theorem 2 with ¢ > 2, or that
of Theorem 3 are instable within the class of odd in  and even in y solutions. For ¢ > 2, these
solutions are such that 8§u|m:0 = 0, and we expect a generic perturbation of this third order
derivative on the axis to lead to the blow-up behaviour described in Proposition 10 for k > 2
and (5.3) for k = 1. The sign of such perturbation is important as we believe b < 0 would create
shocks outside the vertical axis. For k£ > 2, these solutions are such that amu|m:0 is an instable
blow-up solution of (NLH) and generic perturbations lead to the stable blow-up k = 1 [16]. We
do not believe that solutions of Theorem 2 with ¢ > 1, though being stable, provide a generic
blow-up behaviour in this symmetry class: the blow-up might occur at another point than the
origin where such symmetry around that point would fail.

2. Symmetry breaking. We expect all solutions to Theorem 2 and 3 to be instable by symme-
try breaking. Formally, our blow-up profile (3.13) admits non-symmetrical analogues, but the
anisotropic viscosity make them fail to be approximate solutions, so our Ansatz does not adapt.
The symmetry class we use allow for a control of the viscosity effects. But we wonder wether
outside this symmetry class, viscosity, via some kind of hypo-elliptic effect, might prevent blow-
up. This can be seen formally by considering solutions of the form u = V(¢t,z — ey). For e = 0,
V solves Burgers equation (2.1) and u might blow-up. By tilting slightly the symmetry axis
€ > 0, V solves the viscous Burgers equation V; + V'V, — €2V,, = 0 and is global. Investigating
the generic behaviour is thus an interesting open problem.

3. Anisotropy. Very few results concerning a precise description of anisotropic singularity for-
mation exist, despite its fundamental relevance in fluid dynamics. We see that here a wide

'The local well-posedness for equation (1.3) in B follows from local well-posedness for localised data, using the
finite speed of propagation of the equation along the = variable.

main:decompo:

main:bdtilde:
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range of different scaling laws in the z and y variables are possible. The formation of shocks
for two-dimensional extensions of Burgers equation is studied in [25]. Let us also mention that
in [10, 23] anistropic blow-ups were constructed for the energy supercritical semi-linear heat
equation.

4. Connections between self-similar blow-ups. (1.1) appears to be a good candidate to study
connexions between self-similar profiles. As the concentration of ¥; for ¢ > 2 for Burgers is
unstable with instabilities yielding to the concentration of ¥; for j < 4, and as the same should
hold for the unstable blow-ups of (NLH) (see [16] for the genericity result), one interesting re-
sult would be to prove rigorously that solutions to (1.1) concentrating the i-th profile of Burgers
and the k-th of (NLH) are unstable with instabilities yielding to the concentration of the j-th
profile of Burgers and the ¢-th of (NLH) for (j,¢) < (i, k).

5. Continuation after blow-up. The inviscid Burgers equation possesses global weak solutions
that can be obtained using a viscous approximation and that are unique under a suitable entropy
condition. The investigation of the analogous problem for (1.1) is natural. In particular, if the
solution can be continued and has jumps, what is the set of points with discontinuities and its
dynamics?

1.6. Ideas of the proof and Organisation of the paper

The result relies on the extension of a lower-dimensional blow-up along a new spatial direc-
tion, as in [10, 23]. Self-similar blow-up in Burgers equation is completely studied via direct
computations, without technical difficulties. It is an easy setting to understand properties of
blow-ups, for example regularity and stability issues and discretely self-similar singularities. The
extension along the transverse direction is studied through modulation equations (1.7), which
for the first time are non-trivial PDEs. To obtain weighted estimates for (NLH) we adapt [24]
and use a new exterior Lyapunov functional in Lemma 33, see the comments below Theorem 1.
The blow-up of the solution to (NLF') can then be studied in the same analytical framework.
The core of the paper is the 2-d analysis. The ideas are somewhat similar to those used in
other contexts of blow-up through a prescribed profile, but are specific to the problem at hand
and we hope that they will have other applications in transport and mixed hyperbolic/parabolic
problems. We derive a blow-up profile with well-understood properties and linearisation, and
build an approximate blow-up profile using modulation to neutralise growing modes. We then
construct a solution in its vicinity via a bootstrap argument. We use solely weighted energy
estimates, which are robust and reminiscent of a duality method for the asymptotic linear oper-
ator, and derivatives are taken along adapted vector fields to commute well with the equation.

The paper contains two independent sections devoted to Burgers equation and the modulation
system, and another one proving the main theorem which can also be read separately as it uses
their results as a black box. Section 2 concerns the self-similarity in the blow-ups of Burgers
equation. Section 3 is devoted to the proof of Theorem 3, assuming some results for the deriva-
tives on the vertical axis, Theorem 1 and Proposition 10. The blow-up profile and the linearised
dynamics are studied in Lemma 11 and Proposition 12, and the heart of the proof is a bootstrap
argument in Proposition 16. Section 4 deals with the two Propositions 1 and 10 admitted in
Section 3, and concerns in particular the flat blow-ups for the semi-linear heat equation. Finally
in Section 5 we sketch how the proof of Theorem 3 can be adapted to prove Theorem 2.
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1.7. Notations

We use the Japanese bracket notation
(V) = (1+Y?)z.

For functions having in argument a rescaling of the variable X, we use the general notation X
for their variable, as in (X + X?)(cX) = ¢X + (¢X)? for example. Depending on the context,
X will also refer to the main renormalised variable

X

S — (1.16)
(14 Z%)2

and there should not be confusions. We write a < b if there exists a constant C independent
of the other constants of the problem such that a < Cb. We write a =~ b if a < b and b < a.
Generally, C' will denote a constant that is independent of the parameters used in the proof,
whose value can change from one line to another. When its value depends on some parameter
p, we will specify it by the notation C(p). To perform localisations, the function y is a smooth
nonnegative cut-off function, y =1 on [—1,1] and x = 0 outside [—2,2].

X =
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2. Self similarity in shocks for Burgers equation
This section is devoted to the formation of shocks for Burgers equation
U, +U0U, =0 (2.1)

This simple equation appears as a toy model for blow-up issues involving self-similar behaviours.
However, we did not find works in which this was emphasised apart from [13] (though implicit
in some other works) where the existence of smooth self-similar singularities and their linearised
dynamics are briefly studied, the usual point of view being geometrical [7]. Everything is explicit,
which is convenient as the picture described in Subsection 1.2 shares many similarities with other
equations. In particular one sees the link between the regularity of the solution and its blow-up
behaviours (this issue appearing in other hyperbolic equations as in [20]).

2.1. Invariances

If U(t,z) is a solution to (2.1), then the following function is again a solution by time and
space translation, galilean transformation, space and time scaling invariances:

1 t—ty r—x9—ct
)\U< T p >—|—c.

In particular for A € R% and o € R, X* U (¢t/\,2/\?) is also a solution. The associated
infinitesimal generators of the above transformations are?

A, = 1d—20,, Ag\a) = —(1—a)Id—t0,—axd,, A, = —t0,+1, Ay = —0s, Ny :=—0; (2.2)

and there holds the commutators relations

A, AT =0, A A = —(a— DA+ 1, [App, AY) = —afsy, [Ayg, ALY = —Ay. (2.3)

2Here Id stands for the identity and 1 for the function with constant value 1.

eq:deftildeX

eq:burgersus:

burgers:def::
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The tilde comes from the fact that we will use their spatial counterparts:
Ay :=(1—-a)ld+aX0x, Ac:=0x+1, A:=—-1+4 X0x (2.4) |burgers:def:
2.2. Self-similar and discretely self-similar solutions

Important solutions are those who constantly reproduce themselves to smaller and smaller
scales. To measure their regularity, let us define the following Holder spaces. For i € N one
takes C*(R) to be the usual space of real-valued functions i times continuously differentiable on
R. For i € N and § € (0,1), C*° is the set of functions f € C*(Q) such that

p @) = Oif () O (w) = f ()

ztxo |:E — l‘0|5 zlxo |:E — l‘0|5

’

are well-defined for all zp € R. We then use the notation C"* = Ur/>TCT/ and C"" = Up,C" .
Assume U is a C'! solution to Burgers equation becoming singular at a singularity point (tg, o).
Then one can always use gauge invariance to map it to a solution defined on some domain
(T,0) x R with T' < 0, that becomes singular at (0,0) and such that U(t,0) = 0 for all ¢ € (T',0).
In particular, Ug(t,-) is minimal at the origin with U,(¢,0) = —1/t. The subgroup of the
invariances R? x (R*)2 preserving these properties is

Ju t

=(\p)€G:=(0 2, gU:(ta)— U<~ ).
5= €= (0400, 4 () 5 (§.2)

Let Q := (—00,0) x R. The stabiliser of U € C(Q) is the subgroup G5(U) := {g € G, g.U = U}.
Solutions with invariances can be classified according to their regularity.

Proposition 4 (Classification of self-similar solutions). Let U € CY(Q) be a solution to (2.1)
with U(—1,0) = 0, infg Uy(—1,-) = Ux(—1,0) = —1 and such that Gs is nontrivial. Then three
scenarios only are possible and exist, the profiles W € C'(R) below being defined in Propositions
5 and 6 and in (2.13).

- Analytic self-similarity: U is analytic and there exists i € N and p > 0 such that

x) = pu (- % i -
Ult.) = p ()5, (u <_t>1+;>’

or U(t,z) = Woo(x/(—t)) = z/t.
- Non-smooth self-similarity: There exists i, pu, ;1 > 0 with i ¢ N and p = p' (resp. i > 0
and p # 1) such that

1 X
U(t,a;) = (—t) 21‘\1’(2'7M7M/) <7(_t)1+2i> .

where \I/(i,u,ul’) 22:3 defined by (2.13),1 a;zd iy € CTP2R), Wiy, & CTP2T(R) (resp.
\Il(i,,u,,u’) cCt Z_(R), \Il(i,,u,,u’) §7§ clt Z(R)) '

- Non-smooth discrete self-similarity: There exists i > 0 and A > 1 such that U ¢ C 1+2(Q)
(there exist such solutions with any reqularity bewteen C1 and C1+2=), that for all k € Z:

k. t x
U(t,z) = \2iU <V7 m) )
and that there exists (t,x) € Q such that U(t,z) # (—t)Y VU (=1, /(—t) 1/ (D),

Before proving the above Proposition 4, let us present the self-similar and discretely self-
similar solutions.
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moothselfsim| Proposition 5 (Self-similar solutions [13]). There exists a set {¥;, i € N*}U{¥} of analytic
functions on R with the following properties. One has Voo(X) = —X. For i € N*, the function
U, is odd, decreasing, and concave on (—o0,0], satisfy the implicit equation

X = —W(X) = (Ti(X)** (2.5)

and have the following asymptotic expansions:

“+00
U (X) = —X + X243 6 XL a5 X 0, (2.6)

k=2
2
Uy (X) = —sgn(X)|X| 2 + sgn(X)% O(IX| 2 =#1) as |X| = +oo.  (2.7) [id:asUiinfey
Moreover, it solves the equation
— %\IJZ + 2Z2+ 1X8X\If +U,0xV,;, =0 (2.8) |eq:smoothsel:

and any other globally defined C' solution is of the form ¥ = ,u_l\If (uX) for some pu > 0 or
is =X or 0. The functions U (t,z) = z/t and UGH (t,z) = p= (=) C)W, (pa/ (—t) 1/ (29)
are solutions to (2.1).

Proof. Consider the function ¢(¥) = —W — W?+! which is an analytic diffeomorphism on R. Its
inverse W; := ¢! satisfies (2.5), (2.6), (2.7) and the other properties of the proposition from
direct computations. Since

e (3o 0+ X0+ e 0w ()
= —¢ {(X)¢' (671 (X)) + (20 + )X + 2i¢~ ' (X)
= —¢ M X)) (=1 — (20 + D) (¢ H(X)H) + (20 + 1) X + 2ip 1(X)
—(2i + 1)(—¢H(X) — (¢ (X)* ) + (20 + 1)X =0,

it solves the equation (2.8). Since it solves this equation, U(t,x) = (—t)"/ @)W, (x/(—t)1+1/(2D)
solves (2.1) since introducing «; = 1 + 1/(24):

Ui +UU, = —(a;—1)(=t)% 2y, <(_f)ai> +ai(—t)°”‘2(_f)ai Ox; <$>

._ ; x
= (—t)%i? (—(ozi — 1)V, + ayUL) + \Ifiaxqfi) <(_t)ai> =0
The same reasoning applies for ='W, (uX) since (2.8) is invariant under the transformation
U p~ W (puX). If U is another solution to (2.8) with —1 < (1) < 0 then using this invariance
U = p ' W (uX) for some g > 0. If (1) < —1 or ¥(1) > 0 it is easy to check that the solution
is not globally defined.

O

There also exist solutions reproducing themselves to a smaller scale, but in a somewhat
periodic manner, unlike self-similar solutions. They have a fractal behaviour near the origin and
are never smooth.
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Proposition 6 (Non-smooth discretely self-similar blow-up). Let « > 1, A > 1, Xy, X; €
(—00,0) with \'=9Xy < X7 < A™%Xy and consider a function V € C'([Xo,X1),R) satisfy-
3
ing
X; =A%+ (A = ATV (X),
V(X) e (0,-X) and Vx(X) € (-1,0) on [Xo,X1),
and

. B ) AVx (Xp)
_ y1-«a o X{A0 -
lim V(X)=XA"V(Xy), Xh_}n)l{1 Vx(X) = T 0= )V (Xo)' (2.9) |id:cond v

X—>X1
Then there exists a unique odd function W € CY(R) such that for all X € R,

W(X) = AN7W (A*X + (A\* = X" H (X)) (2.10) [burgers:eq:d

and W =V on [ X, X1). One has W(X) € (0,—X) and Wx(X) € (—1,0) for all X € (—o0,0),
and its derivative is minimal at the origin with value Wx (0) = —1. Let i = 1/(2(av — 1)). Then

0 < liminf W) - X < limsup W) - X

10 X [+2i o X |12 oo

with equality if and only if W(X) = p~"W;(uX) for some u > 0 where V; is given by (2.5).
Therefore, unless W = p~"W;(uX) one has W ¢ C**1. There exist such solutions of regularity
C?*1=¢ for any e > 0. Moreover, the solution U defined on (—00,0) x R as the solution to (2.1)
with U(—1,z) = W (z) satisfies

1 t X
U(t,X) = e Y <V’W> (2.11)
for all (t,X,k) € (—00,0) x R X Z.

Remark 7. If (1—a)W+aXWx+WWx # 0, then U is not of the form U = (—t)*~1W (x/(—t)%),
implying that the set of all k € R such that (2.11) hold is isomorphic to Z and that the solution
18 not continuously self-similar.

Proof. We proceed in two steps. First we extend V in a periodic manner, and then we show the
regularity properties.

Step 1 Construction. Consider the mapping ¢ : [Xg, X1) — R defined by
H(X) =A"X + (A7 = ATV (X).
One has ¢(Xy) = X; and since A, > 1 and Vx € (—1,0) one computes
Sx(X) = A"+ A=AV (X) > A >0
and hence ¢ is a C! diffeomorphism onto its image. Define
Xo = Jim (X)) = A7OX1 + (A7 = ATV (X).

and for X € [X3, Xy) extend V by
W(X) = X7V (67 (X))

Claim: One has X; < Xy < 0, that W is C! on [X(, X5) and that restricted to [Xi, X2)
it satisfies the condition of the proposition. Moreover for all X € [Xi,X3), A“X + (A\* —
/\a_l)W(X) € [Xo,Xl) and

W(X) = AN7W (A\*X + (A* = A H (X)) .

3The set of such functions is non empty and it contains profiles which do not satisfy (1—a)V+aXVx+VVx = 0.
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The proof of this claim involves only basic computations that we omit here.

From the Claim we see that we can repeat the construction a countable number of time. If
(Xk)ken denotes the set of points coming from the construction then by induction

Xp = A7FXy + (AR — A=y (X))
hence X; — 0. The construction then provides a C! extension W of V on (Xj,0) such that
for all X in this set, 0 < W(X) < =X, —1 < Wx <0, and for all X; < X <0, \*X 4+ (\* —
AW (X) € [Xo,0) and
W(X) =AW (A\*X + (\* = A H (X)) .
Step 2: Properties. From the definition of the extensions one has

sup  [W(X)[ =" sup [W(X)
XG[Xk+1,Xk+2} XG[Xk,Xk+1]

and therefore limx_,o W(X) = 0. From (2.10) one sees that

Aa
T1-(1-Na
f has two fixed points —1 and 0, is increasing on (—1,0) with —1 < f(a) < a. Therefore,

-1< inf  OxW=f( inf JOxW)< sup OxW = f( sup OxW)— —1
[Xk+17Xk+2} [XIWXkJﬁﬂ [Xk+1,Xk+2] [Xk,Xk+1]

IXW (A2X + (A =AW (X)) = f(OxW (X)), f(a)

implying that OxW (X) — —1 as X — 0, and in particular dx W is minimal at the origin with
OxW(0) = —1. We now prove the absence of regularity at the origin. Take any zy € [Xo, X7)
and define the sequence z; by induction following

Ze = N %1+ (AT = AW (2_1).
It follows that W (z) = A'=*W (z,_1). By induction,
2k = A + (AR = MW (29) = — XU (20) (1 + O(AT))
as k — +oo since A\, > 1, with the constant in the O uniform in zy € [Xy, X1). By induction,
—2kg1 — Wlzeg1) = A7 (=20 — W(20)).

Therefore,
W) oW
|2k | 1 W (=0)] =T
as k — +o00. One then deduces that since the convergence is uniform for zy taken in [Xy, X1),
-X - X - X -W(X
0<liminf—vl/()_h sup—vl/()<+oo
X0 | X|oT X0 | X|=oT

Therefore the solution is not C=-T if the equality does not hold. Assume now the equality. This
means that there exist a constant ¢ > 0 such that for any X € [X(, X1) one has

—Xo — W(XO))
W (Xo)|a-t

W is then the self-similar profile* of Proposition 5, and is not discretely self-similar.

=c, ie. X:—W—C‘W‘%.

‘For o # 1+ 1/(2i) for i € N the profiles W1 /(2(a—1)) defined in Proposition 5 still exist and have all the
corresponding properties, they just are no longer smooth.
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One can apply the same extension technique to define W on the other side (—oo, Xy). The
uniqueness of the extension follows from an induction, using the fact that if W is given on some
[Xk, Xr11) then it has to be given on [Xj11, Xk12) by the construction we provided. We leave
to the reader to prove that if V € C7 for some 1 < v < /(v — 1) then so is W.

O

Self-similar and discretely self-similar solutions having been presented in Propositions 5 and
6, we can now give the proof of the classification Proposition 4.

Proof of Proposition 4. We only sketch the proof, since either the computations involved are
rather easy or they are very similar to what can be found in the proofs of Proposition 5 and 6.
The stabiliser of U is closed in G from the regularity of U. One identifies G to a closed subgroup
of R? via (21, 22) = (log(\),log(u)), and recall that closed subgroups of R? are isomorphic to
one of the following groups: Z, R, Z x Z, R x Z or R?.

Case 1, G, ~ Z: in that case G, = {(\*, uF), k € Z} for (\, ) # (1,1) meaning that
k
0 t
One can check that if A =1 then u = ¢(¢)z, and if g =1 then U = 0, which are contradictions.
Hence A, 11 # 1 and we define o € R, by u = \* giving G, = {(A\¥, \*@), k € Z}. For all k € Z,
1 t x
U(t,(l}‘) = 7)\(1—0{)]6 U (E, W)

and since G5 # R there exists (¢, z) such that U(t,z) # (—t)* U (=1, 2/(—t)%). One can always
take A > 1. We take t = —1, k = 1, to obtain

U (%x> = \TU (=1, \).

From the relation on characteristics

U(-1,2) = U <—§x + (1 - %) U(_1,$)> .

Introducing the profile W (X) := U(—1, X) one deduces that it satisfies
W(X) =MW (A\*X + (A\* = X H (X)) (2.12)

and that W is C! with W(0) = 0 and Wx minimal at zero with W, (0) = —1. We claim that if
« > 1 then W is a function as described in Proposition 6 in which the above functional equation
was studied. We claim that the case = 1 is impossible and that if o < 1 the function is not
C' by looking at its behaviour at the origin. Therefore Case 1 corresponds to Proposition 6.

Case 2, G; ~ R: in that case G5 = {(\*, u?), a € R} for (A, u) # (1,1) meaning that

@ t

Ult,x) = =iy <—,£> , YaeR
@ @ Iua

This group of transformation contains the cases a € Z, and we have seen in case 1 that one

cannot have A = 1 or y = 1. Hence A # 1 and p # 1. Define o by p = A% giving (up to an

abuse of notation) G5 = {(\,A%), A > 0} and that for all A > 0,

1 t x
U0 = 50 (550

id:eq U dss «
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In particular, v is invariant by the transformation

1 t =z
U(t,x) = 7)\]6(1—()!)1] <V7 W) .

for any fixed A > 1 and k € Z. We have seen in the study of Case 1 that one cannot have o < 1
for such an invariance, hence a > 1. We now write

1 x
Ut,z)=—F+U|—-1,——|.
)= =t (1 o)
Hence the profile W(X) = U(—1, X) satisfies the equation

(1—a)W+aXWx + WWx =0.

Solutions to this equation with W(0) = 0, Wx minimal at 0 with Wx(0) = —1 have been
classified when 1/(2(aw — 1)) € N* in Proposition 5. It is straightforward to check that if
1/(2(a—1)) ¢ N* the profiles ¥, /(9(,—1)) defined in Proposition 5 exist, have all the corresponding

properties, and are C*/(@=1_ Any self-similar shocks can then be written in the form
-1 .
' e (pX) if X <0,
Vi) = | ey % 20,

for i € R, i > 0 where U, is given by (2.5). When ae = 1, the only solution to XWx + WWx =0
with W(0) = 0 and Wx(0) = —1 is W(X) = —X which is a contradiction.

