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Abstract

This is the second in a pair of works which study small disturbances to the
plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at
high Reynolds number Re. In this work, we show that there is constant 0 < c0 " 1,
independent of Re, such that sufficiently regular disturbances of size ε ! Re−2/3−δ

for any δ > 0 exist at least until t = c0ε−1 and in general evolve to be O(c0) due
to the lift-up effect. Further, after times t " Re1/3, the streamwise dependence of
the solution is rapidly diminished by a mixing-enhanced dissipation effect and the
solution is attracted back to the class of “2.5 dimensional” streamwise-independent
solutions (sometimes referred to as “streaks”). The largest of these streaks are
expected to eventually undergo a secondary instability at t ≈ ε−1. Hence, our
work strongly suggests, for all (sufficiently regular) initial data, the genericity of
the “lift-up effect ⇒ streak growth ⇒ streak breakdown” scenario for turbulent
transition of the 3D Couette flow near the threshold of stability forwarded in the
applied mathematics and physics literature.
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CHAPTER 1

Introduction

This work is the second paper in our study of the 3D Navier-Stokes equation
near the (plane, periodic) Couette flow, following our work [5]. In these works, we
study the 3D Navier-Stokes equations near the Couette flow in the idealized domain
(x, y, z) ∈ T× R× T: if u+ (y, 0, 0)T solves the Navier-Stokes equation, u solves

∂tu+ y∂xu+ u ·∇u+∇pNL =




−u2

0
0



−∇pL + ν∆u(1.1a)

∆pNL = −∂iu
j∂ju

i(1.1b)

∆pL = −2∂xu
2(1.1c)

∇ · u = 0,(1.1d)

where ν = Re−1 denotes the inverse Reynolds number, pNL is the nonlinear con-
tribution to the pressure due to the disturbance and pL is the linear contribution to
the pressure due to the interaction between the disturbance and the Couette flow.
The purpose of this work, along with [5], is to further the mathematically rigorous
understanding of the qualitative behavior of (1.1) for small perturbations and small
ν. This second work is focused on characterizing the dynamics of solutions above
the stability threshold (but still not too large).

A major focus of the theory of hydrodynamic stability is the study of laminar
flow configurations and understanding when they are stable or when they may
transition to a turbulent state (or a nonlinear intermediate state). The terminology
subcritical transition refers to a situation when the linear theory predicts stability
below some critical Reynolds number or at all Reynolds number (the latter is the
case here) but spontaneous transition to a turbulent state is observed in laboratory
or computer experiments at a much lower Reynolds number than what this theory
predicts. To our knowledge, the first quantitative study of this process in fluid
mechanics was performed by Reynolds in 1883 [44], and since then, subcritical
transition has been observed to be a ubiquitous phenomenon in 3D hydrodynamics,
repeated by countless physical experiments (see e.g. [12,17,22,26,29,32,39,40,
47]) and computer simulations (e.g. [21,25,42,43] and the references therein) on
subcritical transition phenomena have been performed in many different settings.
See the texts [19, 46, 55] and part I of our work [5] for further discussion and
references.

As discussed in [5], a natural expectation is that while the flow may be stable
for all finite Reynolds number, the basin of stability is shrinking as ν → 0. Hence, it
becomes of interest to, given a norm, determine the threshold of stability, sometimes
called the “transition threshold”, as a function of ν. For example, one would
like, given a norm ‖·‖N , to find a γ = γ(N) such that ‖uin‖N " νγ implies

1
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2 1. INTRODUCTION

stability and ‖uin‖N + νγ in general permits instability. Further, one would like
to identify the possible pathways the solution can take towards transition. A great
deal of work has been dedicated to identifying γ and estimates from experiments,
computer simulations, and formal analysis suggest a threshold somewhere between
1 ≤ γ ≤ 7/4 for a variety of different initial data and configurations similar to the
set-up in (1.1) (see [5] for more references and some of the representative works
[1, 14, 36, 39, 43, 49, 52] or the text [46] and the references therein). In [5], we
proved that, for sufficiently regular initial data, γ ≤ 1 for (1.1) (that is, for a
sufficiently strong norm N , γ(N) ≤ 1).

In this work our goal is to characterize the instabilities of above threshold
solutions. We prove that there is a universal constant c0 with 0 < c0 " 1 such that
for sufficiently regular initial data (in the same sense as [5]) of size ε, if ε ! ν2/3+δ

for δ > 0, then the solution to (1.1) exists until at least time t = c0ε−1 and is
rapidly attracted to the class of x-independent solutions known as streaks for times
t " ν−1/3. Due to a non-modal instability known as the lift-up effect, the streaks
(and hence all solutions) will in general grow linearly as O(εt) and by the final time
can be O(c0) (which is independent of ν). In our companion work [5], we studied
solutions below the ε " ν threshold and proved that these solutions are global,
return to Couette flow, and also converge to the set of streak solutions. While our
previous analysis did include solutions which get O(c0) from the Couette flow, all
solutions never deviate farther from the Couette flow and are demonstrably not
involved in any transition processes.

The foremost interest of this work is that the threshold solutions we study
can converge to streaks that, due to the lift-up effect, eventually become as large
as the Couette flow itself (although we cannot follow our solutions to this point).
These large streaks induce an unstable shear flow and are expected to become
linearly unstable, sometimes referred to as a secondary instability [14,43,46]. The
instability is observed to involve the rapid growth of x-dependent modes. The
process by which large streaks exhibit instabilities and drive x-dependent flows
is sometimes referred to as streak breakdown and is well-documented as one of
the primary routes towards turbulent transition observed experimentally [12,22,
29] and in computer simulations [21, 43], in agreement with a variety of formal
asymptotic calculations [14, 43, 46]. That is, it is an expectation that a general
route towards transition is the multi-step process “lift-up effect ⇒ streak growth ⇒
streak breakdown⇒ transition”. Moreover, the general process of streak breakdown
is thought to play an important role in sustaining turbulence near the transition
threshold and in both the creation and decay of “turbulent spots” (see [46] and
the references therein). While we cannot take our solutions through the secondary
instability, we prove that solutions above the threshold (but not too far above) can
in general converge to unstable streaks and that this is the only instability that is
possible, which is suggestive of the genericity of the above multi-step process as the
first step towards turbulent transition near the threshold (for sufficiently regular
data – see Remark 1.8 below for more discussion on rougher data).

Unlike in [5], the solutions we are concerned with are unstable in the sense
that they might transition for t + ε−1, and we are identifying that the streamwise
vortex/streak instability associated with the lift-up effect is dominant whereas all
other dynamics are suppressed. At the linear level, another important effect is the
vortex stretching, which in particular, causes a direct cascade of energy to high
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1. INTRODUCTION 3

frequencies in the u1 and u3 components and creates growth which is difficult to
control. The stabilizing mechanisms suppressing the more complicated nonlinear
effects are the enhanced dissipation and the inviscid damping, both due to the
mixing from the background shear flow. Enhanced dissipation was first observed in
(1.1) by Lord Kelvin [28] and has been observed in many contexts in fluid mechanics
(see e.g. [11,19,20,31,43,45] and the mathematically rigorous works [3,9,15]). In
(1.1), the mixing due to Couette drives information to high frequencies, enhancing
the dissipation of x-dependent modes such that they decay on a time-scale like
τED ∼ ν−1/3, far faster than the natural “heat equation” time-scale O(ν−1). The
idea that the enhanced dissipation effect has an important role to play in (1.1) dates
back at least to [20]. Indeed, in [20], an idea similar to the heuristic (1.2) below
appears. However, the expectation that a large mean shear should suppress certain
kinds of instabilities has been suggested at varying levels of precision in many
contexts (see e.g. [14, 19, 43, 55] and the references therein). Inviscid damping
in fluid mechanics was first observed by Orr [41] in 1907 and turned out to be
the hydrodynamic analogue of Landau damping in plasma physics; see [5, 7] for
more discussion. Here, inviscid damping will suppress the x-dependence of u2,
key to controlling certain components of the nonlinearity that would otherwise be
uncontrollable.

The fact that we prove results for initial data as large as ν2/3+δ shows that
the streak growth scenario is generic even for initial data which is far larger than
the O(ν) threshold, at least for data which is sufficiently regular. Moreover, we
are not aware of this exponent appearing anywhere in the applied mathematics
or physics literature previously despite being a threshold of natural interest. The
2/3 threshold can be explained from heuristics. Formal analysis of the weakly
nonlinear resonances, described in §2.5, suggests that the natural time-scale before
a general x-dependent solution could potentially become fully nonlinear, τNL, is at
least τNL " ε−1/2. On the other hand, the enhanced dissipation occurs on time-
scales like τED ∼ ν−1/3. Hence, if the enhanced dissipation is to dominate the 3D
effects and relax the solution to the manifold of streaks, then we need the latter
time scale to be shorter than the former, or rather:

τED ∼ ν−1/3 " ε−1/2 ! τNL.(1.2)

This is the origin of the requirement ε ! ν2/3+δ; the small δ > 0 is to provide a little
technical room to work with in the estimates (although we do not know if it can be
removed). We emphasize that getting a convincing estimate on τNL is challenging,
which may explain why this threshold does not appear in the literature (moreover,
the heuristics of §2.5 are likely only convincing when backed by Theorem 1 and its
proof). After t + τED the solution is very close to a streak and, due to the lift-up
effect, in general u1

0(t) is growing like ε 〈t〉 until times t ∼ ε−1, at which point the
streak will become fully nonlinear (see [5,14,43] and the references therein). Below
we discuss several other ways to derive the ε ∼ ν2/3 cut-off which are in some ways
more straightforward but also a bit more ad-hoc (see §2.2.1 and §2.5).

As discussed in [5,7], if there is decay-via-mixing then, since mixing is time-
reversible (at infinite Reynolds number), necessarily there is growth-via-unmixing.
This non-modal effect was first pointed out by Orr [41] and is now known as the
Orr mechanism. Some of the more subtle and problematic nonlinear effects here are
3D variants of the nonlinear manifestation of the Orr mechanism referred to as an
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4 1. INTRODUCTION

“echo”. These are resonances (perhaps more accurately “pseudo-resonances” [48])
involving the excitation of unmixing modes (see [5,7,16,50,51] and the references
therein for discussion about this effect in the context of fluid mechanics and [57,58]
for physical experiments isolating them in 2D Euler). A similar resonance is also
observed in plasmas, known there as a “plasma echo” [37]. A key facet of the proof
in [5] was the use of careful weakly nonlinear analysis to estimate the possible effects
of resonances of this general type (and also others).

Relative to our previous work [5], this work will need more precision in the
weakly nonlinear analysis and uses more detailed structure of the nonlinearity. In
[5], a toy model was derived to model the “worst possible” behaviors due to the lift-
up effect, the “resonances” associated with the Orr mechanism (e.g. echo-like), and
the vortex stretching, accounting also for the stabilizing mechanisms of enhanced
dissipation and inviscid damping (see §2.5). An approximate super-solution of this
toy model was used to derive a set of good norms with which to measure the solution.
The super-solution used in [5] required ε ! ν; here we will derive a super-solution
which only requires ε ! ν2/3 but (A) it is more subtle than that of [5] and (B) is
only valid for t ! ε−1. This latter point is not surprising: at around this point,
the solution is expected to suffer streak breakdown and transition to turbulence
(or at least escape a weakly nonlinear regime). One of the new complexities that
the super-solution will introduce is that the norm used to measure u3 will need to
unbalance the regularity of different frequencies in the x-dependent modes of u3 in
a subtle and precise way. This turns out to be similar to a technique applied to the
scalar vorticity in 2D [7,9], however, here it is not so much the imbalances within
u3 itself which are important, but rather the imbalances between u3 and the other
components. Together with the much smaller dissipation, the additional precision
in the norm will noticeably complicate the proof of Theorem 1 below (relative to
[5]). Many terms here will require a more detailed treatment than that used in [5],
either because of the more complicated norms or because the dissipation is weaker.
The additional precision will require some new techniques and better technical tools,
including more precise multiplier inequalities relating time and frequency (see §4)
and several new elliptic estimates (see Appendix D.2). Another adjustment we
will make here is a nonlinear coordinate transform which is more precise than the
one employed in [5]; in particular, we will need to account for mixing caused by
(0, 0, u3

0)
T as well as (y+u1

0, 0, 0)
T and hence treat the entire streak in an essentially

Lagrangian fashion. In order to carry out this line of attack we will need to use
more structure in the nonlinearity than [5] and understand better certain “null”
or “non-resonant” structures, in particular, detailed information about how certain
frequencies interact.

1.1. Linear behavior and streaks

Recall the following notation from [5]: the projections of a function f onto zero
and non-zero frequencies in x are denoted, respectively, by

f0(y, z) =
1

2π

∫
f(x, y, z)dx

f "= = f − f0.

Next, we recall from [5] the following Proposition, which regards the behavior of
the linearized Navier-Stokes equations. There is a corresponding result also for the
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1.1. LINEAR BEHAVIOR AND STREAKS 5

linearized Euler equations; see [5] for more details. Without making any attempt
to be optimal in terms of regularity, this proposition emphasizes the stabilizing
mechanisms of enhanced dissipation and inviscid damping, and the destabilizing
mechanisms of the lift-up effect and the vortex stretching due to the Couette flow.
The lift up effect is seen in the transient growth in (1.5a), the enhanced dissipation

in the exponentials e−cνt3 , the inviscid damping in the 〈t〉−2 decay in (1.4a) which
is uniform in ν, and the vortex stretching in the lack of inviscid damping in (1.4b)
and (1.4c) (which is sharp).

Proposition 1.1. Consider the linearized Navier-Stokes equations

∂tu+ y∂xu =




−u2

0
0



−∇pL + ν∆u(1.3a)

∆pL = −2∂xu
2(1.3b)

∇ · u = 0.(1.3c)

Let uin be a divergence free vector field with uin ∈ H7. Then the solution to the
linearized Navier-Stokes equations u(t) with initial data uin satisfies the following
for some c ∈ (0, 1/3),

∥∥u2
"=(t)

∥∥
2
+

∥∥u2
"=(t, x+ ty, y, z)

∥∥
H3 ! 〈t〉−2 e−cνt3

∥∥u2
in

∥∥
H7(1.4a)

∥∥u1
"=(t, x+ ty, y, z)

∥∥
H1 ! e−cνt3 ‖uin‖H7(1.4b)

∥∥u3
"=(t, x+ ty, y, z)

∥∥
H1 ! e−cνt3 ‖uin‖H7 ,(1.4c)

and the formulas

u1
0(t, y, z) = eνt∆

(
u1
in 0 − tu2

in 0

)
(1.5a)

u2
0(t, y, z) = eνt∆u2

in 0(1.5b)

u3
0(t, y, z) = eνt∆u3

in 0.(1.5c)

Associated with the linear problem is the Laplacian expressed in the coordinates
X = x− ty:

∆L := ∂XX + (∂Y − t∂X)2 + ∂ZZ .(1.6)

The power of t in this operator is responsible both for the inviscid damping of u2

and the enhanced dissipation; see [5] for more information.
The next Proposition from [5] recalls the nature of the streak solutions:

Proposition 1.2 (Streak solutions). Let ν ∈ [0,∞), uin ∈ H5/2+(T×R×T) be
divergence free and independent of x, that is, uin(x, y, z) = uin(y, z), and denote by
u(t) the corresponding unique strong solution to (1.1) with initial data uin. Then
u(t) is global in time and for all T > 0, u(t) ∈ L∞((0, T );H5/2+(T × R × T)).
Moreover, the pair (u2(t), u3(t)) solves the 2D Navier-Stokes/Euler equations on
(y, z) ∈ R× T:

∂tu
i + (u2, u3) ·∇ui = −∂ip+ ν∆ui(1.7a)

∂yu
2 + ∂zu

3 = 0,(1.7b)

and u1 solves the (linear) forced advection-diffusion equation

∂tu
1 + (u2, u3) ·∇u1 = −u2 + ν∆u1.(1.8)
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6 1. INTRODUCTION

Suppose the streak is initially of size ε + ν. From (1.7), we see that the
dissipation does not completely dominate the streak until t " ν−1, before which it
could be behaving like fully nonlinear 2D Navier-Stokes. Due to the lift-up effect
in (1.8), in general u1(t) is growing like ε 〈t〉 until times t " ε−1, at which point the
streak will be on the same order as the Couette flow itself. As discussed above, it
is expected that sufficiently large streaks should suffer a secondary instability and
break down into more complicated x-dependent flows (see e.g. [14,43,46] and the
references therein).

1.2. Statement of main results

As in [5], our theorem requires the use of Gevrey regularity class [24], defined
on the Fourier side for λ > 0 and s ∈ (0, 1] as:

‖f‖2Gλ;s =
∑

k,l

∫ ∣∣∣f̂k(η, l)
∣∣∣
2
e2λ|k,η,l|

s

dη.(1.9)

For s = 1 the class coincides with real analytic, however, for s < 1 it is less
restrictive, for example, compactly supported functions can still be Gevrey class
with s < 1. As discussed in [5], this regularity class arises in nearly all mathe-
matically rigorous studies involving inviscid damping [5,7,9] or Landau damping
[8,13,27,38,56] in nonlinear PDE. In these previous works, the Gevrey regularity
arises naturally when studying echo resonances, and like [5], it arises here as well
when controlling related weakly nonlinear resonances.

Theorem 1 (Above threshold dynamics). For all s ∈ (1/2, 1), all λ0 > λ′ > 0,
all integers α ≥ 10 and all δ > 0, there exists a constant c00 = c00(s,λ0,λ′,α, δ),
a constant K0 = K0(s,λ0,λ′), and a constant ν0 = ν0(s,λ0,λ′,α, δ) such that for
all δ1 > 0 sufficiently small relative to δ, all ν ≤ ν0, c0 ≤ c00, and ε < ν2/3+δ, if
uin ∈ L2 is a divergence-free vector field that can be written uin = uS + uR (both
also divergence-free) with

‖uS‖Gλ0;s + eK0ν
− 3s

2(1−s) ‖uR‖H3 ≤ ε,(1.10)

then the unique, classical solution to (1.1) with initial data uin exists at least un-
til time TF = c0ε−1 and the following estimates hold with all implicit constants
independent of ν, ε, c0 and t:

(i) Transient growth of the streak for t < TF :
∥∥u1

0(t)− eνt∆
(
u1
in 0 − tu2

in 0

)∥∥
Gλ′;s ! c20(1.11)

∥∥u2
0(t)− eνt∆u2

in 0

∥∥
Gλ′;s +

∥∥u3
0(t)− eνt∆u3

in 0

∥∥
Gλ′;s ! c0ε;(1.12)

(ii) uniform control of the background streak for t < TF :
∥∥u1

0(t)
∥∥
Gλ′;s ! ε 〈t〉(1.13a)

∥∥u2
0(t)

∥∥
Gλ′;s +

∥∥u3
0(t)

∥∥
Gλ′;s ! ε;(1.13b)

(iii) the rapid convergence to a streak by the mixing-enhanced dissipation and
inviscid damping of x-dependent modes:

∥∥u1
"=(t, x+ ty + tψ(t, y, z), y, z)

∥∥
Gλ′;s ! εtδ1

〈νt3〉α
(1.14a)
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1.2. STATEMENT OF MAIN RESULTS 7

∥∥u3
"=(t, x+ ty + tψ(t, y, z), y, z)

∥∥
Gλ′;s ! ε

〈νt3〉α
(1.14b)

∥∥u2
"=(t, x+ ty + tψ(t, y, z), y, z)

∥∥
Gλ′;s ! ε

〈t〉 〈νt3〉α
,(1.14c)

where ψ(t, y, z) is an O(εt) correction to the mixing which depends on
the disturbance (defined below to satisfy the PDE (2.14)) and satisfies the
estimate:

∥∥ψ(t)− u1
0(t)

∥∥
Gλ′;s ! ε 〈t〉−1 .(1.15)

Remark 1.1. Without loss of generality we will assume for the remainder of
the paper that ν ! ε as otherwise, Theorem 1 is covered by our previous work [5].

Remark 1.2. If u2
in 0 is such that

∥∥u2
in 0

∥∥
Gλ′;s ≥ 1

4ε ≥ 1
16ν

2/3+δ then (1.11)

shows that for c0 small (but independent of ε and ν) and ε small, the streak u1
0(t)

reaches the maximal amplitude of
∥∥u1

0(tm)
∥∥
2
" c0 at times tm ∼ TF = c0ε−1.

Hence, the solution has grown from O(ε) to O(c0) over this time interval. Moreover,
this time-scale is far shorter than the ν−1 time-scale over which u0 will decay by
viscous dissipation (at least the low frequencies) and so in general the solution will
become fully nonlinear for t " TF .

Remark 1.3. Theorem 1 is strongly suggestive that γ = 1 for sufficiently
smooth data. The formal linear stability analyses, carried out in e.g. [43], implies
that physicists generally take for granted that γ ≥ 1. Technically though, in order
to rigorously prove that γ = 1, one needs to construct a streak solution which is
initially O(ε) and later becomes dynamically unstable in a suitable sense at a time
t∗ " ε−1, so that such a solution in a real experiment would lead to transition. All
experimental and formal analysis strongly suggests such solutions exist but we are
unaware of a mathematically rigorous proof at the current time. This could be a
potentially interesting direction to consider.

Remark 1.4. Notice that linear theory in Proposition 1.1 suggests the O(t−2)
inviscid damping of u2, whereas we only have t−1 in (1.14c). This discrepancy
arises from a 3D nonlinear pressure effect and is explained in §2.5 (this discrepancy
did not occur in [5]).

Remark 1.5. As in previous works on Couette flow, it is not clear how to
propagate the linear decay rate of exp(−νt3). Especially using an additional Fourier
multiplier from [6], it is almost certainly the case that one could upgrade the
polynomial decay above to exp(−βν1/3t) decay for some sufficiently small β > 0.

Remark 1.6. Note that the solutions in Theorem 1 are not only large solutions
to 3D NSE, but also in general they are very far from equilibrium (relative to ν).
Using naive methods, one would only be able to prove existence until TF ∼ log ε−1;
using some more of the energy structure available, one can obtain TF ∼ ε−1/6. Note
that since the Couette flow is rapidly driving large gradients in the solution as well
as amplifying the solution via the lift-up effect, it is difficult to control the solution
for long time-scales. It is the inviscid damping and enhanced dissipation, together
with the precise structure of the nonlinearity, which allow us to prove existence all
the way until TF ∼ ε−1 for these large, far-from-equilibrium, solutions.

Remark 1.7. As in [5], the solutions described in Theorem 1 can exhibit a
roughly linear-in-time transfer of kinetic energy to high frequencies where it is
ultimately dissipated at τED ∼ ν−1/3.
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8 1. INTRODUCTION

Remark 1.8. In experiments and computer simulations, “lift-up effect ⇒
streak growth ⇒ streak breakdown” is commonly observed, however there are a
number of pathways to transition that have also been observed (see [46] and the
references therein). Further, it has been observed that the transition threshold in
general can depend on the kind of perturbation being made (see e.g. [23,39,43,46]
and the references therein – in fact, this was even observed by Reynolds [44]). The-
orem 1 and [5] are not in contradiction with experimental observations, but instead
suggest that this is partly related to the regularity of the perturbations. Indeed, au-
thors conducting computer simulations have explicitly related the transition thresh-
old with the regularity of the initial data and determined different answers [43].
It may also be illuminating to note that while the works [7,9] rule out subcritical
transition of Couette flow in 2D for sufficiently regular perturbations, the works of
[34,35] suggest it is likely that for sufficiently rough disturbances (about H5/2) one
can observe subcritical transition even in 2D via a roll-up instability (and hence
(1.1) should, in principle, admit a pathway to transition which is purely 2D at low
enough regularities).

Remark 1.9. We point out the recent work [18], which shows that the non-
linear dynamics of the 2D Euler equations can be very sensitive to regularity by
proving that the results of [7] cannot be extended to data rougher than Gevrey-2
in general (see also [4] for earlier related work on Landau damping in the Vlasov
equations). This also shows that in two dimensions, the transition threshold γ will
need to depend on regularity as [18] also shows the results of [9] cannot be extended
to regularities lower than Gevrey-2 (in a certain quantitative sense) and that the
Sobolev space results of [10] could not be extended down to γ = 0 (though it is not
known whether or not the results of [10] are sharp).

Remark 1.10. After the completion of this work and [5,6], Wei and Zhang [54]
proved L2 stability and enhanced dissipation with initial data in H2 satisfying only
‖u(0)‖H2 < c0ν (for a sufficiently small c0). The earlier work [6] obtained stronger
estimates (e.g. on the profile, as here and in [5]) with the stronger assumption
of ‖u(0)‖Hs ≤ c0ν3/2. The methods of Wei and Zhang may extend to obtain
such estimates as well [53]. This would suggest that the threshold γ itself may
not ultimately depend on regularity in 3D in the same way as it does in 2D. We
currently believe that the results of Theorem 1 probably cannot be extended to
Sobolev regularity as is. It would be interesting to determine whether or not, and
if so how, the route to transition changes in lower regularities.

1.3. Notations and conventions

We use superscripts to denote vector components and subscripts such as ∂i
to denote derivatives with respect to the components x, y, z (or X,Y, Z) with the
obvious identification ∂1 = ∂X , ∂2 = ∂Y , and ∂3 = ∂Z . Summation notation
is assumed: in a product, repeated vector and differentiation indices are always
summed over all possible values.

See Appendix A for the Fourier analysis conventions we are taking. A conven-
tion we generally use is to denote the discrete x (or X) frequencies as subscripts.
By convention we always use Greek letters such as η and ξ to denote frequencies
in the y or Y direction, frequencies in the x or X direction as k or k′ etc, and
frequencies in the z or Z direction as l or l′ etc. Another convention we use is to
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1.3. NOTATIONS AND CONVENTIONS 9

denote dyadic integers by M,N ∈ 2Z where

2Z =

{
..., 2−j , ...,

1

4
,
1

2
, 1, 2, ..., 2j , ...

}
,

This will be useful when defining Littlewood-Paley projections and paraproduct
decompositions. See §4.2 for more information on the paraproduct decomposition
and the associated short-hand notations we employ. Given a function m ∈ L∞

loc, we
define the Fourier multiplier m(∇)f by

(m̂(∇)f)k(η) = m((ik, iη, il))f̂k(η, l).

We use the notation f ! g when there exists a constant C > 0 independent of the
parameters of interest such that f ≤ Cg (we analogously define f " g). Similarly,
we use the notation f ≈ g when there exists C > 0 such that C−1g ≤ f ≤ Cg.
We sometimes use the notation f !α g if we want to emphasize that the implicit
constant depends on some parameter α. We also employ the shorthand tα+ when
we mean that there is some small parameter γ > 0 such that tα+γ and that we can
choose γ as small as we want at the price of a constant (e.g. ‖f‖L∞ ! ‖f‖H3/2+).
We will denote the .1 vector norm |k, η, l| = |k| + |η| + |l|, which by convention is
the norm taken in our work. Similarly, given a scalar or vector in Rn we denote

〈v〉 =
(
1 + |v|2

)1/2
.

We denote the standard Lp norms by ‖f‖p and Sobolev norms ‖f‖Hσ := ‖〈∇〉σ f‖2.
We make common use of the Gevrey-1s norm with Sobolev correction defined by

‖f‖2Gλ,σ;s =
∑

k,l

∫ ∣∣∣f̂k(η, l)
∣∣∣
2
e2λ|k,η,l|

s

〈k, η, l〉2σ dη.

Since in most of the paper we are taking s as a fixed constant, it is normally
omitted. Also, if σ = 0, it is omitted. We refer to this norm as the Gλ,σ;s norm and
occasionally refer to the space of functions

Gλ,σ;s =
{
f ∈ L2 : ‖f‖Gλ,σ;s < ∞

}
.

See Appendix A for a discussion of the basic properties of this norm and some
related useful inequalities.

For η ≥ 0, we define E(η) ∈ Z to be the integer part. We define for η ∈ R and

1 ≤ |k| ≤ E(
√
|η|) with ηk > 0, tk,η =

∣∣ η
k

∣∣ − |η|
2|k|(|k|+1) = |η|

|k|+1 + |η|
2|k|(|k|+1) and

t0,η = 2 |η| and the critical intervals

Ik,η =

{
[t|k|,η, t|k|−1,η] if ηk ≥ 0 and 1 ≤ |k| ≤ E(

√
|η|),

∅ otherwise.

For minor technical reasons, we define a slightly restricted subset as the resonant
intervals

Ik,η =

{
Ik,η 2

√
|η| ≤ tk,η,

∅ otherwise.

Note this is the same as putting a slightly more stringent requirement on k: k ≤
1
2

√
|η|.
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CHAPTER 2

Outline of the proof

In this chapter we give an outline of the main steps of the proof of Theorem
1 and set up the main energy estimates, focusing on exposition, intuition, and
organization. We will try to give specific emphasis to what is new relative to [5],
and discuss fewer details on issues that are common to both works for the sake
of brevity. After §2, the remainder of the paper is dedicated to the proof of the
major energy estimates required and the analysis of the various norms and Fourier
analysis tools being employed.

2.1. Summary and weakly nonlinear heuristics

2.1.1. New dependent variables. As in [5], we find it natural to define the
full set of auxiliary unknowns qi = ∆ui for i = 1, 2, 3. A computation shows that
(qi) solves

(2.1)






∂tq1 + y∂xq1 + 2∂xyu1 + u ·∇q1 = −q2 + 2∂xxu2

−qj∂ju1 + ∂x
(
∂iuj∂jui

)
− 2∂iuj∂iju1 + ν∆q1

∂tq2 + y∂xq2 + u ·∇q2 = −qj∂ju2 + ∂y
(
∂iuj∂jui

)

−2∂iuj∂iju2 + ν∆q2

∂tq3 + y∂xq3 + 2∂xyu3 + u ·∇q3 = 2∂zxu2 − qj∂ju3

+∂z
(
∂iuj∂jui

)
− 2∂iuj∂iju3 + ν∆q3.

Note that the linear terms have disappeared in the PDE for q2 but not q1 and q3.

2.1.2. New independent variables. As in [5], the need for a change of
independent variables can be understood by considering the convection term y∂xqi+
u · ∇qi which appears in (2.1) above. Due to the mixing, any classical energy
estimates on q in (say) Sobolev spaces will rapidly grow. Via the lift-up effect, u1

0

will be very large, whereas even the other contributions of the streak, u2,3
0 , will not

be decaying and cannot be balanced by the dissipation as they are far larger than
ν. More specifically, the growth of gradients caused by mixing due to the streak
cannot be balanced. In [5], the coordinate system was modified to account for the
mixing action of u1

0 (and u2
0 as a by-product); here we will go further and also

account for u3
0, effectively treating the entire streak in a sort of Lagrangian fashion

so that norm growth due to these velocities is not seen in our coordinate system.
A full study of the coordinate transformation is done in §2.4 below, but let us

just make a quick summary here. We start with the ansatz





X = x− ty − tψ(t, y, z)
Y = y + ψ(t, y, z)
Z = z + φ(t, y, z),

The shift ψ is chosen as in [5], however φ is chosen to eliminate the contributions
of u3

0 from the transport term. Indeed, consider the simple convection diffusion

11
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12 2. OUTLINE OF THE PROOF

equation on a passive scalar f(t, x, y, z)

∂tf + y∂xf + u ·∇f = ν∆f.

Denoting F (t,X, Y, Z) = f(t, x, y, z) and U(t,X, Y, Z) = u(t, x, y, z), and ∆t and
∇t for the expressions for ∆ and ∇ in the new coordinates, this simple equation
becomes

∂tF +




u1 − t(1 + ∂yψ)u2 − t∂zψu3 − d

dt (tψ) + νt∆ψ
(1 + ∂yψ)u2 + ∂zψu3 + ∂tψ − ν∆ψ
(1 + ∂zφ)u3 + ∂yφu2 + ∂tφ− ν∆φ



 ·∇X,Y,ZF = ν∆̃tF,

(2.2)

where ∆̃t is a variant of ∆t without lower order terms; it is given below in (2.13b).
To eliminate the zero frequency contribution of the first component of the velocity
field, as in [5], we will choose u1

0 − t(1 + ∂yψ)u2
0 − t∂zψu3

0 − d
dt (tψ) + νt∆ψ = 0.

To eliminate the zero frequency contribution of the third component, we further
choose (1 + ∂zφ)u3

0 + ∂yφu2
0 + ∂tφ = ν∆φ. As in [5], we now recast the equations

on ψ,φ in terms of C1(t, Y, Z) = ψ(t, y, z), C2(t, Y, Z) = φ(t, y, z) and the auxiliary
unknown g = 1

t (U
1
0 − C). After cancellations are carefully accounted for we have

(2.3)






∂tC1 + Ũ0 ·∇Y,ZC1 = g − U2
0 + ν∆̃tC1,

∂tC2 + Ũ0 ·∇Y,ZC2 = −U3
0 + ν∆̃tC2,

∂tg + Ũ0 ·∇Y,Zg = − 2
t g −

1
t

(
U"= ·∇tU1

"=

)

0
+ ν∆̃tg,

and






Q1
t + Ũ ·∇X,Y,ZQ1 = −Q2 − 2∂t

XY U
1 + 2∂XXU2 −Qj∂t

jU
1

−2∂t
iU

j∂t
ijU

1 + ∂X(∂t
iU

j∂t
jU

i) + ν∆̃tQ1

Q2
t + Ũ ·∇X,Y,ZQ2 = −Qj∂t

jU
2 − 2∂t

iU
j∂t

ijU
2 + ∂t

Y (∂
t
iU

j∂t
jU

i) + ν∆̃tQ2

Q3
t + Ũ ·∇X,Y,ZQ3 = −2∂t

XY U
3 + 2∂t

XZU
2 −Qj∂t

jU
3

−2∂t
iU

j∂t
ijU

3 + ∂t
Z(∂

t
iU

j∂t
jU

i) + ν∆̃tQ3,

(2.4)

where ∂t
i denote derivatives including the Jacobian factors ∂zψ, ∂yψ, ∂yφ, ∂zφ (see

§2.4 below) and

Ũ =




U1
"= − t(1 + ∂yψ)U2

"= − t∂zψU3
"=

(1 + ∂yψ)U2
"= + ∂zψU3

"= + g
(1 + ∂zφ)U3

"= + ∂yφU2
"=



 .

Notice that this transformation almost completely eliminates the zero frequency
contribution of Ũ0, so we are treating the advection by the evolving streak
u1
0(t, y, z), u

2
0(t, y, z), u

3
0(t, y, z) in a nearly Lagrangian way (as in [5], g is rapidly

decaying independently of ν).

2.2. Choice of the norms

The highest norms we use are of the general type
∥∥Ai(t,∇)Qi(t)

∥∥
2
, where the

Ai are specially designed Fourier multipliers. See (2.36) below for the definitions
of Ai. For i = 1, 2 the norms are similar to [5], however, here they need to be
adjusted at high frequencies in Z. For i = 3 the difference is more pronounced as
the w multiplier is replaced with a specially adjusted w3. Recall that these factors
are estimates on the “worst-possible” growth of high frequencies due to weakly
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nonlinear effects. Roughly speaking, here they are taken to satisfy the following for
|k|2 ! |η| (and hence

√
|η| ! t ! |η|),

∂tw(t, η)

w(t, η)
∼ 1

1 + |t− η
k |
, when

∣∣∣t−
η

k

∣∣∣ ! η

k2
and w(1, η) = 1(2.5a)

w3
k(t, η) ∼ w(t, η), when

∣∣∣t−
η

k

∣∣∣ ! η

k2
(2.5b)

w3
k′(t, η) ∼

t

|k|+ |η − kt|w(t, η), when
∣∣∣t−

η

k

∣∣∣ ! η

k2
and k 3= k′;(2.5c)

see Appendix C for the full definition and §2.5 for the heuristic derivation. We
see that w3 unbalances the regularity in a way that enforces more control over
frequencies near the critical times than away from the critical times. This is closely
matched by the loss of ellipticity in ∆L and allows to trade ellipticity and regularity
back and forth in a specific way.

Finally, as pointed out in [5], one can read off the requirement s > 1/2 from
(2.5). Indeed, integration over each critical time gives for some C > 0,

w(2η, η)

w(
√
η, η)

≈
(

η
√
η

(
√
η!)2

)C

,(2.6)

which predicts a growth like O(e2C
√
η) up to a polynomial correction by Stirling’s

formula.

2.2.1. Weakly nonlinear heuristics. First, let us point out another heuris-
tic for deriving the requirement ε ! ν2/3. Many nonlinear terms in the proof are
naturally estimated in the following general manner:

NL ! ε

〈νt3〉α
∥∥∥
√
−∆LA

iQi
∥∥∥
2

∥∥AjQj
∥∥
2
! ν

∥∥∥
√
−∆LA

iQi
∥∥∥
2

2
+

ε2

ν 〈νt3〉2α
∥∥AjQj

∥∥2
2

(2.7)

where recall from §1.1 that ∆L = ∂XX + (∂Y − t∂X)2 + ∂ZZ , the leading or-

der dissipation that comes from the linearized problem. The
〈
νt3

〉−α
comes from

a ‘low-frequency’ factor that was estimated via the enhanced dissipation. Since∫∞
0

1
〈νt3〉α dt ≈ ν−1/3, it is apparent that ν ∼ ε3/2 is the smallest choice of ν such

that (2.7) can be integrated uniformly in ν → 0.
Now, let us quickly recall some terminology from [5] and some discussion on

the weakly nonlinear effects. The behavior in Theorem 1 comes in essentially two
phases. During early times t ! τNL ∼ ε−1/2, the solution has strong 3D effects
and the dissipation cannot control the leading order nonlinear terms. On this time
scale, the regularity unbalancing in w3 and insight from the toy model of §2.5 is
crucial. After times t " τED ∼ ν−1/3 the enhanced dissipation begins to dominate
and the solution converges to a streak; the main growth from then on is due to
the lift-up effect. The assumption of ε ≤ ν2/3+δ is what ensures the two regimes
overlap since then τNL " τED; moreover since δ > 0, by picking ν small we can
make sure that the overlap regime is large (that is, we can ensure τNL + τED so
the dissipation dominates comfortably before the nonlinear time-scale).

As in [5], we classify the nonlinear terms by the zero, or nonzero, x frequency
of the interacting functions: denote for instance 0· 3=→ 3= for the interaction of a
zero mode (in x) and a non-zero mode (in x) giving a non-zero mode (in x), and
similarly, with obvious notations, 0 · 0 → 0, 3= · 3=→ 3=, and 3= · 3=→ 0.
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(2.5NS) (0 · 0 → 0) For 2.5D Navier-Stokes, this corresponds to self-interactions
of the streak. We will see that there are new complexities to these terms
here: due to the regularity unbalancing in w3, the regularity of u3

0 and u2
0

are not the same and terms that were straightforward in [5] are not so
here.

(SI) (0· 3=→ 3=) For secondary instability, this effect is the transfer of momen-
tum from the large u1

0 mode to other modes. Actually, even more here
than in [5], u2

0 and u3
0 will matter; especially the latter due to the regular-

ity unbalances in w3. These interactions are those that would arise when
linearizing an x-dependent perturbation of a streak and so are what ul-
timately give rise to the secondary instabilities observed in larger streaks
(hence the terminology) [14,43].

(3DE) ( 3= · 3=→ 3=) For three dimensional echoes, these effects are 3D variants
of the 2D hydrodynamic echo phenomenon as observed in [57,58]. These
are understood as weakly nonlinear interactions of x-dependent modes
forcing unmixing modes [7, 50, 51]. We will see in §2.5 that these are
the primary reason for the regularity imbalances in w3 and hence are the
source of most of the additional difficulties in the proof of Theorem 1.
This involves two non-zero frequencies k1, k2 interacting to force mode
k1 + k2 with k1, k2, k1 + k2 3= 0.

(F) ( 3= · 3=→ 0) For nonlinear forcing, this is the effect of the forcing from
x-dependent modes back into x-independent modes. This involves two
non-zero frequencies k and −k interacting to force a zero frequency (and
as usual, in general this could involve a variety of the components). Similar
to (3DE), it is u3

0 that is most strongly affected by these terms, and it is
these that are responsible for altering the regularity of u3

0 relative to u2
0.

As in [5], these nonlinear interactions are coupled to one another and can pre-
cipitate nonlinear cascades. The need to consider possible nonlinear bootstraps
both precipitates the Gevrey-2 regularity requirement as in [5] and the regularity
imbalances in u3, as we will derive formally in §2.5.

We will now begin a detailed outline of the proof of Theorem 1 and set up the
main energy estimates that will comprise the majority of the paper.

2.3. Instantaneous regularization and continuation of solutions

The first step is to see that our initial data becomes small in G
3λ0
4 +λ′

4 after a
short time. We state without proof the appropriate lemma, see [5,9] for analogous
lemmas.

Lemma 2.1 (Local existence and instanteous regularization). Let uin ∈ L2 sat-
isfy (1.10). Then for all ν ∈ (0, 1], c0 sufficiently small, K0 sufficiently large, and all
λ0 > λ′ > 0, if uin satisfies (1.10), then there exists a time t( = t((s,K0,λ0,λ′) > 0
and a unique classical solution to (1.1) with initial data uin on [0, t(] which is real
analytic on (0, t(], and satisfies

sup
t∈[t$/2,t$]

‖u(t)‖Gλ̄ ≤ 2ε,(2.8)

where λ̄ = 3λ0
4 + λ′

4 .

Once we have a solution we want to be able to continue it and ensure that it
propagates analyticity based on low norm controls. This will allow us to rigorously
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2.4. Qi FORMULATION AND SOME KEY CANCELLATIONS 15

justify our a priori estimates and that these a priori estimates allow us to propagate
the solutions. See [5] for more discussion. We remark here that analyticity itself is
not important, we only need a regularity class which is a few derivatives stronger
than the regularities we work in below, so that we may easily justify that the norms
applied to the solution take values continuously in time.

Lemma 2.2 (Continuation and propagation of analyticity). Let T > 0 be such
that the classical solution u(t) to (1.1) constructed in Lemma 2.1 exists on [0, T ] and
is real analytic for t ∈ (0, T ]. Then there exists a maximal time of existence T0 with
T < T0 ≤ ∞ such that the solution u(t) remains unique and real analytic on (0, T0).
Moreover, if for some τ ≤ T0 and σ > 5/2 we have lim supt↗τ ‖u(t)‖Hσ < ∞, then
τ < T0.

2.4. Qi formulation, the coordinate transformation, and some key
cancellations

As in [5], we remove the fast mixing action of both the Couette flow and u1
0(t).

However, we go further and essentially treat the entire streak in a Lagrangian way
so that we do not see the large gradient growth due to the zero frequencies in the
velocity field. In this work we need:

(1) to control the regularity loss due to transport effects in our special set of
of norms until t ∼ ε−1;

(2) to be able to treat the Laplacian in the new coordinates as a perturbation
from ∆L, so that we can take advantage of the inviscid damping and
enhanced dissipation effects;

(3) to be able to make practical estimates on the behavior of the coordinate
system and the coordinate transformation needs to treat the dissipation
in a natural way, instead of losing derivatives.

The latter two are the same as [5] but the first one is potentially far more difficult
since the streak is far larger than ν and so cannot be balanced by viscous effects.
The middle requirement suggests the form

X = x− ty − tψ(t, y, z)(2.9a)

Y = y + ψ(t, y, z)(2.9b)

Z = z + φ(t, y, z),(2.9c)

however, unlike [5], we will not take φ = 0. Provided ψ and φ is sufficiently small
in a suitable sense, one can invert (2.9) for x, y, z as functions of X,Y, Z (see §3 and
[5] for more information). In keeping with the notation in [5] , denote the Jacobian
factors (by abuse of notation),

ψt(t, Y, Z) = ∂tψ(t, y(t, Y, Z), z(t, Y, Z))

ψy(t, Y, Z) = ∂yψ(t, y(t, Y, Z), z(t, Y, Z))

ψz(t, Y, Z) = ∂zψ(t, y(t, Y, Z), z(t, Y, Z))

φt(t, Y, Z) = ∂tφ(t, y(t, Y, Z), z(t, Y, Z))

φy(t, Y, Z) = ∂yφ(t, y(t, Y, Z), z(t, Y, Z))

φz(t, Y, Z) = ∂zφ(t, y(t, Y, Z), z(t, Y, Z)).

In what follows we will usually omit the arguments of y(t, Y, Z) and z(t, Y, Z) and
use a more informal notation, such as ψt(t, Y, Z) = ∂tψ(t, y, z).
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16 2. OUTLINE OF THE PROOF

Define the following notation for the (x, y, z) derivatives in the new coordinate
systems

∂t
X = ∂X(2.10a)

∂t
Y = (1 + ψy)(∂Y − t∂X) + φy∂Z(2.10b)

∂t
Z = (1 + φz)∂Z + ψz(∂Y − t∂X)(2.10c)

∇t = (∂X , ∂t
Y , ∂

t
Z)

T .(2.10d)

Note that these necessarily commute. Consider the transport of a passive scalar by
a perturbation of the Couette flow:

∂tf + y∂xf + u ·∇f = ν∆f.(2.11)

Denoting F (t,X, Y, Z) = f(t, x, y, z), the transport equation (2.11) in the new
coordinate system is given by

∂tF +




u1 − t(1 + ∂yψ)u2 − t∂zψu3 − d

dt (tψ) + tν∆ψ
(1 + ∂yψ)u2 + ∂zψu3 + ∂tψ − ν∆ψ
(1 + ∂zφ)u3 + ∂yφu2 + ∂tφ− ν∆φ



 ·∇X,Y,ZF = ν∆̃tF,

(2.12)

where the upper-case letters are evaluated at (X,Y, Z) and the lower case letters
are evaluated at (x, y, z) and we are denoting

∆tF = ∂XX + ∂t
Y

(
∂t
Y F

)
+ ∂t

Z

(
∂t
ZF

)
(2.13a)

∆̃tF = ∆tF −∆ψ(∂Y − t∂X)F −∆φ∂ZF.(2.13b)

Eliminating the zero frequency of the first component of the velocity field in (2.12)
provides the requirement on ψ (the same as in [5]),

u1
0 − t (1 + ∂yψ)u

2
0 − t∂zψu

3
0 −

d

dt
(tψ) = −νt∆ψ.(2.14)

In [5], φ was chosen to be zero for simplicity and the transport due u3
0 was

absorbed by the dissipation. Even with no dissipation at all, in standard regularity
classes one could attempt to deal with u3

0 until t ∼ ε−1 by using the commutator
trick employed in e.g. [30,33], however, armed with our complicated norms, which
in particular, have a non-trivial angular dependence in frequency, this could be-
come hard (see [7] for what kind of issues could arise). Instead, we will shift our
coordinate system along with u3

0 by eliminating the third component of the velocity
field in (2.12) via:

(1 + ∂zφ)u
3
0 + ∂yφu

2
0 + ∂tφ = ν∆φ,(2.15)

which, as mentioned above, is effectively a Lagrangian treatment of the background
streak. Below we denote

C1(t, Y, Z) = ψ(t, y, z)

C2(t, Y, Z) = φ(t, y, z)

C(t, Y, Z) = (C1(t, Y, Z), C2(t, Y, Z))T .

See Appendix B for details on how to relate ψ,φ, and C, which are a slightly more
technical variant of previous works [5]. Note that ∆tC1 = ∆ψ and ∆tC2 = ∆φ,
and hence

∆tf = ∆̃tf +∆tC
1(∂Y − t∂X)f +∆tC

2∂Zf.(2.16)

Licensed to New York Univ, Courant Inst.  Prepared on Mon Oct  3 02:20:18 EDT 2022for download from IP 91.230.41.207.