(2.13)

Case 3 If G, ~ Z? or G; ~ Z x R, in this case that there exists a subgroup of G, of the
form {(\*, \*®), &k € Z} with A > 1 and a < 0. Indeed, the mapping (A, ) — (log A, log j)
transforms G, into a subgroup of R%. This new subgroup is also isomorphic to Z? or Z x R.
Any such subgroup must contains a point (z1,292) in the bottom right quadrant z; > 0 and
z9 < 0, then A = ¢** and o = i—f gives the desired subgroup. From the study of Case 1, such an

invariance is impossible. If G ~ R? one can check that u(t,z) = z/t.
O
2.3. Stability and convergence at blow-up to self-similar solutions

The suitable framework for the stability of W; is that of self-similar variables where the
linearised operator is

Hx = Aai +W,0x +0xV¥; = (1 — Ozi) +0xV; + (OéiX + \Ifl)aX (2.14)
Proposition 8 (Spectral properties of Hx [13]). The point spectrum of Hx on smooth func-
tions is

T(Hy) = {% je N}. (2.15)

The eigenfunctions related to symmetries are

HXAxO\Iji = —OéiAmo\I’i, HX(Aai\Iji) = _Aai\Ijia HX(AC\I/Z) = —(Oéi—l)(Ac\I’i), HxA“\I’Z' = 0

(2.16)
More generally, the eigenfunctions are given by the formula:
j—2i—1 (~D*w]
H ) =——dx.i, = 2.17
X(0xg) = 50X 0K T g (2.17)
They have the following asymptotic behaviour:
ox;(X)=X7 — (j+2i + DX+ O(XIT) as X —0, (2.18)

burgers:def::

burgers:id:e:
eq:def phiXj

id:as phikO
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ox;(X) = 9% :_ 1|X|% + O(|X|J§@12lz_%) as X — 4o00. (2.19) |id:as phikin:
i
Proof. Step 1 Proof of (2.16). Let U(t,z) := (—t)% 1, (x/(—t)*) which solves (2.1) and by
invariance, (70(3)U )t = —(70(3)U )890(7'5(3 U) for any ¢ € R. Differentiating with respect to ¢ one
obtains (AU); = =AU, U — U0, (A:U), which evaluated at ¢t = —1 yields:
O <1~XCU> (—1,) = =U;0x (A:V;) — Ox VAL, (2.20) |burgers:id:e:

Self-similarity implies from (2.2) that Ag\ai)u = 0 hence Ag\ai)]\cu+ A, Ag\ai)]u = 0. This identity
reads from the commutator relation (2.3):

Ag\ai)Acu = (o — 1)Acu.
At time t = —1 the above identity yields from (2.2) and (2.4):

8t(AC’LL)(—1, ) — (1 — Oéi)AC\I’Z' — OéiXaxAc\I’i = (Oéi — 1)AC\I’Z

From (2.20) the left hand side in this identity is —HxA.¥;, ending the proof of (2.16). The
proof for the eigenfunctions related to the other symmetries (2.16) is exactly the same.

Step 2 Proof of (2.15) and (2.17). Assume f solves Hx f = vf. Then using the implicit equation
(2.5) one obtains:

of
ov;

i+ v+ (o — 14 v)(2i + 1)¥2
(Oéi — 1)\111' + a,-\I/?”l

\P2i+1+2iy
eSpan | —i
J & 8pan | T e

2i + 1+ 2iv + (1 + 2iv)(2i + 1) V%
U + (20 + 1) w2+t

f

=/

whose solution is of the form

From (2.6) the above formula defines a smooth function if and only if v = (j — 2i — 1)/(2i) for
some j € N.
]

The smooth self-similar profiles are the asymptotic attractors of all smooth and non-degenerate
shocks in the following sense.

Proposition 9. Let Uy € C*°(R) be such that 0,Uy is minimal at xg with
U(](:E(]) =c, 890U0(:E0) < 0, 8%(]0(:170) =0 forj=2,..,2t, and 8gi+lU(](:E0) >0 (2.21) n:id:cond in:
for some i € N*. Then u blows up at time T = —1/U,(x¢) at the point xo = xo + T with:

r —xg— ct

Ult,z) =y~ YT — )0,
(t, ) = (T 1) (u(T_t)HZlZ_

> +c+w(t )

. 1
, . _ 92 U (xo) 2
where V; is defined by Proposition 5, where p = D00 o)) and where

“ ) =0 as (z,t) = (200, T). (2.22) |burgers:cvse;

L —xo—ct
(1 -ty (p2=mes
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Proof. Without loss of generality, up to the symmetries of the equation we consider the case

x9 =0, U(0) =0, Uy(0) = —1 and > Uy(0) = (2i + 1), ie. T=1=b,c=0. For 0 <t <1
and x € R we have the formula using characteristics for |y| < 1:

Ulz,t) = Us(y (), ¢e(y) = y+tUo(y) = L-t)y+y* T +0(y* ) +O0(|ly[* T [1~)), (2.23)

Ot deﬁning a diffeomorphism on R for all 0 < ¢ < 1. Given (¢,z) close to (1,0) we look for an
inverse ¢; ' (z) of the form —(1 — t)YG)W,(x(1 + h)/(1 — )Y/, Since |U;(z)| < ||/ D
for x € R, we compute using (2.5):

o (-0 -0iu (5 e )
0 (-0l (5 e )
— z(1+h)+0 ((1 — )t ((1|f|2|;—1++1;}(|2)>1+—+> +0 <(1 — )t df'g—il}}é))

= 2(1+h) +O(z|"TFFE|L + h|) + O((1 — t)|z||1 + h|).

From the intermediate values theorem, there exists h = O(|z|"/(%*+1) 1 (1 — t)) such that there

holds the inverse formula
1 (14 h)
o < (1 —1)2 ¥, <(1—t)—1+1/(2l)>> =z (2.24)
and there holds

z(1+h) B x Hhdu T
v (i am) = (g [, o (G

) <0 (e (e )

Injecting Up(y) = —y + O(Jy|**1) in (2.23), using (2.24), the bound on h, the above bound and
(1 — )Y (z/(1 — )Y E)) < |2/ ZHD) | one obtains (2.22).

O

3. Proof of the main Theorem 3

To ease notations we consider the case ¢ = 1 corresponding to the W, profile for Burgers,
the proof being the same for ¢ > 2. Recall the notation for the derivatives on the transverse
axis (1.6) and the corresponding system (1.7) that they solve under the odd in x and even in
y symmetry assumption. Solutions to (NLH) in (1.7) might blow up according to a dynamic
described in Theorem 1. The following proposition then describes how the singularity formation
for & makes some solutions to the other equation (LFH) in (1.7) blow up in finite time with a
precise behaviour. Its proof and that of Theorem 1 are relegated to Section 4 and we prove here
Theorem 3 admitting them.

Proposition 10. Leti=1. For any k € N with k > 2, a,b > 0 and J € N, there exists T* > 0
such that for any 0 < T < T*, there exists £ a solution to (1.7) satisfying (1.8) and (1.9), and

burgers: char:

burgers:id:i
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Co such that the corresponding solution to (LFH) blows up at time T with

¢= (T —t + ay?F)* 6
where the remainders C satisfy for j =0, ..., J for some constant C(a,b) > 0:
- L_(8k+j)
icl < C (T =nF +p)* (3.1)

Proof of Theorem 1 and of Proposition 10. Section 4 is devoted to their proof. Proposition 29
and the estimates (4.31) for £, and Proposition 36 and the estimates (4.51) for ¢, indeed imply
that Theorem 1 and Proposition 10 hold for one particular value of @ > 0 and of b > 0. One
then obtains the general result for any value of a and b by using the symmetries of the equation.
Namely, (NLH) and (LFH) are invariant by time translation, (1.7) is invariant by the scaling
transformation & — A2£(A\%t, \y) for any A > 0 and (LFH) is invariant by homothety since it is
linear.

O

We assume throughout the section that £ and ¢ satisfy the conclusions of Proposition 10.

3.1. Self-similar variables

First, the behaviour as t — T of £ and (, in Proposition 10, suggests that the typical scale
along the y variable is |y| ~ (T — t)/(?*) The typical scale for diffusive effects for a blow-up at
the origin at time T is |y| ~ /T — t. Formally, since k > 2 the diffusive effects are negligible.
As €] ~ (T —t)~" and |¢| ~ (T — t)~*, this suggests the scale |z| ~ (T'— t)/2. We introduce:

X = 9%, Y = a%—2 , s:=—log(T —t), Z:= 6_%8Y:71

6(T—1t)2 T—t (T —t)2*

1
azky

(3.2)
and

u(t,z,y) = \/g(T— t)%v(s,X,Y)

where the renormalisation factors /b/6 and a'/?k will simplify notations. To ease the analysis,
since the value of a and b will never play a role in this section, we take

a=1=b (3.3)
without loss of generality for the argument. Then v solves from the choice (3.3):
Vg — %v + gX(‘?Xv + %Y@yv +vdxv — dyyv = 0. (3.4)
We define accordingly
F(5,Y) = =0x0(s,0,¥) = (T = 0E(t,0), g(s,¥) 1= 0he(s,0,Y) = (T~ ' 3C(t,), (35)

which from Theorem 1 satisfy:

~ 1 i = _dg Loop—j .
f(S,Y):Fk(Z)+f, Fk(Z) = ma ’a]Zf’SJe Ak (1+‘Z‘)2 o ]7 ,7207’"7J7 (36)
- 6 P _g 1 gp_i .
o5.Y) = Gut G Guim gy 1041 S € B H1ZDI ST, =0t ()
and solve the system from (1.7) and (3.3):
fs+f+%Y8Yf_f2_aYYf:07 (38)
9s 49+ 50vg —4fg — Oyvg = 0. '

bd:remainder

eq:def XYZ

eq:def a b
main:eqvauto:
main:eq:def :

eq:def tildel
eq:def tilde

eq:f
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In (3.2), the variable Y is adapted to the viscosity effects whereas the variable that is adapted
to the blow-up profile is Z. The renormalised function w(s, X, Z) = v(s, X,Y") solves in fact

1 3 1 —
Wy — §w + §X8Xw + ﬂZazw + wixw — e_lesc‘)ZZw =0. (3.9) [eq:w

3.2. 2D Blow-up profile and spectral analysis

The infinitesimal behaviour near the origin along the transverse axis being understood by
(3.6) and (3.7), we need to ”extend” it along the z variable. A reasonable guess is that the
blow-up of a solution to (1.1) is given by a shock of Burgers equation A/2uW(A\=3/2, 1)
whose two parameters are dictated by (1.7). Let us first give additional properties of Wy than
those contained in Subsection 1.2. From Proposition 5 it solves

1 3
— 5\1’1 + §X8X\I/1 + Ui0x¥; =0 (3.10)

and has the asymptotic behaviour
U (X) = —X+X34+0(X%, U(X) = —sgn(X)|X|3+0(X]|3). (3.11) [main:egPsilo
X—=0 | X | =400

Since w is a global solution to (3.9) whose derivatives up to third order on the axis {X = 0}
converge to some fixed profiles from (3.6) and (3.7) one can believe that w converges as s — +00

to a profile ws, which then has to solve the asymptotic stationary self-similar® equation
1 3 1
— 51000 + §X8Xwoo + %Zazwoo + WeeOx Woo = 0. (3.12)

Lemma 11. For any a,b > 0, equation (3.12) admits the following solution that is odd in X
and even in Z:

Ola,b)(X,Z) :==b"'F, %(aZ)\Ill <ka3(aZ)X>

Proof. This is a direct computation. The equation is invariant by the scaling z — aZ, x — bX
and wao — b MW, so that we take a = b = 1 without loss of generality. From (3.6) and (3.10):

—%@[1, 1+ gX'c‘)X@[l, 1+ %Z@ZG[L 1] + O[1,1]9x O[1, 1]

3

— F,;%(Z) (—%\Ifl + gXaXqu) (F2(2)X)

+%Z§ZF;€(Z)FI€ 2(2) (-%\m + gXanq) (F2(2)X) + F2(2) (1105 01)(F (2)X)

3
2

3

_1 1 ~ 3

1 1 1 3 - 3 1 1 3 - 3
+(Fk2 — Fk 2) <—§\I’1 + §X8X\I/1> (szX) — sz <—§\II1 + §X8X\I’1> (szX) =0.
O

The choice (3.3) implies that the good candidate for (3.12) is

o(X,7) == O[L,1)(X, 2) = F, *(2)T, (FE(Z)X) . (3.13) [eq:det Theta

®Self-similarity is here with respect to the equation (1.1) without viscosity.
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The linearised operator corresponding to (3.9) near © neglecting the transversal viscosity is

1 3 1
Ly, = —5 + §X(9X + %Zaz + ©dx + 0xO

1 3 1 1 3 3
= 3 + §X8X + %Zﬁz +F, 20y (F,f (Z)X> Ox + F,(Z)0x ¥, (Fk2 (Z)X> .
We claim that its spectral structure can be understood trough the spectral analysis of two
linearised operators, Hx for Burgers equation studied in Proposition 8 and Hy for the semi-
linear heat equation studied in Proposition 24.

Proposition 12. Let k € N, k > 2. For any (j,¢) € N2, (j — 3)/2 4+ £/(2k) is an eigenvalue of

the operator Lz : C'(R?) — CY(R?) associated to the eigenfunction

3
2

_ (—1)7 %! (Fk (Z)X>
(Z) x > (3.14)

[

010(X.2) = b 2)F " (Z)ox, (FE(Z)X) — 7'F)" -

1+ 302 <Fk (2)X

where ¢x ; and ¢z are defined by (2.17) and (4.3).
Proof. This is a direct computation. From (4.2), (2.17) and (4.3) one has:

—l—l 1 3 ~ 3 1 _1_1 3
Lzojk = ¢z0F, 7 <_§¢X,j + §X8X¢X,j> (F¢X) + 522020208, 2 ox;(F X)
1 24 j 3 3
+%ZaZFk¢Z,£Fk (-1- §)<Z5X,j + §X8X¢X7j (F2X)

i 3
+oz0F), 2 (05 V10x,; + Vi0x0x,;)(F) X)
i /1 3 - 3
= ¢gzuF, <_§¢X,j + §X8X¢X,j> (F?X)

{— 2k _1_% %
+ (T — 1)z +2F070 | F, ™ *ox (F2X)

NS,

_ _1-1 1 3 -~ 3
+¢z0(F), 2 — F, 72 ((—1 - %)@bx,y’ + §X8X¢X,j> (£ X)

i(j-3 1 3. g
+¢z kL), (T + §)¢X,j - EXaj(?bX,j (Fy? X)
j—3 ¢ i s
= <7 + %> bzl Cox i (FX).

3.3. Linear estimates

A maximum principle holds for the linear transport operator £z. Also, we will not use this
estimate as is, we believe it is of interest.

Lemma 13. Assume gy € LS (R?) is such that |eg| < Clpj | on R*\{X = 0}, for some C > 0

loc

and (j,¢) € N2. Then the solution to Osc + Lze = 0 with initial datum eq satisfies:

‘ . (3.15) main:bd:esti

L (R2\{X=0})

3

Pij.e

€0
Pij.e

Lo (R2\{X=0})



lem:lineaire

SINGULARITY FORMATION FOR BURGERS EQUATION WITH TRANSVERSE VISCOSITY 19

Proof. This is a straightforward computation along the characteristics, that we omit.

We now investigate the linear dynamics in the presence of dissipation, for the full operator:

1 3 1 k—1
£2:—§+ax(9+<§X—|—@>ax—l-ayay—ayy:ﬁzﬁ-wzaz—@yy,

and find an energy estimate that mimics (3.15). We will use eigenfunctions of the form ¢; , with
7 >3 and £ = 0 to ensure time decay, and because the choice £ > 0 would produce a singularity
near Z = 0 that is incompatible with the viscosity. We replace the L* norm by a weighted LY
norm with ¢ large enough, also in order to be compatible with the viscous term.

Lemma 14. Let 0 < j < ig. For any k > 0, there exists ¢* € N such that for all ¢ € N with
q > q* there exists s* > 0 such that the following holds. For any s* < sg < s1, if € and = are in
the Schwartz class and satisfy on [so, s1] that:

es+Le=5F, (3.16)
that for i =0, ...,i9 one has the cancellation on the azis {X = 0}
d%e(5,0,Y)=0  and  0%Z(s,0,Y) =0, (3.17)
then the following energy identity holds:
i (e mmm) o
J,0\

i-3 &« 24 dXdY  2q—1 [ |9y(eD))? dXdY 2012 gXdY
s\ 3 3 T3 2 +
2 2) Jr2 054(X, 2) | X|(Y) q ¢i0(X, 2) | X|(Y)

P (X, Z) IXI(Y)

eq:evolinee

eq:condevoli:

id:estimatio
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Proof. This is a direct computation. One computes from the evolution equation (3.16), per-
forming integration by parts,

d (1 / 24 dxdy / 20-19,c dXdY / £29,0.0(X, Z) AXdY
ds \ 2¢ R? ¢ 0(X Z) | X[(Y) R? QDJO(X Z) | XKY)  Jre goi%J’l(X,Z) | X[(Y")
3
2

g2a-1 1 -3
— /m [55 — §X8Xa — §Y8y€ -5 v, <Fk (Z)X> Oxe + Oyye

5 dxdy k-1 = dxXdy
_ 2 =
Fi(2)0x 0y (Fk (Z)X> e +2] Xt o /@%ﬂ(X’ 720200, D) 5y
g2 1 3 1 _1 3
= /W[ j0— XaX‘Pj,O - %Zazsﬁj,o — F, 2 (2)V1(F (Z2)X)0xpj0
3 dXdy
_ F2 . -
F.(Z2)0x W1 (F, (Z)X)%,o} X0
1 3
1 / e [1 ( Y ) 1 F 2(2) W (F2(2)X)) 1
S R (W L N — | dxdy
2¢.) o3\ 27 \(Y)/ IX] X (Y)
2q —1 [ |0y (e9)|? dXdY 11 dXdY 20712 dXdY
R 2 X|(Y) 2 Movy | Y) 2 | XKY)
q (7090 q (10]0 (10]0
I 3/ e dXdY 2¢—1 [|dy(e9)]® dXdY /52'1—1” dXdy
2 Jre 20(X,2)IXIY) ¢ P IXKY) e IXIY)
1 3
1 (&% (1 Y\ 1 F 2(2)0 (F2(2)X) | 1
] o (2 (7)o X vy )

j70
1 1 1 dXdy
[y, (A1)
2q <,0 o 1Y) |X|
where we used Proposition (12). The integrations by parts are legitimate near the axis {X = 0}

because of the cancellation (3.17) and since ¥q(X) ~ —X and ¢, ~ X7 as X — 0 from (3.21).
The last terms are lower order ones. Indeed, one has:

o (7)|=

O FE%(Z)%(FE(Z)X) :Fk(Z)c?x\Ifl(Fk%(Z)X)+F,;%(Z)\111(F§(Z)X)
RY | X| X|X|

and

For the first term in the above identity, one has that |Fy(Z)| = (1 + Z?)~1 < 1 and that
|0x 1| = |1/(1 4 3¥?)| < 1. For the second, one has that |¥;(X)| < |X|. Therefore,

o (B2 20| _ 2
X =X
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Next, since |8%<,0470(X, 2) < (A4 1Z) 7 |pao(X, Z)| from (3.14) and dy = e~ F=1Ds/(k) g,

11 (14 q2e %% 1
Oy | 7o || S 7
) gy )

Therefore,

. -4
‘% / Gl 1ay<i> L (B @nE @) 1)

— +
2 2\ i X V)
1/ 1 1 \dXdy| C g k-1 €2 dXdY
b— [ 20yy [ | | < = (1 + g2 kS/—i.
2% <¢§70<Y>> xS )] )

which, injected in the previous energy identity yields the desired result upon choosing ¢ large
enough and then s* large enough.
O

3.4. Bootstrap analysis

We are now ready to prove Theorems 2 and 3. Throughout the analysis, the functions Fj,
Uy, © and ;o will be extensively used. In particular, from (3.13), a relevant variable for the
stream direction is X defined by (1.16) with:

X~ 1X](1+12))7%,

and from (3.6), (3.13) and (3.14) their size is encoded by the following estimates (which adapt
to derivatives)
1
Fo(Z) = (1+[Z])7%, [0 (X)] = 1X|(1+ |X])5 7, (3.19)
571 - Sl
O, 2)| ~ IX] (1412 +|X])T ~ 1+ 2D KA +1XD5~ (3.20)

j—2

500X, 2)| = |XP ((1+12D)% +[x])

The strategy is to show that there exists global solutions to (3.4) converging to © defined by
(3.13) as s — +o0o. We will use an approximate blow-up profile, i.e. refine © to show this.
To obtain decay in the linear estimate (3.18), one needs j > 3 which from (3.21) in turn
requires that ¢ = O(]X|?) as X — 0. The linearised operator £ has then a damping effect
on functions vanishing up to order 3 on the vertical axis. Consequently, we use the profile
p~IATY2W (uA3/2X) at each line {Y = Cte}, to match the solution at order 1 and 3 near the
vertical axis {X = 0}. Far away, such a decomposition ceases to make sense since we are no
more in the blow-up zone, and the appropriate profile is 0 rather than ¥;. We set for d > 0 a
cut-off function (note that Y| < de®/? is equivalent to |y| < d and |Z| < e%/2F),

Xd(s,Y) := X( X )

TR+ |ZDRPA 4+ XD, (3.21)

dez
and then decompose our solution to (3.4) according to:
v(s, X,Y) =Q+¢, @ = xa(5,Y)0 + (1 = xa(s,Y))O. (3.22)

where © is the approximate blow-up profile in the interior zone
g%f_%

V6

O(s,X,Y) = i~ Ms,Y) [ 3(s,Y) 0, (f%(s,Y)u(s,Y)X) — V62 3w, ( X) (3.23)

main:sizeFkP:
main:sizeThe

main:sizephi

def:tildeThe
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where f and g are defined in (3.5) and

w(s,Y) = <%>2 (3.24)

(notice that for d small enough and for Y in the support of x4(s, ), the functions f and g do not
vanish from (3.6) and (3.7), and hence p and p~! are well-defined), and where O, is the profile
for the external zone

O.(s, X,Y) := (—X F(s,Y) + X39(36Y)> e X", (3.25)

The profile ©, matches with v up to third order near the vertical axis, what allows for a unified
control of the remainder ¢, inside and outside the blow-up zone simultaneously (3.27) and (3.28).
It is not a very precise approximation, what does not matter since the weights we use penalise
the exterior zone. Other choices for ©. are thus possible.

To estimate the remainder e, we will use weighted Sobolev norms, and to control its derivatives
we will use vector fields that commute well with 95 + Lz:

_3 3
A= <2X—1—Fk Z(Z)\Ifl(sz (Z)X)) Ox, Oz and Z0dyz (326)

and that are equivalent to usual vector fields, see Lemma 46.

Definition 15 (Trapped solutions). Let constants k,d > 0, ¢ € N, Kj, j, > 0 for nonnegative
integers j1,jo with 0 < j1 + jo < 2, and IN(]-MQ > 0 for nonnegative integers ji,jo with 0 <
J1+Je < 2and jo > 1, and so < s1. We say a solution to (3.4) is trapped on [sg, s1], if,
decomposed according to (3.22), it satisfies on [sg, s1]:

j 1
((a]ZlAjzg)m dxdy \ % ()
< Kjgae 277, 3.27
</R2 @i?o(X, Z) | X [(Y) J1.J2 ( )
and for 0 < j1 +j2 <2 and ja > 1:
1
J1 Ad2 )24 %
/ (((Y?/) APe)? dXdy < Kjlnge_(%_n)s, (3.28)
R 904,0(X, z) |XKY)

and write u € T(K,q, 50, 51, (5K, ja)0<ji+ja<2s (K jo)o<ji+ja<2,1<j1 ) for the set of such solutions.