2.4. Qi FORMULATION AND SOME KEY CANCELLATIONS 17

From the chain rule together with (2.14), (2.15), and (2.16), we derive

∂tC
1 +

(
(1 + ψy)U2

0 + ψzU3
0 + ψt − ν∆tC1

(1 + φz)U3
0 + φyU2

0 + φt − ν∆tC2

)
·∇C1 =

1

t

(
U1
0 −tU2

0 −C1
)
+ν∆̃tC

1

(2.17a)

∂tC
2 +

(
(1 + ψy)U2

0 + ψzU3
0 + ψt − ν∆tC1

(1 + φz)U3
0 + φyU2

0 + φt − ν∆tC2

)
·∇C2 = −U3

0 + ν∆̃tC
2.

(2.17b)

As in [5], we will define another auxiliary unknown g,

g =
1

t

(
U1
0 − C1

)
,(2.18)

which, as in [5], roughly speaking, measures the time oscillations of U1
0 and satisfies

(2.19) ∂tg +

(
(1 + ψy)U2

0 + ψzU3
0 + ψt − ν∆tC1

(1 + φz)U3
0 + φyU2

0 + φt − ν∆tC2

)
·∇Y,Zg

= −2g

t
− 1

t

(
Ũ"= ·∇U1

"=

)

0
+ ν∆̃tg.

Next, from (2.17a), (2.18), (B.1e), and (B.1f), we derive

ψt = g − U2
0 −

(
(1 + ψy)U2

0 + ψzU3
0

(1 + φz)U3
0 + φyU2

0

)
·∇C1 + ν∆tC

1(2.20a)

φt = −U3
0 −

(
(1 + ψy)U2

0 + ψzU3
0

(1 + φz)U3
0 + φyU2

0

)
·∇C2 + ν∆tC

2.(2.20b)

and equivalently, from (B.1),

ψt + (1 + ψy)U
2
0 + φzU

3
0 = g + ν∆tC

1(2.21a)

φt + (1 + φz)U
3
0 + φyU

2
0 = ν∆tC

2.(2.21b)

Deriving the resulting cancellations as in [5], we have that the following velocity
field will ultimately govern our equations:

Ũ = Ũ0 + Ũ"= =




0
g
0



+




U1
"= − t(1 + ψy)U2

"= − tψzU3
"=

(1 + ψy)U2
"= + ψzU3

"=
(1 + φz)U3

"= + φyU2
"=



 .(2.22)

We also derive the governing equations

∂tC
1 + g∂Y C

1 = g − U2
0 + ν∆̃tC

1(2.23a)

∂tC
2 + g∂Y C

2 = −U3
0 + ν∆̃tC

2,(2.23b)

and

∂tg + g∂Y g = −2g

t
− 1

t

(
Ũ"= ·∇U1

"=

)

0
+ ν∆̃tg.(2.24)

Further notice that the forcing term from non-zero frequencies can be written as
(
Ũ"= ·∇U1

"=

)

0
=

(
U"= ·∇tU1

"=
)
0
.(2.25)
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18 2. OUTLINE OF THE PROOF

Furthermore, as in [5] we have, denoting Qi(t,X, Y, Z) = qi(t, x, y, z):





Q1
t + Ũ ·∇Q1 = −Q2 − 2∂t

XY U
1 + 2∂XXU2 −Qj∂t

jU
1

−2∂t
iU

j∂t
ijU

1 + ∂X(∂t
iU

j∂t
jU

i) + ν∆̃tQ1

Q2
t + Ũ ·∇Q2 = −Qj∂t

jU
2 − 2∂t

iU
j∂t

ijU
2 + ∂t

Y (∂
t
iU

j∂t
jU

i) + ν∆̃tQ2

Q3
t + Ũ ·∇Q3 = −2∂t

XY U
3 + 2∂t

XZU
2 −Qj∂t

jU
3

−2∂t
iU

j∂t
ijU

3 + ∂t
Z(∂

t
iU

j∂t
jU

i) + ν∆̃tQ3,

(2.26)

where we use the following to recover the velocity fields:

U i = ∆−1
t Qi(2.27a)

∂t
iU

i = 0.(2.27b)

For the majority of the remainder of the proof, (2.26), together with (2.23), (2.24)
and (2.27), will be the main governing equations. The one exception will be in the
treatment of the low frequencies of X independent modes, where the use of (2.27a)
can be problematic. For these we use X averages of the momentum equation.

As in [5], from now on we will use the following vocabulary and shorthands

Ũ ·∇Qα = “transport nonlinearity” T(2.28a)

−Qj∂t
jU

α − 2∂t
iU

j∂t
ijU

α = “nonlinear stretching” NLS(2.28b)

∂t
α(∂

t
iU

j∂t
jU

i) = “nonlinear pressure” NLP(2.28c)

−2∂t
XY U

α = “linear stretching” LS(2.28d)

2∂t
XαU

2 = “linear pressure” LP(2.28e)
(
∆̃t −∆L

)
Qα = “dissipation error” DE ;(2.28f)

see [5] for an explanation of the terminologies. As in [5], each of the nonlinear
terms will be further sub-divided into as many as four pieces in accordance with
the different types of nonlinear effects described in §2.2.1. Furthermore, each of
the three components of the solution are qualitatively different and measured with
different norms, which means certain combinations of i and j need to be treated
specially.

As in [5], we need to take advantage of a special structure in the equations
which reduces the potential strength of interactions of type (F). By considering
the interaction of two non-zero frequencies, k and −k, and putting together the
contributions from transport, stretching, and nonlinear pressure we get the terms
which we refer to as forcing, corresponding to the nonlinear interactions of type
(F),

Fα := −∆t

(
U j
"=∂

t
jU

α
"=

)

0
+ ∂t

α

(
∂t
iU

j
"=∂

t
jU

i
"=

)

0
(2.29)

= −∂t
i∂

t
i∂

t
j

(
U j
"=U

α
"=

)

0
+ ∂t

α∂
t
j∂

t
i

(
U i
"=U

j
"=

)

0
,(2.30)

the advantage being that the X averages remove the −t∂X from the derivatives.

2.5. The toy model and design of the norms

Following up on the approach discussed in [5], in this section we want to perform
a weakly nonlinear analysis and determine both τNL, the characteristic time-scale
associated with fully 3D nonlinear effects, and the norms with which we want to
measure the solution.
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2.5. THE TOY MODEL AND DESIGN OF THE NORMS 19

Denote the Fourier dual variables of (X,Y, Z) as (k, η, l). As in [5], a time
which satisfies kt = η is called a critical time (Orr’s original terminology [41]) or
resonant time (after modern terminology [16, 46, 57, 58]). Notice that these are
precisely the points in time/frequency where ∆L loses ellipticity in Y (recall (1.6)).
Recall the definition of Ik,η from §1.3, which denotes the resonant intervals t ≈ η

k
with k2 ! |η|. This latter restriction is possible due to the uniform ellipticity of
∆L with respect to ∂X which implies the larger the k, the weaker the effect of the
resonance.

From [5], we recall the toy model for the behavior of (2.26) near critical times
for Q2 and Q3 at frequency (k, η, l) and (k′, η, l) for kt ≈ η and k 3= k′ ≈ k:

∂tQ̂2
k(t, η, l) = max(εt, c0)

k

k + |η − kt| Q̂
3
k − ν

(
k2 + |η − kt|2

)
Q̂2

k(2.31a)

∂tQ̂2
k′(t, η, l) = max(εt, c0)

k′

|k′|+ t+ 1
Q̂3

k′ − ν
(
k2 + |η − kt|2

)
Q̂2

k′(2.31b)

∂tQ̂3
k′(t, η, l) =

εt3

〈νt3〉α
Q̂2

k

k2 + |η − kt|2
− ν

(
k2 + |η − kt|2

)
Q̂3

k′(2.31c)

∂tQ̂3
k(t, η, l) =

k

k + |η − kt| Q̂
3
k +

k

k + |η − kt| Q̂
2
k − ν

(
k2 + |η − kt|2

)
Q̂3

k(2.31d)

∂tQ̂2
0(t, η, l) = εQ̂3

0 +
εt2

〈νt3〉α
Q̂2

k

k2 + |η − kt|2
− νη2Q̂2

0(2.31e)

∂tQ̂3
0(t, η, l) = εQ̂3

0 +
εt3

〈νt3〉α
Q̂2

k

k2 + |η − kt|2
− νη2Q̂3

0,(2.31f)

where all unknowns are evaluated at frequency (η, l).
Let us first use (2.31) to get an estimate on τNL. If we first consider the

case ν = 0, then we can estimate τNL from below if we can find an approximate
super-solution to (2.31) which will result in a reasonable regularity requirement
(say analytic or weaker). Even with ν = 0, we can verify that the following is a
viable super-solution to (2.31) over t ∈ Ik,η provided εt2 ! 1:

∂tw(t, η) ≈
1

1 +
∣∣t− η

k

∣∣w(t, η)(2.32a)

Q2
k ≈ Q2

k′ ≈ Q2
0 ≈ w(t, η)(2.32b)

Q3
k ≈ Q3

k′ ≈ Q3
0 ≈ tw(t, η)(2.32c)

Due to the fact that both the resonant and non-resonant frequencies experience the
same total growth (|η| |k|−2)c, for some c, for all |k| !

√
|η|, the loss is multiplica-

tively amplified through each critical time (to see this, take k′ = k−1 and consider
the critical times η/k, η/(k− 1), η/(k− 2), . . .). From this, one sees that this super
solution predicts Gevrey-2 regularity loss (see (2.6) above or [5,7] for more infor-
mation). Therefore, even with no viscosity, according to the super-solution (2.32),
a sufficiently regular solution could remain under control until at least τNL " ε−1/2.
It would be more difficult to derive a good heuristic to estimate τNL from above;
the toy model (2.31) is designed to give robust upper bounds on the dynamics, not
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20 2. OUTLINE OF THE PROOF

necessarily to make a good model for any particular realization of the true dynam-
ics, hence even if we explicitly solved (2.31) exactly, perhaps the toy model itself
throws away too much information.

In order to prove Theorem 1, we will need a more accurate super-solution than
(2.32). Notice further that the super-solution used in [5] does not work here due
to the terms in (2.31c) and (2.31f) with εt3 present. The idea is to take better
advantage of the denominators in (2.31) to recover the extra t in the numerators
of these terms. Quite precisely, we will trade one power of the denominator for a
power of t. To do this, one must permit the regularities to become unbalanced:
(2.31c) and (2.31f) both indicate that Q3

k′ , for k′ 3= k (e.g. non-critical or non-
resonant) should be t(k + |η − kt|)−1 larger than Q2

k. Accordingly, we see that for
ε ! ν2/3 and εt ! 1, the following is an approximate super-solution for (2.31) over
Ik,η:

∂tw(t, η) ≈
1

1 +
∣∣t− η

k

∣∣w(t, η)(2.33a)

w3(t, k, η) = w(t, η)(2.33b)

w3(t, k′, η) =
t

|k|+ |η − kt|w(t, η)(2.33c)

w3(t, 0, η) =
t

|k|+ |η − kt|w(t, η)(2.33d)

Q2
k ≈ Q2

k′ ≈ Q3
k ≈ w(t, η)(2.33e)

Q3
k′ ≈ Q3

0 ≈ w3(t, k′, η)(2.33f)

Q1
k ≈ Q1

k′ ≈ tQ2
k.(2.33g)

The last line is not deduced directly from (2.31), but is deduced (heuristically) in the
derivation of (2.31) via the lift-up effect (see [5]). Notice that when Q2

k forces Q3
k′

and Q3
0 near the critical time, we will gain the factor of t−1(|k|+ |η − kt|), precisely

what is needed to exchange the εt3 in the leading terms in (2.31c) and (2.31f) into
εt2. This suffices since εt2

〈
νt3

〉
! 1 when ε ! ν2/3 (another equivalent way of

seeing the 2/3 threshold). The regularity loss in (2.33) is peaked near the critical
times, and as in [5], we will further modify w and w3 to include additional steady,
gradual losses of Gevrey-2 regularity over 1 ≤ t ≤ 2 |η| (see (C.4) in Appendix
C.1). This will further unify the treatment of many estimates, and its potential
usefulness is also suggested by the toy model (e.g. the first term in (2.31b)).

As discussed in [5], the toy model (2.31) only provides an estimate on (2.26)
near the critical times. For t + |η, l| it does not apply. As in [5], we know from
Proposition 1.1 that Q3

"= and Q1
"= must grow quadratically at these ‘low’ frequencies

due to the vortex stretching inherent in the linear problem. On the other hand,
Proposition 1.1 predicts that u2 decays like 〈t〉−2, or equivalently, that Q2 is uni-
formly bounded. This behavior was nearly preserved in the below threshold case
[5], however, it turns out that the nonlinear effects here are strong enough to pos-
sibly cause a large growth in Q2. The RHS of (2.31a) originally came from the
nonlinear pressure term in the Q2 equation:

∂tQ
2
"= = ∂t

Y

(
∂XU3

"=∂
t
ZU

1
0

)
+ ...(2.34)

For times/frequencies with t + |∇Y,Z |, we can ignore any issues regarding the
critical times and just estimate the size of this term based on the predictions of
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2.6. DESIGN OF THE NORMS BASED ON THE TOY MODEL 21

Proposition 1.1 and we have

∥∥∂tQ2
∥∥ ! ε2t2

〈νt3〉α
+ ...

Therefore, if ε ∼ ν2/3 then we predict that Q2 can be at best bounded by only ≈
ε 〈t〉

〈
νt3

〉−α
, which suggests a transient growth due to nonlinear effects, in contrast

to [5]. Further, this suggests the following inviscid damping/enhanced dissipation
estimate:

∥∥U2
"=
∥∥ ! ε

〈t〉 〈νt3〉α
,(2.35)

consistent with Theorem 1. When considering the ubiquitous U j∂t
j and ∂iU j∂t

j

structure of the nonlinearity in (2.26), we see that (2.35) is borderline in a certain
sense. Indeed, we normally have factors like U2(∂Y − t∂X) and so this will be just
enough damping to ensure that (regularity issues aside) the −t∂X derivatives do
not completely dominate the nonlinearity and hence destroy the very special “non-
resonance” structures available (indeed, this is the main role inviscid damping plays
in the proof of Theorem 1). This is also another way to derive the 2/3 threshold.

2.6. Design of the norms based on the toy model

The above heuristics suggest that we use a set of norms which is more compli-
cated than the norms in [5]. The high norms will be of the following form, for a
time-varying λ(t) defined below, s > 1/2, 0 < δ1 " δ, and corrector multipliers w,
w3, and wL (here (t, k, η, l) are now arbitrary):

AQ
k (t, η, l) = eλ(t)|k,η,l|

s

〈k, η, l〉σ 1

wL(t, k, η, l)

(
eµ|η|

1/2

w(t, η)
+ eµ|l|

1/2

)
(2.36a)

A1
k(t, η, l) =

1

〈t〉

(
1k "=0 min

(
1,

〈η, l〉1+δ1

〈t〉1+δ1

)
+ 1k=0

)
AQ

k (t, η, l)(2.36b)

A2
k(t, η, l) =

(
1k "=0 min

(
1,

〈η, l〉
t

)
+ 1k=0

)
AQ

k (t, η, l)(2.36c)

A3
k(t, η, l) =

(
1k "=0 min

(
1,

〈η, l〉2

t2

)
+ 1k=0

)
eλ(t)|k,η,l|

s

〈k, η, l〉σ

× 1

wL(t, k, η, l)

(
eµ|η|

1/2

w3
k(t, η)

+ eµ|l|
1/2

)
(2.36d)

A(t, η, l) = 〈η, l〉2 AQ
0 (t, η, l),(2.36e)

where µ, w, and w3 are defined precisely in Appendix C and wL is defined in
Appendix C.2 (w and w3 are derived approximately in (2.33) above). As in [5],
the multiplier A is used to measure Ci and g whereas Ai is used to measure Qi.
Here δ1 is chosen sufficiently small depending only on δ. We choose the radius of
Gevrey-1s regularity to satisfy

λ̇(t) = − δλ

〈t〉min(2s,3/2)

λ(1) =
3λ0

4
+

λ′

4
,
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22 2. OUTLINE OF THE PROOF

where we fix δλ " min(1,λ0 − λ′) small such that λ(t) > (λ0 + λ′)/2.

Remark 2.1. One of the reasons we need δ > 0 is because we are unsure how
to set δ1 = 0 in (2.36b). This technical issue was present also in [5] (see §8.2 below),
however, here it tends to propagate further into the proof as the situation here is
more borderline.

Let us briefly mention some implications of using w3 in (2.36). Note first of
all from (2.33) that w3 is the same as w except near the critical times, however,
near the critical times, w3

k(t, η) for non-resonant modes is larger, and hence (2.36)
will assign them less regularity (see (C.5) in §C.1 for the precise definition). This
will create a gain in energy estimates when Q2 or Q1 force Q3 and will be a loss
when the vice-versa occurs. It will also create a similar imbalance in nonlinear
interactions between resonant and non-resonant modes in Q3. The last detail to

notice is that, due to the +eµ|l|
1/2

, the effects of w and w3 are only visible in the
subset of frequencies such that |η| " |l|. This additional precision was not necessary
in [5], however, it is necessary here due to problems with regularity imbalances at
high frequencies in Z (for example, in §6.2.3). Note it is natural that the resonances
should not be relevant for high Z frequencies, due to the uniform ellipticity in Z of
∆t, however, this detail will make certain aspects of the proof more technical. We
will need the following definition:

ÃQ
k (t, η, l) = eλ(t)|k,η,l|

s

〈k, η, l〉σ 1

wL(t, k, η, l)

eµ|η|
1/2

w(t, η)
(2.37a)

Ã1
k(t, η, l) =

1

〈t〉

(
1k "=0 min

(
1,

〈η, l〉1+δ1

〈t〉1+δ1

)
+ 1k=0

)
ÃQ

k (t, η, l)(2.37b)

Ã2
k(t, η, l) =

(
1k "=0 min

(
1,

〈η, l〉
t

)
+ 1k=0

)
ÃQ

k (t, η, l)(2.37c)

Ã3
k(t, η, l) =

(
1k "=0 min

(
1,

〈η, l〉2

t2

)
+ 1k=0

)
ÃQ

k (t, η, l)
w(t, η)

w3
k(t, η)

(2.37d)

Ã(t, η, l) = 〈η, l〉2 ÃQ
0 (t, η, l).(2.37e)

Notice that Ãi ! Ai and for |l| < 1
5 |η| there holds Ai ≈ Ãi (by Lemma C.1).

Therefore, the difference between them is only visible if |l| is comparable to or
larger than |η|.
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2.7. MAIN ENERGY ESTIMATES 23

To quantify the enhanced dissipation, we use a scheme similar to that used in
[5], which itself was an expansion of the scheme of [9], adjusted now to the larger
expected growth of Q2. Define D as in [9],

D(t, η) =
1

3α
ν |η|3 + 1

24α
ν
(
t3 − 8 |η|3

)

+
.(2.38)

Note this multiplier satisfies

D(t, η) " max(ν |η|3 , νt3).(2.39)

For some β > 3α+ 7, we define the enhanced dissipation multipliers:

Aν
k(t, η, l) = eλ(t)|k,η,l|

s

〈k, η, l〉β 〈D(t, η)〉α 1

wL(t, k, η, l)
1k "=0(2.40a)

Aν;1
k (t, η, l) = 〈t〉−1 min

(
1,

〈η, l〉1+δ1

t1+δ1

)
Aν

k(t, η, l)(2.40b)

Aν;2
k (t, η, l) = min

(
1,

〈η, l〉
t

)
Aν

k(t, η, l)(2.40c)

Aν;3
k (t, η, l) = min

(
1,

〈η, l〉2

t2

)
Aν

k(t, η, l).(2.40d)

Fix γ > β + 3α + 12 and σ > γ + 6. Note that we do not need w or w3 (or
the associated regularity imbalances) in (2.40). Indeed, the Orr mechanism (and
related nonlinear effects) does not play a major role in the enhanced dissipation
estimates; they are instead mainly determined by careful estimates on how the
vortex stretching manifests in the nonlinearity.

2.7. Main energy estimates

In this section, we set up the main bootstrap argument to extend our estimates
from O(1) in time (from Lemma 2.1) to TF = c0ε−1. Equipped with the norms
defined in (2.40) and (2.36), we will be able to propagate estimates via a bootstrap
argument for as long as the solution to (1.1) exists and remains analytic; by un-doing
the coordinate transformation (possible as long as it remains a small deformation
in yz), this in turn allows us to continue the solution of (1.1) via Lemma 2.2. The
analyticity itself is not important, it only needs to be a regularity class slightly
stronger than the norms defined in §2.6 to ensure they take values continuously in
time. See §3 below for more details on this procedure.

It turns out that ∂tw3/w3 ≈ ∂tw/w (see Lemma C.7) and so this will simplify
the notation when defining the following high norm “dissipation energies”: for
i ∈ {2, 3},

DQi = ν
∥∥∥
√
−∆LA

iQi
∥∥∥
2

2
+ CKi

λ + CKi
w + CKi

wL

= ν
∥∥∥
√
−∆LA

iQi
∥∥∥
2

2
dτ + λ̇

∥∥∥|∇|s/2 AiQi
∥∥∥
2

2
+

∥∥∥∥∥

√
∂tw

w
ÃiQi

∥∥∥∥∥

2

2

(2.41a)

+

∥∥∥∥∥

√
∂twL

wL
AiQi

∥∥∥∥∥

2

2
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24 2. OUTLINE OF THE PROOF

DQ1
"= = ν

∥∥∥
√
−∆LA

1Q1
"=

∥∥∥
2

2
+ CK1

λ; "= + CK1
w; "= + CK1

wL; "=

= ν
∥∥∥
√
−∆LA

1Q1
∥∥∥
2

2
+ λ̇

∥∥∥|∇|s/2 A1Q1
"=

∥∥∥
2

2
+

∥∥∥∥∥

√
∂tw

w
Ã1Q1

"=

∥∥∥∥∥

2

2

(2.41b)

+

∥∥∥∥∥

√
∂twL

wL
A1Q1

"=

∥∥∥∥∥

2

2

Dg = ν
∥∥∥
√
−∆LAg

∥∥∥
2

2
+ CKg

L + CKg
λ + CKg

w

= ν
∥∥∥
√
−∆LAg

∥∥∥
2

2
+

2

t
‖Ag‖22 + λ̇

∥∥∥|∇|s/2 Ag
∥∥∥
2

2
+

∥∥∥∥∥

√
∂tw

w
Ãg

∥∥∥∥∥

2

2

(2.41c)

DCi = ν
∥∥∥
√
−∆LACi

∥∥∥
2

2
+ CKCi

λ + CKCi
w

= ν
∥∥∥
√
−∆LACi

∥∥∥
2

2
+ λ̇

∥∥∥|∇|s/2 ACi
∥∥∥
2

2
+

∥∥∥∥∥

√
∂tw

w
ÃCi

∥∥∥∥∥

2

2

(2.41d)

CKi
L =

1

t

∥∥1t≥〈∇Y,Z〉A
iQi

"=
∥∥2
2

(2.41e)

DQν;i = ν
∥∥∥
√
−∆LA

ν;iQi
∥∥∥
2

2
+ CKν;i

λ + CKν;i
wL

:= ν
∥∥∥
√
−∆LA

ν;iQi
∥∥∥
2

2
+ λ̇

∥∥∥|∇|s/2 Aν;iQi
∥∥∥
2

2
+

∥∥∥∥∥

√
∂twL

wL
Aν;iQi

∥∥∥∥∥

2

2

(2.41f)

DQν;1 = ν
∥∥∥
√
−∆LA

ν;1Qν;1
∥∥∥
2

2
+ CKν;1

λ + CKν;1
wL

:= ν
∥∥∥
√
−∆LA

ν;1Q1
"=

∥∥∥
2

2
+ λ̇

∥∥∥|∇|s/2Aν;1Q1
"=

∥∥∥
2

2
+

∥∥∥∥∥

√
∂twL

wL
Aν;1Q1

"=

∥∥∥∥∥

2

2

(2.41g)

CKν;i
L :=

1

t

∥∥1t≥〈∇Y,Z〉A
ν;iQi

∥∥2
2
.

(2.41h)

Note the presence of Ãi; this will mean that, unlike [5], the CKw terms only provide
control in the range of frequencies |∂Y | " |∂Z |.

Using a bootstrap/continuity argument, we will propagate the following es-
timates. Fix constants KHi,KH1"=,KHC1,KHC2,KEDi,KLi,KED2,KLC for i ∈
{1, 3}, sufficiently large determined by the proof, depending only on δ, δ1, s,σ, γ,β,
λ′,λ0 and α. Further, fix σ′ > 3. Let 1 ≤ T ( < T 0 be the largest time such that
the following bootstrap hypotheses hold (that T ( ≥ 1 is discussed below): the high
norm controls on Qi,

∥∥A1Q1
0(t)

∥∥2
2
≤ 4KH1ε

2(2.42a)

∥∥A1Q1
"=(t)

∥∥2
2
+

1

2

∫ t

1
DQ1

"=(τ )dτ ≤ 4KH1"=ε
2(2.42b)

∥∥A2Q2
∥∥2
2
+

∫ t

1

1

2
DQ2(τ ) + CK2

L(τ )dτ ≤ 4ε2(2.42c)
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2.7. MAIN ENERGY ESTIMATES 25

∥∥A3Q3
∥∥2
2
+

∫ t

1

1

2
DQ3(τ )dτ ≤ 4KH3ε

2;(2.42d)

the coordinate system controls,

∥∥ACi
∥∥2
2
+

1

2

∫ t

1
DCi(τ )dτ ≤ 4KHC1c

2
0(2.43a)

〈t〉−2 ∥∥ACi
∥∥2
2
+

1

2

∫ t

1
〈τ 〉−2 DCi(τ )dτ ≤ 4KHC2ε

2 log 〈t〉(2.43b)

‖Ag‖22 +
1

2

∫ t

1
Dgdτ ≤ 4ε2(2.43c)

‖g‖Gλ,γ ≤ 4
ε

〈t〉2
(2.43d)

‖C‖Gλ,γ ≤ 4KLCε 〈t〉(2.43e)

the enhanced dissipation estimates,

∥∥Aν;1Q1
∥∥2
2
+

1

10

∫ t

1
DQν;1(τ )dτ ≤ 4KED1ε

2(2.44a)

∥∥Aν;2Q2
∥∥2
2
+

∫ t

1

1

10
DQν;2(τ ) + CKν;2

L (τ )dτ ≤ 4KED2ε
2(2.44b)

∥∥Aν;3Q3
∥∥2
2
+

1

10

∫ t

1
DQν;3(τ )dτ ≤ 4KED3ε

2;(2.44c)

and the additional low frequency controls on the background streak
∥∥U1

0

∥∥
Hσ′ ≤ 4KL1ε 〈t〉(2.45a)

∥∥U2
0

∥∥
Hσ′ ≤ 4ε(2.45b)

∥∥U3
0

∥∥
Hσ′ ≤ 4KL3ε.(2.45c)

For most steps of the proof we do not need to differentiate so precisely between
different bootstrap constants so we define

KB = max (KHi,KH1"=,KHC1,KHC2,KEDi,KLi,KLC) .(2.46)

By Lemma 2.1, we have that T ( > t( > 0 and it is a consequence of Lemma
2.2 that T ( < T 0. It is relatively straightforward to prove that for ε sufficiently
small, we have 1 ≤ T (; see [5] for more discussion. Due to the real analyticity
of the solution on (0, T 0), it will follow from the ensuing proof that the quantities
in the bootstrap hypotheses take values continuously in time for as long as the
solution exists. Therefore, we may deduce T ( = TF = c0ε−1 < T 0 via the following
proposition, the proof of which is the main focus of the remainder of the paper.

Proposition 2.1 (Bootstrap). Let ε < ν2/3+δ. For the constants appearing in
the right-hand side of (2.46) chosen sufficiently large and for ν and c0 both chosen
sufficiently small (depending only on s,λ0,λ′,α, δ1, δ and arbitrary parameters such
as σ,β, . . .), if T ( < TF = c0ε−1 is such that the bootstrap hypotheses (2.42) (2.43)
(2.44) (2.45) hold on [1, T (], then on the same time interval all the inequalities in
(2.42) (2.43) (2.44) (2.45) hold with constant ‘2’ instead of ‘4’.

That Proposition 2.1 implies Theorem 1 is discussed briefly in §3 below.

Licensed to New York Univ, Courant Inst.  Prepared on Mon Oct  3 02:20:18 EDT 2022for download from IP 91.230.41.207.



26 2. OUTLINE OF THE PROOF

2.7.1. Bootstrap constants. The relationship between the constants are
similar to [5] (although slightly simpler here since there are fewer). First, KL1

and KL3 are chosen sufficiently large relative to a universal constant depending
only on σ′. These in turn set KH1,KH1"= and KH3. These then imply KHC1 which
then implies KHC2 and KLC followed finally by KED2 and then KED1 and KED3.
Finally, c0 and ν are chosen sufficiently small with respect to KB, the max of all
the bootstrap constants (as well as the parameters s,λ0,λ′,α, δ1, and arbitrary
parameters such as σ,β etc).

2.7.2. A priori estimates from the bootstrap hypotheses. The moti-
vation for the enhanced dissipation estimates (2.44) is the following observation
(which follows from (2.39)): for any f ,

‖f"=(t)‖Gλ(t),β !α 〈t〉2+δ1
〈
νt3

〉−α ∥∥Aν;1f(t)
∥∥
2

(2.47a)

‖f"=(t)‖Gλ(t),β !α 〈t〉
〈
νt3

〉−α ∥∥Aν;2f(t)
∥∥
2

(2.47b)

‖f"=(t)‖Gλ(t),β !α 〈t〉2
〈
νt3

〉−α ∥∥Aν;3f(t)
∥∥
2
.(2.47c)

Hence, (2.44) expresses a rapid decay of Qi
"= for t " ν−1/3. Together with the “lossy

elliptic lemma”, Lemma D.1, we then get (under the bootstrap hypotheses),

∥∥U1
"=(t)

∥∥
Gλ(t),β−2 ! ε 〈t〉δ1

〈νt3〉α
(2.48a)

∥∥U2
"=(t)

∥∥
Gλ(t),β−2 ! ε

〈t〉 〈νt3〉α
(2.48b)

∥∥U3
"=(t)

∥∥
Gλ(t),β−2 ! ε

〈νt3〉α
.(2.48c)

For the zero frequencies of the velocity field we get from (2.42), (2.45) and
Lemma D.4 (which allows to understand ∆−1

t at zero x frequencies) the matching
a priori estimates

∥∥AU1
0 (t)

∥∥
2
! ε 〈t〉(2.49a)

∥∥AU2
0 (t)

∥∥
2
! ε(2.49b)

∥∥∥A3 〈∇〉2 U3
0 (t)

∥∥∥
2
! ε.(2.49c)

Notice that no regularity loss is required to get the ‘correct’ a priori estimates on the
zero frequencies. However, unlike in our previous work [5], the natural regularity
of the zero-frequency velocity fields are not all the same.
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CHAPTER 3

Regularization and continuation

There are three preliminaries: (A) the instantaneous analytic regularization
with initial data of the type (1.10) (B) how to move estimates on these classical so-
lutions between coordinate systems, and (C) the proof that Proposition 2.1 implies
Theorem 1. The issues here are essentially the same as in [5] so we will just give a
brief summary.

The proofs of Lemmas 2.1 and 2.2 are sketched in [5]. Similarly, the following
lemma is a variant of [Lemma 3.1 [5]]. The proof is omitted for brevity as it follows
via the same arguments.

Lemma 3.1. We may take 2 ≤ T ( (defined in §2.7 above) and for t ≤ 2, the
bootstrap estimates in (2.42), (2.43), (2.44), and (2.45), all hold with constant 5/4
instead of 4.

In order to move estimates from (X,Y, Z) to (x, y, z) we may use the same
methods described in [5] (which are themselves essentially the same as those in
[7,9]). we will first move to the coordinate system (X, y, z). Writing q̄i(t,X, y, z) =
Qi(t,X, Y, Z) = q(t, x, y, z) and ūi(t,X, y, z) = U i(t,X, Y, Z) = ui(t, x, y, z) we
derive the following, noting that ūi

0 = ui
0:

∂tu
i
0 + (u2

0, u
3
0) ·∇ui

0 = (−u2
0, 0, 0)

T − (0, ∂yp
NL0
0 , ∂zp

NL0
0 )T + ν∆ui

0 + F i,(3.1)

where

∆pNL0
0 = −∂iu

j
0∂ju

i
0

and (using cancellations as in (2.30)),

F i = −∂y
(
ū2
"=ū

i
"=
)
0
− ∂z

(
ū3
"=ū

i
"=
)
0
.(3.2)

We then have the following lemma, analogous to [Lemma 3.2 [5]], which holds
here with an analogous proof.

Lemma 3.2. For ε < ν2/3+δ and c0 and ν sufficiently small (depending only
on s,λ0,λ′,α, δ1, and δ), the bootstrap hypotheses imply the following for some
c ∈ (0, 1) chosen such that cλ(t) ∈ (λ′,λ(t)) for all t:

∥∥ū1
"=
∥∥
Gcλ(t) ! ε 〈t〉δ1

〈
νt3

〉−α
(3.3a)

∥∥ū2
"=
∥∥
Gcλ(t) ! ε 〈t〉−1 〈νt3

〉−α
(3.3b)

∥∥ū3
"=
∥∥
Gcλ(t) ! ε

〈
νt3

〉−α
,(3.3c)

and
∥∥u1

0(t)
∥∥
Gcλ(t) ! ε 〈t〉(3.4a)

∥∥u2
0(t)

∥∥
Gcλ(t) +

∥∥u3
0(t)

∥∥
Gcλ(t) ! ε.(3.4b)

27
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28 3. REGULARIZATION AND CONTINUATION

Finally, the following lemma also follows analogously to the corresponding re-
sult in [5]. Hence, the proof is omitted for the sake of brevity.

Lemma 3.3. For ε < ν2/3+δ and c0 and ν sufficiently small (depending only on
s,λ0,λ′,α, δ1, and δ), Proposition 2.1 implies Theorem 1.
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CHAPTER 4

Multiplier and paraproduct tools

In this chapter we outline some basic general inequalities regarding the multi-
pliers which are used in the sequel. As in [5], the purpose is to set up a general
framework that will make the large number of energy estimates later in the paper
easier. Most of the estimates come in the general form

∫
AiQiAi (fg) dV . The goal

of this section is to break the treatment of these terms into a four step procedure:

(1) As in [5], the first step is to separate out zero/non-zero frequency inter-
actions according to §2.2.1 and then expand with a paraproduct to divide
the terms based on which of the nonlinear factors is dominant from the
standpoint of frequency (paraproducts are explained in §4.2 below).

(2) Compare the norm for Qi with the norm of the dominant factor (also
adding ∆−1

L ∆L if the dominant factor is a velocity field) and commute it
past the low frequency factor. Lemma 4.1 below is the primary tool for
this.

(3) Use Lemmas 4.5 and 4.6 below to convert the ratio of the norms (together
with possibly ∆−1

L ) into multipliers that appear in the dissipation energies
or integrate to ! ε2 until TF = c0ε−1.

(4) Use Lemma 4.7 or 4.8 to re-combine the paraproduct decomposition into
multiples of terms in the dissipation energy or other integrable errors.

As in [5] a number of recurrent themes appear which emphasize the competition be-
tween growth and decay. When doing the high-norm energy estimates, the ultimate
goal is usually to obtain estimates roughly of the form

d

dt

∥∥AiQi(t)
∥∥2
2
≤ −DQi + c0

∑

j

DQj + ε

(∥∥ACj
∥∥2
2
+
∥∥∥AjQj

0

∥∥∥
2

2
+ ‖Ag‖2L2

)

+
ε1/2

〈νt3〉α
∥∥AjQj

∥∥2
L2 .

The appearance of ε " ν2/3 and t " ε−1 appears in several places in this scheme.
The most clear being that these are exactly the requirements for integrating the lat-
ter terms. When dealing with quadratic terms, if the factor that is in low frequency
(via the paraproduct) is a non-zero frequency then one gains additional time decay
from inviscid damping and enhanced dissipation via (2.44). This is generally the
case when studying (3DE) and (F) terms. A common structure that appears in all
terms involving non-zero frequencies is to integrate by parts one of the derivatives
off of the nonlinearity or otherwise use the dissipation to absorb high frequencies
or derivatives of the specific form ∂Y − t∂X and obtain an estimate of the form

(∗) ! ε

〈νt3〉α
∥∥∥
√
−∆LA

iQi
∥∥∥
2

∥∥AjQj
∥∥
2
! ε3/2

∥∥∥
√
−∆LA

iQi
∥∥∥
2

2
+

ε1/2

〈νt3〉2α
∥∥AjQj

∥∥2
2
.

29
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30 4. MULTIPLIER AND PARAPRODUCT TOOLS

Near the critical times, one is often forced to use the w(t,∇) and w3(t,∇) multipliers
to make calculations that match the toy model discussed in §2.5. Using lemmas
such as Lemmas 4.1, 4.5, 4.6 below, this (in the worst case) produces terms roughly
of the form

(∗) ! εt2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
+

|∇|s/2

〈t〉s

)
AjQj

∥∥∥∥∥

2

2

,

which can be absorbed by the dissipation energies DQj precisely when ε " ν2/3.
Note that here is one of the major differences with [5]: therein we were content

with losing εt3

〈νt3〉α , however, that is untenable here. Removing the additional power
of t requires a more detailed use of the special nonlinear structure studied in §2.5
and this was the purpose of including the additional difficulty of w3. When dealing
with quadratic contributions in which the low frequency did not provide any decay
(for example (SI) and (2.5NS) terms), one can also end up with

(∗) ! εt

∥∥∥∥∥

(√
∂tw

w
+

|∇|s/2

〈t〉s

)
AjQj

∥∥∥∥∥

2

2

,

and here we use εt ≤ c0 to absorb with the DQ terms. Naturally, the above
heuristics do not completely cover all of the possibilities, and there are many details
in the way interactions near the critical times are treated that are being suppressed
for simplicity here.

Finally, remark that the above explanation is not quite sharp. In reality, we
cannot obtain quite optimal estimates on Q1

"=, in particular, we lose an additional

tδ1 for an arbitrary fixed δ1 > 0. Hence, in the above in reality we sometimes end

up with εt2+δ1

〈νt3〉α and ε1/2

〈νt3〉2α , which is the origin of the δ > 0 in Theorem 1.

4.1. Basic inequalities regarding the multipliers

This section covers the key properties of the multipliers we are using and forms
the core of the technical tools, however, it is very tedious and will likely appear
unmotivated at first. A reader should consider skipping this section on the first
reading and refer back to it whenever specific inequalities are needed. Note that
this section is significantly more technical than the corresponding section in [5].

In the lemmas which follow, one should imagine that frequencies (k′, ξ, l′) and
(k − k′, η − ξ, l − l′) are interacting to force (k, η, l), as will be occurring in the
quadratic energy estimates.

The first lemma gives us general estimates for how the A and Ai are related at
different frequencies. It is designed specifically for dealing with fHigLo-type terms
in the paraproducts (see (4.28)).

Lemma 4.1 (Frequency ratios for A and Ai). Let θ < 1/2 and suppose

|k − k′, η − ξ, l− l′| ≤ θ |k, η, l| .(4.1)

In what follows, define the frequency cut-offs (all functions of (t, k, k′, η, ξ, l, l′)),

χR,NR = 1t∈Ik,η∩Ik,ξ1k′ "=k1|l|<5|η|1|l′|<5|ξ|(4.2a)

χNR,R = 1t∈Ik′,ξ∩Ik′,η1k′ "=k1|l|< 1
5 |η|

1|l′|< 1
5 |ξ|

(4.2b)

χr,NR = 1t∈Ir,η∩Ir,ξ1k′ "=r1|l|<5|η|1|l′|<5|ξ|(4.2c)
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χNR,r = 1t∈Ir,η∩Ir,ξ1k "=r1|l|< 1
5 |η|

1|l′|< 1
5 |ξ|

(4.2d)

χ∗;33 = 1− 1t∈Ik,η∩Ik,ξ1k "=k′1|l|< 1
5 |η|1|l′|< 1

5 |ξ| − χNR,R(4.2e)

χ∗;23 = 1−
∑

r

1t∈Ir,η∩Ir,ξ1k′ "=r1|l|< 1
5 |η|

1|l′|< 1
5 |ξ|

(4.2f)

χ∗;32 = 1−
∑

r

χNR,r,(4.2g)

and for i, j ∈ {1, 2, 3} and a, b ∈ {0, 3=}, the weight Γ(i, j, a, b) given by,

Γ(i, i, a, a) = 1, Γ(i, j, a, b) = Γ(j, i, b, a)−1,

Γ(1, 2, 0, 0) = 〈t〉−1 , Γ(1, 2, 3=, 3=) = 〈t〉−1
〈

t

〈ξ, l′〉

〉−δ1

,

Γ(1, 2, 0, 3=) = 〈t〉−1
〈

t

〈ξ, l′〉

〉
, Γ(1, 2, 3=, 0) = 〈t〉−1

〈
t

〈ξ, l′〉

〉−1−δ1

,

Γ(1, 3, 0, 0) = 〈t〉−1 , Γ(1, 3, 3=, 3=) = 〈t〉−1
〈

t

〈ξ, l′〉

〉1−δ1

,

Γ(1, 3, 0, 3=) = 〈t〉−1
〈

t

〈ξ, l′〉

〉2

, Γ(1, 3, 3=, 0) = 〈t〉−1
〈

t

〈ξ, l′〉

〉−1−δ1

,

Γ(2, 3, 3=, 3=) =

〈
t

〈ξ, l′〉

〉
, Γ(2, 3, 0, 3=) =

〈
t

〈ξ, l′〉

〉2

,

Γ(2, 3, 3=, 0) =

〈
t

〈ξ, l′〉

〉−1

, Γ(2, 3, 0, 0) = 1,

Γ(1, 1, 0, 3=) =

〈
t

〈ξ, l′〉

〉1+δ1

, Γ(2, 2, 0, 3=) =

〈
t

〈ξ, l′〉

〉
,

Γ(3, 3, 0, 3=) =

〈
t

〈ξ, l′〉

〉2

.

Then there exists a c = c(s) ∈ (0, 1) such that for all t we have the following for
i ∈ {1, 2} and a =3= if k 3= 0 (otherwise a = 0) and b =3= if k′ 3= 0 (otherwise
b = 0),

Ai
k(t, η, l) ! Γ(i, j, a, b)Aj

k′(t, ξ, l′)e
cλ|k−k′,η−ξ,l−l′|s(4.3a)

(
A3

k(t, η, l)
)2 ! Γ(3, 3, a, b)

(
Ã3

k(t, η, l)Ã
3
k′(ξ, l′)χR,NR t

|k|+ |η − kt|

+Ã3
k(t, η, l)Ã

3
k′(t, ξ, l′)χNR,R |k′|+ |η − k′t|

t

+ χ∗;33A3
k(t, η, l)A

3
k′(t, ξ, l′)

)
ecλ|k−k′,η−ξ,l−l′|s(4.3b)

(
Ai

k(t, η, l)
)2 ! Γ(i, 3, a, b)

(
∑

r

Ãi
k(t, η, l)Ã

3
k′(t, ξ, l′)χr,NR t

|r|+ |η − rt|

+Ai
k(t, η, l)A

3
k′(t, ξ, l′)χ∗;23

)
ecλ|k−k′,η−ξ,l−l′|s(4.3c)
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(
A3

k(t, η, l)
)2 ! Γ(3, i, a, b)

(
∑

r

Ã3
k(t, η, l)Ã

i
k′(t, ξ, l′)χNR,r |r|+ |η − rt|

t

+ χ∗;32A3
k(t, η, l)A

i
k′(t, ξ, l′)

)
ecλ|k−k′,η−ξ,l−l′|s .(4.3d)

Analogous inequalities hold also with A(t, η, l) using that A(t, η, l)= 〈η, l〉2 A2
0(t, η, l).

Remark 4.1. The terms involving χR,NR, χNR,R, χr,NR, and χNR,r are arising
from comparing ratios of w3

k and w3
k′ or w3 and w; see e.g. (2.5) above. In partic-

ular, modulo details regarding the Z frequencies, the three contributions to (4.3b)
roughly correspond to the three possible regimes in Lemma C.6: when a resonant
frequency forces a non-resonant frequency, vice-versa, and neither. The inequalities
(4.3c) and (4.3d) generally play a more crucial role in the proof of Theorem 1 and
correspond instead to what happens when one compares w and w3, rather than w3

with itself (that is, in terms when Q3 interacts with Q1,2). We have chosen to write
it in this manner as this is the form that is most natural for Lemma 4.6 below.

Remark 4.2. Note that a time/frequency combination is only considered truly
“resonant” if t ∈ Ik,η ∩ Ik,ξ. The reason for this is explained by Lemma C.2: if
t ∈ Ik,η but t 3∈ Ik,ξ, then either η and ξ are well-separated or the time/frequency
combination is not really resonant, which results in 〈η − ξ〉 〈kt− η〉 " t.

Remark 4.3. Note that the definitions in (4.2) are not quite symmetric for
minor technical reasons and that the decomposition defined by (4.2) is not quite a
partition of unity, as there is an overlap region when |l| ≈ |η| or |l′| ≈ |ξ|. When
losing due to the regularity imbalances, one must take the larger region |l| < 5 |η|
and |l′| < 5 |ξ| but when gaining due to the regularity imbalances, one must take
the smaller region |l| < 1

5 |η| and |l′| < 1
5 |ξ|.

Remark 4.4. Note that some of the inequalities in Lemma 4.1 are phrased on
quadratic quantities (as opposed to (4.3a) and the analogous lemma in [5]). This is
to treat the overlapping regions |l| ≈ |η| and |l′| ≈ |ξ| more carefully, in particular,
it is to make sure that any losses or gains from the ratios of w and w3 come with
Ãi, even if it is a region of frequency where Ai 3≈ Ãi (see also Remark 4.6 below).
This precision is only required in certain places, especially when we need to use the
CKi

w terms, and in other cases less precise inequalities suffice.

Proof. These inequalities are all more or less easy variants of each other so
we will just consider one of the trickier inequalities and omit the rest for brevity.
We will consider (4.3b); further, we will consider just the case a = b =3= as the
other cases are analogous.

The proof is divided into three regions (which do not exactly correspond to the
three terms in (4.3b)).

Case 1 (|l| > 5 |η| or |l′| > 5 |ξ|). In this case, the Z frequencies are dominant
and hence one does not see the contributions from w3 multipliers. Indeed, χR,NR =
χNR,R = 0 and χ∗;33 = 1. If |l′| > 3 |η| then by Lemma C.1,

(
eµ|η|1/2

w3
k(t,η)

+ eµ|l|
1/2

)

(
eµ|ξ|1/2

w3
k′ (t,ξ)

+ eµ|l′|
1/2

) ! 1

w3
k(t, η)

eµ|η|
1/2−µ|l′|1/2 + eµ|l|

1/2−µ|l′|1/2
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! e
3µ
2 |η|1/2−µ|l′|1/2 + eµ|l−l′|1/2

! eµ|l−l′|1/2 .

Therefore, by (4.1) and A.7 (and that wL is O(1) by (C.16) and (C.15)), there is
some c′ = c′(s) ∈ (0, 1),

A3
k(t, η, l) ! eµ|l−l′|1/2+c′λ|k−k′,η−ξ,l−l′|sAk′(t, ξ, l′).

Then in this case (4.3b) follows from (A.10) for some c′ < c < 1. If |l′| ≤ 3 |η| then
it follows that either |l − l′| " |η| or |η − ξ| " |l′| " |ξ|. Therefore, Lemma C.1, for
some K there holds,

(
eµ|η|

1/2

w3
k(t, η)

+ eµ|l|
1/2

)
! e

3
2µ|η|

1/2

+ eµ|l|
1/2 ! eµ|l

′|1/2eKµ|η−ξ,l−l′|1/2 .

Therefore, by the frequency localizations, for some c′ = c′(s) ∈ (0, 1),

A3
k(t, η, l) ! eKµ|η−ξ,l−l′|1/2+c′λ|k−k′,η−ξ,l−l′|sA3

k′(t, ξ, l′),

from which again there follows (4.3b) from (A.10) for some c′ < c < 1.

Case 2 (|l| < 5 |η| and |l′| < 5 |ξ|) and (|l| > 1
5 |η| or |l

′| > 1
5 |ξ|). In this case,

neither l, l′ nor η, ξ are necessarily dominant, and indeed |l| ≈ |η| or |l′| ≈ |ξ|. We
have χNR,R = 0 but there are regions in frequency where χR,NR = χ∗;33 = 1 and
we have to consider contributions involving both A3 and Ã3 at the same time. By
(4.1) and Lemma A.7 (and that wL is O(1) by (C.16) and (C.15)), there is some
c′ = c′(s) ∈ (0, 1),

(
A3

k(t, η, l)
)2 !

(
e2µ|η|1/2

(
w3

k(t, η)
)2 + e2µ|l|1/2

)
1

(wL(k, η, l))
2 〈k, η, l〉2σ e2λ|k,η,l|

s

!
(
eµ|η|1/2+µ|ξ|1/2+µ|η−ξ|1/2

(
w3

k(t, η)
)2 + eµ|l|1/2+µ|l′|1/2+µ|l−l′|1/2

)

×
1

wL(k, η, l)wL(k′, ξ, l′)
〈k, η, l〉σ

〈
k′, ξ, l′

〉σ
eλ|k,η,l|

s+λ|k′,ξ,l′|s+c′λ|k−k′,η−ξ,l−l′|s

Then, by (A.10), we have some c′ < c < 1 such that

(
A3

k(t, η, l)
)2 !

(
w3

k′(ξ)

w3
k(η)

Ã3
k(t, η, l)Ã

3
k′(t, ξ, l′) +A3

k(t, η, l)A
3
k′(t, ξ, l′)

)

× ecλ|k−k′,η−ξ,l−l′|s .

Lemma C.6 implies for some K > 0 (in particular),

w3
k′(ξ)

w3
k(η)

!
(
1 +

t

|k|+ |η − kt|1t∈Ik,η∩Ik,ξ1k "=k′

)
eKµ|η−ξ|1/2 ,

and so we may restrict the frequencies over which we have a loss involving the Ã3

to χR,NR but there is an overlapping region where both A3 and Ã3 are necessary.
This completes the proof of (4.3b) now in the range of frequencies |l| > 1

5 |η| or
|l′| > 1

5 |ξ|.

Case 3 (|l| < 1
5 |η| and |l′| < 1

5 |ξ|). In this case, we need to be able to gain
from the regularity imbalance. Here we have χ∗;33 = 0 and the only contributions
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34 4. MULTIPLIER AND PARAPRODUCT TOOLS

are those which involve Ã3. We have here, using wk′(t, ξ) ≤ 1 by definition (see
Appendix C.1),

(
eµ|η|1/2

w3
k(t,η)

+ eµ|l|
1/2

)

(
eµ|ξ|1/2

w3
k′ (t,ξ)

+ eµ|l′|
1/2

) ! w3
k′(t, ξ)

w3
k(t, η)

eµ|η−ξ|1/2 + w3
k′(t, ξ)eµ|l|

1/2−µ|ξ|1/2

! w3
k′(t, ξ)

w3
k(t, η)

eµ|η−ξ|1/2 + eµ|l|
1/2−µ|ξ|1/2

! w3
k′(t, ξ)

w3
k(t, η)

e2µ|η−ξ,l−l′|1/2 .

Therefore, in this case we only have contributions from the ratio of w3: as above,
we have for some c′ = c′(s) ∈ (0, 1):

(
A3

k(t, η, l)
)2 ! w3

k′(t, ξ)

w3
k(t, η)

e2µ|η−ξ,l−l′|1/2A3
k(t, η, l)A

3
k′(t, ξ, l′)ec

′λ|k−k′,η−ξ,l−l′|s .

then (4.3b) now follows from Lemma C.6 (followed by (A.10)) and the fact that un-
der these restrictions A3 ≈ Ã3. We then have that (4.3b) follows from Lemma C.6.
This completes the proof of (4.3b) over all possible frequencies, and as mentioned
above, the other inequalities are similar or easier. #

We also have the following for remainder terms in the paraproducts (see (4.28));
the proof is the same as the analogous [Lemma 4.2 [5]], so we omit it here for brevity.

Lemma 4.2. For all K > 0 there exists a c = c(s,K) ∈ (0, 1) such that if

1

K
|k′, ξ, l′| ≤ |k − k′, η − ξ, l − l′| ≤ K |k′, ξ, l′| ,

then

A1
k(t, η, l) ! 〈t〉−2−δ1 ecλ|k

′,ξ,l′|sec|k−k′,η−ξ,l−l′|s(4.4a)

A2
k(t, η, l) ! 〈t〉−1 ecλ|k

′,ξ,l′|sec|k−k′,η−ξ,l−l′|s(4.4b)

A3
k(t, η, l) ! 〈t〉−2 ecλ|k

′,ξ,l′|sec|k−k′,η−ξ,l−l′|s ,(4.4c)

and if k = k′ = 0 then

A(t, η, l) ! ecλ|ξ,l
′|secλ|η−ξ,l−l′|s .(4.5)

All implicit constants depend on κ,λ,σ and s.

The following is [Lemma 4.3 [5]], see therein for a proof.

Lemma 4.3 (Frequency ratios for ∂tw and ∂twL). For all t ≥ 1 we have

(√
∂tw(t, η)

w(t, η)
+

|k, η, l|s/2

〈t〉s

)
!

(√
∂tw(t, ξ)

w(t, ξ)
+

〈k′, ξ, l′〉s/2

〈t〉s

)
〈k − k′, η − ξ, l− l′〉2

(4.6a)

(√
∂tw(t, η)

w(t, η)
+
|k, η, l|s/2

〈t〉s

)
!
(√

∂tw(t, ξ)

w(t, ξ)
+
|k′, ξ, l′|s/2 + |k − k′, η − ξ, l − l′|s/2

〈t〉s

)

× 〈k − k′, η − ξ, l − l′〉2(4.6b)
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√
∂twL(t, k, η, l)

wL(t, k, η, l)
!

√
∂twL(t, k, ξ, l′)

wL(t, k, ξ, l′)
〈η − ξ, l − l′〉3/2 .(4.6c)

Further, if |k′, ξ, l′| " 1 then (4.6a) implies

(√
∂tw(t, η)

w(t, η)
+

|k, η, l|s/2

〈t〉s

)
!

(√
∂tw(t, ξ)

w(t, ξ)
+

|k′, ξ, l′|s/2

〈t〉s

)
〈k − k′, η − ξ, l − l′〉2 .

(4.7)

Moreover, both (4.6a) and (4.7) hold if we replace |k, η, l| and |k, ξ, l′| by |η| and |ξ|
(respectively).

The next lemma is [Lemma 4.4, [5]] and is immediate from the definition of
D (2.38), but useful for separating the pre and post critical times in the enhanced
dissipation estimates.

Lemma 4.4. For all p ≥ 0 and (k, η, l) there holds the following inequalities

Aν;i
k (t, η, l) ! 〈t〉−p 〈k, η, l〉β+3α+p eλ|k,η,l|

s

+Aν;i
k (t, η, l)1t≥2|η|

(4.8a)

Aν;i
k (t, η, l) ! 〈t〉−p 〈k, η, l〉β+3α+p eλ|k,η,l|

s

+ 〈t〉−1 (|k|+ |η − kt|)Aν;i
k (t, η, l)1t≥2|η|.

(4.8b)

The next lemma tells us how to treat ratios involving ∆L. This lemma is a
technical improvement of [Lemma 4.5, [5]]. The adjustments are necessary as here
we can only use the CKw terms in a certain sector of frequency due to the more
non-trivial angular dependence of the norms we are employing.

Lemma 4.5 (Frequency ratios for ∆L). If t " 1 then for all η, ξ, l, l′, k′ and k
define the following

χNR;k = 1− 1t∈Ik,η∩Ik,ξ1|l|< 1
5 |η|

1|l′|< 1
5 |ξ|

.(4.9)

Then, we have the following

• Basic characterizations of non-resonance: for all k 3= 0,
(

1

|k, η − kt, l| +
1

|k, ξ − kt, l′|

)
χNR;k ! 1

〈k, t, l′〉 〈η − ξ, l− l′〉 ;(4.10)

• Approximate integration by parts: for all k 3= 0,

|η − kt| ! 〈η − ξ〉 (|k|+ |ξ − kt|) ;(4.11)

• For absorbing long-time losses: for all k 3= 0,

1

|k, η − kt, l|

〈
t

〈ξ, l′〉

〉
! 〈η − ξ, l − l′〉 ;(4.12)

• For the linear stretching terms, for all k 3= 0,

|k|1t≤2|η|

|k|+ |l|+ |η − kt| ! κ−1 ∂tw(t, η)

w(t, η)
1|l|≤ 1

5 |η|
+

|l|1/2

t3/2
;(4.13)

• For nonlinear terms involving ∂X (for (SI) terms): if p ∈ R and k 3= 0,

|k, η − kt, l| |k|
k2 + (l′)2 + |ξ − kt|2

〈
t

〈ξ, l′〉

〉p
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!
((√

∂tw(t, η)

w(t, η)
1|l|≤ 1

5 |η|
+

|k, η|s/2

〈t〉s

)(√
∂tw(t, ξ)

w(t, ξ)
1|l′|≤ 1

5 |ξ|
+

|k, ξ|s/2

〈t〉s

)

+
χNR;k

〈t〉 min

(
1,

|k, η − kt, l|
〈kt〉

)〈
t

〈ξ, l′〉

〉p)
〈η − ξ, l − l′〉4 ;

(4.14)

• For terms with fewer derivatives (for (3DE) terms): if a ∈ {1, 2}, p ∈ R,
and k′, k 3= 0, then

1

|k′, ξ − k′t, l′|a
〈

t

〈ξ, l′〉

〉p

!
(√

∂tw(t, η)

w(t, η)
1|l|≤ 1

5 |η|
+

|k, η|s/2

〈t〉s

)(√
∂tw(t, ξ)

w(t, ξ)
1|l′|≤ 1

5 |ξ|
+

|k′, ξ|s/2

〈t〉s

)

× 〈k − k′, η − ξ, l − l′〉3 + 1

〈t〉a
〈

t

〈ξ, l′〉

〉p

〈k − k′, η − ξ, l − l′〉3(4.15)

• For (3DE) terms in the nonlinear pressure and stretching: if p ∈ R,
kk′(k − k′) 3= 0,

|k, η − kt, l| |k, ξ − k′t, l′|
(k′)2 + (l′)2 + |ξ − k′t|2

〈
t

〈ξ, l′〉

〉p

!
(
〈t〉+

〈
t

〈ξ, l′〉

〉p)
〈k − k′, η − ξ, l − l′〉2

(4.16a)

|k, η − kt, l| |k′, ξ − k′t, l′|
(k′)2 + (l′)2 + |ξ − k′t|2

〈
t

〈ξ, l′〉

〉p

!
(
〈t〉

(√
∂tw(t, η)

w(t, η)
1|l|≤ 1

5 |η| +
|k, η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
1|l′|≤ 1

5 |ξ| +
|k′, ξ|s/2

〈t〉s

)

+min

(
1,

|k, η − kt, l|
〈kt〉

)〈
t

〈ξ, l′〉

〉p)

× 〈k − k′, η − ξ, l − l′〉2 .(4.16b)

|l′| |k, η − kt, l|
(k′)2 + (l′)2 + |ξ − k′t|2

〈
t

〈ξ, l′〉

〉
!

(
〈t〉

(√
∂tw(t, η)

w(t, η)
1|l|≤ 1

5 |η|
+

|k, η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
1|l′|≤ 1

5 |ξ|
+

|k′, ξ|s/2

〈t〉s

)

+ 1

)
〈k − k′, η − ξ, l − l′〉2 .(4.16c)

• For triple derivative terms (these arise in the treatment of (F) terms): if
p ∈ R and k 3= 0,

|l|3

(k)2 + (l′)2 + |ξ − kt|2

〈
t

〈ξ, l′〉

〉p

! |l|
(
〈l − l′〉2 + |l|2

〈l′, t〉2

〈
t

〈ξ, l′〉

〉p
)(4.17a)
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|η| |l|2 + |η|2 |l|
(k)2 + (l′)2 + |ξ − kt|2

〈
t

〈ξ, l′〉

〉p

!
(
〈t〉2

(√
∂tw(t, η)

w(t, η)
1|l|≤ 1

5 |η|
+

|η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
1|l′|≤ 1

5 |ξ|
+

|ξ|s/2

〈t〉s

)

+ |l|
(
1 +

|η| |l|+ |η|2

〈ξ, l′, t〉2

〈
t

〈ξ, l′〉

〉p
))

× 〈k, η − ξ, l − l′〉3(4.17b)

|η|3

k2 + (l′)2 + |ξ − kt|2

〈
t

〈ξ, l′〉

〉p

!
(
〈t〉3

(√
∂tw(t, η)

w(t, η)
1|l|≤ 1

5 |η|
+

|η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
1|l′|≤ 1

5 |ξ|
+

|ξ|s/2

〈t〉s

)

+min(|η| , 〈ξ − kt〉)

×
(
1 +

|η|2

〈ξ, l′, t〉2

〈
t

〈ξ, l′〉

〉p
))

× 〈k, η − ξ, l − l′〉3 .(4.17c)

Remark 4.5. As in [5], (4.17) implies

|η, l| 〈η, l〉2

(k)2 + (l′)2 + |ξ − kt|2

〈
t

〈ξ, l′〉

〉p

!
(
〈t〉3

(√
∂tw(t, η)

w(t, η)
1|l|≤ 1

5 |η|
+

|η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
1|l′|≤ 1

5 |ξ|
+

|ξ|s/2

〈t〉s

)

+ |η, l|
(
1 +

〈η, l〉2

〈ξ, l′, t〉2

〈
t

〈ξ, l′〉

〉p
))

× 〈k, η − ξ, l − l′〉3(4.18)

Proof. First, note that for any fixed number N ≥ 1,

1|l′|≥ 1
N |ξ|

|k′, l′, ξ − k′t| !N
1

|l′, k′t| ,(4.19)

and hence the sector in frequency where l′ is dominant or comparable to ξ is strongly
non-resonant. Further, observe that for any N ≥ 1,

|l| ≥ 1

N
|η| and |l′| ≤ 1

N + 1
|ξ| ,

imply

|ξ, l′|+ |η, l| !N |η − ξ, l − l′| .(4.20)

This ensures that if (η, l) and (ξ, l′) are in separated sectors in frequency, then the
entire multiplier can generally be absorbed by the 〈η − ξ, l − l′〉m factors and one
will not need ∂tw/w. Furthermore, from (4.19) and (4.20), we can derive (4.10).
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These observations allow us to refine the analogous lemma of [5] to deduce Lemma
4.5.

As a representative example, let us consider the proof of (4.14). First consider
the case |l′| ≤ 1

5 |ξ| and |l| ≤ 1
5 |η|. Then, as in [5] (see therein for a proof), we have

|k, η − kt, l| |k|
k2 + (l′)2 + |ξ − kt|2

〈
t

〈ξ, l′〉

〉p

1|l′|≤ 1
5 |ξ|

1|l|≤ 1
5 |η|

!

1|l′|≤ 1
5 |ξ|

1|l|≤ 1
5 |η|

((√
∂tw(t, η)

w(t, η)
1|l|≤ 1

5 |η|
+

|k, η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
1|l′|≤ 1

5 |ξ|
+

|k, ξ|s/2

〈t〉s

)

+
1t>2min(|η|,|ξ|)

〈t〉 min

(
1,

|k, η − kt, l|
〈kt〉

)〈
t

〈ξ, l′〉

〉p)
〈η − ξ, l − l′〉4 ,

which is consistent with (4.14).
Next, consider the case (|l′| > 1

5 |ξ| or |l| >
1
5 |η|). If the former is true than we

immediately have the following by (4.19):

|k, η − kt, l| |k|
k2 + (l′)2 + |ξ − kt|2

〈
t

〈ξ, l′〉

〉p

! |k, η − kt, l| |k|
〈l′, ξ, kt〉2

〈
t

〈ξ, l′〉

〉p

〈η − ξ, l − l′〉2 ,

(4.21)

which is consistent with (4.14). Next, consider instead |l| > 1
5 |η|. If |l′| > 1

6 |ξ|
then (4.21) (and hence (4.14)) follows again by (4.19). However, if |l′| < 1

6 |ξ| then
by (4.20), |η, l|+ |ξ, l′| ! |η − ξ, l− l′|, and we again have (4.21) by multiplying and
dividing by 〈ξ, l′〉2.

The other inequalities are dealt with in a similar fashion. #

For the current work, we need an analogue of Lemma 4.5 which is more precise
in order to handle (and take advantage of) the regularity imbalances in A3.

Lemma 4.6 (Frequency ratios for ∆L involving regularity imbalances). For
t ≥ 1 and k, k′, η, ξ, l, l′,

Then for p ∈ R, we have the following:

• for (SI) (for k′ = k 3= 0; recall that definition (4.2) depends on both k
and k′):

|k, η − kt, l| |k|
k2 + (l′)2 + |ξ − kt|2

(
∑

r

χr,NR t

|r|+ |η − tr|

)

!
(√

∂tw(t, η)

w(t, η)
+

|k, η|s/2

〈t〉s

)(√
∂tw(t, ξ)

w(t, ξ)
+

|k, ξ|s/2

〈t〉s

)
〈η − ξ, l − l′〉4 ;(4.22)

• a simpler variant (for k′ = k 3= 0):
∑

r

χr,NR t

|r|+ |η − tr|

! 〈t〉
(√

∂tw(t, η)

w(t, η)
+

|η, l|s/2

〈t〉s

)(√
∂tw(t, ξ)

w(t, ξ)
+

|ξ, l′|s/2

〈t〉s

)
〈η − ξ, l − l′〉4 .(4.23)
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• if k′, k 3= 0, k 3= k′, and a ∈ [1, 2] (for (3DE) terms with few derivatives),

1

|k′|2 + |l′|2 + |ξ − k′t|2

(
∑

r

χNR,r |r|+ |η − tr|
t

)〈
t

〈ξ, l′〉

〉p

! 1

〈t〉

(√
∂tw(t, η)

w(t, η)
+

|η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
+

|ξ|s/2

〈t〉s

)
〈η − ξ, l− l′〉3

+
1

〈t〉2

〈
t

〈ξ, l′〉

〉p

〈η − ξ, l− l′〉3 ;(4.24a)

1

|k′|2 + |l′|2 + |ξ − k′t|2

×
(
χR,NR t

|k|+ |η − kt| + χNR,R |k′|+ |η − k′t|
t

+ χ∗;33
)

! 〈η − ξ〉2

〈t〉 ;(4.24b)

1

|k′, ξ − k′t, l′|a

(
∑

r

χr,NR t

|r|+ |η − tr| + χ∗;23

)〈
t

〈ξ, l′〉

〉a

! 〈η − ξ〉2 .(4.24c)

• if k′, k 3= 0 and k 3= k′ (for (3DE) terms with more derivatives),
〈

t

〈ξ, l′〉

〉
|k, η − kt, l| |k′, ξ − k′t, l′|
|k′|2 + |l′|2 + |ξ − k′t|2

×
(
∑

r

χr,NR t

|r|+ |η − tr| + χ∗;23

)

! |k, η − kt, l| 〈η − ξ, l− l′〉 ;(4.25a)

|k′, ξ − tk′, l′| |k|
|k′|2 + |l′|2 + |ξ − tk′|2

×
(
χR,NR t

|k|+ |η − kt| + χNR,R |k′|+ |η − k′t|
t

)

!
(√

∂tw(t, η)

w(t, η)
+

|η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
+

|ξ|s/2

〈t〉s

)
〈k − k′, η − ξ, l− l′〉4 ;(4.25b)

|k′, ξ − tk′, l′| |l′|
|k′|2 + |l′|2 + |ξ − tk′|2

×
(
χR,NR t

|k|+ |η − kt| + χNR,R |k′|+ |η − k′t|
t

)
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! 〈t〉
(√

∂tw(t, η)

w(t, η)
+
|η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
+
|ξ|s/2

〈t〉s

)
〈k − k′, η − ξ, l − l′〉4 ;(4.25c)

|lk|
|k′|2 + |l′|2 + |ξ − tk′|2

×
(
χR,NR t

|k|+ |η − kt| + χNR,R |k′|+ |η − k′t|
t

+ χ∗;33
)

! 〈k − k′, η − ξ, l − l′〉3 .(4.25d)

• for terms of type (F), (with k = 0 and k′ 3= 0),

|l| 〈η, l〉2
〈

t
〈ξ,l′〉

〉2

(k′)2 + (l′)2 + |ξ − k′t|2

(
∑

r

χr,NR t

|r|+ |η − tr|

)

! 〈t〉2
(√

∂tw(t, η)

w(t, η)
+

|η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
+

|ξ|s/2

〈t〉s

)
〈k′, η − ξ, l − l′〉3 ;(4.26a)

|η| 〈η, l〉2

(k′)2 + (l′)2 + |ξ − k′t|2

(
∑

r

χNR,r |r|+ |η − tr|
t

)〈
t

〈ξ, l′〉

〉

!
(
〈t〉2

(√
∂tw(t, η)

w(t, η)
+

|η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
+

|ξ|s/2

〈t〉s

)
+ |η|

)
〈k′, η − ξ, l− l′〉3 ;(4.26b)

|η| 〈η, l〉2

(k′)2 + (l′)2 + |ξ − k′t|2
χ∗;32

〈
t

〈ξ, l′〉

〉

!
(
〈t〉2

(√
∂tw(t, η)

w(t, η)
1|l|≤ 1

5 |η|
+

|η|s/2

〈t〉s

)

×
(√

∂tw(t, ξ)

w(t, ξ)
1|l′|≤ 1

5 |ξ|
+

|ξ|s/2

〈t〉s

)
+ |η|

)
〈k′, η − ξ, l − l′〉3 .(4.26c)

Remark 4.6. Note the lack of frequency restrictions to |l| < 1
5 |η| and |l′| <

1
5 |ξ|. This is due to the fact that these inequalities need to sometimes be applied
in the overlap regions where |l| ≈ |η| and |l′| ≈ |ξ|.

Proof. The proofs are very similar to Lemma 4.5 with some minor changes.
Consider (4.22) (the analogue of (4.14)). We have, by Lemma C.3,

|k, η − kt, l| |k|
k2 + (l′)2 + |ξ − kt|2

(
∑

r

χr,NR t

|r|+ |η − tr|

)
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!
∑

r

χr,NR |k| t
t |k − r| |r|

∂tw(t, η)

w(t, η)
〈η − ξ, l− l′〉(4.27)

from which the result follows by Lemma 4.3 (and that χr,NR form a partition of
unity for a certain region of frequencies). The proof of (4.23) is essentially the
same.

Consider (4.24a); the other inequalities in (4.24) are easy variants of this and the
proofs of (4.23) above. First, in the case t 3∈ Ik′,η∩Ik′,ξ, we have 〈η − ξ〉 〈ξ − k′t〉 " t
by Lemma C.2, and so (4.24a) follows. Next, consider the case that t ∈ Ik′,η ∩ Ik′,ξ.

Then, since k 3= k′, t 3∈ Ik,η and this contribution appears in the sum as χNR,k′

(recall the definition (4.2)). In this case (4.24a) follows by Lemma 4.3. This now
covers all cases.

Let us comment briefly on the proof of (4.26b). The term such that r = k′

follows due to the Lemma C.7 together with the frequency restrictions ensuring
|η| 〈η, l〉2 ! 〈kt〉3. For the terms r 3= k′, we have

|η| 〈η, l〉2

(k′)2 + (l′)2 + |ξ − k′t|2
χNR,r ! 〈rt〉3

t2 |k − r|2
! 〈t〉2 |r|

t
|k|2 ,

which is consistent with (4.26b) by Lemma C.7 again.
The remaining estimates follow by similar arguments combined with the argu-

ments used in the proof of Lemma 4.5 (see also [5]). Hence, these are omitted for
the sake of brevity. #

4.2. Paraproducts and related notations

We briefly recall the short-hands introduced in [5]. For paraproducts we use
the homogeneous variant of the paraproduct and utilize the following short-hand
to suppress the appearance of Littlewood-Paley projections:

fg = fHigLo + fLogHi + (fg)R

=
∑

M∈2Z
fMg<M/8 +

∑

M∈2Z
f<M/8gM +

∑

M∈2Z

∑

M/8≤M ′≤8M

fMgM ′ .(4.28)

We recall the following lemma from [5] for using the paraproducts in L2 estimates.

Lemma 4.7 (Paraproducts for quadratic nonlinearities). Let s ∈ [0, 1), µ ≥ 0,
p ≥ 0. Then, there exists a c = c(s) ∈ (0, 1) such that the following holds,

‖fHigLo‖Gµ,p ! ‖f‖Gµ,p ‖g‖Gcµ,3/2+(4.29a)

‖(fg)R‖Gµ,p ! ‖f‖Gcµ,p ‖g‖Gcµ,3/2+(4.29b)
∫

eµ|∇|s 〈∇〉p h eµ|∇|s 〈∇〉p (fHigLo) dV ! ‖h‖Gµ,p ‖f‖Gµ,p ‖g‖Gcµ,3/2+ .(4.29c)

Remark 4.7. In most places in the proof, µ = 0 as normally the multipliers
Ai or Aν;i are playing the role of the norm.

Many of the nonlinear terms are higher order (up to quintic). For expanding
cubic nonlinear terms, we use the short-hand from [5]:

fgh =
∑

N∈2Z
fNg<N/8h<N/8 + gNf<N/8h<N/8 + f<N/8g<N/8hN + (fgh)R

:= fHi(gh)Lo + gHi(fh)Lo + hHi(gf)Lo + (fgh)R,(4.30)
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where the remainder term (fgh)R, includes all of the frequency contributions not
included in the leading order terms. Note the short-hand (gh)Lo = gLohLo. By
iterating this pattern, we obtain also decompositions for quartic and quintic terms.
We also have the equivalents of (4.29a), (4.29b) and (4.29c).

Lemma 4.8 (Paraproducts for higher order nonlinear terms). For all µ ≥ 0 and
p ≥ 0, there is some c = c(s) ∈ (0, 1) such that

‖gHi(fhkj)Lo‖Gµ,p !p ‖g‖Gµ,p ‖f‖Gcµ,3/2+

× ‖h‖Gcµ,3/2+ ‖k‖Gcµ,3/2+ ‖j‖Gcµ,3/2+(4.31a)

‖(fghkj)R‖Gµ,p !p ‖g‖Gcµ,3/2+ ‖f‖Gcµ,3/2+ ‖h‖Gcµ,3/2+

× ‖k‖Gcµ,3/2+ ‖j‖Gcµ,3/2+(4.31b)
∫

eµ|∇|s 〈∇〉p qeµ|∇|s 〈∇〉p (gHi(fhkj)Lo)dV !p ‖q‖Gµ,p ‖g‖Gµ,p ‖f‖Gcµ,3/2+

× ‖h‖Gcµ,3/2+ ‖k‖Gcµ,3/2+ ‖j‖Gcµ,3/2+ .(4.31c)

Analogous estimates hold also for the cubic and quartic decompositions.

One final short-hand we recall from [5] involves the inner products that appear
naturally in energy estimates. Consider, for example, a typical Gevrey energy
estimate involving three quantities f, g, h, where generally h will be a product of
several low frequency terms:
∫

eλ|∇|sfeλ|∇|s (gHihLo) dV

=
1

(2π)3/2

∑

k,l,k′,l′

∫

η,ξ
eλ|k,η,l|

s

f̂k(η, l)e
λ|k,η,l|s ĝk′(ξ, l′)Hiĥk−k′(η − ξ, l − l′)Lodηdξ.

By the frequency localizations inherent in the shorthand and (A.7), for some c =
c(s) ∈ (0, 1) we have (by (4.29c)),
∫

eλ|∇|sfeλ|∇|s (gHihLo) dV !
∑

k,l,k′,l′

∫

η,ξ
eλ|k,η,l|

s
∣∣∣f̂k(η, l)

∣∣∣ eλ|k
′,ξ,l′|s |ĝk′(ξ, l′)Hi|

× ecλ|k−k′,η−ξ,l−l′|s
∣∣∣ĥk−k′(η − ξ, l− l′)Lo

∣∣∣ dηdξ

! ‖f‖Gλ ‖g‖Gλ ‖h‖Gcλ,3/2+ .

The low frequency factors will generally all be put in a norm Gλ,3/2+ (once the
estimates are over we do not need to worry about the c) and hence it makes sense
to use a short-hand for the low-frequency factor as ‖h‖Gλ,3/2+ Low(k−k′, η−ξ, l−l′)

where the function Low is taken as an O(1) function in Gλ,3/2+ (and which can
change line-to-line as implicit constants). For example,

∫
eλ|∇|sfeλ|∇|s (gHihLo) dV

:= ‖h‖Gλ,3/2+

∑

k,l,k′,l′

∫

η,ξ
eλ|k,η,l|

s

f̂k(η, l)e
λ|k,η,l|s ĝk′(ξ, l′)Hi

× Low(k − k′, η − ξ, l− l′)dηdξ

! ‖h‖Gλ,3/2+

∑

k,l,k′,l′

∫

η,ξ
eλ|k,η,l|

s
∣∣∣f̂k(η, l)

∣∣∣ eλ|k
′,ξ,l′|s |ĝk′(ξ, l′)Hi|

× Low(k − k′, η − ξ, l− l′)dηdξ
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! ‖f‖Gλ ‖g‖Gλ ‖h‖Gcλ,3/2+ .(4.32)

The utility of this short-hand will quickly become clear in the course of the proof.

4.3. Product lemmas and a few immediate consequences

First, note the following product lemma is an immediate consequence of
Lemma 4.7.

Lemma 4.9 (Gevrey product lemma). For all s ∈ (0, 1), µ ≥ 0, and p ≥ 0,
there exists c = c(s) ∈ (0, 1) such that the following holds for all f, g ∈ Gµ,p:

‖fg‖Gµ,p !p ‖f‖Gcµ,3/2+ ‖g‖Gµ,p + ‖g‖Gcµ,3/2+ ‖f‖Gµ,p ,(4.33a)

in particular, if µ > 0, then Gµ,p is an algebra for all p ≥ 0 by (A.11):

‖fg‖Gµ,σ !p,µ ‖f‖Gµ,p ‖g‖Gµ,p .(4.34)

Next we have the following, which is a simple variant of the analogous lemma
from [5].

Lemma 4.10 (Product lemma for A and Ai). Let p ≥ 0 and r ≥ −σ. Then
there exists a c = c(s) ∈ (0, 1) such that for i ∈ {1, 2}, for all f, g,

∥∥|∇|p 〈∇〉r Ai(fg)
∥∥
2
! ‖f‖Gcλ,3/2+

∥∥|∇|p 〈∇〉r Aig
∥∥
2

+ ‖g‖Gcλ,3/2+

∥∥|∇|p 〈∇〉r Aif
∥∥
2

(4.35a)
∥∥∥∥∥

(√
∂tw

w
Ãi +

|∇|s/2

〈t〉s
Ai

)
(fg)

∥∥∥∥∥
2

! ‖f‖Gcλ,3/2+

∥∥∥∥∥

(√
∂tw

w
Ãi +

|∇|s/2

〈t〉s
Ai

)
g

∥∥∥∥∥
2

+ ‖g‖Gcλ,3/2+

∥∥∥∥∥

(√
∂tw

w
Ãi +

|∇|s/2

〈t〉s
Ai

)
f

∥∥∥∥∥
2

.(4.35b)

If f and g are both independent of X, then the above holds also with Ai replaced by
either A or A3.

Remark 4.8. Notice the crucial detail that Lemma 4.10 does not hold for A3

if f or g depend on X due to the regularity imbalances near the critical times.

Together with (B.2), Lemma 4.10 and Lemma 4.9 imply the following lemma
(as long as Ci remains sufficiently small). The proof is straightforward so we omit
it for the sake of brevity.

Lemma 4.11 (Coefficient control). Let

Gyy =
(
(1 + ψy)

2 + ψ2
z

)
− 1(4.36a)

Gyz = 2φy(1 + ψy) + 2ψz(1 + φz)(4.36b)

Gzz =
(
(1 + φz)

2 + φ2
y

)
− 1.(4.36c)

Under the bootstrap hypotheses, for c0 sufficiently small, we have for any G ∈
{ψy,ψz,φy,φz, Gyy, Gyz, Gzz},∥∥∥〈∇〉−1 AG

∥∥∥
2
! ‖AC‖2(4.37a)

‖AG‖2 ! ‖∇AC‖2(4.37b)
∥∥∥∥∥〈∇〉−1

√
∂tw

w
ÃG

∥∥∥∥∥
2

!
∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
C

∥∥∥∥∥
2

(4.37c)
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∥∥∥〈∇〉−1 |∇|s/2 AG
∥∥∥
2
!

∥∥∥|∇|s/2 AC
∥∥∥
2
.(4.37d)

Further,
∥∥∥〈∇〉−2 A∆tC

i
∥∥∥
2
! ‖AC‖2(4.38a)

∥∥∥〈∇〉−1 A∆tC
i
∥∥∥
2
! ‖∇AC‖2(4.38b)

∥∥∥∥∥

√
∂tw

w
〈∇〉−2 Ã∆tC

i

∥∥∥∥∥
2

!
∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
C

∥∥∥∥∥
2

(4.38c)

∥∥∥|∇|s/2 〈∇〉−2 A∆tC
i
∥∥∥
2
!

∥∥∥|∇|s/2 AC
∥∥∥
2
.(4.38d)

Similarly, for any λ(t) ≥ µ > 0 and σ ≥ p ≥ 0 (the constant can be taken indepen-
dent of µ for p > 1):

‖G‖Gµ,p + ‖∆tC‖Gµ,p−1 ! ‖∇C‖Gµ,p .(4.39)

Remark 4.9. As discussed in [5], a consequence of (4.39) together with (2.43e)
implies that when coefficients appear in ‘low frequency’ in a paraproduct they

satisfy the a priori estimate O(ε 〈t〉). Together with εt
〈
νt3

〉−1 ! 〈t〉−1, this implies
that when there is enhanced dissipation present, we generally need only treat the
leading order terms that arise from the approximation ∂t

i ≈ ∂L
i or the terms that

arise when the coefficients are in high frequency.

Remark 4.10. Even when enhanced dissipation is not present, the coefficients
do not depend on X and hence the presence of the coefficients do not shift the

frequencies in X. This will mean that even when there are no powers of
〈
νt3

〉−1
,

terms in which coefficients appear in low frequency are generally treatable with
an easy variant of the treatment used on the leading order terms. There are a
few exceptions, when the structure of the term is changed by the coefficients, and
otherwise these terms are generally omitted.

We recall the following lemma from [5].

Lemma 4.12 (Aν Product Lemma). The following holds for all f1 and f2 such
that f2

"= = f2,
∥∥Aν;i(f1f2)

∥∥
2
!

∥∥f1
∥∥
Gλ,β+3α+3/2+

∥∥Aν;if2
∥∥
2
.(4.40)

Moreover, if also f1
"= = f1 then we have the product-type inequalities

∥∥Aν;1(f1f2)
∥∥
2
!

〈t〉2+δ1

〈νt3〉α
(∥∥∥〈∇〉2−β Aν;1f1

∥∥∥
2

∥∥Aν;1f2
∥∥
2
+
∥∥Aν;1f1

∥∥
2

∥∥∥〈∇〉2−β Aν;1f2
∥∥∥
2

)
(4.41a)

∥∥Aν;2(f1f2)
∥∥
2
!

〈t〉
〈νt3〉α

(∥∥∥〈∇〉2−β Aν;2f1
∥∥∥
2

∥∥Aν;2f2
∥∥
2
+
∥∥Aν;2f1

∥∥
2

∥∥∥〈∇〉2−β Aν;2f2
∥∥∥
2

)
(4.41b)

∥∥Aν;3(f1f2)
∥∥
2
!
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〈t〉2

〈νt3〉α
(∥∥∥〈∇〉2−β Aν;3f1

∥∥∥
2

∥∥Aν;3f2
∥∥
2
+
∥∥Aν;3f1

∥∥
2

∥∥∥〈∇〉2−β Aν;3f2
∥∥∥
2

)
.

(4.41c)
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CHAPTER 5

High norm estimate on Q2

In this chapter we improve estimate (2.42c) for ν sufficiently small. First com-
pute the time evolution of A2Q2 in L2 from (2.26):

1

2

d

dt

∥∥A2Q2
∥∥2
2
≤ λ̇

∥∥∥|∇|s/2A2Q2
∥∥∥
2

2
−

∥∥∥∥∥

√
∂tw

w
Ã2Q2

∥∥∥∥∥

2

2

− 1

t

∥∥1t>〈∇Y,Z〉A
2Q2

"=
∥∥2
2

−

∥∥∥∥∥

√
∂twL

wL
A2Q2

∥∥∥∥∥

2

2

+ ν

∫
A2Q2A2

(
∆̃tQ

2
)
dV

−
∫

A2Q2A2
(
Ũ ·∇Q2

)
dV

−
∫

A2Q2A2
(
Qj∂t

jU
2 + 2∂t

iU
j∂t

i∂
t
jU

i − ∂t
Y

(
∂t
iU

j∂t
jU

i
))

dV

= −DQ2 − CK2
L +DE + T +NLS1 +NLS2 +NLP,(5.1)

where we used the definition

D = −ν
∥∥∥
√
−∆LA

2Q2
∥∥∥
2

2
+DE .(5.2)

Recall the following enumerations from [5]. For i, j ∈ {1, 2, 3} and a, b ∈ {0, 3=}:

NLP (i, j, a, b) =

∫
A2Q2

"=A
2
(
∂t
Y

(
∂t
jU

i
a∂

t
iU

j
b

))
dV(5.3a)

NLS1(j, a, b) = −
∫

A2Q2
"=A

2
(
Qj

a∂
t
jU

2
b

)
dV(5.3b)

NLS2(i, j, a, b) = −
∫

A2Q2
"=A

2
(
∂t
iU

j
a∂

t
i∂

t
jU

2
b

)
dV

(5.3c)

NLP (i, j, 0) =

∫
A2Q2

0A
2
(
∂t
Y

(
∂t
jU

i
0∂

t
iU

j
0

))
dV(5.3d)

NLS1(j, 0) = −
∫

A2Q2
0A

2
(
Qj

0∂
t
jU

2
0

)
dV(5.3e)

NLS2(i, j, 0) = −
∫

A2Q2
0A

2
(
∂t
iU

j
0∂

t
i∂

t
jU

2
0

)
dV(5.3f)

F = −
∫

A2Q2
0A

2
(
∂t
i∂

t
i∂

t
j

(
U j
"=U

2
"=

)

0
− ∂t

Y ∂
t
j∂

t
i

(
U i
"=U

j
"=

)

0

)
dV(5.3g)

T0 = −
∫

A2Q2
0A

2
(
g∂Y Q

2
0

)
dV(5.3h)

T"= = −
∫

A2Q2
"=A

2
(
Ũ ·∇Q2

)
dV(5.3i)

47
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48 5. HIGH NORM ESTIMATE ON Q2

Note that we have split T into three contributions: T0 (the (2.5NS) in-
teractions), T"= (the (SI) and (3DE) interactions), and a contribution that is
grouped with F (the (F) interactions). Similarly, we have split the NLS and
NLP terms into several contributions: NLS1(j, 0), NLS2(i, j, 0), and NLP (i, j, 0)
(the (2.5NS) interactions), the NLS1(j, a, b), NLS2(i, j, a, b), and NLP (i, j, a, b)
(the (SI) and (3DE) interactions), and a contribution that is grouped with F (the
(F) interactions). This kind of subdivision will be used repeatedly in the sequel.

5.1. Zero frequencies

5.1.1. Transport nonlinearity. Turn first to T0, the (2.5NS) contribution
to the transport nonlinearity. From the product rule Lemma 4.10 and (2.43d),

T0 !
∥∥A2Q2

0

∥∥
2

(
‖Ag‖2

∥∥Q2
0

∥∥
Gλ,γ + ‖g‖Gλ,γ

∥∥∇A2Q2
0

∥∥
2

)

!
∥∥A2Q2

0

∥∥
2

(
ε
∥∥Q2

0

∥∥
Gλ,γ +

ε

〈t〉2
∥∥∇A2Q2

0

∥∥
2

)

! ε3/2
∥∥∇A2Q2

∥∥2
2
+

(
ε1/2

〈t〉4
+ ε

)
∥∥A2Q2

∥∥2
2
,

which is consistent with Proposition 2.1 by absorbing first term with the dissipation
and integrating in time, provided c0, and ε (equivalently ν) are chosen sufficiently
small.

5.1.2. Nonlinear pressure and stretching. These terms correspond to the
nonlinear zero frequency interactions in the pressure and stretching terms, and so
are of type (2.5NS). Unlike in [5], A2

0 3= A3
0: near the critical times, we have less

control over Q3
0. Therefore, the most difficult contributions will come from terms

which involve two derivatives of Q3. Consider NLP (3, 3, 0) as a representative
example; the other contributions are all treated with a similar approach (or are
easier) and hence are omitted for the sake of brevity. We expand with a paraprod-
uct and group any terms where the coefficients appear in low frequency with the
remainders:

NLP (3, 3, 0) = 2

∫
A2Q2

0A
2∂Y

(
(∂ZU

3
0 )Hi(∂ZU

3
0 )Lo

)
dV

+

∫
A2Q2

0A
2
(
((ψy)Hi∂Y + (φy)Hi∂Z)

(
(∂ZU

3
0 )Lo(∂ZU

3
0 )Lo

))
dV

+

∫
A2Q2

0A
2∂Y

(
((φz)Hi∂Z + (ψz)Hi∂Y ) (U

3
0 )Lo(∂ZU

3
0 )Lo

)
dV

+ PR,C

= PHL + PC1 + PC2 + PR,C .

Turn to PHL first. By (2.49) and (4.3c) we have

PHL ! ε
∑

l,l′

∫ ∣∣∣Q̂2
0(η, l)

∣∣∣

(
∑

r

Ã2
0(η, l)Ã

3
0(ξ, l

′)χr,NR t

|r|+ |η − tr|

+χ∗;23A2
0(η, l)A

3
0(ξ, l

′)
) ∣∣∣∆LÛ3

0 (ξ, l
′)Hi

∣∣∣Low(η − ξ, l − l′)dηdξ,
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which by (4.23), (4.29c) gives (along with εt ≤ c0),

PHL ! εt

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
Q2

0

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
0

∥∥∥∥∥
2

+ ε
∥∥A2Q2

0

∥∥
2

∥∥∆LA
3U3

0

∥∥
2

! c0

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
Q2

0

∥∥∥∥∥

2

2

+ c0

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
0

∥∥∥∥∥

2

2

+ ε
∥∥A2Q2

0

∥∥2
2
+ ε

∥∥∆LA
3U3

0

∥∥2
2
.

(5.4)

By Lemmas D.4 (specifically (D.5c)) and D.5, this is consistent with Proposition
2.1 for c0 sufficiently small and t ≤ c0ε−1 by absorbing the leading terms with the
dissipation energies and integrating in time.

Of the coefficient error terms, PC2 is the most difficult; we treat only this case
and omit the others. By (4.3), (2.49), and (4.29c), followed by Lemma 4.11,

PC2 ! ε2
∑

l,l′

∫ ∣∣∣∣∣A
2
0Q̂

2
0(η, l)

A(ξ, l′) |η|
〈ξ, l′〉2

(∣∣∣ψ̂y(ξ, l
′)Hi

∣∣∣+
∣∣∣φ̂y(ξ, l

′)Hi

∣∣∣
)∣∣∣∣∣

× Low(η − ξ, l − l′)dηdξ

! ε2
∥∥A2Q2

0

∥∥
2

(∥∥∥〈∇〉−1 Aψy

∥∥∥
2
+
∥∥∥〈∇〉−1 Aφy

∥∥∥
2

)

! ε2
∥∥A2Q2

0

∥∥
2
‖AC‖2

! ε
∥∥A2Q2

0

∥∥2
2
+ ε3 ‖AC‖22 ,

which is consistent with Proposition 2.1 for c0 sufficiently small after integrating in
time.

The remainder terms are similar, or easier than, the terms treated above and
hence these are omitted for brevity. This completes NLP (3, 3, 0); the other NLP
terms are similar or easier and are hence omitted as well.

5.1.3. Forcing from non-zero frequencies. Turn next to nonlinear inter-
actions of type (F): the interaction of two X frequencies k and −k and sub-divide
via

F =−
∫

A2Q2
0A

2
(
∂t
Z∂

t
Z∂

t
j

(
U j
"=U

2
"=

)

0
−∂t

Y ∂
t
Y ∂

t
Z

(
U3
"=U

2
"=
)
0
−∂t

Y ∂
t
Z∂

t
Z

(
U3
"=U

3
"=
)
0

)
dV

= F 1 + F 2 + F 3.