We claim that ¢ decays thanks to the following bootstrap argument, which is the heart of our
proof of Theorem 3.

Proposition 16. Let & and ¢ be given by Proposition 10. Let 0 < k < 1/2 and q¢ € N*
such that Lemma 14 holds true. Then there exist positive constants d, (Kj, j,)o<ji+ja<2 and

(K}, j)0<ji+ja<a1<ji, and s* > 0, such that if at anytime s > s* the solution is given by (3.22)
with (sg) = €o satisfies

Z / aj1AJz€0 2q + ((Y@y)lej250)2‘1 dXdY
0<j1+752<1 Py, O(X Z) | X|(Y)

then the solution to (3.4) is global and is trapped on [sq,+00):

< e~2a(3=+)s0 (3.29)

u € T (K. q, 50, +00, (Kjy ja o< +ja<2s (K1 ja)o<ji+ia<2,1<)1)-

Remark 17 (On the constants in the bootstrap analysis). To track dependencies of the con-
stants in the proof we use the following:

def :Thetae

main:weighte

main:weighte

main:weighte
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The functions £ and ¢ are chosen in advance as solutions to (1.7) satisfying (1.9) and (3.1).
The constants in these estimates are considered as universal and are independent of the
bootstrap constants.

The parameter d > 0 is fized so that one has for s large enough for |Z| < 2e

f(S,Z) 1 g(s,Z) 1 _ |
Gi(2) 1' =3 (3.30)

s/2k .

and

Fk(Z) -2

which is always possible from (3.6) and (3.7).

Kk and q are fized, and s* is large enough, so that Lemma 1/ holds.

Thus, the constants which are not fized at this stage are Kj, j,, ij’z and s*. Their

choice is made in the following order. Ko is chosen bigger than a universal constant see

Lemma 22, then Kg is chosen bigger than a constant depending only on Ko see (3.49),

then K1 is chosen bigger than a constant depending only on Koo and Ko, then IN(LO i

chosen depending on (Koo, Ko 1), and so on. This is first because a given derivative of €

sees lower order derivatives as forcing terms from Leibniz formula. Second, A commutes

with the full transport operator in 0s + Lz (3.48), while 0z and YOy commute with the

0z of this transport operator but not with the Ox part. Hence, we first control e, then to

take derivatives we first control Ae, then Oze and Y dye, and then we move to higher order

derivatives and so on.

e s* is chosen last.

e Constants C in forthcoming estimates stand for constants that are independent of the K ’s
and K’s constants, unless explicitly mentioned. We shall write A < B if A < CB for such
a constant C.

The proof of the above Proposition 16 follows a classical bootstrap reasoning. Namely,
throughout the remaining part of this section we assume that v is a solution to (3.4) defined on
[s0, s1] and such that the decomposition (3.22) satisfies (3.29), (3.27) and (3.28). All the results
below will show that (3.27) and (3.28) are in fact strict at time s;, what will allow us to conclude
the proof of Proposition 16 by a continuity argument at the end of this section.

First, notice that the bounds of Proposition 16 imply pointwise control by weighted Sobolev
embedding.

1:pointwise e| Lemma 18. There holds on [sg, s1] with constants in the inequalities depending on the bootstrap
constants Kj, j, and Kj, j,:

el S e G314 |22 X1+ X5 S e Gs X+ 2% + X S e (370 X,
(3.31)
Oxel S eG4 Z)THE P+ RIS e G X P((1+|2)% + |X[)i S e (7
(3.32)
< e (s |22 AL + | X )3 (3.33)
< eG4 1 Z) X P + 12D + |x |3
< e G x| (1 427!
Proof. Recall that Y0y = Z0;. Step 1 Proof of (3.31). From the identity
(V)dvel S [vel + [YOye| = e 5 *|age] + | Zze| (3.34) [main:pointwi.

and the equivalence between vector fields (B.6) we infer that

el + | XOxe| + |(Y)Ovel| < le| + |Ae| + 0z¢] + | Z0z¢|

0z¢| e (

N= D= D=
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and therefore the bootstrap bounds (3.27) and (3.28) imply in particular that:
/ 20 gxXdy / (XOxe)2 dXdY / (V)Bye)™ dXdY _ _sy(1_p),
r2 O30 (X, Z) IXIY)  Jre 030X, 2) IXIY) - Jre 3%(X, 2) 1XKY) ™

and the weighted Sobolev embedding (B.2) implies that |g| < e~ (1/27%)%|p, o| which gives (3.31)
using (3.21).

Step 2 Proof of (3.32). The very same reasoning as in Step 1 show that the bootstrap bounds
(3.27) and (3.28) imply |Ae| < e~ (/27%)5¢, ;. From (B.4) and (B.6) we infer that |As| ~ | X dxe|,
implying then that |0xe| < e~ (/2775 X| =], |, which yields (3.32) using (3.21).

Step 3 Proof of (3.33). Using (3.34) and (B.3) we obtain that
(Y)OyOze| < |0%¢| + | Z205¢| < |0%¢| + | Z2°05¢| < |0%¢e| + | Z0z¢e| + |(Z0z7)%]
and from (B.6) that | X0xdze| < |Ae| + |0z Ae|. Therefore, we infer from (3.27) and (3.28) that

/ (07¢)%  dXdY / (X0x07¢)% dXdY / (Y)9y 076)* dXAY _ o431 )
r2 015 (X, 2) 1XIY)  Jre @30 (X,2Z) IXIY)  Jre @34(X,2) IXKY) ™

implying using (B.2) that [9z¢| < e (/273 o|. The very same reasoning applies for the
function Zdze, yielding |Zdze| < e~ (127934 o|. Therefore, |0ze] < e 1/27R5(1 4+ Z) 7 a0
which yields (3.33) using (3.21).

U

We start by investigating the infinitesimal behavior of ¢ near the line {X = 0}. This cor-
responds to establishing the so-called modulation equation for the parameters describing the
blow-up profile ¥; and the external profile ©, on each fixed line {Y = Cte}. We claim that ¢
vanishes on the axis up to the third order.

Lemma 19. For all s >0 and Y € R one has that

&e(5,0,Y) =0, j=0,1,2,3,4. (3.35)

Proof. This is a direct computation. First since the profile is odd in X and even in Y one has
that e, 0% and d%¢ vanish on the vertical axis {X = 0}. Then, one has by definition (3.5) of
f that dxv(s,0,Y) = —f(s,Y) and from (3.22), (3.23) and (3.25) that

Oxv(s,0,Y) = —xaf — (1 = xa)f + Oxe(s,0,Y) = —f + 0xe(s,0,Y).

Therefore dxe(s,0,Y) = 0 for all s > sp and Y € R. Similarly, by (3.5), 9%v(s,0,Y) = g(s,Y)
and from (3.22), (3.23) and (3.25) one has

0% v(s,0,2) = xabb” f* + (1 — xa)g + 9%e(s,0,2) = g+ 9%e(5,0, 2).
Therefore 8;’(5(3, 0,7Z) =0 for all s > sp and Y € R which ends the proof of the lemma.

O
The time evolution of € is given by:
es+ Le+ Le+ R+e0xe =0 (3.36)
where
1 3 1 k—1
Le=(Q—©)dxe + (0xQ — IxO)e, (3.37)

id:modulatio:

main:evoluti
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and
1 3 1
R=Q.— 5Q+5X0xQ + 5V v Q + Q0xQ — dyv Q. (3.38)
Lemma 20. Let e N, ¢g> 1, and 3+ 1/k < j <5—2/k. Then one has the estimate
1 Ad2 R)2a Y Oy )1 AJ2 R)24
/ %, )7+ (Yoy) )" dXdy < se” 9 (3.39) |main:estimat:
0<ji o<1/ R V10X, 2) | X[(Y)

Proof. Recall that Y0y = Z0z. From (3.38), (3.23) and (3.25) we compute:
R=R;i+ Ry+ R3s+ R4+ R5

where

R = s (és - %é n gxaxé n %Yayé L 00y 6 ayyé> ,
1 3 1
Ry = (1 — Xd) (88(9@ — 595 + §Xax@e + §Y5y@e +0.0x0, — ayy@e> ,

_ 1 _
R3 := (0 — O,)(0sxa + §Y8YXd —OyyXd), Ri:=—20yxqs0v (0O — O,),
R5 = Xd(l — Xd)(é — @e)ax(é — @e).

We now prove the corresponding bounds for all terms R;.

Step 1 Estimate for Ry. All the computations are performed in the domain of x4, |[Y] < 2de/?,

where f,g > 0. We compute from (3.23), (3.24), (3.8) and Lemma 11 that only some viscosity

terms remain in Rj:

O+

@z
l\’JIOJ

We only treat the first term, the proof being the same for the others. First, from (3.6) and (3.7):

(1+1Z) 7 < g3 (5,Y)f 73 (s, V)| S (141207, |(Yoy ) xal S 1

on the support of x4. For any j € N, from (3.11) one has that

o2+ Lo+ Lrogw o

and from (3.6) and (3.7) and for j; + j1 < J:

SIXP(+|X])50

(Yo gaj( Ll sz, (vovyol(oves s il s e e + 22

l\)l»—'
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since 9y = e~ (k=Ds/(2K) 9, We therefore infer that:

(Yo Y0} (X0x )2 <[(—g + %X’af()(—% + %X’aX)qu] <92\J/C(_;2X>) ‘

5
<1 +
and in turn, using (3.21):

. 4 . 5 .3 ~ - 1 1
oy o cxany ([@varaE i1+ 4500 (-4 + dXogm] (252x) )
[9i0(X. Z)]

< e XTI+ Z]) A1 + 2% + | X[

Therefore, one has the following estimate, performing two changes of variables, the first one
being X = (1 + Z?)3/2X and the second one Z = e~ (F=Ds/CRY  with dX/|X| = dX /|X]|,
dY/|Y|=dZ/|Z], since |Y|/(Y) <1 and |(Y Oy ) 0% x4 S 1:

-5
) SIXPA+[X)5 S

Wl

X ((1+|Z])% + |X])5 5
1+ |Z]F ’

gif_%

\/EX

. g%f_%

. i/ . 5 .3 1 1 2q
(Y Oy 1 9 (XOx Voxa(Oy 9)29 ™5 F3 (—2X + 3 X0x) (—1 + 1 X0x) 0, <%x> .

/R2 pio(X, Z)| [XI(Y)

2q dXdY
| X|(Y)

i | ( [ (@ izpash2gpaa e xya)” 2 ) o
R R

X1) (Y)
—ogk=1g —i)- 29 dY
o2 /}R((l‘HZDSk(l ) 2) 7

_gqus/ dY / 3k(1—1)-2\2¢ AY
e “F a4 oot 4 5777)
yi<e'm s (Y)  Jyize'me (Y)

_ - dz Y _
< o205 s s+/ (]Z]gk(l_%)_2)2q7|—y| gse—%%s
1Z|>1 |Z](Y)

A

s [ (IXPI 1272 2D 4 X))
R2

N

N

A

provided that 3 < j < 5. We claim that the very same estimates for the other terms in the
expression of R; holds, and that they can be proved performing the same computation, thanks
to the same fundamental cancellations

3 35 1~ - 1 15 3 1
[—5% + 5 X0g W — §X2a§2\1/1} (X)M {(5 -

Xo,)(3 - 5%0001 | (0)| £ 1P+

implying that for j = 4, since k > 2:

/ (Y Oy ) (XOx )2 Ra)* + (9 (XOx)2R)™ dXdY _  _ppety g
R

Pih(X, 2) |X[Y) ~ ~ ’

0<j14j2<1
which can be rewritten using the equivalence (B.3), (B.4) and (B.5):

3 / ((Ydy )t A2 Ry)% + (8)} A2 Ry)* dXdY

; X, 2) XIY]

—qs

S se
0<j14j2<1
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Step 2 Estimate for Ry: Note that [Z] > de®/¥) > 1 on the support of 1 — xq . We first
compute using (3.25), (3.6) and (3.7):

1 1
00, — 566 + 2X8X®e + §Yay@e + 0.0x0, — Oyy O, (3.40)
_ L5 o 0%t 39 3 1 - X4
= X (X[ X000 + S XOx + 5 YOy mywe )

+LXf2—4§§gfk_X4GfX4—l>

H(-Xf+ %39)26_5(4“ () ~20v (x4 X?gg)ay (=)

(3.41)

In what follows 0 < v < 1 denotes a small constant whose value can change from one line to
another. For the first term, (3.6) and (3.7) imply that on the support of 1 — x4 for j1,j],j2 € N
with ji +j1 < J:
Yoy o (xoxy (Xoge )| S e+ 2] P
Therefore, using (3.21):
[(vov o (xox ) (x7g2e25 )|
lpj0(X, Z)|

S eI (14 | Z)) U X pie X,

Since dX/|X| = dX/|X| and |Z| > e2r* on the support of 1 — y4 and ](Y@y)jé)g)(d] < 1 one
then infers that:

Lt . S 2
| (voy Yo (xox)? (1= xa) X )\ 7 gy
. 50X, 2) X[)

N

e—gs/ ) ((1+’Z’)l—k(j—?»)’X’5—je—'y)~(4)2q ledZ Se—gs/ ) ‘Z‘(l—k(j—?:))2q%
12|27 X1 Z| |Z|>e 2k |1Z]

provided that 34 1/k < j < 5. We now turn to the second term in the expression of Rs. One
has that:

NS

‘(Y@y)jl | (Xox)P ((as 5 X0x + Yy — dyy) (e—(X)4)> ‘ < Rt
Therefore, from (3.6), (3.7) and (3.21) we obtain that:

(Yoy V) (XOx )2 ((—Xf + X39) (05 + 3X0x + 1Y 0y — dyy) (e—(X)“»
¢10(X, 2)

S N b (i

~
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Since dX/|X| = dX/|X|, |Z] Z e2:* and |(YOy) xa| < 1 on the support of 1 — x4 one then
infers that:

(Yoy 1o (Xox) (1= xa) (=X [ + X*§)(0, + §X0x + 1Yoy — dyy) (X)) " axay
/ 0j0(X, Z) | X[(Y)

N

e [ (s ZE e ) aXdz
Z5e X[1Z]
[z~

provided that 3+ 1/(2k) < j < 5. We claim that all the other remaining terms in (3.40) can be
treated verbatim the same way, yielding for j = 4:

3 / (Yoy) Xax)”Rz)zq + () (XOx )2 Ry)?1 dXdY
0<j1+52<1 ¥, O(X Z) |XI(Y) ™~
which can be rewritten using the equivalence (B.3), (B.4) and (B.5):
> / (Yoy ﬁAJ?Rg)?q + (80} A2 Ry dXdY _

0<j1+72<1 Py o(X Z) [ XY >

Step 3 Estimate for Rs: one first notices that on the support of this term de®/2 < Y| < 2de’/?,
which will then be assumed throughout this step, and that for ji, j; € N:

. -/ 1
(Y 8y )10} (Dsxa + 3YOvxa = Oyyxa)l S 1. (3.42) [main:interme:

Also, 6&(:) = 6&@6 for j = 0,...,4 on the axis {X = 0}. From this, the formulas (3.23) and
(3.25), and the estimate (3.6) and (3.7) one obtains that if j; + jj < J:

(Y Oy Y10 (X0x)2(6 — ©,)] < (1+Z)F X P+ [X])3~°
giving using (3.21) the estimate:
(YO} 0 (X0x )2 (6 — ©.)|
|pj.0(X, Z)|
The above estimate and (3.42) therefore imply, since |Z] ~ e2r* and since dX /|1X| =dX/|X|:
((Yoy)70 (X0x )2 Rs)* dXdY
/ P9(X, Z) | X](Y)

< e—zqks/ 2 < s
|Z|>e2k

k—1
< se2F 5 < g8,

—qs

< (L4 [Z) IR 4 X

2¢ dXdZ
< 1+ |2))~F0=3| X P9 (1 + | X]) 4+ < e U3
L (12070 DIRE 0 28 e
provided that 3 < j < 5. Taking j = 4 and using (B.3), (B.4) and (B.5) this gives:
Z / ((Ydy )71 AT2 R3)%1 + (87} A72 R3)%0 dXdY <
0<j147j2<1 ‘P40(X Z) [ X[{¥) ™

Step 4 Estimate for R4 and Rs: These estimates can be proved along the very same lines as
we just estimated Ry, Ro and R3. We leave the proof to the reader in order to keep the present
article short.

—qs

O
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We now estimate the lower order linear term in (3.36).

n:lem:tildelL| Lemma 21. There holds on [sg,s1], for j1 < J and jy € N*:

02(Q — )| S e | X|(L+ 12N and |9OR(Q —O)| S e (1 + |X|) (1 +|2]) .
(3.43) |main:Q-Theta

Proof. Step 1 Inner estimate. We first consider the zone |Y| < de®/?, or equivalently |Z| <
de’/?* . From (3.22) and (3.13):

Q-0=6-0=b"f3v (bfiX) - F 1(2)%(@%(2)){).

First, we have using (3.6) and (3.7):

f f 1 1 g g a1 1
——1 =] < 4k:81 Z 2 ——1 = =1 < 4k:51 Z 2,
Lou-ilisedarzpt, 1 L-u-isedaiz)

Since the above right hand sides are also < % from the choice of d (3.30), and since Gy /6F}, = 1,
w defined by (3.24) satisfies:

=1l S e w1+ |22,
Therefore, using (3.6), (3.7), the above inequalities and (3.19):

Q-6 = i (ufiX) — U (FEX) 4 [ (FEX) - B (D)0 (R (2)X)

MIW

© /Fk 3
= ‘f_%/ ( \Ifl—l—X@ \I’l)(,uf2X d,u—l—F / ——\I’l—l— X@ V) (Ff )\%X)d)\
i

~:1

1 lnd ~ p2
S o If2llp—1] sup ‘(—‘I’1+X85<‘I’1)(Nf2X)‘
|il€ (L.
3| f 1 354, 3y 3
+F, Il sup |(—z5%1+ - X0gW)(FZ 2 X)
Iy Ae[Lf/F | 2 2

1 1

f - Sl a1 1,5 Sl
N <|“_1|+|Fk_1| 1+ ZDMX)(1+ X))~ S e (1+(2)) 2| X|(1 + | X[)3

S e+ Z) X1+ | X)) S e X,

One computes similarly that

0x(@Q-O) = |foxWiursX) — ox Wi (7 X) + fox (3 X) — Fu(Z)ox W (FE (2)X)|
7 . 3 I/ 3 - 3 5
- ‘f [ i Roggu@rixda+ B [ A 0gw + SRR (EAX) A
i=1 A=1

1

w1+ [ Z])2 2 (1 + | X[)~5

A

(=141 ~11) 0+ 12+ 2 s e

——s
< ek,

The proof for higher order derivatives is a direct generalisation of the above computations, that
we omit here, giving (3.43) in this zone.
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Step 2 Outer estimate. Let 0 < v < 1 be a small constant whose value can change from one
line to another. We now turn to the zone des/? < Y| < 2de’/? or equivalently des/(2k) < |Z] <
2de®/(?k). We perform brute force estimates on the identity (3.22) using (3.6) and (3.7):

Q-0 = [x®+ (1 —xa)O. — O] < 6] + 0] + 0|
< (L IZDHXIA+ 1XDS ™+ (L 1ZDHX) 1+ [XDS+ (1 + |Z])F X e
< e (14| Z) R X|(1+ [X])sTE S em (1 + ] 2]) %2 X| (1 + | X[)s
< e X,

and similarly

0x(Q — ©) |0x 8| + [9x O] + |0x O]

<
S (412D + X)) 75+ 1+ [2) 21+ X)) 75 4+ 1+ |Z)) ke
S eI+ |Z) (14 X)) S e,

Again, the generalisation of this argument for higher order derivatives is direct, yielding (3.43)
in this zone.

Step 3 OQuter estimate. We now turn to the zone |Z| > 2de?® where Q-0 =0.,—-0. We
perform the very same computations as in Step 2, estimating © and O, separately, giving (3.43)
in this zone and ending the proof of the Lemma.

O

We can now perform energy estimates in the bootstrap regime of Proposition 16 and improve
the bootstrap bounds.

1:lem:energy0| Lemma 22. There exists Kjo > 0 such that for any positive constants (Kj, j,)o<j,+j.<2 and

(K j2)o<ji+ia<a1<j, with Koo > K¢, there exists s* such that if u is trapped on [so, s1] with
so > s, then:

1
2 dxdy \* K
/ 25 (s1) g_o’oe—(%_“)sl, (3.44) |main:weighte
r2 034 (X, Z) [X[(Y) 2

Proof. We compute from (3.36) and (3.18) (note that this estimate is valid for Schwartz functions
so that we implicitly use here a density argument):

d (1 €2 dXdY

ds <2_q /]RZ 02X, 7) \X!<Y>)
- (1 B E) / e dXdY 2¢-1 / |0y (e1)|? dXdY
B 2 2) Jre (X, Z) IXKY) q* erh  IXKY)

1 / , 0-0)\ dxdy / c2-1 dXdy
+— [ 790 — | —— (eex + R+ 0x(Q — O)e) ———.

We now estimate the last terms. First,

8X<Q—@>26X(Q—@)_ Q-6 +Q—68X< 1 )
il X| Pl Xl erbX1x| X 03h
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One has from (3.14) that [Ox10(Z, X)| < |pa0(X, Z)|/|X]|. From this fact, from (3.43) and
1

(3.43) one infers that:
Ox (#) < qe_ﬁs— (3.45) |main:bdpaxQT!
‘P470‘X’ Py, O(X Z)|X|

From the above estimate, (3.32) and (3.43) we infer that:

1 / 2% Q-0 \dxdy [e¥! dxdy
— [ £%90 (eex +0x(Q — O)e
o X(dﬁ’orxw v ) @O

1 1 €21 dXdY k €21 dXdY
< Cfe e e (G /_7<_/_7

where above C' depends on the boostrap constants except s*, so that the last inequality is
obtained upon taking s* large enough. Applying Holder, using (3.27) and (3.39):
9040

/ g2 dXdY
(,04 0 ‘X’
We obtain

i(l/ g2 dXdY)
ds \ 2q Jg2 cp40(X Z) IX|Y)
_ _<1_ >/ 2 dXdY  2g—1 [ |9y (N dXdY
- 2 R? 9040(X 2)IX[Y) ¢ cp4q0 | XIY)

We now reintegrate until the time s; the above estimate, yielding from (3.29):

2q 2q s
/ 5 € dXdy < 6—24(%—5)(81—30) / o dXdy + CKqu le—2q(— )sl / §2i —/isds
2 0 (X, Z) [ X[(Y) R 030 (X, Z) |XI(Y) s0

2q

R2q dX dY

zq 1 1 92 1
‘X’ CKOO 82‘16 (2 R) R .
740

/ g2a-1 dXdY

1
+ ORQYy s e 25— —ns,

2q
< B0 —a(3-n)e
— 22q )

as C' is independent of (Kj, j,)0<i +ia<2, (Kj1.j2)o<ii+ia<2.1<j and s*, upon choosing Ky ¢ large
enough. This ends the proof of the Lemma.
U

We now perform similar weighted energy estimates for the derivatives of €.