As in [5], all three are treated via variants of the same basic approach which will
ultimately come down to applying the appropriate multiplier estimate in (4.17) or
(4.26) depending on the combination of derivatives present. However, the situation
here is more complicated than in [5] due to the additional regularity loss in non-
resonant modes of Q3 near the critical times. Indeed, we will below that there are
many places where ε3/2 " ν is used in key manner. We will focus mainly the terms
that require a significantly different treatment from [5], specifically F 3 and F 1 with
j = 3; the others are treated as slight variants of these terms and the the arguments
in [5].
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We expand F 3 with a paraproduct and group terms where the coefficients
appear in low frequency with the remainder:

F 3 = 2
∑

k "=0

∫
A2Q2

0A
2
0∂Y ∂Z∂Z

((
U3
−k

)
Hi

(
U3
k

)
Lo

)
dV

+
∑

k "=0

∫
A2Q2

0A
2
0

(
((ψy)Hi∂Y + (φy)Hi∂Z) ∂Y ∂Z

((
U3
−k

)
Lo

(
U3
k

)
Lo

))
dV

+
∑

k "=0

∫
A2Q2

0A
2
0

(
∂Y ((ψz)Hi∂Y + (φz)Hi∂Z) ∂Z

((
U3
−k

)
Lo

(
U3
k

)
Lo

))
dV

+
∑

k "=0

∫
A2Q2

0A
2
0

(
∂Y ∂Z ((ψz)Hi∂Y + (φz)Hi∂Z)

((
U3
−k

)
Lo

(
U3
k

)
Lo

))
dV

+ F 2
R,C

= F 3
HL + F 3

C1 + F 3
C2 + F 3

C3 + F 3
R,C ,

where here F 3
R,C includes all of the remainders from the quintic paraproduct as

well as the higher order terms involving coefficients as low frequency factors.
Turn first to F 3

HL (recall (2.48) and the shorthand discussed in (4.32) above)
which by (4.3c) is given by

F 3
HL ! ε

〈νt3〉α
∑

k "=0

∑

l,l′

∫ ∣∣∣∣∣A
2Q̂2

0(η, l)A
2
0(η, l)

|l|2 |η|
k2 + (l′)2 + |ξ − kt|2

∆LÛ3
k (ξ, l

′)Hi

∣∣∣∣∣

× Low(−k, η − ξ, l − l′)dηdξ

! ε

〈νt3〉α
∑

k "=0

∑

l,l′

∫ ∣∣∣Q̂2
0(η, l)

∣∣∣
|l|2 |η|

k2 + (l′)2 + |ξ − kt|2

〈
t

〈ξ, l′〉

〉2

×
(
∑

r

χr,NR t

|r|+ |η − tr| Ã
2
0(η, l)Ã

3
k(ξ, l

′) + χ∗;23A2
0(η, l)A

3
k(ξ, l

′)

)

×
∣∣∣∆LÛ3

k (ξ, l
′)Hi

∣∣∣Low(−k, η − ξ, l − l′)dηdξ.

By (4.26a) and (4.17b) (for the χ∗;23 contribution), followed by (4.29c), there holds

F 3
HL ! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
Q2

0

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥
2

+
ε

〈νt3〉α
∥∥∥
√
−∆LA

2Q2
0

∥∥∥
2

∥∥A3∆LU
3
"=
∥∥
2

! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
Q2

0

∥∥∥∥∥

2

2

+
ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥

2

2

+
ε3/2

〈νt3〉α
∥∥∥
√
−∆LA

2Q2
0

∥∥∥
2

2
+

ε1/2

〈νt3〉α
∥∥A3∆LU

3
"=
∥∥2
2
,
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which after Lemmas D.7 and D.6 is consistent with Proposition 2.1 for c0 and ε
sufficiently small.

Turn next to the coefficient error terms. Due to the high number of derivatives,
the most difficult one is F 3

C3, hence, we focus only on this one and omit the others
for brevity. We have by (2.48), Lemma 4.1, and (4.29c),

F 3
C3 ! ε2

〈νt3〉2α
∑

k "=0

∑

l,l′

∫ ∣∣∣∣∣A
2Q̂2

0(η, l)
|η, l|2

〈ξ, l′〉2
A
(∣∣∣ψ̂z(ξ, l

′)Hi

∣∣∣+
∣∣∣φ̂z(ξ, l

′)Hi

∣∣∣
)∣∣∣∣∣

× Low(−k, η − ξ, l− l′)dηdξ

! ε2

〈νt3〉2α
∥∥∥
√
−∆LA

2Q2
0

∥∥∥
2

(∥∥∥〈∇〉−1 Aφz

∥∥∥
2
+
∥∥∥〈∇〉−1 Aψz

∥∥∥
2

)

! ε3/2
∥∥∥
√
−∆LA

2Q2
0

∥∥∥
2

2
+

ε5/2

〈νt3〉4α
‖AC‖22 ,

which is consistent with Proposition 2.1 for ε sufficiently small. The remaining
coefficient error terms are similar or easier and are hence omitted. The remain-
der terms are easy variants of the above treatments. The one which may require
comment is the error term of the form

2
∑

k "=0

∫
A2Q2

0A
2
0

(
(φy)Lo∂Z∂Z∂Z

((
U3
−k

)
Hi

(
U3
k

)
Lo

))
dV,

as the structure of the nonlinearity has changed and it is less clear how to absorb
the losses due to the unbalance of regularities. However, since ‖C‖Gλ,γ ! εt, the

presence of the coefficients gains a power of t and absorbs the loss via εt
〈
νt3

〉−1 !
t−1. From there the proof applies (4.17a); for more details, see the treatment of
F 1;3 below where a similar argument is carried out. This completes the treatment
of F 3.

Consider next the contribution from F 1 and j = 3 (denoted F 1;3) which requires
further explanation. As above, we expand with a paraproduct,

F 1;3 = −
∑

k "=0

∫
A2Q2

0A
2
0∂Z∂Z∂Z

((
U3
−k

)
Hi

(
U2
k

)
Lo

)
dV

−
∑

k "=0

∫
A2Q2

0A
2
0∂Z∂Z∂Z

((
U3
−k

)
Lo

(
U2
k

)
Hi

)
dV

−
∑

k "=0

∫
A2Q2

0A
2
0

(
((ψz)Hi∂Y + (φz)Hi∂Z) ∂Z∂Z

((
U3
−k

)
Lo

(
U2
k

)
Lo

))
dV

−
∑

k "=0

∫
A2Q2

0A
2
0

(
∂Z ((ψz)Hi∂Y + (φz)Hi∂Z) ∂Z

((
U3
−k

)
Lo

(
U2
k

)
Lo

))
dV

−
∑

k "=0

∫
A2Q2

0A
2
0

(
∂Z∂Z ((ψz)Hi∂Y + (φz)Hi∂Z)

((
U3
−k

)
Lo

(
U2
k

)
Lo

))
dV

− F 1;3
R,C

= F 1;3
HL + F 1;3

LH + F 1;3
C1 + F 1;3

C2 + F 1;3
C3 + F 1;3

R,C ,

The coefficient error terms F 1;3
Ci and remainder terms F 1;3

R,C are all easier than the

F 3 case treated above and are hence omitted for brevity. Of the two leading order
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terms, F 1;3
LH is easier as there is no additional regularity loss near critical times

(despite the larger low frequency factor); indeed it is treated by a straightforward
variant of the treatment of F 1;3

HL. Hence, turn to the latter, which by (2.48) and
Lemma 4.1 is given by

F 1;3
HL ! ε

〈t〉 〈νt3〉α
∑

k "=0

∑

l,l′

∫ ∣∣∣∣∣A
2Q̂2

0(η, l)A
2
0(η, l)

|l|3

k2 + (l′)2 + |ξ − kt|2
∆LÛ3

k (ξ, l
′)Hi

∣∣∣∣∣

× Low(−k, η − ξ, l − l′)dηdξ

! ε

〈t〉 〈νt3〉α
∑

k "=0

∑

l,l′

∫ ∣∣∣Q̂2
0(η, l)

∣∣∣
|l|3

k2 + (l′)2 + |ξ − kt|2

〈
t

〈ξ, l′〉

〉2

×
(
∑

r

χr,NR t

|r|+ |η − tr| Ã
2
0(η, l)Ã

3
k(ξ, l

′) + χ∗;23A2
0(η, l)A

3
k(ξ, l

′)

)

×
∣∣∣∆LÛ3

k (ξ, l
′)Hi

∣∣∣Low(−k, η − ξ, l− l′)dηdξ

! ε

〈νt3〉α
∑

k "=0

∑

l,l′

∫ ∣∣∣A2Q̂2
0(η, l)

∣∣∣
|l|3

k2 + (l′)2 + |ξ − kt|2

〈
t

〈ξ, l′〉

〉2

×
∣∣∣A3

k∆LÛ3
k (ξ, l

′)Hi

∣∣∣Low(−k, η − ξ, l − l′)dηdξ.

By (4.17a) (with p = 2) and (4.29c) we have,

F 1;3
HL ! ε

〈νt3〉α
∥∥∥
√
−∆LA

2Q2
0

∥∥∥
2

∥∥A3∆LU
3
"=
∥∥
2

! ε3/2
∥∥∥
√
−∆LA

2Q2
0

∥∥∥
2

2
+

ε1/2

〈νt3〉2α
∥∥A3∆LU

3
"=
∥∥2
2
,

which by Lemma D.7 is consistent with Proposition 2.1 for ε sufficiently small. This
completes F 1;3. The remaining forcing terms are relatively easy variants of those
already treated and are hence omitted for brevity.

5.1.4. Dissipation error terms. Recalling the definitions of the dissipation
error terms and the short-hand (4.36), we have

DE = ν

∫
A2

0Q
2
0A

2
0

(
Gyy∂Y Y Q

2
0 +Gzz∂ZZQ

2
0 +Gyz∂Y ZQ

2
0

)
dV.(5.5)

All three error terms are essentially the same and are treated in the same manner
as the analogous terms in [5]. Hence, we omit the treatments and simply state the
results

DE ! c−1
0 νε2 ‖∇AC‖22 + c0ν

∥∥∥
√
−∆LA

2Q2
∥∥∥
2

2
.(5.6)

Note that as in [5], by (2.43a)

∫ T$

1
c−1
0 νε2 ‖∇AC(t)‖22 dt ! c0ε

2KB.

Hence, for c0 sufficiently small, (5.6) is consistent with Proposition 2.1.
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5.2. Non-zero frequencies

Next we consider the contributions to (5.1) which come from the evolution of
non-zero X frequencies.

5.2.1. Nonlinear pressure NLP .
5.2.1.1. Treatment of NLP (1, j, 0, 3=). Here j ∈ {2, 3} due to the structure of

the nonlinearity. The case j = 3 was singled out in [5] as one of the leading order
nonlinear interactions of type (SI) (see also §2.5). We will concentrate on this
case and omit the treatment of j = 2, which is treated with the same method and
moreover is simpler due to the lack of a regularity imbalance in A2 near the critical
times.

This term is quartic (in the sense that the nonlinearity is order 4) and we will
use the paraproduct decomposition described in §4.2. We will group terms where
the coefficients appear in ‘low frequency’ with the remainder (see Remarks 4.9 and
4.10). Therefore, the expansion is

NLP (1, 3, 0, 3=) =
∑

k "=0

∫
A2Q2

kA
2
(
(∂Y − t∂X)

((
∂ZU

1
0

)
Lo

(∂XU3
k )Hi

))
dV

+
∑

k "=0

∫
A2Q2

kA
2
(
(∂Y − t∂X)

(
(∂ZU

1
0 )Hi(∂XU3

k )Lo

))
dV

+
∑

k "=0

∫
A2Q2

kA
2
(
((ψy)Hi(∂Y − t∂X) + (φy)Hi∂Z)

(
∂XU3

k∂ZU
1
0

)
Lo

)
dV

+
∑

k "=0

∫
A2Q2

kA
2
(
(∂Y − t∂X)

(
(∂XU3

k )Lo

(
((ψz)Hi∂Y + (φz)Hi∂Z) (U

1
0 )Lo

)))
dV

+ PR,C

= PLH + PHL + PC1 + PC2 + PR,C ,

where PR,C includes all of the remainders from the quartic paraproduct as well as
the higher order terms involving coefficients as low frequency factors.

Turn first to PLH , which by (2.49) and (4.3c) is bounded by (recall the short-
hand (4.32)),

PLH ! εt
∑

k "=0

∫ ∣∣∣∣∣A
2Q̂2

k(η, l)A
2
k(η, l)

(η − tk)k

k2 + |l′|2 + |ξ − tk|2
∆LÛ3

k (ξ, l
′)Hi

∣∣∣∣∣

× Low(η − ξ, l− l′)dηdξ

! εt
∑

k "=0

∫ ∣∣∣Q̂2
k(η, l)

∣∣∣
(η − tk)k

k2 + |l′|2 + |ξ − tk|2

〈
t

〈ξ, l′〉

〉

×
(
∑

r

χr,NR t

|r|+ |η − tr| Ã
2
k(η, l)Ã

3
k(ξ, l

′) + χ∗;23A2
k(η, l)A

3
k(ξ, l

′)

)

×
∣∣∣∆LÛ3

k (ξ, l
′)Hi

∣∣∣Low(η − ξ, l − l′)dηdξ.

The resonant region – the support of χr,NR – is controlled via (4.22) (with p = 1).
For the remaining region, recall the definitions (4.9) and (4.2e) and note that by
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(4.10), the following holds on the support of the integrand:

χNR;k ! 1t≤ε−1/2+δ/100 + 1t≥ε−1/2+δ/100ε1/2 〈ξ − kt, l′〉 〈η − ξ, l − l′〉 .(5.7)

Therefore, the support of χ∗;23 can be controlled via the dissipation up to an inte-
grable error. Putting these estimates together, by (4.29c) we obtain

PLH ! εt

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
Q2

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥
2

+ ε3/2
∥∥∥
√
−∆LA

2Q2
∥∥∥
2

2
+ 1t≤ε−1/2+δ/100ε1/2

∥∥A3∆LU
3
"=
∥∥2
2

+ ε3/2−δ/50
∥∥∥
√
−∆LA

3∆LU
3
"=

∥∥∥
2

2
,(5.8)

which is consistent with Proposition 2.1 by Lemmas D.6, D.7, and D.9 for ε and
εt ≤ c0 sufficiently small.

Turn next to the contribution of PHL, which can be treated in the same manner
as in [5]. Indeed, by (2.48) followed by Lemma 4.1 and (4.29c), we have,

PHL ! ε
〈νt3〉α

∑

k $=0

∑

l,l′

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l) |η−kt|

∣∣l′
∣∣ Û1

0 (ξ, l
′)HiLow(k, η−ξ, l−l′)

∣∣∣ dηdξ

! ε
〈νt3〉α

∑

k $=0

∑

l,l′

∫
∣∣∣∣∣∣
A2Q̂2

k

|η − kt|
〈ξ, l′〉2

〈
t

〈ξ,l′〉

〉
∣∣l′
∣∣AÛ1

0 (ξ, l
′)HiLow(k, η − ξ, l − l′)

∣∣∣∣∣∣
dηdξ

! ε
〈t〉 〈νt3〉α

∥∥∥
√
−∆LA

2Q2
∥∥∥
2

∥∥AU1
0

∥∥
2

! ε3/2
∥∥∥
√
−∆LA

2Q2
∥∥∥
2

2
+

ε1/2

〈νt3〉2α

(
1

〈t〉2
∥∥AU1

0

∥∥2

2

)
.

This is consistent with Proposition 2.1 after applying Lemma D.4.
Turn first to PC1, which is also treated in the same manner as in [5]. By (2.48),

(2.49), and Lemma 4.1 we have

PC1 ! ε2t2

〈νt3〉α
∑

k "=0

∑

l,l′

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)

(∣∣∣ψ̂y(ξ, l
′)Hi

∣∣∣+
∣∣∣φ̂y(ξ, l

′)Hi

∣∣∣
)∣∣∣

× Low(k, η − ξ, l − l′)dηdξ

! ε2t2

〈νt3〉α
∑

k "=0

∑

l,l′

∫
∣∣∣∣∣∣
A2Q̂2

k(η, l)
1

〈ξ, l′〉2
〈

t
〈ξ,l′〉

〉A
(∣∣∣ψ̂y(ξ, l

′)Hi

∣∣∣+
∣∣∣φ̂y(ξ, l

′)Hi

∣∣∣
)
∣∣∣∣∣∣

× Low(k, η − ξ, l − l′)dηdξ

! ε2t

〈νt3〉α
∥∥A2Q2

"=
∥∥
2

(∥∥∥〈∇〉−1 Aψy

∥∥∥
2
+
∥∥∥〈∇〉−1 Aφy

∥∥∥
2

)

! ε

〈νt3〉α
∥∥A2Q2

∥∥2
2
+

ε3t4

〈νt3〉α

(
1

〈t〉2
‖AC‖22

)
,

which is consistent with Proposition 2.1 for ε sufficiently small. This completes the
treatment of PC1. The second coefficient term, PC2, is very similar: there is one
extra derivative landing on the coefficient but there is one less power of time from
the low frequency factor. By Lemma 4.1, we will be able to balance the loss by the

Licensed to New York Univ, Courant Inst.  Prepared on Mon Oct  3 02:20:18 EDT 2022for download from IP 91.230.41.207.



5.2. NON-ZERO FREQUENCIES 55

gain and apply essentially the same treatment as we did for PC1. Hence, this is
omitted for the sake of brevity.

Similarly, the remainder and coefficient terms PR,C are omitted as they are
easier or very similar. This completes the treatment of NLP (1, 3, 0, 3=).

5.2.1.2. Treatment of NLP (i, j, 0, 3=) with i ∈ {2, 3}. We will demonstrate how
to deal with these terms by the example of NLP (2, 3, 0, 3=) (recall (5.3)), which is
one of the leading order terms. Expanding with a quintic paraproduct and grouping
the low frequency coefficient terms with the remainder:

NLP (2, 3, 0, 3=) =
∑

k "=0

∫
A2Q2

kA
2
(
(∂Y − t∂X)((∂Y − t∂X)(U3

k )Hi(∂
t
ZU

2
0 )Lo)

)
dV

+
∑

k "=0

∫
A2Q2

kA
2
(
(∂Y − t∂X)((∂Y − t∂X)(U3

k )Lo(∂
t
ZU

2
0 )Hi)

)
dV

+
∑

k "=0

∫
A2Q2

kA
2
(
((ψy)Hi(∂Y − t∂X) + (φy)Hi∂Z) (∂

t
Y (U

3
k )Lo(∂

t
ZU

2
0 )Lo)

)
dV

+
∑

k "=0

∫
A2Q2

kA
2
(
(∂Y −t∂X)(((ψy)Hi(∂Y −t∂X)+(φy)Hi∂Z) (U

3
k )Lo(∂

t
ZU

2
0 )Lo)

)
dV

+
∑

k "=0

∫
A2Q2

kA
2
(
(∂Y − t∂X)((∂t

Y U
3
k )Lo(((φz)Hi∂Z + (ψz)Hi∂Y )U

2
0 )Lo)

)
dV

+ PR,C

= PHL + PLH + PC1 + PC2 + PR,C ,

where the term PR,C contains the remainders from the quintic paraproducts and
the higher order terms where the coefficients are in low frequency.

Consider first PHL, which by (2.49), (4.11), and (4.3c),

PHL ! ε
∑

k $=0

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l) |η − tk| |ξ − tk| Û3

k (ξ, l
′)Hi

∣∣∣Low(η − ξ, l − l′)dηdξ

! ε
∑

k $=0

∫ ∣∣∣Q̂2
k(η, l)

∣∣∣

×
(
∑

r

χr,NR t
|r|+ |η − tr| Ã

2
k(η, l)Ã

3
k(ξ, l

′) + χ∗;23A2
k(η, l)A

3
k(ξ, l

′)

)〈
t

〈ξ, l′〉

〉

× 〈ξ − tk〉2
∣∣∣Û3

k (ξ, l
′)Hi

∣∣∣Low(η − ξ, l − l′)dηdξ.

By (4.23), (5.7), and (4.29a) we have,

PHL ! ε 〈t〉

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
Q2

"=

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥
2

+ ε3/2
∥∥∥
√
−∆LA

2Q2
∥∥∥
2

2
+ 1t≤ε−1/2+δ/100ε1/2

∥∥∆LA
3U3

"=
∥∥2
2

+ ε3/2−δ/50
∥∥∥
√
−∆L∆LA

3U3
"=

∥∥∥
2

2
,

which is consistent with Proposition 2.1 by Lemmas D.6, D.7, and D.9.
Turn next to PLH . As in [5], this term is treated as in the analogous term in

NLP (1, 3, 0, 3=), using that extra loss of time from the second ∂t
Y derivative replaces
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the gain in t from the presence of U2
0 as opposed to U1

0 . We omit the analogous
details and simply conclude that

PLH ! ε3/2
∥∥∥
√
−∆LA

2Q2
∥∥∥
2

2
+

ε1/2

〈νt3〉2α
∥∥AU2

0

∥∥2
2
,

which after Lemma D.4 is consistent with Proposition 2.1 for ε sufficiently small.
The coefficient error terms, PCi, are also similar to [5] and the corresponding

terms in the treatment of NLP (1, 3, 0, 3=) above in §5.2.1.1. We omit the details
for brevity. Similarly, the remainder terms and low frequency coefficient terms
are relatively easy to deal with or are easy variants of the above treatments and
are hence omitted. This completes the treatment of NLP (2, 3, 0, 3=), which is the
leading order term in NLP (i, j, 0, 3=) with i ∈ {2, 3}.

5.2.1.3. Treatment of NLP (i, j, 3=, 3=) terms. These are pressure interactions of
type (3DE). All of these terms can be treated in a similar fashion, however the
terms involving U3 are slightly harder due to the regularity imbalances. We will
focus on the case i = 1 and j = 3 and omit the others, which follow analogously.
As usual, this term is quartic, but when we expand with the paraproduct we will
keep the coefficients only when they appear in high frequency and group the other
terms with the remainder. Hence,

NLP (1, 3, &=, &=) =

∫
A2Q2

$=A
2 ((∂Y − t∂X)((∂ZU

1
$=)Lo(∂XU3

$=)Hi)
)
dV

+

∫
A2Q2

$=A
2 ((∂Y − t∂X)((∂ZU

1
$=)Hi(∂XU3

$=)Lo)
)
dV

+

∫
A2Q2

$=A
2 (((ψy)Hi(∂Y − t∂X) + (φy)Hi∂Z) ((∂ZU

1
$=)Lo(∂XU3

$=)Lo)
)
dV

+
∑

k

∫
A2Q2

$=A
2 ((∂Y − t∂X)(((ψz)Hi(∂Y − t∂X) + (φz)Hi∂Z) (U

1
$=)Lo(∂XU3

$=)Lo)
)
dV

= PLH + PHL + PC1 + PC2 + PR,C ,

where PR,C contains the paraproduct remainders and the terms where coefficients
appear in low frequency. By (2.48), (4.3c), and (4.25a),

PLH ! ε 〈t〉δ1

〈νt3〉α
∑

k

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)(η − kt)k′Û3

k′(ξ, l′)
∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

! ε 〈t〉δ1

〈νt3〉α
∑

k

∫ ∣∣∣A2Q̂2
k(η, l)

∣∣∣
(η − kt)k′

|k′|2 + |l′|2 + |ξ − k′t|2

〈
t

〈ξ, l′〉

〉

×
(
∑

r

χr,NR t

|r|+ |η − tr| + χ∗;23

)∣∣∣A3∆LÛ3
k′(ξ, l′)

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

! ε 〈t〉δ1

〈νt3〉α
∥∥∥
√
−∆LA

2Q2
"=

∥∥∥
2

∥∥∆LA
3U3

"=
∥∥
2

! ε3/2
∥∥∥
√
−∆LA

2Q2
"=

∥∥∥
2

2
+

ε1/2 〈t〉2δ1

〈νt3〉2α
∥∥∆LA

3U3
"=
∥∥2
2
,

which is consistent with Proposition 2.1 by Lemma D.7 for ε sufficiently small.

Licensed to New York Univ, Courant Inst.  Prepared on Mon Oct  3 02:20:18 EDT 2022for download from IP 91.230.41.207.



5.2. NON-ZERO FREQUENCIES 57

By (2.48), (4.3), and (4.16b), followed by (4.29c), we have

PHL ! ε

〈νt3〉α
∑

k

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)(η − kt)l′Û1

k′(ξ, l′)
∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

! ε

〈νt3〉α
∑

k

∫ ∣∣∣∣∣A
2Q̂2

k(η, l)

〈
t

〈ξ, l′〉

〉δ1 〈t〉 (η − kt)l′

|k′|2 + |l′|2 + |ξ − k′t|2
∆LA

1Û1
k′(ξ, l′)

∣∣∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

! εt2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
Q2

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
∆LU

1
"=

∥∥∥∥∥
2

+
ε 〈t〉δ1

〈νt3〉α
∥∥∥
√

−∆LA
2Q2

"=

∥∥∥
2

∥∥∆LA
1U1

"=
∥∥
2
,

which after Lemmas D.7 and D.6, is consistent with Proposition 2.1.
As in [5], the coefficient error terms are straightforward here and are hence

omitted for the sake of brevity. As discussed above, the remainder terms PR.C

are much easier than the leading order terms, and these are hence omitted. This
completes the treatment of NLP (1, 3, 3=, 3=). Other i, j combinations can be treated
via a simple variant of this (one will also use (4.25a) for this).

5.2.2. Nonlinear stretching NLS.
5.2.2.1. Treatment of NLS1(j, 0, 3=) and NLS1(j, 3=, 0). Recall the definition

of NLS1(j, 0, 3=) from (5.3). These terms can essentially be treated in the same
manner as the NLP (j, 2, 0, 3=) nonlinear pressure terms in §5.2.1.1 and §5.2.1.2 and
hence we omit them for brevity.

Consider the NLS1(j, 3=, 0) terms. Notice that the j = 1 term disappears due
to the usual null structure. The j = 3 term is then the most dangerous remaining
term as we must contend with the loss of regularity near critical times as well as a
large low-frequency growth. Expanding this term with a paraproduct and focusing
on the highest order terms gives:

NLS1(3, 3=, 0) = −
∫

A2Q2A2
(
(Q3

"=)Hi(∂ZU
2
0 )Lo

)
dV

−
∫

A2Q2A2
(
(Q3

"=)Lo(∂ZU
2
0 )Hi

)
dV

−
∫

A2Q2A2
(
(Q3

"=)Lo ((ψz)Hi∂Y + (φz)Hi∂Z) (U
2
0 )Lo

)
dV + SR,C

= SHL + SLH + SC + SR,C ,

where SR,C contains the paraproduct remainders and the terms where the coef-
ficients appear in low frequency. By (2.49), (4.3c), (4.23), (5.7), and (4.29c) we
have

SHL ! ε
∑

k

∫ ∣∣∣Q̂2
k(η, l)

∣∣∣
〈

t

〈ξ, l′〉

〉

×
(
∑

r

χr,NR t

|r|+ |η − tr| Ã
2
k(η, l)Ã

3
k(ξ, l

′) + χ∗;23A2
k(η, l)A

3
k(ξ, l

′)

)
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×
∣∣∣Q̂3

k(ξ, l
′)
∣∣∣Low(η − ξ, l − l′)dηdξ

! εt

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
Q2

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
Q3

"=

∥∥∥∥∥
2

+ ε3/2
∥∥∥
√

−∆LA
2Q2

∥∥∥
2

2

+ 1t≤ε−1/2+δ/100ε1/2
∥∥A3Q3

"=
∥∥2
2
+ ε3/2−δ/50

∥∥∥
√
−∆LA

3Q3
"=

∥∥∥
2

2
,

which is consistent with Proposition 2.1 for ε and c0 sufficiently small.
The treatment of SLH is the same as [5]: by (2.44), Lemma 4.1, and (4.29c),

SLH ! ε 〈t〉2

〈νt3〉α
∑

k

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)l

′Û2
0 (ξ, l

′)Hi

∣∣∣Low(k, η − ξ, l− l′)dηdξ

! ε 〈t〉
〈νt3〉α

∥∥A2Q2
∥∥
2

∥∥AU2
0

∥∥
2
,

which is consistent with Proposition 2.1 for ε sufficiently small. The coefficient error
term, SC , is treated as in [5]: by (2.49), (2.48), and Lemma 4.1, and Lemma 4.11,

SC ! ε2 〈t〉2

〈νt3〉α
∑

k

∫ ∣∣∣∣A
2Q̂2

k(η, l)
1

〈t〉 〈ξ, l′〉Aψ̂y(ξ, l
′)Hi

∣∣∣∣Low(k, η − ξ, l − l′)dηdξ

! ε 〈t〉
〈νt3〉α

∥∥A2Q2
∥∥2
2
+

ε3 〈t〉
〈νt3〉α

‖AC‖22 ,

which is consistent with Proposition 2.1 for ε sufficiently small.
As usual, the remainders and coefficient error terms in SR,C are significantly

easier to treat and hence are omitted for brevity. This completes the treatment of
NLS1(3, 3=, 0); the other term, NLS1(2, 3=, 0) is easier and is treated the same way,
hence we omit this for brevity.

5.2.2.2. Treatment of NLS1(j, 3=, 3=). The most problematic terms are j = 3
and j = 1. The other terms will be treated in a similar fashion, so we focus on
the j = 3 for brevity. We expand the term with a paraproduct and only keep the
coefficients to leading order when they appear in high frequency:

NLS1(3, 3=, 3=) = −
∫

A2Q2A2
(
(Q3

"=)Hi(∂ZU
2
"=)Lo

)
dV

−
∫

A2Q2A2
(
(Q3

"=)Lo(∂ZU
2
"=)Hi

)
dV

−
∫

A2Q2A2
(
(Q3

"=)Lo ((ψz)Hi(∂Y − t∂X) + (φz)Hi∂Z)U
2
"=)Lo

)
dV + SR,C

= SHL + SLH + SC + SR,C ,

where SR,C contains the paraproduct remainders and the terms where the coeffi-
cients appear in low frequency. By (2.48), (4.3c), and (4.29c) we have

SHL ! ε

〈t〉 〈νt3〉α
∑

k

∫ ∣∣∣∣∣A
2Q̂2

k(η, l)

〈
t

〈ξ, l′〉

〉(
∑

r

χr,NR t

|r|+ |η − tr|
+ χ∗;23

)
A3Q̂3

k′ (ξ, l
′)

∣∣∣∣∣

× Low(k − k′, η − ξ, l− l′)dηdξ

! ε

〈νt3〉α
∥∥A2Q2

∥∥
2

∥∥A3Q3
∥∥
2
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which is consistent with Proposition 2.1 for ε sufficiently small.
Turn next to the SLH term. By (2.42), (4.3), (4.14), and (4.29c) we have

SLH ! ε 〈t〉2

〈νt3〉α
∑

k

∫ ∣∣∣∣∣A
2Q̂2

k(η, l)
|l′|

|k′|2 + |l′|2 + |ξ − k′t|2
∆LA

2Û2
k′(ξ, l′)Hi

∣∣∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
Q2

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
∆LU

2
"=

∥∥∥∥∥
2

+
ε 〈t〉

〈νt3〉α
∥∥A2Q2

∥∥
2

∥∥A2∆LU
2
"=
∥∥
2
,

which is consistent with Proposition 2.1 for ε small by Lemmas D.7 and D.6. For
the coefficient error term is treated in the same fashion as the corresponding error
term associated with NLS1(3, 3=, 0) in §5.2.2.1 above. Hence, the treatment is
omitted. Similarly, the remainder and coefficient low frequency terms in SR,C are
also omitted. This completes the treatment of the NLS1(3, 3=, 3=) term; the other
NLS1(j, 3=, 3=) terms are treated similarly.

5.2.2.3. Treatment of NLS2(i, 1, 0, 3=). Recall the definition of these terms from
(5.3). The non-zero contributions come from i = 2 and i = 3 and these can be
treated as in [5] (note U3 does not appear in either). We hence omit the treatment
for the sake of brevity (it roughly parallels NLP (1, 2, 0, 3=) in §5.2.1.1, which was
omitted since this was slightly easier than the leading order NLP (1, 3, 0, 3=)).

5.2.2.4. Treatment of NLS2(i, j, 0, 3=) with j 3= 1. Recall (5.3) and note that
i 3= 1. Unlike in [5], not all the cases are quite the same. However, the losses due to
the regularity imbalances in Q3 can be easily absorbed by the low frequency growth
of Q2. Otherwise, the treatment is similar to that used in [5]. Hence the details
are omitted for brevity.

5.2.2.5. Treatment of NLS2(i, j, 3=, 0). Recall (5.3) and note that j 3= 1. These
terms can all be treated in a manner similar to the treatment of NLS2(i, j, 0, 3=)
above and are hence omitted for the sake of brevity.

5.2.2.6. Treatment of NLS2(i, j, 3=, 3=). First note that the contribution i =
j = 2 cancels with the NLP terms. These terms are treated similar to NLP (i, j, 3=
, 3=), however they are generally easier as the regularity imbalances in Q3 and the
large growth in Q1 arises on the factor with fewer derivatives. Moreover, if U1 or
U3 are in high frequency, than the decay of the low frequency factor U2 is better
by a t−1. Hence, it is straightforward to show that for all choices of i and j,

NLS2(i, j, 3=, 3=) ! εt

〈νt3〉α
∥∥A2Q2

"=
∥∥
2

(∥∥∥Aj∆LU
j
"=

∥∥∥
2
+
∥∥A2∆LU

2
"=
∥∥
2

)
,

which is consistent with Proposition 2.1 by Lemma D.7 for ε sufficiently small.

5.2.3. Transport nonlinearity T . Next, we treat T"= (recall (5.3)). Begin
with a paraproduct decomposition:

T"= = −
∫

A2Q2
"=A

2
(
ŨLo ·∇Q2

Hi

)
dV −

∫
A2Q2

"=A
2
(
ŨHi ·∇Q2

Lo

)
dV

−
∫

A2Q2
"=A

2
(
Ũ ·∇Q2

)

R
dV

= TT + TR + TR,
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where, as in [5], ‘T’ and ‘R’ stand for transport and reaction respectively. Decom-
pose the transport and reaction terms into subcomponents depending on the X
frequencies:

TT = −
∫

A2Q2
"=A

2
(
(Ũ"=)Lo · (∇Q2

0)Hi

)
dV −

∫
A2

"=Q
2A2

(
gLo∂Y (Q

2
"=)Hi

)
dV

−
∫

A2Q2
"=A

2
(
(Ũ"=)Lo ·∇(Q2

"=)Hi

)
dV

= TT ; "=0 + TT ;0"= + TT ; "= "=,

and,

TR = −
∫

A2Q2
"=A

2
(
(Ũ"=)Hi · (∇Q2

0)Lo

)
dV −

∫
A2Q2

"=A
2
(
gHi∂Y (Q

2
"=)Lo

)
dV

−
∫

A2Q2
"=A

2
(
(Ũ"=)Hi ·∇(Q2

"=)Lo

)
dV

= TR; "=0 + TR;0"= + TR; "= "=.

5.2.3.1. Transport by zero frequencies: TT ;0"=. Turn first to TT ;0"=, which is the
transport by g. On the Fourier side,

TT ;0"= !
∑

k

∑

l,l′

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)ĝ(η − ξ, l − l′)LoξQ̂2

k(ξ, l
′)Hi

∣∣∣ dηdξ.

Hence, by (4.3), |ξ| ≤ |ξ − kt|+ |kt|, and (4.29c),

TT ;0"= ! ‖g‖Gλ

∥∥A2Q2
"=
∥∥
2

(∥∥(∂Y − t∂X)A2Q2
∥∥
2
+ t

∥∥∂XA2Q2
∥∥
2

)

! 〈t〉 ‖g‖Gλ

∥∥A2Q2
"=
∥∥
2

∥∥∥
√
−∆LA

2Q2
"=

∥∥∥
2

! ε3/2
∥∥∥
√
−∆LA

2Q2
"=

∥∥∥
2

2
+

ε1/2

〈t〉2
∥∥A2Q2

"=
∥∥2
2
,

where the last line followed from the low norm control on g, (2.43d). This contri-
bution is hence consistent with Proposition 2.1 for ε sufficiently small.

5.2.3.2. Transport by non-zero frequencies, TT ; "= "= and TT ; "=0. Turn next to
TT ; "= "=. Indeed, going back to (2.22),

TT ; "= "==

∫
A2Q2

"=A
2









(U1
"=)Lo(

(1 + ψy)U2
"=

)

Lo
+

(
ψzU3

"=

)

Lo(
(1 + φz)U3

"=

)

Lo
+
(
φyU2

"=

)

Lo



 ·




∂X

∂Y − t∂X
∂Z



 (Q2
"=)Hi



 dV.

The presence of the coefficients is irrelevant by Lemma 4.9 and Lemma 4.11 so let
us ignore them. By (4.3), (4.29c). and (2.48) we have

TT ; "= "= !
(∥∥U1

"=
∥∥
Gλ +

∥∥U2
"=
∥∥
Gλ +

∥∥U3
"=
∥∥
Gλ

)∥∥A2Q2
∥∥
2

∥∥∥
√
−∆LA

2Q2
∥∥∥
2

! ε1/2 〈t〉2δ1

〈νt3〉2α
∥∥A2Q2

∥∥2
2
+ ε3/2

∥∥∥
√

−∆LA
2Q2

∥∥∥
2

2
,

which is consistent with Proposition 2.1 for δ1 and ε sufficiently small. The contri-
bution from TT ; "=,0 is treated similarly and yields

TT ; "=0 ! ε

〈νt3〉α
∥∥A2Q2

∥∥
2

∥∥∇A2Q2
0

∥∥
2
! ε1/2

〈νt3〉2α
∥∥A2Q2

∥∥2
2
+ ε3/2

∥∥∇A2Q2
0

∥∥2
2
,
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which is consistent with Proposition 2.1 for ε sufficiently small. This completes the
treatment of the ‘transport’ contribution to the transport nonlinearity.

5.2.3.3. Reaction term TR;0"=. It is in the reaction terms where things get more
interesting. We begin with the trivial one, TR;0"=. By Lemma 4.1, (2.48), and
(4.29c),

TR;0"= ! εt

〈νt3〉α
∑∫

∣∣∣∣∣∣
A2Q̂2

k(η, l)
1〈

t
〈ξ,l′〉

〉
〈ξ, l′〉2

Aĝ(ξ, l′)Hi

∣∣∣∣∣∣
Low(k, η−ξ, l−l′)dξdη

! ε

〈νt3〉α
‖Ag‖2

∥∥A2Q2
"=
∥∥
2
,

which is consistent with Proposition 2.1 for ε sufficiently small.
5.2.3.4. Reaction term TR; "=0. First consider TR; "=0, which is further divided via

(recall this shorthand notation from §4.2 and the a priori estimates (2.48), (2.49))

TR; "=0 ! ε
∑

k "=0

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)Û

2
k (ξ, l

′)Hi

∣∣∣Low(η − ξ, l − l′)dηdξ

+ ε
∑

k "=0

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)Û

3
k (ξ, l

′)Hi

∣∣∣Low(η − ξ, l − l′)dηdξ

+
ε2

〈t〉 〈νt3〉α
∑

k "=0

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)

(∣∣∣ψ̂y(ξ, l
′)Hi

∣∣∣+
∣∣∣φ̂y(ξ, l

′)Hi

∣∣∣
)∣∣∣

× Low(η − ξ, l − l′)dηdξ

+
ε2

〈νt3〉α
∑

k "=0

∫ ∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)

(∣∣∣ψ̂z(ξ, l
′)Hi

∣∣∣+
∣∣∣φ̂z(ξ, l

′)Hi

∣∣∣
)∣∣∣

× Low(η − ξ, l − l′)dηdξ

+ TR; "=0;R

= TR; "=0;2 + TR; "=0;3 + TR; "=0;C1 + TR; "=0;C2 + TR; "=0;R.

Turn first to TR; "=0;2. By (4.3), (4.29c), and the projection to non-zero frequencies,

TR; "=0;2 ! ε
∥∥A2Q2

"=
∥∥
2

∥∥A2U2
"=
∥∥
2
! ε

∥∥A2Q2
"=
∥∥
2

∥∥A2∆LU
2
"=
∥∥
2
,

which by Lemma D.7 is consistent with Proposition 2.1 for c0 sufficiently small.
Turn next to TR; "=0;3. By (4.3c), (4.24c), and (4.29c),

TR; "=0;3 ! ε
∑

k "=0

∫ ∣∣∣A2Q̂2
k(η, l)

∣∣∣

〈
t

〈ξ,l′〉

〉

k2 + (l′)2 + |ξ − kt|2

×
(
∑

r

χr,NR t

|r|+ |η − tr| + χ∗;23

)∣∣∣∆LA
3Û3

k (ξ, l
′)Hi

∣∣∣

× Low(η − ξ, l − l′)dξdη

! ε
∥∥A2Q2

∥∥
2

∥∥∆LA
3U3

"=
∥∥
2
,

which by Lemma D.7 is consistent Proposition 2.1 for c0 sufficiently small.
The two coefficients are straightforward and are hence omitted for the sake

of brevity. The remainder terms are even simpler and are hence omitted. This
completes the treatment of the reaction term TR; "=0.
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62 5. HIGH NORM ESTIMATE ON Q2

5.2.3.5. Reaction term TR; "= "=. Turn finally to TR; "= "=, which is more problematic
here than in [5] due to the low frequency growth of Q2 and the lower regularity
of Q3. As in the treatment of TR; "=0 above in §5.2.3.4, we sub-divide in frequency
more carefully,

TR; "= "= ! ε 〈t〉
〈νt3〉α

∑∫
1kk′(k−k′) "=0

∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)Û

1
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε 〈t〉2

〈νt3〉α
∑∫

1kk′(k−k′) "=0

∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)Û

2
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε 〈t〉

〈νt3〉α−1

∑∫
1kk′(k−k′) "=0

∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)Û

3
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε2 〈t〉
〈νt3〉α

∑∫
1kk′(k−k′) "=0

∣∣∣A2Q̂2
k(η, l)

∣∣∣A2
k(η, l)

(∣∣∣ψ̂y(ξ, l
′)Hi

∣∣∣

+
∣∣∣φ̂z(ξ, l

′)Hi

∣∣∣+
∣∣∣φ̂y(ξ, l

′)Hi

∣∣∣
)

× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε2 〈t〉2

〈νt3〉α
∑∫

1kk′(k−k′) "=0

∣∣∣A2Q̂2
k(η, l)A

2
k(η, l)

(
ψ̂z(ξ, l

′)Hi

)∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+ TR; "= "=;R

= T 1
R; "= "= + T 2

R; "= "= + T 3
R; "= "= + T C1

R; "= "= + T C2
R; "= "= + TR; "= "=;R,

where we used εt
〈
νt3

〉−1 ! t−1 in T 3
R; "= "= to reduce the power of time of the

(U3)Hi

(
ψz(∂Y − t∂X)Q2

)
Lo

term.
Turn first to T 1

R; "= "=, which by (4.3), (4.15) and (4.29c) is given by

T 1
R; "= "= ! ε 〈t〉2

〈νt3〉α
∑∫ ∣∣∣∣∣A

2Q̂2
k(η, l)

1

(k′)2 + (l′)2 + |ξ − k′t|2

〈
t

〈ξ, l′〉

〉1+δ1
∣∣∣∣∣

×
∣∣∣A1∆LÛ1

k′(ξ, l′)Hi

∣∣∣Low(k − k′, η − ξ, l − l′)dηdξ

! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã2+

|∇|s/2

〈t〉s
A2

)
Q2

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã1+

|∇|s/2

〈t〉s
A1

)
∆LU

1
"=

∥∥∥∥∥
2

+
ε 〈t〉1+δ1

〈νt3〉α
∥∥A2Q2

"=
∥∥
2

∥∥A1∆LU
1
"=
∥∥
2
,

which by Lemmas D.7 and D.6, is consistent with Proposition 2.1 by the bootstrap
hypotheses for ε and δ1 sufficiently small. The treatment of T 2

R; "= "= is essentially the
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same as T 1
R; "= "= and yields

T 2
R; "= "= ! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã2+

|∇|s/2

〈t〉s
A2

)
Q2

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã2+

|∇|s/2

〈t〉s
A2

)
∆LU

2
"=

∥∥∥∥∥
2

+
ε

〈νt3〉α
∥∥A2Q2

"=
∥∥
2

∥∥A2∆LU
2
"=
∥∥
2
,

which again by Lemmas D.7 and D.6, is consistent with Proposition 2.1 by the
bootstrap hypotheses for ε sufficiently small.

Turn next to T 3
R; "= "=. By (4.3c), (4.24c), and (4.29c), we have

T 3
R; "= "= ! ε 〈t〉

〈νt3〉α
∫ ∣∣∣A2Q̂2

k(η, l)
∣∣∣

1

(k′)2 + (l′)2 + |ξ − k′t|2

〈
t

〈ξ, l′〉

〉

×
(
∑

r

χr,NR t

|r|+ |η − tr| + χ∗;23

)∣∣∣A3∆LÛ3
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

! ε 〈t〉
〈νt3〉α

∥∥A2Q2
∥∥
2

∥∥∆LA
3U3

"=
∥∥
2
,

which after Lemma D.7, is consistent with Proposition 2.1.
The coefficient error terms are treated the same as in §5.2.3.4; hence we omit

the treatments for brevity and simply conclude

T C1
R; "= "= + T C2

R; "= "= ! ε2t

〈νt3〉α−1

∥∥A2Q2
∥∥
2
‖AC‖2 .

The remainder terms TR; "= "= are similarly straightforward and are omitted for brevity
as well. This completes the treatment of the transport nonlinearity for Q2.

5.2.4. Dissipation error terms D. Recalling the dissipation error terms and
the short-hand (4.36), we have

DE = ν
∑

k $=0

∫
A2Q2

kA
2
k

(
Gyy(∂Y − t∂X)2Q2

k +Gyz(∂Y − t∂X)∂ZQ
2
k +Gzz∂ZZQ

2
k

)
dV.

These terms can be treated in the same manner as the analogous terms in [5];
therefore, we omit the treatment for brevity and simply conclude the final result:

DE ! c0ν
∥∥∥
√
−∆LA

2Q2
∥∥∥
2

2
+

ε1/2

〈νt3〉α
∥∥A2Q2

"=
∥∥2
2
+

ν2ε3/2t4

〈νt3〉α
‖AC‖22 ,

which is consistent with Proposition 2.1 for ε sufficiently small.
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CHAPTER 6

High norm estimate on Q3

In this chapter we improve estimate (2.42d) for ν sufficiently small. Computing
the evolution of A3Q3:

1

2

d

dt

∥∥A3Q3
∥∥2
2
≤ λ̇

∥∥∥|∇|s/2 A3Q3
∥∥∥
2

2
−

∥∥∥∥∥

√
∂tw

w
Ã3Q3

∥∥∥∥∥

2

2

−

∥∥∥∥∥

√
∂twL

wL
A3Q3

∥∥∥∥∥

2

2

− 2

t

∥∥1t>〈∇Y,Z〉A
3Q3

∥∥2
2

− 2

∫
A3Q3A3∂t

Y XU3dV + 2

∫
A3Q3A3∂t

ZXU2dV

+ ν

∫
A3Q3A3

(
∆tQ

3
)
dV −

∫
A3Q3A3

(
Ũ ·∇Q3

)
dv

−
∫

A3Q3A3
[
Qj∂t

jU
3 + 2∂t

iU
j∂t

ijU
3 − ∂t

Z

(
∂t
iU

j∂t
jU

i
)]

dV

= DQ3 − CK3
L + LS3 + L3 +DE + T +NLS1 +NLS2 +NLP,(6.1)

where we are again using

DE = ν

∫
A3Q3A3

(
(∆̃t −∆L)Q

3
)
dV.

As in (5.3), let us here recall the following enumerations from [5]: for i, j ∈ {1, 2, 3}
and a, b ∈ {0, 3=}:

NLP (i, j, a, b) =

∫
A3Q3

"=A
3
(
∂t
Z

(
∂t
jU

i
a∂

t
iU

j
b

))
dV(6.2a)

NLS1(j, a, b) = −
∫

A3Q3
"=A

3
(
Qj

a∂
t
jU

3
b

)
dV(6.2b)

NLS2(i, j, a, b) = −
∫

A3Q3
"=A

2
(
∂t
iU

j
a∂

t
i∂

t
jU

3
b

)
dV

(6.2c)

NLP (i, j, 0) =

∫
A3Q3

0A
3
(
∂t
Z

(
∂t
jU

i
0∂

t
iU

j
0

))
dV(6.2d)

NLS1(j, 0) = −
∫

A3Q3
0A

3
(
Qj

0∂
t
jU

3
0

)
dV(6.2e)

NLS2(i, j, 0) = −
∫

A3Q3
0A

3
(
∂t
iU

j
0∂

t
i∂

t
jU

3
0

)
dV(6.2f)

F = −
∫

A3Q3
0A

3
(
∂t
i∂

t
i∂

t
j

(
U j
"=U

3
"=

)

0
− ∂t

Z∂
t
j∂

t
i

(
U i
"=U

j
"=

)

0

)
dV(6.2g)

T0 = −
∫

A3Q3
0A

3
(
Ũ0 ·∇Q3

0

)
dV(6.2h)

65

Licensed to New York Univ, Courant Inst.  Prepared on Mon Oct  3 02:20:18 EDT 2022for download from IP 91.230.41.207.



66 6. HIGH NORM ESTIMATE ON Q3

T"= = −
∫

A2Q3
"=A

3
(
Ũ ·∇Q3

)
dV.(6.2i)

Note we have split the nonlinearity up analogously to what is done in (5.3)
above.

6.1. Zero frequencies

As in the treatment of A2Q2 in §5.1, the estimate on Q3
0 is very different than

the estimate on Q3
"= and are hence naturally separated.

6.1.1. Transport nonlinearity. The treatment of T0, the (2.5NS) contri-
bution to the transport nonlinearity, goes through exactly the same as the corre-
sponding treatment for Q2

0 in §5.1.1 (as the main problems in A3 will only arise
when changing the X frequencies) and hence, for the sake of brevity this term is
omitted.

6.1.2. Nonlinear pressure and stretching. The treatment of zero
frequency pressure and stretching contributions in (6.1) is very similar to the treat-
ment used for Q2

0 in §5.1.2 except that since we are estimating with A3, there is no
loss on factors involving U3 as there is in §5.1.2. As the treatment here is analogous
(except easier), we omit these terms for brevity.

6.1.3. Forcing from non-zero frequencies. Turn next to the treatment of
F (defined above in (6.2)), for nonlinear interactions of type (F). In accordance
with the toy model in §2.5, we will find that the forcing from non-zero frequencies
on Q3

0 is more extreme than those on Q2
0. In particular, unlike in §5.1.3 above, in

order to treat the case ν " ε we will need the regularity imbalances. Write

F = −
∫

A3Q3
0A

3
(
∂t
Y ∂

t
Y ∂

t
j

(
U j
"=U

3
"=

)

0
− ∂t

Z∂
t
Z∂

t
Y

(
U2
"=U

3
"=
)
0

−∂t
Z∂

t
Y ∂

t
Y

(
U2
"=U

2
"=
)
0

)
dV

= F 1 + F 2 + F 3.

The most dangerous term is F 1; we omit the other two for brevity as they are easy
variants of F 1 and the treatments in §5.1.3. Write

F 1 = −
∫

A3Q3A3
(
∂t
Y ∂

t
Y ∂

t
Y

(
U2
"=U

3
"=
)
0
+ ∂t

Y ∂
t
Y ∂

t
Z

(
U3
"=U

3
"=
)
0

)
dV = F 1;2 + F 1;3.

The first term, F 1;2, is the leading order contribution (at least when U2 is in high
frequency) due to the t3 that will be present near the critical times due to the (∂Y )3

(near the critical times ∂Y ∼ t∂X), and hence let us focus on this and omit F 1;3 for
brevity. Expand F 1;2 with a quintic paraproduct and group all of the terms where
the coefficients appear in low frequency with the remainder:

F 1;2 = −
∑

k "=0

∫
A3Q3

0A
3
0∂Y ∂Y ∂Y

((
U3
−k

)
Hi

(
U2
k

)
Lo

)
dV

−
∑

k "=0

∫
A3Q3

0A
3
0∂Y ∂Y ∂Y

((
U3
−k

)
Lo

(
U2
k

)
Hi

)
dV

−
∑

k "=0

∫
A3Q3

0A
3
0 ((ψy)Hi∂Y + (φy)Hi∂Z) ∂Y ∂Y

((
U3
−k

)
Lo

(
U2
k

)
Lo

)
dV
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−
∑

k "=0

∫
A3Q3

0A
3
0∂Y

(
((ψy)Hi∂Y + (φy)Hi∂Z) ∂Y

((
U3
−k

)
Lo

(
U2
k

)
Lo

))
dV

−
∑

k "=0

∫
A3Q3

0A
3
0∂Y ∂Y

(
((ψy)Hi∂Y + (φy)Hi∂Z)

((
U3
−k

)
Lo

(
U2
k

)
Lo

))
dV

+ F 1
R,C

= FHL + FLH + FC1 + FC2 + FC3 + FR,C ,

where here FR includes the remainders from the paraproduct and terms where
coefficients appear in low frequency.

Turn first to the easier FHL. From (2.48), (4.3), (4.17), and (4.29c) we have,

FHL ! ε

〈t〉 〈νt3〉α
∑

k "=0

∑

l,l′

∫ ∣∣∣A3Q̂3
0(η, l)

∣∣∣
|η|3

〈
t

〈ξ,l′〉

〉2

k2 + (l′)2 + |ξ − kt|2
∣∣∣∆LA

3Û3
k (ξ, l

′)Hi

∣∣∣

× Low (−k, η − ξ, l − l′) dηdξ

! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥
2

+
ε

〈t〉 〈νt3〉α
∥∥∥
√
−∆LA

3Q3
∥∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
,

which, after the application of Lemmas D.6 and D.7, is consistent with Proposition
2.1. Notice the importance of the inviscid damping to reduce the power of t.

Turn next to FLH , which is the term appearing in the toy model in §2.5 as
one of the leading order contributions to the nonlinear interaction (F). Here, it is
the regularity imbalance between Q2

"= and Q3
0 which will reduce the power of t. By

(2.48) and Lemma 4.1 we have

FLH ! ε

〈νt3〉α
∑

k "=0

∑

l,l′

∫ ∣∣∣∣∣A
3Q̂3

0(η, l)A
3
0(η, l)

|η|3

k2 + (l′)2 + |ξ − kt|2
∆LÛ2

k (ξ, l
′)Hi

∣∣∣∣∣

× Low(−k, η − ξ, l − l′)dηdξ

! ε

〈νt3〉α
∑

k "=0

∑

l,l′

∫ ∣∣∣Q̂3
0(η, l)

∣∣∣
|η|3

k2 + (l′)2 + |ξ − kt|2

×
(
∑

r

χNR,r |r|+ |η − tr|
t

Ã3
0(η, l)Ã

2
k(ξ, l

′) + χ∗;32A3
0(η, l)A

2
k(ξ, l

′)

)

×
〈

t

〈ξ, l′〉

〉 ∣∣∣A2
k∆LÛ2

k (ξ, l
′)Hi

∣∣∣Low(−k, η − ξ, l − l′)dηdξ.

Therefore, by (4.26b) and (4.26c), followed by (4.29c), we have

F 1
LH ! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
Q3

0

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
∆LU

2
"=

∥∥∥∥∥
2

+
ε

〈νt3〉α
∥∥∥
√
−∆LA

3Q3
0

∥∥∥
2

∥∥A2∆LU
2
"=
∥∥
2
,

which by Lemmas D.6 and D.7 is consistent with Proposition 2.1 for ε sufficiently
small.
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The terms associated with the coefficient terms are treated the same as the
corresponding terms in §5.1.3 and are hence omitted for brevity and we simply
conclude the results

F 1
C1 + F 1

C2 + F 1
C3 ! ε3/2

∥∥∥
√
−∆LA

3Q3
∥∥∥
2

2
+

ε5/2

〈νt3〉2α
‖AC‖22 .

The remainder terms are similarly straightforward or easy variants of the other
treatments and are hence omitted as well. This completes the treatment of F 1. As
mentioned above, the treatments of F 2 and F 3 are similar (but easier) and hence
also omitted.

6.1.4. Zero frequency dissipation error terms. The treatment of the dis-
sipation error terms for Q3

0 is the same as Q2
0 as outlined in §5.1.4, and therefore is

omitted for the sake of brevity.

6.2. Non-zero frequencies

6.2.1. Nonlinear pressure NLP .
6.2.1.1. Treatment of NLP (1, j, 0, 3=). This term is the analogue of the nonlin-

ear terms treated in §5.2.1.1. Note that j 3= 1 by the zero frequency assumption.
We can essentially use the same treatment, although here it is easier since Y deriva-
tives are slightly harder than Z derivatives and because we are imposing one less
power of time control on Q3

"= than on Q2
"=. For this reason, we omit the treatment

for brevity and simply conclude the result:

NLP (1, j, 0, &=) ! c0

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ãj +

|∇|s/2

〈t〉s
Aj

)
∆LU

j
$=

∥∥∥∥∥
2

+ ε
∥∥∥
√

−∆LA
3Q3

∥∥∥
2

2
+ 1t(ε−1/2ε

1/2
∥∥∥Aj∆LU

j
$=

∥∥∥
2

2
+ ε3/2

∥∥∥
√

−∆LA
j∆LU

j
$=

∥∥∥
2

2

+
ε 〈t〉

〈νt3〉α
∥∥∥A3Q3

$=

∥∥∥
2

∥∥∥A1 〈∇〉2 U1
0

∥∥∥
2
+

ε2

〈νt3〉α−1

∥∥∥A3Q3
$=

∥∥∥
2
‖AC‖2 ,

which, after Lemmas D.4, D.6, D.7, and D.9, is consistent Proposition 2.1 for ε
sufficiently small.

6.2.1.2. Treatment of NLP (i, j, 0, 3=) with i ∈ {2, 3}. This is the analogue of
the nonlinear terms treated in §5.2.1.2 above. These can treated analogously to the
treatment in §5.2.1.2, but in fact it is much easier here due to the fact that Q3 is
growing quadratically at ‘low’ frequencies. In particular, we can deduce (using also
j 3= 1),

NLP (i, j, 0, 3=) ! ε
∥∥A3Q3

"=
∥∥
2

∥∥∥∆LA
jU j

"=

∥∥∥
2
+

ε 〈t〉
〈νt3〉α−1

∥∥A3Q3
"=
∥∥
2

∥∥AU i
0

∥∥
2

+
ε2 〈t〉

〈νt3〉α−1

∥∥A3Q3
∥∥
2
‖AC‖2 ,

which after Lemmas D.4, D.6, and D.7, is consistent with Proposition 2.1 for ε
sufficiently small.

6.2.1.3. Treatment of NLP (i, j, 3=, 3=). These terms are fairly straightforward.
The term with i = j = 3 cancels with theNLS terms. Let us just treat NLP (1, 3, 3=
, 3=) and omit the others for brevity, which follow by similar arguments. Expand
with a paraproduct, as usual grouping higher order terms involving the coefficients
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in low frequency with the remainder

NLP (1, 3, 3=, 3=) =

∫
A3Q3

"=A
3∂Z

((
∂ZU

1
"=
)
Lo

(∂XU3
"=)Hi

)
dV

+

∫
A3Q3

"=A
3∂Z

((
∂ZU

1
"=
)
Hi

(∂XU3
"=)Lo

)
dV

+

∫
A3Q3

"=A
3
(
((φz)Hi∂Z + (ψz)Hi(∂Y − t∂X))

((
∂ZU

1
"=
)
Lo

(∂XU3
"=)Lo

))
dV

+

∫
A3Q3

"=A
3∂Z

((
((φz)Hi∂Z + (ψz)Hi(∂Y − t∂X))U1

"=
)
Lo

(∂XU3
"=)Lo

)
dV

+ PR,C

= PLH + PHL + PC1 + PC2 + PR,C ,

where PR,C includes all of the remainders from the quartic paraproduct as well as
the higher order terms involving coefficients as low frequency factors.

Consider PLH first. By (2.48) followed by (4.3b), by (4.25d) and (4.29c) it
follows that

PLH ! ε 〈t〉δ1

〈νt3〉α
∑

k "=0

∫ ∣∣∣A3Q̂3
k(η, l)

∣∣∣
|lk′|

|k′|2 + |l′|2 + |ξ − tk′|2

×
(
χR,NR t

|k|+ |η − kt|+χNR,R |k′|+ |η − k′t|
t

+χ∗;33
) ∣∣∣A3∆LÛ3

k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

! ε 〈t〉1+δ1

〈νt3〉α
∥∥A3Q3

∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
,

which after Lemma D.7, is consistent with Proposition 2.1 for δ1 and ε sufficiently
small.

Consider next PHL. By (2.48) followed by (4.3), we have

PHL ! ε

〈νt3〉α
∑

k "=0

∫ ∣∣∣A3Q̂3
k(η, l)

∣∣∣
|ll′| 〈t〉

|k′|2 + |l′|2 + |ξ − tk′|2

〈
t

〈ξ, l′〉

〉δ1−1

×
∣∣∣A1∆LÛ1

k′(ξ, l′)Hi

∣∣∣Low(k − k′, η − ξ, l − l′)dηdξ

! ε 〈t〉
〈νt3〉α

∥∥A3Q3
∥∥
2

∥∥A1∆LU
1
"=
∥∥
2
,

which is consistent with Proposition 2.1 for ε sufficiently small after applying
Lemma D.7.

The coefficient error terms and the remainder terms are straightforward (easier)
variants of the treatment in §5.2.1.3 or of the above treatments of PHL and PLH ,
and hence are omitted for brevity. The other nonlinear pressure terms are similar
to, or easier than, the above, and are hence omitted for brevity.

6.2.2. Nonlinear stretching NLS. Controlling the NLS terms in the evo-
lution of Q3 is in general slightly harder than for Q2 (treated above in §5.2.2), due
to the fact that U3 is larger than U2. Moreover, we occasionally have to deal with
the imbalance in the regularities inherent to A3.
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6.2.2.1. Treatment of NLS1(j, 3=, 0) and NLS1(j, 0, 3=). Consider first the
NLS1(j, 0, 3=) terms. Due to the large size of Q1

0, it turns out j = 1 is the hard-
est case, and hence we only treat this case (the case j = 3 is complicated by the
regularity imbalance of A3

k compared to A3
0 (see Lemma 4.1), however, even at the

critical time, the loss is at most 〈t〉, which is still not more than what is lost when
comparing A3

k to A1
k). Expanding with a paraproduct

NLS1(1, 0, 3=) = −
∑

k "=0

∫
A3Q3

kA
3
k

(
(Q1

0)Hi(∂XU3
k )Lo

)
dV

−
∑

k "=0

∫
A3Q3

kA
3
k

(
(Q1

0)Lo(∂XU3
k )Hi

)
dV + SR

= SHL + SLH + SR.

For the SHL term, it follows from (2.48), Lemma 4.1, and (4.29c),

SHL ! εt

〈νt3〉α
∥∥A3Q3

∥∥
2

∥∥A1Q1
0

∥∥
2
.

For the SLH term, by (2.49) and (4.3), followed by (4.14) and (4.29c),

SLH ! εt
∑∫ ∣∣∣A3Q̂3

k(η, l)
∣∣∣

|k|
k2 + |l′|2 + |ξ − kt|2

∣∣∣A3∆LÛ3
k (ξ, l

′)Hi

∣∣∣

× Low(η − ξ, l − l′)dηdξ

! εt

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥
2

+ ε
∥∥A3Q3

∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
,

which is consistent with Proposition 2.1 for ε sufficiently small by Lemmas D.6 and
D.7. The remainder term is straightforward and is hence omitted. As mentioned
above, the remaining NLS1(j, 0, 3=) terms are omitted as well as they are similar.

Consider next the NLS1(j, 3=, 0) terms. Notice that j 3= 1 by the nonlinear
structure. The remaining contributions are not quite the same: due to the regularity
imbalances in A3, the case j = 3 is slightly harder (note this does not cancel with
the other pressure/stretching terms). Hence, we treat this term and omit the j = 2
contribution. As usual, begin with a paraproduct and group the terms where the
coefficients appear in low frequency with the remainder:

NLS1(3, 3=, 0) = −
∑

k "=0

∫
A3Q3

kA
3
(
(Q3

k)Hi(∂ZU
3
0 )Lo

)
dV

−
∑∫

A3Q3
kA

3
(
(Q3

k)Lo(∂ZU
3
0 )Hi

)
dV

−
∑

k "=0

∫
A3Q3

kA
3
(
(Q3

k)Lo((φz)Hi∂Z+(ψz)Hi∂Y )(U
3
0 )Lo

)
dV +SR,C

= SHL + SLH + SC + SR,C .

For the first term, SHL, from (2.49) and (4.3) we have

SHL ! ε
∥∥A3Q3

∥∥2
2
,
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which is consistent with Proposition 2.1 for c0 sufficiently small. For the second
term, SLH , we have by Lemma 4.1, Lemma C.7, and (4.29c) (note that the zero
frequency is never resonant and hence the χNR,R term disappears),

SLH ! εt2

〈νt3〉α
∑

k "=0

∫ ∣∣∣Q̂3
k(η, l)

∣∣∣
〈

t

〈ξ, l′〉

〉−2

×
(
χR,NR t

|k|+ |η − kt| Ã
3
k(η, l)Ã

3
0(ξ, l

′) +A3
k(η, l)A

3
0(ξ, l

′)

)

× |l′|
〈ξ, l′〉2

∣∣∣A3 〈∇〉2 Û3
0 (ξ, l

′)
∣∣∣ dξdη

! εt2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã3+

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3+

|∇|s/2

〈t〉s
A3

)
〈∇〉2 U3

0

∥∥∥∥∥
2

+
εt

〈νt3〉α
∥∥A3Q3

∥∥
2

∥∥∥A3 〈∇〉2 U3
0

∥∥∥
2
,

which, by Lemmas D.5 and D.4, is consistent with Proposition 2.1 for ε and c0
sufficiently small.

6.2.2.2. Treatment of NLS1(j, 3=, 3=). All of these terms can be treated in a
similar fashion, in fact, j = 3 is the hardest due to the regularity losses together
with a ∂Z (as opposed to ∂X as in j = 1). Hence, let us just consider the case j = 3
and omit the others for brevity. Expand the term with a paraproduct, as usual
leaving the terms with coefficients in low frequency with the remainder,

NLS1(1, 3=, 3=) = −
∫

A3Q3
"=A

3
(
(Q3

"=)Hi(∂ZU
3
"=)Lo

)
dV

−
∫

A3Q3
"=A

3
(
(Q3

"=)Lo(∂ZU
3
"=)Hi

)
dV

−
∫

A3Q3
"=A

3
(
(Q3

"=)Lo

(
((φz)Hi∂Z+(ψz)Hi∂Y ) (U

3
"=)Lo

))
dV +SR

= SHL + SLH + SR.

By (2.48), Lemma 4.1, and (4.29c) (the loss of t is due to the regularity imbalances),

SHL ! ε 〈t〉
〈νt3〉α

∥∥A3Q3
∥∥2
2
,

which is consistent with Proposition 2.1 for ε sufficiently small by Lemma D.7.
For SLH , we have to be a little more careful. By (4.3b), (2.44)

SLH ! ε 〈t〉2

〈νt3〉α
∑

k "=0

∫ ∣∣∣Q̂3
k(η, l)

∣∣∣
|l′|

|k′|2 + |l′|2 + |ξ − tk′|2

×
(
χR,NR t

|k|+ |η − kt| Ã
3
k(η, l)Ã

3
k′(ξ, l′)

+χNR,R |k′|+ |η − k′t|
t

Ã3
k(η, l)Ã

3
k′(ξ, l′)

+ χ∗;33A3
k(η, l)A

3
k′(ξ, l′)

) ∣∣∣A3∆LÛ3
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ.
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Therefore by (4.25b), (4.15), and (4.29c), there holds

SLH ! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥
2

+
ε 〈t〉

〈νt3〉α
∥∥A3Q3

∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
,

which is consistent with Proposition 2.1 after Lemmas D.6 and Lemma D.7.
The coefficient error term SC and remainder term SR are both straightforward

or easy variants of estimates already performed and hence are omitted for brevity.
6.2.2.3. Treatment of NLS2(i, j, 0, 3=). Recall (6.2) and notice that i 3= 1.

These terms are treated in essentially the same way asNLS1(3, 3=, 0) (orNLS1(2, 3=
, 0)) and hence we omit the treatment for brevity.

6.2.2.4. Treatment of NLS2(i, j, 3=, 0). Recall (6.2) and notice that neither i
nor j can be 1 in this case. These terms are very similar to NLS1(2, 0, 3=) and are
hence omitted for brevity.

6.2.2.5. Treatment of NLS2(i, j, 3=, 3=). First, notice that i = j = 3 cancels
with the NLS terms. The most difficult term is i = 2 and j = 3; let us briefly com-
ment on this term and omit the others for brevity. Expanding with a paraproduct

NLS2(2, 3, 3=, 3=) = −
∫

A3Q3
"=A

3
((

(∂Y − t∂X)U3
"=
)
Lo

((∂Y − t∂X)∂ZU
3
"=)Hi

)
dV

−
∫

A3Q3
"=A

3∂Z
((

(∂Y −t∂X)U3
"=
)
Hi

(∂Z(∂Y −t∂X)U3
"=)Lo

)
dV

+ SC1 + SC2 + SC3 + SR,C

= SLH + SHL + SC1 + SC2 + SC3 + SR,C ,

where SR,C denotes the remainders and SCi denote terms in which the coefficients
appear in high frequency; these are very similar to many terms we have already
treated and are hence omitted. The leading order terms are treated in essentially
the same manner; the SLH term is clearly the harder one, so let us just show the
treatment of this one. For LH term we have, by (4.25),

SLH ! ε 〈t〉
〈νt3〉α

∑

k "=0

∫ ∣∣∣Q̂3
k(η, l)

∣∣∣
|ξ − tk′| |l′|

|k′|2 + |l′|2 + |ξ − tk′|2

×
(
χR,NR t

|k|+ |η − kt| Ã
3
k(η, l)Ã

3
k′(ξ, l′)

+χNR,R |k′|+ |η − k′t|
t

Ã3
k(η, l)Ã

3
k′(ξ, l′)

+χ∗;33A3
k(η, l)A

3
k′(ξ, l′)

) ∣∣∣A3∆LÛ3
k′(ξ, l′)Hi

∣∣∣Low(k−k′, η−ξ, l−l′)dηdξ

! εt2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥
2

+
εt

〈νt3〉α
∥∥A3Q3

∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
,

which is consistent with Proposition 2.1 by Lemmas D.6 and D.7.
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6.2.3. Transport nonlinearity T . Begin with a paraproduct decomposition:

T"= = −
∫

A3Q3
"=A

3
(
ŨLo ·∇Q3

Hi

)
dV −

∫
A3Q3

"=A
3
(
ŨHi ·∇Q3

Lo

)
dV + TR

= TT + TR + TR,

where TR includes the remainder (as above in §5.2.3, we use the terminology ‘trans-
port’ and ‘reaction’ for the first two terms respectively). There are two interesting

challenges here. First, the additional +eµ|l|
1/2

was added in (2.36) because large
regularity imbalances caused by w3 would have been problematic at high Z frequen-
cies in the in the ‘transport’ contribution. Second, we will see that the ‘reaction’
contribution is significantly more difficult and, as predicted in §2.5, we will need to
take advantage of the regularity imbalances to close an estimate.

Decompose the reaction terms based on the X dependence of each factor:

TR = −
∫

A3Q3A3
(
(Ũ"=)Hi · (∇Q3

0)Lo

)
dV −

∫
A3Q3A3

(
gHi · ∂Y (Q3

"=)Lo

)
dV

−
∫

A3Q3A3
(
(Ũ"=)Hi ·∇(Q3

"=)Lo

)
dV

= TR; "=0 + TR;0"= + TR; "= "=,

and also the transport terms:

TT = −
∫

A3Q3A3
(
(Ũ"=)Lo · (∇Q3

0)Hi

)
dV −

∫
A3Q3A3

(
gLo∂Y (Q

3
"=)Hi

)
dV

−
∫

A3Q3A3
(
(Ũ"=)Lo ·∇(Q3

"=)Hi

)
dV

= TT ; "=0 + TT ;0"= + TT ; "= "=.

6.2.3.1. Transport term TT ;0"=. This term can be treated the same as the cor-
responding term in §5.2.3: because the velocity field is independent of X, there
are no regularity losses associated with the regularity imbalances in the norm A3 –
these only occur if one changes the X frequency, as χR,NR = χNR,R = 0 if k = k′

in Lemma 4.1. Hence, as above,

TT ;0"= ! ε3/2
∥∥∥
√
−∆LA

3Q3
∥∥∥
2

2
+

ε1/2

t2
∥∥A3Q3

∥∥2
2
.

6.2.3.2. Transport term TT ; "=0. This is one of the terms where it is crucial that

we include the +eµ|l|
1/2

correction to the norm. By Lemma 4.1 and (4.23), we have
by |ξ, l′|χR,NR ! |kt|χR,NR (it is here we are using that regularity imbalances only
occur for |∂Z | ! |∂Y |),

TT ; "=0 ! ε

〈νt3〉α
∑∫ ∣∣∣A3Q̂3

k(η, l)A
3
k(η, l) |ξ, l′| Q̂3

0(ξ, l
′)HiLow(k, η − ξ, l − l′)

∣∣∣ dηdξ

! ε

〈νt3〉α
∑∫ ∣∣∣Q̂3

k(η, l)
∣∣∣
(

tχR,NR

|k|+ |η − kt| Ã
3
k(η, l)Ã

3
0(ξ, l

′) +A3
k(η, l)A

3
0(ξ, l

′)

)

× |ξ, l′|
∣∣∣Q̂3

0(ξ, l
′)Hi

∣∣∣Low(k, η − ξ, l − l′)dηdξ

! εt2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥

2

2

+
ε1/2

〈νt3〉2α
∥∥A3Q3

"=
∥∥2
2

+ ε3/2
∥∥∇A3Q3

0

∥∥
2
,

which is consistent with Proposition 2.1.
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6.2.3.3. Transport term TT ; "= "=. We will again use crucially that we have the

+eµ|l|
1/2

correction to the norm. By (4.3) we have

TT ;$=$= ! ε

〈νt3〉α−1

∑∫ ∣∣∣A3Q̂3
k(η, l)A

3
k(η, l)

∣∣∣ktδ1 , t−1(ξ − k′t), l′
∣∣∣ Q̂3

k′(ξ, l
′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

! ε

〈νt3〉α−1

∑∫ ∣∣∣Q̂3
k(η, l)

∣∣∣
(

tχR,NR

|k|+ |η − kt| Ã
3
k(η, l)Ã

3
k′(ξ, l′) + A3

k(η, l)A
3
k′(ξ, l′)

)

×
(∣∣∣k′tδ1

∣∣∣+ t−1
∣∣ξ − k′t

∣∣+
∣∣l′
∣∣
) ∣∣∣Q̂3

k′(ξ, l
′)HiLow(k − k′, η − ξ, l − l′)

∣∣∣ dηdξ

= T X
T ;$=$= + T Y

T ;$=$= + T Z
T ;$=$=.

Note that we have used the inviscid damping on U2 and the inequality

‖C‖Gλ,γ

∥∥∥U3
"=

∥∥∥
Gλ,β−2

! ε2t
〈
νt3

〉α ! εt−1
〈
νt3

〉α−1
(see §2.7.2) to reduce the power

in front of the ∂Y − t∂X derivative. Due to the gain in |k| at the critical times from
χR,NR |k|−1, we have

T X
T ; "= "= ! εt1+δ1

〈νt3〉α−1

∥∥A3Q3
∥∥2
2
+

εtδ1

〈νt3〉α−1

∥∥A3Q3
∥∥
2

∥∥∥
√
−∆LA

3Q3
∥∥∥
2
,

which is consistent with Proposition 2.1 for ε and δ1 sufficiently small. Due to the
extra t−1, there are no losses in the Y term and hence we have

T Y
T ; "= "= ! ε

〈νt3〉α
∥∥A3Q3

∥∥
2

∥∥∥
√
−∆LA

3Q3
∥∥∥
2

! ε1/2

〈νt3〉2α
∥∥A3Q3

∥∥2
2
+ ε3/2

∥∥∥
√
−∆LA

3Q3
∥∥∥
2

2
,

which is also consistent with Proposition 2.1. For the Z term we use χR,NR |l′| !
|kt|χR,NR (it is here we are using that the losses only occur for |∂Z | ! |∂Y | due to

the +eµ|l|
1/2

correction) and (4.23) to deduce

T Z
T ; "= "= ! εt2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã3+

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥

2

2

+
ε

〈νt3〉α
∥∥A3Q3

∥∥
2

∥∥∥
√
−∆LA

3Q3
∥∥∥
2
,

which is consistent with Proposition 2.1.
6.2.3.4. Reaction term TR;0"=. Turn first to the easiest, TR;0"=. By(2.44c) and

Lemma 4.1, we get (also noting (2.22)):

TR;0"= ! ε 〈t〉2

〈νt3〉α
∑

k "=0

∫ ∣∣∣A3Q̂3
k(η, l)A

3
k(η, l)ĝ(ξ, l

′)Hi

∣∣∣Low(k, η − ξ, l − l′)dξdη

! ε

〈νt3〉α
∥∥A3Q3

"=
∥∥
2
‖Ag‖2 ,

which is consistent with Proposition 2.1.
6.2.3.5. Reaction terms TR; "=0. Next consider TR; "=0. In fact, since Q3

0 is the
same order of magnitude as Q2

0, and A3 ! A2, this term can be treated in the same
fashion as was done in §5.2.3.4. Hence, we omit the details for brevity.
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6.2.3.6. Reaction term TR; "= "=. Turn next to TR; "= "=. This includes terms iso-
lated in §2.5 as leading order contributions to the (3DE) nonlinear interactions
(see [5] and §2.2.1) and these terms are one of the places where we will need the
regularity imbalances in A3. As in §5.2.3.5 above, we further decompose in terms
of frequency:

TR; "= "= ! ε 〈t〉2

〈νt3〉α
∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A3Q̂3
k(η, l)A

3
k(η, l)Û

1
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε 〈t〉3

〈νt3〉α
∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A3Q̂3
k(η, l)A

3
k(η, l)Û

2
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε 〈t〉2

〈νt3〉α−1

∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A3Q̂3
k(η, l)A

3
k(η, l)Û

3
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε2 〈t〉2

〈νt3〉α
∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A3Q̂3
k(η, l)

∣∣∣A3
k(η, l)

(∣∣∣φ̂z(ξ, l
′)Hi

∣∣∣

+
∣∣∣ψ̂z(ξ, l

′)Hi

∣∣∣+
∣∣∣φ̂y(ξ, l

′)Hi

∣∣∣
)
Low(k − k′, η − ξ, l − l′)dηdξ

+
ε2 〈t〉3

〈νt3〉α
∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A3Q̂3
k(η, l)A

3
k(η, l)

(
ψ̂y(ξ, l

′)Hi

)∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+ TR; "= "=;R

= T 1
R; "= "= + T 2

R; "= "= + T 3
R; "= "= + T C1

R; "= "= + T C2
R; "= "= + TR; "= "=;R.

Consider T 2
R; "= "=, which is one of the terms in the toy model. In particular, we will

use the regularity imbalance between Q2 and Q3 to reduce the power of t. By
(4.3d),

T 2
R; "= "= ! ε 〈t〉3

〈νt3〉α
∑

k,k′

∫
1k,k′,k−k′ "=0

∣∣∣Q̂3
k(η, l)

∣∣∣
1

|k′|2 + |l′|2 + |ξ − k′t|2

×
(
∑

r

χNR,r |r|+ |η − tr|
t

Ã3
k(η, l)Ã

2
k′(ξ, l′) + χ∗;32A3

k(η, l)A
2
k′(ξ, l′)

)

×
〈

t

〈ξ, l′〉

〉−1 ∣∣∣∆LÛ
2
k′(ξ, l′)Hi

∣∣∣Low(k − k′, η − ξ, l− l′)dηdξ.

Therefore, by (4.24a) followed by (4.29c),

T 2
R; "= "= ! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã3+

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã2+

|∇|s/2

〈t〉s
A2

)
∆LU

2
"=

∥∥∥∥∥
2

+
ε 〈t〉
〈νt3〉α

∥∥A3Q3
∥∥
2

∥∥A2∆LU
2
"=
∥∥
2
,
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which, by Lemmas D.6 and D.7, is consistent with Proposition 2.1. The term T 1
R; "= "=

is treated in essentially the same way (matching the intuition that Q1 ∼ tQ2 near
the critical times) and is hence omitted.

Next, turn to the treatment of T 3
R; "= "=. By (4.3b) we have

T 3
R; "= "= ! ε 〈t〉2

〈νt3〉α−1

∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣Q̂3
k(η, l)

∣∣∣
1

|k′|2 + |l′|2 + |ξ − k′t|2

×
(
χR,NR t

|k|+ |η − kt| Ã
3
k(η, l)Ã

3
k′(ξ, l′)

+ χNR,R |k′|+ |η − k′t|
t

Ã3
k(η, l)Ã

3
k′(ξ, l′) + χ∗;33A3

k(η, l)A
3
k′(ξ, l′)

)

×
∣∣∣A3∆LÛ

3
k′(ξ, l′)Hi

∣∣∣Low(k − k′, η − ξ, l − l′)dηdξ,

which by (4.24b) and (4.29c) is

T 3
R; "= "= ! ε 〈t〉

〈νt3〉α−1

∥∥A3Q3
∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
,

which is consistent with Proposition 2.1 by Lemma D.7.
Finally, turn to T C1

R; "= "= and T C2
R; "= "=. By Lemma 4.1 and (4.29a) (and Lemma

4.11), we have

T C1
R; "= "=+T C2

R; "= "= ! ε2 〈t〉2

〈νt3〉α−1

∥∥A3Q3
∥∥
2
‖AC‖2!

ε 〈t〉
〈νt3〉α−1

∥∥A3Q3
∥∥2
2
+

ε3 〈t〉3

〈νt3〉α−1 ‖AC‖22 ,

which is consistent with Proposition 2.1 for α sufficiently large, ε sufficiently small,
and δ > 0. This completes the treatment of TR; "= "= and hence all of T .

6.2.4. Dissipation error terms D. Due to the quadratic growth at low fre-
quencies of Q3 and the much larger size of ε, these terms cannot be treated as
they were in [5]. However, we will adapt a treatment from [9] which treats the
critical times with increased precision. Recalling the dissipation error terms and
the short-hand (4.36), we have

DE = ν
∑

k "=0

∫
A3Q3

kA
3
k

(
Gyy(∂Y −t∂X)2Q3

k+Gyz(∂Y −t∂X)∂ZQ
3
k+Gzz∂ZZQ

3
k

)
dV

= D1
E +D2

E +D3
E .

We will only treat D1
E ; D2

E and D3
E are slightly easier and are hence omitted. As

usual, we expand with a paraproduct:

D1
E = ν

∑

k "=0

∫
A3Q3

kA
3
k

(
(Gyy)Hi(∂Y − t∂X)2(Q3

k)Lo

)
dV

+ ν
∑

k "=0

∫
A3Q3

kA
3
k

(
(Gyy)Lo(∂Y − t∂X)2(Q3

k)Hi

)
dV

+ ν
∑

k "=0

∫
A3Q3

kA
3
k

((
Gyy(∂Y − t∂X)2Q3

k

)
R
)
dV

= D1
E;HL +D1

E;LH +D1
E;R.
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As in §5.2.4 and [5], we can control the latter two terms by the dissipation; we omit
the details for brevity. Next, turn to the treatment of D1

E;HL. By Lemma 4.1, there
is some c = c(s) ∈ (0, 1) such that

D1
E;HL ! ν

∑

k $=0

∫ ∣∣∣A3Q̂3
k(η, l)A

3
k(η, l)Ĝyy(ξ, l

′)Hi(η − ξ − tk)2Q̂3
k(η − ξ, l − l′)Lo

∣∣∣ dηdξ

! ν
∑

k $=0

∫
[χR + χNR;k]

∣∣∣∣A
3Q̂3

k(η, l)
1

〈ξ, l′〉 〈t〉AĜyy(ξ, l
′)Hi

∣∣∣∣

×
∣∣∣(η − ξ − tk)2ecλ|k,η−ξ,l−l′|sQ̂3

k(η − ξ, l − l′)Lo

∣∣∣ dηdξ,

= D1;R
E;HL +D1;NR

E;HL,

where χR;k = 1t∈Ik,η∩Ik,ξ1|l|≤ 1
5 |η|

1|l′|≤ 1
5 |ξ|

and χNR;k = 1−χR;k is defined in (4.9).

For the non-resonant term D1;NR
E;HL, since 〈t〉 ! (|k|+ |l|+ |η − kt|) 〈η − ξ, l − l′〉 and

|η − ξ − kt| ! 〈t〉 〈k, η − ξ〉 on the support of the integrand by (4.10),

D1;NR
E;HL ! ν

∑

k "=0

∫
χNR;k

∣∣∣∣∣
√
−∆LA

3Q̂3
k(η, l)

1

〈ξ, l′〉 〈t〉2
AĜyy(ξ, l

′)Hi

∣∣∣∣∣

×
∣∣∣(η − ξ − tk)2ecλ|k,η−ξ,l−l′|sQ̂3

k(η − ξ, l − l′)Lo

∣∣∣ dηdξ,

! νt
∥∥∥〈∇〉−1 AG

∥∥∥
2

∥∥∥
√
−∆LA

3Q3
∥∥∥
2
〈t〉−2

∥∥∥
√
−∆LQ

3
"=

∥∥∥
Gλ

.

It follows by (2.47), Lemma 4.11 and (2.43b), we have

D1;NR
E;HL ! νt

〈νt3〉α
‖AC‖2

∥∥∥
√

−∆LA
3Q3

∥∥∥
2

∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

! νεt2
∣∣log c0ε−1

∣∣
〈νt3〉α

∥∥∥
√
−∆LA

3Q3
∥∥∥
2

∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

! εδ/4ν
∥∥∥
√
−∆LA

3Q3
∥∥∥
2

2
+ εδ/4ν

∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

2
,

which is consistent with Proposition 2.1 by the bootstrap hypotheses for ε suffi-
ciently small and δ > 0. For the resonant term D1;R

E;HL we have by Lemma C.3 and

(4.29a) (also using that A(ξ, l′) ≈ Ã(ξ, l′) on the support of the integrand due to
the definition of χR and |η − ξ − kt| ! 〈t〉 〈k, η − ξ〉),

D1;R
E;HL ! ν

∑

k $=0

∫
χR;k (|k|+ |η − kt|)1/2

∣∣∣∣∣A
3Q̂3

k(η, l)
1

〈ξ, l′〉 〈t〉

√
∂tw
w

ÃĜyy(ξ, l
′)Hi

∣∣∣∣∣

× 〈t〉3/2 〈k, η − ξ〉5/2
∣∣∣(η − ξ − tk)1/2ecλ|k,η−ξ,l−l′|sQ̂3

k(η − ξ, l − l′)Lo

∣∣∣ dηdξ

! νt1/2
∥∥∥
√
−∆LA

3Q3
∥∥∥
1/2

2

∥∥A3Q3
$=
∥∥1/2

2

∥∥Q3
$=
∥∥1/2

Gλ

∥∥∥
√
−∆LQ

3
$=

∥∥∥
1/2

Gλ

×

∥∥∥∥∥

√
∂tw
w

〈∇〉−1 ÃGyy

∥∥∥∥∥
2

.

Then, by (2.47), (2.36), and (2.40), followed by Lemma 4.11, for some small δ′ > 0

! νt5/2

〈νt3〉α/2
∥∥∥
√
−∆LA

3Q3
∥∥∥
2

∥∥A3Q3
"=
∥∥1/2
2

∥∥Aν;3Q3
∥∥1/2
2

∥∥∥∥∥

√
∂tw

w
〈∇〉−1 ÃGyy

∥∥∥∥∥
2
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! ν1/2tε

〈νt3〉α/2−1

∥∥∥
√
−∆LA

3Q3
∥∥∥
2

∥∥∥∥∥

√
∂tw

w
〈∇〉−1 ÃGyy

∥∥∥∥∥
2

! εδ
′
ν
∥∥∥
√
−∆LA

3Q3
∥∥∥
2

2
+

ε2−δ′ 〈t〉4

〈νt3〉α−2



 1

〈t〉2

∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
C

∥∥∥∥∥

2

2



 ,

which is now consistent with Proposition 2.1 for δ′ and ε small. Note that the
hypothesis ε ! ν2/3+δ with δ > 0 is essentially sharp for controlling this term. This
completes the treatment of D1

E and hence of the dissipation error terms.

6.2.5. Linear stretching term LS3. First separate into two parts (to be
sub-divided further below),

LS3 = −2

∫
A3Q3A3∂X(∂Y − t∂X)U3dV

− 2

∫
A3Q3A3∂X (ψy(∂Y − t∂X) + φy∂Z)U

3dV

= LS30 + LS3C .

6.2.5.1. Treatment of LS3C . Expand with a paraproduct,

LS3C = −2

∫
A3Q3A3∂X ((ψy)Hi(∂Y − t∂X) + (φy)Hi∂Z)

(
U3

)
Lo

dV

− 2

∫
A3Q3A3∂X ((ψy)Lo(∂Y − t∂X) + (φy)Lo∂Z)

(
U3

)
Hi

dV

− 2

∫
A3Q3A3∂X

(
(ψy(∂Y − t∂X) + φy∂Z)U

3
)
R dV

= LS3CHL + LS3CLH + LS3CR.

The main issue is LS3CHL, where the coefficients appear in ‘high frequency’, so turn
to this term first. By Lemma 4.1, (4.29c), and Lemma 4.11,

LS3CHL ! ε 〈t〉
〈νt3〉α

∑

k "=0

∫ ∣∣∣A3Q̂3
k(η, l)

∣∣∣
1

〈ξ, l′〉 〈t〉A
(∣∣∣ψ̂y(ξ, l

′)
∣∣∣+

∣∣∣φ̂y(ξ, l
′)
∣∣∣
)

× Low(k, η − ξ, l − l′)dξ

! ε1/2

〈νt3〉α
∥∥A3Q3

∥∥2 + ε3/2

〈νt3〉α
‖AC‖22 ,

which is consistent with Proposition 2.1 by (2.43b) for ε sufficiently small and δ > 0
(hence ε ! ν2/3+δ is essentially sharp here).

Turn next to the LS3CLH , which is reminiscent of NLP (1, 3, 0, 3=) in §5.2.1.1.
Indeed, by Lemma 4.11, (4.14), and (4.29c) we have,

LS3CLH ! ε 〈t〉
∑∫ ∣∣∣∣∣A

3Q̂3
k(η, l)A

3
k(η, l)

k |ξ − kt, l′|
k2 + (l′)2 + |ξ − kt|2

∆LÛ3
k (ξ, l

′)

∣∣∣∣∣

× Low(η − ξ, l − l′)dηdx

! c0

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥
2
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+
ε

〈t〉

∥∥∥
√

−∆LA
3Q3

∥∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
,(6.3)

which, after the application of Lemmas D.6 and D.7, is consistent with Proposition
2.1 for ε and c0 sufficiently small.

The remainder LS3CR follows easily and is hence omitted.
6.2.5.2. Leading order term, LS30. As in [5], the 2 in the leading order term is

crucially important and cannot be altered; it is the origin of the quadratic growth
of Q3 at low (relative to time) frequencies and any alteration would cause faster
growth and a collapse of the bootstrap. For this reason we have to treat this term
more precisely. Begin by isolating the leading order contribution: by the definition
of ∆t (see (2.13) and the shorthand (4.36)),

LS30 = −2

∫
A3Q3A3∂X(∂Y − t∂X)∆−1

L ∆L∆
−1
t Q3dV

= −2

∫
A3Q3A3∂X(∂Y − t∂X)∆−1

L

(
Q3 −Gyy(∂Y − t∂X)2∆−1

t Q3

−Gyz∂Z(∂Y − t∂X)U3 −Gzz∂ZZU
3 −∆tC

1(∂Y − t∂X)U3

−∆tC
2∂ZU

3
)
dV

= LS30;0 +
5∑

j=i

LS30;Ci.(6.4)

The treatment of LS30;0 is essentially the same as in [5]. The only minor
difference is that one must separate high frequencies in Z from high frequencies of
Y when using CK3

w. Due to the uniform ellipticity in Z, this does not make a major
difference and this contribution can be absorbed by the existing terms. Divide into
long-time and short-time regimes

LS30;0 = −2

∫ [
1t≤2|η| + 1t>2|η|

] ∣∣∣A3Q̂3
k(η, l)

∣∣∣
2 k(η − kt)

k2 + l2 + |η − kt|2
dη

= LS30;0,ST + LS30;0,LT .

The long-time regime is treated the same as in [5] (see therein for a proof), and
hence for some universal K > 0:

LS30;0,LT ≤ CK3
L +

δλ

10 〈t〉3/2
∥∥∥|∇|s/2 A3Q3

∥∥∥
2

2
+

K

δ
1

2s−1

λ 〈t〉3/2
∥∥A3Q3

∥∥2
2
,

which, for δλ sufficiently small and KH3 sufficiently large, is consistent with Propo-
sition 2.1. For the short-time regime we apply (4.13) to deduce for some K > 0,

LS30;0,ST ! κ−1

∥∥∥∥∥

√
∂tw

w
Ã3Q3

∥∥∥∥∥

2

2

+
1

〈t〉3/2
∥∥∥|∇|1/4 A3Q3

∥∥∥
2

2

≤ Kκ−1

∥∥∥∥∥

√
∂tw

w
Ã3Q3

∥∥∥∥∥

2

2

+
δλ

10 〈t〉3/2
∥∥∥|∇|s/2 A3Q3

∥∥∥
2

2

+
K

δ
1

2s−1

λ 〈t〉3/2
∥∥A3Q3

∥∥2
2
,

which is consistent with Proposition 2.1 for κ sufficiently large, δλ sufficiently small
(so that the first term is absorbed by CK3

λ) and KH3 is sufficiently large.
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Consider the first error term in (6.4), LS30;C1; here we will need a more refined
treatment than in [5]. Expanding LS30;C1 gives

LS30;C1 = −2

∫
A3Q3A3∂X(∂Y − t∂X)∆−1

L

(
(Gyy)Hi(∂Y − t∂X)2U3

Lo

)
dV

− 2

∫
A3Q3A3∂X(∂Y − t∂X)∆−1

L

(
(Gyy)Lo(∂Y − t∂X)2U3

Hi

)
dV

− 2

∫
A3Q3A3∂X(∂Y − t∂X)∆−1

L

(
(Gyy)(∂Y − t∂X)2U3

)
R dV

= LS30;C1
HL + LS30;C1

LH + LS30;C1
R .

The most interesting contribution is the HL term. By (2.48) and Lemma 4.1, we
have

LS30;C1
HL ! ε 〈t〉2

〈νt3〉α
∑

l,l′,k "=0

∫
∣∣∣∣∣∣
A3Q̂3

k(η, l)
|η − kt|(

k2 + l2 + |η − kt|2
)
〈t〉 〈ξ, l′〉

AĜyy(ξ, l
′)Hi

∣∣∣∣∣∣

× Low(k, η − ξ, l − l′)dξdη.