Lemma 23. There exists a choice of constants Kj, j, > 1 for 0 < ji + jo < 2 and (j1,j2) #
(0,0), and Kj, j, > 1 for 0 < ji + j2 <2 and j1 > 1, such that if u is trapped on [sg, s1], then
at time s1, for 0 < j1 + jo < 2 and (j1,72) # (0,0):

1
1 Ad2 2q 2q o
/((%2 E(s)™ dXdY §KJ1’]26_(%_H)81, (3.46) |main:weighte:
R o (X,2)  IX[Y) 2

and for 0 < j1 4+ jo < 2 and jo > 1:

(((Y@Y)lejz ( ))2q dXdy Kjl,]ée_(%_ﬁ)sl main:wei e
</R An(X.2) |X|<Y>> =7 - (347) [maimveigave
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Proof. Step 1 Proof for Ac. We claim that for any Ko > 0, there exists K, > 0 such that

for any positive constants (KJ1 o) 1< +ja<2 and (Kj, j,)o<ji +ja<2,1<js With Koi > Ky, there
exists s* such that if sy > s* then (3.46) holds true for j; = 0 and jo = 1. We now prove this
claim. Recall (3.26) and let 1 := Ae. Then A commutes with the transport part of the flow:

[A,({)S + <2X + @> Ox + %Z@Z] =0. (3.48) |id:commutati.

Indeed, we compute the commutator using (4.2):

[ SX 4 F_2(2)0)dx, 0, + <gX+@> anL%ZaZ}
= (Cau @) + (%X + Fy 3<Z>w1<FEX>> ox @xw,;é(mlwg X)

- @X + F,;2(Z)\111(Fk3X)> Ox <§

2X + F,;S(Z)\I’l(FkSX)> - %Z@z <F;3(Z)\111(Fk X)> >8X

_3 - 3
— ; <—%Z8ZFkF +F - F, 2) (—Wy + X5 (F2 X)dx = 0.

We compute from (3.26), (3.36) and the above cancellation the evolution of e1:
(e1)s + Le1 + Lo + (ADxO)e + AR + [A, L]e 4 e1ex + edxe1 +[A, dx]e — [A, dyyle =
Using the linear energy identity (3.18) we infer that:

d 1/ e dXdy
ds \ 2 R29040(XZ)’X‘<>

B <1 B E) / el dXdY 2¢—1 [ |y (w9)]? dXdY
2 2/ Jre 9040(X, z) | X|(Y) q* goi?o [ X|(Y)

1 / 20 AXdY
|X| (Y)

2q—1
_/ Elzq ((AaXG)a +[A, Lle + AR + e1ex + c0xe1 +¢[A, Ox]e — [A, Oyy)e + 0x(Q — 9)51)

IN

dXdY
[ X|(Y)
From (3.45), and (3.43), one has:

1 - XdY 39~ 1 XdY
—/s?"ax<%q®>d - [ @ en
2q w10l X] 9040 X))~

Moreover, since

_is/ 29 dXdy
ik X
P20 1XI(Y)

4050 = S F(Z) (X040 (F (2)X) + Fy(2) (015300 (FE (2)X)
and since both Fj, and X 83( W, and \11183(\1’1 are bounded, one has that
|[A0x O] S 1
and therefore using the bootstrap bound (3.27) on € one deduces from Hélder:

/ 2 dXdy
3 IXI(Y)

-1
2q

1
2q

A0x©O
A O

/ e2 dXdY

2q—1
/ i dxdy < OK2 g ge2(3—)s,
P24 1X(Y) ’
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We compute from (3.26) and (3.37) that
A2 = (4@-0)~ Q- O)(5 +0x 1 (R X)) o= + (40x(Q - ©))e

3
AQ-0)—(Q—-0)(3+05V(F2X
_ ( - ) (_é )(2 §X 1( k ))61—1‘(146)((@—@))6
SX +F, 2 (Z2)¥(F7 (Z2)X)
From (3.26), (B.10), (3.19) and (3.43) we then obtain
A, £)e] < Ce (e + [e]
for C' independent of the bootstrap bounds, which implies using Holder and (3.27):

2q—1 2q—1
& . dXdY E 1\ a- dXdY
A, Lle g1l + e
/ A R e+ D s
2q—1

1

a9 dXxdy 2 dxdy '\ > €24 gxdy \*»
Ce 4ks/ +C / /Ti
cp40|X|< ) ¢40|X|< ) 0t 1 XI(Y)

q
< Ce s AXAY | oty ge2al3—)s,
= ¢40|X|<> o1 00

One then deduces from (B.10), (3.26), (3.39) and Hélder:
/ a' dXdY / 2 dXdY
<,040 |X| v [X[(Y)
1 _ 2q
< K / (X@;;R) dXdy
0 IXIY)

Using (3.32) we infer that for a constant C' depending on (K}, j,)1<j+jo<2 and (Kj, j,)o<ji+ja<2.1<j: "

g2a-1 dXdY . 2 dxdy |k [ €9 dXdY
1 <0—(——H)S/L7<_/47
/ 2 Ny = S IXNY) T 16 ) 22 [X[(Y)

Y40
upon choosing s* large enough. Integrating by parts, one has the identity:

/ g2a-t dXdy 1 / g%q / 1 dxdy
—————0x€l oo =~ | s — 1e0 .
9040(X Z) [X1(Y) 2q 904,0( 9040 (X, Z)|X| {Y)

From (3.21) one has that |0x¢4,0(X, Z)/p4,0(X, Z)| < |X|7t. Therefore, using (3.31) we obtain

that, again for s* large enough:
2q
€ € dXdy
< o (loxellm + Il ) [ =
| X eih (X, Z) [ X|(Y)

_ i/ el dXdY
- 16 9040(X Z) | XY )

< Ce°

9040

IN

q—1
2q 2(1

/(AR)Q‘I dXdy
eihy XY

1
2q

(%—H)SC

1 L ol Ve
< ORMohie 23w,

Pi4(X, Z) [ X(Y)

Next, from the identity

[4,0x] = - (g + 8X\I/1(F,§(Z)X)> Oy = —— 2 2+ s ‘Ifl( A

3X 4, (2)W(F (2)X)
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since Fj, and Ox W are uniformly bounded, from (B 10) and (3.31) we obtain that:

3
ef‘l ! dXdY 3+ Py )8~\I/1(Fk2(Z)X) dxXdy
17 ) X1
‘P4o ‘P40 3X+F (Z)\I/l(F,j(Z)X)
_ ”i”m/ 1 dXdY _ n/idXdY
~X Q2 IXIY) Y16 ) L2 [X[Y)

Finally, one computes that.

[A,aw]sz—zay< ) (F (2)x >) Dy xe — dyy (Fﬁ(Z)wl(FE(Z)X)) Oxe

_ —28Y< 3( )\IIl( 3(Z)X)> oy ( - €1 . ) _ &/Y(Fk__z £
8X + FOH2)W(FH2)X)) X 4 B2 (F (2)X)
= Fie; + Fyoyer

where
3 3 2
P P (oves iZ)‘MFk iZ)X”> B o 2)x)
(gX + F,?(Z)xlq(Fﬁ(Z)X)) SX +F, 2 (2)0(F2(2)X)
and , ,
e B DX
SX + F, 2 (2)01(F2(2)X))
One has that 9 F},/F}, is bounded, and that |¥(X)| + |X8 U, (X)| < |X]|. Therefore,

3 3

‘ayw,; H2) W (FE (2)X))

3

e aZFkF,;i(—gqfl + §X8X\P1)(F,f(Z)X) < e | X

The same computation can be performed for the second term in Fj, giving from (B.10):

w

3 3
2 2

O @ @X)P || BN E@X)| e,
3 2 2 ~
<gX +F, 2(2)0,(F, (Z)X)) 3X + 5 (Z)‘Ifl(F;f (Z2)X)

”wlw

and hence for s* large enough:

S AXdY | kg, [ e dXdY k[ )7 dXdY
F1€1 k 50 é _ —5 .
X 2 X[ =32 ) 2 IXT)
From the above estimate one obtains similarly that:
Bl S5t [y Ryl S h

so that integrating by parts and using (3.21), for s* large enough:

/efq ! dxdy / % B dXdy
el Oy
q 9040(X zZ)(y)) Xl

2q

1 k[ X dXdY

Fydyw— | = — / 1 .
T2 32 o2 [X[(Y)

01 [ X1(Y)
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One has then proven that

2q—1
€] axdy
/9040[ o |X|< 20

From the collection of the above estimates, one infers that:

d (1 / 29 dXdy
ds \ 2q Jge 4,0470(X,Z) [ X|(Y)

2q .
< _ <} - §K> / €] dXdy n CKg,qflKo,oe_zq(% s 4 K2 §3 20 —rtE)s
R? ‘P40

K / ! dXdY
~ 16 il 1XIY)

2 4 (X, 2) |1 X|{Y)

1 3 >/ €2 dXdy 2g—1 Cog(L
< —(z-Zk + CKJ Ko ge 2=,

<2 4 ) Jre cp40(X Z) | XKY) o

We reintegrate with time the above estimate, yielding from (3.29):

2q . 2q T
/ €] dxXdy (i )(S_SO)/ e1(s0)? dXdY +CK§¢11_1K0706_2[1(;_3H)3/ o5 s
R2 Q040 R ’ s

IS

(X,2) [ X1(Y) 2(F740(X Z) [ X(Y) 0
2g—1 —2q(l—ﬁ)s Kgql —2q(l—n)s -
<C(1+ Koy Kople ™2 S o€ (3.49)

where the last inequality holds if K has been chosen large enough depending on Kjg.

Step 2 Proof for 07. We claim that for any Koo, Ko1 > 0, there exists K7y > 0 such that
for any choice of the remaining constants Kj, ;, and Kj17j2 with Ky > K7, there exists s*
such that if sy > s* then (3.46) holds true for j; = 1 and jo = 0. To prove this claim, define
= 0ge = e(k_l)s/(%)ays, which from (3.36) solves:
0 = (51) 2k€1 + Le — Oyyé + 551 4+ 0700xe + 0z xOc + 82(@ - @)axé“ + 8xz(Q - @)E
+0zR + £10xe + edxéq,
and hence obeys the energy identity from (3.18):

d (1 29 dxdy

$<2 /R P20(X, Z) IXI(Y >>
_ _<1+L_E>/ & dXdY  2q—1 [|dy(E])]? dXdy
N 2k 2) Jre 9040()( Z) Xy ¢ P XY

1 / 20, dxXdy
\X! (Y)

~2q—1
B / El2q <az®8X6 +0zx0¢e +02(Q — ©)0xe + Ox2(Q — O)e

$4,0

dXdy

+0z7R + &10xe +€0xé1 + 0x(Q — O)E1 ) —.

@ 9) Xy

Using (3.45), and (3.43) we infer that for s* large enough:

1 /~2q Q-0 )\ dXdy /52q ! dxdy |  « / 229 dXdy
— | &90x — Q—-0) 17| < = g .
%) ° <<,oi?o|X| vy ) o OO Emy | S
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Next one computes that

Jun

0, Fu(Z) FL 2 (Z)(— 30, + 3K 0. 0)(F2 (2)X)
B x4 R @)@ (2)X)

In the above formula, 0z Fj(Z)/ Fy,(Z) is uniformly bounded, and as Fj is bounded and |(—1/2V¥; +
3/2X05¥1)(X)| < |X| we obtain from (B.10) that:

0700x¢e = Ae.

3
2

_1
87Fx(2) Fy, 2 (Z)(— 1\1/1 +3X050)(F2(2)X)
3
Bl@) ax 4 i ()R (2)X))
From Hélder, (3.27) and (3.28) we then infer that:

<1

gaa-1 dxXdy &2t dXdY
—=—0700x¢ <C Ae
'/ X107 ETR Ty
—1
~2q 2q 2 2q
/ dXdY / (A€) 7 dXdY C’Kl,ngql_le_%(%_n)s-
(104()|X| Q040 |X|< > ’

Similarly, since Fy, 0z F}/Fy, 03V and X 8?2\1’1 are uniformly bounded,

aZFk(Z) 3 o 02 3
=|——F. (0¥ —XOLW ) (F2(Z)X)| <1
|0zx0©| o (Z) R(Ox V1 + 5 X0 W) (E2 (2) X)) S 1,
and from Hélder, (3.27) and (3.28) we then infer that:
~2q—1 = 12¢—1
& dXdY ygl\ -1 dxXdy
azx@e > c |€|
2g—1
2 dxdy | e24 dXdy &
< C / dxd / dXxd < CK070K12qO 16_2q( )S.
o2 1X1(Y) P24 1X(Y)
Then, from (3.43) and (B.10) we infer that:
02(Q - ©)0x<| = 920 -0) | |e| < eioolae

X 4 B (2) 0 (F (2)X)
and therefore from Hoélder, (3.27) and (3.28):

2g—1
2q

1
2q

_ L
e 1k

~

s

Q @)aXe

/ 29~ 1 dXdy
<,040 | X[(Y)

/ i dXdY
i 1 XI(Y)

< C(KL(], K071)e—2q(%—n)se—ﬁs‘

/(As)2q dXdY
wih 1XIY)

Using (3.43) one has that
02x(Q ~ ©) S e %",
Therefore, one infers by Holder, (3.27) and (3.28):
/ 20 dXdY
o2 [X1(Y)

< C(K(],o,KL(])e q(%—n)se—ﬁ .

2q—1 1
2q 2q
¢S

/ 20 dXdY
P20 1X[(Y)

N

~2q 1
dXdYy
‘/ 7 0@ ORI
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2g—1

o /aZR )24 dXdY
eih 1 XIY)

2q

Next, from Hoélder, (3.39) and (3.27):
ozR

q dXdY
29 XY = X|(
2 I 9040\ Iy

From (3.32) one has that for s* large enough:

£10xe < ||oxel| / ¢! dXdy <X / 2’ dXdy
10x < ||Oxel[Le << | =7 -
w2 [ XI(Y) P [XIY) ~ 12 39 IX(Y)

We finally perform an integration by parts to obtain:

/ g0, . dxdy 1 /52%9 e dXdY
s z) I T2 T\ GBxz)x] ) ()

From (3.31), (3.32), (3.21) one has for C' depending on the bootstrap constants except s*:

€ Ce_(%_“)s
Ox o
904,0(X7 Z)|X|
so that for s* large enough:

< (3.50) |bd:pointwise:
Py O(X Z)|X|
/ gaat _dXdY

K / g2 dXdY
£0xeq S =

From the collection of the above estimates, the energy identlty becomes:

d (1 / 821 dxdy
ds \ 2q Jpe cp40(X Z) IX|Y)
_ _<1+L_§K>/ g9 dxdy
- 2k 4 R2 (’040()(,2) | X [(Y)
_ 14 rm)g _og(l_ L
+C(Ko + Koo) K2 eG4 K% Lg3ie 20(3-55)% | 0Ky 0, Ky o, Koo )e203—P5e— s

=2
= <% - ZR) /Rz 904,0(5(, Z) !?gg + C(Koy + Koo)Kih te a0
for s* large enough. From the initial size (3.29) the above differential inequality yields:
/ £9(sy)  dXdY
R2 goiqo(X, 7) [ X|(Y)
< —2q(———n)(s1—so)/ E1(s = 50)* dXdY
R2

1 1
Cqu 182‘1 e—2q(§—li+%)s'

/ gt dXdY

/ ga-l _ dxdy

qK

. s ~
+ CK2 e 23 5n)s / (Koo + Koq)e®*ds

- P (X, 2) 1XI(Y) ’ 5
291 2q( L LS
< C(1+ K q (Koo + Kon))e™ a(3-r)s < 27(’16_ a(3—r)s

if K1 has been chosen large enough depending on K¢ o and Ko ;.

Step 3 Proof for Y 0y. We here claim that for any Ko, Ko1 > 0, there exists Kl 0 > 0 such

that for any choice of the remaining constants Kj, j, and K; j1,j» With K> K} (0, there exists



38 C. COLLOT, T.-E. GHOUL, AND N. MASMOUDI

s* such that if sg > s* then (3.47) holds true for j; = 1 and j2 = 0. To prove this claim, Let
= Z0ze = YOye. From (3.36) one obtain the evolution of w:

0 = (é1)s+ Le—dyyéL +LE + Z0700xe + Z07xO¢
+20yye + Z0z(Q — ©)0xe + Zazx(Q —0)+ Z0zR + £10x¢e + €0xé;.

Using (3.18) yields the energy identity:

d (1 9 dxdy

ds (2_q /IR2 eih (X, Z) |X|<Y>>

(1 & e dXdYy 2¢-1 |ay( N2 dXdy
(2 2>/R2 9040(X,Z) (XIY) ¢ eih XY

1 / 20 dXdy
|X| (Y)

~2q—1
N / &1 (Zaz@axs + Z07xOe + 20yye + Z07(Q — ©)dxe +

IN

9040
A . L\ dXdY
Zazx(Q — @)E + Z0zR + £10xe +€0xé1 + 8)((@ — @)El)m.
Using (3.45), and (3.43) we infer that for s* large enough:
1 / 2 Q-0 dxdy /éf‘l‘l L dXdY | k[ &9 dXdY
— [ £]"0x - 0x(Q -0 17| < =
%] <¢40|X| v T OOy =5 ) G oy

Next,

-

20, Fu(Z) F, 2 (Z)(— 3, + 3X 0 0,)(F2 (2)X)

Z0700xe = > :
TUETTRG) T xR (2)x)

Ae.

In the above formula, Z0zFy(Z)/F(Z) is uniformly bounded, and as Fj is bounded and
|(=1/2¥ +3/2X03V)(X)| < |X]| we obtain from (B.10) that:

N\OJ

Z0,Fu(2) FL 2 (Z)(~ $91 + X050 (L (2)X)
B x4 B o) (R (2)X))

<1

From Holder, (3.27) and (3.28) we then infer that:

~2q—1 ~2q—1

A 00, dXAY olra . dXdY
X 2q X|[(

o1h | X{Y) erh  IXKY

< CIN('127[10_1K0,16_2‘1(2 ).

q—1

% ‘ / (A)2 dXdY

/ q dXdY
9040 ‘X’

Similarly, since Fy, 0z F},/Fj, 0¥, and X 8?(\1/1 are uniformly bounded,

Z0,F(Z)

120,x0] — 1 L

3 - 3
F(9g U1 + 5 X001 (B (Z)X)‘ <1,
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/ q dXdY
9040 |X|

and from Holder, (3.27) and (3.28) we then infer that:

2q

Zazx@é‘

/52‘1 ! dXdYy
0k |X|(Y)

'/ g dXdY
9040 |X|
< CK1270 K()70€ 2q(2 )

/ e dXdY
¢ IXI(Y)

We then integrate by parts:

22q—1 g\ ~q—1
€] aXdy 2¢—1 / Oy (é1)é] axXady /qu_l 1 axXady
_ Hyye = _ Oye — [ é Oy ed .
/¢40(X ) g Fx,z) Xy S "\ z)vy ) IX

For the first term we use the generalised Holder inequality, (3.27) and (3.28):
/ Ay (eNer™' . dxdy

20, 2) XN

(8z¢)%  dXdy |™
4,040(X Z) | X[(Y)

gq—1
24 dxdy |
4,040(X Z) | X[(Y)

oy (P dxay |
cp40(X Z) | XKY)
Oy (ED)|* dXay
9040(X Z) | X[(Y)

for any v small enough to be chosen later on. For the second term, from (3.21) we infer that

1
0
' (d%(x, Z><Y>)

and therefore, from Hoélder, (3.27) and (3.28):

2q-1 1 dXdy
/ Ovedy <wi"o(X, Z)<Y>> X]

2g—1 2
/ g2 dXdY = / (9ze)% dXdY |*
<,040(X Z) XY
From (B.10) and (3.43):

+C(Ky 0, Kl,o)e_zq(% R)s=gts

< 5 1 ,
904:10 (Xv Z) <Y>

1

< C(Kyp, Kl,o)e_zq(% R)s= g,

k—1
< e 2§

~

g040 (X,2) [ X|(Y)

Z07(Q — ©)
X+ @n(E %)

e °|Z|(1+|Z) "2 X[+ [X])s !
~ | X]
and therefore from Holder, (3.27) and (3.28):

‘Zaz(Q - @)8}(6‘ =

| Ae]

| Ae| < e~ 5| Ae|

2g—1
2q

1
e i*®

Za 0)0
o 207Q ~OI0xe ey

/ 29 dxdy
~ 9040(X Z) | X[(Y)

S C(K01,K10)e 4k Se 2‘1(——/@)3

1
/qu ! dXdy / (Ae)2  dxdy |*
@Z?O(X, Z) | X|(Y)

Similarly, from (3.43):
Z0x2(Q — ) S e T Z|(1+ |Z]) 2 H(1+ XIS e e
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and from Holder, (3.27) and (3.28):

2q

£)2  dXdY
(,040XZ ‘XK )

1
— =5
S e ik

gt dXdY
'/ 70ex(Q = Oy

/ g% dXdY
(,040(XZ ‘X’

< C(K()Q,Klo)e 4k e 2q(7 )

Next, from Hélder, (3.39) and (3.28):
/ g4 dxdy
cp40(X Z) | X|(Y)
C’Kl% Lyaa e 2a(arts,)s,

2q—1
2q

1
2q

/ (Z0zR)% dXdY

~2q—1
/&71 2, RAXLY
eih (X, 2) |X[(Y)

2 RN

IN

Performing an integration by parts, and then using (3.32) and (3.50) we finally obtain:

2291 dXdY £2 dXdy 1 dXdyY
/812 (61(9)(64-88)(81 / Oxe —/éf"@x °
9040 [(Y) 9040 RUS ORI 9040|X| (Y)
&2 dXdy
< (loxele + 1x¢2, i) [ b e
5/ £29 dxdy
8 ¢40\X!< )

for s* large enough. From the collection of the above estimates, as (k — 1)/(2k) > 1/(4k) one
deduces that:

d 1/ g4 dxdy
ds \ 2 R29040(XZ)|X|<>

_ —<1—§5>/ &' dXdy <2q—1_1/> |0y (€D)? dXdY
B 2 4 ) Jre o30(X, 2) IXIY) q* pah  1XKY)

—FC(K'QQ,Kvl,o,Kvo,l,Kvl,o)e_%(5 K)S e~ i +CK2q 1(K0,0+K071)e_2q(%_ﬁ)s

1 1_ K
+CK2q Lsaae 2q<2 “+2q>s

2q
2 4) Jre 9040(X Z) | X[(Y)

if v has been chosen small enough depending only on ¢, and then s* has been chosen large
enough. From the initial size (3.29) the above differential inequality yields:

/ ell(s1) dXdy e_gq(;_zn)(s_so)/ £1(s = s0)% dXdY
r2 3% (X, Z) IX|(Y) R (X, Z) 1X|(Y)

S

+CK12,%_1(K0,0 + Ko,l)e_zq(%_%“)s/ ez 3d3
s0

s

) K ,
< C(L+ K% (Ko + Kop))e 237 < _2;;106—24(5%)8
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if fﬁ,o has been chosen large enough depending on Ko ; and Ko .

Step 4 Proof for higher order derivatives. The proof for higher order derivatives works the very
same way and we leave it to the reader.
O

We can now end the proof of Proposition 16.

Proof of Proposition 16. We reason by contradiction. Let v be a solution to (3.4) with initial
value v(sp) at time sg that satisfies (3.29) when decomposed according to (3.22). Let s; denote
the supremum of times § > sg such that v is well defined and that the bounds (3.27) and (3.28)
hold on [sg, 5]. From the initial bounds (3.29) and a continuity argument, one has that s; > s
is well defined. We then prove Proposition 16 by contradiction and assume that sp is finite. If
it is the case, then the bounds (3.27) and (3.28) are strict at time s; from (3.44), (3.46) and
(3.47). Therefore, by a continuity argument there exists § > 0 such that v is well defined and
satisfies (3.27) and (3.28) on [s1, $1 + 0], contradicting the definition of s;.

]

4. Analysis of the vertical axis

This section is devoted to the proof of Theorem 1 and Proposition 10. The proof of Theorem
1 follows and refines the works [2, 17, 24], and differs in particular in the way we deal with
the problem outside the origin, see Lemma 33. For more comparisons with these works, see
the comments after Theorem 1. The proof of Proposition 10 then uses a very similar analytical
framework.

4.1. Flat blow-up for the semi-linear heat equation

We prove in this subsection the result in Theorem 1 concerning the solution & to (1.7). The
strategy is the following. We construct an approximate blow-up profile in self-similar variables
and show the existence of a true solution staying in its neighbourhood via a bootstrap argu-
ment. This existence result relies on the control of the difference of the two functions via a
spectral decomposition at the origin and energy estimates far away, showing the existence of
a finite number of instabilities only allowing for the use of a topological argument to control them.

The unstable blow-ups are related to unstable analytic backward self-similar solutions of the
quadratic equation

&—¢=0. (4.1)

Their properties are the following.

Proposition 24 (unstable self-similar blow-ups for the quadratic equation). Fork € N, k > 2,
the functions Fy(Z) := (1 + Z*)~L are such that

1 ay
T ((T—w%)

is a solution of (4.1) for any T € R and a > 0. For any a >0, Z — F(aZ) is a solution of the
stationary self-similar equation

1
Fi+ 5207 F; — EZ =0. (4.2)

NLH:eq:Fk
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The linearised transport operator Hy = 1+ 3=20; — 2F(aZ) acting on C*°(R) has the point

spectrum
{—2k

The associated eigenfunctions are
ZZ

0 — 2k
bz0, Pz0= m-

2k

Two of them® are linked to the invariances of the flow:

Hz¢zo =

(4.3)

1 0 1 0
b0 = FilaZ) 5 207FilaZ) = 5 ()\Fk()\ﬁbZ)>|/\:1, bk = 207 Fi(aZ) = 5

Proof. The proof is made of straightforward computations that we do not write here.

(Fk(flaZ))'l;:l .

O

We now introduce for £ a solution to (1.7) for @ > 0 and 7" > 0 the self-similar variables
following [14]
Y aY
y Si= _IOg(T - t)7 Z = T k-1 f(S,Y) = (T - t)f(t,y), (44)

T - t ews

to zoom at the blow-up location, and f solves the first equation in (3.8). The function that we
want to construct here, from (1.8) and (1.9), should converge to 1 in compact sets of the variable
Y. Therefore close to the origin the linearised operator is

Y =

Y
H,:=-1+ E@y — Oyy.

Its spectral structure is well-known on the weighted L?-based Sobolev spaces

k 2
HY = {f € HY (R), Y / 0% fl2e™ T dY < —l—oo}
k=07 R
with norm and scalar product

v2
4

k 2 Y2
Iy =3 [P T ay. (g, = [ e Ty o)=L )

Proposition 25 (Linear structure at the origin (see e.g. [24])). The operator H, is essentially
self-adjoint on C2(R) C L*(p) with compact resolvant. The space Hg 1s included in the domain
of its unique self-adjoint extension. Its spectrum is

T(H,) = {6_72, le N}.

The eigenvalues are all simple and the associated orthonormal basis of eigenfunctions is given
by Hermite polynomials:

[]
he(Y) = ¢ Z_% n!(%!%)!(—l)"w—?". (4.6)

h¢ is orthogonal to any polynomial of degree lower than ¢ — 1 for the Lg scalar product.

To construct the blow-up solution of Theorem 1, we will use an approximate solution to (3.8)
close to Fj(bZ) that is adapted to the linearised dynamics both at the origin and far away.

SIn fact there is a third one due to translation invariance which is absent here due to even symmetry.

eq:def phiXe!

NLH:id:def a

eq:def L2rho
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H:pr:profile| Proposition 26 (Approximate blow-up profile). Let k € N with k > 2. There exists universal
constants (Car)o<i<kp—1 with:

(20+2)(2¢0+1)
k—{

Cof_9 = —2k(2k — 1), Cop '= — Cop+42 forl=0,...k—2,

such that for any 0 < sg < s1 and a € C'([sg, 51], (%, %)), the profile

e
—_

Fla)(s,Y) == Fi(Z) + Y éaelae™ 5 *)2=2 gyy(2) (4.7)

0

o~
Il

satisfies the following identity:
Y 9
0sFa] + Fla] + EﬁyF[a] — F*[a] — dyy Fla] = as0,F[a] + ¥,

with the error W satisfying for any j > 0:

1059 e < e” GV ) for j=0,..2k [040|2 Se T for j=2%k+1,  (48)
and for |Y| > 1:

(202)70] S =% % 2121 + | 7)) 7O, (4.9)
and

50| < e 0| Z) 2T (14 2)) 7 for 5 =0,...,2k, [L0] < e TS (1 Z)) "2 for § > 2k+1,

(4.10)

The variation with respect to a enjoys the following properties:
(OaFla), hor)p = ca? e k1) (1 + O(e_(k_l)s)) , c#0, (4.11) |id:pabFproje.
and for j € N:
10%0.Flalllpz < e (FD50) for j=0,...2k, 0}0.Flallzz S1 for j>2k+1, (4.12) [bd:pabFrho
and for |Y| > 1:
((Z02) 0, Fa]| < |Z)*F(1 + | Z])~*. (4.13) [bd:pabF2

and
1050 Flall S 1Z1PM (141 Z) 7 for j=0,....2k, |050,F[a)| S (1+]2))"2 for j>2k+1,

(4.14) |bd:pabF3
In all the above estimates, the implicit constants in the < notation depend solely on k and j.

§ 0

Proof. This is a brute force computation.
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Step 1: FEstimates for U. We first decompose from (4.2) and (4.3):

U = 0,F[a] + Fla] + %ayF[a] _ F?[a] — Oyy Fla] — asd, Fla]

k—1
= FU2)+ 20 (2) — FR(Z) — 3 eart o 2k — 20)(ae” P M 2)
/=0
kol k—1 k-l k—1 k—1
+ ) alae” T )T (Hydo)(Z) = ) Gaplae™ 7 5 2420 200)(Z) — (ae™ 7 *)? 052 F1(Z)
=0 =0
k—1 2
- ca(ae )2F2E o ( ))
/=0
k= k—1 k-l k—1 k—1
= =) ek —O)(ae” 2 )y (Z) = > earlae” 2 )T N2(0209)(2) — (a6 % *) 2022 Fu(Z)
/=0 /=0
k—1 2
- ca(ae )2 2£¢2£(Z)>
(=0
ke k-1
= = (ae™ = )2 (2o (k — 0)pou(Z) + Cor4202202042(Z))
/=0 ) ,
—(ae™ 5 %) (Copzdonz — D22 Fy) — colae™ 7 *)+202200(Z (Z )R (2 ))
k—2
= =S (ae T 2Gy, 0 (Dygh0040(Z) — (20 +2) (20 + 1)poe(Z))
/=0 ) )
+(ae™ 5 *)2(2k(2k — 1)gap_z + 022 F%) — Golae™ 5 *)2K+20,560(Z (Z ) oo (Z ))
/=

2(20 — 1) 2272 AR(40 + 2k — 1) Z2H2k=2 9y)2 72+4k=2
07702 =

(1 + Z2k)2 B (1 + Z2k)3 T (1 + Z2k)4
one deduces that for £ =0, ...,k — 2:

(0™ 5 )22 (D 260145(2) = (20 +2) 2L + 1) (2))

(ae— o)k  4k(40 + 2k + 3)kZ>H2H N 24)2 7 +Ak
(1+Z2k)3 (1+Z2k)4
(e—%s)2k—2€Z2€+2k(1 + |Z|)—6k

A

Similarly, as

2k(2k — 1)22k—2  82z4k—2

Oz7F, = —
ZZ%k (1+ Z2k)2 + (1+ Z2F)3
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one deduces that

718)2 8]€2Z4k_2
(14 Z2%k)3
5 (e—%8)2z4k—2(1+‘2‘)—6k

‘(ae_kz;kls)z(2k(2k — 1) dog—2 + (9ZZFk)‘ = |(ae

Eventually,

(ae™ "7 %) 2k+2 <4k(2k — 1)z 241{:224’“_2>‘

‘—(ae_%s)%wazz%(z)‘ = (1 + Z2k)3 + (14 Z2k)4

5 (e——s)2k+2Z2k 2(1_’_’2’)

and
k-1

2
(Zc% 2 2k 26(25 > SZ ——s 4k— 4£Z4Z(1+‘Z‘)

From the above identities one deduces that:
k+1 k—1

|0 <Z T Z| (L 4 Z)) 7O 1 S (e ) R ) (1 | 2)) (4.15) [eq:boundpoin
(=0
For 0 =1,..., k: + 1 one computes that

_ 2 _ _
/ ((e—%s)ﬂzéﬂc—%(l + ‘Z‘)_Gk) e—YT2dY S /(6—162,615)4%}/6—’“%18)8]6—466—);2dY S 6_4(k_1)5

N

and similarly for £ =0, ...,k — 1:
/ <(e—%s)4k—4ﬁz4é(1 + |Z|)—8k>2e—YTQdY S 6_4(k_1)5,

The above two bounds imply (4.8) for j = 0. For |Y| > 1 one has that for £ =1,...,k + 1:

(e—g;le)%ZéLk—%(l_i_‘Z‘)—Gk 5 e~

bl S(aYe k1 $Y2U=2 74k=20(1 | | 7) =6k e—k—;lsz4k—2(1+’z’)—6k
and similarly for £ =0, ...,k — 1:
(e—%8)4k—4624€(1 + ’Z’)—Sk S e—%sz4k—2(1 + ’Z’)—Sk

The above two bounds yield (4.9) for j = 0. We claim the the other bounds for |¥| can be
proved the same way as (4.15) naturally extends to derivatives.

Step 2 Estimate for 0,F. We compute two identities:

k—1
k—1
ad,Fla] = —2kgo(Z) + > Earlae™ 2 *)F 2 ((2k — 20)do0(Z) + Z0zh2(Z))
=0
72k k-1 B 9% 72t Ak 72042k
= —2k v e < : STAVENE d 2% 3> (4.16)
(1+220)2 (14 22k)2 (1 + Z2k)
k—1
= 2kZ% 1 ylae m *)2H Mok (4.17)
=0
974k _ 76k k—1 - ok 720+2k A 720+4k
B —— Z égg(ae_%s)%_% +
(14 Z2k)2 (14 2Z2%k)2 (1 + Z2k)3

(=0
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From the first identity (4.16) we infer that:
k

0. F[a]| < (e~ 3 )220 720(1 4 72k)-2, (4.18)
(=0
This implies that
k
|8aF[a]| 5 e—(k—l)s Z Y2€
(=0

which yields (4.12) for j = 0. For |Y| > 1 one therefore estimates:

’8 F ‘ 5 Z bYe—WS)2k 2ZZ2£(1 +Z2k) 2 S Z2k(1 +Z2k)—2
(=0

which proves (4.13) for j = 0. Again, we claim that the other bounds concerning 0, F[a] can
be proved along the same lines since (4.18) naturally extends to derivatives. We now use the
second identity (4.17) and compute since hoy(Y) is orthogonal to any polynomial of degree less
or equal than 2k — 1 and Z = e~ (k=1s/(2h)y,

k—1

(—2k2% +>° Coplae™ T o) 2K 2008 72 hop = (—2k 2% hyy), = bPee=(FDs ¢ 20,

(=0

We then get the desired nondegeneracy (4.11) since

||2k224k 76k kZ: % .y ok 72+2k . Ak 720 +4k . 2-1)s
(1 + Z2k)2 (1+ 22%)2 " (14 z%k)3 L3 N ‘

O

We now fix & > 1 for the remaining part of the Subsection, and prove Theorem 1 by showing
that there exists a global solution to (3.8) converging to Fj(Z) as s — +o00. To this end, we
perform a bootstrap argument near the approximate profile F[a]. We decompose the solution
in self-similar variables according to (using (4.14)):

f=Fla]+e, e= Zc%hgg(Y) +&, €1, hy for £=0,..,k, (4.19)

where the L, is the orthogonality with respect to the L% scalar product. Such a decomposition
in the vicinity of F'[a] is a consequence of (4.11) and of the implicit function Theorem.

Definition 27 (Trapped solutions). Fiz J € N, and let constants K>K;>..>Ky>0.
We say a solution to (NLH) is trapped on [so, s1] if it is even, can be decomposed according to”
(4.19) and if it satisfies for j =0,...,J:

(YOy)ePdY _ . s

S < Ko 4.20
/|Y|>1 $Zea(2) V]~ 6 (4.20)

|(YOyyef dY _ o~ o1
/|Y|>1 ¢2k+1/2( ) Y] ‘ ’ (4.21)

"Note that for so large enough, due to the bounds for trapped solutions, this decomposition is unique and
the associated parameters are C*° from a standard application of the implicit function Theorem and of parabolic
regularity

bd:pointwise;

id:decomposi

bd:eweightlo:
bd:eweightsh
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|07, e|2dY
< Kje ok forj >2k+1, (4.22)
/m R2) Y]~
10%2llre < Eje (B3t 578)% for j=0,...,2k, [05E]12 < /Kje % forj > 2k+1, (4.23)

k—1 3
(Z !m?) < VEKe katap)s (4.24)
/=0

We will show that one solutions remained trapped forever, and our argument necessitates

to adjust the initial values of the projection of the error on the modes (hos)o<¢<x—1. These
functions are unbounded but the following technical Lemma provides a harmless localisation.

Lemma 28. There exists M*,C > 0 such that for all, M > M*, K > 0, there exists s* > 0
such that for s > s* the following holds true introducing xp(Y) := x(Y/M). For any % <
a < %, (Car)o<i<k—1 € B(Ke_( —3+ar) *) (the Euclidean ball) there exist unique parameters
(Cae)o<t<k—1 € B(Qf(e_(k_%Jri)s) and a with |a —a] < CKe™ (2+20)5 such that

k—1

Fla) + xu Y earhae(Y al + Z cachoe(Y
=0

where € satisfies the orthogonality conditions in (4.19). Moreover, with a fized, the mapping
that to (Gar)o<e<kp—1 associates (Car)o<i<k—1 15 a smooth diffeomorphism and the preimage of

B(Ke~*k=3t10)%) is contained in B(2Ke =3+ 10)5).

Proof. We fix a € [2, 2] We write a = @+ ae* Y% and define the mappings w : R¥ — R*¥*1 and
@ : RFFL 5 RFFL by

k=1
w (Co, -ry Cok—2) = ((Xm Z Cachae, han) p)o<n<ks
=0
k=1
@(co, ..y Cok—2,a) = ((Fla] — Fla] + Z Cachag, han) p)o<n<k-
=0

One has the identities w (Co, ..., Cag—2) = (Co, -, Cak—2,0) +0rr—00(|(Co, .-, Cox—2)|) as the hy form
an orthonormal basis of L% of polynomials, and since the weight p decreases exponentially fast.
One similarly has that &(co, ..., car—2,@) = (co, ..., Cop—2, ca®* @) + O(a?) where ¢ > 0 is defined
n (4.11). The Lemma is obtained choosing (cg, ..., cop—2, (a—a)e~F~D%) = 5L ow(y, ..., Gop_2).
The inversion of @, and the desired estimates, are consequences of the aforementioned identities
and of the implicit function Theorem. O

Proposition 29. Fiz J > 1 and M > 0 so that Lemma 28 holds true. There exists K >Kj>
.. > Ko >0 and s* > 0 such that the following holds for any so > s*. For any &y = &(sg) that
is even, satisfies the orthogonality conditions in (4.19) and

Z/ < e, Z/ VLAY ¢ oo (4.25)
[Y|>1 ¢2k+1 ) |Y| [Y|>1 ¢2k+1/2 )|Y| ’
2
> / DAY < o, (4.26)
j=2k+1 [Y|>1 ¢0 |}f

|00l 2 < e (3+5=2)0 for j=0,..2k, [}alz <e T forj>2%k+1, (427)

bd:eweightjg

bd:cell boot:

bd:decayextil

bd:decayextil
bd:el2rhoini
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and 3/4 < a(sg) < 5/4, there exist ¢o(Sg), ..., Car—2(S0) with

1
k—1 2
(Z |52((80)|2> < 2V Ke~(h=3+d5)s0 (4.28)
=0

such that the solution f to (3.8) with initial datum

f(s0) = Flal(s0) + xam(Y ch (s0)he(Y') + &, (4.29)

is a global solution to (3.8), which is trapped on [sy, +00). Moreover, there exists an asymptotic
limit a* € R, with 1/2 < a* < 3/2 such that
o — a*| < (K2 + K2)e~(atan)s, (4.30)

All parameters are fixed, except the constants K, K ; and s* that will be fixed in the forth-
coming Lemmas. Hence generic constant C' will be used when independent of K, K ; and s*,
with associated notation <. We prove Proposition 16 with a classical bootstrap reasoning. The
results below will specify the dynamics in the trapped regime and allow to prove Proposition 29
at the end of the subsection.

Lemma 30. For any constants K > K; > ... > Ky > 0, there exists s* large enough such that
if f is trapped on [sg, s1] with sg > s*, there holds for j =0,...,J — 1, for any Z € R:

el S Ve (1 +|Z[)2 2, (4.31)
and for any C > 0, for all |Y| < C':
el S VKe (k—2+3—3)s for §=0,..,2k, |3 SV Ke 2 forj>2k+1. (4.32)

Proof. Step 1: Proof of (4.32). From (4.23), and Sobolev embedding one deduces that for
Y| <C:

e < Ve O
From (4.24) and (4.6) for j =0, ...,2k — 1 and |Y'| < C one has:

O (cehe(Y))| = |6 T 0 (cchu(Y )] S €' Hler] § Ve (hmbtdi=d+a)

A
=
[
~

i
N
|
(S
+
e

for so large enough. For j > 2k and ¢ < 2k — 1 one notices that (‘%hg = 0. Therefore, one
obtains (4.32) from the decomposition (4.19) and the two above bounds.

Step 2: Proof of (4.31). We apply (A.2) and use the facts that Y0y = Z0z and |Z0z¢op41/2] S
|2rr1/2] S 120z Pok41)2l:

Z1de 719 Z1%e
L0 2 < + 1 Zos(—Z0_
H¢2k+1/2(Z)HL ({¥i=1)) H¢2k+1/2( )HL2<{|Y‘>1} ) | Z(¢2k+1/2( ))HL2<{|Y‘>1} &)
Jj+1
ZaZ 2 _ 1
< < Kj e 2%,
~ Z Pokt1/2(Z ||L2<{‘Y‘>1} &)~ !

Since |popt1/2] S |Z|#+1/2(1 + | Z|)~*F one obtains that for |Y| > 1

NLH:eq:boots

bd:initialde

bd:eLinfty

bd:eLinftylo

|8§€| < KJe_ﬁS|Z|2k+l/2_j(1 + |Z|)_4k. (4.33) |bd:pointwise
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For j > 2k + 1, the fact that |doy1/2/(Z) = |Z]*T¢o(Z)] yields the inequality
2 1z
|90 (Z)| ™ |bo(Z)] | dor+1/2]

from which we infer that

/ |Zaz(6;€)|2 g _ / |8J+1€|2 dy / |Zj+18%+15)|2g _ —Ls‘
vz %8(Z) YT Sy R(©2) Y] vz %(2) Y[~

The very same reasoning using the above bound and (4.22) gives
0%el S VE e (1 |27
From the two above bounds one infers that for Y| > 1:
e S VK e w5 (1 + | Z])2 2k, (4.34) [bd:pointuise

Combining (4.33), (4.34) and (4.32) yields (4.31).
O

The evolution of ¢ is given by:
Y
€s + ang + & —2F(Z)e + 2(F,(Z) — Fla])e — dyye + a0, Fla] + U — 2 =0 (4.35) |eq:evolution
and that of & by:

20 -2

k—1
Es + Lyg+ 2(62578 + cor)hoe + 2(1 — Flal)e + a0, Fla] + ¥ — e2=0 (4.36) |eq:evolution:
/=0

Lemma 31 (Modulation equations). For any constants K > Ky >..>Ky> 0, there exists

s* large enough such that if f is trapped on [so, s1] with so > s*, the following identities hold for

t=0,1,...,.k—1:

20 — 2
2

1

)l S K e~ (b-atap)s (4.37) |eq:modulatio:

Proof. Step 1 Law for a. We take the scalar product between (4.36) and hgy, yielding, using
(4.11) and (4.19):

asca®Le= (k=18 (1 4 O(e=F=1%)) = (—2(1 — Fla])e — U + €2, hop) .

1 1
las| < Kye~Gtae)s and

Coys

We now estimate the right hand side. First, since |F[a] — 1| < e~ (k=15 Z'g Y%, using (4.23) and
(4.24) for s* large enough:

_3)s
[(—2(1 = Fla))e, hax)pl S llellz2ll(1 = Fla)hakllzz S EKoe™F=0%em (=0 = \/Rpe=(h=2)s,
Using the bound on the error (4.8):
(L, ape) | S 720705
Finally, using the bounds (4.23), (4.24) and (4.31) for the nonlinear term:
(€% har)p| S llellzllelle S (VEoe 720 + VK Kje i < Kye~tmata,

for s* large enough. Summing the above identities yields (4.37) for as.
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Step 2 Law for ¢;. We take the scalar product between (4.36) and hgy for £ = 0,1,....,k — 1,
yielding, using (4.11) and (4.19):

20 — 2 o
5—c20)llhaellzg = —(2(1 — Fla])e + asy

Performing the same computations as in Step 1 gives for s* large enough:
121 = Fla))e + W — %, hog)| S Kye~F2+p)s,
Using the bound for as (4.37) obtained in Step 1 and (4.12) one obtains:
(as0aFla], hoe)| S K je~(3Ta0%e= 03 = jg je=(bmatap)s,
The three previous identities then yield (4.37) for cgp.