Therefore, by (4.15) followed by (4.29c), and Lemma 4.11, we have

LS30;C1
HL ! εt

〈νt3〉α

∥∥∥∥∥

(√
∂tw
w

Ã3 +
|∇|s/2

〈t〉s A3

)
Q3

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw
w

Ã+
|∇|s/2

〈t〉s A

)
〈∇〉−1 Gyy

∥∥∥∥∥
2

+
ε

〈νt3〉
∥∥A3Q3

∥∥
2

∥∥〈∇〉−1 AGyy

∥∥
2

! εt2

〈νt3〉α

∥∥∥∥∥

(√
∂tw
w

Ã3 +
|∇|s/2

〈t〉s A3

)
Q3

∥∥∥∥∥

2

2

+
ε

〈νt3〉α

∥∥∥∥∥

(√
∂tw
w

Ã+
|∇|s/2

〈t〉s A

)
C

∥∥∥∥∥

2

2

+
ε 〈t〉
〈νt3〉

(
∥∥A3Q3

∥∥2

2
+

(
1
〈t〉 ‖AC‖2

)2
)
.

This is consistent with Proposition 2.1 by (2.43b) for δ > 0 and ε sufficiently small.
Turn to LS30;C1

LH , which by Lemma 4.11,

LS30;C1
LH ! ε 〈t〉

∑

k,l

∫ ∣∣∣∣∣A
3Q̂3

k(η, l)A
3
k(η, l)

|k| |η − kt|
k2 + l2 + |η − kt|2

(
∆LU

3
k

)
Hi

(ξ, l′)

∣∣∣∣∣

× Low(η − ξ, l − l′)dηdξ.

We can treat this term roughly like NLP (1, 3, 0, 3=) on Q2 in §5.2.1.1: by (4.14)
and (4.29c),

LS30;C1
LH ! c0

∥∥∥∥∥

(√
∂tw
w

Ã3 +
|∇|s/2

〈t〉s A3

)
Q3

∥∥∥∥∥

2

2

+ c0

∥∥∥∥∥

(√
∂tw
w

Ã3 +
|∇|s/2

〈t〉s A3

)
∆LU

3
$=

∥∥∥∥∥

2

2

+ ε
∥∥A3Q3

$=
∥∥
2

∥∥∆LA
3U3

$=
∥∥
2
.

By Lemmas D.6 and D.7, this is consistent with Proposition 2.1 by the bootstrap
hypotheses.

The remainder LS30;C1
R is straightforward and is omitted for the sake of brevity.

This completes the first error term in (6.4), LS30;C1.
The second and third error terms, LS30;C2 and LS30;C3, are similar to LS30;C1

but slightly easier, and yield similar contributions. Hence, we omit the treatment
for brevity.
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The last two coefficient errors, LS30;C4 and LS30;C5, are also similar but require
a slight adjustment. In particular, due to the two derivatives on the coefficients,
we cannot gain any powers of time from A3 as in the treatment of LS30;C1 above.
However, this is balanced by the fact that there is one less power of ∂Y − t∂X .
Hence, the above treatment adapts in a straightforward manner and so we omit the
details for brevity.

This concludes the treatment of the linear stretching term LS3.

6.2.6. Linear pressure term LP3. As in LS3, we first separate the coeffi-
cient corrections and expand with a paraproduct:

LP3 = 2

∫
A3Q3A3∂Z∂XU2dV

+ 2

∫
A3Q3A3 ((ψz)Lo(∂Y − t∂X) + (φz)Lo∂Z)

(
∂XU2

)
Hi

dV

+ 2

∫
A3Q3A3 ((ψz)Hi(∂Y − t∂X) + (φz)Hi∂Z)

(
∂XU2

)
Lo

dV

+ 2

∫
A3Q3A3

(
(ψz(∂Y − t∂X) + φz∂Z) ∂XU2

)
R dV

= LP30 + LP3CLH + LP3CHL + LP3CR.

6.2.6.1. Treatment of LP30. As in [5], from (C.15),

LP30 ≤ 1

2κ

∥∥∥∥∥

√
∂twL

wL
A3Q3

∥∥∥∥∥

2

2

+
1

2κ

∥∥∥∥∥

√
∂twL

wL
A3∆LU

2
"=

∥∥∥∥∥

2

2

.

The first term is absorbed by the CK3
wL term in (6.1). For the latter term we apply

Lemma D.8, which yields contributions which are integrable or are absorbed by the
CK terms.

6.2.6.2. Treatment of LP3C . Turn first to LP3CHL, in which the coefficient is
in ‘high frequency’. By (2.48), Lemma 4.1, (4.29c), and Lemma 4.11, we have

LP3CHL ! ε

〈νt3〉α
∑

k,l

∫ ∣∣∣A3Q̂3
k(η, l)

∣∣∣
1

〈ξ, l′〉 〈t〉A
(∣∣∣ψ̂z(ξ, l)Hi

∣∣∣+ 〈t〉−1
∣∣∣φ̂z(ξ, l)Hi

∣∣∣
)

× Low(k, η − ξ, l− l′)dηdξ

! ε

〈t〉 〈νt3〉α
∥∥A3Q3

∥∥
2
‖AC‖2 ,

which is consistent with Proposition 2.1 for ε sufficiently small.
Next turn to LP3CLH , which by Lemma 4.11 and (4.3), is controlled via

LP3CLH ! ε 〈t〉
∑

k "=0,l

∫

η

∣∣∣A3Q̂3
k(η, l)

∣∣∣
|k| |ξ − kt, l′|(

k2 + (l′)2 + |ξ − kt|2
)〈

t
〈ξ,l′〉

〉

×
∣∣∣A2 ̂(∆LU2)k(ξ, l

′)
∣∣∣Low(η − ξ, l − l′)dη.
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We may treat this in a manner similar to the canonical NLP (1, 3, 0, 3=) on Q2

in §5.2.1.1. Indeed, by (4.14) and (4.29c) we have,

LP3CHL ! c0

∥∥∥∥∥

(√
∂tw

w
Ã3+

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥

2

2

+c0

∥∥∥∥∥

(√
∂tw

w
Ã2+

|∇|s/2

〈t〉s
A2

)
∆LU

2
"=

∥∥∥∥∥

2

2

+ ε
∥∥A3Q3

"=
∥∥
2

∥∥∆LA
2U2

"=
∥∥
2
,

which by Lemmas D.6 and D.7, is consistent with Proposition 2.1 by the bootstrap
hypotheses. The remainder term LP3R is straightforward and is omitted for the
sake of brevity; this completes the treatment of LP3.
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CHAPTER 7

High norm estimate on Q1
0

In this chapter we improve estimate (2.42c) for ν sufficiently small. As in [5],
the improvement of (2.42a) proceeds slightly differently than most other estimates
we are making. The goal is to obtain exactly O(ε 〈t〉) growth, rather than any
logarithmic losses in t or ε. We will deduce an estimate like

1

2

d

dt

∥∥A1Q1
0

∥∥2
2
≤ − t

〈t〉2
∥∥A1Q1

0

∥∥2
2
+

1

〈t〉
∥∥A1Q1

0

∥∥
2

∥∥A2Q2
0

∥∥
2
+ c0ε

2I(t)

≤ − t

〈t〉2
∥∥A1Q1

0

∥∥2
2
+

4ε

〈t〉
∥∥A1Q1

0

∥∥
2
+ c0ε

2I(t),(7.1)

where
∫ c0ε

−1

1 I(t)dt = O(KB) uniformly in ε. This yields the desired bound by

comparing X(t) =
∥∥A1Q1

0(t)
∥∥2
2
to the super-solution of the inequality given by

Y (t) = max( 32KH10, 6
√
2)ε+ c0ε2

∫ t
1 I(τ )dτ and choosing c0 sufficiently small. In-

deed (for KH10 sufficiently large),

∂tY (t) = c0ε
2I(t) ≥

(
− t

〈t〉2
Y (t) +

4ε

〈t〉

)
Y (t) + c0ε

2I(t),

as the additional two terms on the RHS sum to something negative by the choice
of Y (t) (recall t ≥ 1). By Lemma 3.1, X(1) < Y (1), and therefore by comparison
and (7.1), X(t) ≤ Y (t) for all t ∈ [1, T().

Therefore, improving (2.42a) reduces to proving an estimate like (7.1). From
the evolution equation for Q1

0, using enumerations analogous to (5.3) and (6.2)
above,

1

2

d

dt

∥∥A1Q1
0

∥∥2
2
≤ λ̇

∥∥∥|∇|s/2 A1Q1
0

∥∥∥
2

2
−

∥∥∥∥∥

√
∂tw

w
Ã1Q1

0

∥∥∥∥∥

2

2

− t

〈t〉2
∥∥A1Q1

0

∥∥2
2

−
∫

A1Q1
0A

1Q2
0dV + ν

∫
A1Q1

0A
1
(
∆̃tQ

1
0

)
dV

−
∫

A1Q1
0A

1
(
Ũ0 ·∇Q1

0

)
dV

−
∫

A1Q1
0A

1
(
Qj

0∂
t
jU

1
0 + 2∂t

iU
j
0∂

t
ijU

1
0

)
dV

−
∫

A1Q1
0A

1
(
Qj

"=∂
t
jU

1
"= + 2∂t

iU
j
"=∂

t
ijU

1
"=

)

0
dV

= −DQ1
0+CK1

L+LU+DE+T0+NLS1(j, 0)+NLS2(i, j, 0)+F ,(7.2)

83

Licensed to New York Univ, Courant Inst.  Prepared on Mon Oct  3 02:20:18 EDT 2022for download from IP 91.230.41.207.



84 7. HIGH NORM ESTIMATE ON Q1
0

where we are denoting

DE = ν

∫
A1Q1

0A
1
(
(∆̃t −∆L)Q

1
0

)
dV.

As above in (5.3) and (6.2), we have decomposed the nonlinear terms based on the
heuristics in §2.2.1.

Notice that, due to the X average, the linear pressure and stretching terms
both disappear along with the nonlinear pressure. Hence the main growth of Q1

0 is
caused by the lift-up effect term, LU . This term is treated by Cauchy-Schwarz:

LU ≤ 〈t〉−1 ∥∥A1Q1
0

∥∥
2

∥∥A2Q2
0

∥∥
2
,

which, together with (2.42c) is responsible for the leading order linear term in (7.1).
It remains to see how to control the nonlinear terms.

7.1. Transport nonlinearity

By Lemma 4.10 (with (2.43c) and (2.43d)),

T0 ! ‖g‖Gλ,γ

∥∥A1Q1
0

∥∥
2

∥∥∇A1Q1
0

∥∥
2
+ ‖Ag‖2

∥∥A1Q1
0

∥∥2
2
! ε3/2

∥∥∇A1Q1
0

∥∥2
2

+

(
ε1/2

〈t〉4
+ ε

)
∥∥A1Q1

0

∥∥2
2
,

which is consistent with Proposition 2.1 for c0 and ε sufficiently small.

7.2. Nonlinear stretching

This term is the analogue of those treated in §5.1.2 and corresponds to the
nonlinear stretching effects on Q1

0 involving only zero frequencies (the pressure
disappears due to the X average). The treatment of this term can be made in the
same way as the corresponding treatment for Q2 in §5.1.1 and §5.1.2, although it
is slightly easier here as we are permitting growth on Q1

0, unlike Q2
0 (in particular

A1
0 ≈ 〈t〉−1 A2

0). Hence, these contributions are omitted for brevity.

7.3. Forcing from non-zero frequencies

In this section we consider interactions of type (F) (see §2.2.1): the forcing of
non-zero frequencies directly back onto Q1

0. Recall from (2.30),

F = −
∫

A1Q1A1
(
∂t
Y ∂

t
Y ∂

t
Y

(
U2
"=U

1
"=
)
0
+ ∂t

Y ∂
t
Y ∂

t
Z

(
U3
"=U

1
"=
)
0

)
dV

−
∫

A1Q1A1
(
∂t
Z∂

t
Z∂

t
Z

(
U3
"=U

1
"=
)
0
+ ∂t

Z∂
t
Z∂

t
Y

(
U2
"=U

1
"=
)
0

)
dV

= F 1 + F 2 + F 3 + F 4.

Let us begin with F 2 (corresponding to i = 2 and j = 3); the treatment is also
essentially the same as F 3. Note the terms involving U3 are expected to be the
worst due to the regularity imbalances. Decompose the F 2 with a paraproduct; as
usual we group contributions where the coefficients appear in low frequency with
the remainder:

F 2 = −
∑

k "=0

∫
A1Q1

0A
1
0∂Y ∂Y ∂Z

((
U3
−k

)
Hi

(
U1
k

)
Lo

)
dV
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−
∑

k "=0

∫
A1Q1

0A
1
0∂Y ∂Y ∂Z

((
U3
−k

)
Lo

(
U1
k

)
Hi

)
dV

−
∑

k "=0

∫
A1Q1

0A
1
0

(
((ψy)Hi∂Y + (φy)Hi∂Z) ∂Y ∂Z

((
U3
−k

)
Lo

(
U1
k

)
Lo

))
dV

−
∑

k "=0

∫
A1Q1

0A
1
0∂Y

(
((ψy)Hi∂Y + (φy)Hi∂Z) ∂Z

((
U3
−k

)
Lo

(
U1
k

)
Lo

))
dV

−
∑

k "=0

∫
A1Q1

0A
1
0∂Y ∂Y

(
((ψz)Hi∂Y + (φz)Hi∂Z)

((
U3
−k

)
Lo

(
U1
k

)
Lo

))
dV

+ F 2
R,C

= F 2
HL + F 2

LH + F 2
C1 + F 2

C2 + F 2
C3 + F 2

R,C .(7.3)

Turn first to F 2
HL. By (2.48), Lemma 4.1, (4.26a), (4.17), and (4.29c),

F 2
HL ! ε

〈νt3〉α
〈t〉δ1

∑

l,l′,k "=0

∫ ∣∣∣∣∣A
1Q̂1

0(η, l)A
1
0(η, l)

|η|2 |l|
k2 + (l′)2 + |ξ − kt|2

∆LÛ3
k (ξ, l

′)Hi

∣∣∣∣∣

× Low(−k, η − ξ, l − l′)dηdξ

! ε

〈νt3〉α
〈t〉δ1−1

∑

l,l′,k "=0

∫ ∣∣∣Q̂1
0(η, l)

∣∣∣
|η|2 |l|

〈
t

〈ξ,l′〉

〉2

k2 + (l′)2 + |ξ − kt|2

×
(
∑

r

χr,NR t

|r|+ |η − tr| Ã
1
0(η, l)Ã

3
k(ξ, l

′) + χ∗;23A1
0(η, l)A

3
k(ξ, l

′)

)

×
∣∣∣∆LA

3Û3
k (ξ, l

′)Hi

∣∣∣Low(−k, η − ξ, l − l′)dηdξ

! ε 〈t〉1+δ1

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã1+

|∇|s/2

〈t〉s
A1

)
Q1

0

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3+

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥
2

+
ε

t1−δ1 〈νt3〉α
∥∥∥
√
−∆LA

1Q1
∥∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
,

which, after the application of Lemmas D.6 and D.7, is consistent with (7.1) for ε
sufficiently small.

Turn next to F 2
LH , which also by (4.3), (4.17) and (4.29a) we have

F 2
LH =

ε

〈νt3〉α
∑

l,l′,k "=0

∫
∣∣∣∣∣∣∣
A1Q̂1

0(η, l)
|η|2 |l|

〈
t

〈ξ,l′〉

〉1+δ1

k2 + (l′)2 + |ξ − kt|2
∆LA

1Û1
k (ξ, l

′)Hi

∣∣∣∣∣∣∣

× Low(−k, η − ξ, l − l′)dηdξ

s ! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
+

|∇|s/2

〈t〉s

)
A1Q1

0

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
∆LU

1
"=

∥∥∥∥∥
2

+
ε

〈νt3〉α
∥∥∥
√
−∆LA

1Q1
∥∥∥
2

∥∥A1∆LU
1
"=
∥∥
2
,

which, after the application of the Lemmas D.6 and D.7, is consistent with (7.1).
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0

The most difficult coefficient error term in (7.3) is F 2
C3. By Lemma 4.1, (4.29c),

and Lemma 4.11,

F 2
C3 ! ε2 〈t〉δ1

〈
νt3

〉−2α ∑

l,l′,k "=0

∫ ∣∣∣A1Q̂1
0(η, l)

∣∣∣A1
0(η, l) |η|

2

×
(∣∣∣ψ̂z(ξ, l

′)Hi

∣∣∣+
∣∣∣φ̂z(ξ, l

′)Hi

∣∣∣
)
Low(k, η − ξ, l − l′)dηdξ

! ε3/2
∥∥∇A1Q1

0

∥∥2
2
+

ε5/2 〈t〉2δ1

〈νt3〉4α
‖AC‖22 ,

which is consistent with (7.1) for c0 and ε sufficiently small by (2.43b). The other
coefficient terms in (7.3), F 2

C1 and F 2
C2 are easier and give similar contributions.

Hence, these are omitted for the sake of brevity. The remainder term in (7.3), F 2
R,

is similarly straightforward and is omitted as well. This completes the treatment
of F 2. Despite appearing rather different, in fact the treatment of F 3 is essentially
the same. Indeed, the regularity imbalances are restricted to where |∂Z | ! |∂Y |
and hence, for frequencies where the regularity imbalances are occurring, F 3 looks
roughly like F 2 and the same treatment applies. Outside of the regularity imbal-
ances, one simply uses that ∆L is uniformly elliptic in Z in the same way non-
resonance is used above in the treatment of F 2 (see §4.1 for more details). As the
details are exactly the same as above, we omit them for brevity.

The other F terms, F 1 and F 4, are treated as in [5]; F 1 is slightly harder. The
main idea is similar to the treatment of F 2 above, however one instead uses (4.17c)
for F 1 (and (4.17b) for F 4) and hence deduce

F 1 + F 4 ! ε 〈t〉2+δ1

〈νt3〉α

∥∥∥∥∥

(√
∂tw
w

Ã1 +
|∇|s/2

〈t〉s A1

)
Q1

0

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw
w

Ã2 +
|∇|s/2

〈t〉s A2

)
∆LU

2
$=

∥∥∥∥∥
2

+
ε 〈t〉δ1
〈νt3〉α

∥∥∥
√
−∆LA

1Q1
0

∥∥∥
2

∥∥A2∆LU
2
$=
∥∥
2

+
ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw
w

Ã1 +
|∇|s/2

〈t〉s A1

)
Q1

0

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw
w

Ã1 +
|∇|s/2

〈t〉s A1

)
∆LU

1
$=

∥∥∥∥∥
2

+
ε 〈t〉δ1
〈νt3〉α

∥∥∥
√
−∆LA

1Q1
∥∥∥
2

∥∥A1∆LU
1
$=
∥∥
2
,

which, after applying Lemmas D.6 and D.7, is consistent with 7.1 under the boot-
strap hypotheses for c0 and ε chosen sufficiently small. This completes all of the
forcing terms.

7.4. Dissipation error terms

As in [5], these can be treated in the same manner as the dissipation error
terms on Q2

0 were treated in §5.1.4. We omit the details for brevity:

DE ! c0ν
∥∥∥
√
−∆LA

1Q1
0

∥∥∥
2

2
+ νε2c−1

0 ‖∇AC‖22 ,(7.4)

which for c0 sufficiently small, is consistent with Proposition 2.1. This completes
the high norm estimate on Q1

0.
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CHAPTER 8

High norm estimate on Q1
3=

In this chapter we improve estimate (2.42b) for ν sufficiently small. Consider
from the evolution equation for Q1

"=:

1
2
d
dt

∥∥A1Q1
$=
∥∥2

2
≤ λ̇

∥∥∥|∇|s/2 A1Q1
$=

∥∥∥
2

2
−

∥∥∥∥∥

√
∂tw
w

Ã1Q1
$=

∥∥∥∥∥

2

2

−

∥∥∥∥∥

√
∂twL

wL
A1Q1

$=

∥∥∥∥∥

2

2

− t

〈t〉2
∥∥A1Q1

$=
∥∥2

2
− (1 + δ1)

t

∥∥∥1t>〈∇Y,Z〉A
1Q1

$=

∥∥∥
2

2

−
∫

A1Q1
$=A

1Q2
$=dV −2

∫
A1Q1A1∂t

Y XU1
$=dV +2

∫
A1Q1

$=A
1∂XXU2

$=dV

+ ν

∫
A1Q1

$=A
1
(
∆̃tQ

1
$=

)
dV −

∫
A1Q1

$=A
1
(
Ũ ·∇Q1

)
dV

−
∫

A1Q1
$=A

1
[
Qj∂t

jU
1 + 2∂t

iU
j∂t

ijU
1 − ∂X

(
∂t
iU

j∂t
jU

i
)]

dV

= −DQ1
$= − CK1

L1 − (1 + δ1)CK1
L2 + LU + LS1 + LP1

+DE + T +NLS1 +NLS2 +NLP,(8.1)

where as usual

DE =

∫
A1Q1

"=A
1
(
(∆̃t −∆L)Q

1
"=

)
dV.

We define enumerations of the nonlinear terms analogous to those in (5.3) and (6.2).

8.1. Linear stretching term LS1

As discussed in [5], one of the difficulties in deducing the high norm estimate
on Q1

"= is the linear stretching term LS1. First separate into two parts (to be
sub-divided further),

LS1 = −2

∫
A1Q1A1∂X(∂Y − t∂X)U1dV

− 2

∫
A1Q1A1∂X ((ψy)(∂Y − t∂X) + (φy)∂Z)U

1dV

= LS10 + LS1C .

8.1.1. Treatment of LS1C. The LS1C term can be treated in essentially the
same manner as the corresponding LS3C in §6.2.5.1. Hence, we omit the details
for brevity.
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$=

8.1.2. Leading order term LS10. As in (6.4) of §6.2.5.2, we first expand by
writing out ∆−1

t in terms of ∆L:

LS10 = −2

∫
A1Q1A1∂X(∂Y − t∂X)∆−1

L

[
Q1 −Gyy(∂Y − t∂X)2U1

−Gyz∂Z(∂Y − t∂X)U1

−Gzz∂ZZU
1 −∆tC

1(∂Y − t∂X)U1 −∆tC
2∂ZU

1
]
dV

= LS10;0 +
5∑

i=1

LS10;Ci.

The leading order term is treated as in [5] (with the slight variation for large
Z frequencies as used in §6.2.5.2 above), and hence we omit the treatment and
conclude the following for some K > 0,

LS10,0 ≤ (1− δ1)CK1
L1 + (1 + δ1)CK1

L2 +
δλ

10 〈t〉3/2
∥∥∥|∇|s/2 A1Q1

"=

∥∥∥
2

2

+
K

κ

∥∥∥∥∥

√
∂tw

w
Ã1Q1

"=

∥∥∥∥∥

2

2

+
K

δ
1

2s−1

λ 〈t〉3/2
∥∥A1Q1

"=
∥∥2
2
+K

1 + δ1

〈t〉2 t
∥∥A1Q1

"=
∥∥2
2
,

which is consistent with Proposition 2.1 under the bootstrap hypotheses for KH1"=

sufficiently large relative to exp(Kδ
− 1

2s−1

λ ) (also, κ must be chosen sufficiently large,
but relative only to a universal constant).

The error terms LS10;Ci are treated in a manner similar to the analogous terms
in LS3 in §6.2.5.2 and hence the details are omitted for brevity (indeed A1

k is a

weaker norm than A3
k due to the extra 〈t〉−1 decay). This completes the treatment

of the LS1 term.

8.2. Lift-up effect term LU

This follows as in [5], and hence we omit the details:

LU ≤ δ1t 〈t〉−2 ∥∥A1Q1
"=
∥∥2
2
+

δλ
4δ1t3/2

∥∥∥|∇|s/2 A2Q2
"=

∥∥∥
2

2

+
1

4δ
1

2s−1

λ t3/2

∥∥A2Q2
"=
∥∥2
2
+

1

4δ1t

∥∥1t>〈∇Y,Z〉A
2Q2

"=
∥∥2
2
.

The first term is absorbed by the remaining piece of CK1
L1 left over in (8.1) from

the treatment of LS1. The others are consistent with Proposition 2.1 via (2.42c)
for KH1"= large relative to δ−1

1 and δ−1
λ . Hence, this suffices to treat LU .
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8.3. Linear pressure term LP1

The linear pressure term LP3 treated in §6.2.6 is significantly harder than LP1
here, as here only X derivatives are involved. Therefore, from Lemma C.7, we get
(the implicit constant is independent of κ),

LP1 ≤ 2
∑∫ ∣∣∣∣∣A

1Q̂1
k(η, l)

|k|2

k2 + l2 + |η − kt|2
A1∆LÛ2

k (η, l)

∣∣∣∣∣ dη

!κ−1 〈t〉−1

∥∥∥∥∥

(√
∂tw

w
Ã1+

|∇|s/2

〈t〉s
A1

)
Q1

"=

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã2+

|∇|s/2

〈t〉s
A2

)
∆LU

2
"=

∥∥∥∥∥
2

+ 〈t〉−3 ∥∥A1Q1
∥∥
2

∥∥A2∆LU
2
"=
∥∥
2
.

Therefore for κ and KH1"= sufficiently large and c0 sufficiently small, this is consis-
tent with Proposition 2.1 by the bootstrap hypotheses after applying Lemmas D.6
and D.7.

8.4. Nonlinear pressure NLP

After cancellations, none of the existing terms here are worse than those ap-
pearing in Q2 in §5.2.1 or Q3 in §6.2.1. Moreover, on Q1 we are imposing less
control (since A1 is weaker than A2,3 at high frequencies due to 〈t〉−1) and the
leading derivative is an X derivative, which is generally less dangerous than those
associated with Y and Z. Therefore, the treatment of the NLP contributions here
are an easy variant of the treatments in §5.2.1 and §6.2.1. Accordingly, the details
are omitted for the sake of brevity.

8.5. Nonlinear stretching NLS

These terms can be slightly more dangerous than the corresponding NLS terms
in Q2,3 due to the persistent presence of U1, however, this will be naturally balanced
by the allowed linear growth of Q1 at high frequencies.

8.5.1. Treatment of NLS1. Consider first the NLS1(j, 3=, 0) terms. Note
j 3= 1 due to the zero frequencies (a crucial nonlinear structure). The case j = 3 is
worse than j = 2 due to the large growth and regularity imbalances in Q3. Hence,
let us just focus on the case j = 3. As usual, with a paraproduct and group any
terms with coefficients in low frequencies in with the remainder:

NLS1(3, &=, 0) = −
∑∫

A1Q1
kA

1 ((Q3
k)Hi(∂ZU

1
0 )Lo

)
dV

−
∑∫

A1Q1
kA

1 ((Q3
k)Lo(∂ZU

1
0 )Hi

)
dV

−
∑∫

A1Q1
kA

1 ((Q3
k)Lo ((ψz)Hi∂Y + (φz)Hi∂Z) (U

1
0 )Lo

)
dV + SR,C

= SHL + SLH + SC + SR,C ,

where SR,C includes the remainders from the paraproduct and the low frequency
coefficient terms. By (2.49), Lemma 4.1, followed by (4.23), (5.7), and (4.29c),

SHL ! ε 〈t〉
∑

k

∫ ∣∣∣∣∣Q̂
1
k(η, l) 〈t〉

−1
〈

t

〈ξ, l′〉

〉1−δ1
∣∣∣∣∣
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×
(
∑

r

χr,NR t

|r|+ |η − tr| Ã
1
k(η, l)Ã

3
k(ξ, l

′) + χ∗;23A1
k(η, l)A

3
k(ξ, l

′)

)

×
∣∣∣Q̂3

k(ξ, l
′)Hi

∣∣∣Low(η − ξ, l − l′)dηdξ

! ε 〈t〉

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
Q1

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
Q3

∥∥∥∥∥
2

+ ε3/2
∥∥∥
√

−∆LA
1Q1

"=

∥∥∥
2
+ 1t≤ε−1/2+δ/100ε1/2

∥∥A3Q3
∥∥2
2

+ ε3/2−δ/50
∥∥∥
√
−∆LA

3Q3
∥∥∥
2

2
,

which is consistent with Proposition 2.1 for ε and εt ≤ c0 sufficiently small.
For SLH we use Lemma 4.1 and (2.48) followed by (4.29c),

SLH ! ε 〈t〉2

〈νt3〉α
∑

k

∫ ∣∣∣∣∣A
1Q̂1

k(η, l)
1

〈ξ, l′〉

〈
t

〈ξ, l′〉

〉−1−δ1

×A1 〈∇〉2 Û1
0 (ξ, l

′)HiLow(k, η − ξ, l − l′)
∣∣∣ dηdξ

! ε 〈t〉
〈νt3〉α

∥∥A1Q1
∥∥
2

∥∥∥A1 〈∇〉2 U1
0

∥∥∥
2
,

which is consistent with Proposition 2.1 for ε and c0 sufficiently small. Similarly,

SC ! ε2 〈t〉
〈νt3〉α

∥∥A1Q1
∥∥
2
‖AC‖2 ! ε1/2

〈νt3〉α
∥∥A1Q1

∥∥2
2
+

ε5/2t2

〈νt3〉α
‖AC‖22 ,

which is consistent with Proposition 2.1 for δ > 0 and ε sufficiently small. The
remainder terms are similar to the above and are hence omitted for brevity. This
completes the treatment of the NLS1(3, 3=, 0) terms; the other j are simpler.

Next consider the NLS1(j, 0, 3=) terms. The most difficult is naturally the case
j = 1 (which does not cancel); the others are simpler and are hence omitted for
brevity. Expand with a paraproduct,

NLS1(1, 0, 3=) = −
∑∫

A1Q1
kA

1
(
(Q1

0)Hi(∂XU1
k )Lo

)
dV

−
∑∫

A1Q1
kA

1
(
(Q2

0)Lo(∂XU1
k )Hi

)
dV + SR,C

= SHL + SLH + SR,C .

From Lemma 4.1 and (2.48),

SHL ! ε 〈t〉δ1

〈νt3〉α
∑

k

∫ ∣∣∣∣∣A
1Q̂1

k(η, l)

〈
t

〈ξ, l′〉

〉−1−δ1

A1Q̂1
0(ξ, l

′)Hi

×Low(η − ξ, l − l′)| dηdξ

! ε 〈t〉δ1

〈νt3〉α
∥∥A1Q1

"=
∥∥
2

∥∥A1Q1
0

∥∥
2
.

From (4.3), (2.49), and (4.14),

SLH ! εt
∑

k

∫ ∣∣∣∣∣A
1Q̂1

k(η, l)
|k|

k2 + (l′)2 + |ξ − kt|2
∆LA

1Û1
k (ξ, l

′)Hi
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×Low(η − ξ, l− l′)| dηdξ

! εt

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
Q1

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
∆LU

1
"=

∥∥∥∥∥
2

+ ε
∥∥A1Q1

∥∥
2

∥∥A1∆LU
1
"=
∥∥
2
,

which is consistent with Proposition 2.1 by Lemmas D.6 and D.7. This completes
the NLS1(j, 0, 3=) terms.

Finally consider the NLS1(j, 3=, 3=) terms. All these terms are treated similarly,
hence, consider just j = 3. Expand as above

NLS1(3, 3=, 3=) = −
∫

A1Q1
"=A

1
(
(Q3

"=)Hi(∂ZU
1
"=)Lo

)
dV

−
∫

A1Q1
"=A

1
(
(Q3

"=)Lo(∂ZU
1
"=)Hi

)
dV

−
∑∫

A1Q1
"=A

1
(
(Q3

"=)Lo ((ψz)Hi(∂Y − t∂X)

+(φz)Hi∂Z) (U
1
"=)Lo

)
dV + SR,C

= SHL + SLH + SC + SR,C .

For SHL, we have by (2.48), Lemma 4.1, and (4.29c) (a power of t is lost due to
the regularity imbalances),

SHL ! ε 〈t〉δ1

〈νt3〉α
∑∫

1kk′(k−k′) "=0

∣∣∣A1Q̂1
k(η, l)

∣∣∣

×
〈

t

〈ξ, l′〉

〉1−δ1 ∣∣∣A3Q̂3
k′(ξ′, l′)Hi

∣∣∣Low(k − k′, η − ξ, l − l′)dηdξ

! εt

〈νt3〉α
∥∥A1Q1

"=
∥∥
2

∥∥A3Q3
∥∥
2
,

which is consistent with Proposition 2.1. For SLH we have by (2.42), (4.3), (4.15),
and (4.29c),

SLH ! ε 〈t〉2

〈νt3〉α
∑

k

∫
1kk′(k−k′) "=0

∣∣∣∣A
1Q̂1

k(η, l)
1

|k′|+ |l′|+ |η − k′t|∆LA
1Û1

k′(ξ, l′)Hi

∣∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
Q1

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
∆LU

1
"=

∥∥∥∥∥
2

+
ε 〈t〉
〈νt3〉α

∥∥A1Q1
∥∥
2

∥∥A1∆LU
1
"=
∥∥
2
,

which by Lemmas D.7 and D.6, is consistent with Proposition 2.1 for ε sufficiently
small. The coefficient error terms are similar to those that arise in e.g. NLP (i, j, 3=
, 3=) and are hence omitted for brevity (although they require the hypothesis ε !
ν2/3+δ for δ > 0). The remainder terms are either easier or similar to the above
treatments and hence can also be omitted.

As discussed above, the remaining NLS1 terms are similar or easier and hence
are safely omitted. This completes the NLS1 terms.
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8.5.2. Treatment of the NLS2 terms. Turn to the NLS2 terms. These
terms are all treated via easy variants of the treatments of the NLS1 and NLP
terms. They are hence omitted for the sake of brevity.

8.6. Transport nonlinearity T

In this section, we treat the (SI) and (3DE) contributions to the transport
nonlinearity, given by T"=. Begin with a paraproduct decomposition:

T"= = −
∫

A1Q1
"=A

1
(
ŨLo ·∇Q3

Hi

)
dV −

∫
A3Q3A3

(
ŨHi ·∇Q3

Lo

)
dV + TR

= TT + TR + TR,

where TR includes the remainder. Due to the lack of regularity imbalances in A1,
the transport and remainder contributions, TT and TR respectively, are treated as
in §5.2.3, with the exception of TT ; "=0, which needs a slight adjustment as in [5].
However, the treatment applied there also applies here, and hence, we omit the
treatments and conclude

TT + TR ! ε3/2
∥∥∥
√
−∆LA

1Q1
∥∥∥
2

2
+

(
ε1/2

〈t〉2
+

ε1/2 〈t〉2δ1

〈νt3〉2α

)
∥∥A1Q1

∥∥2
2
.(8.2)

Turn to the reaction contribution. As in §5.2.3 and §6.2.3, decompose the reaction
term based on the X dependence of each factor:

TR = −
∫

A1Q1A1
(
(Ũ"=)Hi · (∇Q1

0)Lo

)
dV −

∫
A1Q1A1

(
gHi∂Y (Q

1
"=)Lo

)
dV

−
∫

A1Q1A1
(
(Ũ"=)Hi · (∇Q1

"=)Lo

)
dV

= TR; "=0 + TR;0"= + TR; "= "=.

8.6.1. Reaction term TR;0"=. By (2.44a) and Lemma 4.1, we get (also noting
(2.22)):

TR;0"= ! ε 〈t〉2+δ1

〈νt3〉α
∑

k "=0

∫ ∣∣∣A1Q̂1
k(η, l)A

1
k(η, l)ĝ(ξ, l

′)Hi

∣∣∣Low(k, η − ξ, l − l′)dξdη

! ε

〈νt3〉α
∥∥A1Q1

"=
∥∥
2
‖Ag‖2 ,

which is consistent with Proposition 2.1.

8.6.2. Reaction term TR; "=0. For this term we use a slight variant of the

treatment found in §5.2.3.4. Note that Q1
0 is O(t) larger than Q2

0 but A
1 ! 〈t〉−1 A2,

and hence the allowed growth in A1 will balance the extra growth in these terms.
Therefore, these can be treated in the same fashion as was done in §5.2.3.4. Hence,
we omit the details for brevity.
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8.6.3. Reaction term TR; "= "=. This reaction term is slightly different than the
analogous terms in §5.2.3.5 and §6.2.3.6, as we are not allowing a norm imbalance
like in §6.2.3.6 but instead are allowing a steady linear growth. As in §5.2.3.5 above,
we further decompose in terms of frequency:

TR; "= "= ! ε 〈t〉2+δ1

〈νt3〉α
∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A1Q̂1
k(η, l)A

1
k(η, l)Û

1
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε 〈t〉3+δ1

〈νt3〉α
∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A1Q̂1
k(η, l)A

1
k(η, l)Û

2
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε 〈t〉2+δ1

〈νt3〉α−1

∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A1Q̂1
k(η, l)A

1
k(η, l)Û

3
k′(ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε2 〈t〉2+δ1

〈νt3〉α
∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A1Q̂1
k(η, l)

∣∣∣A1
k(η, l)

(∣∣∣ψ̂y(ξ, l
′)Hi

∣∣∣

+
∣∣∣φ̂y(ξ, l

′)Hi

∣∣∣+
∣∣∣φ̂z(ξ, l

′)Hi

∣∣∣
)
× Low(k − k′, η − ξ, l − l′)dηdξ

+
ε2 〈t〉3+δ1

〈νt3〉α
∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A1Q̂1
k(η, l)A

1
k(η, l)ψ̂z(ξ, l

′)Hi

∣∣∣

× Low(k − k′, η − ξ, l − l′)dηdξ + TR; "= "=;R

= T 1
R; "= "= + T 2

R; "= "= + T 3
R; "= "= + T C1

R; "= "= + T C2
R; "= "= + TR; "= "=;R.

Consider T 1
R; "= "=. By (4.3) followed by (4.15) and (4.29c),

T 1
R;$=$= ! ε 〈t〉2+δ1

〈νt3〉α
∑

k,k′

∫
1kk′(k−k′) $=0

∣∣∣A1Q̂1
k(η, l)

∣∣∣
1

|k′|2 + |l′|2 + |ξ − k′t|2
∣∣∣A1∆LÛ

1
k′ (ξ, l′)Hi

∣∣∣

× Low(k − k′, η − ξ, l− l′)dηdξ

! ε 〈t〉2+δ1

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
Q1

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
∆LU

1
$=

∥∥∥∥∥
2

+
ε 〈t〉δ1

〈νt3〉α
∥∥A1Q1

∥∥
2

∥∥∥A1∆LU
1
$=

∥∥∥
2
,

which by Lemmas D.6 and D.7, is consistent with Proposition 2.1. The term T 2
R; "= "=

is treated in essentially the same way and is hence omitted (that A1 ! 〈t〉−1 A2

recovers the additional power of t from the low frequency factor in T 2
R; "= "=).

Next, turn to the treatment of T 3
R; "= "=. By Lemma 4.1 followed by (4.24c) and

(4.29c),

T 3
R; "= "= ! ε 〈t〉2+δ1

〈νt3〉α
∑

k,k′

∫
1kk′(k−k′) "=0

∣∣∣A1Q̂1
k(η, l)

∣∣∣
1

|k′|2 + |l′|2 + |ξ − k′t|2

×
(
∑

r

χr,NR t

|r|+ |η − tr| + χ∗;23

)
1

〈t〉

〈
t

〈ξ, l′〉

〉1−δ1
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×
∣∣∣A3∆LÛ

3
k′(ξ, l′)Hi

∣∣∣Low(k − k′, η − ξ, l − l′)dηdξ

! ε 〈t〉1+δ1

〈νt3〉α
∥∥A1Q1

∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
,

which is consistent by Lemma D.7.
The coefficient and remainder terms can be treated in exactly the same manner

as in §6.2.3.6 and are therefore omitted for the sake of brevity. This completes the
treatment of TR; "= "= and hence all of T .

8.7. Dissipation error terms D

These terms are treated in the same manner as the corresponding terms in Q3,
found in §6.2.4. The results are analogous to those found therein and are hence
here omitted for brevity.

This completes the high norm estimate on Q1
"=.
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CHAPTER 9

Coordinate system controls

In this chapter we prove the necessary controls on Ci and the auxiliary unknown
g (specifically the estimates (2.43)).

9.1. High norm estimate on g

We will begin by improving (2.43c), which roughly measures the time-
oscillations between U1

0 and C1, and hence measures the time-oscillations of the
y component of the shear. From (2.24) we have

1

2

d

dt
‖Ag‖22 = −CKg

λ − CKg
w − 2

t
‖Ag‖22 −

∫
AgA (g∂Y g) dV

+

∫
AgA

(
∆̃tg

)
dV − 1

t

∑

k "=0

∫
AgA

(
U−k ·∇tU1

k

)
dV

= −Dg + T +DE + F .

9.1.1. Transport nonlinearity. By Lemma 4.10 and (2.43d), we have

T ! ‖Ag‖22 ‖g‖Gλ + ‖Ag‖2 ‖g‖Gλ ‖∇Ag‖2 ! ε1/2

〈t〉2
‖Ag‖22 + ε3/2 ‖∇Ag‖22 ,

which is consistent with Proposition 2.1 for ε sufficiently small,

9.1.2. Dissipation error terms. Recall that the dissipation error terms are
of the form

DE = ν

∫
AgA

(
Gyy∂

2
Y g +Gyz∂Y Zg +Gzz∂ZZg

)
dV.

We may treat these as in [5] (for which we use essentially the same treatment as in
§5.1.4, despite the higher regularity of A). Using that approach we have,

DE ! c0ν ‖∇Ag‖22 + ν ‖Ag‖2 ‖∇AC‖2 ‖∇Ag‖2 ! c0ν ‖∇Ag‖22 + c−1
0 ε2ν ‖∇AC‖22 ,

which is consistent with Proposition 2.1 for c0 sufficiently small.

9.1.3. Forcing from non-zero frequencies. Analogous to (2.30), by the
divergence-free condition we have,

F = −
∑

k "=0

1

t

∫
AgA

(
∂t
Y

(
U2
−kU

1
k

)
+ ∂t

Z

(
U3
−kU

1
k

))
dV = FY + FZ .

95
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96 9. COORDINATE SYSTEM CONTROLS

Consider FY first. Expand with a paraproduct and group terms where the
coefficients appear in low frequency with the remainder:

FY = −
∑

k "=0

1

t

∫
AgA∂Y

(
(U2

−k)Lo(U
1
k )Hi

)
dV

−
∑

k "=0

1

t

∫
AgA∂Y

(
(U2

−k)Hi(U
1
k )Lo

)
dV

−
∑

k "=0

1

t

∫
AgA

(
((ψy)Hi∂Y + (φy)Hi∂Z)

(
(U2

−k)Lo(U
1
k )Lo

))
dV + FY ;R,C

= FY ;LH + FY ;HL + FY ;C + FY ;R,C .

By (2.48) and (4.3)

FY ;LH ! ε

t 〈t〉 〈νt3〉α
∑

k "=0

∑

l,l′

∫
|Aĝ(η, l)|

〈t〉 |η| 〈η, l〉2
〈

t
〈η,l〉

〉1+δ1

k2 + (l′)2 + |ξ − kt|2

×
∣∣∣A1∆LÛ1

k (ξ, l
′)Hi

∣∣∣Low(−k, η − ξ, l − l′)dηdξ.

By (4.17) and (4.29c), we therefore have

FY ;LH ! ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
g

∥∥∥∥∥

2

2

+
ε 〈t〉2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
∆LU

1
"=

∥∥∥∥∥
2

+ ε3/2
∥∥∥
√
−∆LAg

∥∥∥
2

2
+

ε1/2

〈t〉2 〈νt3〉2α
∥∥A1∆LU

1
"=
∥∥2
2
,

which, by Lemmas D.6 and D.7, is consistent with Proposition 2.1 for δ1 and ε
sufficiently small.

Turn next to FY ;HL. Similar to FY ;LH , we get from (2.48), (4.3), (4.17), and
(4.29c) we get

FY ;HL ! ε 〈t〉δ1

t 〈νt3〉α
∑

k "=0

∑

l,l′

∫
∣∣∣∣∣∣
Aĝ

|η| 〈η, l〉2
〈

t
〈ξ,l′〉

〉

k2 + (l′)2 + |ξ − kt|2
A2∆LÛ2

k (ξ, l
′)Hi

∣∣∣∣∣∣

× Low(−k, η − ξ, l − l′)dV

! εt2+δ1

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
g

∥∥∥∥∥

2

2

+
εt2+δ1

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã2 +

|∇|s/2

〈t〉s
A2

)
∆LU

2
"=

∥∥∥∥∥

2

2

+
ε

t1−δ1 〈νt3〉α
∥∥∥
√
−∆LAg

∥∥∥
2

∥∥A2∆LU
2
"=
∥∥
2
,

which is consistent with Proposition 2.1 by Lemmas D.7 and D.6. The remainder
terms FY ;R,C are similar, but simpler, and and are hence omitted for brevity.
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9.1. HIGH NORM ESTIMATE ON g 97

Consider finally FY ;C . By (2.48), Lemma 4.1, and (4.29c) (and Lemma 4.11),

FY ;C ! ε2

t 〈t〉1−δ1 〈νt3〉2α
∑

l,l′

∫
|Aĝ(η, l)|A

(∣∣∣ψ̂y

∣∣∣+
∣∣∣φ̂z

∣∣∣
)
(ξ, l′)Hi

× Low(−k, η − ξ, l − l′)dηdξ

! ε1/2

t4−2δ1 〈νt3〉2α
‖Ag‖22 + ε7/2 ‖∇AC‖22 .

which is consistent with Proposition 2.1 for ε sufficiently small. This completes the
treatment of FY .

Next turn to FZ , which has additional complications due to the regularity im-
balances implying U3 has worse regularity than U2 near the critical times. Expand
with a paraproduct and as usual with terms in which the coefficients appear in low
frequency included in the remainder:

FZ = −
∑

k "=0

1

t

∫
AgA∂Z

(
(U3

−k)Lo(U
1
k )Hi

)
dV

−
∑

k "=0

1

t

∫
AgA∂Z

(
(U3

−k)Hi(U
1
k )Lo

)
dV

−
∑

k "=0

1

t

∫
AgA

(
((ψz)Hi∂Y + (φz)Hi∂Z) (U

3
−kU

1
k )Lo

)
dV + FZ;R,C

= FZ;LH + FZ;HL + FZ;C + FZ;R.

Consider first FZ;LH , which is similar to the analogous term above in FY . Indeed,
by (2.48), (4.3), (4.17), and (4.29c),

FZ;LH ! ε

t 〈νt3〉α
∑

k "=0

∑

l,l′

∫
∣∣∣∣∣∣∣
Aĝ(η, l)

|l| 〈η, l〉2 〈t〉
〈

t
〈ξ,l′〉

〉1+δ1

k2 + (l′)2 + |ξ − kt|2
A1∆LÛ1

k (ξ, l
′)Hi

∣∣∣∣∣∣∣

× Low(−k, η − ξ, l − l′)dηdξ

! εt2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
g

∥∥∥∥∥

2

2

+
εt2

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã1 +

|∇|s/2

〈t〉s
A1

)
∆LU

1
"=

∥∥∥∥∥

2

2

+
ε

〈νt3〉α
∥∥∥
√
−∆LAg

∥∥∥
2

∥∥A1∆LU
1
"=
∥∥
2
,

which is consistent with Proposition 2.1 for ε sufficiently small by Lemmas D.6 and
D.7. Turn next to FZ;HL, which is complicated by the regularity imbalance in A3.
Indeed, by (2.48), Lemma 4.1, followed by (4.26a), (4.17), and (4.29c), we have

FZ;HL ! ε

t1−δ1 〈νt3〉α
∑

k "=0

∑

l,l′

∫
|ĝ(η, l)|

|l| 〈η, l〉2
〈

t
〈ξ,l′〉

〉2

k2 + (l′)2 + |ξ − kt|2

×
(
∑

r

χr,NR t

|r|+ |η − tr| Ã(η, l)Ã3
k(ξ, l

′) + χ∗;23A(η, l)A3
k(ξ, l

′)

)
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98 9. COORDINATE SYSTEM CONTROLS

×
∣∣∣∆LÛ3

k (ξ, l
′)Hi

∣∣∣Low(−k, η − ξ, l − l′)dηdξ

! ε 〈t〉1+δ1

〈νt3〉α

∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
g

∥∥∥∥∥
2

∥∥∥∥∥

(√
∂tw

w
Ã3 +

|∇|s/2

〈t〉s
A3

)
∆LU

3
"=

∥∥∥∥∥
2

+
ε

t1−δ1 〈νt3〉α
∥∥∥
√
−∆LAg

∥∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
,

which by Lemmas D.6 and D.7 is consistent with Proposition 2.1 for ε sufficiently
small. The coefficient and remainder terms can be treated as in FY ; hence these are
omitted for brevity. This completes the treatment of the forcing terms and hence
of the entire high norm estimate on g.