(c20,5 + Fla] + ¥ — &2, hy)

O

Lemma 32. There exists a choice of constants Kj > ... > Ky > 0, such that for any K > K,
there exists s* large enough such that if f is trapped on [sg, s1] with so > s* and satisfies (4.27),
at time sy there holds for j =0,....J:

/K .
5 e_(k_§+i_l

2k 2

10%&(s1)llzz <

K.
S for § = 0,2k, 95E(10) 5 < e EY forj 2 2k41.

(4.38) |eq:boundfati,

Proof. Set &; = 6] €. Then €; solves from (4.36):
k—1
20—2 ; ; j ; i o
e,+H,JeJ+Z (car.st =5 C2)0 (hae)+20% (1~ Fla])e) +as 050 Fla] + 8~ 0” =
£=0
which yields the following expression for the energy identity:

d (1[5 v ) i = 2-2
T (5/ Eje dY> = —(&,(H,+ Z—k)€j>p—;(62é,s +— car) (€, O (har)),
22, 0%((1 ~ Flal)e))y + (&), a0, 0uFla] + D,0), — (£, 04%),.
For j =0,...,2k, by integrating by parts one obtains from (4.19) that ; is orthogonal to h, for

{=0,...,2k — j for the L% scalar product and therefore to any polynomial of degree less or equal
to 2k — j. Therefore, from Proposition 25 there holds:

Os€j+ o

. . 2
IR (k-3 —§+;—k) [&2e~Tdy it j=0,..,2%,
2k (g~ 1) [EeTAY i j=2k+ 1.,
Let 0 < v < 1 be a small constant to be fixed later on. Integrating by parts yields:
2 2 2
/g]Hpa] —Tdy < —c/Y25§e—YTdY+c’/é§e—YTdY

for some constants ¢, > 0. Combining the above estimates one writes:

<€]7 (H +

j _ _ ,—2us »7 —2wsx. L s
—(&;, (H, + 2k) E)p = —(1—e WEj, (Hp + Qk) Ej)p—e (&, (H, + 2k)£]>p
< —21/5/Y2 YTdY+O(e—2us/~2 4 dY)

< % s+ Qk)fse 4dY1f]—0 2k,
—(%—1)fj_4dY1fj_2k+1 .
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As we said earlier, €; is orthogonal to any polynomial of degree less or equal to 2k — j for
j =0,..,2k. For j > 2k + 1 one notices that 8,hgy = 0 for any ¢ = 0,...,k — 1. Hence the
cancellation for j =0, ..., J:

T
L

20 — 2 ;
ca0)(€j, O (hae))p = 0

(CZZ,S +

~
Il
o

One has from (4.7) that the lower order linear potential satisfies (as Z = Ye—kz;le);
(1= Fla))| <1221 +12))"% % < min(1, e~ 7 5Y2)

which adapts to derivatives. Therefore, applying Leibnitz rule and Cauchy-Schwarz one gets
that for j =0, ..., J using (4.23):

L1 1
2 . 2 2 -~ 5
0 - Flae,| <o ([ Be Cay ) S ( [logepe Mav) v et [vige Tay
1=0
/Y2 e‘—dy+{ Ce 2 st t G for = 0,2k 41,

CE;\JK1e +%  forj=2k+2,..J

where we used that for i < j one has K; < K; and 2’—k — % > J 5E — —1—21/ for 0 < v < % — ﬁ
From (4.37), (4.12), (4.8), (4.23) and Cauchy-Schwarz we estimate for O<v< 8k’

'/sj (as0,F[a] + ¥)e '<\/7{

Using Leibnitz rule and Cauchy Schwarz, from (4.31), (4.19), (4.23) and (4.24) we infer for the
nonlinear term, as K > Kj > ... > Kj:

. 2 J-1 ) J ) 2 % 5 1
‘/gjaﬂz(g)e—idy‘ S (ZnaZZsHLm) (Z/wzeﬁe—idy) </gge—2dy>2
=0 =0

1
2

(k_%_l+2k+y)s for 7 =0,..., 2k,
2k+V)s for j =2k +1,.. J

- 3_2(]“_%_%"‘%"‘”)5 for j =0,...,2k,
e_z(ﬁ""’)s for j =2k+1,...,J.

for 0 < 2v < ﬁ. Putting all the previous estimates together one obtains that there exists v > 0
depending only £ such that for s* large enough, after some signs inspection:

d ([, v —2 <k————+2k)fe e 4+ C(R)e 2534 )5 gor j— 0, 2k
- /E-:je 4 < ) L

ds —%fej T + C(K)e™ (%"’”’)5-1-0( Kj_1)e %° forj=2k+2,..,J

where we used that K > K; > ... > K. We claim that integrating over time the above

differential inequality shows (4.38). We only show that this is the case for j = 2k + 2, ..., J, the
proof being the same for 0 < j < 2k + 1. For j = 2k + 2, ..., J, one notices that i 2k 2 2, SO
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that from (4.27) and the above inequality one deduces that at time s;:

A

9 Y2 _2, _ 9 _¥2 EEPN A o (2—20)3 15\ .
giem1dY < e #% Ej(so)*e” #dY + e #*1 (C(K)e z + K\ Kj_iek >ds

S0

6_%81 + C(K)e_%se_%sl + C\/Kj_l\/Kje_%sl < %6_%81

IN

where the last inequality holds true provided K; > 4 and K; > CKj;_; for some universal
constant C', and that s* has been chosen large enough depending on K. The same inequality
holds true for j = 0, ..., 2k + 1. Therefore, one can choose inductively the constants K; one after

another to satisfy these conditions, ending the proof of the Lemma.
O

rovedoustide| Lemma 33. There exists a choice of constants Ky > ... > Ky > 0, such that for any K > K,
there exists s* large enough such that if f is trapped on [sg, s1] with sg > s* and satisfies (4.25)
and (4.26), at time s1 there holds for j =0, ..., J:

Je(s))2 K. Je(s)2 K.
/ ‘(Yf;y) (sl aY < Bipgdn / \(Yzay) e(s1)]* dY < Bipgs (4.39) I@
izl P5a(Z2) Y[ T 2 Yi>1 Py pp(Z) YT 2

‘8%6(81)’2 avy _K; _ 1 .
Ll < Lemwm for j > 2k + 1. 4.40) |bd:lossy imp:
fym 7 ™% (140)  [sartosey snp

Proof. Note that by even symmetry it suffices to perform the estimates for Y > 1. We shall
then use the identity Y = |Y] in the following.

Step 1: Proof of (4.39). Let x be a smooth cut-off function, with x =1 for ¥ > 2 and x =0
for Y <1. Let £ =2k +1 or £ =2k +1/2. Set £; = (YOy)’e. Then £; solves from (4.35) since

[Oyy,YOy] = 20yy:

0 = 0+ gayéj +&; — 2FL(2)é; — Oyvéj + 2(Féj — (YOy ) (Fye)) + 2(Y oy ) ((Fi.(Z) — Fla))e)
j—1

+2) (YOy) ' "Oyy (YOy)'e + as(Y Oy Y 0uFla] + (YOy VT — (YOy )ie?

n=0
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From the above identity we compute, performing integrations by parts, that

d (1 & dy
%(5/*%@{?)
E;

i1 =5+ 2FE; — SOvE + Oyvéj — 2(FRéj — (YO ) (Fye)) + (Y Oy )ie?

Y )_ Pe(Z) v
[ L2200 (F(Z) = Plale) = 2300 (VO P vy (Vy)"e = (VOy Y (as0uFla] +9) o
XouzZ ) $e(2)

1 (05 (20200)(2) k= 1(20500)(2)
/qugz <a be(Z) 2k ¢u(2) )dY

(Z)
. & —0u(2) +2F(2)¢0(2) — £0200(2) dY /Xyaygjﬁg

Xq%m (Z) 6(2) Y J Y&z Y

5 L[z x 1
¢%(Z ay + 5 /€jayy (@%(Z) Y) dy
_2/X5J(Fk(2)€j — (Yoy)/(Flale)) dY _Z/Xéj(YaY)j((Fk(Z) — Fla])e) dY

¢7(Z) Y ¢7(Z) Y
L /Xéj S (Y Oy yy (Yoy) e dY o & (Z20200)(2) dY
9 (2) Y W2) eZ) Y
[ & (YOy)i(a0.Fla) + W) dY %(Yaaz)ﬂ(e?)
/Xm 6u(2) Y +/X a2 Y

where in the last equality, on the first line one has the main order linear effects, on the second
their associated boundary terms, one the third and fourth the lower order linear effects, and on
the last line the influence of the forcing and of the nonlinear effects. We now estimate all terms.
For the first term from (4.3):

/X & —0u2) +2F,[0)¢0(2) — 02002 ) _ - 2]‘5/ é? dY
9 X527

be(2)

The second term is dissipative and has a negative sign since x is positive. For the third term,
using (4.19), (4.23) and (4.24):

1 ;

L2
S HWHLW(1§Y§2)||5j||L2(1§yS2)

J
S M2 o<y <) (Z HZZ@ZZE”2L2(1<Y<2)>

1=0

j k—1
_ k=1 _9¢ i i ~
S lle” =y | [z (1<y<2) <ZHZZ@ZZ€H%2(1§Y§2) +Z|C2z|2>

i=0 £=0
< s <KJ ~2(k=1)s | fro—20k-3+7k)s ) < Kjers (4.41)

for s* large enough. For the fourth term, we first decompose:

8“”(@@()() )- 8”(@@(1) ) + 20 <W>+X5YY<¢%<2>Y>‘
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Since one has
1 1
IyyXx <7> + 20y x0y < >‘ S1Z P h<y<a Se 3 b1y <o
‘ o} (2)Y ¢ (2)Y
we claim that one can perform the very same estimate for the first two terms as (4.41), giving:

J o) o () e

For the last term, from a direct computation, for |Y| > 1, one has that:
1 1 1 1
e ()| 5 o
‘ $}(2)Y ¢ (2)Y?
Therefore, if £ = 2k + 1, we take some 0 < k < 1 small enough and split the integral using some
Y* > 1 large enough, and use (4.19), (4.23) and (4.24):

/ €20 LI P </Y* ¢ dY+/+OOé2 ! ! Ly
X 0yy _— N —_—_— S —
’ D31 (2)Y 1 ¢2k+1(2) o 705 (2)IYPY

S p—— o0 +f-e/ LY
Sl 7ol <y <y 2 o o v
k(2 e TR N @)Y
&2
< Kek(2k+1)s_2 —|—/€/ <Kek+/£/ 7(1_1/
¢2k+1 ¢2k+1( )Y
If £ =2k + 1/2, one uses the fact that ¢opi1(Z ) = Z1/2 Bok41/2, SO that
1 1 1 k—1
= % ° (4.42) |eq:estimatio:
¢2k+1/2( )Y3 ¢%k+1(Z)Y2

to estimate using (4.20):

Y 1 1 e
! dy | <
/%&Y<%HUA>Y> e

A2

x|=

’zkl/ ot dY S K e~ Gra)s < K emw®
Y>1 ¢2k+1(Z)

Collecting the above bounds one has proven that:
1, &2
K i 4 for £ =2k +1
‘/‘553” <2Li> dY' <9 e f XY forf=2k+1,
¢ (2)Y Kye # for £ = 2k +1/2.
We turn to the fifth term. We first estimate using Leibniz rule:

j—1 Jj—1
|FW(2)é; — (Yy Y (Flale)| S Y [(Z02) " Flal[|(Yoy) el S 1ZPF(1+12)7* Y |(Yoy)"e|.
n=0 n=0

If £ = 2k + 1 we then use Cauchy-Schwarz and (4.20) to obtain, as Ky > ... > Kj:

J R NG T Ry (. B s [ Worerar :
¢2k+1(Z) - v>1 O (Z2) Y ) \ysr 05,4(2) Y
< VEVE e
If ¢ = 2k + 1/2 we use the fact that
|Z|2k 1

< )
§k+1/2(Z)(1 + |Z|)4k B ¢§k+1(2)
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which, combined with Cauchy-Schwarz and (4.20), gives:

D=

j—1

A2 Y@y)" )2d_Y
S </Y>1 ¢2k+1( > Z </Y>1 ¢2k+1(Z) Y)

n=0

(SIS

'/ &,(Fy(Z)2; — (Yay)i (Flale)) dY
X Z) Y

Sri1/2(
2k+1/2

S \/Kj\/Kj_le_%s.
One has then proven that:
/ £j(Fiu(Z2)é; — (Y dy)! (Flale) VE,_1/Ejemirs for £ =2k +1,
2k+1/2(Z) Y S VEi-1y/Kje — for ¢ =2k +1/2.

We turn to the sixth term. Since from (4.7) for any j € N:
(202) (Fi(2) = Fla))| S ™%,

one has using Cauchy-Schwarz that

&Yy Y ((Fu(2) - []))dY oy Y(‘)YJEPdY
'/X $2(2) ~e Z/m Y

which using (4.20) implies that for some 0 < v < 1 be small enough:

‘ / &;(Yoy Y ((Fr(2) — Fla))e) g‘< Kye (@t0)s for ¢ = 2k + 1,
* $1(2) Y Kie (t)s for 0= 2k +1/2.

For the seventh term, we use the fact that dyy = ((Ydy)? — Ydy)/Y? to decompose:

j—1 j—1
Z(ng)j—l—ngyy(ygy)ng _ Y—l@yéj i Z(ng)j—l—ny—2(yay)n+1€
n=0 n=0
j—1
D (Yo Y TY (Y Oy ) e — Y TR (Yoy ) e
n=0

For the first term, we integrate by parts and find:

&Y 1oyé;dY 1 / - ( 1 ) / &2 dY &2
X~ G v 50y dy — Oy X— < ————dY.
/ (2 Y |2 ¢ (Z2)Y? ¢} (2)Y y>1 ¢ (2)Y3
If £ =2k + 1, we take 0 < k < 1 small enough and Y* large enough so that, using (4.19), (4.23)
and (4.24):
&2 +00 &2
dY / _S / S——
/Y>1 ?bz ¢g Z * ¢?(Z)Y3
£ dy ) £ qy
< o . < Kje kS .
~> H%( )HL (1<Y<y ”E]HLZ +’f/ % VY~ Je k +H/X¢§(Z) %

If £ =2k +1/2, we use (4.42), (4.20) and obtain for s* large enough:

2 2
IS k—1 IS 1,1 1
Ay <e / —— Ay < Kjem G < 7w,
/Y>1 PF(2)Y3 y>1 0341(2)
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If £ = 2k + 1, one estimates using (4.20) that

/ ‘Z Yay)] l-ny — (Y@y)n'HE-l-Ei;B(YGY)j_l_nY_2(Yay)"+2E—Y_z(Yay)j+1€

Pk
J
s S SRS ki
Y>1 Y¢2k+1 Y

If £ = 2k + 1/2, one estimates using (4.20) and (4.42) that

/ X (SO oy Y R (Y Oy ) e 4 SIS (Y Oy P TR (Y Oy ) - YR (v oy )it

2
¢2k+1/2
J
%) Z/ (VOyPe) dY o ~(b+b)s,
Y>1 ¢2k+1 Y

One has therefore proven that, taking s* large enough:

/Xa]z 0(Y Oy )1 "0yy (Yoy )"e dY
#;(2) v

< 22
C’Kj_le_(%)S—l—/{fxm% for £ =2k + 1,
ek" for ¢ =2k +1/2.

Since | Z0z ¢/ pe| is bounded, one infers for the eighth term from (4.37), (4.20) and (4.21) that
for v > 0 small enough:
< { KJC_(

/ ? (Z0z60)(2) dY
¢£ (JS[ ) Y Kje_

)8 for £ = 2k +1,
T)S for € = 2k +1/2.

—
B e

For the ninth term, from (4.9):

/ (Zogy ey dy —k,clzs/ |Z[PF-4 (1 |Z)) 12k dY
Y>1 Y>1

o v ~° 2P+ Z) Y
“+oo

S 6_%28/ - ’Z’8k_4_2£(1+’2’) 4de < —k—;12s§e—%s
e 2k ° Z

and from (4.37) and (4.13):

/ las(Z02)70,F[a](Z)|? dy _ <la ’2/ ‘Z‘4k(1+’2’)—8kg
y>1 $3(2) Yy o~ 1Z]2(1 + |Z]) 5% Y

+00
< e—(1+ﬁ)s/ L ‘Z‘4k—2fd_Z§e—%s'
e 2k ° Z

Therefore, using Cauchy Schwarz, (4.20) and (4.21), for v > 0 small enough

'/ & Yay ) (asOe F[]+\I')d_Y‘< Kye G for 0 = 2k + 1,
Xou(Z 0u(2) Y [~ Kje (&t)5 for =2k +1/2.

2
ay

Y

2
ay

Y
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Finally, for the last term, using (4.31), (4.20) and (4.21) for v > 0 small enough.

aegpert] = (1,59 (Emora) (£ 02))

n=0
< Kje_(@+”)s for £ =2k +1,
~ o\ Kje (@ )s for 0= 2k +1/2.

Combining all the above estimates, for any x > 0, for some v > 0 small enough depending only
on k, and for s* large enough, then gives the two identities:

£ (GIER) < (1) o

¢2k+1(Z)

d ([ (Voy)e) L[ OV
</ ¢2k+1/2( ) Y) S 2k N2 (2) ¢2k+1(Z) Y +CK .

with the convention K_; = 1. After integration in time using (4.25), and (4.23) for the zone
1 <Y <2, the above differential inequality shows that, upon choosing the constants K; induc-
tively one after another, (4.39) holds true.

Step 2: Proof of (4.40). Let j > 2k+ 1. We claim that this bound can be proved the very same
way as in step 1. The main argument is the following. &; := 9% solves from (4.35):

+ 2k
]2k €+ aYEJ_2Fk() — OyvEj

= 2(04(Fu(Z)e) ~ Fk(Z)é?j) —205((Fi(Z) — Flal)e) — 0 (as0.F[a] + V).

85]—’_

The function ¢o(Z) is a stable eigenfunction of the operator without dissipation in the left hand

side:
j4+2% Y -2k
< ok -l-E@Y—QFk(Z)) $o(Z) = o %o

and in particular (j —2k)/2k > 1/(2k) since j > 2k+1. As 1/(2k) > 1/(4k), one can then prove
(4.40) as in Step 1, checking that all the terms in the right hand side of the equation for w are
lower order, and that the boundary terms at the origin are controlled by (4.23).

O
We can now end the proof of Proposition 29.

Proof of Proposition 29. We assume that e is fixed satisfying the orthogonality conditions (4.19)
and the initial bounds (4.27), (4.26) and (4.25). We assume K > ... > K > 0 are fixed so that
the Lemmas 32 and 33 hold true. We let K > K to be fixed at the end of the proof. We use
Lemma 28 to relate the initial coefficients (¢a¢(s0))o<r<r—1 and (c2e(s0))o<e<k—1. We consider
for all possible initial values (c2¢(S0))o<r<i—1 € B(f( e_(k_%Jrﬁ)so) the corresponding solution
o (3.8) with initial datum (4.29).

We let the exit time s, € [sg, +00] be the supremum of times s; > s such that the solution
is trapped on [sg, s1]. From Definition 27 and Lemmas 32 and 33 and a continuity argument, if
Se < 400 then necessarily the inequality (4.24) is saturated at time se:

o (k—Li1yp L
|(c2e(Se))o<i<i—1]| = Ke (k—5+35)se
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Hence the exit mapping ® which to (c2¢(s0))o<r<k—1 € B(K’e_(k_%Jrﬁ)SO) such that s, < +oo
associates

((cae(50))ozech1) = € F=3HI075) (09 (5.) Jo<p<hr

is a mapping whose domain is a subset of the ball B (f( e_(k_%+ﬁ)so) and whose range lies in its
boundary the sphere S(f(e_(k_%+ﬁ)50).

We claim that one can choose K > K such that for s* large enough, ® is the identity
map on the sphere S(f(e_(k_%Jrﬁ)sO). Indeed, for any K > K if initially |(c20(50))o<e<i—1| =
Ke~(h=3%36)%0 then for s* large enough one computes from (4.37) the outgoing flux condition

o le(s)? 11 o ee(so)? Z%_IC(S )80(8)
8S<K2e A% )(s) <I<:—— —>K50 e\s —+ 1—o Ce(S0)0sce(So

( §+i)8 4]{3 ~2€_2( %"_i K2 (k +4k)50

. 1 1 2k 1 |Ce(80)|2 22?261 Cg(s()) ( 62205(80) + O(KJe_(k_i"‘@)SO))
B < 2 E) K2e™ ( —3+15)s0 v K2e_2(k_§+i)50

2%—1
B 2 11 - ) K;
T 2e—2(k— 5+ )50 Z (k 9 + e > |lce(s0)|” + O < K>

1 Ky
1 __
+4k+o(K>

Y

One then chooses K > K7 depending on K7 such that the above quantity is > 1. Then in that
case the solution leaves the trapped regime immediately at time sg since (4.24) fails right after
sp. Hence s, = sp, and ®((c2e(50))o<e<i—1) = ((c20(50))o<e<k—1) is indeed the identity map on
the sphere S(Ke~* 2+41k)30)

From the above outgoing flux condition and a standard continuity argument, ® is continu-
ous on its domain. & is thus a continuous mapping from the ball onto its boundary, that is
the identity on its boundary. The domain of ® cannot be the entire ball, as this would con-
tradict Brouwer’s fixed point Theorem. This means that there exists one (car(s0))o<t<k—1 €
B(K’e_(k_%Jri)SO) such that s, = +00, which ends the proof of the Proposition.

O

4.2. The coupled linear heat equation

We now turn to the proof of Proposition 10. We keep the notations of the previous section.
The proof is similar and simpler to the one of the related Theorem 1 concerning £. Indeed, there
are no nonlinear effects and instabilities. For a solution ¢ to (LFH) we start by going again to
self-similar variables

Y a*y
Y = , §= —log(T - t)7 g(s,y) = (T - t)4C(x7t)7 Z =,
T—1t e 2k °

Then g solves the second equation in (3.8). Throughout this section, we assume that k and
J are fixed, and that f is the solution to the first equation in (3.8) satisfying the properties
of Proposition 29. In particular, in the current subsection, all the constants appearing in the
previous subsection are considered as fixed and universal. Without loss of generality for the
argument, since its exact value will never play a role, we fix:

a* =1.
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In particular since f = Fk(a*e_(k_l)/ (%)Y) at leading order, and since the dissipation is lower
order, the main order equation reads in Z variable:

Z
95+Mzg:O, My ::4—4Fk(CLZ)+ %82

pr:mathcalMZ| Proposition 34 (Spectral structure for Myz). The operator My acting on C(R) has point
spectrum Y (Myg) = {€/(2k), ¢ € N} and the associated eigenfunctions are
ZZ
(1+ (aZz)?k)4’

Proof. The result comes from a direct computation.

Wy = Mzipg = 1y

O

Mz having a nontrivial kernel and non-negative spectrum, we expect formally the solution
to approach an element of its kernel as s — +00. Near the origin, as f = Fk(a*e_(k_l)/(%)Y)
at leading order and since Fj(0) = 1, the main order equation for g in the zone |Y| <1 is:

Y
s +Mpg =0, Mp = EOY — Oyy.

Proposition 35 (Linear structure at the origin, (see e.g. [24]). The operator M, is essentially
self-adjoint on C3(R) C L%(p) with compact resolvant. The space Hg is included in the domain
of its unique self-adjoint extension. Its spectrum is Y(M,) = {£/2, £ € N}. The eigenvalues
are all simple and the associated orthonormal basis of eigenfunctions is given by the family of
Hermite polynomials (he)een defined by (4.6).

We now perform a bootstrap analysis and decompose the solution according to:

g= b(S)Fé (Z*)+e (4.43) |eq:decompo v

k—
where Z* = a*e= "% Y and without loss of generality since the value of a never plays a role we

take a* = 1 for simplicity, which fixes Z* = e wY = Z , and where b is fixed through the
orthogonality condition for the (-, ), scalar product:

£ L ho (1.4

r:bootstrap2| Proposition 36. There exist Ly > ... > Lo > 0 and sy > 1 large enough, such that for
e(sp) = eo satisfying the orthogonality condition (4.44) and
J

|(Z0z) eo|? dY Z07) eo|? dY
E / 92) EO‘ < e_ﬁso, E / \(6227)60\_ < e_iso, (4.45) |bd:bootstrap
i1 Yi(Z Y] vz ¥ipZ) Y

=0

J j P2

S [ Gl <o, (1.46) [babootatrep
— Jiyi>1 ¥

leollz < €72, [10heolli < 3%, forj=1,....J, (447)  [bd:bootstrap

and an initial parameter 3/4 < b < 5/4 the solution g to the second equation in (3.8) then
satisfies for all s > sg, for j =0,...,J:

|(Zaz)]€|2 dy _3. / |(Z0z)ie|? dY 1
< Lje 3%, ——— < Lie 2", 4.48) |bd:bootstrap
/m viz) Y[~ vz ¥(2) Y]~ (149

2
/ fjf') ’d}f’ < Lie %, (449) [bd:bootstrap
Y|>1 %o
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lellze < VLoe 2%, [|0%ellzs < Lye™ 2%, forj=1,....J, (4.50)

and there exists an asymptotic parameter 1/2 < b* < 3/2 such that |b — b*| < e~ (k=1

The rest of the subsection is devoted to the proof of Proposition 36. In what follows we
assume that g solves (3.8) and satisfies the bounds of Proposition 36 on some time interval
[s0, s1], and perform modulation and energy estimates to improve those bounds. Proposition 36
is then proved at the end of the subsection.

Lemma 37. There holds on [sg, s1] for j =0,...,J — 1:
el S Lye™ (1 + |2])=~™. (4.51)

Proof. First, since 07 = ek;kls@y, one deduces from (4.50) that ||e]|,; < e~5/(2k) - Therefore,
P
from Sobolev,

e| S Lye 7 for |Y]< 1. (4.52)
Then, applying (A.2), as |[Z0zv1 2| S [W1/2] S 120711 ]:
Zide Z1d,e AR
o < Z0 Z
Hq/} 1/2 ( )HL {Y|>1}) ~ H ( )HL2<{|Y\>1} \Y\) ” Z(w ( ))”LQ({‘Y|>1} \Y\)

Jj+1
Z@Z 1
< < — 508
from (4.48). From the definition of 1/1 this implies that
el S Lye %2277 (1 +|2) % for [Y]>1. (4.53)
Finally, since v, 5(Z) = |Z 11/24p(Z), for j > 1 one has the inequality
+1
Zl 11z

Yo(Z) ™ Yo(Z2)  b1y2(2)

This implies from (4.48) and (4.49) the estimate for j > 1:

|207(3%¢)|? dY 0 e ay |2t )2 dy _ ;
fow a1 / v W) TV J T R
Thus, from (A.2) one obtains for j > 1:
0Le| S Lye” k(1 +|2))% for Y| > 1. (4.54)
The bounds (4.52), (4.53) and (4.54) then imply the desired result (4.51).
U
From (3.8) and (4.43), the evolution of ¢ is given by the following equation:
bsFg(Z) + g5+ Me + Me + ¥ =0, (4.55)
where
M= 4= AB(2) 4 S0y — Oy, M= —A(f — Fi(2)).
and

W i= —AbF(Z)(f — Fi(Z)) — b(e™ 7 )2024(F})(Z)
From the various bounds of Proposition 29 and Lemma 30 we infer the following estimates for the

above objects. We recall that the constants of the previous Subsection are fixed and considered
as universal.

bd:bootstrap

2bd:Linfty

bd:2Linftyor

bd:2Linftyaw

bd:2Linftyaw
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Lemma 38. One has the following bounds:
0L(f — Fe(2))| S e”a*(1+ | Z])2 72, (4.56)
If = Fi(2Z)]|s S e ®0s, (4.57)
(207 (W)| < e~ w5(1+|Z[)2 1%, j=0,1,2
1lze S e ®05 11070 s S e (3t m)S and (042 S e S forj =2, (458)

SR Sy 5L R
— ———— <e %, j=0,..J, 4.59
[ 7,2 V] (459

0pePady _ .
— < s =1,...J. 4.60
/|Y|>1 1/}%(2) ‘Y‘ ~ € 2k Y ] Y b ( )

Proof. These are direct bounds implied by the estimates of Proposition 29, and the behaviour
of the corresponding eigenfunctions given by Propositions 24 and 34.

O

We start by computing the evolution of the modulation parameter.

m:modulation| Lemma 39. There exists C' > 0 independent of Lq,...,Ly such that for sqg large enough on
[0, 51
|bs| < Ce(h=Ds, (4.61)

Proof. One takes the scalar product between (4.55) and hy =1 in L%, yielding using (4.44):
bs(FH(Z*), ho)p = (—Me — Me — U, ho),.

First, since |Fy(Z) — 1| < Z?#(1 + |Z])~?* one has the projection in the left hand side is non-
degenerate:

(FY(Z),ho)p = 1+ O(e” 1)
and that, since M = M, +4(1 — F(Z*)):

(Me, ho)p = 0+ (£, 4(1 — F(Z*))h), = O(y/Loe™"72)%),

using (4.44), (4.50) and the fact that |Z2*| < e~(+=D5|Y'|?¢| Then, from (4.57) one computes:

1

(Me, ho), = —4le, (f — F(Z*))ho), = O(v/Loe~*=2)%).
Finally, using (4.58):
(W, ho)p = O(e”*71),
From the above identities one gets the desired result (4.61).

We then perform an energy estimate in the zone |Y] < 1.
em:energyrho| Lemma 40. There exist constants Ly > ... > Ly > 0 such that for sg large enough, at time s;:
V©Lp _1g

; L
lellz < 55763 [10%ellis < S =, forj =1, (4.62)

bd:tildemath

1

bd:tildemath

2bd:PsiZ2

2bd:mod

bd:bootstrap
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Proof. Step 1 Estimate for e. Let 0 < Kk < 1 be an arbitrarily small constant. Then from
(4.55) we infer that:

d1 2 _x? _ 4 ( r7% - ¥
Ei/z—: e TdY = z—:(—bsF Z )—Ms—Me—\If)e TdY.
For the first term, from (4.44) and (4.61), using Cauchy-Schwarz:
2 2
bS/EF4(Z*)e—‘2dY = bs/a(l — FY(Z*)e™ T dY = O(y/Loe~ @k-Dt2)s),
For the second, as M = M, + 4(1 — Fj,(Z)), using (4.51):
v? v? y?2
—/EMEe‘TdY = — /&?Mpse_TdY +4/(Fk(Z) —De?e T dY
1 2 1 2
< -3 /sze—idy +O(lellzllell e | Fie(Z) = 1122) < —5 /gze—idy +O(VILoLye k2t
For the third, from (4.56) and (4.50):
~ _Y_2 2 * —(I—I—L)S
Wtee™ T aY| £ el = F(Z) = S e 0430
Finally, for the fourth, from (4.58):
2
[eve S ay| el Wl S Vo

Combining the above expressions one obtains as Ly > ... > Lo > 0, assuming L; > 1 without

loss of generality:
2 2
di </€2€_idy> <- /EQe_idY + CLje(Far)s,
s

When reintegrated in time, using (4.47) this gives:

2 2
/EQe_Y;ldY <e ®+ CLJC_iSOG_S < %e_s

provided Ly > 2 and sp has been taken large enough.

Step 2: Higher order derivatives. Let 1 < j < J and define w := 6]26. Then from (4.55) the

evolution of w is
ws+%+Mpw+4(1_Fk(Z))w+4(Fk(Z)w—a;(Fk(Z)a))—aé((f—Fk(Z))E)Jr@%(‘I’+bst(Z)) =0.

From the above equation, we infer that:
d 1

j .
Solwly = =Ll — lovul; + 4((FL(Z) — Dw,w), +4OL(Fu(2)e) — Fu(Z)w,w),

HOL((f = Fe(2))e),w), — (0 (¥ + b Fi(2)), w),.

Let 0 < v < 1 be a small constant to be fixed later on. We estimate all terms in the right hand
side. First, from (A.1) and (4.50) one has:

—lovwly < —cem IVwll, + e ully < —eeVwll, + CLe ), o> 0.
Next, since |1 — Fi(Z)| < |Z22%|(1 + |Z])~ % < e *=1s/k|Y|2 we infer that
((F(Z) = D, whyl S e 7 [V 5.
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From (4.50), as GJZFk is bounded, we infer using Cauchy-Schwarz that:

j Lo/ Lie~ (3+35)s for j =1,
|(@(Fu(2)e) — Fiy(Zyw, ), s{ et for o3

Using (4.50) and (4.56) we infer:

J
(@L((f = Fu(2))2),w)| S (ZuazauLz> (Zuazu—ﬂ(z»um) < Lie (ita)s,
=0

Finally, from (4.50) and (4.61), (4.58) and Cauchy-Schwarz:
: Ve (GHR)s for j =
(@0 + b.Fu(2)),w),| 5§ VR P g =1
Lje %% for j > 2.

Collecting the above estimates, one finds finally that there exists v > 0 depending on k, such
that for sg large enough:

_(1 .

2wl < ~Hlwllgz +O(Lye(FH)) for j =1,
1 1

_%HWHLg ++/Lj_1Lje" % for j > 2.

Reintegrated in time using (4.47), this yields the desired bound (4.50) for j > 1, upon choosing
the constants Li,...,L; inductively.
]

Lemma 41. There exist constants Kj > ... > Lo > 0 such that for sy large enough, at time sq,
forj=0,...J:

((Z0z)e? dY 3 / [(Z0z)e(s1)?dY _ Kjy1 1
< K;e 37, — < e 27, 4.63) |bd:2eweighti
/W wz) = vist V() YT 2 (469 <

2Lel? dy KJ a
< %% for j > 1. 4.64 bd:2eweighti
/|Y|>1 WR(2) Y] (4.64) ®

Proof. We only perform the analysis for Y > 1 since it is exactly the same for ¥ < —1, thus
writing |Y| =

Step 1: Bounds for e. Let 0 < k < 1 be an arbitrarily small constant. Let x be a smooth
and positive cut-off function, y =1for Y >2and x =0for Y < 1. Let =1 or £ =1/2. We
compute first the identity by integrating by parts and using Proposition 34:

(/ w; \Y\) - 2/<:/ w; !Y! |6Y€|2!diz/! /8Y X2(2)
w3/ <8?> (W) @;%))w
*/ﬁ%)‘““ Iy [ G H2 )+ gy
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We treat the boundary terms using (4.50):

i/ 8YX¢§ iy (ﬁm ”MaY(w%(lZ)Y))dY

1 ko1
S ”EH%g <”¢ (Z)”Lw (1<v<2) + |10y >HL°°(1SYS2) e St
~ | Lo lGitar)s ife=1
~ o) Lee(FFH3)s pp=1

Next, notice that for Y > 1,

oy (w%lm)‘ S v

If £ =1, we then decompose for Y* large enough depending on k:

9 1 g2 ay
‘/ Xy <¢%<Z>Y>dy <cf XYY

g2 dy g2 dy
< C +C
Y<y~ ¢1( VI2)Y2 Y| Yoy X@Rz)yry|
2 dy
< (Clle o —I—/-e/ X—5— =

dY
< CL e—(%+m S+H/X87_,
’ ()2

If ¢ = 1/2, we use the fact that 1/(Yw1/2( ) = e_(k_l)/(zk)s/w%(Z) to obtain from (4.48):

k-1 g2 dY 2k—1
2\ Oy ay| < / < e 2 s/ (2k+ )
/ Y( 2z ) m V2, (2)Y? |Y| VIR Y

The lower order linear term is estimated via (4.56) and (4.48):

dy Loe(
[ it - AN S0 - R [ ‘Y‘N{Loe_(

The error terms are estimated via (4.61), (4.59) and (4. 48)

'/ YR |Y| N'S'/ w; 2V | X

o 1 dZ _ | VIge (a5 +h—2
VIge (FHh—3+15)s iff=1

8- e

F(Z)dY |?

2

—(k—1)s E

and via Cauchy-Schwarz using (4.59):
\\11\2 dY

‘/Xﬁ? \Yr ‘/ u}f i)

We now collect all the previous estimates and obtain:

</ 7 > < _(l_ )fXWE(QZ |Y|+C\/_e i1,

C’\/_ei

CvIoe ()5 if 0 =1,
- (stsi)s if o= L.
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if k has been chosen small enough, and sg large enough. The two above differential inequalities
yield the desired results (4.63) when reintegrated in time using (4.45) and (4.50), if Ly has been
chosen large enough independently of the other constants in the bootstrap.

Step 2: Proof of (4.63) for ZOze. Let £ =1 or £ = 1/2 and define w := Zdze. It solves from
(4.55):

ws + Mzw — Oyyw — 4282(Fk(Z))E + 20y ye — Zaz((f — Fk(Z))E) + Zaz(bsF];l(Z) + \I’) =0.

Therefore, one infers that

w? B w? lﬁwadY w?
</ X03(2) \Y\) - % zmzwr / \Yr / ™

T (35 ) ()

w4 [ wmé#fg /‘“ Y@TZ)* ay(w; >>>|dy|

+4/Wzaz((f Fu(2) /w 20z (bsF(Z) + 1)

We treat the boundary terms using (4.50) and the fact that ]w[ = |Z0ze| < e~ (k=1)s/(2R)|§ ¢
for1<Y <2:

L[ o () L O Y
2 ——— ) | dY —
' /&“w #3 <wﬁ> PR Gz Ry
< sl (H—WZ) limaseren + 10 (277 ) limoeven)

1 k—1 L e_(%-i_ ]
< Lle_ES—i_ik (L—=1)s < 1
~Y ~Y +

As in Step 1, since for Y > 1, [0L.(1/(¥2(2))) < 1/(¥2(2)|Y|%)) one deduces that if £ = 1, for
some Y* > 1 large enough:

‘%/w%‘a’”(% >dY [y < 7 >|Y| /wlwwm

- C/ w? dY—I—C’/ w? dy

- y<y* ¢1( VZ)Y2 Y] Y>y* 7/)1( VI 2)Y2Y]
2 4y

< Clfw]2s || = g *+H/ _w” dY

IN

2 dY
CLie—(E+%)s / € ay
1€ VIR ) 4 g Xiw%(Z)Yz \Y\

using (4.50). If £ = 1/2, we use the fact that 1/(Y1/J%/2(Z)) = ¢~ (k=1/(R)s 1p2(Z) to obtain

from (4.48):
Ll L wil IR N
;] Xa”( §/2<Z>Y>dy / XaY( 2z >> V]

w? dYy k-1 w? dy 2k—1
< C/Xi_ nge_Ws/Xi_ <e (2k+ 4k )S,
Ui (2)Y2 Y Y[y (2) Y]~

ay

Y|
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The linear term coming from the commutator between Z9,; and My is estimated by Cauchy-
Schwarz and (4.48) for £ = 1:

1
5 1
JREL T (R £ A e
B |Y| )
as |Z0zFy(2)| ,S |Z|%#(1 +|Z|)~* < 1. For £ = 1/2, since
|25 (1 +|Z]) 1

2 7))
1/2 i

as [1(Z)] = ]Z]l/z\wl/g(Z)\, one uses Cauchy—Schwarz, (4.48):
/ wZE?Z(Fk E dyY

w
wl/g( ‘Y‘ ‘/ szl

The lower order linear term is estimated via (4 56), (4.48):

dy
/ B~ B gy

6 w?
S =A@l + 1202 = B2 ( [z 7+ [z
¢
Lie~(F+a)s if g =1,
Lye(metae)s if =1,
The error terms are estimated via (4.61), (4.59), (4.48):

Lbsza FNZ bs v
_apdZ

w
o / 2141 4 |2y
e _k_ zZ

_ | vIie Gt —>s if0=1,
~ o Ve Gt lma)s gpe =L

and via Cauchy-Schwarz using (4.59):

E

3
,S v/ LoKie 485,

<

~

21+ |z ay |
Vi (2)

5 e—(k—l)s

w? 120,02 aY |2 [ oyEe (G ife=1
2027 e L ’
w |Y| ‘iz Vi (2) Ve Gitse)s ifo=1.

We now collect all the previous estimates and obtain that for any x > 0, for sy large enough:

</ w? > 3 —(l— )fxﬁ} |y|+0(\/_\/_+\/_) G it =1,
ds T,Z)é i) — —5r [ x 1/1262 \y\ + CLie (artar)s if 0= 1
The two above differential inequalities yield the desired results (4.63) when reintegrated in time

using (4.45) and (4.50), if Ly has been chosen large enough depending on Ly, and sy has been
chosen large enough.

Step 3: End of the proof. We claim that the bounds (4.63) for higher order derivatives, as well
as the bound (4.64), can be proved with verbatim the same argument that were used in Step 1
and Step 2. We leave the details to the reader.
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O

Proof of Proposition 36. We use a bootstrap argument. Let s; > sy be the supremum of times
§ > s¢ such that all the bounds of Proposition 36 hold on some time interval [sg,§]. Then
(4.45), (4.48) and (4.47) imply s1 > s¢ by a continuity argument. Assume by contradiction that
$1 < 4o00. Then the bounds (4.48), (4.49) and (4.50) are strict at time s; from (4.50), (4.63)
and (4.64). From a continuity argument there exists > 0 such that (4.48), (4.49) and (4.50)
hold on [s1,s1 + 0], contradicting the definition of s;. Thus s; = 400 and Proposition 36 is

proved.
O

5. Proof of Theorem 2

In this section we prove Theorem 2. The proof is the same as the one of Theorem 3, only few
details change. Namely, the analysis is now based on the stable blow-up of the self-similar heat
equation & — &2 — £yy = 0 whose properties are classical [2, 3, 17, 24]. We therefore just sketch
the proof, with an emphasise on the differences between this proof and that of Theorem 3. We
consider only the case i = 1 with the profile ¥ for Burgers equation, the proof being the same
for ¢ > 2. We define the self-similar variables

b T Y Y

X =y/-— Y .= , s:=—log(T —1t), Z:=——=, 5.1
6 (7 —1)3 T ¢ g(T =) 85 (5.1)
and
u(t,z,y) = g(T—t)%v(s,X,Y),

The first step is to obtain precise information for the behaviour of the derivatives of the solution
on the transverse axis.

5.1. Analysis on the transverse axis {z = 0}

We start by showing the first part of Theorem 1 and the analogue of Proposition 10. Define
for a solution u to (1.1):

E(t,y) = —us(t,0,), E(ty) = (T—1)"1f(s,Y), ((t,y) = Qu(t,0,y), ((t,y) = (T—t)"g(s,Y).
Then (f, g) solve the system (3.8).

Claim: For 0 < T' < 1 small enough, for any b > 0 and J € N, there exists a solution to (3.8)
such that for 0 < 5 < J:

1 ~ . 1 3 .
f(s,Y) = m+fa 0y fl S sTH(1+2)) 727, (5.2)
b - P _1 gl
oY) = gy +i0 101 S 5112 5:3)

These estimates are very similar to (3.6) and (3.7), but the smallness of the error is in powers
of s71 and not of e~ anymore. This loss will however not be a problem for the sequel.

Sketch of proof of the claim: We adapt the strategy of Section 4. We first construct a
solution f to (NLH) satisfying (5.2). We take as an approximate solution to (N LH) the profile

1 1 1
Flle )= gy <£+2a> 1+ (& +a)r2)”

def:selfsimv

stable:bd:ti.
stable:bd:ti.
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Note that here the corrective parameter a will satisfy |a| < |log(s)s™2|. The main difference
between the stable blow-up and the flat blow-ups for (NLH) is then the following. The scaling
parameter in the flat case (4.4) corresponds to leading order to that of the inviscid case and
is not affected by the dissipation (4.30), whereas in the stable blow-up case the dissipation has
a modulation effect on this parameter, and forces it to tend to 0 through a logarithmic correction.

Following the proof of Proposition 26, the approximate profile satisfies the following identity:

0. Fla] + Fla] + gayF[a] _ F2[] — Oyy Fla] = — <4—i2 + 4;) + <—as _ §a> ho+ 0 = R (5.4)

where hy is defined by (4.6), and where for a corrective modulation parameter a satisfying the
a priori bound |a| < |log(s)|s™2 and |as| < |log(s)|s2 the errors ¥ and R satisfy:

||‘I’||Lg < s, H%RHL?) S s73% for j=0,1,2 and ||8%RHL% <s7hoforj >3,

ip|2 6] RI2
/ ‘(ZaZ) ‘RJ dy < 8_1 and | | L dy < S_l ] > 37
vz 95(2)R Y]~ viz1 [90(Z2)P Y]~
where ¢; denotes the elgenfunctlon
Z3 j—2 2 Z
i(Z)=——=, Hz¢pj="——¢;, Hz=1— —F+ + —0z.
¢]( ) (1 + Z2)27 Z¢] ¢]7 Z 1 +Z2 + 28Z

We then show the existence of a global solution to (N LH) close to F[a] by a bootstrap argument
following Proposition 29. We decompose f as

f = F[a] +e= F[a] +ca +‘§7 <€7h2>[) = 07 (571>P = <‘§7h2>l) =0
where the orthogonality conditions fix the value of a and ¢y in a unique way. We claim that

there exists a global solution to the first equation in (3.8) satisfying for j = 0,...,J + 1:

_ _ ~ _ i 344 . i -1 .
() £ 57l S 572 ellz S 57 104ellis S 57 j= 1,2, [9hellz 57 4 =3,

Z0z)el?dY del* dy
/ [(Z0) el €2| — < s 2 and / 197¢] T <sT
Y|>1 W;(Z)‘ ’Y’ |Y|>1 ’<Z50( )’ ’Y’
To prove this fact, one first performs modulation estimates, then energy estimates at the origin

with the p weight, and then energy estimates outside the origin as in Lemmas 31, 32 and 33.
The evolution equation near the origin reads from (5.4)

N[
N[=

for 7 > 3.