9.2. Low norm estimate on g

Computing the evolution of ‖g‖Gλ,γ (denoting AS = eλ(t)|∇|s 〈∇〉γ) from (2.24),

1

2

d

dt

(
t4 ‖g‖2Gλ,γ

)
≤ λ̇t4

∥∥∥|∇|s/2 g
∥∥∥
2

Gλ,γ
− t4

∫
ASgAS (g∂Y g) dV

+ t4
∫

ASgAS
(
∆̃tg

)
dV − t3

∫
ASgAS

(
U"= ·∇tU1

"=
)
0
dV

= −CKg,L
λ + T +D + F .(9.1)

The treatment of the transport nonlinearity T and the dissipation error terms in D
are essentially same as in the previous section (in fact easier), so are hence omitted.
It remains to see why the forcing F can treated better at lower regularity. Following
the treatments in the previous section and §5.1.3, we can use the divergence free
condition to write

F = −t3
∫

ASgAS
(
∂t
Y

(
U2
"=U

1
"=
)
0
+ ∂t

Z

(
U3
"=U

1
"=
)
0

)
dV.

The two terms can be treated together. Indeed, by Lemmas 4.9, Lemma 4.11, the
bootstrap hypotheses, as well as Lemma D.1 and (2.48),

F ! t3 ‖g‖Gλ,γ (1+‖C‖Gλ,γ+1)
(∥∥U2

"=
∥∥
Gλ,γ+1

∥∥U1
"=
∥∥
Gλ,3/2++

∥∥U3
"=
∥∥
Gλ,3/2+

∥∥U1
"=
∥∥
Gλ,γ+1

+
∥∥U2

"=
∥∥
Gλ,3/2+

∥∥U1
"=
∥∥
Gλ,γ+1 +

∥∥U3
"=
∥∥
Gλ,γ+1

∥∥U1
"=
∥∥
Gλ,3/2+

)

! t3 ‖g‖Gλ,γ

(
ε2 〈t〉δ1

〈νt3〉α

)

! ε1/2t4

〈νt3〉α
‖g‖2Gλ,γ +

ε7/2t2+2δ1

〈νt3〉α
,

which, for δ1 and ε sufficiently small (and δ > 0), is consistent with Proposition 2.1

9.3. Long time, high norm estimate on Ci

Next, we improve (2.43a). Computing the evolution equation on Ci, (2.23), we
get

1

2

d

dt

∥∥ACi
∥∥2
2
= λ̇

∥∥∥|∇|s/2ACi
∥∥∥
2

2
−

∥∥∥∥∥

√
∂tw

w
ÃCi

∥∥∥∥∥

2

2

+ ν

∫
ACiA

(
∆̃tC

i
)
dV
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9.3. LONG TIME, HIGH NORM ESTIMATE ON Ci 99

−
∫

ACiA
(
g∂Y C

i
)
dV + Li

= −DCi +DE + T + Li,(9.2)

where

DE = ν

∫
ACiA

(
(∆̃t −∆)Ci

)
dV.

and

L1 =

∫
AC1AgdV −

∫
AC1AU2

0dV(9.3a)

L2 = −
∫

AC2AU3
0dV.(9.3b)

9.3.1. Linear driving terms.
9.3.1.1. Treatment of L1. Consider the first term in (9.3a). For this it suffices

to use ∫
AC1AgdV ≤ ε

2c0

∥∥AC1
∥∥2
2
+

c0
2ε

‖Ag‖22 ,

which, for KHC1 + 1, is consistent with Proposition 2.1 (via integrating factors).
Turn to the second term in (9.3a). From Lemma D.4 (for some K depending

on s,σ and λ),

−
∫

AC1AU2
0 dV ≤ ε

2c0

∥∥AC1
∥∥2
2
+

c0
2ε

∥∥AU2
0

∥∥2
2

≤ ε

2c0

∥∥AC1
∥∥2
2
+Kε ‖AC‖22 +

Kc0
ε

∥∥A2Q2
0

∥∥2
2
+

Kc0
ε

∥∥U2
0

∥∥2
2
,

which for ε and c0 sufficiently small and KHC1 sufficiently large, is consistent with
Proposition 2.1 (again, via integrating factors).

9.3.1.2. Treatment of L2. Now consider the case i = 2. The issue here is that
we want to propagate higher regularity on C2 than we have on U3

0 due to the
regularity imbalance in A3. First we have the following, independently of κ (see
(C.5)),

L2 !
∑∫ ∣∣∣Ĉ2(η, l)

∣∣∣

(
∑

r

1t∈Ir,η

t

|r|+ |η − tr| Ã(η, l)Ã
3
0(η, l) + χ∗A(η, l)A3(η, l)

)

× 〈η, l〉2
∣∣∣Û3

0 (η, l)
∣∣∣ dη,

where χ∗ = 1−
∑

r "=0 1t∈Ir,η . Therefore, by Lemma C.7 and orthogonality,

L2 ! 〈t〉
κ

∑

r "=0

∥∥∥∥∥

√
∂tw

w
1t∈Ir,∂Y

ÃC2

∥∥∥∥∥
2

∥∥∥∥∥

√
∂tw

w
1t∈Ir,∂Y

〈∇〉2 Ã3U3
0

∥∥∥∥∥
2

+
∥∥AC2

∥∥
2

∥∥∥〈∇〉2 A3U3
0

∥∥∥
2

! 1

κ

∥∥∥∥∥

√
∂tw

w
ÃC2

∥∥∥∥∥

2

2

+
〈t〉2

κ

∥∥∥∥∥

√
∂tw

w
〈∇〉2 Ã3U3

0

∥∥∥∥∥

2

2

+ c−1
0 ε

∥∥AC2
∥∥2
2

+
c0
ε

∥∥∥〈∇〉2 A3U3
0

∥∥∥
2

2
.
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100 9. COORDINATE SYSTEM CONTROLS

This is consistent with Proposition 2.1 for KHC1 + KH3 (using t ≤ TF < c0ε−1),
c0 and ε sufficiently small and κ sufficiently large (the latter relative only to a
universal constant independent of all other parameters).

9.3.2. Transport nonlinearity. By Lemma 4.10, (2.43d), and (2.43e),

T !
∥∥ACi

∥∥
2

(∥∥ACi
∥∥
Gλ,γ ‖Ag‖2 + ‖g‖Gλ,γ

∥∥∇ACi
∥∥
2

)

!
(
ε+

ε1/2

〈t〉4

)
∥∥ACi

∥∥2
2
+ ε3/2

∥∥∇ACi
∥∥2
2
,

which is consistent with Proposition 2.1 for ε and c0 sufficiently small.

9.3.3. Dissipation error terms. For these terms, as in [5], we may use an
easy variant of the treatment in §9.1.2. We omit the details for brevity:

DE ! ν ‖AC‖2
∥∥∇ACi

∥∥2
2
+ ν

∥∥ACi
∥∥
2
‖∇AC‖2

∥∥∇Ci
∥∥
Gλ,γ−1 ! c0ν ‖∇AC‖22 ,

which is then absorbed by the dissipation by choosing c0 sufficiently small.

9.4. Shorter time, high norm estimate on Ci

The improvement of (2.43b) is essentially the same as that of (2.43a) with a
few slight changes. From (2.23),

1

2

d

dt

(
〈t〉−2 ∥∥ACi

∥∥2
2

)
= − t

〈t〉4
∥∥ACi

∥∥2
2
+ 〈t〉−2 λ̇

∥∥∥|∇|s/2 ACi
∥∥∥
2

2

− 〈t〉−2

∥∥∥∥∥

√
∂tw

w
ÃCi

∥∥∥∥∥

2

2

+ 〈t〉−2 ν

∫
ACiA

(
∆̃tC

i
)
dv − 〈t〉−2

∫
AC1A

(
g∂Y C

i
)
dV + Li

= −CKC
L − 〈t〉−2 DCi +DE + T + Li,(9.4)

where

DE = 〈t〉−2
∫

ACiA
(
(∆̃t −∆)Ci

)
dV

and

L1 = 〈t〉−2
∫

AC1AgdV − 〈t〉−2
∫

AC1AU2
0dV(9.5a)

L2 = −〈t〉−2
∫

AC2AU3
0dV.(9.5b)

The only real difference between the estimates (2.43b) versus (2.43a) is in the
linear driving terms Li. Hence, we omit the treatment of T and DE , as these can
be treated in essentially the same manner as in the improvement of (2.43a).
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9.4. SHORTER TIME, HIGH NORM ESTIMATE ON Ci 101

9.4.1. Linear driving terms.
9.4.1.1. Treatment of L1. Consider first the case i = 1. By Cauchy-Schwarz,

〈t〉−2
∫

AC1AgdV ≤ t

2 〈t〉4
∥∥AC1

∥∥2
2
+

1

2t
‖Ag‖22 ≤ 1

2
CKC,1

L +
1

4
CKg

L.

Hence the first term is absorbed by the CKC,1
L term in (9.4) whereas the second term

is controlled by (2.43c) and hence this is consistent with Proposition 2.1 provided
KHC2 is sufficiently large.

Consider the second term in (9.5a). By a similar argument but now applying
Lemma D.4, we have for some K > 0,

−〈t〉−2
∫

AC1AU2
0dV ≤ t

10 〈t〉4
∥∥AC1

∥∥2
2
+

5

t

∥∥AU2
0

∥∥2
2

≤ t

10 〈t〉4
∥∥AC1

∥∥2
2
+

K

〈t〉
∥∥A2Q2

0

∥∥2
2
+

K

〈t〉
∥∥U2

0

∥∥2
2
+
Kε2

〈t〉 ‖AC‖22 .

Hence for KHC2 sufficiently large relative to KHC1, this is consistent with Propo-
sition 2.1 for c0 and ε sufficiently small.

9.4.1.2. Treatment of L2. As in §9.3.1.2, we have (again defining χ∗ = 1 −∑
r "=0 1t∈Ir,η ),

− 〈t〉−2
∫

AC2AU3
0 dV ! 〈t〉−2

∑∫ ∣∣∣Ĉ2(η, l)
∣∣∣

×
(
∑

r

1t∈Ir,η
t

|r|+ |η − tr| Ã(η, l)Ã3
0(η, l) + χ∗A(η, l)A3

0(η, l)

)
〈η, l〉2

∣∣∣Û3
0 (η, l)

∣∣∣ dη

! κ−1 〈t〉−1
∑

r $=0

∥∥∥∥∥

√
∂tw
w

1t∈Ir,∂Y
ÃC2

∥∥∥∥∥
2

×

∥∥∥∥∥

√
∂tw
w

1t∈Ir,∂Y
〈∇〉2 Ã3U3

0

∥∥∥∥∥
2

+ 〈t〉−2
∥∥AC2

∥∥
2

∥∥〈∇〉2 A3U3
0

∥∥
2

= T1 + T2.

To treat the first term we use orthogonality and Lemma D.5 to deduce the following
(where K is a universal constant depending only on λ and s and differs from line to line),

T1 ≤ 1
10

〈t〉−2

∥∥∥∥∥

√
∂tw
w

ÃC2

∥∥∥∥∥

2

2

+K

∥∥∥∥∥

√
∂tw
w

〈∇〉2 Ã3U3
0

∥∥∥∥∥

2

2

≤ 1
10

〈t〉−2

∥∥∥∥∥

√
∂tw
w

ÃC2

∥∥∥∥∥

2

2

+K

∥∥∥∥∥

(√
∂tw
w

Ã3 +
|∇|s/2

〈t〉s A3

)
Q3

0

∥∥∥∥∥

2

2

+
K

〈t〉2s
∥∥U3

0

∥∥2

2
+Kε2

∥∥∥∥∥

(√
∂tw
w

Ã+
|∇|s/2

〈t〉s A

)
C

∥∥∥∥∥

2

2

,

which is consistent with Proposition 2.1 for c0 and ε sufficiently small together with
KHC2 + KH3. Turn next to T2, which is treated in the same manner as the second
term in (9.5a) (where K is a universal constant depending only on λ and s and
differs from line to line),

T2 ≤ t

10 〈t〉4
∥∥AC2

∥∥2
2
+

5

2t

∥∥∥A3 〈∇〉2 U3
0

∥∥∥
2

2
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≤ t

10 〈t〉4
∥∥AC2

∥∥2
2
+

K

〈t〉
∥∥A3Q3

0

∥∥2
2
+

K

〈t〉
∥∥U3

0

∥∥2
2
+

Kε2

〈t〉 ‖AC‖22

≤ t

10 〈t〉4
‖AC‖22 +

4KKH3

〈t〉 ε2 +
4KHC1Kε2c20

〈t〉 ,

which is sufficient provided c0 and ε are chosen small and KHC1 + KH3.

9.5. Low norm estimate on C

The improvement of (2.43e) estimate is an easy variation of that applied to
improve (2.43a) and (2.43b) except one uses the super-solution method discussed
in §7 used to improve (2.42a).
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CHAPTER 10

Enhanced dissipation estimates

In this chapter we improve the enhanced dissipation estimates (2.44). A re-
curring theme here will be the gain in t from Lemma D.2 when ∂X derivatives are
present, a kind of “null” structure.

10.1. Enhanced dissipation of Q3

We begin with Q3. Computing the time evolution of
∥∥Aν;3Q3

∥∥
2
we get

1

2

d

dt

∥∥Aν;3Q3
∥∥2
2
≤ λ̇

∥∥∥|∇|s/2 Aν;3Q3
∥∥∥
2

2
− 2

t

∥∥∥1t>〈∇Y,Z〉Ã
ν;3Q3

∥∥∥
2

2

−

∥∥∥∥∥

√
∂twL

wL
Aν;3Q3

∥∥∥∥∥

2

2

+Gν

− 2

∫
Aν;3Q3Aν;3∂t

Y XU3dV + 2

∫
Aν;3Q3Aν;3∂t

ZXU2dV

+ ν

∫
Aν;3Q3Aν;3

(
∆̃tQ

3
)
dv −

∫
Aν;3Q3Aν;3

(
Ũ ·∇Q3

)
dV

−
∫

Aν;3Q3Aν;3
[
Qj∂t

jU
3 + 2∂t

iU
j∂t

ijU
3 − ∂t

Z

(
∂t
iU

j∂t
jU

i
)]

dV

= −DQν;3 − CKν;3
L +Gν

+ LS3 + LP3 +DE + T +NLS1 +NLS2 +NLP,(10.1)

where we write

DE = ν

∫
Aν;3Q3Aν;3

(
∆̃tQ

3 −∆LQ
3
)
dV,

and

Gν = α

∫
Aν;3Q3 min

(
1,

〈∇Y,Z〉2

t2

)
eλ(t)|∇|s 〈∇〉β 〈D(t, ∂Y )〉α−1

× D(t, ∂Y )

〈D(t, ∂Y )〉
∂tD(t, ∂Y )Q

3
"=dV.

First, we need to cancel the growing term Gν in (10.1) using part of the dissipation
term D. As in [5] (and essentially [9]),

Gν − ν
∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

2
≤ ν

∑

k "=0

∑

l

∫ (
1

8
t21t≥2|η| − |k|2 − |l|2 − |η − kt|2

)

×
∣∣∣Aν;3Q̂3

k(η, l)
∣∣∣
2
dη

103
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104 10. ENHANCED DISSIPATION ESTIMATES

≤ −ν

8

∥∥∥
√
−∆LA

ν;3Q3
"=

∥∥∥
2

2
.

Next we see how to control the remaining linear and nonlinear contributions.

10.1.1. Linear stretching term LS3. First separate into two parts (to be
sub-divided further),

LS3 = −2

∫
Aν;3Q3Aν;3∂X(∂Y − t∂X)U3dV

− 2

∫
Aν;3Q3Aν;3∂X (ψy(∂Y − t∂X) + φy∂Z)U

3dV

= LS30 + LS3C .

Turn first to LS3C . By (A.4), (4.40), Lemma D.2, and Lemma 4.11,

LS3C !
∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2
‖C‖Gλ,β+3α+4

∥∥Aν;3U3
∥∥
2

!
∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2
‖C‖Gλ,β+3α+4

1

〈t〉2
(∥∥Aν;3Q3

∥∥
2
+
∥∥A3Q3

∥∥
2

)

! ε3/2
∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

2
+

ε1/2

〈t〉2
(∥∥Aν;3Q3

∥∥
2
+
∥∥A3Q3

∥∥
2

)2
,(10.2)

which is consistent with Proposition 2.1 for ε sufficiently small.
For LS30 we proceed similar to the high norm estimate in §6.2.5.2. As in (6.4),

we expand ∆L∆
−1
t :

LS30 = −2

∫
Aν;3Q3Aν;3∂X(∂Y − t∂X)∆−1

L ∆L∆
−1
t Q3dV

= −2

∫
Aν;3Q3Aν;3∂X(∂Y − t∂X)∆−1

L

[
Q3 −Gyy(∂Y − t∂X)2U3

−Gyz∂Z(∂Y − t∂X)U3

−Gzz∂ZZU
3 −∆tC

1(∂Y − t∂X)U3 −∆tC
2∂ZU

3
]
dV

= LS30;0 +
5∑

i=1

LS30;Ci.(10.3)

The leading order term is treated as in [5], hence we omit the details and simply
state the result; for some K > 0,

LS30;0 ≤ CKν;3
L +

δλ

10 〈t〉3/2
∥∥∥|∇|s/2 Aν;3Q3

∥∥∥
2

2
+

K

δ
1

2s−1

λ 〈t〉3/2
∥∥Aν;3Q3

∥∥2
2

+
K

〈t〉2
∥∥A3Q3

"=
∥∥2
2
,

which is consistent with Proposition 2.1 provided KED3 is sufficiently large relative
to KH3 and δλ.
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10.1. ENHANCED DISSIPATION OF Q3 105

Turn to the first error term in (10.3), LS30;C1, which by (4.8a) and β+3α+6 <
γ is controlled via (using also Lemma 4.11),

LS30;C1 ≤ 2
∥∥Aν;3Q3

∥∥
2

∥∥Aν;3∂X(∂Y − t∂X)∆−1
L

(
Gyy(∂Y − t∂X)2U3

"=
)∥∥

2

! 1

〈t〉5
∥∥Aν;3Q3

"=
∥∥
2
‖Gyy‖Gλ,γ−1

∥∥∆LU
3
"=
∥∥
Gλ,γ−1 +

1

〈t〉
×

∥∥Aν;3Q3
∥∥
2

∥∥Aν;3
(
Gyy(∂Y − t∂X)2U3

"=
)∥∥

2

! ε

〈t〉2
∥∥A3Q3

"=
∥∥
2

∥∥A3∆LU
3
"=
∥∥
2
+

1

〈t〉
×

∥∥Aν;3Q3
∥∥
2

∥∥Aν;3
(
Gyy(∂Y − t∂X)2U3

"=
)∥∥

2
.(10.4)

The first term is controlled via Lemma D.7. To control the second term we use
(4.41) and Lemma 4.11,

1

〈t〉
∥∥Aν;3Q3

∥∥
2

∥∥Aν;3
(
Gyy(∂Y − t∂X)2U3

"=
)∥∥

2

! 1

〈t〉
∥∥Aν;3Q3

∥∥
2
‖C‖Gλ,γ

∥∥Aν;3(∂Y − t∂X)2U3
"=
∥∥
2

! ε
∥∥Aν;3Q3

∥∥
2

∥∥Aν;3(∂Y − t∂X)2U3
"=
∥∥
2
.

By (D.3), this is consistent with Proposition 2.1 for c0 sufficiently small. All the
other LS30;Ci error terms are controlled similarly and are hence omitted.

This completes the treatment of LS30.

10.1.2. Linear pressure term LP3. Begin by separating out the contribu-
tion of the coefficients,

LP3 = 2

∫
Aν;3Q3Aν;3∂X∂ZU

2
"=dV + 2

∫
Aν;3Q3Aν;3∂X (((ψz)(∂Y − t∂X)

+(φz)∂Z)U
2
"=
)
dV

= LP30 + LP3C .

As in [5], Cauchy-Schwarz and (C.15),

LP30 ≤ 1

2κ

∥∥∥∥∥

√
∂twL

wL
Aν;3Q3

"=

∥∥∥∥∥

2

2

+
1

2κ

∥∥∥∥∥

√
∂twL

wL
∆LA

ν;3U2

∥∥∥∥∥

2

2

,

which is consistent with Proposition 2.1 for κ sufficiently large, c0 sufficiently small,
and KED3 + KED2 by Lemma D.3.

The coefficient error term, LP3C , can be treated in the same manner as LS3C

above in (10.2) and yields similar contributions. Hence we omit the treatment for
brevity. This completes the treatment of the linear pressure term LP3.

10.1.3. Nonlinear pressure and stretching. Due to the regularity gap β+
3α+12 ≤ γ and (4.40), the presence of the coefficients from the coordinate transform
will not greatly impact the treatment of these terms. Moreover, Lemma D.2 shows
there is not a significant difference between ∂Y − t∂X and ∂Z derivatives when
making many estimates. Hence, for simplicity we will treat all NLS and NLP

Licensed to New York Univ, Courant Inst.  Prepared on Mon Oct  3 02:20:18 EDT 2022for download from IP 91.230.41.207.



106 10. ENHANCED DISSIPATION ESTIMATES

terms as if there were no variable coefficients. As in [5], we will enumerate the
terms as follows for i, j ∈ {1, 2, 3} and a, b ∈ {0, 3=}

NLP (i, j, a, b) =

∫
Aν;3Q3Aν;3∂t

Z(∂
t
jU

i
a∂

t
iU

j
b )dV(10.5a)

NLS1(j, a, b) = −
∫

Aν;3Q3Aν;3
(
Qj

a∂
t
jU

3
b

)
dV(10.5b)

NLS2(i, j, a, b) = −2

∫
Aν;3Q3Aν;3(∂t

iU
j
a∂

t
i∂

t
jU

3
b )dV.(10.5c)

We will use repeatedly the inequalities

Aν;3 ! tAν;1(10.6a)

Aν;3 ! Aν;2.(10.6b)

10.1.3.1. Treatment of NLP (i, j, 0, 3=) terms. Recalling, (10.5), note that by
the usual null structure, we have j 3= 1. By (4.40)

NLP (i, j, 3=, 0) !
∥∥Aν;3Q3

∥∥
2

∥∥Aν;3 〈∂Z〉 ∂t
iU

j
∥∥
2

∥∥U i
0

∥∥
Gλ,β+3α+5 .

From Lemma D.2, we see that the loss of t if i = 1 on the third factor is balanced
by a gain of t on the second. On the other hand, if i 3= 1 then there is no loss of t
on the last factor but a loss of t on the second. Therefore, after Lemma D.2 we get

NLP (i, j, 3=, 0) ! ε
∥∥Aν;3Q3

∥∥
2

(∥∥∥AjQj
"=

∥∥∥
2
+
∥∥Aν;jQj

∥∥
2

)
,

which is consistent with Proposition 2.1 for c0 sufficiently small.
10.1.3.2. Treatment of NLS1(j, 0, 3=) terms. Next turn to the treatment of the

NLS1(j, 0, 3=) terms (recalling (10.5)), which by (4.40) followed by (D.1) (noting a
above that when j = 1, the loss of t from the second factor is balanced by a gain
of t on the third factor),

NLS1(j, 0, 3=) !
∥∥Aν;3Q3

∥∥
2

∥∥∥Qj
0

∥∥∥
Gλ,β+3α+4

∥∥Aν;3∂t
jU

3
∥∥
2

! ε

〈t〉
∥∥Aν;3Q3

∥∥
2

(∥∥Aν;3Q3
∥∥
2
+
∥∥A3Q3

∥∥)

which is consistent with Proposition 2.1 for c0 sufficiently small.
10.1.3.3. Treatment of NLS1(j, 3=, 0) terms. Next turn to the treatment of the

NLS1(j, 3=, 0) terms which by (4.40) followed by (D.1) (noting that j 3= 1),

NLS1(j, 3=, 0) !
∥∥Aν;3Q3

∥∥
2

∥∥Aν;3Qj
∥∥
2

∥∥U3
0

∥∥
Gλ,β+3α+4 ! ε

∥∥Aν;3Q3
∥∥
2

∥∥Aν;jQj
∥∥
2
,

which is consistent with Proposition 2.1 for c0 sufficiently small.
10.1.3.4. Treatment of NLS2(i, j, 3=, 0) terms. From (10.5) we see that that

neither i nor j can be one. Therefore, similar to §10.1.3.2, we get by (4.40),

NLS2(i, j, 3=, 0) ! ε

〈t〉
∥∥Aν;3Q3

∥∥
2

(∥∥Aν;jQj
∥∥
2
+
∥∥∥AjQj

"=

∥∥∥
2

)

which is consistent with Proposition 2.1 for c0 sufficiently small.
10.1.3.5. Treatment of NLS2(i, j, 0, 3=) terms. Next turn to the treatment of

the NLS1(i, j, 3=, 0) terms, where now notice that i cannot be one but j can. How-
ever, if j = 1 then we will gain a power of t on ∂XU3

"= using Lemma D.2. Therefore,
it follows from (4.40) and Lemma D.2 that,

NLS2(i, j, 0, 3=) ! ε
∥∥Aν;3Q3

∥∥
2

(∥∥A3Q3
"=
∥∥
2
+

∥∥Aν;3Q3
∥∥
2

)
.
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10.1.3.6. Treatment of NLP (i, j, 3=, 3=). Notice that we will lose a power of t
from A1 if j or i is one, but in this case we would lose one less power of t in Lemma
D.2 due to the presence of X derivatives. Hence regardless of the combination of i
and j, we will gain at least one power of t Therefore, from (4.41),

NLP (i, j, 3=, 3=) ≤
∥∥Aν;3Q3

∥∥
2

∥∥∥Aν;3∂t
Z

(
∂t
iU

j
"=∂

t
jU

i
"=

)∥∥∥
2

! t2

〈νt3〉α
∥∥Aν;3Q3

∥∥
2

(∥∥Aν;3∂t
Z∂

t
iU

j
∥∥
2

∥∥Aν;3∂t
jU

i
∥∥
2

+
∥∥Aν;3∂t

iU
j
∥∥
2

∥∥Aν;3∂t
Z∂

t
jU

i
∥∥
2

)

! ε2 〈t〉
〈νt3〉α

∥∥Aν;3Q3
∥∥
2
! ε 〈t〉

〈νt3〉α
∥∥Aν;3Q3

∥∥2
2
+

ε3 〈t〉
〈νt3〉α

,

which is consistent with Proposition 2.1 for ε sufficiently small.
10.1.3.7. Treatment of NLS1(j, 3=, 3=). These terms are all treated in essen-

tially the same manner. Indeed, using as usual that j = 1 loses a power of t from
Aν;1 but gains a power from Lemma D.2, we get from (4.41) and (D.1),

NLS1(j, 3=, 3=) ! 〈t〉2

〈νt3〉α
∥∥Aν;3Q3

∥∥
2

∥∥Aν;3Qj
∥∥
2

∥∥Aν;3∂t
jU

3
"=
∥∥
2

! 〈t〉
〈νt3〉α

∥∥Aν;3Q3
∥∥
2

∥∥Aν;jQj
∥∥
2

(∥∥Aν;3Q3
∥∥
2
+
∥∥A3Q3

"=
∥∥
2

)
,

which is consistent with Proposition 2.1 for ε sufficiently small.
10.1.3.8. Treatment of NLS2(i, j, 3=, 3=). The treatment of NLS2 is essentially

the same as NLP , using again that the losses and gains balance regardless of the
combination of i and j, we get from (4.41) and Lemma D.2,

NLS2(i, j, 3=, 3=) ! t2

〈νt3〉α
∥∥Aν;3Q3

∥∥
2

∥∥Aν;3∂iU
j
∥∥
2

∥∥Aν;3∂t
ijU

3
∥∥
2

! 〈t〉
〈νt3〉α

∥∥Aν;3Q3
∥∥
2

(∥∥Aν;3Q3
∥∥
2
+
∥∥A3Q3

"=
∥∥
2

)

×
(∥∥Aν;jQj

∥∥
2
+
∥∥∥AjQj

"=

∥∥∥
2

)
,

which is consistent with Proposition 2.1 for ε sufficiently small.

10.1.4. Transport nonlinearity. Divide the transport nonlinearity:

T = −
∫

Aν;3Q3Aν;3
(
g∂Y Q

3
"=
)
dV −

∫
Aν;3Q3Aν;3

(
Ũ"= ·∇Q3

0

)
dV

−
∑∫

Aν;3Q3Aν;3
(
Ũ"= ·∇Q3

"=

)
dV

= T0 + T"=0 + T"= "=

Consider first T0. By (4.40) and |η| ≤ |η − kt|+ |kt| ≤ 〈t〉 (|η − kt|+ |k|),

T0 !
∥∥Aν;3Q3

∥∥
2
‖g‖Gλ,γ 〈t〉

∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

! ε1/2

〈t〉2
∥∥Aν;3Q3

∥∥2
2
+ ε3/2

∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

2
.

Licensed to New York Univ, Courant Inst.  Prepared on Mon Oct  3 02:20:18 EDT 2022for download from IP 91.230.41.207.



108 10. ENHANCED DISSIPATION ESTIMATES

where the last line followed from both (2.43d) and (2.43c). Hence, for ε and c0
sufficiently small, this is consistent with Proposition 2.1.

Turn next to T"=0, which reads

T"=0 =

∫
Aν;3Q3Aν;3

((
(1 + ψy)U2

"= + ψzU3
"=

(1 + φz)U3
"= + φyU2

"=

)
·
(
∂Y Q3

0

∂ZQ3
0

))
dV.

By (4.40), Lemma 4.11, and Lemma D.2, we have

T"=0 !
∥∥Aν;3Q3

∥∥
2

(∥∥Aν;3U2
∥∥
2
+
∥∥Aν;3U3

∥∥
2

) ∥∥∇Q3
0

∥∥
Gλ,γ

! ε

〈t〉2
∥∥Aν;3Q3

∥∥
2

(∥∥Aν;2Q2
∥∥
2
+
∥∥A2Q2

"=
∥∥
2
+
∥∥Aν;3Q3

∥∥
2
+
∥∥A3Q3

"=
∥∥
2

)
,

which is consistent with Proposition 2.1.
Turn next to T"= "=, which is the most subtle contribution. This is written

T"= "= =

∫
Aν;3Q3Aν;3








U1
"=

(1 + ψy)U2
"= + ψzU3

"=
(1 + φz)U3

"= + φyU2
"=



 ·




∂XQ3

"=
(∂Y − t∂X)Q3

"=
∂ZQ3

"=







 dV.

By Cauchy-Schwarz, (4.40), Lemma 4.11 and (4.41), we get

T"= "= !
∥∥Aν;3Q3

∥∥
2

〈t〉2

〈νt3〉α
(∥∥Aν;3U3

∥∥
2
+

∥∥Aν;3U2
∥∥
2

) ∥∥∥
√

−∆LA
ν;3Q3

∥∥∥
2

+
∥∥Aν;3Q3

∥∥
2

〈t〉2

〈νt3〉α
(∥∥∥〈∇〉2−β Aν;3U1

∥∥∥
2

∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

+
∥∥Aν;3U1

∥∥
2

∥∥Aν;3Q3
∥∥
2

)
;

note the extra precision applied to the treatment of U1. By

1

〈η, l〉A
ν;3
k (η, l) ≈ 〈t〉

〈η, l〉
〈

t
〈η,l〉

〉1−δ1
Aν;1 ! 〈t〉δ1 Aν;1,(10.7)

it follows that

T"= "= !
∥∥Aν;3Q3

∥∥
2

〈t〉2

〈νt3〉α
(∥∥Aν;3U3

∥∥
2
+

∥∥Aν;2U2
∥∥
2

) ∥∥∥
√

−∆LA
ν;3Q3

∥∥∥
2

+
∥∥Aν;3Q3

∥∥
2

〈t〉2+δ1

〈νt3〉α
(∥∥Aν;1U1

∥∥
2

∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

+t
∥∥Aν;1U1

∥∥
2

∥∥Aν;3Q3
∥∥
2

)
.

Applying from (4.8b) to the t
∥∥Aν;3Q3

∥∥
2
in the last factor and Lemma D.2 to all

factors (also (2.44) with (2.42)) it follows that,

!
∥∥Aν;3Q3

∥∥
2

1

〈νt3〉α
(∥∥Aν;3Q3

∥∥
2
+
∥∥A3Q3

"=
∥∥
2

)∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

+
∥∥Aν;3Q3

∥∥
2

1

〈νt3〉α
(∥∥Aν;2Q2

∥∥
2
+
∥∥A2Q2

"=
∥∥
2

)∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

+
∥∥Aν;3Q3

∥∥
2

tδ1

〈νt3〉α
(∥∥Aν;1Q1

∥∥
2
+
∥∥A1Q1

"=
∥∥
2

)(∥∥∥
√

−∆LA
ν;3Q3

∥∥∥
2
+
∥∥A3Q3

"=
∥∥
2

)

! εtδ1

〈νt3〉α
∥∥Aν;3Q3

∥∥
2

(∥∥∥
√

−∆LA
ν;3Q3

∥∥∥
2
+
∥∥A3Q3

"=
∥∥
2

)
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! ε3/2
∥∥∥
√
−∆LA

ν;3Q3
∥∥∥
2

2
+

ε1/2t2δ1

〈νt3〉α
∥∥Aν;3Q3

∥∥2
2
+

ε3/2

〈νt3〉α
∥∥A3Q3

"=
∥∥2
2
,

which is consistent with Proposition 2.1 for ε, δ1, and c0 sufficiently small (also
δ > 0).

10.1.5. Dissipation error terms. The dissipation error terms are easily ab-
sorbed by the dissipation as in [5,9] using (4.40) together with the regularity gap
between Aν;3 and the coefficient control in (2.43e). We hence omit the treatment
for brevity.

10.2. Enhanced dissipation of Q2

The enhanced dissipation of Q2 is deduced in a manner very similar to Q3,
however, since we are imposing more control on Q2, some nonlinear interactions
must be handled with more precision.

Computing the time evolution of
∥∥Aν;2Q2

∥∥
2
we get

1

2

d

dt

∥∥Aν;2Q2
∥∥2
2
≤ λ̇

∥∥∥|∇|s/2 Aν;2Q2
∥∥∥
2

2
− 1

t

∥∥1t>〈∇Y,Z〉A
ν;2Q2

∥∥2
2

−

∥∥∥∥∥

√
∂twL

wL
Aν;2Q2

∥∥∥∥∥

2

2

+Gν

+ ν

∫
Aν;2Q2Aν;2

(
∆̃tQ

2
)
dV −

∫
Aν;2Q2Aν;2

(
Ũ ·∇Q2

)
dV

−
∫

Aν;2Q2Aν;2
[(
Qj∂t

jU
2
)
+ 2∂t

iU
j∂t

ijU
2 − ∂t

Y

(
∂t
iU

j∂t
jU

i
)]

dV

= −DQν;2 − CKν;2
L +Gν +DE + T +NLS1 +NLS2 +NLP,(10.8)

where as in §10.1, we write

DE = ν

∫
Aν;2Q2Aν;2

(
∆̃tQ

2 −∆LQ
2
)
dV,

and

Gν = α

∫
Aν;2Q2 min

(
1,

〈∇Y,Z〉
t

)
eλ(t)|∇|s 〈∇〉β 〈D(t, ∂v)〉α−1

× D(t, ∂v)

〈D(t, ∂v)〉
∂tD(t, ∂v)Q

2
"=dV.

As in (10.1) we have

−ν
∥∥∥
√
−∆LA

ν;2Q2
"=

∥∥∥
2

2
+Gν ≤ −ν

8

∥∥∥
√
−∆LA

ν;2Q2
∥∥∥
2

2
.

10.2.1. Nonlinear pressure and stretching. In this section we treat
NLS1, NLS2 and NLP . As in §10.1.3, for simplicity we will treat all NLS and
NLP terms as if there were no variable coefficients. We also recall the following
enumeration from [5], for i, j ∈ {1, 2, 3} and a, b ∈ {0, 3=}

NLP (i, j, a, b) =

∫
Aν;2Q2Aν;2∂t

Y (∂
t
jU

i
a∂

t
iU

j
b )dV(10.9a)

NLS1(j, a, b) = −
∫

Aν;2Q2Aν;2
(
Qj

a∂
t
jU

2
b

)
dV(10.9b)
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NLS2(i, j, a, b) = −2

∫
Aν;2Q2Aν;2(∂t

iU
j
a∂

t
i∂

t
jU

2
b )dV.(10.9c)

We will use repeatedly the inequalities

Aν;2 ! t1+δ1Aν;1(10.10a)

Aν;2 ! tAν;3.(10.10b)

10.2.1.1. Treatment of NLP (i, j, 0, 3=) terms. This includes terms identified in
§2.5 as requiring that Q2 grow linearly at low frequencies, and we will see that we
will need this in order to estimate these terms. By (4.40),

NLP (i, j, 0, 3=) !
∥∥Aν;2Q2

∥∥
2

∥∥U i
0

∥∥
Gλ,β+3α+5

∥∥Aν;2
〈
∂t
Y

〉
∂iU

j
∥∥
2
.

With (D.2) in mind, the power of t lost from the derivatives or j = 1 together is
at most two and the powers of t lost from the possibility that j = 3 is also at most
an additional one (also note j 3= 1), so at worst we get from Lemma D.2 (which
recovers the powers of time), and (2.49),

NLP (i, j, 0, 3=) ! ε
∥∥Aν;2Q2

∥∥
2

(∥∥∥
√

−∆LA
ν;jQj

∥∥∥
2
+
∥∥∥
√
−∆LA

jQj
"=

∥∥∥
2

)

! ε1/2
∥∥Aν;2Q2

∥∥2
2
+ ε3/2

(∥∥∥
√
−∆LA

ν;jQj
∥∥∥
2

2
+
∥∥∥
√
−∆LA

jQj
"=

∥∥∥
2

2

)
.

For ε sufficiently small this is consistent with Proposition 2.1 for times until t ∼
ε−1/2+δ/100. At this point we can apply (4.8b) to the first term and deduce

NLP (i, j, 0, 3=) ! ε1/2

〈t〉2
∥∥A2Q2

"=
∥∥2
2
+

ε

〈t〉2
∥∥∥
√
−∆LA

ν;2Q2
∥∥∥
2

2

+ ε3/2
(∥∥∥

√
−∆LA

ν;jQj
∥∥∥
2
+

∥∥∥
√
−∆LA

jQj
"=

∥∥∥
2

)

! ε1/2

〈t〉2
∥∥A2Q2

"=
∥∥2
2
+ ε3/2−δ/50

∥∥∥
√
−∆LA

ν;2Q2
∥∥∥
2

2

+ ε3/2
(∥∥∥

√
−∆LA

ν;jQj
∥∥∥
2
+

∥∥∥
√
−∆LA

jQj
"=

∥∥∥
2

)
,(10.11)

which is consistent with Proposition 2.1 for all time for ε sufficiently small.
10.2.1.2. Treatment of NLS1(j, 0, 3=) terms. These terms are straightforward

by (4.40), (2.42), and (D.1); we omit the details and conclude

NLS1(j, 0, 3=) ! ε

〈t〉
∥∥Aν;2Q2

∥∥
2

(∥∥Aν;2Q2
∥∥
2
+
∥∥A2Q2

"=
∥∥
2

)
.

10.2.1.3. Treatment of NLS1(j, 3=, 0) terms. Due to the nonlinear structure,
j 3= 1. Hence, the worst possibility is j = 3, where at most one power of time is
lost – notice that this also depends on the linear growth at low frequencies of Q2.
Hence, this term emphasizes this important difference with [5]. Hence, by (4.40),
(2.49), and (4.8b),

NLS1(j, 3=, 0) ! ε
(∥∥∥

√
−∆LA

ν;2Q2
∥∥∥
2
+
∥∥A2Q2

"=
∥∥
2

)∥∥Aν;jQj
∥∥
2

! ε3/2
(∥∥∥

√
−∆LA

ν;2Q2
∥∥∥
2

2
+
∥∥A2Q2

"=
∥∥2
2

)
+ ε1/2

∥∥Aν;jQj
∥∥2
2
.

By applying (4.8b) for t " ε−1/2+δ/100 as in (10.11), this is consistent with Propo-
sition 2.1 for ε sufficiently small.
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10.2.1.4. Treatment of NLS2(i, j, 0, 3=) terms. These are treated similar to the
analogous NLS1 terms in §10.2.1.2, yielding the following

NLS2(i, j, 0, 3=) ! ε
∥∥Aν;2Q2

∥∥
(∥∥Aν;2Q2

∥∥+
∥∥A2Q2

"=
∥∥
2

)
,

which is consistent with Proposition 2.1 for c0 sufficiently small.
10.2.1.5. Treatment of NLS2(i, j, 3=, 0) terms. Again, due to the nonlinear

structure, j 3= 1 and i 3= 1. By (4.40),

NLS2(i, j, 3=, 0) !
∥∥Aν;2Q2

∥∥
2

∥∥∥∂t
iA

ν;2U j
"=

∥∥∥
2

∥∥U2
0

∥∥
Gλ,β+3α+7 .

The worst case is j = 3 and i = 2, however, even in this case Lemma D.2 recovers all
of the time losses due to the permitted linear growth in Q2 (also applying (2.49)):

NLS2(i, j, 3=, 0) ! ε
∥∥Aν;2Q2

∥∥
2

(∥∥Aν;jQj
∥∥
2
+
∥∥∥AjQj

"=

∥∥∥
2

)
,

which is consistent with Proposition 2.1 for c0 sufficiently small.
10.2.1.6. Treatment of NLP (i, j, 3=, 3=). Turn next to the nonlinear pressure

interactions of two non-zero frequencies, which requires a careful treatment. First,
observe that the case i = j = 2 cancels with the NLS2 term. By (4.41),

NLP (i, j, 3=, 3=) !
∥∥Aν;2Q2

∥∥
2

〈t〉
〈νt3〉α

(∥∥∥〈∇〉2−β Aν;2∂t
jU

i
"=

∥∥∥
2

∥∥∥Aν;2∂t
Y ∂

t
iU

j
"=

∥∥∥
2

+
∥∥∥〈∇〉2−β Aν;2∂t

Y ∂
t
jU

i
"=

∥∥∥
2

∥∥∥Aν;2∂t
iU

j
"=

∥∥∥
2

+
∥∥Aν;2∂t

jU
i
"=
∥∥
2

∥∥∥〈∇〉2−β Aν;2∂t
Y ∂

t
iU

j
"=

∥∥∥
2

+
∥∥Aν;2∂t

Y ∂
t
jU

i
"=
∥∥
2

∥∥∥〈∇〉2−β Aν;2∂t
iU

j
"=

∥∥∥
2

)
.

Each combination of i and j can be treated in a rather similar manner, each time us-
ing (4.40) and Lemma D.2. As could be expected, NLP (1, 3, 3=, 3=) andNLP (3, 3, 3=
, 3=) turn out to be the hardest. Let us focus on the case NLP (3, 3, 3=, 3=) and omit
the easier cases for brevity. Note that the inverse derivatives can recover losses
associated with ∂Z but not ∂Y − t∂X . They will also still work when considering
∂t
Z = (1 + φz)∂Z + ψz(∂Y − t∂X), since it will introduce O(εt2) powers that are

absorbed using εt2
〈
νt3

〉−1 ! 1. Hence, we can continue to ignore the coefficients.
By Lemma D.2 and (2.44) there holds,

NLP (3, 3, 3=, 3=) !
∥∥Aν;2Q2

∥∥
2

〈t〉3

〈νt3〉α
(∥∥∥〈∇〉2−β Aν;3∂t

ZU
3
"=

∥∥∥
2

∥∥Aν;3∂t
Z∂

t
ZU

3
"=
∥∥
2

+
∥∥∥〈∇〉2−β Aν;3∂t

Z∂
t
ZU

3
"=

∥∥∥
2

∥∥Aν;3∂t
ZU

3
"=
∥∥
2

)

! ε 〈t〉
〈νt3〉α

(
1 + εt2

) ∥∥Aν;2Q2
∥∥
2

(∥∥Aν;3Q3
∥∥
2
+
∥∥A3Q3

"=
∥∥
2

)
,

which is consistent with Proposition 2.1 for ε sufficiently small. The other terms
can be treated with a simple variation or easier arguments and are hence omitted.
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10.2.1.7. Treatment of NLS1(j, 3=, 3=). By (4.41), (D.1), and (2.44), we have
the following (e.g. consider the worst case of j = 3),

NLS1(j, 3=, 3=) ! 〈t〉
〈νt3〉α

∥∥Aν;2Q2
∥∥
2

∥∥Aν;2Qj
∥∥
2

∥∥Aν;2∂t
jU

2
"=
∥∥
2

! ε 〈t〉
〈νt3〉α

∥∥Aν;2Q2
∥∥
2

(∥∥Aν;2Q2
∥∥
2
+
∥∥A2Q2

"=
∥∥
2

)
,

which is consistent with Proposition 2.1.
10.2.1.8. Treatment of NLS2(i, j, 3=, 3=). First, note that the i = j = 2 term

cancels with NLP . For the remaining terms we again apply (4.41) to deduce

NLS2(i, j, 3=, 3=) !
∥∥Aν;2Q2

∥∥
2

〈t〉
〈νt3〉α

∥∥∥Aν;2∂t
iU

j
"=

∥∥∥
2

∥∥Aν;2∂t
ijU

2
"=
∥∥
2
.

The most problematic term is j = 3, i = 2; however by (D.1) and (2.44),

NLS2(2, 3, 3=, 3=) ! ε 〈t〉
〈νt3〉α

∥∥Aν;2Q2
∥∥
2

(∥∥Aν;2Q2
∥∥
2
+
∥∥A2Q2

"=
∥∥
2

)
,

which is consistent with Proposition 2.1 for ε sufficiently small. The other cases
can be treated similarly and are hence omitted for brevity. This completes the
treatment of all of the nonlinear pressure and stretching terms.

10.2.2. Transport nonlinearity. These terms are easier than the analogous
terms in §10.1.4. As noted in [5], this is consistent with the observation that the
so-called “reaction” terms are stronger in Q3 than Q2 (note that Q3 reaction terms
are included in the toy model in §2.5 but the Q2 reaction terms are not; see [5] for
more information). Write the transport nonlinearity as

T = −
∫

Aν;2Q2Aν;2
(
g∂Y Q

2
"=
)
dV −

∫
Aν;2Q2Aν;2

(
Ũ"= ·∇Q2

0

)
dV

−
∫

Aν;2Q2Aν;2
(
Ũ"= ·∇Q2

"=

)
dV

= T0 + T"=0 + T"= "=.

As in §10.1.4, we have

T0 ! ε1/2

〈t〉2
∥∥Aν;2Q2

∥∥2
2
+ ε3/2

∥∥∥
√
−∆LA

ν;2Q2
∥∥∥
2

2
.

Similarly, we can treat T"=0 as we did in §10.1.4: (4.40), Lemma 4.11, and Lemma
D.2, we have

T"=0 !
∥∥Aν;2Q2

∥∥
2

(∥∥Aν;2U2
∥∥
2
+

∥∥Aν;2U3
∥∥
2

) ∥∥∇Q2
0

∥∥
Gλ,γ

! ε

〈t〉2
∥∥Aν;3Q3

∥∥
2

(∥∥Aν;2Q2
∥∥
2
+
∥∥A2Q2

"=
∥∥
2
+ 〈t〉

(∥∥Aν;3Q3
∥∥
2
+
∥∥A3Q3

"=
∥∥
2

))
,

which is consistent with Proposition 2.1.
For T"= "=, we get from (4.41),

T"= "= !
∥∥Aν;2Q2

∥∥
2

〈t〉
〈νt3〉α

(∥∥Aν;2U1
∥∥
2
+
∥∥Aν;2U2

∥∥
2
+
∥∥Aν;2U3

∥∥
2

) ∥∥∥
√

−∆LA
ν;2Q2

∥∥∥
2

!
∥∥Aν;2Q2

∥∥
2

〈t〉
〈νt3〉α

(
〈t〉1+δ1

∥∥Aν;1U1
∥∥
2
+
∥∥Aν;2U2

∥∥
2

+ 〈t〉
∥∥Aν;3U3

∥∥
2

) ∥∥∥
√

−∆LA
ν;2Q2

∥∥∥
2
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!
∥∥Aν;2Q2

∥∥
2

ε 〈t〉δ1

〈νt3〉α
∥∥∥
√
−∆LA

ν;2Q2
∥∥∥
2

! ε3/2
∥∥∥
√
−∆LA

ν;2Q2
∥∥∥
2

2
+

ε1/2 〈t〉2δ1

〈νt3〉2α
∥∥Aν;2Q2

∥∥2
2
,

which completes the treatment of T"= "=.

10.2.3. Dissipation error terms. As in §10.1.5, these terms are treated in
the same manner as the analogous terms in [5,9]; the details are omitted for brevity.

10.3. Enhanced dissipation of Q1

Computing the time evolution of
∥∥Aν;1Q1

∥∥
2
, we get

1

2

d

dt

∥∥Aν;1Q1
∥∥2
2
≤ λ̇

∥∥∥|∇|s/2 Aν;1Q1
∥∥∥
2

2
+Gν −

∥∥∥∥∥

√
∂twL

wL
Aν;1Q1

∥∥∥∥∥

2

2

− t

〈t〉2
∥∥Aν;1Q1

∥∥2
2
− (1 + δ1)

t

∥∥1t>〈∇Y,Z〉A
ν;1Q1

∥∥2
2

−
∫

Aν;1Q1Aν;1Q2dV − 2

∫
Aν;1Q1Aν;1∂t

Y XU1dV

+ 2

∫
Aν;1Q1Aν;1∂XXU2dV + ν

∫
Aν;1Q1Aν;1

(
∆̃tQ

1
)
dv

−
∫

Aν;1Q1Aν;1
(
Ũ ·∇Q2

)
dv

−
∫

Aν;1Q1Aν;1
[(
Qj∂t

jU
1
)
+ 2∂t

iU
j∂t

ijU
1 − ∂X

(
∂t
iU

j∂t
jU

i
)]

dv

= −DQν;1 +Gν − CKν;1
L1 − (1 + δ1)CKν;1

L2

+ LU + LS1 + LP1 +DE + T +NLS1 +NLS2 +NLP.(10.12)

where Gν is analogous to the corresponding term in (10.1). As in §10.1, Gν is
absorbed by using the dissipation. Note that for i ∈ {2, 3},

Aν;1 ! Aν;i.(10.13)

10.3.1. Linear terms. The treatment of LU and LS1 can be made analogous
to the linear terms treated in §10.1 combined with the tδ1 tweak introduced for the
improvement of (2.42b) in §8.2. We omit the details for brevity and conclude for
some K > 0,

LU ≤ δ1t 〈t〉−2 ∥∥Aν;1Q1
"=
∥∥2
2
+

δλ
4δ1t3/2

∥∥∥|∇|s/2 Aν;2Q2
"=

∥∥∥
2

2
+

K

δ1δ
1

2s−1

λ t3/2

∥∥Aν;2Q2
"=
∥∥2
2

+
K

δ1t

∥∥1t>〈∇Y,Z〉A
ν;2Q2

∥∥2
2
,

= δ1CKν;1
L1 +

1

4δ1
CKν;2

λ +
K

δ1
CKν;2

L +
K

δ1δ
1

2s−1

λ t3/2

∥∥Aν;2Q2
"=
∥∥2
2
,

and,

LS1 ≤ (1 + δ1)CKν;1
L2 + (1− δ1)CKν;1

L1 +
δλ

10 〈t〉3/2
∥∥∥|∇|s/2Aν;1Q1

∥∥∥
2

2
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+
Kε

〈t〉2
∥∥A1∆LU

1
"=
∥∥2
2

+
K

〈t〉2
∥∥A1Q1

"=
∥∥2
2
+

K

δ
1

2s−1

λ 〈t〉3/2
∥∥Aν;1Q1

∥∥2
2
+ ε

∥∥Aν;1Q1
∥∥
2

∥∥∆LA
ν;1U1

"=
∥∥
2
,

which, after Lemmas D.7 and D.2, are both consistent with Proposition 2.1 provided
KED1 is chosen large relative to both KED2 and KH1 (and δλ, δ

−1
1 , K and universal

constants).
Next consider the linear pressure term LP1. We may directly apply Lemma

D.2 to deduce

LP1 ≤ 2
∥∥Aν;1Q1

∥∥
2

∥∥∂XXAν;1U2
"=
∥∥
2
! 〈t〉−3 ∥∥Aν;1Q1

∥∥
2

(∥∥Aν;2Q2
"=
∥∥
2
+
∥∥A2Q2

"=
∥∥
2

)

! 1

〈t〉3
∥∥Aν;1Q1

∥∥2
2
+

1 +KED2

〈t〉3
ε2,

which is consistent with Proposition 2.1 via integrating factors provided KED1 +
KED2.

10.3.2. Nonlinear pressure and stretching. These terms are treated in
essentially the same manner as in §10.1.3; we only briefly sketch a few terms. We
use enumerations analogous to those employed in (10.9).

10.3.2.1. Treatment of NLP (i, j, 0, 3=) terms. Notice that in this case j 3= 1.
From (4.40), Lemma D.2, and (2.49),

NLP (i, j, 0, 3=) !
∥∥Aν;1Q1

∥∥
2

∥∥Aν;1∂X∂t
iU

j
∥∥
2

∥∥U i
0

∥∥
Gλ,β+3α+5

! ε

〈t〉
∥∥Aν;1Q1

∥∥
2

(∥∥Aν;jQj
∥∥
2
+
∥∥∥AjQj

"=

∥∥∥
2

)
.

10.3.2.2. Treatment of NLS1(j, 0, 3=) terms. From (4.40), Lemma D.2, and
(2.49),

NLS1(j, 0, 3=) !
∥∥Aν;1Q1

∥∥
2

∥∥∥Qj
0

∥∥∥
Gλ,β+3α+5

∥∥∂t
jA

ν;1U1
∥∥
2

! ε

〈t〉
∥∥Aν;1Q1

∥∥
2

(∥∥Aν;1Q1
∥∥
2
+
∥∥A1Q1

"=
∥∥
2

)
.

10.3.2.3. Treatment of NLS1(j, 3=, 0) terms. Note in this case that j 3= 1. From
(4.40), Lemma D.2, (4.8b), and (2.49),

NLS1(j, 3=, 0) !
∥∥Aν;1Q1

∥∥
2

∥∥Aν;1Qj
∥∥
2

∥∥U1
0

∥∥
Gλ,β+3α+5

! ε3/2
(∥∥∥

√
−∆LA

ν;1Q1
∥∥∥
2

2
+
∥∥A1Q1

"=
∥∥2
2

)
+ ε1/2

∥∥Aν;jQj
∥∥2
2
,

which suffices for t ! ε−1/2+δ/100, after which we use again (4.8b) to deduce

NLS1(j, 3=, 0) ! ε3/2
(∥∥∥

√
−∆LA

ν;1Q1
∥∥∥
2

2
+
∥∥A1Q1

"=
∥∥2
2

)

+ ε3/2−δ/50

(∥∥∥
√
−∆LA

ν;jQj
∥∥∥
2

2
+
∥∥∥AjQj

"=

∥∥∥
2

2

)
,

which is consistent with Proposition 2.1 for ε sufficiently small.
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10.3. ENHANCED DISSIPATION OF Q1 115

10.3.2.4. Treatment of NLS2(i, j, 3=, 0) terms. From (4.40), Lemma D.2, and
(2.49), we have

NLS2(i, j, 3=, 0) !
∥∥Aν;1Q1

∥∥
2

∥∥∥Aν;1∂t
iU

j
"=

∥∥∥
2

∥∥U1
0

∥∥
Gλ,β+3α+6

! ε
∥∥Aν;1Q1

∥∥
2

(∥∥Aν;jQj
∥∥
2
+
∥∥∥AjQj

"=

∥∥∥
2

)
.

10.3.2.5. Treatment of NLS2(i, j, 0, 3=) terms. From (4.40), Lemma D.2, and
(2.49). we have (noting that i 3= 1):

NLS2(i, j, 0, 3=) !
∥∥Aν;1Q1

∥∥
2

∥∥Aν;1∂t
ijU

1
∥∥
2

∥∥∥U j
0

∥∥∥
Gλ,β+3γ+5

! ε
∥∥Aν;1Q1

∥∥
2

(∥∥Aν;1Q1
∥∥
2
+
∥∥A1Q1

"=
∥∥
2

)
.

Notice that we again used the structure which for j = 1, balances the loss of 〈t〉
from the third factor with a gain of 〈t〉−1 from the second factor.

10.3.2.6. Treatment of NLP (i, j, 3=, 3=), NLS1(i, j, 3=, 3=), and NLS2(i, j, 3=, 3=
). The nonlinear terms involving two non-zero frequencies can all be treated in
essentially the same manner as in Q3 in §10.1.3.6, §10.1.3.7 and §10.1.3.7. We omit
the treatments for the sake of brevity.

10.3.3. Transport nonlinearity. The transport nonlinearity, T in (10.12),
can be treated in the same manner as the transport nonlinearity in §10.1.4. We
omit the details for brevity.

10.3.4. Dissipation error terms. The dissipation error terms can be treated
in same manner as those in §10.1.5 and [5, 9], and hence we omit the details for
brevity. This completes the enhanced dissipation estimate on Q1.
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CHAPTER 11

Sobolev estimates

In this chapter we improve theHσ′
estimates in (2.45), which are more straight-

forward than the analogous estimates proved in [5] (the main challenge in [5] was
getting good decay properties for t " ν−1, which is irrelevant here). As in [5],
these estimates are performed in the coordinate system given by (X, y, z); see §3.
In Lemma 3.2, the a priori estimates from the bootstrap hypotheses in these coor-
dinates are given. The estimates are performed on (3.1) and then transferred back
to the (X,Y, Z) coordinates. Indeed, as long as the Ci remain small, the coordinate
change is uniformly bounded in Sobolev regularity, and hence by suitably adjusting
the constants in (2.45), one can prove these finite regularity estimates in whichever
coordinate system is most convenient (see [5] for more details).

11.1. Improvement of (2.45c)and (2.45b)

These estimates are best proved together using a standard energy method.
Recall the notation u0 = (u2

0, u
3
0)

T . From (3.1),

1

2

d

dt
‖u0‖2Hσ′ = −ν ‖∇u0‖2Hσ′ −

∫
〈∇〉σ

′
ui
0 〈∇〉σ

′ (
uj
0 · ∂jui

0

)
dydz

−
∫

〈∇〉σ
′
ui
0 〈∇〉σ

′
∂ip

NL0dydz +

∫
〈∇〉σ

′
ui
0 〈∇〉σ

′
F idydz

= −ν ‖∇u0‖2Hσ′ + T + P + F .

For the transport term T , we use integration by parts (and the divergence free
condition) to introduce the following commutator:

T =

∫
〈∇〉σ

′
ui
0

(
u0 ·∇〈∇〉σ

′
ui
0 − 〈∇〉σ

′ (
u0 ·∇ui

0

))
dydz.

Treating this commutator is by now classical and, in particular, by using that for
|η, l| ≈ |ξ, l′|,

〈η, l〉σ
′
− 〈ξ, l′〉σ

′
! |η − ξ, l − l′| 〈ξ, l′〉σ

′−1
,

one can show that

T ! ‖∇u0‖H1+

∥∥ui
0

∥∥2
Hσ′ + ‖u0‖Hσ′

∥∥ui
0

∥∥
Hσ′

∥∥∇ui
0

∥∥
H1+

! ‖u0‖Hσ′
∥∥ui

0

∥∥2
Hσ′ ! ε ‖u0‖2Hσ′ ,

(where we also used σ′ > 2, by (3.4)) which is consistent with Proposition 2.1 for
c0 sufficiently small.

For the pressure term P, we simply use the divergence free condition:

P = −
∫

〈∇〉σ
′
ui
0 〈∇〉σ

′
∂ip

NL0dydz =

∫
〈∇〉σ

′
∂iu

i
0 〈∇〉σ

′
pNL0dydz = 0.
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118 11. SOBOLEV ESTIMATES

The forcing term is straightforward from (3.3), indeed it follows immediately
that ∫

〈∇〉σ
′
ui
0 〈∇〉σ

′
F idydz ≤ ε2

〈νt3〉2α
‖u0‖Hσ′ .

Hence, the improvements to (2.45c) and (2.45b) follow for ε and c0 sufficiently
small.

11.2. Improvement of (2.45a)

The improvement of (2.45a) is very similar to those of (2.45c) and (2.45b) with
the exception of the lift-up effect term. Indeed, by (3.1),

1

2

d

dt

(
〈t〉−2 ∥∥u1

0

∥∥2
Hσ′

)
= − t

〈t〉4
∥∥u1

0

∥∥2
Hσ′ − ν 〈t〉−2 ∥∥∇u1

0

∥∥2
Hσ′

− 〈t〉−2
∫

〈∇〉σ
′
u1
0 〈∇〉σ

′ (
u0 ·∇u1

0

)
dydz

− 〈t〉−2
∫

〈∇〉σ
′
u1
0 〈∇〉σ

′
u2
0dydz

+ 〈t〉−2
∫

〈∇〉σ
′
u1
0 〈∇〉σ

′
F1dydz.

All the terms are treated as in §11.1 except of course the lift up effect term. For
this we use (2.45),

−〈t〉−2
∫

〈∇〉σ
′
u1
0 〈∇〉σ

′
u2
0dydz ≤ 4ε 〈t〉−2 ∥∥u1

0

∥∥
Hσ′ .

From here, one applies the super-solution method used in §7. We omit the details
for brevity as it follows the same.
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APPENDIX A

Fourier analysis conventions, elementary
inequalities, and Gevrey spaces

We take the same Fourier analysis conventions as [5]; we briefly recall them
here for completeness. For f(x, y, z) in the Schwartz space (or (X,Y, Z)), we define
the Fourier transform f̂k(η, l) where (k, η, l) ∈ Z × R × Z and the inverse Fourier
transform via

f̂k(η, l) =
1

(2π)3/2

∫

T×R×T
e−ixk−iyη−ilzf(x, y, z)dxdydz

f(x, y, z) =
1

(2π)3/2

∑

k,l∈Z

∫

R
eixk+iyη+izlf̂k(η, l)dη.

With these conventions:∫
f(x, y, z)g(x, y, z)dxdydz =

∑

k

∫
f̂k(η, l)ĝk(η, l)dη

f̂g =
1

(2π)3/2
f̂ ∗ ĝ

(∇̂f)k(η, l) = (ik, iη, il)f̂k(η, l).

The paraproducts defined above in §4.2 are defined using the Littlewood-Paley
dyadic decomposition (see e.g. [2] for more details). Let ψ ∈ C∞

0 (R+;R+) be such
that ψ(ξ) = 1 for ξ ≤ 1/2 and ψ(ξ) = 0 for ξ ≥ 3/4 and define ρ(ξ) = ψ(ξ/2)−ψ(ξ),
supported in the range ξ ∈ (1/2, 3/2). Then we have the partition of unity for ξ > 0,

1 =
∑

M∈2Z
ρ(M−1ξ),

where we mean that the sum runs over the dyadic integers M = ..., 2−j , ..., 1/4, 1/2,
1, 2, 4, ..., 2j , ... and we define the cut-off ρM (ξ) = ρ(M−1ξ), each supported in
M/2 ≤ ξ ≤ 3M/2. For f ∈ L2(T× R× T) we define

fM = ρM (|∇|)f, f<M =
∑

K∈2Z:K<M

fK ,

which defines the decomposition (in the L2 sense)

f =
∑

M∈2Z
fM .

There holds the almost orthogonality and the approximate projection property

‖f‖22 ≈
∑

M∈2Z
‖fM‖22(A.1a)

‖fM‖2 ≈ ‖(fM )∼M‖2 ,(A.1b)
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120 A. FOURIER ANALYSIS CONVENTIONS

where we make use of the notation

f∼M =
∑

K∈2Z: 1
C M≤K≤CM

fK ,

for some constant C which is independent of M . Generally the exact value of C
which is being used is not important; what is important is that it is finite and
independent of M . Similar to (A.1) but more generally, if f =

∑
j Dj for any Dj

with 1
C 2j ⊂ suppDj ⊂ C2j it follows that

‖f‖22 ≈C

∑

j∈Z
‖Dj‖22 .(A.2)

Recall the following two lemmas.

Lemma A.1. Let f(ξ), g(ξ) ∈ L2
ξ(Rd), 〈ξ〉σ h(ξ) ∈ L2

ξ(Rd) and 〈ξ〉σ b(ξ) ∈
L2
ξ(Rd) for σ > d/2, Then we have

‖f ∗ h‖2 !σ,d ‖f‖2 ‖〈·〉
σ h‖2 ,(A.3)

∫
|f(ξ)(g ∗ h)(ξ)| dξ !σ,d ‖f‖2 ‖g‖2 ‖〈·〉

σ h‖2(A.4)
∫

|f(ξ)(g ∗ h ∗ b)(ξ)| dξ !σ,d ‖f‖2 ‖g‖2 ‖〈·〉
σ h‖2 ‖〈·〉

σ b‖2 .(A.5)

Further iterates are applied for higher order nonlinear terms in Lemma 4.8 and are
similar to (A.5) but are omitted here.

Lemma A.2. Let 0 < s < 1, x, y > 0, and K > 1.

(i) There holds

|xs − ys| ≤ smax(xs−1, ys−1) |x− y| .(A.6)

so that if |x− y| < x
K ,

|xs − ys| ≤ s

(K − 1)1−s
|x− y|s .(A.7)

Note s
(K−1)1−s < 1 as soon as s

1
1−s + 1 < K.

(ii) There holds

|x+ y|s ≤
(
max(x, y)

x+ y

)1−s

(xs + ys) ,(A.8)

so that, if 1
K y ≤ x ≤ Ky,

|x+ y|s ≤
(

K

1 +K

)1−s

(xs + ys) .(A.9)

Gevrey and Sobolev regularities can be related with the following two inequal-
ities:

(i) For all x ≥ 0, α > β ≥ 0, C, δ > 0,

eCxβ

≤ eC(
C
δ )

β
α−β

eδx
α

;(A.10)

(ii) For all x ≥ 0, α,σ, δ > 0,

e−δxα ! 1

δ
σ
α 〈x〉σ

.(A.11)

Together these inequalities show that for α > β ≥ 0, ‖f‖GC,σ;β !α,β,C,δ,σ ‖f‖Gδ,0;α .
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APPENDIX B

Some details regarding the coordinate transform

We record here for the readers’ convenience some details on how to relate C,
φ, and ψ. From the chain rule we derive:

ψy = ∂t
Y C

1 = (1 + ψy) ∂Y C
1 + φy∂ZC

1(B.1a)

ψz = ∂t
ZC

1 = (1 + φz)∂ZC
1 + ψz∂Y C

1(B.1b)

φy = ∂t
Y C

2 = (1 + ψy) ∂Y C
2 + φy∂ZC

2(B.1c)

φz = ∂t
ZC

2 = (1 + φz)∂ZC
2 + ψz∂Y C

2(B.1d)

ψt = ∂tC
1 + ψt∂Y C

1 + φt∂ZC
1(B.1e)

φt = ∂tC
2 + ψt∂Y C

2 + φt∂ZC
2.(B.1f)

Analogous to [5], we will get estimates on Ci and use them to deduce estimates on
ψ and φ. This necessitates solving (B.1) for ψy,ψz,φy,φz – note that these form a
4× 4 linear system:





1− ∂Y C1 0 −∂ZC1 0
0 1− ∂Y C1 0 −∂ZC1

−∂Y C2 0 1− ∂ZC2 0
0 −∂Y C2 0 1− ∂ZC2









ψy

ψz

φy

φz



 =





∂Y C1

∂ZC1

∂Y C2

∂ZC2



 .

For ∇Ci sufficiently small we can solve the linear system and derive

φz =

(
∂ZC2 + ∂Y C2∂ZC1

1−∂Y C1

)

1−
(
∂ZC2 + ∂Y C2∂ZC1

1−∂Y C1

) =
∞∑

n=1

(
∂ZC

2 +
∂Y C2∂ZC1

1− ∂Y C1

)n

(B.2a)

φy =
∂Y C2

(1− ∂Y C1)
(
1−

(
∂ZC2 + ∂Y C2∂ZC1

1−∂Y C1

))(B.2b)

ψz =
(1 + φz)∂ZC1

1− ∂Y C1
(B.2c)

ψy =
∂Y C1 + ∂1

ZCφy

1− ∂Y C1
;(B.2d)

The precise form of (B.2) is not interesting and it is straightforward to recover esti-
mates on the Jacobian factors from estimates on Ci using (B.2) and the appropriate
product rules.
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APPENDIX C

Definition and analysis of the norms

C.1. Definition and analysis of w

As mentioned above in §2.5, the multipliers we use are variants of those used
in [5,7,9], and we build on those constructions. We first begin by defining w̄(t, η),
which is used to construct w(t, η) and w3(t, k, η). For w̄ and w we use the same
multipliers as [5], however, we include the constructions here for completeness and
also to make the explanation of w3(t, k, η) more natural.

In what follows fix k, η > 0; we will see that the norms do not depend on
the sign of k and η. Further, recall the definitions in §1.3. The multiplier is built
backwards in time, which makes resonance counting easier. Let t ∈ Ik,η. Let w̄(t, η)
be a non-decreasing function of time with w̄(t, η) = 1 for t ≥ 2η. For k ≥ 1, we
assume that w̄(tk−1,η) was computed. To compute w̄ on the interval Ik,η, we use
the behavior predicted by the toy model in (2.33). For a parameter κ > 1 fixed
sufficiently large depending on a universal constant determined by the proof, for
k = 1, 2, 3, ..., E(

√
η), we define

w̄(t, η) =
(k2

η

[
1 + bk,η|t−

η

k
|
] )κ

w̄(tk−1,η), ∀t ∈ IRk,η =
[η
k
, tk−1,η

]
,

(C.1a)

w̄(t, η) =
(
1 + ak,η|t−

η

k
|
)−1−κ

w̄
(η
k

)
, ∀t ∈ ILk,η =

[
tk,η,

η

k

]
.

(C.1b)

The constant bk,η is chosen to ensure that k2

η

[
1 + bk,η|tk−1,η − η

k |
]
= 1, hence for

k ≥ 2, we have

bk,η =
2(k − 1)

k

(
1− k2

η

)
(C.2)

and b1,η = 1 − 1/η. Similarly, ak,η is chosen to ensure k2

η

[
1 + ak,η|tk,η − η

k |
]
= 1,

which implies

ak,η =
2(k + 1)

k

(
1− k2

η

)
.(C.3)

Hence, we have w̄( ηk ) = w̄(tk−1,η)
(

k2

η

)κ
and w̄(tk,η) = w̄(tk−1,η)

(
k2

η

)1+2κ
. For

earlier times [0, tE(
√
η),η], we take w̄ to be constant. Next, we will impose additional

losses in time on w̄:

w(t, η) = w̄(t, η) exp

[
−κ

∫ ∞

t
1τ≤2

√
ηdτ − κ

∫ ∞

t
1√|η|≤τ≤2|η|

|η|
τ2

dτ

]
.(C.4)
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124 C. DEFINITION AND ANALYSIS OF THE NORMS

Next, we define w3
k(t, η). Suppose t ∈ Ik,η then, for k′ 3= k,

w3
k′(t, , η) =

η

k2
(
1 + bk,η

∣∣t− η
k

∣∣)w(t, η) ∀t ∈ IRk,η =
[η
k
, tk−1,η

]
,(C.5a)

w3
k′(t, , η) =

η

k2
(
1 + ak,η

∣∣t− η
k

∣∣)w(t, η) ∀t ∈ ILk,η =
[
tk,η,

η

k

]
.(C.5b)

w3
k(t, η) = w(t, η) ∀t ∈ Ik,η,(C.5c)

and we take w3
k(t, η) = w(t, η) if t 3∈ Ij,η for any j.

The following lemma is essentially Lemma 3.1 in [7] and shows that w(t, η)−1

loses some fixed radius of Gevrey-2 regularity. The proof is omitted for brevity.

Lemma C.1. There is a constant µ (depending on κ) and a constant p > 0
such that for all |η| > 1, we have

1

w(t, η)
≤ 1

w(1, η)
∼ η−pe

µ
2

√
η

1

w3
k(t, η)

≤ 1

w3
k(1, η)

∼ η−pe
µ
2

√
η,

where ‘∼’ is in the sense of asymptotic expansion (up to a multiplicative constant)
as η → ∞.

The following lemma is from [7], and shows how to use the well-separation of
critical times.

Lemma C.2. Let ξ, η be such that there exists some K ≥ 1 with 1
K |ξ| ≤ |η| ≤

K |ξ| and let k, n be such that t ∈ Ik,η and t ∈ In,ξ (note that k ≈ n). Then at least
one of following holds:

(a) k = n (almost same interval);

(b)
∣∣t− η

k

∣∣ ≥ 1
10K

|η|
k2 and

∣∣∣t− ξ
n

∣∣∣ ≥ 1
10K

|ξ|
n2 (far from resonance);

(c) |η − ξ| "K
|η|
|n| (well-separated).

The next lemma tells us how to take advantage of the time derivative of w and
hence the CKw terms.

Lemma C.3 (Time derivatives near the critical times). If t ≤ 2
√
η, then there

holds

∂tw(t, η)

w(t, η)
=

∂tw3
k(t, η)

w3
k(t, η)

≈ κ.(C.6)

If we instead have t ∈ Ir,η for some r, then the following holds

∂tw(t, η)

w(t, η)
≈ ∂tw3

k(t, η)

w3
k(t, η)

≈ κ

1 +
∣∣η
r − t

∣∣ +
κ |η|
t2

≈ κ

1 +
∣∣η
r − t

∣∣ +
κ |r|
t

(C.7)

The next lemma is from [5] and is a variant of Lemma 3.4 in [7]. It is im-
portant for estimating nonlinear terms where we need to be able to compare CKw

multipliers of different frequencies.

Lemma C.4. (i) For t " 1, and η, ξ such that t < 2min(|ξ| , |η|),
∂tw(t, η)

w(t, η)

w(t, ξ)

∂tw(t, ξ)
! 〈η − ξ〉2(C.8)

Licensed to New York Univ, Courant Inst.  Prepared on Mon Oct  3 02:20:18 EDT 2022for download from IP 91.230.41.207.



C.1. DEFINITION AND ANALYSIS OF w 125

(ii) For all t " 1, and η, ξ, such that for some K ≥ 1, 1
K |ξ| ≤ |η| ≤ K |ξ|,

√
∂tw(t, ξ)

w(t, ξ)
!K

[√
∂tw(t, η)

w(t, η)
+

|η|s/2

〈t〉s

]
〈η − ξ〉2 .(C.9)

By Lemma C.3, these hold also for w3 (and we do not need to make a distinc-
tion).

The next lemma from [5] and is an easy variant of the analogous [Lemma 3.5,
[7]]. It is of crucial importance for estimating nonlinear terms we need to be able
to compare ratios.

Lemma C.5 (Ratio estimates for nonlinear interactions). There exists a K > 0
such that for all η, ξ,

w(t, η)

w(t, ξ)
! eK|η−ξ|1/2 .(C.10)

Next, we want to write the analogue of Lemma C.5 for w3, which is some-
what trickier. Instead of Lemma C.5, we have the following, which is analogous to
[Lemma 3.6, [7]] (although here easier due to the simpler k dependence).

Lemma C.6. There is a universal K > 0 such that in general we have

w3
k′(η)

w3
k(ξ)

! t

|k|+ |η − kt|e
Kµ|k−k′,η−ξ|1/2 .(C.11)

If any one of the following holds: (t 3∈ Ik,η) or (k = k′) or (t ∈ Ik,η, t 3∈ Ik,ξ) then
we have the improved estimate

w3
k′(η)

w3
k(ξ)

! eKµ|k−k′,η−ξ|1/2 .(C.12)

Finally if t ∈ Ik′,ξ and k 3= k′, then

w3
k′(η)

w3
k(ξ)

! |k′|+ |ξ − k′t|
t

eKµ|k−k′,η−ξ|1/2 .(C.13)

Remark C.1. In the case t ∈ Ik,η ∩ Ik,ξ, k 3= k′, the only case where (C.11)
is needed, we also have |η| ≈ |ξ| and from (C.11), the definition (C.5), and (C.7),
Lemma C.4 and (A.11) implies that there is a K > 0 such that (see [7] for more
information)

w3
k(η)

w3
k′(ξ)

! t

|k|

√
∂twk(t, η)

wk(t, η)

√
∂twl(t, ξ)

wl(t, ξ)
eKµ|k−l,η−ξ|1/2 .(C.14)

Remark C.2. Notice the appearance of Ik,η as opposed to Ik,η. Each are
defined in §1.3. The use of I is to rule out the end case t ≈

√
|η|, for example, we

see that (C.12) holds if t ≈
√
|η| even if t ∈ Ik,η and hence inequalities like (C.14)

will not be necessary.
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C.2. The design and analysis of wL

We also recall the definition of the multiplier wL from [5]. We define wL such
that it solves the following:

∂twL(t, k, η, l) = κ
|k| 〈l〉

k2 + l2 + |η − kt|2
wL(t, k, η, l) t ≥ 1(C.15a)

wL(1, k, η, l) = 1.(C.15b)

Since the following holds uniformly in k, l, η:
∫ ∞

0

|k| 〈l〉
k2 + l2 + |η − kt|2

dt ≈ 1,(C.16)

the multiplier wL is O(1) and hence will have very little effect on most estimates.
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APPENDIX D

Elliptic estimates

In this appendix, we group and discuss all of the necessary “elliptic” estimates
on ∆−1

t . We will need the estimates from [5] as well as a number of new estimates
specific to the above threshold case.

D.1. Lossy estimates

First, recall the lossy elliptic lemma [Lemma C.1, [5]].

Lemma D.1 (Lossy elliptic lemma). Under the bootstrap hypotheses, for c0
chosen sufficiently small, then for any function h and a ≤ σ, there holds

∥∥∆−1
t h "=

∥∥
Gλ,a−2 ! 1

〈t〉2
‖h "=‖Gλ,a .

We also need the enhanced dissipation lossy elliptic lemma [Lemma C.2, [5]].

Lemma D.2 (Lossy elliptic lemma II). If C satisfies the bootstrap assump-
tions (2.43), then for c0 sufficiently small, for any function h, and γ′ = β+3α+5,

∥∥Aν;i∆−1
t h

∥∥
2
+

∥∥∂XAν;i∆−1
t h

∥∥
2
! 1

〈t〉2
(∥∥Aν;iφ

∥∥
2
+ 〈t〉−3 ‖h "=‖Gλ,γ′

)
(D.1a)

∥∥∂ZAν;i∆−1
t h

∥∥
2
+

∥∥(∂Y − t∂X)Aν;i∆−1
t h

∥∥
2
! 1

〈t〉

(∥∥Aν;ih
∥∥
2
+ 〈t〉−3 ‖h "=‖Gλ,γ′

)
(D.1b)

∥∥∂t
m∂t

nA
ν;i∆−1

t h
∥∥
2
! 1

〈t〉b
(∥∥Aν;ih

∥∥
2
+ 〈t〉−3 ‖h "=‖Gλ,γ′

)
,(D.1c)

where b = 0 if n,m 3= 1, b = 1 if exactly one of m or n equals one, and b = 2 if
m = n = 1. Moreover,

∥∥∥Aν;i∆−1
t h

∥∥∥
2
+

∥∥∥∂XAν;i∆−1
t h

∥∥∥
2
! 1

〈t〉3
(∥∥∥

√
−∆LA

ν;ih
∥∥∥
2
+ 〈t〉−3 ‖h$=‖Gλ,γ′

)
(D.2a)

∥∥∥∂ZA
ν;i∆−1

t h
∥∥∥
2
+

∥∥∥(∂Y − t∂X)Aν;i∆−1
t h

∥∥∥
2
! 1

〈t〉2
(∥∥∥

√
−∆LA

ν;ih
∥∥∥
2
+ 〈t〉−3 ‖h$=‖Gλ,γ′

)
(D.2b)

∥∥∥∂t
m∂t

nA
ν;i∆−1

t h
∥∥∥
2
! 1

〈t〉1+b

(∥∥∥
√
−∆LA

ν;ih
∥∥∥
2
+〈t〉−3 ‖h$=‖Gλ,γ′

)
.(D.2c)

Finally, we have
∥∥Aν;i∆L∆

−1
t h

∥∥
2
!

∥∥Aν;ih
∥∥
2
.(D.3)

Also recall the following lemma [Lemma C.3, [5]].

127
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128 D. ELLIPTIC ESTIMATES

Lemma D.3 (CKν
wL elliptic lemma). Under the bootstrap hypotheses, for c0

sufficiently small we have for any function h,
∥∥∥∥∥

√
∂twL

wL
Aν;i∆L∆

−1
t h

∥∥∥∥∥
2

!
∥∥∥∥∥

√
∂twL

wL
Aν;ih

∥∥∥∥∥
2

.(D.4)

D.2. Precision lemmas

As in [5], the so-called ‘precision elliptic lemmas’ (PEL) are variations on the
common theme of using ∆−1

L as an approximate inverse. We will need those found
in [5] and several more as well.

D.2.1. Zero mode PELs. The first PEL is essentially [Lemma C.4, [5]], and
puts U i

0 in the high norm.

Lemma D.4 (Zero mode PEL). Under the bootstrap hypotheses, for c0 and ε
sufficiently small there holds,

∥∥AU1
0

∥∥2
2
! 〈t〉2

∥∥A1Q1
0

∥∥2
2
+
∥∥U1

0

∥∥2
2
+ ε2 〈t〉2 ‖AC‖22(D.5a)

∥∥∥〈∇〉2 A1U1
0

∥∥∥
2

2
!

∥∥A1Q1
0

∥∥2
2
+ 〈t〉−2 ∥∥U1

0

∥∥2
2
+ ε2 ‖AC‖22(D.5b)

∥∥AU2
0

∥∥2
2
!

∥∥A2Q2
0

∥∥2
2
+
∥∥U2

0

∥∥2
2
+ ε2 ‖AC‖22(D.5c)

∥∥∥〈∇〉2 A3U3
0

∥∥∥
2

2
!

∥∥A3Q3
0

∥∥2
2
+
∥∥U3

0

∥∥2
2
+ ε2 ‖AC‖22 .(D.5d)

Moreover, we have
∥∥∥∇〈∇〉2 A1U1

0

∥∥∥
2

2
!

∥∥∇A1Q1
0

∥∥2
2
+ 〈t〉−2 ∥∥∇U1

0

∥∥2
2
+ ε2 ‖AC‖22(D.6a)

∥∥∇AU2
0

∥∥2
2
!

∥∥∇A2Q2
0

∥∥2
2
+
∥∥∇U2

0

∥∥2
2
+ ε2 ‖∇AC‖22 .(D.6b)

∥∥∥∇〈∇〉2 A3U3
0

∥∥∥
2

2
!

∥∥∇A3Q3
0

∥∥2
2
+
∥∥∇U3

0

∥∥2
2
+ ε2 ‖∇AC‖22 .(D.6c)

The next PEL is specific to this work and has no analogue in [5]. This is due
to the increased precision at which we need to understand the regularity of the zero
mode of the velocity field in the (2.5NS) terms.

Lemma D.5 (Zero mode CK PEL). Under the bootstrap hypotheses for t ≥ 1,
for c0 and ε sufficiently small, for i ∈ {2, 3}, there holds
∥∥∥∥∥

(√
∂tw

w
Ãi+

|∇|s/2

〈t〉s
Ai

)
〈∇〉2 U i

0

∥∥∥∥∥

2

2

!
∥∥∥∥∥

(√
∂tw

w
Ãi+

|∇|s/2

〈t〉s
Ai

)
Qi

0

∥∥∥∥∥

2

2

+
1

〈t〉2s
∥∥U i

0

∥∥2
2

+ ε2

∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
C

∥∥∥∥∥

2

2

.(D.7)

Proof. First observe that

∂tw(t, η)1t≥11|η|≤1/2 = 0.
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Hence,
∥∥∥∥∥

(√
∂tw

w
Ãi +

|∇|s/2

〈t〉s
Ai

)
〈∇〉2 U i

0

∥∥∥∥∥

2

2

!
∥∥∥∥∥

(√
∂tw

w
Ãi +

|∇|s/2

〈t〉s
Ai

)
(
∆LU

i
0

)
≥1/2

∥∥∥∥∥

2

2

+
1

〈t〉2s
∥∥U i

0

∥∥2
2
.(D.8)

Therefore, similar to the proof of Lemma D.4 (see [5]), it suffices to control the
higher frequencies. Next, write ∆LU3

0 using the formula for ∆tU3
0 and projecting

both sides of the equation to frequencies larger than 1/2:
(
∆LU

i
0

)
≥1/2

= (Qi
0)≥1/2 −

(
Gyy∂Y Y U

i
0 +Gzy∂Y ZU

i
0 +Gzz∂ZZU

i
0 +∆tC

1∂Y U
i
0

+∆tC
2∂ZU

i
0

)
≥1/2

= (Qi
0)≥1/2 +

5∑

j=1

Ei.(D.9)

Apply

M =

(√
∂tw

w
Ãi +

|∇|s/2

〈t〉s
Ai

)

to both sides of (D.9) and deduce

∥∥∥M
(
∆LU

i
0

)
≥1/2

∥∥∥
2

2
!

∥∥∥M
(
Qi

0

)
≥1/2

∥∥∥
2

2
+

5∑

j=1

‖MEi‖22 .(D.10)

The error terms will be divided into pieces which will either be absorbed by the
LHS of (D.10) or will appear on the RHS of (D.7). The latter two error terms are
the most difficult and they are also very similar, hence it suffices to treat only E5.
First, expand with a paraproduct

ME5 = −M
(
(∆tC

2)Hi(∂ZU
i
0)Lo

)
≥1/2

−M
(
(∆tC

2)Lo(∂ZU
i
0)Hi

)
≥1/2

−M
(
(∆tC

2∂ZU
i
0)R

)
≥1/2

= ME5;HL +ME5;LH +ME5;R.(D.11)

For the high-low term we use Lemma 4.1 and (4.7),

ME5;HL ! ε
∑∫

1|η,l|≥1/2

〈ξ, l′〉2

(√
∂tw(t, ξ)

w(t, ξ)
Ã(ξ, l′)+

|ξ, l′|s/2

〈t〉s
A(ξ, l′)

)∣∣∣∆̂tC2(ξ, l′)Hi

∣∣∣

× Low(η − ξ, l − l′)dξ.

Hence, by (4.29a) and Lemma 4.11 we have

‖ME5;HL‖22 ! ε2

∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
C

∥∥∥∥∥

2

2

,

which appears on the RHS of (D.7). To treat the low-high term in (D.11), we use
a similar method to deduce

‖ME5;LH‖22 ! c20
∥∥M∂ZU

i
0

∥∥
2

! c20

(∥∥M(∂ZU
i
0)≥1/2

∥∥
2
+
∥∥M(∂ZU

i
0)≥1/2

∥∥2
2

)
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! c20

(∥∥∥M
(
∆LU

i
0

)
≥1/2

∥∥∥
2
+

1

〈t〉2s
∥∥U i

0

∥∥2
2

)

where the last line followed as in (D.8). The first term is absorbed on the LHS of
(D.10) whereas the second term appears on the RHS of (D.7). The remainder term
is straightforward and can be treated in essentially the same way as the low-high
term; see the proof of [Lemma 4.9 [5]] for a similar argument. As the other error
terms are essentially the same, this completes the proof of (D.7). #

D.2.2. Non-zero mode PELs. The next PEL is an easy variant of the anal-
ogous [Lemma C.5, [5]]. The proof is a slight variation of that in [5]. Here we
need to deal with the large Z frequencies but this is straightforward due to the
inequalities derived in §4.1 and hence the details are omitted here.

Lemma D.6 (CK PEL). Let h be given such that ‖h‖Gλ ! ε 〈t〉b
〈
νt3

〉−a
for

some a ≥ 0 and b ≥ 0. Then, under the bootstrap hypotheses, for c0 and ε suffi-
ciently small, there holds,
∥∥∥∥∥

(√
∂tw

w
Ãi +

|∇|s/2

〈t〉s
Ai

)
∆L∆

−1
t h "=

∥∥∥∥∥

2

2

!
∥∥∥∥∥

(√
∂tw

w
Ãi +

|∇|s/2

〈t〉s
Ai

)
h "=

∥∥∥∥∥

2

2

+
ε2 〈t〉2b−2

〈νt3〉a

∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
C

∥∥∥∥∥

2

2

.(D.12a)

The next PEL is also basically [Lemma C.6, [5]] and is slightly simpler than
Lemma D.6.

Lemma D.7 (Zero order PEL). Let h be given such that ‖h‖Gλ ! ε 〈t〉b
〈
νt3

〉−a

for a, b ≥ 0. Then, for c0 and ε sufficiently small, under the bootstrap hypotheses
we have for all i ∈ {1, 2, 3},

∥∥Ai∆L∆
−1
t h "=

∥∥2
2
!

∥∥Aih "=
∥∥2
2
+

ε2 〈t〉2b−2

〈νt3〉2a
‖AC‖22 ,(D.13)

Finally, from [Lemma C.7, [5]] is the following PEL for treating the linear
pressure term LP3 in the Q3 equation.

Lemma D.8 (PEL for CKwL). Let h be given such that ‖h‖Gλ ! ε 〈t〉b
〈
νt3

〉−a

for a, b ≥ 0 and suppose C satisfies the bootstrap hypotheses. Then for c0 and ε
sufficiently small, there holds

∥∥∥∥∥

√
∂twL

wL
A3∆L∆

−1
t h "=

∥∥∥∥∥

2

2

!
∥∥∥∥∥

√
∂twL

wL
A3h "=

∥∥∥∥∥

2

2

(D.14)

+
ε2 〈t〉2b−2

〈νt3〉2a

∥∥∥∥∥

(√
∂tw

w
Ã+

|∇|s/2

〈t〉s
A

)
C

∥∥∥∥∥

2

2

.(D.15)

The last PEL is unique to this work (it was not necessary in [5]). It is needed
here to gain additional precision for times t " ε−1/2. It is used in, e.g. (5.7) above.

Lemma D.9 (Enhanced dissipation PEL). Let h be given such that ‖h‖Gλ !
ε 〈t〉b

〈
νt3

〉−a
for some a ≥ 0 and b ≥ 0. Then, under the bootstrap hypotheses, for
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c0 and ε sufficiently small there holds

∥∥∥
√
−∆LA

i∆L∆
−1
t h "=

∥∥∥
2

2
!

∥∥∥
√
−∆LA

ih "=

∥∥∥
2

2
+
ε2 〈t〉2b−2

〈νt3〉2a
‖∇AC‖22+

ε2 〈t〉2b

〈νt3〉2a
‖AC‖22 .

(D.16)

Proof. The proof is very similar to the proof of Lemma D.6 (the proof of
which is found in [5]). Let us briefly sketch the argument. Write P = ∆−1

t h "=

∆LP = h "= −Gyy(∂Y − t∂X)2P −Gyz(∂Y − t∂X)∂ZP +Gzz∂ZZP

−∆tC
1(∂Y − t∂X)P −∆tC

2∂ZP

= h "= +
5∑

i=1

Ei.(D.17)

We apply
√
−∆LAi to both sides of (D.17) and estimate the terms on the RHS.

Hence we get

∥∥∥
√
−∆LA

i∆LP
∥∥∥
2

2
!

∥∥∥
√
−∆LA

ih "=

∥∥∥
2

2
+

5∑

i=1

∥∥∥
√
−∆LA

iEi
∥∥∥
2

2
.(D.18)

For example, consider the first error term and expand with a paraproduct:
√
−∆LA

iE1 =
√
−∆LA

i
(
(Gyy)Hi(∂Y − t∂X)2PLo

)

+
√
−∆LA

i
(
(Gyy)Lo(∂Y − t∂X)2PHi

)
+ E1;R

:= E1;C + E1;P + E1;R.

By (4.3), (4.11), (4.7), (4.29a), and Lemma 4.11 it follows that
∥∥∥
√

−∆LA
iE1;P

∥∥∥
2

2
! c20

∥∥∥
√
−∆LA

i∆LP
∥∥∥
2

2
,

which can hence be absorbed on the LHS of (D.18) by choosing c0 sufficiently small.
The remainder is treated E1;R is treated similarly. Consider next E1;C for which,
by the hypotheses, Lemma 4.1, and Lemma D.1, we have

E1;C ! ε 〈t〉b

〈νt3〉a
∑

l

∫

ξ
|k, η − kt, l| 1

〈ξ, l′〉2

〈
t

〈ξ, l′〉

〉−1

A
∣∣∣Ĝyy(ξ, l

′)Hi

∣∣∣

× Low(k, η − ξ, l− l′)dξ;

the extra 〈t〉2 from (∂Y − t∂X)2 was canceled by the ∆−1
t in the definition of P and

Lemma D.1. It follows from (4.29a) and Lemma 4.11 that
∥∥∥
√

−∆LA
iE1;C

∥∥∥
2

2
! ε2 〈t〉2b−2

〈νt3〉2a
‖∇AC‖22 +

ε2 〈t〉2b

〈νt3〉2a
‖AC‖22 ,

which suffices. This completes the treatment of E1. The error terms E2 and E3 are
treated exactly the same. In treating the error terms E4 and E5, note that there
is an extra derivative on Ci. As a result, we cannot recover a power of time from
Lemma 4.1 using the low-frequency growth. However, there is one less power of t
on P and hence there is a balance and a similar proof as that used on E1 will adapt
in a straightforward manner to the last two error terms. We omit the details for
brevity. #
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