1 da 2 - ~
6173—61—<4—s2—|—?>—<a3+ga>h2+€s—|—£€—2(F[a]—1)6—52+\I’:0.

The modulation estimates are therefore a consequence of the spectral structure of £ in Propo-
sition 25, giving in the bootstrap regime when projecting the above equation on 1 and hs:

5, ers —ar| Ss72

2
as+ —al < s”
s

The first inequality, when reintegrated in time, gives |a| < |log(s)|s™2. The second inequality

shows an instability, and the use of Brouwer’s fixed point theorem then implies the existence
of a trajectory such that |c;(s)| < s72. The orthogonality conditions for & imply the spectral
damping (¢, L&) > ||€H%2 since £ is even, implying the energy identity

P

d (1, . _ - _
% (561 ) <~ - €57t~ Clellumlely + C57



SINGULARITY FORMATION FOR BURGERS EQUATION WITH TRANSVERSE VISCOSITY 69

This yields the desired estimates for € when reintegrated with time, and the same technique
applies to control its derivatives. In the far field, the analysis is the same as in Lemma 33, the
equation for ¢ reads

2
1+ 22

Let x be a non-negative smooth cut-off function with y = 0 for |[Y| <1 and x = 1 for |Y| > 2.
One obtains from this equation the following energy estimate:

dfr[f e dv I T et Ay [ (Ove)?
& <2/X\¢g<2>12m) ¢ ”E”L>/X\¢g<z>12m /r<z>< A

+0 (s3)el2;) + O™

63+Hz€—8yy6—2<F[a]— >5—52+R:0, Hy=1- + ay

1+ 272

where 0 < & < 1 is an arbitrary small positive number, since |¢5/| ~ |Z[/% ~ ‘Y’5/23—3
on compact sets. Thanks to the damping, this estimate is reintegrated in time and shows the
weighted decay outside the origin for e. The analogous estimates for the derivatives are showed
similarly. The strategy that we just explained allows one to close the bootstrap estimates. Using
the Sobolev embedding (A.2), this concludes the proof of the existence of a solution f to (NLH)
satisfying (5.2).

Once the properties of f are known, the analysis of (LF'H) follows very closely the one
performed in Subsection 4.2. We decompose g solution to the second equation in (3.8) according
to

9(s,Y) =b(s)f*(s,Y) +2, (£,1),=0
where f is the solution (NLH) we just constructed. The evolution equation then reads
Y _ _
bef4 4 &5 + 48 — Afe + FOE—OyyE+R=0, R= —126(8y f)2f2.
For |b| < 1 the error satisfies from the properties of f already showed:
IRz S 572 04RIz S s for j =1,
/ (Z02)R|dY _ / (Z02)R|dY _
ly|>1 WJ%(Z)P Y~ 7 Sy (2 Y]~
where 1); denotes the eigenfunction
Z7 j 4 Z
(Z) = ——5— ==, =4 - ——+ —0z.
¥3(Z) (1+ 22)% Mzvj = 5vi. Mz 11272 2%
We claim that there exists a solution satisfying the estimates
bl S 572 Jlells S 572 ua;suLg S5l orj> 1,
5|2 2
/ %d—ygs—%ad/ €|2dY§s—
vz [¥1(Z)P Y] yiz1 [Wo(2)? Y

Similarly, we prove this property by a bootstrap analysis, following closely the analysis of Lem-
mas 39, 40 and 41. The equation close to the origin reads

=

for j > 1.

Y
bsf4+§5+58y§—3yy5+4(1 — f)E+R=0.
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Taking the L% scalar product against the constant 1 then yields indeed the modulation equation
bs| < s

Similarly, from the spectral gap ||y &[|2, > ||£]|2, one deduces the energy identity
b o

d (1,_ “1ia _
= (Flllt;) < - - cs el + o5

which yields the corresponding estimate ||| L2 < 572 when reintegrated with time. The corre-
sponding estimates for higher order derivatives are showed the same way. In the far field the
evolution equation reads

bofr4 5,445 — —+4+ = ays—ayye+4fs+R_0

+ 72
This equation enjoys the following energy estimate for an arbitrary constant 0 < k < 1:

d (1 g2 dy 1 2 dy (9ve)*
£<§/X| 07 >|2|Y|> < (i) [x ARG -/ Ty (2 YO 7]
+0 (slgl3;) + O™

This estimate is reintegrated in time and shows the expected weighted decay outside the origin
for £. The estimates for the derivatives are showed the same way. Using the Sobolev embedding
(A.2), one then obtained the existence of a solution g to (LF H) satisfying (5.3).

5.2. Analysis of the full 2-d problem

We now follow the analysis of Section 3. Let f and g be the solutions to (NLH) and (LFH)
satisfying (5.2) and (5.3). For simplicity we fix b = 6, so that X = /(T — t)%/2. We take the
same blow-up profile as in the proof of Theorem 3, adjusting the cut-off between the inner and
outer zones. We set for 0 < d < 1 a cut-off function x4(s,Y) := x (Y/(ds)) where x is a smooth
nonnegative function with x(Y) =1 for |Y| <1 and x(Y) = 0 for |Y| > 2. We decompose our
solution to (3.4) according to:

v(s, X,Y)=Q+e, Q=xa(sY)0 +(1 Xd(s,Y))Oe (5.5)

where (for d small enough f and g do not vanish from (5.2) and (5.3))

m\»—t

)
92/~

m\»—A

O(s, X,Y) =6y 2 /20, ( b

and where O, is the exterior profile (recall that X = X/(1 + Z2)%/?)

@e(s,X,Y):<—Xf(s, V) + X39(86Y)>e—5<4.

We adjust our initial datum v(sp) such that —dxv(s0,0,Y) = f(s0,Y) and 9%v(s0,0,Y) =
9(s0,Y). This way, since v odd in x and even y, one has that 8%5(3, 0,Y) = 0 on the transverse
axis for 7 =0,1,2,3,4 for all times s > sy. The time evolution of the remainder ¢ is:

es+ Le+ Le+ R+edxe =0

where

1 3 1
£:—§+8X@+<§X+@>8X+§Yay—ayy,

stable:decom;
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X

s = Hewy | —
0(s,X,Y) = (1+ 2?) \I/1<(1+Z2)%

) . Le=(Q—0)dxe+ (0xQ — IxO)e,

and
R=Qu— 5Q+ SX0xQ + 5YOvQ + Q0xQ — drvQ.

From Proposition 12 the inviscid linearised operator has eigenvalues of the form (j + ¢ — 3)/2
for (j,¢) € N with associated eigenfunction

199 (£ 2)x)
(Z)X> .

_J
2

00X, Z) = Z2'F, (Z) x

l\)\w

1+3\I/2<

The sizes of the important objects are

1

00X, 2)| ~ X (1412 + X])5 " & (1 +]2D|X (1 +[X])5~

7 iz 3 57 Sn1_7
Isog,o(X,Z)lleIQ((1+|Zl)3+|Xl)2 R (14 [Z])2]X]2(1+ X2

In the previous Section, the weight ¢4 was used. Any weight ¢, 0 with a € (3,4] is suitable
since it provides linear decay and suitable weighted Sobolev estimates for the error term R as
well. We take a = % here to make the weight slightly less singular at the origin, so that the
integrals below are well defined for C* function. We claim that thanks to (5.2) and (5.3) one
has the following estimates for the error, which can be proved as in the proof of Lemma 20:

8’1A32R 2q Yoy )L A2 R)21 X dY
F(X.2) XI7)

where A is given by (3.26). From (5.2) and (5.3) one also deduces the following estimates for
the lower order linear term

02(Q — ©)| S 571 |X|(1+ |Z))

0202(Q - ©)| S s (1+ X2 (1 4 |2))

which can be proved as in the proof of Lemma 21. We can therefore perform the same energy
estimates as in Lemmas 22 and 23. Indeed, the leading order linear estimate (3.18) holds also
true in that case, and with the above control on the lower order linear term and of the error R
one obtains that for any x > 0 for ¢ > 2 large enough:

d [ 1 / g2 dXdy
ds \ 2q Jre 4,07 (X, 2) | X|(Y)
1 1 e dXdYy  2q-1 [ |9y (9P dXdY N
< —|=-—-Kk—-Cs 4—08X6Loo>/ +Cs74.
(4 0xele= ) Joo B XTI~ o7, X

27

bd:stableR
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The same type of energy estimates hold when applying A, Z or Z0z, up to terms involving
lower order derivatives. For exemple, one can derive the following estimate:

d 11/ (Ae)2  dXdY
ds \ 2¢ Je2 g% (X, Z) IX|(Y)
27

IN

4 X

g2 dXdY

+Cs 1+ C .
r2 3 (X, Z) IX|(Y)
27

This implies that the analogue of Proposition 16 holds, i.e. that we can bootstrap the following
estimates for the remainder e:

5 /]R (0 AR dXdy \ ™ /RZ (YOy )1 A2e)% dXdy | " _ 1 5

2 IXIY) A, K0 YV

0<j1+j2<2 I

This estimate, together with the weighted Sobolev embedding (B.2), gives the following pointwise
estimates on € as in Lemma 18:

el S s72(1+2))2|X[2(1+ | X)) S s72|X],

Oxel S 573 (1+|Z)) 3 XIE A+ X275 S50,
0zl < 573 (14 |Z) B X|F (L + | X)3 3.

By using the above estimate in the decomposition 5.5, combined with (5.2) and (5.3), we get
that on compact sets in the variables X and Z there holds the estimate:

v=0+0c(s7).
This then ends the existence part of the proof of Theorem 2.

The stability of this blow-up pattern in B defined by (1.10) is a direct consequence of the stability
of the underlying blow-up for (NLH) proved by Merle and Zaag [24]. Indeed, assume u with
initial datum wug is a solution that is constructed in this section belonging in addition to the
Schwartz class, and u(, is such that ||uj — ug|lg < 0 for some 6 > 0. It is proved in [24] that
there exists 7" with 7" — T as § — 0 such that ¢’ = —amuimzo blows up at time 7”, and that in

the self-similar variables (5.1) with s’ = —log(7” — t) the renormalised solution f’ is global and
satisfies all the bounds of Subsection (5.1) on [s{), +00).

Let now ¢ty > 0. For ¢y small enough, and then for § small enough, via standard parabolic
regularising effects, f’ satisfies all the bounds of Subsection (5.1) on [s'(tg), +00), in particular
(5.2) for derivatives up to order J = 3. The same argument applies for (' = aguimzo, as we
proved that the regime described in the corresponding part of Subsection (5.1) is stable: ¢
satisfies all the bounds of this Subsection on [s'(tp), +00), in particular (5.2) for J = 3.

On [s/(tp), +00), the bounds (5.2) and (5.3) with J = 3 for f’ and ¢’ implies that the bound
(5.6) on R holds true. Moreover, the bound (5.7) holds true at time s'(¢g) for tg small enough,
because of the continuity of the flow of the equation in B. Thus, from the analysis of the current
Subsection, the solution v remains in the bootstrap regime on [s'(ty), +00). The solution «’ in
original variables thus blows up with the same behaviour than u at time 7".

| » c (A dXdY 2 —1 [ |9y (e0)]? dXdY
-——m—cs4—mmwhw—om—mﬁ>/ _
( S P (SR - s i

bd:varepsilo:
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A. One-dimensional functional analysis results
Lemma 42 (Poincaré inequality in L%). For any f € H; defined by (4.5) one has that Y f € L%

with
1Y fllzz < 111 - (A1)

Proof. We prove (A.1) for smooth and compactly supported functions, and its extension to H ;
follows by a density argument. Performing an integration by parts one first finds

2 1 2 1 2
/Yaayae—idy — Z/Y%?e—idy - §/E2e—y4dY.
Therefore, using Cauchy-Schwarz and Young’s inequalities one obtains:
2 2 2
/Y%-?e—idy = 4/Ysayee—’1dY+2/sze—Y4dY

2 2 2
< 26/Y2 20T ddy + 2 /|8y5|2e_deY—|—2/626_deY.

Taking 0 < € < 1/2 yields the desired result.
O

Lemma 43. Ife € H. {|Y| > 1} is such that f\Y\>1(€2 + (Yoye)H)|Y|71dY is finite, then ¢ is
bounded with: -

HEHLOO {Y|>1}) ~ ”EHL2<{\Y\>1} dY) + ”Y8Y€|’L2<{‘Y|>1} \Y\) (A2)

Proof. Assume that the right hand side of (A.2) is finite. Let A > 1 and v(Z) = ¢(AZ). Then,
changing variables and using Sobolev embedding gives for some C independent on A:

H5||LO<> ([A,24]) HUHLOO(M}) <c </2 2(2) dZ+/ 0z ( )dZ>
o[ i s [[aetmar) s ([T [Crarony)

dy ay
C</|Y|21 (Y)m+/yz1‘ ool )|Y|>

Taking the supremum with respect to A in the above estimate yields (A.2).

IN

IN

B. Two-dimensional functional analysis results

Lemma 44. Let ¢ € N*. Then for any u € W;’fq(R% one has:

2 AXAY e XY L XY -
ol oy < 0o [ a5+ [ xoxupfid s [ niopupel) )

Proof. The result follows from the classical Sobolev embedding and a scaling argument. Assume
that the right hand side of (B.1) is finite. Let A € R and change variables X = X/A and
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u(X,Y) = v(X,Y). From Sobolev embedding one has that

2q _ 2q
Hu||L°°({AS\X|§2A, [Yi<i}h) — HUHLO@({1§|X|§2, [Y|<1})

< Clg | (v + (030)% + (Oyv)*) dXdY
1<|X|<2, |v]<1

< Clg) (120 + (Adxu) + (Byu)?) KDY
A<|X|<24, |YI<1 A

<

2 AXdY 2 AXaY 2 AXaY
) </R“ 7 L o gy + L av |X|<Y>>'

Now let A > 0 and B > 1 and change variables X = X/A, Y = Y/B and u(X,Y) = v(X,Y).
Then again from Sobolev:

2q _ 2q
HUHL‘X’({AS\XISM, B<|Y|<2B}) T HUHL<><>({1§|)Z|§2, 1<|Y|<2})

< Clq) / ) (V%7 + (9gv)* + (9pv)*) dX Y
1<|X (<2, 1<|V]<2
< ¢ / (12 + (Adxw)™ + (Boyu)2) X
A<|X|<24, B<|Y|<2B AB
<

oo ([ el [ xoxwm S [ njoyupnel).

[ X|(Y) [XI(Y)

Combing the two above inequalities, as the constant in the second one does not depend on A and
B, yields (B.1) but for the quantity Hu”i‘i@( - This in turn yields (B.1) by continuity.
O

R2\{X=0}

Corollary 45. Let g € N*. Then for any u € Wll’zq(R2) one has:

oc

Proof. Assume that the right hand side of (B.2) is finite. First, notice from (3.21) that

v
¢j,0(X7 Z)

% w2 dXdY (XOxu)2 dXdY (Y)dyu)2 dXdY
= </R ¢70(X, Z) [X[(Y) /R ¢ (X, 2) IXI(Y) /IR ¢10(X, 2) IXI(Y)
(B.2)

L>(R?)
eq:weightedsS:

| XOxdx i ~ |Px ]

From this and (3.14) one deduces that:

XOxdj0(X,2)| = ‘Xax <<1 +2%) o (F’; (Z)X>> '

3
2

= ‘(1 - sz>%_1 (XOxox.,;) (Fk (Z)X>‘ N (1 n Z%>%_1

3
2

Px.5) (Fk (Z)X>‘ = |®j,0(X, Z)|.

This implies that

~

1 X0x¢j0(X,2)
Xox [——— )| =
‘ X<» >>‘ ‘ 2,(X, Z)

1
$j0(X, Z) ' '
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Assume now that |Y| < 1. Since dy = e~ *=D/(k)sg, then

e, <<1 + Z%)g_l VX3 (FE(Z)X»‘

7 <(1 + Z%) H) bx.s <F,§(Z)X>‘ + g ‘ (1 + Z%) i %(X@,j) <F,§(Z)X>‘

’aY(éj,O(X7 Z)’ -

IN

o (1 . sz)5_1 bx.; (FE(Z)X> = Clpj0(X, Z)]

IN

since |0z Fy| < Fy. If |[Y| > 1. Since Y0y = Z90y then similarly
ok 31 3
Yy é;0(X, 2)| = ‘Z@Z ((1+Z )* oxs <F,§ (Z)X))‘
1

‘Z@Z ((1 4 Z%>%_1> x4 (FE(Z)X) ‘ 4 ‘(1 4 Z2k>%_ Z%(XWJ) <FE(Z)X>‘

N

z_
2

IN

C (1 4 Z?k) ' dx. (FE(Z)X) = Clj0(X, Z)]

since |Z0z Fy| < Fy. From the two above inequalities one deduces that for any Y € R:

[(Y)Oy9;0(X, Z)| < Cljo(X, Z)].
This implies again that

o (o) =l

From this one deduces that

u?d U 24 U 20\ gxdy

. <¢§?O<X, 7 o (Gaea)) (0o (505a) ) XY
w2 dXdY (XOxu)2 dXdY (Y)Oyw)2 dXdY

= o </R (X, 2) XY L. (X, 2) X /. (X.2) |X|<Y>> '

We apply (B.1) to u/¢; (X, Z) and use the above inequality to get the desired result (B.2).
O

Lemma 46. Let ji,jo € N. Then there exists a constant C' > 0 such that for any function
u € C1H2(R2), for A defined by (3.26) there holds:

Jj1i 2 J1 J2 Ji J2

1 ., A . . ., A
c Do D ZPUXIR0 ogul < YD 120z (Xox)ul < C Y0 Y 121X 1|07 0ul,
71=055=0 71=075=0 71=075=0
(B.3) |an:equivalen
1 J2

0F APl < C Y7 DT (L |2)" I XE 9 ol (B4) [en:equivalen

71=0j4=1

and for jo > 1:

J1 J2

((Z0z) Al?u| < C Z Z ]Z]ji‘X]jé\ Z{ Xé—u\, (B.5) |an:equivalen

=0 j4=1
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J1 J2

X200 0%2u < €3S (1 + |2)) 0|9 Adbul, (B.6)
71=043=1
' . o Ji g2 . .
|21 X172 |03 %u| < © N [(Z02)7 Ak, (B.7)
J4=0 jh=1

Proof. (B.3) follows from an easy induction argument that we leave to the reader.

Step 1 Proof of (B.4). We first claim that there exists a family of profiles ( ij,jé) <o such that

J2 ,
APy =" fi 0 0%u, (B.8)
dh=1
and satisfying for any ki, ko € N:
051082 Fra ] S (14 [Z]) 7R (1 4 | X |min(= (ham72).0) |y pmax(iy=ha.0), (B.9)

We prove this fact by induction on jo € N*. From (3.26), (B.8) holds for jo = 1 with f;; =

3X/2 + F,;3/2(Z)\IJ1(F,§/2(Z)X). Since from Proposition 5, dx¥; < 0 and is minimal at the
origin we infer that

1 3 _3 3 3

LX< X 4 B ()R (2)%)] < S1X) (B.10)

and from (3.19) we infer that for kq, ke € N:

(1+1Z)~"1X] if k=0,

ki ake ((n—3/2 3/2 <

which proves (B.9) for jo, = 1, and thus the claim is true for jo = 1. Assume now that the claim
is true for some jy € N*. Then, using (B.8) for the integers jo and 1:

J2 J2
. 1 -/ -/ /+1
APy = fa0x [ D fup0u | =D fuadx(f, )08 u+ fuafy, 0% u

jh=1 jh=1
J2 , J2+1 ,
= > fudx(fp)0%u+ Y fiafi,a0¢u
-/ Ly
.72—1 .72—2

and the claim is true from the bounds (B.9) for the integers jo and 1. Hence it is true for all
jo € N*. We now apply Leibniz formula and obtain from (B.8):

j2 jl . -/ -/ -/ sl . -/ -/
Al =3 OOy " F1ny)0 O, 107" F gl S (1 120)7 0 XA

jh=141=0

where the second estimate comes from (B.9), and (B.4) is proven.

an:equivalen

an:equivalen

an:bdfj2j2’

main:eq:esti
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Step 2 Proof of (B.5). This is a direct consequence of (B.3) and (B.4):

1 J1 o J2

J1 -
(Zag) Al <N (ZPHa) A S 30 ST S |21 (1 4 [ 2)) D x93 (X o Veul,
=0 71=0j1=0j5=1
1 J1 e . B J1 Je ,
S 3OS Y 12X PEO) (Xox ul S S0 Y 121X 03 (XD ) Eul.
41=0,=0j4=1 J1=0j4=1

Step 3 Proof of (B.6). First, from (B.3) one has:

J2
]X\ﬁ]&]zlc‘)g?\ < Z yaJZl(mX)jéu\. (B.11) |an:interequi:

j5=1
We then claim that there exists a family of profiles (g;, j; )j;<j, such that

J2

(Koxytu= 3 g, 5450 .12

Jg=1
and satisfying for any k1, ko € N:

008, 5) S (14 121)7 (04 X]) (B.13

From (3.26), (B.12) holds for jo = 1 with

X X 3
g1 — : : - (F2(2)X).

From (3.19) and (B.10) one has that for any ke € N,

X

and hence from (3.19) the estimate (B.13) holds for g;;. The claim can then be proven by
induction on jy € N* by the same techniques as in Step 1, and we do not give the details here.
Using (B.12), (B.13) and Leibniz formula then yields that

S(+|X)

J1 J2 ) . S, Ji J2 ) y g,
107 (XOx)2ul S > 107 g4, 507 Altul S Y0 Y (14 |2)7V |0y Ak,

J1=045=1 J1=0j4=1

This implies (B.6) using (B.11).

Step 4 Proof of (B.7). This is a direct consequence of (B.3) and (B.6):

J1 J2 J1 J2
ZP X PRl o S Y S (2P (L |2l 0 Atk S 30 |21 Abul,
71=0 j4=1 71=0j4=1
Ji o J2
S DD (Z0g)i AT,
71=0 j4=1
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